CN101952223A - 具有石榴石结构的离子导体 - Google Patents

具有石榴石结构的离子导体 Download PDF

Info

Publication number
CN101952223A
CN101952223A CN2008800232213A CN200880023221A CN101952223A CN 101952223 A CN101952223 A CN 101952223A CN 2008800232213 A CN2008800232213 A CN 2008800232213A CN 200880023221 A CN200880023221 A CN 200880023221A CN 101952223 A CN101952223 A CN 101952223A
Authority
CN
China
Prior art keywords
ion conductor
solid ion
solid
battery
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2008800232213A
Other languages
English (en)
Inventor
W·韦普纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN101952223A publication Critical patent/CN101952223A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及具有石榴石型结构的化学稳定固体离子导体在电池、蓄电池、电致变色装置和其它电化学电池中的用途,还涉及适用于这些用途的新化合物。

Description

具有石榴石结构的离子导体
本发明涉及一种具有石榴石型结构的化学稳定的固体离子导体在电池、超级电容器、蓄电池和电致变色装置、化学传感器及热电转换器中的用途,还涉及适用于这些用途的新化合物。
当需要或期望电子或电气装置至少部分时间独立于电网进行运行时,使用充电(二次)电池。因此,在这方面,用于所述用途的作为电解质材料的固体离子导体的研究成为目前材料研究中的一个重要方面。在仅由固体构成的电池中,需要的优点在于确保不漏电、可小型化、电化学稳定性、相对高的能量密度和相对长的寿命。
近年来,在各种电池技术中,逐渐确立了基于锂离子的电池系统。该电池系统尤其以其高的电能密度和功率而引人关注,这可归因于锂离子高的化学反应性和低的质量以及它们高的移动性。近年来,固体锂离子导体的发展已经吸引了相当多的注意。实例有Li2.9PO3.3N0.46或Li3N和Li-β-铝氧化物。然而,Li2.9PO3.3N0.46与液体电解质相比具有明显较低的离子电导率。Li3N和Li-β-铝氧化物对水分非常敏感。此外,在室温下在低至0.445V的电压,Li3N会分解,而Li-β-铝氧化物不是化学稳定的。
Thangadurai等在其研究中(“Novel Fast Lithium Ion Conduction inGarnet-Type Li5La3M2O12(M=Nb,Ta)”,J.Am.Ceram.Soc.86,437-440,2003)首次描述了具有石榴石型结构的锂离子导体。石榴石型结构Li5La3M2O12化合物具有可观的锂离子电导率。
在结构术语中,石榴石是以立方晶系结晶的通式组成为X3Y2(SiO4)3的原硅酸盐,其中X和Y是八配位和六配位的阳离子位点。各个SiO4四面体经由隙间B阳离子通过离子键与另一SiO4四面体相连。
在上述Thangadurai等研究中描述的式Li5La3M2O12(M=Nb,Ta)的石榴石型化合物与理想的石榴石结构相比含有过量的Li离子。La3+和M5+离子占据八配位和六配位位置,而锂离子占据具有六倍配位的位置。
PCT申请WO2005/085138报道了通常由式Li5La3M2O12(M=Nb或Ta)的化合物通过变价取代而获得的其它石榴石型锂离子导体。La3+位点的变价取代能够增加网络的连接,能够使可用空位的数发生变化。优选通过Li+离子(L)达到电荷平衡。就本发明而言,“变价取代”是指离子被具有不同氧化态的离子取代,由此形成阳离子空位、阴离子空位、隙间阳离子和/或隙间阴离子。固体锂离子导体是化学稳定的,且具有超过3.4×10-6S/cm的离子导电率。由于其高的离子导电率和可忽略的电子导电率,它们能被用于固态电解质。
WO 2005/085138中描述的化合物通常具有化学计量组成L5+xAyGzM2O12,其中L在各种情况下独立地为任何优选的单价阳离子,A在各种情况下独立地为单价、二价、三价或四价阳离子,M在各种情况下独立地为三价、四价或五价阳离子,0<x≤3,0≤y≤3,0≤z≤3,和O能部分或全部被二价和/或三价阴离子(例如N3-)替代。
在所述离子导体中,M在各种情况下是金属Nb和Ta中的一种。没有给出其它金属离子的实例。离子传导通过锂离子(L=Li)进行。
近年来,已经讨论了具有石榴石结构的锂离子导体的其它实例(V.Thangadurai,W.Weppner,Adv.funct.Mater.2005,15,107-112;V.Thangadurai,W.Weppner,J.Power Sources,2005,142,339-344)。其中,在22℃,Li6BaLa2Ta2O12具有最高为4×10-5Scm-1的Li+电导率,活化能为0.40eV。尽管Li6BaLa2Ta2O12对于与金属锂反应、水分、空气和常见电极材料是稳定的,但在室温下体积导电率和总导电率仍然不够高,不能开发出理想的可再充电的固体锂离子电池。
与上述现有技术中离子导体相关的另外一个问题是所建议的金属铌和钽较为昂贵且不易获得。此外,完全由上述石榴石型化合物构成的固体电解质的使用是复杂的且成本高。
因此,本发明的目的之一是提供改进的固体离子导体,其中至少部分地克服上述缺点。
根据本发明,已经发现锆可用作石榴石型离子导体中的金属M。与铌和钽相比,锆容易获得且产生了非常稳定的固态结构。Nb和Ta通常在石榴石结构中以氧化态+V存在,而锆优选以氧化态+IV存在。
因此,在一个实施方案中,本发明提供了具有石榴石型晶体结构且化学计量组成为L7+xAxG3-xZr2O12的固体离子导体,其中
L在各种情况下独立地为单价阳离子,
A在各种情况下独立地为二价阳离子,
G在各种情况下独立地为三价阳离子,
0≤x≤3,和
O可部分或全部被二价或三价阴离子(例如N3-)替代。
L特别优选是碱金属离子,例如Li+、Na+或K+。特别地,L也可以是各种碱金属离子的组合。在本发明的一个特别优选的实施方案中,L=Na+。钠非常廉价,且可以任意量获得。小的Na+离子可以容易地在石榴石型结构中移动,并与锆结合产生化学稳定的晶体结构。
A是任何二价阳离子或这些阳离子的任何组合。二价金属阳离子可优选用作A。特别优选的是碱土金属离子,例如Ca、Sr、Ba和/或Mg,和二价过渡金属阳离子,例如Zn。已发现,这些离子在根据本发明的石榴石型化合物中即使有移动,移动也非常少,因此离子传导基本上通过L进行。
在上述组成中,优选0≤x≤2,尤其优选0≤x≤1。在一个根据本发明的实施方案中,x=0,因而在石榴石型化合物中不存在A。
G是任意三价阳离子或这种阳离子的任意组合。对于G,可优选使用三价金属阳离子。尤其优选G=La。
在上述组成的结构中,O2-可以部分或全部被其它阴离子替代。例如,用其它二价阴离子全部或部分代替O2-是有利的。此外,也可以通过适当的电荷补偿以三价阴离子不等价代替O2-
在另一方面,本发明提供了化学计量组成为L7+xAxLa3-xZr2O12的固体离子导体,其中A是二价金属,L是Li或Na。因为Na容易获得,所以Na是尤其优选的。在一个优选实施方案中,x=0,因而组成为L7La3Zr2O12
A优选选自碱土金属,优选选自Ca、Sr、Ba和/或Mg。A也优选选自二价过渡金属,例如A=Zn。最优选A=Sr或Ba。
组成L7+xAxLa3-xZr2O12的离子导体具有石榴石型晶体结构。与已知的组成为L5La3Nb2O12(L=Li)的化合物相比,两个Nb(+V)阳离子通常被两个Zr(+IV)阳离子和两个单价L阳离子代替。此外,La(+III)可以被A(+II)和L(+I)代替。这样,结构中L的总比例增大。L优选为Li或Na,具有石榴石结构的化合物经由Li和Na发生离子传导。这样,通过本发明化合物,可以提供显著改进的离子导体。
与现有技术的化合物相比,组成为L7+xAxLa3-xZr2O12的材料显示出提高的离子导电率。由于本发明化合物的石榴石结构(这是3D各向同性结构),因此在三维而不是在优先方向进行离子传导成为可能。
另一方面,本发明化合物的电子导电率相对较低。本发明化合物的多晶样品也具有低的晶界电阻,因此总导电率几乎完全由体积导电率构成。
该材料的另一优点是其高的化学稳定性。特别地,当与熔融锂接触而加热时,该材料没有表现出可辨别的变化。在最高达350℃的温度和最高达6V的DC电压,没有观察到化学分解。
根据本发明具有石榴石结构的特别优选的化合物的一个实例是Li7La3Zr2O12。高的锂离子导电率、良好的热稳定性和与可能的电极反应方面的化学稳定性、环境相容性、原料的可获得性、低的制造成本和简单的生产和封装,使得Li7La3Zr2O12成为尤其适用于可再充电锂离子电池的有前景的固体电解质。
根据另一方面,本发明提供了制备具有石榴石型结构的固体离子导体的方法。该化合物可以通过存在的元素的适当的盐和/或氧化物的反应形成,例如通过固相反应形成。尤其有用的原料是硝酸盐、碳酸盐和氢氧化物,它们在反应过程中转变成相应的氧化物。
更具体地,本发明涉及制备组成为L7+xAxG3-xZr2O12(例如Na6ALa2Zr2O12)的固体离子导体的方法。该材料可以通过A、G和Zr适当的盐和/或氧化物与L的氢氧化物、硝酸盐或碳酸盐在固相反应中反应而获得。A如上所定义。二价金属A优选以硝酸盐的形式使用。在此,优选Ca(NO3)2、Sr(NO3)2和Ba(NO3)2。至于G,优选使用La,La优选以La2O3的形式使用。有利地,Zr以氧化物形式使用,优选ZrO2。L优选以LOH、LNO3或L2CO3形式使用。例如,可优选使用LiOH·H2O或NaOH·H2O。为了补偿样品的加热过程中L(例如L=Li、Na)的重量损失,优选过量使用各种盐,例如按重量计过量10%。
在第一步骤中将原料混合,并可以例如在球磨机中在2-丙醇中使用氧化锆研磨介质对材料进行研磨。然后在优选400至1000℃的温度范围内在空气中对由此获得的混合物加热数小时,优选2至10小时。600至800℃的温度,例如大约700℃,和4至8小时的热处理时间,例如大约6小时,是尤其合适的。然后再进行研磨,优选同样在球磨机中在2-丙醇中使用氧化锆研磨介质进行。然后对反应产物进行单轴压制或优选等静压制,以获得模制件,例如丸片。然后,在优选700至1200℃的温度、更优选800至1000℃的温度,将它们烧结数小时,优选10至50小时,更优选20至30小时。大约900℃的温度和大约24小时的热处理时间在此是尤为合适的。在该烧结过程中,有利地,用相同组成的粉末覆盖样品,以避免L氧化物的过度损失。
由于所有成分均以可溶性盐存在,因此,可容易地用于制备该化合物的可能方法是前体法,例如Pecchini法、甘氨酸法或沉淀反应。
作为固态电解质,本发明的固体离子导体(例如锂或钠离子导体)是有价值的原料。由于该材料具有格外高的离子导电率和可忽略的电子传导,它们可被用作具有非常高能量密度的电池(例如锂或钠电池)的固体电解质。该材料在化学反应方面(例如与单质锂和常用电极材料的反应)的高稳定性,使得例如本发明固体离子导体能够投入电池的实际应用。
与常用的固体电解质材料相比,本发明固体电解质与电极之间的相界电阻也非常小。因此,使用本发明的材料能够制备具有较高功率(高电流)的电池。与使用液体电解质相比,使用本发明的固态电解质还能提高安全性。当电解质用于机动车辆时,这是尤其有利的。
另一方面,除了用于电池中,本发明还提供了固体离子导体(例如锂离子导体)在电致变色系统(窗口、VDUs、外墙等)中的用途和在超级电容器(超级电容)中用于瞬时能量贮存和释放的用途。当使用本发明离子导体时,可以实现100F/cm3或更高的电容器能量密度。本发明的另一方面是使用石榴石型固体离子导体作为传感器,尤其是用于许许多多气体的优越感器。根据本发明,还可以将该材料用于将热能直接有效转换为电能的热电转换器中。
具有石榴石型的离子导体还可以与其它电解质(例如传统的质子惰性液体电解质)结合用作缓冲层。因此,不必使用完全由石榴石型结构构成的电解质。而是可以与新颖石榴石型离子导体结合使用任何已知的例如以液体、凝胶或固体形式存在的电解质。
因此,另一方面,本发明提供了具有石榴石型晶体结构的固体离子导体作为电极前的保护层的用途,用于提高对于电解质的化学稳定性。为此,不仅可以使用根据本发明的含有锆的石榴石型结构,还可以例如使用WO2005/085138中描述的石榴石型化合物。使用离子导体作为在电极前的缓冲结构防止了短路,并可以产生和施加较高的电压,从而实现明显较大的能量密度和较长的寿命。
附图
图1:
在18℃在空气中对厚丸片(厚1.02厘米,直径0.92厘米)测量Li7La3Zr2O12的AC阻抗曲线。连续线代表使用EQUIVALENT程序(B.A.Boukamp,Equivalent Circuit,Version 4.55,1997,Faculty of ChemicalTechnology,University of Twente,7500 AE Enschede(The Netherlands),Report No.CT 88/265/128/CT89/214/128,May 1989)获得的包括(RbQb)(RgbQgb)(Qel)(其中R是阻抗,Q是恒相位元,符号g、gb和el表示晶粒体积、晶界和电极)的等效电流电路的模拟数据。在插图中显示了在18℃在空气中对薄丸片(厚0.18厘米,直径0.98厘米)测量的Li7La3Zr2O12的AC阻抗曲线。
图2:
a)在两个连续的加热和冷却循环中获得的Li7La3Zr2O12厚丸片的体积电导率和总电导率(体积和晶界)的阿伦尼乌斯曲线。
b)Li7La3Zr2O12厚丸片和薄丸片在第一轮加热(18-300℃)中获得的阿伦尼乌斯曲线的比较。
图3:
Li7La3Zr2O12和其它被考虑用于电池应用的已知锂离子导体的总电导率(体积+晶界)的比较。
图4:
根据粉末衍射标准联合委员会测得的Li7La3Zr2O12的粉末X射线衍射图和已知石榴石相Li5La3Nb2O12(JCPDS:80-0457)的标准图谱。
图5:
在25℃和50℃在空气中对Li7La3Zr2O12厚丸片测得AC阻抗曲线。
图6:
在25℃和50℃在空气中对Li7La3Zr2O12薄丸片测得的AC阻抗曲线。插图中显示了在较高频率下的其它曲线。
图7:在两个连续的加热和冷却循环中获得的Li7La3Zr2O12薄丸片的体积电导率和总电导率(体积和晶界)的阿伦尼乌斯曲线。
图8:
a)与熔融锂接触前的Li7La3Zr2O12丸片和钼坩锅照片,b)Li7La3Zr2O12丸片在熔融锂中的照片,和c)刚刚与熔融锂接触48小时之后的Li7La3Zr2O12丸片和钼坩锅的照片。图c)中照片显示丸片的颜色没有变化(象牙色),且没有形成反应产物。
下述实施例用来阐述本发明特别优选的实施方案。
实施例:
在各种情况下,化学计量量的高纯原料在固态反应中进行反应:
LiOH(Alfa Aesar,>99%),在200℃预干燥6h,按重量计过量10%,以补偿在烧结过程中的Li损失;
La2O3(Alfa Aesar,>99.99%),在900℃预干燥24h;和
ZrO2(Aldrich,>99%)。
使用氧化锆容器和球在2-丙醇中将原料球磨大约12小时。然后在900和1125℃在空气中热处理12小时。然后将获得的产物再次球磨。然后将反应产物等静压制以制成丸片,并在1230℃烧结36小时。在此过程中,为了避免锂的过度损失,用相同组成的粉末覆盖样品。所有处理中的升温速率都是1℃/分钟。用金刚石锯将烧结压制的丸片切割成较薄的丸片。用X-射线粉末衍射(SEIFERT 3000,CuKα,Germany)监视相的形成。用最小二乘法由粉末XRD衍射数据确定晶格常数。
在空气中使用两种不同厚度的丸片(厚丸片:厚1.02厘米,直径0.92厘米,薄丸片:厚0.18厘米,直径0.98厘米)测量电导率。通过阻抗和晶相分析仪(HP 4192A,Hewlett-Packard Co.,Palo Alto,CA)(5Hz-13Hz)在18℃至350℃的温度范围内使用锂离子阻塞的Au电极(在700℃固化1小时的Au糊)进行测量。每次阻抗测试前,将样品在恒定温度下平衡3至6小时。在两个连续的加热和冷却循环中对各丸片进行阻抗测试。在空气中在29-900-20℃的温度范围以2℃/分钟的升温和冷却速率和在等温900℃测量热重分析(TGA)和差热分析(NETZSCH STA 409C/CD)的数据。
在充氩手套箱中通过使丸片与大量过量的熔融锂在钼坩锅中反应48小时,检测Li7La3Zr2O12相对于熔融锂的稳定性。
虽然已经对Li5La3M2O12(M=Nb,Ta)石榴石进行了大量的X-射线衍射(XRD)研究,但在空间群和锂离子的位置方面对结构仍然存在争论(a)D.Mazza,Mater.Lett.1988,7,205-207;b)H.Hyooma,K.Hayashi,Mater.Res.Bull.1988,23,1399-1407;c)J.Isasi,M.L.Veiga,R.Saez-puche,A.jereze,C.Pico,J.Alloys Compd.1991,177,251-257)。最近,中子衍射研究已经表明Li5La3M2O12(M=Nb,Ta)以空间群Ia3d结果,Li位于四面体和八面体位置,且在两类位置中均存在空位(a)E.J.Cussen,Chem.Commun.2006,412-413;b)M.P.O′Callaghan,D.R.Lynham,E.J.Cussen,G.Z.Chen,Chem.Mater.2006,18,4681-4689)。检测出的Li7La3Zr2O12粉末XRD衍射图谱与已知石榴石相Li5La3M2O12的标准图谱一致,且表明石榴石结构能够合并不同氧化态和不同尺寸的阳离子而不过度改变对称性的能力。测定出晶格常数A=12.9682(6)
Figure GPA00001075328400091
的立方晶胞的衍射图谱。
图1显示了Li7La3Zr2O12厚丸片在18℃获得的典型阻抗曲线。当电极离子阻塞时,在低频区域出现上升,这表明被检测材料是离子导体(a)V.Thangadurai,R.A.Huggins,W.Weppner,J.Power Sources 2002,108,64-69;b)J.T.S.Irvine,D.C.Sinclair,A.R.West,Adv.Mater.1990,2,132-138)。还观察到此前研究的具有石榴石型结构材料具有类似的情形。阻抗曲线可以分为体积、晶界和电极电阻。图1中的连续线表示使用EQUIVALENT程序获得的(RbQb)(RgbQgb)(Qe1)的等效电流电路的数据。在图1的插图中显示了在18℃测量的Li7La3Zr2O12薄丸片的AC阻抗曲线。由高频和低频半弧与轴的交点获得在不同温度下观察到的Li7La3Zr2O12厚丸片(厚1.02厘米,直径0.92厘米)和薄丸片(厚0.18厘米,直径0.98厘米)的体积电导率和总电导率,并摘录在表1中。图1和表1中所示数据表明Li7La3Zr2O12厚丸片和薄丸片具有相似的电性能。与厚丸片相比,薄丸片显示出稍高的体积电导率和总电导率。此外,有意思的是,注意到了对于厚丸片和薄丸片,晶界对总电阻的贡献都小于50%,并随着温度的升高而下降(表1)。在较高温度(对于厚丸片,高于75℃;对于薄丸片,高于50℃),与准确的体积贡献相比,难以确定晶界贡献;因此显示了体积和晶界贡献的总值,用于确定在测试的温度范围内的电导率。具有石榴石型结构的新型结晶快锂离子导体Li7La3Zr2O12在室温下的总电导率(3×10-4S/cm,25℃)优于所有其它固体锂离子导体和所有前述锂石榴石。
这一结果,即总电导率和体积电导率具有相同的数量级,是这里被检测的Li7La3Zr2O12石榴石结构相对于其它陶瓷锂离子导体的尤其有利的性质。对于许多固体电解质在电化学设备(例如电池、传感器、和电致变色显示器)中的应用来说,总电导率应该尽可能的高。此外,通过低温合成Li7La3Zr2O12和通过使用合适的烧结方法进一步致密化,体积和总电导率进一步提高。
图2a显示了在两个加热和冷却循环中获得的Li7La3Zr2O12厚丸片的体积电导率和总电导率的阿伦尼乌斯曲线。在两个循环间没有明显的电导率变化。这意味着被检测的石榴石型结构是热稳定的,且在检测的温度范围(即从室温到350℃)内没有相变发生。对于Li7La3Zr2O12薄丸片,也观察到相似的阿伦尼乌斯曲线。在图2b中,比较了在第一轮加热中获得的Li7La3Zr2O12厚丸片和薄丸片的数据。对于薄丸片的体积和总电导率获得的活化能(18-50℃时0.32eV,18-300℃时0.30eV)略低于对于厚丸片体积和总电导率获得的活化能(18-70℃时0.34eV,18-300℃时0.31eV)。针对由薄丸片获得的电导率略高于针对厚丸片获得的电导率。
除了阻抗分析外,还通过EMF检测证实了电导率的离子性质,在EMF检测中Li7La3Zr2O12被用做单质锂和铝、LiAl之间的固体电解质。将样品的上侧覆盖铝层,并将其置于已经在填充惰性氩气的手套箱中熔融的锂上。通过与锂的化学反应,和通过由与铝相对的锂电极将锂库伦滴定到铝中使铝合金化。产生的电压在理论值的范围内。它们的差别可归因于不均匀的温度分布和不可逆过程造成的相应现象。
图3显示了Li7La3Zr2O12和其它已知的正被考虑用于电池中的锂离子导体的锂离子电导率的比较。电导率高于锂-β-铝氧化物、薄层Lipon(Li2.9PO3.3N0.46)、Li9SiAlO8、Lil+40mol Al2O3、LiZr2(PO4)3、Li3.5Si0.5P0.5O4、Li5La3Ta2O12和Li6BaLa2Ta2O12。比其它含锂的石榴石结构较高的锂电导率和所观测到的低的活化能可能归因于立方晶格常数的增大、锂离子浓度的增加、锂离子和其它形成晶格的离子间化学反应的减少,并可部分归因于提高的密实化(理论密度的92%)。在相对低的温度下,不太稳定的多晶体Li3N的电导率(6.6×10-4S/cm,27℃)可与Li7La3Zr2O12的电导率相比。然而,在较高温度下,Li7La3Zr2O12展示出较高的总电导率。
通过热重分析(TGA)和差热分析(DTA)证实了Li7La3Zr2O12的热稳定性,这是结晶锂离子导体的基本优点。在空气中测定的TG-DTA数据表明,在20-900℃温度范围的加热过程和冷却过程中都没有发生明显的质量变化和可识别的相变化。结果发现,含锆Li7La3Zr2O12对于熔融锂是稳定的,且在数周的观察期内0对于水分和空气的作用也是化学稳定的。
表1
在空气中测得的Li7La3Zr2O12(厚丸片:厚1.02厘米,直径0.92厘米,和薄丸片:厚0.18厘米,直径0.98厘米)的阻抗数据。
  丸片类型   温度(℃)   σ体积(Scm-1)   σ(Scm-1)   Rgb/Rb+Rgb [a]
厚丸片   182550   3.37×10-44.67×10-41.19×10-3   1.90×10-42.44×10-46.15×10-4   0.440.480.49
薄丸片   182550   3.97×10-45.11×10-41.45×10-3   2.32×10-43.01×10-47.74×10-4   0.420.410.47
[a]Rgb=晶界电阻,Rb=体积阻电阻
表2:具有石榴石结构的Li7La3Zr2O12的粉末XRD衍射图谱
Figure GPA00001075328400121

Claims (20)

1.具有石榴石型晶体结构的固体离子导体的用途,用作电极涂料或电极前的保护层。
2.涂覆有具有石榴石型晶体结构的固体离子导体的电极。
3.包括一个或多个根据权利要求2的电极的电池。
4.具有石榴石型晶体结构且化学计量组成为L7+xAxG3-xZr2O12的固体离子导体,其中
L在各种情况下独立地为单价阳离子,
A在各种情况下独立地为二价阳离子,
G在各种情况下独立地为三价阳离子,
0≤x≤3,和
O可以部分或全部被二价或例如N3-的三价阴离子替代。
5.根据权利要求4的固体离子导体,其中0≤x≤1。
6.根据权利要求4或5的固体离子导体,其中L选自Li、Na和/或K。
7.根据权利要求6的固体离子导体,其中L=Na。
8.根据权利要求4至7任一项的固体离子导体,其中A是二价碱土金属阳离子。
9.根据权利要求4至8任一项的固体离子导体,其中A选自Ca、Sr和/或Ba。
10.根据权利要求4至6任一项的固体离子导体,其中所述化学计量组成为Li7La3Zr2O12
11.制备根据权利要求4至10任一项的固体离子导体的方法,其特征在于使L、A、G和Zr的盐和/或氧化物互相反应。
12.根据权利要求11的方法,其特征在于所述反应借助例如Pechini法的前体法、甘氨酸法和借助所述组分的溶解盐的沉淀反应进行。
13.根据权利要求11的方法,其特征在于所述反应以固相反应进行。
14.根据权利要求11或13的方法,其特征在于以硝酸盐、碳酸盐或氢氧化物的形式使用L和A,并使它们与G2O3和ZrO2反应。
15.根据权利要求11、13和14任一项的方法,包括下述步骤:
a)将原料混合并球磨,优选在2-丙醇中使用氧化锆容器和球进行球磨,
b)在400至1000℃在空气中将获自a)的混合物加热2至10小时,
c)球磨,优选在2-丙醇中使用氧化锆容器和球进行球磨,
d)将混合物等静压制,以制得所需的形状,和
e)在700至1200℃将覆盖有相同组成的粉末的获自步骤d)的产物烧结10至50小时。
16.根据权利要求15的方法,其中将混合物在步骤b)中在700℃加热6小时和在步骤e)中在900℃烧结24小时。
17.根据权利要求4至10任一项的固体离子导体的用途,用于电池、蓄电池、超级电容器、燃料电池、传感器、热电转换器、和/或例如窗口、VDUs和外墙的电致变色设备中。
18.根据权利要求1的用途,其中使用根据权利要求4至10任一项的离子导体。
19.根据权利要求2的电极,其中使用根据权利要求4至10任一项的离子导体。
20.包括一个或多个根据权利要求19的电极的电池。
CN2008800232213A 2007-07-02 2008-07-02 具有石榴石结构的离子导体 Pending CN101952223A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007030604.2 2007-07-02
DE102007030604A DE102007030604A1 (de) 2007-07-02 2007-07-02 Ionenleiter mit Granatstruktur
PCT/EP2008/005402 WO2009003695A2 (de) 2007-07-02 2008-07-02 Ionenleiter mit granatstruktur

Publications (1)

Publication Number Publication Date
CN101952223A true CN101952223A (zh) 2011-01-19

Family

ID=39730674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800232213A Pending CN101952223A (zh) 2007-07-02 2008-07-02 具有石榴石结构的离子导体

Country Status (9)

Country Link
US (2) US8658317B2 (zh)
EP (1) EP2176190B1 (zh)
JP (2) JP5634865B2 (zh)
KR (1) KR101539123B1 (zh)
CN (1) CN101952223A (zh)
CA (1) CA2694259C (zh)
DE (1) DE102007030604A1 (zh)
TW (1) TWI434452B (zh)
WO (1) WO2009003695A2 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617140A (zh) * 2012-03-05 2012-08-01 内蒙古工业大学 一种锑掺杂的类石榴石结构的锂离子晶态固体电解质材料及其合成方法
CN103682356A (zh) * 2012-09-18 2014-03-26 华为技术有限公司 一种锂离子电池正极材料及其制备方法
CN105489927A (zh) * 2015-11-24 2016-04-13 青岛能迅新能源科技有限公司 一种提高全固态锂离子电解质材料Li7La3Zr2O12常温离子电导的方法
CN105684095A (zh) * 2013-11-01 2016-06-15 中央硝子株式会社 固体电解质前体、固体电解质前体的制造方法、固体电解质的制造方法和固体电解质-电极活性物质复合体的制造方法
CN107750406A (zh) * 2015-06-18 2018-03-02 德克萨斯大学系统董事会 水溶剂化玻璃/非晶态固体离子导体
CN109713363A (zh) * 2018-12-29 2019-05-03 蜂巢能源科技有限公司 锂石榴石氧化物固态电解质及其制备方法和应用
CN109742442A (zh) * 2018-12-24 2019-05-10 北京化工大学 石榴石型固态电解质的制备及应用该固态电解质的二次电池
CN112533872A (zh) * 2018-08-03 2021-03-19 株式会社钟化 石榴石型复合金属氧化物及其制造方法
CN113224374A (zh) * 2020-01-21 2021-08-06 天津国安盟固利新材料科技股份有限公司 一种复合型电解质膜及其制备方法
CN115950941A (zh) * 2023-03-13 2023-04-11 华北理工大学 锂离子导体固体电解质型低温传感器及其制备方法与应用

Families Citing this family (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8535396B2 (en) 2002-08-09 2013-09-17 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US7645543B2 (en) 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US20080057386A1 (en) 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
US9368775B2 (en) 2004-02-06 2016-06-14 Polyplus Battery Company Protected lithium electrodes having porous ceramic separators, including an integrated structure of porous and dense Li ion conducting garnet solid electrolyte layers
US7282295B2 (en) 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
JP5095412B2 (ja) 2004-12-08 2012-12-12 シモーフィックス,インコーポレーテッド LiCoO2の堆積
JP2010505044A (ja) 2006-09-29 2010-02-18 インフィニット パワー ソリューションズ, インコーポレイテッド フレキシブル基板のマスキングおよびフレキシブル基板上にバッテリ層を堆積させるための材料拘束
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US20120196189A1 (en) 2007-06-29 2012-08-02 Johnson Ip Holding, Llc Amorphous ionically conductive metal oxides and sol gel method of preparation
US9034525B2 (en) 2008-06-27 2015-05-19 Johnson Ip Holding, Llc Ionically-conductive amorphous lithium lanthanum zirconium oxide
US8211496B2 (en) 2007-06-29 2012-07-03 Johnson Ip Holding, Llc Amorphous lithium lanthanum titanate thin films manufacturing method
DE102007030604A1 (de) * 2007-07-02 2009-01-08 Weppner, Werner, Prof. Dr. Ionenleiter mit Granatstruktur
US20090092903A1 (en) * 2007-08-29 2009-04-09 Johnson Lonnie G Low Cost Solid State Rechargeable Battery and Method of Manufacturing Same
KR20150128817A (ko) 2007-12-21 2015-11-18 사푸라스트 리써치 엘엘씨 전해질 막을 위한 표적을 스퍼터링하는 방법
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
KR101606183B1 (ko) 2008-01-11 2016-03-25 사푸라스트 리써치 엘엘씨 박막 배터리 및 기타 소자를 위한 박막 캡슐화
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
KR101522442B1 (ko) 2008-06-16 2015-05-21 폴리플러스 배터리 컴퍼니 수성 리튬/공기 전지 셀
JP2010045019A (ja) * 2008-07-16 2010-02-25 Tokyo Metropolitan Univ 全固体リチウム二次電池及びその製造方法
EP2319101B1 (en) 2008-08-11 2015-11-04 Sapurast Research LLC Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
JP5132639B2 (ja) * 2008-08-21 2013-01-30 日本碍子株式会社 セラミックス材料及びその製造方法
JP5650646B2 (ja) 2008-09-12 2015-01-07 インフィニット パワー ソリューションズ, インコーポレイテッド 電磁エネルギーを介したデータ通信のための一体型伝導性表面を有するエネルギーデバイスおよび電磁エネルギーを介したデータ通信のための方法
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
JP5262572B2 (ja) * 2008-10-23 2013-08-14 株式会社豊田中央研究所 リチウム含有ガーネット型酸化物、リチウム二次電池及び固体電解質の製造方法
JP5083336B2 (ja) * 2009-02-04 2012-11-28 株式会社豊田中央研究所 ガーネット型リチウムイオン伝導性酸化物
JP5287499B2 (ja) * 2009-05-21 2013-09-11 株式会社豊田中央研究所 全固体型リチウムイオン二次電池
CN102308425B (zh) 2009-02-04 2014-03-26 株式会社丰田中央研究所 石榴石型锂离子传导性氧化物和含有所述氧化物的全固态锂离子二次电池
CN102576828B (zh) 2009-09-01 2016-04-20 萨普拉斯特研究有限责任公司 具有集成薄膜电池的印刷电路板
JP5525388B2 (ja) * 2009-09-03 2014-06-18 日本碍子株式会社 セラミックス材料及びその製造方法
JP5283188B2 (ja) * 2009-09-03 2013-09-04 日本碍子株式会社 全固体二次電池およびその製造方法
JP5376252B2 (ja) * 2009-09-03 2013-12-25 日本碍子株式会社 セラミックス材料及びその利用
JP5273732B2 (ja) * 2009-09-03 2013-08-28 日本碍子株式会社 セラミックス材料の製造方法
JP5413090B2 (ja) * 2009-09-25 2014-02-12 株式会社豊田中央研究所 全固体型リチウム二次電池
JP5381640B2 (ja) * 2009-11-24 2014-01-08 株式会社豊田中央研究所 リチウム二次電池
DE102010001632A1 (de) 2009-12-23 2011-06-30 Robert Bosch GmbH, 70469 Lithiumzelle mit verbesserter Kathodenstruktur und Herstellungsverfahren hierfür
AU2010271483A1 (en) * 2010-01-22 2011-08-04 Toyota Jidosha Kabushiki Kaisha Negative electrode structure for aqueous electrolyte batteries and aqueous electrolyte battery comprising the negative electrode structure
JP5471527B2 (ja) * 2010-02-02 2014-04-16 株式会社豊田中央研究所 リチウム二次電池及びリチウム二次電池用電極
JP2011195372A (ja) * 2010-03-19 2011-10-06 National Institute Of Advanced Industrial Science & Technology リチウムイオン伝導性酸化物の単結晶及びその製造方法、並びにそれを部材として使用した電気化学デバイス
JP5649033B2 (ja) * 2010-03-19 2015-01-07 独立行政法人産業技術総合研究所 リチウムイオン伝導性酸化物及びその製造方法、並びにそれを部材として使用した電気化学デバイス
WO2011156392A1 (en) 2010-06-07 2011-12-15 Infinite Power Solutions, Inc. Rechargeable, high-density electrochemical device
JP5358522B2 (ja) * 2010-07-07 2013-12-04 国立大学法人静岡大学 固体電解質材料およびリチウム電池
JP5742144B2 (ja) * 2010-09-08 2015-07-01 株式会社豊田中央研究所 複合体の製造方法、複合体及びそれを備えたアルカリ金属二次電池
JP5290337B2 (ja) * 2011-02-24 2013-09-18 国立大学法人信州大学 ガーネット型固体電解質、当該ガーネット型固体電解質を含む二次電池、及び当該ガーネット型固体電解質の製造方法
DE102011013018B3 (de) 2011-03-04 2012-03-22 Schott Ag Lithiumionen leitende Glaskeramik und Verwendung der Glaskeramik
KR101312275B1 (ko) 2011-03-30 2013-09-25 삼성에스디아이 주식회사 복합체, 이를 포함한 리튬 이차 전지용 전극 활물질, 그 제조방법, 이를 이용한 리튬 이차 전지용 전극 및 이를 채용한 리튬 이차 전지
JP5760638B2 (ja) * 2011-04-21 2015-08-12 株式会社豊田中央研究所 ガーネット型リチウムイオン伝導性酸化物の製造方法
US9093717B2 (en) 2011-05-20 2015-07-28 Board Of Trustees Of Michigan State University Methods of making and using oxide ceramic solids and products and devices related thereto
WO2012176808A1 (ja) 2011-06-20 2012-12-27 株式会社豊田中央研究所 全固体型リチウム二次電池及びその製造方法
JP6144007B2 (ja) * 2011-06-29 2017-06-07 株式会社豊田中央研究所 ガーネット型イオン伝導性酸化物及びその製造方法
WO2013009984A2 (en) 2011-07-12 2013-01-17 Board Of Trustees Of Michigan State University Porous sol gels and methods and structures related thereto
DE102011079401A1 (de) 2011-07-19 2013-01-24 Robert Bosch Gmbh Lithiumionen leitende, granatartige Verbindungen
WO2013028574A2 (en) 2011-08-19 2013-02-28 Polyplus Battery Company Aqueous lithium air batteries
US20130108920A1 (en) * 2011-11-01 2013-05-02 Isalah O. Oladeji Composite electrodes for lithium ion battery and method of making
US9660265B2 (en) 2011-11-15 2017-05-23 Polyplus Battery Company Lithium sulfur batteries and electrolytes and sulfur cathodes thereof
DE102011088910A1 (de) * 2011-12-16 2013-06-20 Robert Bosch Gmbh Lithium-Schwefel-Zellen-Separator mit Polysulfidsperrschicht
KR101945968B1 (ko) 2012-03-01 2019-02-11 엑셀라트론 솔리드 스테이트 엘엘씨 고용량 고체상 복합물 양극, 고체상 복합물 분리막, 재충전가능한 고체상 리튬 전지 및 이의 제조 방법
EP2683005B1 (en) 2012-07-06 2016-06-01 Samsung Electronics Co., Ltd Solid ionic conductor, solid electrolyte including the same, lithium battery including said solid electrolyte, and method of manufacturing said lithium battery
KR102086665B1 (ko) * 2012-07-06 2020-03-09 삼성전자주식회사 고체이온전도체, 이를 포함하는 고체전해질, 이를 포함하는 리튬전지, 및 이의 제조방법
US10084168B2 (en) 2012-10-09 2018-09-25 Johnson Battery Technologies, Inc. Solid-state battery separators and methods of fabrication
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
US10388975B2 (en) 2013-01-31 2019-08-20 Board Of Trustees Of Michigan State University Template-based methods of making and using ceramic solids
DE102013101145B4 (de) 2013-02-05 2024-02-22 Schott Ag Verfahren zur Herstellung eines lithiumhaltigen Sols
KR102038621B1 (ko) * 2013-02-14 2019-10-30 삼성전자주식회사 고체이온전도체, 이를 포함하는 고체전해질, 이를 포함하는 리튬전지, 및 이의 제조방법
JP5608309B1 (ja) 2013-03-18 2014-10-15 京セラ株式会社 全固体型キャパシタ
JP6166584B2 (ja) * 2013-05-10 2017-07-19 日本碍子株式会社 リチウムイオン伝導性固体電解質並びにそれを用いた複合体及び電池
JP6554267B2 (ja) * 2013-05-20 2019-07-31 Tdk株式会社 固体イオンキャパシタ
KR102013222B1 (ko) * 2013-07-05 2019-08-23 한국전자통신연구원 산화물계 고체 전해질 제조방법
US9461331B2 (en) 2013-07-05 2016-10-04 Electronics And Telecommunications Research Institute Method of preparing an oxide-based solid electrolyte by a hydrothermal reaction
JP6596194B2 (ja) * 2013-08-02 2019-10-23 Tdk株式会社 固体イオンキャパシタ
JP6165546B2 (ja) * 2013-08-09 2017-07-19 株式会社日立製作所 固体電解質および全固体リチウムイオン二次電池
JP6028694B2 (ja) 2013-08-23 2016-11-16 株式会社豊田中央研究所 ガーネット型イオン伝導性酸化物の製造方法及び複合体の製造方法
US10290895B2 (en) 2013-10-07 2019-05-14 Quantumscape Corporation Garnet materials for Li secondary batteries and methods of making and using garnet materials
KR101627848B1 (ko) * 2013-10-21 2016-06-08 재단법인 포항산업과학연구원 리튬 이차 전지용 고체 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
DE102013222784A1 (de) 2013-11-08 2015-05-13 Robert Bosch Gmbh Elektrochemische Zelle und Verfahren zu deren Herstellung
KR101526703B1 (ko) 2013-11-12 2015-06-05 현대자동차주식회사 Al 치환된 가넷의 합성 방법
DE102013224045B4 (de) 2013-11-25 2022-12-08 Schott Ag Verfahren zur Herstellung eines lithiumionenleitfähigen Materials mit granatartiger Kristallstruktur, Verwendung des Materials und Verfahren zur Herstellung eines Zwischenproduktes
US9548512B2 (en) 2013-12-12 2017-01-17 Ut-Battelle, Llc High conducting oxide—sulfide composite lithium superionic conductor
DE102014100684B4 (de) * 2014-01-22 2017-05-11 Schott Ag lonenleitende Glaskeramik mit granatartiger Kristallstruktur, Verfahren zur Herstellung und Verwendung einer solchen Glaskeramik
AU2015215105B2 (en) 2014-02-07 2019-04-04 Basf Se Electrode unit for an electrochemical device
US20150267316A1 (en) * 2014-03-19 2015-09-24 Sandia Corporation Electrochemical Ion Separation in Molten Salts
DE102014205945A1 (de) 2014-03-31 2015-10-01 Bayerische Motoren Werke Aktiengesellschaft Aktives Kathodenmaterial für sekundäre Lithium-Zellen und Batterien
KR101731240B1 (ko) 2014-04-24 2017-04-28 다이치 키겐소 카가쿠 코교 컴퍼니 리미티드 가넷형 화합물의 제조 방법, 가넷형 화합물 및 상기 가넷형 화합물을 포함한 전고체 리튬 2차 전지
EP2944611A1 (de) 2014-05-16 2015-11-18 Evonik Degussa GmbH Verfahren zur Herstellung eines kubisch kristallinen, Aluminium, Lithium, Lanthan und Zirkon enthaltenden Mischoxides mit Granatstruktur
KR101940240B1 (ko) 2014-05-28 2019-01-21 한국전자통신연구원 산화물계 고체 전해질 및 그 제조방법
DE102014108254A1 (de) 2014-06-12 2015-12-17 Karlsruher Institut für Technologie Innovationsmanagement Elektrolyt, Zelle und Batterie umfassend den Elektrolyt und dessen Verwendung
FR3023417B1 (fr) 2014-07-01 2016-07-15 I-Ten Batterie entierement solide comprenant un electrolyte solide et une couche de materiau polymere solide
FR3023418B1 (fr) 2014-07-01 2016-07-15 I Ten Batterie entierement solide comprenant un electrolyte en materiau polymere solide reticule
JP6632240B2 (ja) * 2014-08-12 2020-01-22 日本特殊陶業株式会社 リチウムイオン伝導性セラミックス材料及びリチウム電池
KR101592752B1 (ko) * 2014-08-18 2016-02-12 현대자동차주식회사 가넷 분말, 이의 제조방법, 핫프레스를 이용한 고체전해질 시트 및 이의 제조방법
JP5858410B2 (ja) * 2014-09-25 2016-02-10 国立研究開発法人産業技術総合研究所 リチウムイオン伝導性酸化物の単結晶及びその製造方法、並びにそれを部材として使用した電気化学デバイス
US10026990B2 (en) 2014-10-16 2018-07-17 Corning Incorporated Lithium-ion conductive garnet and method of making membranes thereof
US10211481B2 (en) 2014-11-26 2019-02-19 Corning Incorporated Stabilized solid garnet electrolyte and methods thereof
US10164289B2 (en) 2014-12-02 2018-12-25 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
US10147968B2 (en) 2014-12-02 2018-12-04 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
US11984553B2 (en) 2014-12-02 2024-05-14 Polyplus Battery Company Lithium ion conducting sulfide glass fabrication
US11749834B2 (en) 2014-12-02 2023-09-05 Polyplus Battery Company Methods of making lithium ion conducting sulfide glass
KR102585092B1 (ko) 2015-04-16 2023-10-05 퀀텀스케이프 배터리, 인코포레이티드 고체 전해질 제조를 위한 리튬 함유 가넷 세터 플레이트
US10411296B2 (en) * 2015-05-07 2019-09-10 Kabushiki Kaisha Toyota Jidoshokki Structural body containing garnet-type ionic conductor
DE102015209981A1 (de) * 2015-05-29 2016-12-01 Robert Bosch Gmbh Festelektrolytseparator für Lithium-Konversionszelle
DE102015210752A1 (de) 2015-06-12 2016-12-15 Robert Bosch Gmbh Lithium-Sauerstoff-Zellen-Kathodenadditive für Quasi-Konstantspannungschritt
US10374254B2 (en) 2015-06-24 2019-08-06 Quantumscape Corporation Composite electrolytes
DE102015213973A1 (de) 2015-07-23 2017-01-26 Bayerische Motoren Werke Aktiengesellschaft Anorganischer Separator
JP2017033926A (ja) 2015-07-29 2017-02-09 セントラル硝子株式会社 ガーネット型酸化物焼結体及びその製造方法
WO2017106601A1 (en) 2015-12-16 2017-06-22 Amastan Technologies Llc Spheroidal dehydrogenated metals and metal alloy particles
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
CN114551990A (zh) 2015-12-21 2022-05-27 约翰逊Ip控股有限公司 固态电池、隔板、电极和制造方法
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
US10707536B2 (en) 2016-05-10 2020-07-07 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
WO2017197406A1 (en) 2016-05-13 2017-11-16 Quantumscape Corporation Solid electrolyte separator bonding agent
EP3252024B1 (en) 2016-05-27 2019-12-18 Toyota Jidosha Kabushiki Kaisha Oxide electrolyte sintered body and method for producing the same
JP6620770B2 (ja) * 2016-05-27 2019-12-18 トヨタ自動車株式会社 酸化物電解質焼結体、及び、当該酸化物電解質焼結体の製造方法
WO2018013517A1 (en) * 2016-07-11 2018-01-18 The Regents Of The University Of Michigan Ceramic garnet based ionically conducting material
WO2018027200A1 (en) 2016-08-05 2018-02-08 Quantumscape Corporation Translucent and transparent separators
JP2019530963A (ja) 2016-10-07 2019-10-24 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン 固体電池用安定化コーティング
WO2018075972A1 (en) 2016-10-21 2018-04-26 Quantumscape Corporation Electrolyte separators including lithium borohydride and composite electrolyte separators of lithium-stuffed garnet and lithium borohydride
US11916200B2 (en) 2016-10-21 2024-02-27 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
WO2018081224A1 (en) 2016-10-26 2018-05-03 The Regents Of The University Of Michigan Metal infiltrated electrodes for solid state batteries
US11011776B2 (en) 2017-03-15 2021-05-18 Ngk Spark Plug Co., Ltd. Lithium-ion-conductive ceramic material, lithium-ion-conductive ceramic sintered body, and lithium battery
CN108727025A (zh) 2017-04-17 2018-11-02 中国科学院上海硅酸盐研究所 锂石榴石复合陶瓷、其制备方法及其用途
EP3642899B1 (en) 2017-06-23 2024-02-21 QuantumScape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US10347937B2 (en) 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions
US10629950B2 (en) 2017-07-07 2020-04-21 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
US10868293B2 (en) 2017-07-07 2020-12-15 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
JP2019046721A (ja) 2017-09-05 2019-03-22 トヨタ自動車株式会社 スラリー、固体電解質層の製造方法、及び、全固体電池の製造方法
JP6962094B2 (ja) 2017-09-21 2021-11-05 トヨタ自動車株式会社 ガーネット型イオン伝導性酸化物、及び、酸化物電解質焼結体の製造方法
US20210202982A1 (en) 2017-10-20 2021-07-01 Quantumscape Corporation Borohydride-sulfide interfacial layer in all solid-state battery
US11600850B2 (en) 2017-11-06 2023-03-07 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
DE102017128719A1 (de) 2017-12-04 2019-06-06 Schott Ag Lithiumionenleitendes Verbundmaterial, umfassend wenigstens ein Polymer und lithiumionenleitende Partikel, und Verfahren zur Herstellung eines Lithiumionenleiters aus dem Verbundmaterial
JP7017079B2 (ja) 2017-12-28 2022-02-08 トヨタ自動車株式会社 電極の製造方法、電極、及び、電極-電解質層接合体
DE102018104291A1 (de) * 2018-02-26 2019-08-29 Volkswagen Aktiengesellschaft Beschichtung für ein Werkzeug zur Handhabung von Lithiummetall, Werkzeug und Verfahren zum Herstellen eines solchen Werkzeugs
EP3810358A1 (en) 2018-06-19 2021-04-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11830985B2 (en) * 2018-07-24 2023-11-28 University Public Corporation Osaka Solid electrolyte for all-solid sodium battery, method for producing same, and all-solid sodium battery
US11251460B2 (en) 2018-08-01 2022-02-15 Samsung Electronics Co., Ltd. Solution-processed solid-state electrolyte and method of manufacture thereof
US11223066B2 (en) 2018-08-01 2022-01-11 Samsung Electronics Co., Ltd. Solid-state electrolyte and method of manufacture thereof
WO2020036936A1 (en) 2018-08-14 2020-02-20 Massachusetts Institute Of Technology Methods of fabricating thin films comprising lithium-containing materials
KR102101271B1 (ko) 2018-08-16 2020-04-16 아주대학교산학협력단 이온 전도성 고체 전해질 화합물, 이의 제조방법 및 이를 포함하는 전기화학 장치
KR20200028165A (ko) 2018-09-06 2020-03-16 삼성전자주식회사 고체 전해질, 그 제조방법 및 이를 포함하는 이차전지
DE102018215803A1 (de) 2018-09-18 2020-03-19 Bayerische Motoren Werke Aktiengesellschaft Schutzschicht für Elektrode
EP3878037A1 (en) 2018-11-06 2021-09-15 QuantumScape Battery, Inc. Electrochemical cells with catholyte additives and lithium-stuffed garnet separators
KR102650658B1 (ko) 2018-11-15 2024-03-25 삼성전자주식회사 헤테로고리 방향족 구조의 음이온을 포함하는 금속염 및 그 제조방법, 그리고 상기 금속염을 포함하는 전해질 및 전기화학소자
US11411246B2 (en) 2018-12-06 2022-08-09 Samsung Electronics Co., Ltd. All-solid secondary battery and method of manufacturing all-solid secondary battery
EP3703170A1 (en) 2019-02-27 2020-09-02 Technische Universität Graz Solid ion conductor having a fluoride garnet-like structure
KR20240036705A (ko) 2019-04-30 2024-03-20 6케이 인크. 리튬 란타넘 지르코늄 산화물(llzo) 분말
AU2020264446A1 (en) 2019-04-30 2021-11-18 6K Inc. Mechanically alloyed powder feedstock
US11757127B2 (en) 2019-06-18 2023-09-12 Samsung Electronics Co., Ltd. Lithium solid electrolyte and method of manufacture thereof
EP4061787B1 (en) 2019-11-18 2024-05-01 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
JP7478414B2 (ja) 2020-03-02 2024-05-07 国立研究開発法人産業技術総合研究所 非晶質複合金属酸化物、ガーネット型リチウム複合金属酸化物、焼結体、固体電解質層、電気化学デバイス用電極、電気化学デバイス
GB202006749D0 (en) 2020-05-07 2020-06-24 Johnson Matthey Plc Lithium-ion conductive ceramic material and process
US11855258B2 (en) 2020-06-08 2023-12-26 Cmc Materials, Inc. Secondary battery cell with solid polymer electrolyte
US11637317B2 (en) 2020-06-08 2023-04-25 Cmc Materials, Inc. Solid polymer electrolyte compositions and methods of preparing same
CA3180426A1 (en) 2020-06-25 2021-12-30 Richard K. Holman Microcomposite alloy structure
CN116547068A (zh) 2020-09-24 2023-08-04 6K有限公司 用于启动等离子体的系统、装置及方法
CA3196653A1 (en) 2020-10-30 2022-05-05 Sunil Bhalchandra BADWE Systems and methods for synthesis of spheroidized metal powders
GB202103712D0 (en) 2021-03-17 2021-04-28 Thermal Ceramics Uk Ltd The production of melt formed inorganic ionically conductive electrolytes
EP4385088A1 (en) 2021-08-11 2024-06-19 Gelion Technologies Pty Ltd Lithium ion conductive ceramic material
DE102022112792A1 (de) 2022-05-20 2023-11-23 Bayerische Motoren Werke Aktiengesellschaft Lithiumbatterie umfassend eine Lithiummetallanode mit einem porösen Stromableiter

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389469A (ja) * 1989-09-01 1991-04-15 Hitachi Ltd ナトリウム―硫黄電池
JP3244291B2 (ja) 1991-01-23 2002-01-07 三洋電機株式会社 電 池
JP3719312B2 (ja) * 1997-07-07 2005-11-24 宇部興産株式会社 正極シートとこれを用いた非水電解質二次電池
JP4081833B2 (ja) * 1997-08-01 2008-04-30 宇部興産株式会社 密閉型非水電解液二次電池
JP4417676B2 (ja) 2003-09-18 2010-02-17 パナソニック株式会社 非水電解質二次電池
US20050083986A1 (en) 2003-10-17 2005-04-21 Eastman Kodak Company Light-emitting diode pumped laser and method of excitation
EP1723080B1 (de) 2004-03-06 2014-06-18 Basf Se Chemisch stabiler fester lithiumionenleiter
DE102004010892B3 (de) 2004-03-06 2005-11-24 Christian-Albrechts-Universität Zu Kiel Chemisch stabiler fester Lithiumionenleiter
US20060083986A1 (en) * 2004-03-16 2006-04-20 Wen Li Battery with tin-based negative electrode materials
DE102005001414A1 (de) * 2005-01-12 2006-07-20 Degussa Ag Pyrogen hergestelltes Siliciumdioxidpulver
CN100364153C (zh) * 2005-05-24 2008-01-23 中国科学院成都有机化学有限公司 一种尖晶石LiMn2O4表面包覆Li4Ti5O12电极材料及其制备方法
WO2007004590A1 (ja) 2005-07-01 2007-01-11 National Institute For Materials Science 全固体リチウム電池
WO2008063532A1 (en) * 2006-11-17 2008-05-29 Panasonic Corporation Electrode active material for non-aqueous secondary batteries
DE102007030604A1 (de) * 2007-07-02 2009-01-08 Weppner, Werner, Prof. Dr. Ionenleiter mit Granatstruktur
US20090191458A1 (en) * 2007-07-23 2009-07-30 Matsushita Electric Industrial Co., Ltd. Porous network negative electrodes for non-aqueous electrolyte secondary battery
JP5151692B2 (ja) * 2007-09-11 2013-02-27 住友電気工業株式会社 リチウム電池
KR101522442B1 (ko) * 2008-06-16 2015-05-21 폴리플러스 배터리 컴퍼니 수성 리튬/공기 전지 셀

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617140B (zh) * 2012-03-05 2014-08-06 内蒙古工业大学 一种锑掺杂的类石榴石结构的锂离子晶态固体电解质材料及其合成方法
CN102617140A (zh) * 2012-03-05 2012-08-01 内蒙古工业大学 一种锑掺杂的类石榴石结构的锂离子晶态固体电解质材料及其合成方法
CN103682356A (zh) * 2012-09-18 2014-03-26 华为技术有限公司 一种锂离子电池正极材料及其制备方法
CN105684095A (zh) * 2013-11-01 2016-06-15 中央硝子株式会社 固体电解质前体、固体电解质前体的制造方法、固体电解质的制造方法和固体电解质-电极活性物质复合体的制造方法
CN107750406B (zh) * 2015-06-18 2021-02-12 德克萨斯大学系统董事会 水溶剂化玻璃/非晶态固体离子导体
CN107750406A (zh) * 2015-06-18 2018-03-02 德克萨斯大学系统董事会 水溶剂化玻璃/非晶态固体离子导体
CN105489927A (zh) * 2015-11-24 2016-04-13 青岛能迅新能源科技有限公司 一种提高全固态锂离子电解质材料Li7La3Zr2O12常温离子电导的方法
CN112533872A (zh) * 2018-08-03 2021-03-19 株式会社钟化 石榴石型复合金属氧化物及其制造方法
CN112533872B (zh) * 2018-08-03 2023-04-04 株式会社钟化 石榴石型复合金属氧化物及其制造方法
CN109742442A (zh) * 2018-12-24 2019-05-10 北京化工大学 石榴石型固态电解质的制备及应用该固态电解质的二次电池
CN109713363A (zh) * 2018-12-29 2019-05-03 蜂巢能源科技有限公司 锂石榴石氧化物固态电解质及其制备方法和应用
CN113224374A (zh) * 2020-01-21 2021-08-06 天津国安盟固利新材料科技股份有限公司 一种复合型电解质膜及其制备方法
CN115950941A (zh) * 2023-03-13 2023-04-11 华北理工大学 锂离子导体固体电解质型低温传感器及其制备方法与应用

Also Published As

Publication number Publication date
KR101539123B1 (ko) 2015-07-23
US8658317B2 (en) 2014-02-25
CA2694259A1 (en) 2009-01-08
CA2694259C (en) 2015-06-23
US9450271B2 (en) 2016-09-20
EP2176190A2 (de) 2010-04-21
EP2176190B1 (de) 2018-05-02
TWI434452B (zh) 2014-04-11
KR20100053543A (ko) 2010-05-20
DE102007030604A1 (de) 2009-01-08
JP2014241288A (ja) 2014-12-25
WO2009003695A2 (de) 2009-01-08
JP5634865B2 (ja) 2014-12-03
JP2010534383A (ja) 2010-11-04
WO2009003695A3 (de) 2010-02-04
TW200910671A (en) 2009-03-01
US20100203383A1 (en) 2010-08-12
US20140205910A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
CN101952223A (zh) 具有石榴石结构的离子导体
Meesala et al. Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries
JP5204478B2 (ja) 化学的に安定な固体のリチウムイオン伝導体
TWI436949B (zh) 化性穩定之固態鋰離子導體
CN100385715C (zh) 二次电池的正极活性材料及其制备方法
Dong et al. Combined experimental and computational study of Ce-doped La3Zr2Li7O12 garnet solid-state electrolyte
CN105938894B (zh) 电极体的制造方法
CN106299477B (zh) 硫化物固体电解质的制造方法
CN112805861A (zh) 离子传导性固体电解质化合物、其制备方法和包括其的电化学设备
CN106450439B (zh) 固体电解质材料和全固体锂电池
CN109643825A (zh) 陶瓷石榴石基离子传导材料
Nikodimos et al. A new high-Li+-conductivity Mg-doped Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 solid electrolyte with enhanced electrochemical performance for solid-state lithium metal batteries
CN108793987B (zh) 一种锂离子传导氧化物固体电解质及其制备方法
WO2021080005A1 (ja) リチウムイオン伝導性固体電解質およびリチウムイオン伝導性固体電解質の製造方法
Li et al. Enhanced ionic conductivity and electrochemical stability of Indium doping Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3 solid electrolytes for all-solid-state lithium-ion batteries
Shen et al. Low-temperature fabrication of NASICON-type LATP with superior ionic conductivity
US20190165414A1 (en) Methods for lowering the hot-pressing temperatures of garnet structured ionic conductors
WO2023017268A1 (en) Lithium ion conductive ceramic material
JP2019091703A (ja) 固体電解質及び固体電解質の製造方法
WO2024128127A1 (ja) 酸化物及びその製造方法、固体電解質並びに蓄電デバイス
WO2024128128A1 (ja) 酸化物及びその製造方法、固体電解質並びに蓄電デバイス
Weppner et al. Solid ion conductor which has a garnet-like crystal structure and has the stoichiometric composition L 7+ X A X G 3− X Zr 2 O 12
Abitonze et al. Recent progress on inorganic composite electrolytes for all-solid-state lithium batteries
Narayanan Development of Novel Garnet-Type Solid Electrolytes for Potential Application in Li Ion Batteries
Yow Engineering the performance and stability of garnet-related lithium lanthanum zirconium oxide (Li7La3Zr2O12) in all-solid-state lithium batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: Weppner Werner

Inventor after: Murugan Ramiah

Inventor before: Weppner Werner

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: WEPPNER WERNER TO: WEPPNER WERNER MURUGAN RAMLAH

C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110119