TWI434452B - 具有石榴石結構之離子導體 - Google Patents

具有石榴石結構之離子導體 Download PDF

Info

Publication number
TWI434452B
TWI434452B TW097124935A TW97124935A TWI434452B TW I434452 B TWI434452 B TW I434452B TW 097124935 A TW097124935 A TW 097124935A TW 97124935 A TW97124935 A TW 97124935A TW I434452 B TWI434452 B TW I434452B
Authority
TW
Taiwan
Prior art keywords
solid
ionic conductor
garnet
conductivity
hours
Prior art date
Application number
TW097124935A
Other languages
English (en)
Other versions
TW200910671A (en
Inventor
Werner Weppner
Ramaswamy Murugan
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of TW200910671A publication Critical patent/TW200910671A/zh
Application granted granted Critical
Publication of TWI434452B publication Critical patent/TWI434452B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

具有石榴石結構之離子導體
本發明係關於具有石榴石樣結構之化學性穩定的固態離子導體在電池、超級電容器、蓄電池及電致變色裝置、化學感測器及熱電轉換器中的用途,以及適用於該等用途的新穎化合物。
可再充電(二次)電池係在電氣設備及電子設備需要或至少部分時間需要獨立於電網而操作的情況下使用。在此背景下,針對此使用形式對作為電解質材料的固態離子導體進行研究為當前材料研究之一重要方面。電池僅由固體組成的優點在於確保無滲漏、小型化、電化學穩定性、相對較高的能量密度及相對較長的壽命。
在各種電池技術中,基於鋰離子的電池系統近年來變得日益完善。其尤其以其可達成的高電能密度及功率而著名,此可歸因於鋰離子之高化學反應性及低質量以及其高遷移率。固態鋰離子導體之開發近年來已頗引人注意。實例為Li2.9 PO3.3 N0.46 或Li3 N及Li-β-氧化鋁。然而,Li2.9 PO3.3 N0.46 具有比液態電解質顯著更低的離子電導率。Li3 N及Li-β-氧化鋁對於濕氣很敏感。此外,Li3 N在室溫下、在低至0.445V的電壓下分解,且Li-β-氧化鋁化學性不穩定性。
具有石榴石樣結構的鋰離子導體首次描述於Thangadurai等人之研究中,"Novel Fast Lithium Ion Conduction in Garnet-Type Li5 La3 M2 O12 (M=Nb, Ta)", J. Am. Ceram. Soc. 86, 437-440, 2003。石榴石樣Li5 La3 M2 O12 化合物具有明顯的鋰離子電導率。
就結構而言,石榴石為以立方晶系結晶、具有一般組成X3 Y2 (SiO4 )3 之正矽酸鹽,其中X及Y為八配位及六配位陽離子位點。個別SiO4 四面體彼此間經由填隙式B陽離子藉由離子鍵相連。
與理想的石榴石結構相比,Thangadurai等人之上述研究中所述之式Li5 La3 M2 O12 (M=Nb、Ta)之石榴石樣化合物含有過量的Li離子。La3+ 及M5+ 離子佔據八配位及六配位位點,而鋰離子佔據具有六配位的位置。
PCT申請案WO 2005/085138報導,其他石榴石樣鋰離子導體在形式上係由式Li5 La3 M2 O12 (其中M=Nb或Ta)之化合物藉由異價取代獲得。La3+ 位點之異價取代可增強網路連接性,且使得能夠修改可用之空位數。電荷平衡較佳經由Li+ 離子(L)達成。為本發明之目的,"異價取代"意謂,作為形成陽離子空位、陰離子空位、填隙式陽離子及/或填隙式陰離子的結果,離子被具有不同氧化態的離子置換。固態鋰離子導體具有化學穩定性,且具有3.4×10-6 S/cm之離子電導率。由於其離子電導率高,同時電子電導率可忽略不計,因此其可用作固態電解質。
WO 2005/085138中所述的化合物一般具有化學計量組成L5+x Ay Gz M2 O12 ,其中:L在各種情況下獨立地為任何較佳單價陽離子;A在各種情況下獨立地為單價、二價、三價或四價陽離 子;G在各種情況下獨立地為單價、二價、三價或四價陽離子;M在各種情況下獨立地為三價、四價或五價陽離子;0<x3,0y3,0z3;且O可部分或完全地經二價及/或三價陰離子(諸如N3- )置換。
在所述離子導體中,M在各種情況下為金屬Nb與Ta中之一者。未給出金屬離子之其他實例。經由鋰離子(L=Li)發生離子導電。
具有石榴石結構的鋰離子導體之其他實例近年來已經檢證(V. Thangadurai, W. Weppner,Adv. Funct. Mater . 2005, 15, 107-112; V. Thangadurai, W. Weppner,J. Power Sources, 2005, 142, 339-344)。此處,Li6 BaLa2 Ta2 O12 在22℃下具有4×10-5 Scm-1 之最高Li+ 離子電導率,活化能為0.40 eV。雖然Li6 BaLa2 Ta2 O12 對與金屬鋰、濕氣、空氣及常用電極材料的反應具有穩定性,但在室溫下,體積電導率及總電導率仍不夠高至使得能夠開發理想的可再充電固態鋰離子電池。
與先前技術之上述離子導體相關聯的另一問題為,所提議之金屬鈮及鉭相對較貴且不易獲得。此外,使用完全由所述石榴石樣化合物組成的固體電解質複雜且成本高。
因此,本發明之一目標為提供其中至少部分克服上述缺陷之經改良之固態離子導體。
根據本發明,現已發現鋯可用作石榴石樣離子導體中之金屬M。與鈮及鉭相比,鋯易獲得且形成很穩定的固態結構。雖然Nb及Ta形式上以氧化態+V存在於石榴石結構中,但Zr較佳呈氧化態+IV。
因此,本發明在一實施例中提供具有石榴石樣晶體結構且具有化學計量組成L7+x Ax G3-x Zr2 O12 的固態離子導體,其中L在各種情況下獨立地為單價陽離子;A在各種情況下獨立地為二價陽離子;G在各種情況下獨立地為三價陽離子;0x3;且O可部分或完全地經二價及/或三價陰離子(諸如N3- )置換。
L尤其較佳地為鹼金屬離子,例如Li+ 、Na+ 或K+ 。詳言之,L亦可為各種鹼金屬離子之組合。在本發明之一尤其較佳實施例中,L=Na+ 。鈉非常低廉且可以任意量獲得。小的Na+ 離子在石榴石樣結構中易移動,且可與鋯組合而給出化學性穩定的晶體結構。
A為任何二價陽離子或該等陽離子之任何組合。A較佳可使用二價金屬陽離子。鹼土金屬離子(諸如Ca、Sr、Ba及/或Mg)以及二價過渡金屬陽離子(諸如Zn)尤其較佳。已發現該等離子在本發明之石榴石樣化合物中移動很小(即使有的話),因此離子導電實質上經由L發生。
在上述組成中,0x2亦較佳且0x1尤其較佳。 在本發明之一實施例中,x=0,因此A不存在於石榴石樣化合物中。
G為任何三價陽離子或該等陽離子之任何組合。G較佳可使用三價金屬陽離子。G=La尤其較佳。
在具有上述組成之結構中,O2- 可部分或完全地經其他陰離子置換。舉例而言,用其他二價陰離子將O2- 完全或部分地置換為有利的。此外,O2- 亦可在適當的電荷補償下經三價陰離子異價置換。
在另一態樣中,本發明提供具有化學計量組成L7+x Ax La3-x Zr2 O12 之固態離子導體,其中A為二價金屬且L為Li或Na。Na因其易得性而尤其較佳。在一較佳實施例中,x=0,因此組成為L7 La3 Zr2 O12
A較佳選自鹼土金屬,較佳Ca、Sr、Ba及/或Mg。A選自二價過渡金屬亦較佳,例如A=Zn。A=Sr或Ba最佳。
具有組成L7+x Ax La3-x Zr2 O12 之離子導體具有石榴石樣晶體結構。與具有組成L5 La3 Nb2 O12 (L=Li)之已知化合物相比,該兩個Nb(+V)陽離子形式上已經兩個Zr(+IV)陽離子及兩個單價L陽離子置換。此外,La(+III)可經A(+II)及L(+I)置換。以此方式,該結構中之L之總比例已增大。L較佳為Li或Na,具有石榴石結構之化合物經由其發生離子導電。因此,本發明之化合物使提供顯著改良之離子導體成為可能。
與先前技術之化合物相比,具有組成L7+x Ax La3-x Zr2 O12 之材料呈現增大的離子電導率。由於本發明之化合物之石 榴石結構為三維各向同性結構,因此離子導電在三維進行而無優先方向係可能的。
另一方面,本發明之化合物之電子電導率相對較低。本發明之化合物之多晶樣本亦具有低晶界電阻,以使得總電導率實質上完全由體積電導率構成。
該等材料之另一優點為其化學穩定性高。詳言之,該等材料在與熔融鋰接觸加熱時不呈現可辨識的變化。在高達350℃的溫度及高達6 V的直流電壓下,未觀測到化學分解。
具有石榴石結構之本發明之尤其較佳化合物之一實例為Li7 La3 Zr2 O12 。高的鋰離子電導率、良好熱穩定性及化學穩定性(就與可能電極之反應而言)、環境相容性、原料之可取得性、低製造成本及簡單生產及密封性使得Li7 La3 Zr2 O12 成為尤其適用於可再充電鋰離子電池的有前景之固體電解質。
根據另一態樣,本發明提供一種製備具有石榴石樣結構之固態離子導體的方法。該等化合物可藉由所存在元素之適當鹽及/或氧化物之反應(例如經由固態反應)形成。特別有用的原料為在反應過程中轉化為相應氧化物的硝酸鹽、碳酸鹽及氫氧化物。
更特定而言,本發明係關於一種製備具有組成L7+x Ax G3-x Zr2 O12 (例如Na6 ALa2 Zr2 O12 )之固態離子導體的方法。該等材料可藉由A、G及Zr之適當鹽及/或氧化物與L之氫氧化物、硝酸鹽或碳酸鹽以固態反應方式進行反應來獲得。A係如上所 定義。二價金屬A較佳以硝酸鹽之形式使用。此處,較佳為Ca(NO3 )2 、Sr(NO3 )2 及Ba(NO3 )2 。在G之情況下,較佳使用La,La較佳以La2 O3 之形式使用。Zr以氧化物(較佳ZrO2 )之形式使用有利。L較佳以LOH、LNO3 或L2 CO3 之形式使用。舉例而言,較佳可使用LiOH.H2 O或NaOH.H2 O。為在樣本之熱處理期間補償L(例如L=Li、Na)之重量損失,較佳使用過量(例如過量10 wt%)的各別鹽。
在第一步驟中將原料混合,且(例如)可在使用氧化鋯研磨介質的球磨中於2-丙醇中研磨。隨後將以此方式獲得的混合物在空氣中在較佳400-1000℃範圍內之溫度下加熱數小時,較佳2-10小時。600-800℃之溫度(例如約700℃)及4-8小時之熱處理時間(例如約6小時)特別適宜。接著再次進行研磨,較佳亦在使用氧化鋯研磨介質的球磨中於2-丙醇中進行研磨。隨後將反應產物單向或較佳均衡施壓以獲得成形件,例如片粒。接著將該等成形件在較佳700-1200℃、更佳800-1000℃範圍內的溫度下燒結數小時,較佳10-50小時,更佳20-30小時。此處,約900℃之溫度及約24小時之熱處理時間特別適宜。在此燒結過程中,為避免L氧化物之過多損耗,用具有相同組成之粉末覆蓋樣本係有利的。
由於全部組分皆存在可溶性鹽,因此易用於製備化合物的可能方法為前驅物方法(例如,Pecchini方法)、甘胺酸方法或沈澱反應法。
本發明之固態離子導體(例如,鋰或鈉離子導體)作為固 態電解質為一種寶貴的原料。由於該等材料具有非常高的離子電導率,同時電子傳導可忽略不計,因此其可用作具有很高能量密度之電池(例如鋰或鈉電池)之固體電解質。該等材料之高穩定性(就例如與元素鋰及常用電極材料之化學反應而言)促使(例如)本發明之固態離子導體能夠實際使用於電池中。
與常用固體電解質材料相比,本發明之固體電解質與電極之間之相界電阻亦極小。因此,具有相對較高功率(高電流)的電池可使用本發明之材料製造。與使用液態電解質相比,使用本發明之固態電解質亦導致改良之安全性。當機動車輛中使用該等電解質時,此特別有利。
在另一態樣中,除用於電池外,本發明亦提供該等固態離子導體(例如鋰離子導體)在電致變色系統(視窗、VDU、外牆等)中的用途及在超級電容器用於瞬時能量儲存與釋放的用途。使用本發明之離子導體時,可達成100 F/cm3 或100 F/cm3 以上之電容器能量密度。本發明之另一態樣為石榴石樣固態離子導體用作感測器、尤其多種氣體感測器的用途。根據本發明,亦可將該材料用於使熱有效地直接轉換為電能的熱電轉換器中。
具有石榴石樣結構的離子導體亦可與其他電解質(例如習知的非質子性液態電解質)組合用作緩衝層。因此,無需使用完全由石榴石樣結構組成的電解質。相反,可將任何已知的電解質(例如,可以液體、凝膠或固體形式存在的電解質)與新穎的石榴石樣離子導體組合使用。
因此,本發明在另一態樣中提供具有石榴石樣晶體結構之固態離子導體用作電極前之保護層以便改良針對電解質之化學穩定性的用途。為此目的,不僅可使用本發明之含鋯石榴石樣結構,而且可使用(例如)WO 2005/085138中所述的石榴石樣化合物。使用離子導體作為電極前之緩衝結構可防止短路,且使得有可能產生並施加相對較高電壓以便達成顯著更大的能量密度及壽命。
以下實例用於說明本發明之特別較佳實施例。
實例:
化學計量量之在各種情況下皆高度純之原料:在200℃下預乾燥6小時、過量10 wt%以補償燒結過程中之Li損失的LiOH(Alfa Aesar, >99%);在900℃預乾燥24小時的La2 O3 (Alfa Aesar,>99.99%);及ZrO2 (Aldrich,>99%)皆以固態反應方式進行反應。
使用氧化鋯容器及磨球將原料於2-丙醇中球磨約12小時。之後,在900℃及1125℃下、在空氣中熱處理12小時。接著將所得產物再次球磨。隨後對反應產物均衡施壓以形成片粒並在1230℃下燒結36小時。在此程序期間將樣本用具有相同組成的粉末覆蓋,以免鋰過多損耗。所有處理中的加熱速率為每分鐘1℃。將經燒結的壓片經由金剛石鋸切成更薄的片粒。使用X射線粉末繞射術(XRD)(SEIFERT 3000, CuKα , Germany)監測相形成。依據粉末 XRD資料、使用最小二乘法測定晶格常數。
在空氣中,使用不同厚度的兩個片粒(厚片:1.02cm厚且直徑0.92cm;及薄片:0.18cm厚且直徑0.98cm)進行電導率之量測。使用Li離子阻斷性Au電極(在700℃下固化1小時而得的Au膏)在18至350℃的溫度範圍內、經由阻抗與增益相位分析儀(HP 4192 A, Hewlett-Packard Co., Palo Alto, CA)(5 Hz-13 MHz)進行量測。每次量測阻抗之前,使樣本在恆溫下均衡3至6小時。每個片粒以兩個連續加熱與冷卻循環進行阻抗量測。在空氣中、在29-900-20℃之溫度範圍內、在每分鐘2℃之加熱速率及冷卻速率下量測且在900℃下以等溫方式量測熱解重量分析(TGA)及差熱分析(NETZSCH STA 409 C/CD)之資料。
在充氬手套工作箱中、藉由使片粒與大量過剩的熔融鋰在鉬坩堝中反應48小時來檢查Li7 La3 Zr2 O12 對熔融鋰的穩定性。
儘管已對Li5 La3 M2 O12 (M=Nb、Ta)石榴石進行過很多X-射線繞射(XRD)研究,但在鋰陽離子之空間群及位置方面,尚存在關於結構的爭議(a)D. Mazza, Mater. Lett. 1988, 7, 205-207; b)H. Hyooma, K. Hayashi, Mater. Res. Bull. 1988, 23, 1399-1407; c)J. Isasi, M.L. Veiga, R. Saez-Puche, A. Jereze, C. Pico, J. Alloys Compd. 1991, 177, 251-257)。最近,中子繞射研究已指示,Li5 La3 M2 O12 (M=Nb、Ta)以空間群Ia3d結晶且Li位於四面體位置及八面體位置且兩類位置中皆存在空位(a)E.J. Cussen, Chem. Commun. 2006, 412-413; b)M.P. O'Callaghan, D.R. Lynham, E.J. Cussen, G.Z. Chen, Chem. Mater. 2006, 18, 4681-4689)。所測Li7 La3 Zr2 O12 之粉末XRD圖案與已知石榴石相Li5 La3 Mb2 O12 之標準圖案非常一致,且證明石榴石結構能夠併有不同氧化態及不同尺寸之陽離子而對稱性無過度變化。測定具有A=12.9682 (6)Å之晶格常數之立方晶胞的繞射圖案。
在18℃下所得之Li7 La3 Zr2 O12 厚片之典型阻抗曲線展示於圖1中。當電極被離子性阻斷時在低頻區域出現的上升指示所檢材料為離子導體(a)V. Thangadurai, R.A. Huggins, W. Weppner, J. Power Sources 2002, 108, 64-69; b)J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 1990, 2, 132-138)。對先前所研究之具有石榴石樣結構的材料已觀測到類似特性。阻抗曲線可分解成體積電阻、晶界電阻及電極電阻。圖1中之連續線呈現(Rb Qb )(Rgb Qgb )(Qel )之等效電路之資料(使用EQUIVALENT程式)。在18℃下所量測之Li7 La3 Zr2 O12 薄片之阻抗曲線以圖1中之插圖展示。在不同溫度下所觀測之Li7 La3 Zr2 O12 厚片(1.02cm厚且直徑0.92cm)及薄片(0.18cm厚且直徑0.98cm)之體積電導率及總電導率由高頻半圓及低頻半圓與軸之交點獲得,且總結於表1中。圖1及表1中所示的資料指示Li7 La3 Zr2 O12 厚片與薄片之類似電特性。與厚片相比,薄片呈現稍微更高的體積電導率及總電導率。此外,有趣的是,對於厚片與薄片皆注意到,晶界電阻對總電阻的貢獻小於50%,且隨溫度 增加而減少(表1)。在較高溫度(對於厚片,75℃以上;且對於薄片,50℃以上)下,與體積電阻貢獻相比,難以精確地測定晶界電阻貢獻;因此展示體積電阻與晶界電阻貢獻之總值用於在所檢查之溫度範圍內測定電導率。與所有其他固態鋰離子導體及所有先前所述之鋰石榴石相比,具有石榴石樣結構之新穎快速結晶鋰離子導體Li7 La3 Zr2 O12 在室溫下的總電導率(在25℃下,3×10-4 S/cm)更佳。
此結果(亦即,總電導率與體積電導率具有相同量值級)為與其他陶瓷鋰離子導體相比,此處所檢查之Li7 La3 Zr2 O12 石榴石結構之尤其有利特性。對於固體電解質在電化學裝置(諸如電池、感測器及電致變色顯示器)中的多種應用,總電導率應儘可能高。此外,體積電導率及總電導率可經由Li7 La3 Zr2 O12 之低溫合成及經由使用適當燒結法進一步緻密化來進一步改良。
以兩個加熱與冷卻循環所得之Li7 La3 Zr2 O12 厚片之體積電導率及總電導率之Arrhenius曲線展示於圖2a中。在兩次循環之間,電導率不存在明顯變化。此意謂,所檢查之石榴石樣結構具有熱穩定性,且在所檢查之溫度範圍(亦即室溫至350℃)內未發生相變。對於Li7 La3 Zr2 O12 薄片亦觀測到類似的Arrhenius特性。在圖2b中,對在各種情況下在首次加熱試驗中獲得之Li7 La3 Zr2 O12 厚片與薄片之資料進行比較。所得針對薄片之體積電導率與總電導率之活化能(在18-50℃下為0.32 eV,且在18-300℃下為0.30 eV)稍微低於針對厚片之體積電導率與總電導率之活化能(在18-70℃ 下為0.34 eV,且在18-300℃下為0.31 eV)。所得薄片之電導率稍微高於厚片之電導率。
除阻抗分析外,電導率之離子性質亦藉由EMF量測法證明,其中使用Li7 La3 Zr2 O12 作為元素鋰與Al之間(LiAl)的固體電解質。將樣本在上側用鋁層覆蓋且置於鋰上,鋰在充有惰性Ar氣體的手套工作箱中已熔融。鋁藉由化學反應與鋰合金化,且亦藉由電量滴定法使鋰自其反向定位之鋰電極進入鋁中而合金化。所得電壓接近理論值。差異可歸於因不可逆過程所致的非均一溫度分布及相應現象。
圖3展示Li7 La3 Zr2 O12 與正考慮結合電池使用之其他已知鋰離子導體之鋰離子電導率的比較。Li7 La3 Zr2 O12 電導率高於Li-β-氧化鋁、薄層Lipon(Li2.9 PO3.3 N0.46 )、Li9 SiAlO8 、Lil+40mol Al2 O3 、LiZr2 (PO4 )3 、Li3.5 Si0.5 P0.5 O4 、Li5 La3 Ta2 O12 及Li6 BaLa2 Ta2 O12 之電導率。可觀測到的比其他含鋰石榴石高的鋰電導率及低活化能可能係由於立方晶格常數增大、鋰離子濃度增大、鋰離子與形成晶格之其他離子之間的化學相互作用減小且部分地由於經改良之緻密化(理論密度之92%)。在相對較低的溫度下,穩定性較小之多晶Li3 N之電導率(在27℃下,6.6×10-4 S/cm)可與Li7 La3 Zr2 O12 之電導率相當。然而,在更高溫度下,Li7 La3 Zr2 O12 呈現更高的總電導率。
Li7 La3 Zr2 O12 之熱穩定性(其為結晶鋰離子導體之基本優勢)可藉由熱解重量量測法(TGA)及差熱分析法(DTA)證明。在空氣氣氛下所量測之TG-DTA資料指示,在加熱期 間與冷卻期間,在20℃至900℃之溫度範圍內,無顯著的質量變化且無可辨識的相變。經數週觀測期發現,含鋯Li7 La3 Zr2 O12 對熔融鋰具有穩定性,且對濕氣及空氣之作用亦具有化學穩定性。
圖1:
在18℃下、在空氣中對Li7 La3 Zr2 O12 之厚片(1.02cm厚及直徑0.92cm)所量測之AC阻抗曲線。連續線表示等效電路之模擬資料(使用EQUIVALENT程式(B.A. Boukamp, Equivalent Circuit, 4.55版,1997, Faculty of Chemical Technology, University of Twente, 7500 AE Enschede (The Netherlands),第CT88/265/128/CT89/214/128號報導,1989年5月)),模擬資料包含(Rb Qb )(Rgb Qgb )(Qel )(其中R為電阻且Q為恆相元素,且指數g、gb及el指示顆粒體積、晶界及電極)。在18℃下、在空氣中對Li7 La3 Zr2 O12 薄片(0.18cm厚且直徑0.98cm)所量測的阻抗曲線展示於插圖中。
圖2:
a)以兩個連續加熱與冷卻循環所得之Li7 La3 Zr2 O12 厚片之體積電導率及總電導率(體積與晶界)的Arrhenius曲線。
b)在首次加熱試驗(18-300℃)期間所得之Li7 La3 Zr2 O12 厚片與薄片之Arrhenius曲線之比較。
圖3:
Li7 La3 Zr2 O12 與討論用於電池應用之其他已知鋰離子導體之總電導率(體積+晶界)之比較。
圖4:
所測Li7 La3 Zr2 O12 之粉末XRD圖案與根據粉末繞射標準聯合委員會(Joint Committee on Powder Diffraction Standards)之已知石榴石相Li5 La3 Nb2 O12 之標準圖案 (JCPDS: 80-0457)。
圖5:
在25℃及50℃下、在空氣中對Li7 La3 Zr2 O12 厚片所量測的AC阻抗曲線。
圖6:
在25℃及50℃下、在空氣中對Li7 La3 Zr2 O12 薄片所量測的AC阻抗曲線。在較高頻率下之另一曲線以插圖形式展示。
圖7:
以兩個連續加熱與冷卻循環所得之Li7 La3 Zr2 O12 薄片之體積電導率與總電導率(體積+晶界)之Arrhenius曲線。
圖8:
a)Li7 La3 Zr2 O12 片粒與鉬坩堝暴露於熔融鋰之前之像片;b)熔融鋰中之Li7 La3 Zr2 O12 片粒之像片;及c)剛暴露於熔融鋰48小時後之Li7 La3 Zr2 O12 片粒與鉬坩堝之像片。圖c)所示之像片展示片粒顏色保持不變(象牙色)且未形成反應產物。
(無元件符號說明)

Claims (22)

  1. 一種具有石榴石樣晶體結構之固態離子導體用作電極塗層或電極前之保護層的用途。
  2. 一種經塗覆具有石榴石樣晶體結構之固態離子導體的電極。
  3. 一種包含一或多個如請求項2之電極的電池。
  4. 一種具有石榴石樣晶體結構且具有化學計量組成L7+x Ax G3-x Zr2 O12 的固態離子導體,其中:L在各種情況下獨立地為單價陽離子;A在各種情況下獨立地為二價陽離子;G在各種情況下獨立地為三價陽離子;0x3;且O可部分或完全地經二價陰離子或諸如N3- 之三價陰離子置換。
  5. 如請求項4之固態離子導體,其中0x1。
  6. 如請求項4或5之固態離子導體,其中L係選自Li、Na及/或K。
  7. 如請求項6之固態離子導體,其中L=Na。
  8. 如請求項4或5之固態離子導體,其中A為二價鹼土金屬陽離子。
  9. 如請求項4或5之固態離子導體,其中A係選自Ca、Sr及/或Ba。
  10. 如請求項4或5之固態離子導體,其中該化學計量組成為Li7 La3 Zr2 O12
  11. 一種製備如請求項4至10中任一項之固態離子導體的方法,其特徵在於使L、A、G及Zr之鹽及/或氧化物彼此反應。
  12. 如請求項11之方法,其特徵在於該反應係藉由前驅物方法進行,例如藉由Pechini方法進行,藉由甘胺酸方法及藉由該等組分之溶解鹽類之沈澱反應進行。
  13. 如請求項11之方法,其特徵在於該反應係以固相反應進行。
  14. 如請求項11或13之方法,其特徵在於L及A係以硝酸鹽、碳酸鹽或氫氧化物之形式使用且與G2 O3 及ZrO2 反應。
  15. 如請求項11或13之方法,其包含以下步驟:a)將原料混合,且使用氧化鋯容器及磨球較佳於2-丙醇中進行球磨;b)在空氣中將獲自a)之混合物在400℃至1000℃下加熱2至10小時;c)球磨,較佳使用氧化鋯容器及磨球於2-丙醇中球磨;d)將該混合物均衡施壓以產生所要形狀;且e)在700℃至1200℃下,將經具有相同組成之粉末覆蓋之獲自步驟d)之產物燒結10至50小時。
  16. 如請求項15之方法,其中該混合物係在步驟b)中在700℃下加熱6小時,且在步驟e)中在900℃下燒結24小時。
  17. 一種如請求項4至10中任一項之固態離子導體在電池、蓄電池、超級電容器、燃料電池、感測器、熱電轉換器及/或諸如視窗、VDU及外牆之電致變色裝置中的用途。
  18. 如請求項1之用途,其中使用一如請求項4至10中任一項之離子導體。
  19. 如請求項2之電極,其中使用一如請求項4至10中任一項之離子導體。
  20. 一種包含一或多個如請求項19之電極的電池。
  21. 如請求項1之用途,其中該固態離子導體係與呈液體、凝膠或固體形式存在之其他電解質併用。
  22. 如請求項1之用途,其中該固態離子導體係與其他液體電解質併用。
TW097124935A 2007-07-02 2008-07-02 具有石榴石結構之離子導體 TWI434452B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007030604A DE102007030604A1 (de) 2007-07-02 2007-07-02 Ionenleiter mit Granatstruktur

Publications (2)

Publication Number Publication Date
TW200910671A TW200910671A (en) 2009-03-01
TWI434452B true TWI434452B (zh) 2014-04-11

Family

ID=39730674

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097124935A TWI434452B (zh) 2007-07-02 2008-07-02 具有石榴石結構之離子導體

Country Status (9)

Country Link
US (2) US8658317B2 (zh)
EP (1) EP2176190B1 (zh)
JP (2) JP5634865B2 (zh)
KR (1) KR101539123B1 (zh)
CN (1) CN101952223A (zh)
CA (1) CA2694259C (zh)
DE (1) DE102007030604A1 (zh)
TW (1) TWI434452B (zh)
WO (1) WO2009003695A2 (zh)

Families Citing this family (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US20080057386A1 (en) 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
US7645543B2 (en) 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US7282295B2 (en) 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US9368775B2 (en) 2004-02-06 2016-06-14 Polyplus Battery Company Protected lithium electrodes having porous ceramic separators, including an integrated structure of porous and dense Li ion conducting garnet solid electrolyte layers
DE602005017512D1 (de) 2004-12-08 2009-12-17 Symmorphix Inc Abscheidung von licoo2
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US9034525B2 (en) * 2008-06-27 2015-05-19 Johnson Ip Holding, Llc Ionically-conductive amorphous lithium lanthanum zirconium oxide
US8211496B2 (en) 2007-06-29 2012-07-03 Johnson Ip Holding, Llc Amorphous lithium lanthanum titanate thin films manufacturing method
US20120196189A1 (en) 2007-06-29 2012-08-02 Johnson Ip Holding, Llc Amorphous ionically conductive metal oxides and sol gel method of preparation
DE102007030604A1 (de) * 2007-07-02 2009-01-08 Weppner, Werner, Prof. Dr. Ionenleiter mit Granatstruktur
US20090092903A1 (en) * 2007-08-29 2009-04-09 Johnson Lonnie G Low Cost Solid State Rechargeable Battery and Method of Manufacturing Same
TWI441937B (zh) 2007-12-21 2014-06-21 Infinite Power Solutions Inc 形成用於電解質薄膜之濺鍍靶材的方法
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
CN101983469B (zh) 2008-04-02 2014-06-04 无穷动力解决方案股份有限公司 与能量采集关联的储能装置的无源过电压/欠电压控制和保护
JP5627576B2 (ja) 2008-06-16 2014-11-19 ポリプラス バッテリー カンパニーPolyPlus Battery Company 水性リチウム−空気バッテリセル
JP2010045019A (ja) * 2008-07-16 2010-02-25 Tokyo Metropolitan Univ 全固体リチウム二次電池及びその製造方法
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
JP5132639B2 (ja) 2008-08-21 2013-01-30 日本碍子株式会社 セラミックス材料及びその製造方法
WO2010030743A1 (en) 2008-09-12 2010-03-18 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
JP5262572B2 (ja) * 2008-10-23 2013-08-14 株式会社豊田中央研究所 リチウム含有ガーネット型酸化物、リチウム二次電池及び固体電解質の製造方法
WO2010090301A1 (en) 2009-02-04 2010-08-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same
JP5083336B2 (ja) * 2009-02-04 2012-11-28 株式会社豊田中央研究所 ガーネット型リチウムイオン伝導性酸化物
JP5287499B2 (ja) * 2009-05-21 2013-09-11 株式会社豊田中央研究所 全固体型リチウムイオン二次電池
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
JP5525388B2 (ja) * 2009-09-03 2014-06-18 日本碍子株式会社 セラミックス材料及びその製造方法
JP5273732B2 (ja) * 2009-09-03 2013-08-28 日本碍子株式会社 セラミックス材料の製造方法
JP5283188B2 (ja) * 2009-09-03 2013-09-04 日本碍子株式会社 全固体二次電池およびその製造方法
JP5376252B2 (ja) * 2009-09-03 2013-12-25 日本碍子株式会社 セラミックス材料及びその利用
JP5413090B2 (ja) * 2009-09-25 2014-02-12 株式会社豊田中央研究所 全固体型リチウム二次電池
JP5381640B2 (ja) * 2009-11-24 2014-01-08 株式会社豊田中央研究所 リチウム二次電池
DE102010001632A1 (de) 2009-12-23 2011-06-30 Robert Bosch GmbH, 70469 Lithiumzelle mit verbesserter Kathodenstruktur und Herstellungsverfahren hierfür
JP5170260B2 (ja) * 2010-01-22 2013-03-27 トヨタ自動車株式会社 水系電解液電池の負極構造、及び、当該負極構造を備えた水系電解液電池
JP5471527B2 (ja) * 2010-02-02 2014-04-16 株式会社豊田中央研究所 リチウム二次電池及びリチウム二次電池用電極
JP5649033B2 (ja) * 2010-03-19 2015-01-07 独立行政法人産業技術総合研究所 リチウムイオン伝導性酸化物及びその製造方法、並びにそれを部材として使用した電気化学デバイス
JP2011195372A (ja) * 2010-03-19 2011-10-06 National Institute Of Advanced Industrial Science & Technology リチウムイオン伝導性酸化物の単結晶及びその製造方法、並びにそれを部材として使用した電気化学デバイス
CN102947976B (zh) 2010-06-07 2018-03-16 萨普拉斯特研究有限责任公司 可充电、高密度的电化学设备
JP5358522B2 (ja) * 2010-07-07 2013-12-04 国立大学法人静岡大学 固体電解質材料およびリチウム電池
JP5742144B2 (ja) * 2010-09-08 2015-07-01 株式会社豊田中央研究所 複合体の製造方法、複合体及びそれを備えたアルカリ金属二次電池
JP5290337B2 (ja) * 2011-02-24 2013-09-18 国立大学法人信州大学 ガーネット型固体電解質、当該ガーネット型固体電解質を含む二次電池、及び当該ガーネット型固体電解質の製造方法
DE102011013018B3 (de) 2011-03-04 2012-03-22 Schott Ag Lithiumionen leitende Glaskeramik und Verwendung der Glaskeramik
KR101312275B1 (ko) 2011-03-30 2013-09-25 삼성에스디아이 주식회사 복합체, 이를 포함한 리튬 이차 전지용 전극 활물질, 그 제조방법, 이를 이용한 리튬 이차 전지용 전극 및 이를 채용한 리튬 이차 전지
JP5760638B2 (ja) * 2011-04-21 2015-08-12 株式会社豊田中央研究所 ガーネット型リチウムイオン伝導性酸化物の製造方法
US9093717B2 (en) 2011-05-20 2015-07-28 Board Of Trustees Of Michigan State University Methods of making and using oxide ceramic solids and products and devices related thereto
WO2012176808A1 (ja) 2011-06-20 2012-12-27 株式会社豊田中央研究所 全固体型リチウム二次電池及びその製造方法
JP6144007B2 (ja) * 2011-06-29 2017-06-07 株式会社豊田中央研究所 ガーネット型イオン伝導性酸化物及びその製造方法
WO2013009984A2 (en) 2011-07-12 2013-01-17 Board Of Trustees Of Michigan State University Porous sol gels and methods and structures related thereto
DE102011079401A1 (de) 2011-07-19 2013-01-24 Robert Bosch Gmbh Lithiumionen leitende, granatartige Verbindungen
WO2013028574A2 (en) 2011-08-19 2013-02-28 Polyplus Battery Company Aqueous lithium air batteries
US20130108920A1 (en) * 2011-11-01 2013-05-02 Isalah O. Oladeji Composite electrodes for lithium ion battery and method of making
US9660265B2 (en) 2011-11-15 2017-05-23 Polyplus Battery Company Lithium sulfur batteries and electrolytes and sulfur cathodes thereof
DE102011088910A1 (de) * 2011-12-16 2013-06-20 Robert Bosch Gmbh Lithium-Schwefel-Zellen-Separator mit Polysulfidsperrschicht
WO2013131005A2 (en) 2012-03-01 2013-09-06 Excellatron Solid State, Llc High capacity solid state composite cathode, solid state composite separator, solid-state rechargeable lithium battery and methods of making same
CN102617140B (zh) * 2012-03-05 2014-08-06 内蒙古工业大学 一种锑掺杂的类石榴石结构的锂离子晶态固体电解质材料及其合成方法
KR102086665B1 (ko) * 2012-07-06 2020-03-09 삼성전자주식회사 고체이온전도체, 이를 포함하는 고체전해질, 이를 포함하는 리튬전지, 및 이의 제조방법
EP2683005B1 (en) * 2012-07-06 2016-06-01 Samsung Electronics Co., Ltd Solid ionic conductor, solid electrolyte including the same, lithium battery including said solid electrolyte, and method of manufacturing said lithium battery
CN103682356B (zh) * 2012-09-18 2016-11-23 华为技术有限公司 一种锂离子电池正极材料及其制备方法
US10084168B2 (en) 2012-10-09 2018-09-25 Johnson Battery Technologies, Inc. Solid-state battery separators and methods of fabrication
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
US10388975B2 (en) 2013-01-31 2019-08-20 Board Of Trustees Of Michigan State University Template-based methods of making and using ceramic solids
DE102013101145B4 (de) 2013-02-05 2024-02-22 Schott Ag Verfahren zur Herstellung eines lithiumhaltigen Sols
KR102038621B1 (ko) * 2013-02-14 2019-10-30 삼성전자주식회사 고체이온전도체, 이를 포함하는 고체전해질, 이를 포함하는 리튬전지, 및 이의 제조방법
CN105009240B (zh) 2013-03-18 2017-12-19 京瓷株式会社 全固态电容器
JP6166584B2 (ja) * 2013-05-10 2017-07-19 日本碍子株式会社 リチウムイオン伝導性固体電解質並びにそれを用いた複合体及び電池
JP6554267B2 (ja) * 2013-05-20 2019-07-31 Tdk株式会社 固体イオンキャパシタ
US9461331B2 (en) 2013-07-05 2016-10-04 Electronics And Telecommunications Research Institute Method of preparing an oxide-based solid electrolyte by a hydrothermal reaction
KR102013222B1 (ko) * 2013-07-05 2019-08-23 한국전자통신연구원 산화물계 고체 전해질 제조방법
JP6596194B2 (ja) * 2013-08-02 2019-10-23 Tdk株式会社 固体イオンキャパシタ
JP6165546B2 (ja) * 2013-08-09 2017-07-19 株式会社日立製作所 固体電解質および全固体リチウムイオン二次電池
JP6028694B2 (ja) 2013-08-23 2016-11-16 株式会社豊田中央研究所 ガーネット型イオン伝導性酸化物の製造方法及び複合体の製造方法
CN105683127B (zh) 2013-10-07 2020-08-28 昆腾斯科普公司 用于锂二次电池的石榴石材料和制造和使用石榴石材料的方法
KR101627848B1 (ko) * 2013-10-21 2016-06-08 재단법인 포항산업과학연구원 리튬 이차 전지용 고체 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
JP6393974B2 (ja) * 2013-11-01 2018-09-26 セントラル硝子株式会社 固体電解質前駆体、その製造方法、固体電解質の製造方法、及び固体電解質−電極活物質複合体の製造方法
DE102013222784A1 (de) 2013-11-08 2015-05-13 Robert Bosch Gmbh Elektrochemische Zelle und Verfahren zu deren Herstellung
KR101526703B1 (ko) 2013-11-12 2015-06-05 현대자동차주식회사 Al 치환된 가넷의 합성 방법
DE102013224045B4 (de) 2013-11-25 2022-12-08 Schott Ag Verfahren zur Herstellung eines lithiumionenleitfähigen Materials mit granatartiger Kristallstruktur, Verwendung des Materials und Verfahren zur Herstellung eines Zwischenproduktes
US9548512B2 (en) 2013-12-12 2017-01-17 Ut-Battelle, Llc High conducting oxide—sulfide composite lithium superionic conductor
DE102014100684B4 (de) * 2014-01-22 2017-05-11 Schott Ag lonenleitende Glaskeramik mit granatartiger Kristallstruktur, Verfahren zur Herstellung und Verwendung einer solchen Glaskeramik
ES2829924T3 (es) 2014-02-07 2021-06-02 Basf Se Unidad de electrodo para un dispositivo electroquímico
US20150267316A1 (en) * 2014-03-19 2015-09-24 Sandia Corporation Electrochemical Ion Separation in Molten Salts
DE102014205945A1 (de) 2014-03-31 2015-10-01 Bayerische Motoren Werke Aktiengesellschaft Aktives Kathodenmaterial für sekundäre Lithium-Zellen und Batterien
KR101731240B1 (ko) * 2014-04-24 2017-04-28 다이치 키겐소 카가쿠 코교 컴퍼니 리미티드 가넷형 화합물의 제조 방법, 가넷형 화합물 및 상기 가넷형 화합물을 포함한 전고체 리튬 2차 전지
EP2944611A1 (de) 2014-05-16 2015-11-18 Evonik Degussa GmbH Verfahren zur Herstellung eines kubisch kristallinen, Aluminium, Lithium, Lanthan und Zirkon enthaltenden Mischoxides mit Granatstruktur
KR101940240B1 (ko) * 2014-05-28 2019-01-21 한국전자통신연구원 산화물계 고체 전해질 및 그 제조방법
DE102014108254A1 (de) 2014-06-12 2015-12-17 Karlsruher Institut für Technologie Innovationsmanagement Elektrolyt, Zelle und Batterie umfassend den Elektrolyt und dessen Verwendung
FR3023417B1 (fr) 2014-07-01 2016-07-15 I-Ten Batterie entierement solide comprenant un electrolyte solide et une couche de materiau polymere solide
FR3023418B1 (fr) 2014-07-01 2016-07-15 I Ten Batterie entierement solide comprenant un electrolyte en materiau polymere solide reticule
JP6632240B2 (ja) * 2014-08-12 2020-01-22 日本特殊陶業株式会社 リチウムイオン伝導性セラミックス材料及びリチウム電池
KR101592752B1 (ko) * 2014-08-18 2016-02-12 현대자동차주식회사 가넷 분말, 이의 제조방법, 핫프레스를 이용한 고체전해질 시트 및 이의 제조방법
JP5858410B2 (ja) * 2014-09-25 2016-02-10 国立研究開発法人産業技術総合研究所 リチウムイオン伝導性酸化物の単結晶及びその製造方法、並びにそれを部材として使用した電気化学デバイス
US10026990B2 (en) 2014-10-16 2018-07-17 Corning Incorporated Lithium-ion conductive garnet and method of making membranes thereof
US10211481B2 (en) 2014-11-26 2019-02-19 Corning Incorporated Stabilized solid garnet electrolyte and methods thereof
US11749834B2 (en) 2014-12-02 2023-09-05 Polyplus Battery Company Methods of making lithium ion conducting sulfide glass
US10164289B2 (en) 2014-12-02 2018-12-25 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
US10147968B2 (en) 2014-12-02 2018-12-04 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
KR102609408B1 (ko) 2015-04-16 2023-12-04 퀀텀스케이프 배터리, 인코포레이티드 고체 전해질 제조를 위한 세터 플레이트 및 그를 사용하여 치밀한 고체 전해질을 제조하는 방법
US10411296B2 (en) * 2015-05-07 2019-09-10 Kabushiki Kaisha Toyota Jidoshokki Structural body containing garnet-type ionic conductor
DE102015209981A1 (de) * 2015-05-29 2016-12-01 Robert Bosch Gmbh Festelektrolytseparator für Lithium-Konversionszelle
DE102015210752A1 (de) 2015-06-12 2016-12-15 Robert Bosch Gmbh Lithium-Sauerstoff-Zellen-Kathodenadditive für Quasi-Konstantspannungschritt
CA2989329A1 (en) * 2015-06-18 2016-12-22 Lneg - Laboratorio Nacional De Enegia E Geologia Water solvated glass/amorphous solid ionic conductors
KR20180021797A (ko) 2015-06-24 2018-03-05 콴텀스케이프 코포레이션 복합 전해질
DE102015213973A1 (de) 2015-07-23 2017-01-26 Bayerische Motoren Werke Aktiengesellschaft Anorganischer Separator
JP2017033926A (ja) 2015-07-29 2017-02-09 セントラル硝子株式会社 ガーネット型酸化物焼結体及びその製造方法
CN105489927A (zh) * 2015-11-24 2016-04-13 青岛能迅新能源科技有限公司 一种提高全固态锂离子电解质材料Li7La3Zr2O12常温离子电导的方法
EP4324577A1 (en) 2015-12-16 2024-02-21 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
JP6763965B2 (ja) 2015-12-21 2020-09-30 ジョンソン・アイピー・ホールディング・エルエルシー 固体電池、セパレータ、電極および製造方法
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
WO2017197039A1 (en) 2016-05-10 2017-11-16 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
US20170331092A1 (en) 2016-05-13 2017-11-16 Quantumscape Corporation Solid electrolyte separator bonding agent
EP3252024B1 (en) 2016-05-27 2019-12-18 Toyota Jidosha Kabushiki Kaisha Oxide electrolyte sintered body and method for producing the same
JP6620770B2 (ja) * 2016-05-27 2019-12-18 トヨタ自動車株式会社 酸化物電解質焼結体、及び、当該酸化物電解質焼結体の製造方法
KR102444090B1 (ko) * 2016-07-11 2022-09-15 더 리젠츠 오브 더 유니버시티 오브 미시건 세라믹 가넷계 이온 전도성 재료
WO2018027200A1 (en) 2016-08-05 2018-02-08 Quantumscape Corporation Translucent and transparent separators
KR20190055842A (ko) 2016-10-07 2019-05-23 더 리젠츠 오브 더 유니버시티 오브 미시건 고체 상태 배터리용 안정화 코팅
WO2018075972A1 (en) 2016-10-21 2018-04-26 Quantumscape Corporation Electrolyte separators including lithium borohydride and composite electrolyte separators of lithium-stuffed garnet and lithium borohydride
WO2018075809A1 (en) 2016-10-21 2018-04-26 Quantumscape Corporation Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
WO2018081224A1 (en) 2016-10-26 2018-05-03 The Regents Of The University Of Michigan Metal infiltrated electrodes for solid state batteries
US11011776B2 (en) 2017-03-15 2021-05-18 Ngk Spark Plug Co., Ltd. Lithium-ion-conductive ceramic material, lithium-ion-conductive ceramic sintered body, and lithium battery
CN108727025A (zh) 2017-04-17 2018-11-02 中国科学院上海硅酸盐研究所 锂石榴石复合陶瓷、其制备方法及其用途
WO2018236394A1 (en) 2017-06-23 2018-12-27 Quantumscape Corporation LITHIUM-FILLED GRENATE ELECTROLYTES WITH SECONDARY PHASE INCLUSIONS
US10347937B2 (en) 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions
US10868293B2 (en) 2017-07-07 2020-12-15 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US10629950B2 (en) 2017-07-07 2020-04-21 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
JP2019046721A (ja) 2017-09-05 2019-03-22 トヨタ自動車株式会社 スラリー、固体電解質層の製造方法、及び、全固体電池の製造方法
JP6962094B2 (ja) 2017-09-21 2021-11-05 トヨタ自動車株式会社 ガーネット型イオン伝導性酸化物、及び、酸化物電解質焼結体の製造方法
WO2019078897A1 (en) 2017-10-20 2019-04-25 Quantumscape Corporation INTERFACIAL LAYER BOROHYDRIDE-SULFIDE IN A TOTALLY SOLID BATTERY
US11600850B2 (en) 2017-11-06 2023-03-07 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
DE102017128719A1 (de) 2017-12-04 2019-06-06 Schott Ag Lithiumionenleitendes Verbundmaterial, umfassend wenigstens ein Polymer und lithiumionenleitende Partikel, und Verfahren zur Herstellung eines Lithiumionenleiters aus dem Verbundmaterial
JP7017079B2 (ja) 2017-12-28 2022-02-08 トヨタ自動車株式会社 電極の製造方法、電極、及び、電極-電解質層接合体
DE102018104291A1 (de) * 2018-02-26 2019-08-29 Volkswagen Aktiengesellschaft Beschichtung für ein Werkzeug zur Handhabung von Lithiummetall, Werkzeug und Verfahren zum Herstellen eines solchen Werkzeugs
CA3104080A1 (en) 2018-06-19 2019-12-26 6K Inc. Process for producing spheroidized powder from feedstock materials
JP7270991B2 (ja) * 2018-07-24 2023-05-11 公立大学法人大阪 全固体ナトリウム電池用の固体電解質とその製造方法及び全固体ナトリウム電池
US11223066B2 (en) 2018-08-01 2022-01-11 Samsung Electronics Co., Ltd. Solid-state electrolyte and method of manufacture thereof
US11251460B2 (en) 2018-08-01 2022-02-15 Samsung Electronics Co., Ltd. Solution-processed solid-state electrolyte and method of manufacture thereof
CN112533872B (zh) * 2018-08-03 2023-04-04 株式会社钟化 石榴石型复合金属氧化物及其制造方法
US11959166B2 (en) 2018-08-14 2024-04-16 Massachusetts Institute Of Technology Methods of fabricating thin films comprising lithium-containing materials
KR102101271B1 (ko) 2018-08-16 2020-04-16 아주대학교산학협력단 이온 전도성 고체 전해질 화합물, 이의 제조방법 및 이를 포함하는 전기화학 장치
KR20200028165A (ko) 2018-09-06 2020-03-16 삼성전자주식회사 고체 전해질, 그 제조방법 및 이를 포함하는 이차전지
DE102018215803A1 (de) 2018-09-18 2020-03-19 Bayerische Motoren Werke Aktiengesellschaft Schutzschicht für Elektrode
JP2022505069A (ja) 2018-11-06 2022-01-14 クアンタムスケープ バッテリー,インコーポレイテッド カソライト添加剤及びリチウム充填ガーネットセパレーターを有する電気化学セル
KR102650658B1 (ko) 2018-11-15 2024-03-25 삼성전자주식회사 헤테로고리 방향족 구조의 음이온을 포함하는 금속염 및 그 제조방법, 그리고 상기 금속염을 포함하는 전해질 및 전기화학소자
US11411246B2 (en) 2018-12-06 2022-08-09 Samsung Electronics Co., Ltd. All-solid secondary battery and method of manufacturing all-solid secondary battery
CN109742442A (zh) * 2018-12-24 2019-05-10 北京化工大学 石榴石型固态电解质的制备及应用该固态电解质的二次电池
CN109713363A (zh) * 2018-12-29 2019-05-03 蜂巢能源科技有限公司 锂石榴石氧化物固态电解质及其制备方法和应用
EP3703170A1 (en) 2019-02-27 2020-09-02 Technische Universität Graz Solid ion conductor having a fluoride garnet-like structure
SG11202111576QA (en) 2019-04-30 2021-11-29 6K Inc Mechanically alloyed powder feedstock
US11611130B2 (en) 2019-04-30 2023-03-21 6K Inc. Lithium lanthanum zirconium oxide (LLZO) powder
US11757127B2 (en) 2019-06-18 2023-09-12 Samsung Electronics Co., Ltd. Lithium solid electrolyte and method of manufacture thereof
JP2023512391A (ja) 2019-11-18 2023-03-27 シックスケー インコーポレイテッド 球形粉体用の特異な供給原料及び製造方法
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
CN113224374A (zh) * 2020-01-21 2021-08-06 天津国安盟固利新材料科技股份有限公司 一种复合型电解质膜及其制备方法
JP7478414B2 (ja) * 2020-03-02 2024-05-07 国立研究開発法人産業技術総合研究所 非晶質複合金属酸化物、ガーネット型リチウム複合金属酸化物、焼結体、固体電解質層、電気化学デバイス用電極、電気化学デバイス
GB202006749D0 (en) 2020-05-07 2020-06-24 Johnson Matthey Plc Lithium-ion conductive ceramic material and process
US11855258B2 (en) 2020-06-08 2023-12-26 Cmc Materials, Inc. Secondary battery cell with solid polymer electrolyte
US11637317B2 (en) 2020-06-08 2023-04-25 Cmc Materials, Inc. Solid polymer electrolyte compositions and methods of preparing same
EP4173060A1 (en) 2020-06-25 2023-05-03 6K Inc. Microcomposite alloy structure
AU2021349358A1 (en) 2020-09-24 2023-02-09 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
GB202103712D0 (en) 2021-03-17 2021-04-28 Thermal Ceramics Uk Ltd The production of melt formed inorganic ionically conductive electrolytes
WO2023017268A1 (en) 2021-08-11 2023-02-16 Johnson Matthey Public Limited Company Lithium ion conductive ceramic material
DE102022112792A1 (de) 2022-05-20 2023-11-23 Bayerische Motoren Werke Aktiengesellschaft Lithiumbatterie umfassend eine Lithiummetallanode mit einem porösen Stromableiter
CN115950941B (zh) * 2023-03-13 2023-06-20 华北理工大学 锂离子导体固体电解质型低温传感器及其制备方法与应用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389469A (ja) * 1989-09-01 1991-04-15 Hitachi Ltd ナトリウム―硫黄電池
JP3244291B2 (ja) 1991-01-23 2002-01-07 三洋電機株式会社 電 池
JP3719312B2 (ja) * 1997-07-07 2005-11-24 宇部興産株式会社 正極シートとこれを用いた非水電解質二次電池
JP4081833B2 (ja) * 1997-08-01 2008-04-30 宇部興産株式会社 密閉型非水電解液二次電池
JP4417676B2 (ja) 2003-09-18 2010-02-17 パナソニック株式会社 非水電解質二次電池
US20050083986A1 (en) 2003-10-17 2005-04-21 Eastman Kodak Company Light-emitting diode pumped laser and method of excitation
SI1723080T1 (sl) 2004-03-06 2014-08-29 Basf Se Kemiäśno stabilni trdni litij ionski prevodniki
DE102004010892B3 (de) * 2004-03-06 2005-11-24 Christian-Albrechts-Universität Zu Kiel Chemisch stabiler fester Lithiumionenleiter
US20060083986A1 (en) * 2004-03-16 2006-04-20 Wen Li Battery with tin-based negative electrode materials
DE102005001414A1 (de) * 2005-01-12 2006-07-20 Degussa Ag Pyrogen hergestelltes Siliciumdioxidpulver
CN100364153C (zh) * 2005-05-24 2008-01-23 中国科学院成都有机化学有限公司 一种尖晶石LiMn2O4表面包覆Li4Ti5O12电极材料及其制备方法
US7993782B2 (en) * 2005-07-01 2011-08-09 National Institute For Materials Science All-solid lithium battery
WO2008063532A1 (en) * 2006-11-17 2008-05-29 Panasonic Corporation Electrode active material for non-aqueous secondary batteries
DE102007030604A1 (de) * 2007-07-02 2009-01-08 Weppner, Werner, Prof. Dr. Ionenleiter mit Granatstruktur
US20090191458A1 (en) * 2007-07-23 2009-07-30 Matsushita Electric Industrial Co., Ltd. Porous network negative electrodes for non-aqueous electrolyte secondary battery
JP5151692B2 (ja) 2007-09-11 2013-02-27 住友電気工業株式会社 リチウム電池
JP5627576B2 (ja) * 2008-06-16 2014-11-19 ポリプラス バッテリー カンパニーPolyPlus Battery Company 水性リチウム−空気バッテリセル

Also Published As

Publication number Publication date
JP2010534383A (ja) 2010-11-04
CA2694259A1 (en) 2009-01-08
EP2176190A2 (de) 2010-04-21
JP5634865B2 (ja) 2014-12-03
DE102007030604A1 (de) 2009-01-08
KR20100053543A (ko) 2010-05-20
EP2176190B1 (de) 2018-05-02
US9450271B2 (en) 2016-09-20
WO2009003695A3 (de) 2010-02-04
KR101539123B1 (ko) 2015-07-23
TW200910671A (en) 2009-03-01
US8658317B2 (en) 2014-02-25
JP2014241288A (ja) 2014-12-25
CA2694259C (en) 2015-06-23
US20100203383A1 (en) 2010-08-12
CN101952223A (zh) 2011-01-19
WO2009003695A2 (de) 2009-01-08
US20140205910A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
TWI434452B (zh) 具有石榴石結構之離子導體
JP5204478B2 (ja) 化学的に安定な固体のリチウムイオン伝導体
Abrha et al. Dual-doped cubic garnet solid electrolytes with superior air stability
Li et al. Ga-substituted Li7La3Zr2O12: An investigation based on grain coarsening in garnet-type lithium ion conductors
Dong et al. Combined experimental and computational study of Ce-doped La3Zr2Li7O12 garnet solid-state electrolyte
TWI436949B (zh) 化性穩定之固態鋰離子導體
JP6338588B2 (ja) 室温固体のナトリウムイオン電池のための高伝導性nasicon電解質
CN104124467B (zh) 一种利用锂镧锆氧前驱体包覆粉体制备固体电解质的方法
Liu et al. Preparation and chemical compatibility of lithium aluminum germanium phosphate solid electrolyte
Hu et al. Mechanical and electrochemical properties of cubic and tetragonal LixLa0. 557TiO3 perovskite oxide electrolytes
CN106299477B (zh) 硫化物固体电解质的制造方法
Zhang et al. Water-stable lithium ion conducting solid electrolyte of the Li1. 4Al0. 4Ti1. 6− xGex (PO4) 3 system (x= 0–1.0) with NASICON-type structure
JP2013149493A (ja) リチウムイオン伝導性材料
Dong et al. Low temperature synthesis of garnet solid state electrolytes: Implications on aluminium incorporation in Li7La3Zr2O12
Ooura et al. A new lithium-ion conducting glass ceramic in the composition of 75Li2S· 5P2S3· 20P2S5 (mol%)
Pan et al. A novel solid-liquid route for synthesizing cubic garnet Al-substituted Li7La3Zr2O12
Qin et al. Oriented attachment strategy toward enhancing ionic conductivity in garnet-type electrolytes for solid-state lithium batteries
Li et al. Enhanced ionic conductivity and electrochemical stability of Indium doping Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3 solid electrolytes for all-solid-state lithium-ion batteries
Basset et al. Synthesis and characterization of novel Li-stuffed garnet-like Li 5+ 2x La 3 Ta 2− x Gd x O 12 (0≤ x≤ 0.55): structure–property relationships
US10403933B2 (en) Solid electrolyte material and method for producing the same
Stockham et al. Water based synthesis of highly conductive Ga x Li 7− 3x La 3 Hf 2 O 12 garnets with comparable critical current density to analogous Ga x Li 7− 3x La 3 Zr 2 O 12 systems
Liu et al. Effect of Nb and Ta simultaneous substitution on self-consolidation sintering of Li7La3Zr2O12
US20190165414A1 (en) Methods for lowering the hot-pressing temperatures of garnet structured ionic conductors
Peng et al. Synthesis and ion conductivity of Li7La3Nb2O13 Ceramics with cubic garnet-type structure
Weppner et al. Solid ion conductor which has a garnet-like crystal structure and has the stoichiometric composition L 7+ X A X G 3− X Zr 2 O 12