CN101840995A - 电阻型随机存取存储器及其制造方法 - Google Patents

电阻型随机存取存储器及其制造方法 Download PDF

Info

Publication number
CN101840995A
CN101840995A CN201010161661A CN201010161661A CN101840995A CN 101840995 A CN101840995 A CN 101840995A CN 201010161661 A CN201010161661 A CN 201010161661A CN 201010161661 A CN201010161661 A CN 201010161661A CN 101840995 A CN101840995 A CN 101840995A
Authority
CN
China
Prior art keywords
word line
bit line
stack
line
vertical stacking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201010161661A
Other languages
English (en)
Inventor
尹洪植
白寅圭
沈贤准
赵金石
朴敏营
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN101840995A publication Critical patent/CN101840995A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • H10B63/845Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays the switching components being connected to a common vertical conductor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/72Array wherein the access device being a diode
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/77Array wherein the memory element being directly connected to the bit lines and word lines without any access device being used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/823Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明涉及一种电阻型随机存取存储器及其制造方法。该方法包括:形成位线堆叠,在该位线堆叠中多个局部位线垂直堆叠在衬底上;形成字线,该字线包括多个局部字线和连接线,该多个局部字线朝着位线堆叠的侧部沿垂直方向延伸,该连接线在水平方向上延伸以将多个局部字线彼此连接;以及在位线堆叠与字线之间形成电阻存储薄膜。本发明可以通过简化的工艺实现具有3D交叉点结构的高密度存储阵列。

Description

电阻型随机存取存储器及其制造方法
技术领域
本发明涉及集成电路器件,更具体地,涉及其中具有电阻型存储单元的非易失性存储器。
背景技术
通常,电阻随机存取存储器(ReRAM)是利用电阻特性随着所施加电压而改变的原理的一种非易失性存储器。ReRAM是一种存储器,其根据电阻可变特性而利用由于所施加电压大小而导致的电流的开/关状态。这些ReRAM具有各种优点:相对快的存取时间、低功耗以及由于简单的存储单元结构带来的工艺故障的降低。
如图1A所示,ReRAM的一个示例在由Herner等人提出的名称为“NONVOLATILE MEMORY CELL COMPRISING A DIODE AND ARESISTANCE-SWITCHING MATERIAL”的美国专利申请公开No.2006/0250837中被披漏。
参见图1A,二极管16和电阻开关元件18堆叠在底部导体12和顶部导体14之间,从而形成一个存储层20。存储层20堆叠多个,从而形成高密度单片三维存储阵列。图1B示意地显示了具有上述单片三维存储阵列的电阻随机存取存储器10。
参考图1B,当电阻随机存取存储器10通过形成三维存储阵列30而实施时,堆叠N个存储层所需的工艺步骤的数量可以等于值“N×S”,值“N×S”是通过形成一个存储层20而定义多个存储单元块所需的工艺步骤数S与堆叠的存储层数N的乘积。也就是说,随着堆叠层数量的增加,工艺步骤数量也线性增加。
底部导体12和顶部导体14在正交的方向上延伸,并且存储单元形成在它们之间的交叉点处。一般而言,底部导体12可以形成字线,而顶部导体14可以形成位线。例如,当字线12的数量为K并且位线14的数量为M时,形成在一个存储层20上的存储单元块的数量是K×M。这样,当堆叠存储层20的数量是N时,将形成的存储单元块的数量为N×K×M。
存取一个存储层20上的K×M个存储单元块所需的解码器的数量是“K+M”,其是字线12的数量K与字线14的数量M之和。如果N个存储层20被堆叠,则解码器的数量可以是值“(N×K)+(N×M)”,其是堆叠的字线12的数量“N×K”与堆叠的位线14的数量“N×M”之和。也就是说,随着堆叠的层数的增加,解码器的数量也线性增加。因此,形成解码器需要面积和该数量的工艺步骤。
发明内容
本发明的实施例提供一种能够实现高密度存储阵列的电阻随机存取存储器及其制造方法。
本发明的实施例还提供一种具有位线堆叠和梳状字线的电阻随机存取存储器及其制造方法,其中在位线堆叠中多个局部位线垂直堆叠,在梳状字线中垂直提供在位线堆叠之间的多个局部字线彼此电连接。
本发明的实施例提供一种制造电阻随机存取存储器的方法,该方法包括:形成位线堆叠,在该位线堆叠中多个局部位线垂直堆叠在衬底上;形成包括多个局部字线以及连接线的字线,该多个局部字线沿着垂直方向朝着位线堆叠的侧部延伸,该连接线沿水平方向延伸以将多个局部字线彼此连接;以及形成位线堆叠与字线之间的电阻存储薄膜。
在一些实施例中,该方法可以进一步包括:形成位线堆叠;形成覆盖位线堆叠的电阻存储薄膜;在电阻存储薄膜上沉积导电材料;以及通过图案化导电材料形成字线。
在其他的实施例中,该方法可以进一步包括:形成位线堆叠;形成覆盖位线堆叠的电阻存储薄膜;在电阻存储薄膜上沉积绝缘材料;通过图案化绝缘材料形成暴露电阻存储薄膜的沟槽;以及通过在沟槽中沉积导电材料形成字线。
在再一些实施例中,该方法可以进一步包括:形成位线堆叠;在衬底上沉积绝缘材料;通过图案化绝缘材料形成暴露位线堆叠的沟槽;在沟槽中形成电阻存储薄膜;以及通过在沟槽中沉积导电材料在电阻存储薄膜上形成字线。
在再一些实施例中,该方法可以进一步包括:在电阻存储薄膜和字线之间形成开关薄膜。
在其他实施例中,形成位线堆叠可以包括:形成堆叠体,在该堆叠体中多个绝缘层和多个导电层选择地沉积在衬底上;在堆叠体上形成硬掩模图案;以及通过利用硬掩模图案作为掩模的刻蚀图案化堆叠体。
本发明的一个实施例提供一种电阻随机存取存储器,其包括:位线堆叠,在第一水平方向延伸且提供有垂直堆叠在衬底上的多个局部位线;字线,提供有多个局部字线和连接线,该多个局部字线垂直设置在位线堆叠侧部处,该连接线沿着与第一水平方向交叉的第二水平方向延伸以将多个局部字线彼此连接;以及电阻存储薄膜,提供在位线堆叠和字线之间。
在另一实施例中,连接线可以设置为跨过位线堆叠。
在另一实施例中,位线堆叠可以进一步包括在其最顶层上的硬掩模图案。
在另一实施例中,电阻随机存取器可以进一步包括在电阻存储薄膜与字线之间的开关薄膜。
附图说明
附图被包括以提供对本发明的进一步理解,并且被并入且构成本说明书的一部分。附图说明了本发明的示范性实施例并且与描述一起用于解释本发明的原理。附图中:
图1A的透视图显示了根据常规技术的电阻随机存取存储器;
图1B的电路图示意地显示了根据常规技术的堆叠状电阻随机存取存储器的存储阵列;
图2A的等效电路图显示了根据本发明示范性实施例的电阻随机存取存储器;
图2B和2C的电路图显示了图2A的一部分;
图3A的透视图显示了根据本发明第一示范性实施例的电阻随机存取存储器;
图3B的透视图包括沿图3A的线I-I剖取的截面;
图3C的透视图显示了图3A的存储单元块;
图4A的透视图显示了根据本发明第二示范性实施例的电阻随机存取存储器;
图4B的透视图包括沿图4A的线II-II剖取的截面;
图5A的透视图显示了根据本发明第三示范性实施例的电阻随机存取存储器;
图5B的透视图包括沿图5A的线III-III剖取的截面;
图5C的透视图显示了图5A的存储单元块;
图6A的透视图显示了根据本发明第四示范性实施例的电阻随机存取存储器;
图6B的透视图包括沿图6A的线IV-IV剖取的截面;
图7A的透视图显示了根据本发明第五示范性实施例的电阻随机存取存储器;
图7B的透视图包括沿图7A的线V-V剖取的截面;
图8A到8G的截面图显示了制造根据本发明第一示范性实施例的电阻随机存取存储器的方法;
图9A到9D的截面图显示了制造根据本发明第二示范性实施例的电阻随机存取存储器的方法;
图10A到10D的截面图显示了制造根据本发明第三示范性实施例的电阻随机存取存储器的方法;
图11A到11D的截面图显示了制造根据本发明第四示范性实施例的电阻随机存取存储器的方法;
图12A到12G的截面图显示了制造根据本发明第五示范性实施例的电阻随机存取存储器的方法;
图13A到13G的截面图显示了制造根据本发明第六示范性实施例的电阻随机存取存储器的方法;
图14A和14B的图显示了根据本发明第一示范性实施例的开关薄膜的电流-电压曲线;
图15A的框图显示了包括根据本发明示范性实施例的电阻随机存取存储器的存储卡;以及
图15B的框图显示了适于根据本发明示范性实施例的电阻随机存取存储器的信息处理系统。
具体实施方式
下面将结合附图描述根据本发明总的发明构思的示范性实施例的电阻随机存取存储器以及制造电阻随机存取存储器的方法。
本发明总的发明构思的优点和特点以及完成其的方法通过参考对优选实施例及附图的以下详细描述可以更容易地被理解。但是,本发明总的发明构思也可以以不同形式被实施并且不应被解释为限制于这里所阐述的实施例。而是,提供这些实施例,使得这些公开是彻底和完整的并且完全将本发明的思想传递给本领域技术人员,并且本发明将仅由所附的权利要求来限定。整个说明书中相同的附图标记指代相同的元件。
等效电路图
图2A显示了根据本发明总的发明构思的示范性实施例的电阻随机存取存储器的等效电路图;图2B和2C的电路图显示了图2A的一部分。
参见图2A,电阻随机存取存储器1可以包括三维(3D)交叉点结构。在该3D交叉点结构中,每个存储单元块定义在字线和位线之间的每个交叉点中,并且这些存储单元块三维地布置。
例如,电阻随机存取存储器1可以包括多个字线W1、W2、W3及W4以形成Y-Z平面及多个位线B1、B2及B3以形成X-Z平面。字线W1到W4和位线B1到B3可以充当电极。作为另一个示例,电阻随机存取存储器1可以包括形成Y-Z平面的多个位线W1、W2、W3和W4以及形成X-Z平面的多个字线B1、B2和B3。前一个示例将在此说明书中描述,而后一个示例可以适用于之后的描述。
字线W1到W4可以沿X轴方向取向,相反,位线B1到B3可以沿Y轴方向取向。字线W1到W4与位线B1到B3相交,从而形成多个交叉点。存储单元块2可以定义在这些交叉点的每个中。X轴方向、Y轴方向以及Z轴方向可以基本上互相成直角,并且Y-Z平面可以与X-Z平面成直角。
每个字线W1到W4可以构造为梳状。例如,第一字线W1包括沿Z轴方向延伸的多个字线W11、W12、W13及W14(以下称为局部字线),并且这些局部字线W11到W14可以通过沿Y轴方向延伸的第一连接线W10互相电连接。从而,第一字线W1可以由Y-Z平面构造。相似地,第二字线W2包括沿Z轴方向延伸的多个局部字线W21、W22、W23及W24,并且这些局部字线W21到W24可以通过沿Y轴方向延伸的第二连接线W20互相电连接。从而,第二字线W2可以由Y-Z平面构造。以上描述也可以应用到第三字线W3和第四字线W4。尽管在本发明的示范性实施例中只示出了四个字线W1到W4,但是字线的数量可以是任意的。例如,字线的数量可以为K。也就是说,字线可以指定为WK(其中,在此示范性实施例中K为1、2、3及4)。
多个位线B1、B2及B3中的第一位线B1包括沿X轴方向延伸的多个位线B11、B12、B13及B14(以下称为局部位线),并且这些局部位线B11到B14可以在Z轴方向上堆叠。第二位线B2包括沿X轴方向延伸的多个局部位线B21、B22、B23及B24,并且这些局部位线B21到B24可以沿Z轴方向取向。以上描述也可以应用到第三位线B3。尽管在本示范性实施例中只示出了由四层(也就是局部位线的数量)构造的三个位线B1到B3,但是位线的数量和层的数量可以是任意的。例如,位线的数量可以为M,并且每个位线可以由N层构造。也就是说,位线可以指定为BMN(其中,在本示范性实施例中M为1、2及3,N为1、2、3及4)。
第一位线B1可以设置为穿过第一字线W1的第一局部字线W11和第二局部字线W12之间。因此,第一字线W1的第一局部字线W11和第二局部字线W12与第一位线B1的多个局部位线B11到B14以直角交叉,并且存储单元块2可以定义在这些交叉点的每个中。相似地,第一字线W1的第二局部字线W12和第三局部字线W13可以与第二位线B2的多个局部位线B21到B24以直角交叉,并且第一字线W1的第三局部字线W13和第四局部字线W14可以与第三位线B3的多个局部位线B31到B34以直角交叉。第一到第三位线B1到B3与第二到第四字线W2到W4的交叉点可以以与第一到第三位线B1到B3与第一字线W1之间的交叉点相同的方式构造。
在存储单元块2中,一个局部位线B11可以与第一局部字线W11和第二局部字线W12交叉。从几何的观点,如图2B所示,两个存储单元C1和C2可以定义在局部位线B11的两侧。但是以电路的观点,两个存储单元C1和C2可以由于同时的相同操作而被认为一个存储单元。结果,存储单元的数量可以是位线的数量乘以字线的数量。
作为示例,当K个字线交叉于M个位线并且当M个位线中的每一个由N层构成时,存储单元的数量可以为N×K×M。在解码器用于存取存储单元的情况下,用于存取K个字线所需的解码器的数量可以为K,并且用于存取分别由N层构成的M个位线所需的解码器可以为N×M。从而,解码器的总数是K+(N×M)。下列表1用于对比电阻随机存取存储器1与参考图1A和1B描述的堆叠形电阻随机存取存储器10的结构特性。存储器1和10都堆成N层。
表1
  电阻随机存取存储器10   电阻随机存取存储器1
  存储单元的数量   N×K×M   N×K×M
  字线的数量   N×K   K
  位线的数量   N×M   N×M
  解码器的数量   (N×K)+(N×M)   K+(N×M)
  工艺步骤的数量   N×S   S
参考表1,尽管电阻随机存取存储器通过堆叠相同的层以定义相同数量的存储单元块而实施,但是与电阻随机存取存储器10相比电阻随机存取存储器1的字线的数量减少到其的1/N。可以理解,对比于电阻随机存取存储器10,电阻随机存取存储器1的解码器的数量显著减少。这些不同会随着堆叠的数量N的增大而变大。而且,如之后参考8A到8G将描述,也可以理解,用于定义在根据本发明示范性实施例的电阻随机存取存储器中三维地布置的存储单元块所需的工艺步骤的数量减少到现有技术的1/N。
如图2B所示,存储单元C1和C2可以包括利用电阻的可变特性存储信息的电阻元件。可供选择地,如图2C所示,存储单元C1和C2可以进一步包括能够选择电阻元件的选择单元。
电阻随机存取存储器1可以以下列各种结构和方式被实施。
第一器件示例
图3A的透视图显示了根据本发明第一示范性实施例的电阻随机存取存储器;图3B的透视图包括沿图3A的线I-I剖取的截面;图3C的透视图显示了存储单元块。
参见图3A,电阻随机存取存储器100可以包括每个具有位于衬底110上的多个位线的多个位线堆叠150、与多个位线堆叠150以大致直角交叉的多个字线172、提供在多个位线堆叠150和多个字线172之间的电阻存储薄膜160。
在另一个示例中,电阻随机存取存储器100可以包括:多个字线堆叠150,每个具有多个字线;以及多个位线172,与多个字线堆叠150以大致直角交叉。在该示例中,在彼此交叉的多个字线堆叠150与多个位线172之间提供电阻存储薄膜160。前一个示例将在本说明书中描述,后一个示例可以使用于以下的描述。
每个位线堆叠150可以通过垂直堆叠在水平方向上延伸的多个导电层132和134而形成。例如,每个位线堆叠150可以通过在Z轴方向上堆叠多个导电层132和134而形成。多个导电层132和134可以沿X方向延伸。多个位线堆叠150对应图2A的多个位线B1到B3,并且多个导电层132和134对应图2A的多个局部位线B11到B34。位线堆叠150可以包括第一绝缘层122和第二绝缘层124。第一绝缘层122使得第一导电层132与衬底110电绝缘,并且第二绝缘层124使得第一导电层132与第二导电层134电绝缘。位线堆叠150可以进一步包括堆叠在第二导电层134,也就是,位线堆叠150的最顶层上的硬掩模图案140。在本说明书中,为方便起见,导电层132和134可以与术语“局部位线”一起使用。
每个字线172可以包括多个导电层172a和导电层172b。导电层172a可以从位线堆叠150的侧部在垂直方向上延伸。导电层172b可以跨过位线堆叠150在水平方向延伸。多个导电层172a可以通过导电层172b互相电连接。例如,每个字线172可以具有梳状结构,其中沿Z轴方向延伸以填充位线堆叠150之间的空间的多个导电层172a通过沿Y轴方向延伸的一个导电层172b互相电连接。
多个字线172对应于图2A的多个字线W1到W3,沿Z轴方向延伸的多个导电层172a对应于图2A的多个局部字线W11到W44,沿Y轴方向延伸的多个导电层172b对应于图2A中的多个连接线W10到W40。在本说明书,为方便起见导电层172a可以与术语“局部位线”一起使用;导电层172b可以与术语“连接线”一起使用。
电阻存储薄膜160可以设置为覆盖包括位线堆叠150的衬底110。例如,电阻存储薄膜160可以是沿着位线堆叠150的延伸方向(X轴方向)的连续板、沿着局部字线172a的延伸方向(Z轴方向)的连续板、沿着连接线172b的延伸方向(Y轴方向)的连续板。
参考图3A和3B,位线堆叠150可以沿Y轴方向取向以形成X-Z平面,而字线172可以沿X轴方向取向以形成Y-Z平面。位线堆叠150和字线172可以彼此交叉使得多个局部字线172a沿Y轴方向取向以填充位线堆叠150之间的空间。因此,多个局部位线132和134与多个局部字线172a之间的交叉点三维地布置使得存储单元块102定义在每个交叉点中。在存储单元块102中,电阻存储薄膜160可以作为信息存储层,其是用于根据电阻的可变特性而存储信息的电阻元件,而局部字线172a和局部位线132和134可以作为电极。
参考3C,如参考图2B所描述,由于根据几何透视图局部字线172设置在任何一个局部位线134周围的左侧和右侧,所以两个存储单元C1和C2可以定义在一个存储单元块102中。但是,从电路观点,两个存储单元C1和C2可以由于同时的相同操作而被认为是一个存储单元。
通过向选择的字线和选择的位线施加读电压,可以对形成在选择的字线和选择的位线之间的交叉点处的存储单元实施读操作。在读操作中,通过浮置未选择的字线,可以防止电流在选择的位线与未选择的字线之间流动。通过将所有的字线接地且施加编程电压到选择的位线而对形成在字线和位线之间的交叉点处的存储单元实施编程操作。当将所有的字线接地且施加编程电压到所有的位线的情况下,也就是所谓的毯式编程(blanket program)可以对形成在所有的字线和所有的位线之间的交叉点处的存储单元上实施。这可以有效地用于实施块单元的擦除操作。
第二器件示例
图4A的透视图显示了根据本发明第二示范性实施例的电阻随机存取存储器;图4B的透视图包括沿图4A的线II-II剖取的截面。本发明第二示范性实施例的电阻随机存取存储器等同于且相似于参考图3A到3C所描述的本发明第一示范性实施例的电阻随机存取存储器。从而,相同的组件将简要地被描述或被省略并且不同的组件将详细描述。
参考图4A和4B,电阻随机存取存储器200相似于参考图3A到3C所描述的根据本发明第一示范性实施例的电阻随机存取存储器100。也就是说,电阻随机存取存储器200可以具有3D交叉点结构,其中每个具有多个局部位线132和134的多个位线堆叠150与每个具有多个局部字线172a的多个梳状字线172在衬底110上以大致直角交叉。与图3C中所示相似的存储单元块103可以定义在每个交叉点中。
电阻存储薄膜162可以提供在位线堆叠150和字线172之间。电阻存储薄膜162可以提供为条状。例如,电阻存储薄膜162沿着位线堆叠150的延伸方向(X轴方向)可以是不连续的,沿着局部字线172a的延伸方向(Z轴方向)可以是连续的,而沿着连接线172b的延伸方向(Y轴方向)可以是连续的。也就是,每个电阻存储薄膜162可以是明确地设置在每个字线172下方的条状结构。
根据本发明的示范性实施例,当对选择的字线172中的存储单元实施编程和/或擦除操作时,可以防止其余未选择的字线172中的存储单元被无意地编程和/或擦除。所以,电阻随机存取存储器200的错误操作可以被减少。
第三器件示例
图5A的透视图显示了根据本发明第三示范性实施例的电阻随机存取存储器;图5B的透视图包括沿图5A的线III-III剖取的截面;图5C的透视图显示了存储单元块。本发明第三示范性实施例的电阻随机存取存储器等同于且相似于参考图3A到3C所描述的本发明第一示范性实施例的电阻随机存取存储器。从而,相同的组件将简要地被描述或被省略并且不同的组件将详细描述。
参考图5A,电阻随机存取存储器300相似于参考图3A到3C所描述的根据本发明第一示范性实施例的电阻随机存取存储器100。也就是,电阻随机存取存储器300可以具有3D交叉点结构,其中每个具有多个局部位线132和134的多个位线堆叠150与每个具有多个局部字线172a的多个梳状字线172在衬底110上以大致直角交叉。
电阻存储薄膜160可以提供在位线堆叠150和字线172之间。电阻存储薄膜160可以形成为连续板。开关薄膜190可以进一步提供在位线堆叠150和字线172之间。例如,开关薄膜190可以以连续板的形式提供在电阻存储薄膜160和字线172之间。
开关薄膜190可以作为开关元件或选择元件用于开关或选择电阻存储薄膜160。开关薄膜190具有如图14A所示的电流-电压特性且可以是能够使电流在一个方向上流动的元件。例如,开关薄膜190可以是二极管或变阻器(可变电阻器),当施加的电压大于特定值时其能够使电流流动,而当施加的电压小于特定值时其不能使电流流动。作为另一个示例,开关薄膜190可以是具有如图14B所示的电流-电压特性的元件。例如,开关薄膜190可以是阈值开关元件,当施加的电压处于特定值的范围内时其不能使电流流动而当施加的电压大于或小于特定值时其能够使电流流动。
可选择地,当电阻随机存取存储器300包括多个字线堆叠150、多个位线172以及二者之间的电阻存储薄膜160时,开关薄膜190可以提供在字线堆叠150和电阻存储薄膜160之间。
参见图5A及5B,多个字线172与位线堆叠150以大致直角交叉,使得多个局部字线172a填充位线堆叠150之间的空间。因此,多个局部位线132和134与多个局部字线172a之间的交叉点三维地布置,使得存储单元块104定义在每个交叉点中。在存储单元块104中,局部字线172a和局部位线132和134可以作为电极,电阻存储薄膜160可以作为信息存储层,其是用于根据电阻的可变特性而存储信息的电阻元件,且开关薄膜190可以作为选择元件,用于选择电阻元件。
参见图5C,从几何的角度看,两个存储单元C1和C2可以定义在一个存储单元块104中。但是从电路的角度看,由于同时的相同操作,两个存储单元C1和C2可以被认为是一个存储单元。
第四器件示例
图6A的透视图显示了根据本发明第四示范性实施例的电阻随机存取存储器;图6B的透视图包括沿图6A的线IV-IV剖取的截面。本发明第四示范性实施例的电阻随机存取存储器等同于且相似于参考图3A到3C所描述的本发明第一示范性实施例的电阻随机存取存储器。从而,相同的组件将简要地被描述或被省略并且不同的组件将详细描述。
参考图6A,电阻随机存取存储器400相似于根据参考图3A到3C所描述的本发明第一示范性实施例的电阻随机存取存储器100。也就是,电阻随机存取存储器400可以具有3D交叉点结构,其中每个具有多个局部位线132和134的多个位线堆叠150与每个具有多个局部字线172a的多个梳状字线172在衬底110上以大致直角交叉。
电阻存储薄膜162可以提供在位线堆叠150和字线172之间。电阻存储薄膜162可以提供为明确地设置在字线172下方的条状。开关薄膜192可以进一步提供在位线堆叠150和字线172之间。例如,开关薄膜192可以以条状的形式提供在电阻存储薄膜162和字线172之间。
参见图6A及6B,多个字线172与位线堆叠150以大致直角交叉,使得多个局部字线172a填充位线堆叠150之间的空间。因此,多个局部位线132和134与多个局部字线172a之间的交叉点三维地布置,使得与图5C中所示相似的存储单元块105定义在每个交叉点中。
第五器件示例
图7A的透视图显示了根据本发明第五示范性实施例的电阻随机存取存储器;图7B的透视图包括沿图7A的线V-V剖取的截面。本发明第五示范性实施例的电阻随机存取存储器等同于且相似于参考图3A到3C所描述的本发明第一示范性实施例的电阻随机存取存储器。从而,相同的组件将简要地被描述或被省略并且不同的组件将详细描述。
参考图7A,电阻随机存取存储器500相似于根据参考图3A到3C所描述的本发明第一示范性实施例的电阻随机存取存储器100。也就是,电阻随机存取存储器500可以具有3D交叉点结构,其中每个具有多个局部位线132和134的多个位线堆叠150与每个具有多个局部字线172a的多个梳状字线172在衬底110上以大致直角交叉。
电阻存储薄膜164可以提供在位线堆叠150和字线172之间。电阻存储薄膜164可以包括:第一层164a,明确地设置在字线172下方;以及第二层164b,覆盖字线172的侧。第一层164a可以是覆盖字线172下方的位线堆叠150的条状。第二层164b可以是覆盖局部字线172a的侧和连接线172b的侧的垂直板状。也就是,电阻存储薄膜164可以进一步设置在字线172的侧表面。因此,如图7B所示,电阻存储薄膜164可以围绕局部字线172a的周围。开关薄膜可以进一步提供在电阻存储薄膜164和字线172之间。
参见图7A及7B,多个字线172与位线堆叠150以大致直角交叉,使得多个局部字线172a填充位线堆叠150之间的空间。因此,多个局部位线132和134与多个局部字线172a之间的交叉点三维地布置,使得与图3C中所示相似的存储单元块106定义在每个交叉点中。
第一制造示例
图8A到8G的截面图显示了制造根据本发明第一示范性实施例的电阻随机存取存储器的方法。
参见图8A,堆叠体可以形成在衬底110上。堆叠体包括提供有多个绝缘层122和124的绝缘层组120以及提供有多个导电层132和134的导电层组130。作为示例,第一绝缘层122、第一导电层132、第二绝缘层124以及第二导电层134顺次形成在如硅晶片的衬底110上。选择性地,至少一个绝缘层和至少一个导电层可以选择性地堆叠在第二导电层134上。绝缘层组120可以通过沉积绝缘薄膜形成。例如,绝缘层组120可以通过沉积硅氧化物(例如,SiO2)或硅氮化物(例如,SiN、Si3N4或SiON)形成。导电层组130可以通过沉积或生长例如金属或导电氧化物层的导电薄膜形成。例如,导电层组130可以通过沉积或生长YBCO(例如,YBa2Cu3O7)、Pt、Ir、Cu、Ag、Au或者掺杂杂质的多晶硅而形成。
硬掩模图案140可以形成在导电层组130上以在用于定义位线的刻蚀工艺(位线刻蚀工艺)中用做掩模。例如,硬掩模图案140可以提供为在第二导电层134上沿X轴方向延伸。硬掩模图案140可以在位线刻蚀工艺后不被去除而用作后续的用于形成字线的刻蚀工艺(字线刻蚀工艺)的硬掩模。硬掩模图案140可以通过沉积钛氮化物(例如TiN)、硅氮化物(例如SiN、Si3N4或SiON)或者硅氧化物(例如,SiO2)形成。
参见图8B,导电层组130和绝缘层组120可以通过利用硬掩模图案140作为掩模的位线刻蚀工艺连续地被图案化,结果形成多个位线堆叠150。根据本发明的此示范性实施例,位线刻蚀工艺可以采用反应离子刻蚀(RIE)工艺。
位线堆叠150包括第一绝缘层122、第一导电层132、第二绝缘层124以及第二导电层134,它们顺次被堆叠,并且可以以沿X轴方向延伸的阻挡或壁的形式被提供。硬掩模图案140可以进一步提供在位线堆叠150中。
第一绝缘层122、第一导电层132、第二绝缘层124以及第二导电层134可以通过位线刻蚀工艺自对准。
图案化的第一导电层132和第二导电层134对应于位线,也就是,沿图2A的X轴方向延伸的局部位线B11到B34。此外,多个位线堆叠150对应于形成图2A中的X-Z平面的多个位线B1到B3。根据本发明的此示范性实施例,如图2A所示,所有的位线B1到B3可以通过单个位线刻蚀工艺形成。
参见图8C,电阻存储薄膜160可以通过沉积电阻存储材料形成。电阻存储薄膜160可以通过适合于沉积薄膜的沉积工艺形成。例如,电阻存储薄膜160可以通过化学气相沉积工艺形成以覆盖具有相对一致的厚度的位线堆叠150。
形成电阻存储薄膜160的电阻存储材料可以包括具有双稳态电阻态的材料,其中电阻可以可逆地随施加电压而改变。例如,电阻存储材料可以包括巨磁阻材料、高温超导材料、金属氧化物或者硫族化物(chalcogenide)。例如,金属氧化物可以包括Ni-、Ti-、Zr-、Hf-、Co-、Fe-、Cu-、Al-、Nb-、V-和Cr-的氧化物或它们的组合。
参见图8D,导电层170可以通过在整个衬底110上沉积导电材料形成。导电层170可以通过沉积或生长与导电层组130相同或相似的材料而形成。例如,导电层170可以由YBCO、Pt、Ir、Cu、Ag、Au或掺杂杂质的多晶硅形成。掩模图案180可以形成在导电层170上以作为用于定义字线的刻蚀工艺(字线刻蚀工艺)中的掩模。在光致抗蚀剂提供在导电层170上之后,掩模图案180接着可以通过图案化光致抗蚀剂而形成。掩模图案180可以以沿Y轴方向延伸的多条线的形式而提供。几个掩模图案180中的一些部分地显示在图8D中以便于描述。
参见图8E,导电层170可以通过字线刻蚀工艺选择性地被去除。多个字线172可以通过字线刻蚀工艺形成。电阻存储薄膜160在字线刻蚀工艺期间可以不被去除。字线刻蚀工艺可以采用反应离子刻蚀(RIE)工艺。
字线172可以以梳状的形式提供以形成Y-Z面。例如,字线172可以包括多个局部字线172a和连接线172b。多个局部字线172a填充位线堆叠150之间的空间并且沿Z轴方向延伸,而连接线172b沿Y轴方向延伸以彼此电连接多个局部字线172a。
多个字线172对应于图2A中的多个字线W1到W3。在对比字线172之一与图2A中的第一字线W1的情况下,多个局部字线172a对应于图2A中的局部字线W11到W14,连接线172b对应于图2A中的第一连接线W10。根据本发明的示范性实施例,多个字线172,也就是,图2A中的所有字线W1到W3,可以通过单个字线刻蚀工艺形成。
参见图8F和8G,绝缘层182可以通过沉积绝缘材料形成在字线172之间。这也可以实施为如图3A所示的包括板状电阻存储薄膜160的电阻随机存取存储器100。绝缘层182可以通过沉积硅氮化物(例如,SiN、Si3N4或SiON)形成,或者,优选地通过沉积具有优良的绝缘特性的硅氧化物(例如,SiO2)形成。字线172和绝缘层182的一些在图8F中被部分示出以便于描述。
根据本发明的示范性实施例,所有的位线(图2A的B1到B3)可以通过参考图8B所描述的单一位线刻蚀工艺形成,并且所有的字线(图2A的W1到W3)可以通过参考图8E所描述的单一字线刻蚀工艺形成。所以,尽管堆叠的位线的数目变得越来越多,但是对比于常规技术,工艺步骤的数量可以通过单一位线刻蚀工艺而减少。
例如,假定用于形成存储层所需的工艺步骤的数量被设定为S且堆叠的数量被设定为N,则用于形成根据图1B所示的常规技术的电阻随机存取存储器10所需的工艺步骤的数量为S×N,但是用于形成根据本发明的此示范性实施例的电阻随机存取存储器100的工艺步骤的数量为S。也就是,根据本发明的此示范性实施例的制造方法,堆叠的存储层可以用形成一个存储层所需的工艺步骤的数量来形成。
第二制造示例
图9A到9D的截面图显示了制造根据本发明第二示范性实施例的电阻随机存取存储器的方法。本发明第二示范性实施例的制造方法相同于且相似于参考图8A到8G所描述的本发明的第一示范性实施例的制造方法。所以,相同的工艺将简要地描述或被省略且不同的工艺将详细描述。
参见图9A,多个位线堆叠150、电阻存储薄膜160以及多个字线172以与参考图8A到8E所描述的相同或相似的工艺形成。也就是,多个位线堆叠150形成在衬底110上,电阻存储薄膜160形成为覆盖多个位线堆叠150,并且多个字线172形成在电阻存储薄膜160上。
以与参考图8A到8B所描述的相同或相似的方式,在顺次沉积多个导电层132和134、多个绝缘层122和124以及硬掩模图案140之后,多个位线堆叠150可以通过位线刻蚀工艺形成。位线堆叠150可以形成为沿X轴方向延伸。
电阻存储薄膜160可以以参考图8D所描述的相同或相似的方式形成,例如,通过沉积其中电阻依赖施加电压可逆地改变的材料形成。电阻存储薄膜160可以以共形地(conformally)覆盖位线堆叠150的板的形式形成。
以与参考图8D到8E所描述的相同或相似的方式,在金属或导电材料沉积在电阻存储薄膜160上后,多个字线172可以通过字线刻蚀工艺图案化沉积的材料而形成。字线172可以以梳状提供,使得多个沿Z轴方向延伸的局部字线172a通过沿Y轴方向延伸的连接线172b互相电连接。
参见图9B,暴露在字线172之间的部分电阻存储薄膜160可以进一步被去除。这个去除工艺可以是干法刻蚀工艺,例如,反应离子刻蚀工艺。这允许板状电阻存储薄膜160被实施为明确地设置在字线172之下的条状电阻存储薄膜162。在用于形成条状电阻存储薄膜162的选择性刻蚀工艺期间,位线堆叠150会被暴露,但是第二导电层134可以被硬掩模图案140保护。
参见图9C和9D,绝缘层182可以以与参考图8F和8G所描述的相同或相似的工艺形成,例如,通过在字线172之间沉积绝缘材料而形成。结果,可以实现图4A中所示的包括条状电阻存储薄膜162的电阻随机存取存储器200。
第三制造示例
图10A到10D的截面图显示了制造根据本发明第三示范性实施例的电阻随机存取存储器的方法。本发明第三示范性实施例的制造方法相同且相似于参考图8A到8G所描述的本发明的第一示范性实施例。所以,相同的工艺将简要地描述或被省略且不同的工艺将详细描述。
参见图10A,多个位线堆叠150以及电阻存储薄膜160以与参考图8A到8E所描述的相同或相似的工艺形成。也就是,多个位线堆叠150形成在衬底110上,并且电阻存储薄膜160形成为覆盖多个位线堆叠150。此外,开关薄膜190可以形成为覆盖电阻存储薄膜160。电阻存储薄膜160以与参考图8C所描述的相同或相似的方式以板的形式被提供。
开关薄膜190可以作为用于开关或选择电阻存储薄膜160的元件。开关薄膜190可以由能够使电流沿一个方向流动的材料形成,例如,如图14A所示,当施加的电压大于特定值时能够使电流流动而当施加的电压小于特定值时不能使电流流动的材料。也就是,开关薄膜190可以由能够利用为金属氧化物变阻器的材料,例如,ZnO、SrTiO3或BaTiO3,形成。作为另一个示例,开关薄膜190可以由当施加的电压处于特定值范围内时不能使电流流动而当施加的电压大于或小于特定值时能够使电流流动(如图14B所示)的材料形成。开关薄膜190可由隧道绝缘材料或硫族化物形成以作为阈值开关元件。开关薄膜190可以以板的形式提供为均匀地覆盖电阻存储薄膜160。
参见图10B,多个字线172可以以与参考图8D和8E所描述的相同或相似的工艺形成在开关薄膜190上。在与参考图8D和8E所描述的相同或相似的方式中,在金属或导电材料沉积在开关薄膜190上后,多个字线172可以通过利用字线刻蚀工艺图案化沉积的材料而形成。字线172可以以梳状的形式提供使得沿Z轴方向延伸的多个局部字线172a通过在Y轴方向上延伸的一个连接线172b互相电连接。
参见图10C和10D,绝缘层182可以以与参考图8F和8G所描述的相同或相似的工艺形成,例如,通过在字线172之间沉积绝缘材料而形成。结果,可以实现图5A中所示的包括板状电阻存储薄膜160和开关薄膜190的电阻随机存取存储器300。
第四制造示例
图11A到11D的截面图显示了制造根据本发明第四示范性实施例的电阻随机存取存储器的方法。本发明第四示范性实施例的制造方法相同且相似于参考图8A到8G所描述的本发明的第一示范性实施例或参考图10A到10D所描述的本发明的第三示范性实施例。所以,相同的工艺将简要地描述或被省略且不同的工艺将详细描述。
参见图11A,多个位线堆叠150和板状电阻存储薄膜160可以以与参考图8A到8C所描述的相同或相似的工艺形成,且板状的开关薄膜190可以形成为覆盖电阻存储薄膜160。另外,多个字线172可以以与参考图8D和8E所描述的相同或相似的方式形成在开关薄膜190上。
参见图11B,暴露在字线172之间的部分板状开关薄膜190可以选择性地被去除,从而形成条状开关薄膜192。同时地或者相继地,板状电阻存储薄膜160暴露在字线172之间的部分可以选择性地被去除,因此形成条状电阻存储薄膜162。这允许板状开关薄膜190和板状电阻存储薄膜160被实施为明确地设置在字线172以下的条状开关薄膜192和条状电阻存储薄膜162。在形成条状电阻存储薄膜162的选择性刻蚀工艺期间,位线堆叠150可以被暴露,但是第二导电层134可以被硬掩模图案140保护。
作为另一个示例,板状开关薄膜190和板状电阻存储薄膜160中的任何一个可以实施为条状。例如,板状开关薄膜190暴露在字线172之间的部分可以选择性地被去除,因此形成条状开关薄膜192。结果,可以实现定义在字线172之间的板状电阻存储薄膜160和条状开关薄膜192。
参见图11C和11D,绝缘层182可以以与参考图8F和8G所描述的相同或相似的工艺形成,例如,通过在字线172之间沉积绝缘材料而形成。结果,可以实现图6A中所示的包括条状开关薄膜192和条状电阻存储薄膜162的电阻随机存取存储器400。
第五制造示例
图12A到12G的截面图显示了根据本发明第五示范性实施例的制造电阻随机存取存储器的方法。本发明第五示范性实施例的制造方法相同且相似于参考图8A到8G所描述的本发明的第一示范性实施例。所以,相同的工艺将简要地描述或被省略且不同的工艺将详细描述。
参见图12A,提供有多个绝缘层122和124的绝缘层组120以及提供有多个导电层132和134的导电层组130以与参考图8A所描述的相同或相似的工艺形成在衬底110上。多个绝缘层122和124以及多个导电层132和134可以选择地堆叠。硬掩模图案140可以形成在导电层组130上。例如,硬掩模图案140可以在X轴方向延伸。
参见图12B,导电层组130和绝缘层组120可以以与参考图8B所描述的相同或相似的工艺连续地被图案化,例如,通过利用硬掩模图案140作为掩模的位线刻蚀工艺(反应离子刻蚀工艺)连续地被图案化。结果,多个位线堆叠150可以以沿X轴方向延伸的阻挡或壁的形式被提供。第一绝缘层122、第一导电层132、第二绝缘层124以及第二导电层134可以通过位线刻蚀工艺自对准。
参见图12C,绝缘材料层180可以形成在整个衬底110上,且掩模图案184可以形成在绝缘材料层180上。绝缘材料层180可以通过沉积硅氧化物(例如,SiO2)形成。光致抗蚀剂提供在绝缘材料层180上以后,接着通过图案化光致抗蚀剂可以形成掩模图案184。掩模图案184可以以沿着垂直于硬掩模图案140的Y轴方向延伸的多条线的形式被提供。
参见图12D,金属镶嵌图案115可以使用掩模图案184作为掩模通过刻蚀工艺(沟槽刻蚀工艺)形成。多个条状绝缘层182和多个沟槽174可以通过利用沟槽刻蚀工艺选择性地去除绝缘材料层180而形成。绝缘层182覆盖位线堆叠150的一部分,并且沟槽174提供在绝缘层182之间以暴露位线堆叠150。沟槽174提供其中形成字线的区域。位线堆叠150在沟槽刻蚀工艺期间受硬掩模图案140保护。沟槽刻蚀工艺可以是干法刻蚀工艺,例如,反应离子刻蚀工艺。
参见图12E,电阻存储薄膜164可以形成在沟槽174中。例如,电阻存储薄膜164可以通过在沟槽174中沉积巨磁阻材料、高温超导材料、过渡金属氧化物或者硫族化物而形成。根据本发明的此示范性实施例,电阻存储薄膜164可以分成第一层164a和第二层164b。第一层164a以条状的形式提供为覆盖位线堆叠150,而第二层164b以垂直板的形式提供在绝缘层182的侧部处。
参见图12F和12G,字线172可以形成在沟槽174中。字线172可以提供为沿Y轴方向延伸的梳形。例如,沟槽174可以通过在衬底110上沉积导电材料(例如,金属或掺杂杂质的多晶硅)而被填充。可选择地,沉积在绝缘层182上的导电材料可以使用化学机械抛光(CMP)去除。作为另一个示例,选择元件薄膜可以进一步在形成字线172以前、形成电阻存储薄膜164以后在沟槽174中形成。通过以上描述的金属镶嵌工艺,可以实现图7A中所示的电阻随机存取存储器500。
第六制造示例
图13A到13G的截面图显示了根据本发明第六示范性实施例的制造电阻随机存取存储器的方法。本发明第六示范性实施例的制造方法相同且相似于参考图8A到8G所描述的本发明的第一示范性实施例。所以,相同的工艺将简要地描述或被省略且不同的工艺将详细描述。
参见图13A,提供有多个绝缘层122和124的绝缘层组120以及提供有多个导电层132和134的导电层组130可以以与参考图8A所描述的相同或相似的工艺形成在衬底上。多个绝缘层122和124以及多个导电层132和134可以选择地堆叠。沿X轴方向延伸的硬掩模图案140可以形成在导电层组130上。
参见图13B,导电层组130和绝缘层组120可以以与参考图8B所描述的相同或相似的工艺连续地被图案化,例如,通过利用硬掩模图案140作为掩模的位线刻蚀工艺(反应离子刻蚀工艺)被图案化。多个位线堆叠150可以以沿X轴方向延伸的阻挡或壁的形式被提供。第一绝缘层122、第一导电层132、第二绝缘层124以及第二导电层134可以通过位线刻蚀工艺自对准。
参见图13C,电阻存储薄膜160可以以与参考图8C所描述的相同或相似的工艺形成,例如,通过在衬底110上沉积电阻性存储材料以覆盖位线堆叠150而形成。电阻存储薄膜160可以通过化学气相沉积工艺尽可能均匀地覆盖位线堆叠150。可选择地,开关薄膜可以进一步形成在电阻存储薄膜160上。
参见图13D,绝缘材料层180可以形成在衬底110上,掩模图案184可以形成在绝缘材料层180上。绝缘材料层180可以通过沉积硅氧化物(例如,SiO2)形成。光致抗蚀剂提供在绝缘材料层180上以后,接着通过图案化光致抗蚀剂形成掩模图案184。掩模图案184可以以沿着垂直于硬掩模图案140的Y轴方向延伸的多条线的形式提供。
参见图13E,金属镶嵌图案115可以使用掩模图案184作为掩模通过刻蚀工艺(沟槽刻蚀工艺)形成。多个条状绝缘层182和多个沟槽174可以通过利用沟槽刻蚀工艺选择性地去除绝缘材料层180而形成。绝缘层182覆盖位线堆叠150的一部分,并且沟槽174提供在绝缘层182之间以暴露位线堆叠150。
参见图13F和13G,字线172可以形成在沟槽174中。字线172可以以沿Y轴方向延伸的梳状被提供。例如,沟槽174可以通过在衬底110上沉积导电材料(例如,金属或掺杂杂质的多晶硅)而被填充。可选择地,沉积在绝缘层182上的导电材料可以使用化学机械抛光(CMP)去除。通过以上描述的金属镶嵌工艺,可以实现图3A中所示的电阻随机存取存储器100。
可应用的示例
图15A的框图显示了包括根据本发明示范性实施例的电阻随机存取存储器的存储卡。
参见图15A,根据本发明各种示范性实施例的电阻随机存取存储器1210可以应用到存储卡1200。例如,存储卡1200包括用于总体上控制主机与电阻随机存取存储器1210之间的数据交换的存储控制器1220。SRAM 1221用作中央处理单元1222的操作存储器。主机接口1223具有连接到存储卡1200的主机的数据交换协议。纠错码1224探测且纠正从电阻随机存取存储器1210读取的数据中的错误。存储器接口1225连接电阻随机存取存储器1210。中央处理单元1222总体上执行用于存储控制器1220的交换数据的控制操作。
图15B的框图显示了适合根据本发明示范性实施例的电阻随机存取存储器的信息处理系统。
参见图15B,信息处理系统1300可以包括提供有根据本发明示范性实施例的电阻随机存取存储器的存储系统1310。信息处理系统1300包括移动设备或计算机。例如,信息处理系统1300进一步包括调制解调器1320、中央处理单元1330、RAM 1340以及用户接口1350,它们通过系统总线1360电连接到存储系统1310。存储系统1310可以存储中央处理单元1300处理后的数据或者外部输入的数据。信息处理系统1300可以提供为固态硬盘(SSD)、照相机图像传感器以及其它应用芯片组。例如,存储系统1310可以构造为固态硬盘。这时,信息处理系统1300可以稳定可靠地在存储系统1310中存储大量数据。
根据本发明,位线可以通过单一刻蚀工艺垂直堆叠,且与位线以直角交叉的梳状字线可以通过单一刻蚀工艺形成。结果,3D交叉点结构可以通过用于形成一个存储层所需的工艺步骤的数量而形成,从而实现利用简化的工艺的高密度多层存储阵列。此外,由于形成梳状字线,所以字线的数目可以减少,从而使连接到字线的解码器的数量减少。因此,可以简化工艺以及降低器件尺寸。
本发明可以不仅仅有益地用于制造半导体存储器的半导体工业,也可以有益地用于制造应用该半导体存储器的电子产品的制造工业。
尽管已经结合附图中示出的本发明的实施例描述了本发明总的发明构思,但是本发明不限于此。对于本领域技术人员而言显而易见的是,可以在不脱离本发明范围和精神的前提下,对其进行各种替代、修改和变化。
本申请要求于2009年1月13日提交的韩国专利申请10-2009-0002756的优先权,其所公开的内容以参考方式引用在此。

Claims (10)

1.一种制造可变电阻随机存取存储器的方法,包括:
在衬底上形成位线垂直堆叠;
在所述位线垂直堆叠的第一侧壁上形成第一字线;以及
在所述第一侧壁与所述第一字线之间形成可变电阻薄膜。
2.根据权利要求1所述的方法,其中形成所述位线垂直堆叠包括形成以交替的位线和绝缘层的顺序布置的位线和绝缘层的垂直堆叠。
3.根据权利要求1所述的方法,其中形成所述第一字线包括:
在所述位线垂直堆叠上沉积导电层;以及
图案化所述导电层以在所述第一侧壁上定义所述第一字线且在所述位线垂直堆叠的第二侧壁上定义第二字线。
4.根据权利要求1所述的方法,其中形成所述第一字线包括:
在所述位线垂直堆叠上沉积导电层;以及
图案化所述导电层以定义与所述位线垂直堆叠交叠的全局字线,且还定义在所述位线垂直堆叠的第二侧壁上的第二局部字线。
5.根据权利要求1所述的方法,其中形成所述位线垂直堆叠包括在所述衬底上的并排位置处形成第一位线垂直堆叠和第二位线垂直堆叠,并且其中形成所述第一字线包括在所述第一位线垂直堆叠的第一侧壁上以及在所述第二位线垂直堆叠的第一侧壁上形成第一字线。
6.根据权利要求5所述的方法,其中形成所述可变电阻薄膜包括在所述第一垂直堆叠的所述第一侧壁与所述第一字线之间以及在所述第二垂直堆叠的所述第一侧壁与所述第一字线之间形成所述可变电阻薄膜。
7.根据权利要求1所述的方法,还包括:
在所述可变电阻薄膜与所述第一字线之间形成开关薄膜。
8.一种可变电阻随机存取存储器,包括:
多个位线堆叠,在第一方向上跨越衬底平行延伸;
多个局部字线,在所述多个位线堆叠之间延伸;
全局字线,沿第二方向跨越所述多个位线堆叠延伸,所述第二方向垂直于所述第一方向,所述全局字线电连接到所述多个局部字线;以及
多个可变电阻薄膜区域,在相应的局部字线与所述多个位线堆叠的侧壁之间延伸,所述多个可变电阻薄膜区域的每个被构造为非易失性存储单元的可变电阻器。
9.一种电阻随机存取存储器,包括:
位线堆叠,在第一水平方向上延伸并且提供有垂直堆叠在衬底上的多个局部位线;
字线,提供有连接线和多个局部字线,所述多个局部字线垂直设置在所述位线堆叠的侧部处,所述连接线沿与所述第一水平方向交叉的第二水平方向延伸以将所述多个局部字线彼此连接;以及
电阻存储薄膜,提供在所述位线堆叠与所述字线之间。
10.根据权利要求9所述的电阻随机存取存储器,还包括在所述电阻存储薄膜与所述字线之间的开关薄膜。
CN201010161661A 2009-01-13 2010-01-13 电阻型随机存取存储器及其制造方法 Pending CN101840995A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2756/09 2009-01-13
KR1020090002756A KR101583717B1 (ko) 2009-01-13 2009-01-13 저항 메모리 장치의 제조방법

Publications (1)

Publication Number Publication Date
CN101840995A true CN101840995A (zh) 2010-09-22

Family

ID=42319357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010161661A Pending CN101840995A (zh) 2009-01-13 2010-01-13 电阻型随机存取存储器及其制造方法

Country Status (4)

Country Link
US (1) US8338224B2 (zh)
JP (1) JP5559549B2 (zh)
KR (1) KR101583717B1 (zh)
CN (1) CN101840995A (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522418A (zh) * 2011-12-29 2012-06-27 北京大学 具有交叉阵列结构的自整流阻变存储器及制备方法
CN102569649A (zh) * 2010-12-15 2012-07-11 海力士半导体有限公司 具有阻变器件的半导体器件
CN102969328A (zh) * 2012-12-06 2013-03-13 北京大学 阻变存储器交叉阵列结构及其制备方法
CN103314439A (zh) * 2011-01-20 2013-09-18 美光科技公司 非易失性存储器单元的阵列及形成非易失性存储器单元的阵列的方法
CN103390629A (zh) * 2013-07-15 2013-11-13 北京大学 阻变存储器及其操作方法和制造方法
CN104051331A (zh) * 2013-03-13 2014-09-17 旺宏电子股份有限公司 3d阵列的大马士革半导体装置及其形成方法
CN104112745A (zh) * 2013-04-19 2014-10-22 旺宏电子股份有限公司 三维半导体结构及其制造方法
CN104465989A (zh) * 2014-12-26 2015-03-25 中国科学院微电子研究所 三端原子开关器件及其制备方法
CN104485418A (zh) * 2014-12-26 2015-04-01 中国科学院微电子研究所 一种自选通阻变存储器单元及其制备方法
CN104810048A (zh) * 2014-01-28 2015-07-29 华邦电子股份有限公司 电阻式存储装置、电阻式存储装置的操作方法
CN104871313A (zh) * 2012-12-26 2015-08-26 索尼公司 存储装置和存储装置制造方法
US9257430B2 (en) 2008-06-18 2016-02-09 Micron Technology, Inc. Semiconductor construction forming methods
US9257648B2 (en) 2011-02-24 2016-02-09 Micron Technology, Inc. Memory cells, methods of forming memory cells, and methods of programming memory cells
US9343145B2 (en) 2008-01-15 2016-05-17 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US9343665B2 (en) 2008-07-02 2016-05-17 Micron Technology, Inc. Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
WO2016101247A1 (zh) * 2014-12-26 2016-06-30 中国科学院微电子研究所 三端原子开关器件及其制备方法
US9406878B2 (en) 2010-11-01 2016-08-02 Micron Technology, Inc. Resistive memory cells with two discrete layers of programmable material, methods of programming memory cells, and methods of forming memory cells
US9412421B2 (en) 2010-06-07 2016-08-09 Micron Technology, Inc. Memory arrays
WO2017124237A1 (zh) * 2016-01-18 2017-07-27 华为技术有限公司 内存设备及基于多层rram交叉阵列的数据处理方法
CN107615482A (zh) * 2015-06-10 2018-01-19 索尼半导体解决方案公司 存储设备和存储系统
CN109962161A (zh) * 2018-12-03 2019-07-02 复旦大学 基于内置非线性rram的3d垂直交叉阵列及其制备方法
CN110176471A (zh) * 2018-02-20 2019-08-27 爱思开海力士有限公司 交叉点阵列器件及其制造方法
US10608177B2 (en) 2014-12-26 2020-03-31 Institute of Microelectronics, Chinese Academy of Sciences Self-gated RRAM cell and method for manufacturing the same
CN111933797A (zh) * 2020-10-14 2020-11-13 长江先进存储产业创新中心有限责任公司 三维存储器

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034655B2 (en) 2008-04-08 2011-10-11 Micron Technology, Inc. Non-volatile resistive oxide memory cells, non-volatile resistive oxide memory arrays, and methods of forming non-volatile resistive oxide memory cells and memory arrays
US8211743B2 (en) 2008-05-02 2012-07-03 Micron Technology, Inc. Methods of forming non-volatile memory cells having multi-resistive state material between conductive electrodes
KR20100062570A (ko) * 2008-12-02 2010-06-10 삼성전자주식회사 저항성 메모리 소자
US8411477B2 (en) 2010-04-22 2013-04-02 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8427859B2 (en) 2010-04-22 2013-04-23 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
CN101976676A (zh) * 2010-09-13 2011-02-16 北京大学 一种三维结构非易失存储器阵列及其制备方法
US20120064682A1 (en) * 2010-09-14 2012-03-15 Jang Kyung-Tae Methods of Manufacturing Three-Dimensional Semiconductor Memory Devices
US8351242B2 (en) 2010-09-29 2013-01-08 Micron Technology, Inc. Electronic devices, memory devices and memory arrays
US8759809B2 (en) 2010-10-21 2014-06-24 Micron Technology, Inc. Integrated circuitry comprising nonvolatile memory cells having platelike electrode and ion conductive material layer
US8796661B2 (en) 2010-11-01 2014-08-05 Micron Technology, Inc. Nonvolatile memory cells and methods of forming nonvolatile memory cell
US9454997B2 (en) 2010-12-02 2016-09-27 Micron Technology, Inc. Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells
EP2731109B1 (en) * 2010-12-14 2016-09-07 SanDisk Technologies LLC Architecture for three dimensional non-volatile storage with vertical bit lines
US8431458B2 (en) 2010-12-27 2013-04-30 Micron Technology, Inc. Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells
US8537592B2 (en) 2011-04-15 2013-09-17 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
TWI426590B (zh) * 2011-06-23 2014-02-11 Winbond Electronics Corp 三維記憶體陣列
CN102522501A (zh) * 2011-12-29 2012-06-27 北京大学 具有交叉阵列结构的阻变存储器及制备方法
US9123714B2 (en) * 2012-02-16 2015-09-01 Sandisk Technologies Inc. Metal layer air gap formation
KR101957897B1 (ko) * 2012-04-26 2019-03-13 에스케이하이닉스 주식회사 가변 저항 메모리 장치 및 그 제조 방법
US9093369B2 (en) 2012-06-07 2015-07-28 Samsung Electronics Co., Ltd. Three-dimensional resistive random access memory devices, methods of operating the same, and methods of fabricating the same
KR101355622B1 (ko) * 2012-06-28 2014-01-27 인텔렉추얼디스커버리 주식회사 수직형 저항 변화 메모리 소자 및 그 제조방법
US20150162383A1 (en) * 2012-06-28 2015-06-11 Intellectual Discovery Co., Ltd. Vertical resistive random access memory device, and method for manufacturing same
US9018613B2 (en) 2012-08-14 2015-04-28 Kabushiki Kaisha Toshiba Semiconductor memory device with a memory cell block including a block film
US20140077149A1 (en) * 2012-09-14 2014-03-20 Industrial Technology Research Institute Resistance memory cell, resistance memory array and method of forming the same
JP6009971B2 (ja) 2012-11-16 2016-10-19 株式会社東芝 半導体記憶装置及びその製造方法
KR102021808B1 (ko) * 2012-12-04 2019-09-17 삼성전자주식회사 3차원 구조의 메모리 셀 어레이를 포함하는 불휘발성 메모리
US9230641B2 (en) 2013-03-15 2016-01-05 Rambus Inc. Fast read speed memory device
US11984163B2 (en) 2013-03-15 2024-05-14 Hefei Reliance Memory Limited Processing unit with fast read speed memory device
US9202566B2 (en) * 2013-04-05 2015-12-01 Sandisk 3D Llc Vertical cross point reram forming method
US9099648B2 (en) 2013-05-02 2015-08-04 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor memory device and semiconductor memory device
US9691981B2 (en) 2013-05-22 2017-06-27 Micron Technology, Inc. Memory cell structures
US9040952B2 (en) 2013-10-02 2015-05-26 SK Hynix Inc. Semiconductor device and method of fabricating the same
JP5700602B1 (ja) * 2014-02-05 2015-04-15 ウィンボンド エレクトロニクス コーポレーション 不揮発性半導体メモリ
US9455301B2 (en) 2014-05-20 2016-09-27 Sandisk Technologies Llc Setting channel voltages of adjustable resistance bit line structures using dummy word lines
CN104051623B (zh) * 2014-06-19 2016-09-14 中国科学院半导体研究所 多位高集成度垂直结构存储器的制备方法
KR102140788B1 (ko) 2014-07-18 2020-08-03 삼성전자주식회사 저항성 메모리 장치, 저항성 메모리 시스템 및 저항성 메모리 장치의 동작방법
KR102295966B1 (ko) * 2014-08-27 2021-09-01 삼성전자주식회사 나노와이어를 이용한 반도체 소자 형성 방법
WO2016048327A1 (en) * 2014-09-25 2016-03-31 Intel Corporation Rare earth metal & metal oxide electrode interfacing of oxide memory element in resistive random access memory cell
US10355205B2 (en) 2014-12-18 2019-07-16 Intel Corporation Resistive memory cells including localized filamentary channels, devices including the same, and methods of making the same
WO2016105407A1 (en) 2014-12-24 2016-06-30 Intel Corporation Resistive memory cells and precursors thereof, methods of making the same, and devices including the same
US9570516B2 (en) * 2015-01-28 2017-02-14 HGST, Inc. Method for forming PCM and RRAM 3-D memory cells
US9502642B2 (en) 2015-04-10 2016-11-22 Micron Technology, Inc. Magnetic tunnel junctions, methods used while forming magnetic tunnel junctions, and methods of forming magnetic tunnel junctions
US9530959B2 (en) 2015-04-15 2016-12-27 Micron Technology, Inc. Magnetic tunnel junctions
US9520553B2 (en) 2015-04-15 2016-12-13 Micron Technology, Inc. Methods of forming a magnetic electrode of a magnetic tunnel junction and methods of forming a magnetic tunnel junction
US9257136B1 (en) 2015-05-05 2016-02-09 Micron Technology, Inc. Magnetic tunnel junctions
US9960346B2 (en) 2015-05-07 2018-05-01 Micron Technology, Inc. Magnetic tunnel junctions
US9680089B1 (en) 2016-05-13 2017-06-13 Micron Technology, Inc. Magnetic tunnel junctions
US10490602B2 (en) 2017-09-21 2019-11-26 Micron Technology, Inc. Three dimensional memory arrays
US10529602B1 (en) 2018-11-13 2020-01-07 Applied Materials, Inc. Method and apparatus for substrate fabrication
US10903112B2 (en) 2018-10-18 2021-01-26 Applied Materials, Inc. Methods and apparatus for smoothing dynamic random access memory bit line metal
US11631680B2 (en) 2018-10-18 2023-04-18 Applied Materials, Inc. Methods and apparatus for smoothing dynamic random access memory bit line metal
KR102480013B1 (ko) * 2018-11-26 2022-12-22 삼성전자 주식회사 누설 전류를 보상하는 메모리 장치 및 이의 동작 방법
US10991761B2 (en) 2019-05-13 2021-04-27 Sandisk Technologies Llc Three-dimensional cross-point memory device containing inter-level connection structures and method of making the same
US10879313B2 (en) 2019-05-13 2020-12-29 Sandisk Technologies Llc Three-dimensional cross-point memory device containing inter-level connection structures and method of making the same
US11599299B2 (en) * 2019-11-19 2023-03-07 Invensas Llc 3D memory circuit
US11482571B2 (en) 2020-06-23 2022-10-25 Taiwan Semiconductor Manufacturing Company, Ltd. Memory array with asymmetric bit-line architecture
US11849655B2 (en) 2021-04-14 2023-12-19 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor memory devices with electrically isolated stacked bit lines and methods of manufacture

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2893594B2 (ja) * 1989-08-29 1999-05-24 カシオ計算機株式会社 半導体メモリ
KR100265763B1 (ko) * 1997-12-31 2000-09-15 윤종용 스태틱 랜덤 억세스 메모리 장치 및 그 제조방법
JP4403356B2 (ja) * 2002-10-29 2010-01-27 ソニー株式会社 半導体メモリ及びその製造方法
US20050230724A1 (en) 2004-04-16 2005-10-20 Sharp Laboratories Of America, Inc. 3D cross-point memory array with shared connections
US7812404B2 (en) 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
KR101309111B1 (ko) 2006-07-27 2013-09-17 삼성전자주식회사 폴리실리콘 패턴의 형성방법과 폴리실리콘 패턴을 포함한다층 교차점 저항성 메모리 소자 및 그의 제조방법
KR100881181B1 (ko) 2006-11-13 2009-02-05 삼성전자주식회사 반도체 메모리 소자 및 그 제조 방법
KR101196392B1 (ko) * 2006-11-28 2012-11-02 삼성전자주식회사 비휘발성 메모리 소자 및 그 제조 방법
JP2008192804A (ja) * 2007-02-05 2008-08-21 Spansion Llc 半導体装置およびその製造方法
JP2008277543A (ja) * 2007-04-27 2008-11-13 Toshiba Corp 不揮発性半導体記憶装置
KR20090055874A (ko) * 2007-11-29 2009-06-03 삼성전자주식회사 비휘발성 메모리 소자 및 그 제조 방법
TWI433302B (zh) * 2009-03-03 2014-04-01 Macronix Int Co Ltd 積體電路自對準三度空間記憶陣列及其製作方法

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10262734B2 (en) 2008-01-15 2019-04-16 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US11393530B2 (en) 2008-01-15 2022-07-19 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US9805792B2 (en) 2008-01-15 2017-10-31 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US10790020B2 (en) 2008-01-15 2020-09-29 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US9343145B2 (en) 2008-01-15 2016-05-17 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US9559301B2 (en) 2008-06-18 2017-01-31 Micron Technology, Inc. Methods of forming memory device constructions, methods of forming memory cells, and methods of forming semiconductor constructions
US9257430B2 (en) 2008-06-18 2016-02-09 Micron Technology, Inc. Semiconductor construction forming methods
US9666801B2 (en) 2008-07-02 2017-05-30 Micron Technology, Inc. Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
US9343665B2 (en) 2008-07-02 2016-05-17 Micron Technology, Inc. Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
US10746835B1 (en) 2010-06-07 2020-08-18 Micron Technology, Inc. Memory arrays
US9412421B2 (en) 2010-06-07 2016-08-09 Micron Technology, Inc. Memory arrays
US10241185B2 (en) 2010-06-07 2019-03-26 Micron Technology, Inc. Memory arrays
US10613184B2 (en) 2010-06-07 2020-04-07 Micron Technology, Inc. Memory arrays
US10656231B1 (en) 2010-06-07 2020-05-19 Micron Technology, Inc. Memory Arrays
US9887239B2 (en) 2010-06-07 2018-02-06 Micron Technology, Inc. Memory arrays
US9697873B2 (en) 2010-06-07 2017-07-04 Micron Technology, Inc. Memory arrays
US9989616B2 (en) 2010-06-07 2018-06-05 Micron Technology, Inc. Memory arrays
US10859661B2 (en) 2010-06-07 2020-12-08 Micron Technology, Inc. Memory arrays
US9406878B2 (en) 2010-11-01 2016-08-02 Micron Technology, Inc. Resistive memory cells with two discrete layers of programmable material, methods of programming memory cells, and methods of forming memory cells
CN102569649A (zh) * 2010-12-15 2012-07-11 海力士半导体有限公司 具有阻变器件的半导体器件
CN102569649B (zh) * 2010-12-15 2015-02-11 海力士半导体有限公司 具有阻变器件的半导体器件
CN103314439A (zh) * 2011-01-20 2013-09-18 美光科技公司 非易失性存储器单元的阵列及形成非易失性存储器单元的阵列的方法
CN103314439B (zh) * 2011-01-20 2016-10-12 美光科技公司 非易失性存储器单元的阵列及形成非易失性存储器单元的阵列的方法
US9257648B2 (en) 2011-02-24 2016-02-09 Micron Technology, Inc. Memory cells, methods of forming memory cells, and methods of programming memory cells
US9424920B2 (en) 2011-02-24 2016-08-23 Micron Technology, Inc. Memory cells, methods of forming memory cells, and methods of programming memory cells
CN102522418A (zh) * 2011-12-29 2012-06-27 北京大学 具有交叉阵列结构的自整流阻变存储器及制备方法
CN102969328A (zh) * 2012-12-06 2013-03-13 北京大学 阻变存储器交叉阵列结构及其制备方法
CN102969328B (zh) * 2012-12-06 2015-09-16 北京大学 阻变存储器交叉阵列结构及其制备方法
CN104871313A (zh) * 2012-12-26 2015-08-26 索尼公司 存储装置和存储装置制造方法
CN104051331A (zh) * 2013-03-13 2014-09-17 旺宏电子股份有限公司 3d阵列的大马士革半导体装置及其形成方法
CN104051331B (zh) * 2013-03-13 2016-10-19 旺宏电子股份有限公司 3d阵列的大马士革半导体装置及其形成方法
CN104112745A (zh) * 2013-04-19 2014-10-22 旺宏电子股份有限公司 三维半导体结构及其制造方法
CN103390629A (zh) * 2013-07-15 2013-11-13 北京大学 阻变存储器及其操作方法和制造方法
CN103390629B (zh) * 2013-07-15 2016-08-10 北京大学 阻变存储器及其操作方法和制造方法
CN104810048B (zh) * 2014-01-28 2018-07-10 华邦电子股份有限公司 电阻式存储装置、电阻式存储装置的操作方法
CN104810048A (zh) * 2014-01-28 2015-07-29 华邦电子股份有限公司 电阻式存储装置、电阻式存储装置的操作方法
WO2016101247A1 (zh) * 2014-12-26 2016-06-30 中国科学院微电子研究所 三端原子开关器件及其制备方法
US10297748B2 (en) 2014-12-26 2019-05-21 Institute of Microelectronics, Chinese Academy of Sciences Three-terminal atomic switching device and method of manufacturing the same
US10608177B2 (en) 2014-12-26 2020-03-31 Institute of Microelectronics, Chinese Academy of Sciences Self-gated RRAM cell and method for manufacturing the same
CN104485418A (zh) * 2014-12-26 2015-04-01 中国科学院微电子研究所 一种自选通阻变存储器单元及其制备方法
CN104465989A (zh) * 2014-12-26 2015-03-25 中国科学院微电子研究所 三端原子开关器件及其制备方法
CN104465989B (zh) * 2014-12-26 2017-02-22 中国科学院微电子研究所 三端原子开关器件及其制备方法
CN107615482A (zh) * 2015-06-10 2018-01-19 索尼半导体解决方案公司 存储设备和存储系统
US11049905B2 (en) 2015-06-10 2021-06-29 Sony Semiconductor Solutions Corporation Memory device and memory system
CN107615482B (zh) * 2015-06-10 2021-12-31 索尼半导体解决方案公司 存储设备和存储系统
US10459724B2 (en) 2016-01-18 2019-10-29 Huawei Technologies Co., Ltd. Memory device, and data processing method based on multi-layer RRAM crossbar array
WO2017124237A1 (zh) * 2016-01-18 2017-07-27 华为技术有限公司 内存设备及基于多层rram交叉阵列的数据处理方法
CN110176471A (zh) * 2018-02-20 2019-08-27 爱思开海力士有限公司 交叉点阵列器件及其制造方法
CN110176471B (zh) * 2018-02-20 2023-10-03 爱思开海力士有限公司 交叉点阵列器件及其制造方法
CN109962161A (zh) * 2018-12-03 2019-07-02 复旦大学 基于内置非线性rram的3d垂直交叉阵列及其制备方法
CN111933797B (zh) * 2020-10-14 2020-12-25 长江先进存储产业创新中心有限责任公司 三维存储器
CN111933797A (zh) * 2020-10-14 2020-11-13 长江先进存储产业创新中心有限责任公司 三维存储器

Also Published As

Publication number Publication date
KR101583717B1 (ko) 2016-01-11
JP5559549B2 (ja) 2014-07-23
JP2010166047A (ja) 2010-07-29
KR20100083402A (ko) 2010-07-22
US8338224B2 (en) 2012-12-25
US20100178729A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
CN101840995A (zh) 电阻型随机存取存储器及其制造方法
CN102971798B (zh) 具有含垂直位线和字线的有效解码的读/写元件的3d阵列的非易失性存储器
US8546861B2 (en) Resistance change memory device with three-dimensional structure, and device array, electronic product and manufacturing method therefor
US9444046B2 (en) Three dimensional memory array architecture
US8958228B2 (en) Non-volatile memory having 3D array of read/write elements with vertical bit lines and select devices and methods thereof
US9227456B2 (en) Memories with cylindrical read/write stacks
CN101807595B (zh) 3d半导体结构及其制造方法
JP4377751B2 (ja) クロスポイント構造の半導体記憶装置及びその製造方法
US9443910B1 (en) Silicided bit line for reversible-resistivity memory
KR20190004163A (ko) 가변 저항 메모리 소자 및 그 제조방법
CN102074650A (zh) 非易失性存储器器件以及其制造方法和操作方法
US9595564B1 (en) Semiconductor memory device and method of manufacturing the same
CN107359164A (zh) 存储器结构及其制造方法
CN104241521B (zh) 存储阵列及其操作方法和制造方法
KR101088487B1 (ko) 선택소자 및 3차원 구조 저항 변화 메모리 소자를 갖는 저항 변화 메모리 소자 어레이, 전자제품 및 소자 어레이 제조방법
KR100993052B1 (ko) 3차원 구조를 갖는 저항 변화 메모리 소자, 저항 변화 메모리 소자 어레이, 전자제품 및 상기 소자 제조방법
JP2023067794A (ja) 半導体装置
CN112689894A (zh) 非易失性半导体存储装置及其制造方法
CN111799295B (zh) 电子设备及其制造方法
KR20240019963A (ko) 반도체 장치 및 그 제조 방법
CN116266573A (zh) 半导体装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100922