CN100483612C - 用于制造垂直结构的复合半导体器件的方法 - Google Patents
用于制造垂直结构的复合半导体器件的方法 Download PDFInfo
- Publication number
- CN100483612C CN100483612C CNB2004800186202A CN200480018620A CN100483612C CN 100483612 C CN100483612 C CN 100483612C CN B2004800186202 A CNB2004800186202 A CN B2004800186202A CN 200480018620 A CN200480018620 A CN 200480018620A CN 100483612 C CN100483612 C CN 100483612C
- Authority
- CN
- China
- Prior art keywords
- resilient coating
- crystalline substrates
- opto
- gan
- electronic device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 239000004065 semiconductor Substances 0.000 title description 9
- 150000001875 compounds Chemical class 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 101
- 238000000034 method Methods 0.000 claims abstract description 80
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 65
- 239000010980 sapphire Substances 0.000 claims abstract description 65
- 229910052751 metal Inorganic materials 0.000 claims abstract description 60
- 239000002184 metal Substances 0.000 claims abstract description 60
- 230000008569 process Effects 0.000 claims abstract description 45
- 238000007747 plating Methods 0.000 claims abstract description 34
- 238000007772 electroless plating Methods 0.000 claims abstract description 12
- 238000009713 electroplating Methods 0.000 claims abstract description 7
- 230000005693 optoelectronics Effects 0.000 claims abstract 51
- 239000010410 layer Substances 0.000 claims description 97
- 238000000576 coating method Methods 0.000 claims description 85
- 239000011248 coating agent Substances 0.000 claims description 80
- 238000013517 stratification Methods 0.000 claims description 53
- 238000000151 deposition Methods 0.000 claims description 29
- 230000008021 deposition Effects 0.000 claims description 28
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 24
- 229910002704 AlGaN Inorganic materials 0.000 claims description 17
- 229920001651 Cyanoacrylate Polymers 0.000 claims description 17
- 239000004830 Super Glue Substances 0.000 claims description 17
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 17
- 230000035939 shock Effects 0.000 claims description 17
- 239000012790 adhesive layer Substances 0.000 claims description 16
- 239000000853 adhesive Substances 0.000 claims description 15
- 230000001070 adhesive effect Effects 0.000 claims description 15
- 238000009792 diffusion process Methods 0.000 claims description 11
- 238000004528 spin coating Methods 0.000 claims description 11
- 238000001020 plasma etching Methods 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 238000005498 polishing Methods 0.000 claims description 8
- 238000009825 accumulation Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 5
- 238000005566 electron beam evaporation Methods 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims 6
- 150000002500 ions Chemical class 0.000 claims 6
- 229910052742 iron Inorganic materials 0.000 claims 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims 2
- 230000003647 oxidation Effects 0.000 claims 2
- 238000007254 oxidation reaction Methods 0.000 claims 2
- 239000010949 copper Substances 0.000 abstract description 13
- 230000008901 benefit Effects 0.000 abstract description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 239000013078 crystal Substances 0.000 abstract 2
- 239000010408 film Substances 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 13
- 239000010931 gold Substances 0.000 description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 239000003822 epoxy resin Substances 0.000 description 7
- 229920000647 polyepoxide Polymers 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 238000011031 large-scale manufacturing process Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 238000002310 reflectometry Methods 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 238000005422 blasting Methods 0.000 description 3
- 238000000407 epitaxy Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- 229910052755 nonmetal Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000013532 laser treatment Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 240000004859 Gamochaeta purpurea Species 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- MUJOIMFVNIBMKC-UHFFFAOYSA-N fludioxonil Chemical compound C=12OC(F)(F)OC2=CC=CC=1C1=CNC=C1C#N MUJOIMFVNIBMKC-UHFFFAOYSA-N 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/12—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0095—Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
- H01L33/405—Reflective materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
- H01L33/42—Transparent materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/956—Making multiple wavelength emissive device
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
- Electrodes Of Semiconductors (AREA)
- Recrystallisation Techniques (AREA)
- Semiconductor Lasers (AREA)
Abstract
一种用于制造垂直结构的光电子器件的方法,包括:在晶体衬底上制造多个垂直结构的光电子器件,然后使用激光剥离处理去除衬底。该方法然后制造金属支承结构代替衬底。在一方面中,制造金属支承结构代替衬底包括以下步骤:使用电镀和无电镀中的至少一种来电镀金属支承结构。在一方面中,垂直结构是GaN-基垂直结构,晶体衬底包括蓝宝石,并且金属支承结构包括铜。本发明的优点包括制造适于大规模生产的高可靠性和高成品率的垂直结构的LED。
Description
技术领域
本发明涉及制造具有顶部和底部接触结构的垂直结构的复合半导体器件。
背景技术
传统地,使用绝缘蓝宝石衬底制造包括发光二极管(LED)、激光二极管(LD)、异质结双极晶体管(HBT)、高电子活动度晶体管(HEMT)的大多数GaN-基半导体器件。结果,由于必须形成顶部n-接触物以与顶部p-接触物形成电连接,因此用绝缘衬底构成的器件结构典型地被构造成横向结构(lateral structure)。
这种结构引起了多个器件性能问题,例如电流拥挤(currentcrowding)和对静电放电(ESD)的弱阻抗。当需要高电流注入用于使用高功率白色LED或者蓝色/UV LD的发光应用时,电流拥挤会变得很严重。由于在此类器件中电子被限制在n-型电极附近,因此光电器件中的光子生成相对于增加的电流注入受到限制。换句话说,功率效率受损。这是当前在市场上可用的横向器件的一个严重缺陷。
ESD问题被认为是一个严重问题,尤其是当GaN-基LED被用于高电压环境中(比如,用于汽车应用)时。一旦在器件表面发生静电放电,则横向器件经受电荷堆积,这经常导致器件在非常短的期间内失效,这是因为由于绝缘衬底而在器件中没有放电路径。
具有绝缘衬底(例如蓝宝石)的横向器件的另一个严重缺点是不良的热消散。众所周知,蓝宝石是不良的热导体。因此,当器件经历高电流注入模式时,器件寿命大大缩短。这两个缺点是GaN-基LED和LD以及蓝色/UV LD进一步发展的主要障碍。
从产品成品率(production yield)的观点出发,横向结构器件也有很多缺点。如图1所示,因为p电极和n电极均放置在同一个平面中,因此用横向结构构造的器件需要大器件尺寸。因此,器件数量由于横向器件需要的晶片基板面(real estate)的数量而受到限制。
除了上面提出的问题,众所周知,蓝宝石衬底材料是第二硬的材料,仅次于金刚石。这在晶片研磨和抛光过程中产生困难。此外,还难以从晶片分离器件。因此,即使直到前面的制造过程还可以期待高器件产出率,但最终的器件制造产量主要依赖于包括研磨(lapping,搭接)、抛光、以及管芯分离的后续制造过程。
如图2所示,近来,垂直结构的GaN-基复合半导体已经有了新的发展。已经引入激光剥离处理以从GaN外延层去除蓝宝石衬底。一些技术已经用导电或半导电第二衬底来代替绝缘蓝宝石衬底,以使用具有对蓝宝石透明的波长(典型的在UV范围内)的准分子激光器来制造垂直结构的器件。应当注意,在通过激光剥离去除蓝宝石衬底后,大多数其它技术利用晶片粘合技术以永久粘合到第二衬底。
然而,这些技术还没有产生用于VLED(垂直LED)的大规模生产的实用晶片级激光剥离处理。两个主要原因是由于支承晶片和外延层之间的粘合层(bonding adhesive layer)的分层引起的大面积激光剥离的困难。另一个问题是,由于在激光剥离后整个晶片表面的外延层表面不平,因此存在外延层和永久第二衬底之间的晶片粘合的困难。由于这些原因,激光剥离后的最终成品率受到极大阻碍,结果,根据其它技术只有小部分的晶片被制造用于垂直结构器件。
已经做出其他努力以克服制造VLED的晶片粘合问题。代替使用晶片粘合方法,图3中示出的一种其它技术附加了金属支承物。然而,众所周知,由于粘结层(bonding layer)和支承结构分层,因此激光剥离成品率非常低。如果粘合不是足够的牢固以经得起高能激光冲击波,则在激光剥离后,GaN外延层可能弯曲或破裂。一旦GaN外延层存在弯曲或破裂,则难以执行诸如清洗、脱胶、和器件分离的后续激光剥离处理。因此,即使其它加工成品率可以保持非常高,但是最终器件加工成品率却变得非常低。这些问题主要归因于使用的临时晶片粘合技术和非优化的激光处理技术。
如图3所示,基于另一种技术的传统垂直器件的另一个问题是不良的器件性能。由于经常在蓝宝石衬底上使用喷砂处理(sandblasting)来产生均匀的激光束能量分布,因此GaN表面在激光剥离后非常粗糙,这导致器件的不良反射率。另外,形成在n-GaN层上的金属反射层达不到非金属反射材料(例如ITO)的高度。
因此,需要一种用于制造垂直结构的复合半导体器件的方法,其能够提供可靠和可重复的激光剥离处理同时获得高器件性能,以将激光剥离处理应用于垂直结构的器件的制造。
发明内容
本发明提供了一种用于制造新型垂直结构的复合半导体器件的改进的技术,其使用改进的激光剥离处理用于GaN-基复合半导体器件的大规模生产。本发明的一个方面采用双粘合处理用于临时粘接到支承晶片,并且除使用具有一定外延厚度晶片的GaN初始缓冲层之外,还使用AlGaN缓冲层,以确保可靠和可重复的激光剥离处理。
在一个实施例中,本发明描述了一种制造方法,用于通过优化激光剥离处理和金属化处理来构造垂直结构的复合半导体用于大规模生产。第一,为了防止在激光剥离期间聚合体-基粘合剂的热损伤,除了传统的GaN或者AlN缓冲层之外,还使用充当扩散阻挡物(diffusion barrier)的AlGaN缓冲层和厚GaN外延层(>5μm)。第二,使用双粘合技术,以减少由高能激光冲击波引起的损伤,并有助于使脱胶处理变得容易。第三,在GaN外延层和厚金属支承层之间设置铟锡氧化物(ITO)薄膜,以获得垂直器件的高效率的光性能和电性能。最后,使用分级的Cu合金-基厚金属支承层,以获得垂直器件的良好的机械支承、高电导率、以及良好的热消散。
本发明的优点包括制造适于大规模生产的高可靠性和高成品率的垂直结构的LED。本发明在激光剥离处理之前使用双粘合处理,以使外延层和支承晶片在激光剥离后易于分离,并使用AlGaN阻尼层预防激光束的高能冲击波。该附加缓冲层减少了由照射在薄外延薄膜上的高能激光束引起的破裂的产生。
附图说明
参考以下的附图对本发明进行描述,其中:
图1示出传统横向结构的GaN-基LED,其中,两个金属接触物形成在器件的顶部;
图2是根据另一传统技术的垂直结构的GaN-基LED,其中,在去除原始蓝宝石衬底后,使用金属粘结层将GaN薄膜粘合到第二衬底(诸如Si、GaAs等)上;
图3是根据另一传统技术的垂直结构的GaN-基LED,其中,在去除原始蓝宝石衬底后,将厚金属层沉积到GaN薄膜上代替晶片粘合;
图4是根据本发明的垂直结构的GaN-基LED,其中,AlGaN第二缓冲层被添加到初始GaN/AlN缓冲层和中间Au层,并且在去除原始蓝宝石衬底后,将厚铜合金层沉积到ITO(铟锡氧化物)接触层;
图5示出在激光剥离之前,使用胶/环氧树脂双粘附层附着到蓝宝石支承晶片上的GaN-LED晶片;
图6示出使用扩散板穿过蓝宝石衬底的激光;
图7示出在激光剥离后去除蓝宝石衬底;
图8示出去除Ga滴和清洗表面,以及形成透明ITO反射层/接触层;
图9示出在ITO接触层上沉积Au中间层和厚铜合金金属支承层;
图10示出脱胶粘附胶/环氧树脂层以及去除蓝宝石支承物;
图11示出通过化学或者激光划片进行器件分离;以及
图12示出根据本发明的实施例的最终垂直器件结构。
具体实施方式
根据特定方法、技术、器件结构、和实施例对本发明进行描述。本领域内的技术人员将会发现,该描述用于说明以及提供实施本发明的最好的模式。此外,参数、厚度、温度等被提供用于描述用于实施本发明的最好的模式,并不用于限制本发明。
图4至图12示出根据本发明的使用激光剥离处理制造垂直结构的GaN-基LED 100的过程。本实施例使用激光剥离处理来去除原始衬底,然后使用金属沉积处理,以形成金属衬底用于机械支承和电传导。本发明中描述的制造方法不限于LED,而是能够扩展到包括生长在绝缘衬底的GaN-基外延薄膜的任何器件结构,例如,激光二极管(LD)、异质结双极晶体管(HBT)、高电子活动晶体管(HEMT)。这些应用是示例性的,因为还可以进一步理解,本发明能够应用于另外的或其它的材料。
如图5所示,GaN-基LED结构150A-150F生长在带有适当外延生长设备(诸如金属有机化学气相沉积(MOCBVD)、分子束外延(MBE)、或者气相外延(VPE)等)的蓝宝石晶片200上。与其中单层GaN或者AlN是公用缓冲层的传统技术相反,除了GaN或AlN缓冲层116之外,本发明还使用AlGaN缓冲层114。AlGaN层114用于创建热障(thermal barrier)。在激光剥离处理期间,在GaN外延层和粘合层之间交界处,温度可增加到250C。因此,由于热积累,在激光剥离期间,聚合体-基粘附层很可能会损坏GaN外延层并且与其反应,这使得难以在脱胶处理期间去除热损坏的粘合剂。本发明使用AlGaN有助于减少粘合剂损坏,因此提高器件产品成品率。另外,将总外延层的厚度设置到一定厚度,以防止在GaN/粘合剂交界处温度升高。有利地,为了将界面温度维持在200C以下,将外延层厚度选择为大于5μm。为了实现此目标,n-GaN层生长超过4μm厚。可以理解其它的厚度和温度变化。
外延生长之后,制造处理包括在GaN外延层上执行金属化和钝化层形成,以形成金属接触件并提供保护层。特别地,如图5所示,从GaN LED层通过蓝宝石衬底形成沟道160。以这种方式设计沟道,以减轻在激光剥离期间GaN外延层116和蓝宝石衬底200之间的压缩应力,这样,使得GaN外延层在激光剥离期间的破裂或弯曲最小化。沟道尺寸被设计成同激光束光斑大小(比如7×7mm)一样,以减轻在激光剥离处理期间产生的冲击波。沟道有利地窄于约100μm宽,并以小于2μm延伸到蓝宝石衬底中。沟道有利地使用反应离子刻蚀来形成,优选地是Ar和Cl2或BCl3气体混合物的感耦等离子体反应离子刻蚀(ICP RIE)。在完成制造处理后,蓝宝石衬底的背面在激光剥离前被研磨和抛光,以获得平滑的表面。
再次参见图5,为了在通过激光剥离去除蓝宝石衬底之后保持非常薄的GaN外延薄膜,完全处理过的具有蓝宝石衬底200的GaN-基LED晶片被粘合到临时的支承晶片。在本发明中,使用胶220和环氧树脂230的两层临时粘结剂。使用双粘合技术有两个原因。第一个原因是,减少由高能激光束的冲击波产生的损害。如果粘合很薄或者很弱,则在激光剥离后GaN外延层经常由于激光束冲击波而产生大量的破裂和弯曲外延层,这极大地降低了激光剥离处理成品率。第二个原因是,通过使用具有溶剂可溶的超级胶的第一粘结层和具有高粘结强度和较高冲击波阻抗的第二层,有助于使脱胶处理变得较容易。因为超级胶对冲击波具有弱粘结强度和阻抗,因此将SU-8 5环氧树脂涂于第一超级胶粘结层。由于同超级胶相比,Su-8对冲击波具有更高的粘结强度和更大的阻抗,因此Su-8一旦被完全固化则难以将其去除。
通过使用多重旋转的旋涂(spin coating)来涂超级胶层,以使超级胶层的厚度维持在约30μm的厚度。在超级胶粘合后,使用旋涂以厚于约20微米的厚度在超级胶层顶部涂SU-8 5。用UV灯通过蓝宝石支承晶片210来固化SU-8 5。由于SU-8 5由UV光固化,因此使用UV光透明的蓝宝石支承物对固化SU-8 5环氧树脂是有用的。提供临时晶片粘合的如下详细处理步骤用于阐明最好的模式。
超级胶粘合处理(在GaN/蓝宝石晶片200上);
1.将GaN/蓝宝石晶片浸泡在丙酮中,然后浸泡在异丙醇中,用N2吹干。
2.将GaN/蓝宝石晶片浸泡在DI(去离子的)H2O中,用N2吹干。
3.涂超级胶到晶片中心的约1/3到1/2处。
4.加速旋转涂布机到2000rmp(1~2秒)并立即减速到零。
5.检查完全覆盖;如果没有被完全覆盖,则用超级胶填充空区域并重复步骤4。
6.一旦晶片被超级胶完全覆盖,加速到2000rpm并保持30秒。
7.减速到零并停止。
8.内层固化2分钟。
9.重复步骤3到9以获得5个涂层。
10.在建议时间内固化超级胶(过夜固化)。
SU-8 5粘合处理(在蓝宝石支承晶片210上);
1.将蓝宝石支承晶片浸泡在丙酮中,然后浸泡在异丙醇中,然后浸泡在DI H2O中,用N2吹干
2.脱水烘干蓝宝石支承晶片和涂布有超级胶的GaN/蓝宝石晶片
2.1 用热盘在120C加热支承晶片10分钟
2.2 从热盘移开,并冷却2分钟
3.用注射器注射SU-8 5到蓝宝石支承晶片(抛光面)或者GaN/蓝宝石晶片(超级胶面)
4.在SU-8 5滴的上部放置其它晶片,并允许自然地散布环氧树脂
5.用镊子施加缓和的压力;过量SU-8 5从周围挤出,其随后可以用刀片或者晶片切边器很容易地去除
6.软烘干以去除溶剂:
6.1.对于1/4晶片(在热盘上)
6.1.1. 70C—2.5分钟
6.1.2. 90C—5分钟
6.1.3. 70C—2分钟
6.1.4. 在洁净的表面上冷却
6.2 对于1/2到整个晶片(在热盘上)
6.2.1. 70C—2.5分钟
6.2.2. 90C—10分钟
6.2.3. 70C—2分钟
6.2.4.在洁净的表面上冷却
7. UV曝光:
7.1 使用均匀的UV源(诸如光刻机的UV灯)
7.1.1. 强度:在没有蓝宝石支承晶片的SU8 5上为7~7.5mW/cm2。
7.1.2. 强度:在未抛光的蓝宝石支承晶片上为5.0mW/cm2。
7.2. 15μm厚的薄膜需要约200mJ/cm2剂量(在此强度为40秒)
7.3. 在薄膜较厚的情况下曝光120秒(或20分钟的最大值曝光)
8.硬烘干,用于增加SU8 5和超级胶之间的交联:
8.1.1. 70C—1分钟
8.1.2. 90C—2分钟
8.1.3. 在清洁的表面上冷却
参见图6,使用248nm的KrF紫外线(UV)准分子激光器用于激光剥离。该示例性激光器的脉冲持续时间是38ns。选择此波长的原因在于,为了在GaN/蓝宝石界面处将GaN分解成金属Ga和气体氮(N2),激光应该能够传输穿过蓝宝石,并在GaN外延层中被吸收。选择具有7×7mm方束的激光束,并且光束功率密度在600~1,200mJ/cm2之间。还发现所需的激光束能量密度强烈地依赖于蓝宝石衬底表面的表面粗糙度。为了在激光剥离后获得光滑的GaN表面,使用高于800mJ/cm2的光束能量。可以理解,可以改变这些参数以获得好的结果。
基于上述的经验,发现蓝宝石衬底的表面粗糙度是用于在激光剥离后获得光滑的GaN表面的一个重要过程参数。如果在激光剥离期间使用未抛光的蓝宝石表面,则GaN表面非常粗糙,这导致在形成最终器件后由于粗糙表面的不良反射率引起的LED器件的不良光输出。然而,如果使用抛光表面,则能够获得非常光滑的GaN表面,因此能获得较高的光输出。然而,由于激光束局部的在抛光的蓝宝石表面上,则同具有较小的激光束能量的区域相比,用较高的激光束能量照射的区域通常导致在GaN表面的破裂。因此,为了获得高产量的激光剥离处理并同时获得高器件性能,选择蓝宝石晶片的最佳表面粗糙度是重要的。根据传统的技术,喷砂处理通常用于在抛光的蓝宝石表面获得均匀激光束分布,然而,喷砂处理非常不可靠并且不可重复以每次获得相同的表面粗糙度。本发明中,在激光束和蓝宝石衬底之间放置用对248nm的UV激光透明的材料制成的扩射板,以在蓝宝石表面获得均匀激光束功率分布,从而提高激光剥离处理产量。扩射板的表面粗糙度rms(均方根)优选地设置为小于30μm,并且使用蓝宝石用于扩射体。
如图7所示,激光剥离后,在激光剥离期间由GaN分解产生的过量Ga滴用HCl溶液(HCl:H2O=1:1,室温)或者煮沸的HCl蒸汽清洗30秒。由于Ga在室温融化,因此Ga在激光剥离期间以液态形成,并且能够容易地用酸溶液清洗掉。用酸清洗过的GaN表面进一步用干刻蚀清洁,有利地使用感耦反应离子刻蚀(ICP RIE)。为了制造原子平坦表面,还对剥离的n-GaN表面执行ICP抛光。由于使用如图8所示的较高反射表面可增加光输出,因此平坦表面对于产生随后被沉积的反射结构的高反射率是重要的。
对于增加光提取和改善垂直结构器件的电气性能而言,获得良好的光学反射率和电接触特性是重要的。为了满足这些需要,优选地使用ITO(铟锡氧化物)薄膜用于图8所示的n-接触层和反射层。即使ITO是透明的非金属接触物,其能够形成到n-GaN的良好n-型接触,这可以与用于其它技术的Ti/Al相提并论。此外,ITO薄膜的高反射率用于形成垂直结构的反射器是理想的。众所周知,ITO的反射率超过90%,而传统技术使用的金属薄膜的最好反射率已知最大的是60~70%。使用电子束蒸发在清洁的n-GaN表面沉积透明的导电和反射ITO薄膜。ITO薄膜厚度选择在75~150nm范围内,以获得最佳反射率。
为了制造具有带有厚、软金属薄膜支承层(~100μm)的薄、硬GaN外延层(小于10μm)的垂直结构的器件,如图9所示,在两层之间形成中间层120以减少可能积累在GaN外延层150和金属层122-126之间的交界处的压缩应力是重要的。设置中间层120的另一个原因是,金属中间层比直接对非金属ITO表面执行电镀产生更好的电镀特性。在不从真空室去除晶片的情况下,使用电子束蒸发器将大约1-μm厚的金(Au)薄膜120连续地沉积到ITO表面118上。在原位置的连续层沉积对防止污染是有用的,其对在ITO和Au层之间形成良好的薄膜粘附是重要的。为了进一步改善ITO和Au之间的粘附,在ITO和Au层之间沉积30~50nm厚的Cr粘附层。
在图9中,通过电镀或无电镀(electroless plating,也称化学镀)沉积厚金属支承层120-126。使用电镀或者无电镀,这是因为同传统的沉积方法相比,其是一种快速和廉价的沉积技术。在成本效率方面,这对于垂直结构的器件的大规模生产是重要的。支承层的主要功能在于,支承层120-126不仅为薄GaN外延层提供良好的刚性机械支承,而且还提供良好的电传导和热消散。为了满足这些需要,在Au/Cr粘附层上沉积分级的Cu合金层。
在Cu合金层之前沉积第一Au缓冲层120。Au层120能够通过诸如真空蒸发等技术来形成。沉积Au层120以提高现有层和Cu合金层之间的粘附度。电镀初始的硫酸盐-基软铜层,以逐渐软化由于厚金属层引起的应力积累。将初始的软Cu合金层厚度设置到~10μm。将镀覆速率设置到3~5μm/小时,以形成密集和均匀的Cu镀层。靠近软Cu层122电镀硬Cu层124以提供结构刚度。硬Cu镀的镀覆速率高达20μm/小时。对于Cu合金镀来说,含有锡(Sn)和铁(Fe)的金属合金的镀溶液和Cu硫酸盐溶液混合,以提高Cu支承层的机械强度和电导率。Cu合金支承层的总厚度是70~90μm(图9)。在Cu合金镀结束时,电镀了0.5~1μm厚的Au层,以防止Cu合金层被氧化。在用于封装垂直器件的芯片粘合处理和引线接合处理期间,Au保护层126对于在单个芯片和金属-基环氧树脂之间获得良好的粘附是重要的。
厚金属沉积之后,使用溶剂从GaN/金属支承晶片将蓝宝石支承晶片210去除,并且结果在图10示出。此脱胶处理包括以下步骤:将GaN/金属晶片浸泡在丙酮中3~5小时,以从支承蓝宝石晶片溶解超级胶层。为了使得脱胶处理容易和快速,积累在蓝宝石晶片边缘的过量金属用机械方法修整,比如修边器或者刀片。还可以使用化学处理。通过去除过量金属,溶剂能够更容易的渗透到超级胶层内部并加速脱胶处理。分离的GaN/金属晶片在超声波清洁器中被进一步浸泡并用异丙醇清洗。使用冲洗和干燥剂用DI水进一步清洗GaN器件表面。
如图11所示,图10的晶片被支承在薄膜410上,单个器件通过划线片切成小方块,这可以使用化学或者激光处理来执行。图12示出根据本发明的实施例的最终垂直器件结构。结果是相对于其它传统制造技术具有高产量的高质量激光二极管。
本发明的优点包括制造适于大规模生产的具有高可靠性和高产量的垂直结构的LED。本发明在激光剥离处理之前使用双粘合处理,以便在激光剥离后容易分离外延层和支承晶片,并使用AlGaN阻尼层来预防激光束的高能冲击波。这个附加的缓冲层减少了由照射薄外延薄膜的高能激光束引起的破裂的产生。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。
Claims (34)
1.一种制造垂直结构的光电子器件的方法,包括以下步骤:
在晶体衬底上制造多个垂直结构的光电子器件;
使用激光剥离处理去除所述晶体衬底;以及
制造金属支承结构代替所述晶体衬底,其中,所述制造金属支承结构代替所述晶体衬底的步骤包括以下步骤:
沉积形成n-接触层的铟锡氧化物层,
在所述铟锡氧化物层上沉积Au缓冲层,
使用电镀和无电镀中的至少一种在所述Au缓冲层上镀Cu层,其中,所述垂直结构光电子器件是GaN-基垂直结构,所述晶体衬底包括蓝宝石,并且其中,所述GaN-基垂直结构包括缓冲层,所述缓冲层除了包括GaN缓冲层或AlN缓冲层,还包括AlGaN缓冲层,以提供热扩散阻挡物来保护聚合体-基粘合层,以及
其中,根据如下规则通过所述晶体衬底从所述GaN缓冲层形成沟道:
a)沟道尺寸大致类似于激光束光斑尺寸,以在激光剥离处理期间减轻冲击波,
b)所述沟道窄于大约100微米宽,并延伸到所述晶体衬底中不深于约3微米,以及
c)使用反应离子刻蚀来形成所述沟道。
2.一种制造垂直结构的光电子器件的方法,包括以下步骤:
在晶体衬底上制造多个垂直结构的光电子器件;
使用激光剥离处理去除所述晶体衬底;以及
制造金属支承结构代替所述晶体衬底,其中,所述制造金属支承结构代替所述晶体衬底的步骤包括以下步骤:
沉积形成n-接触层的铟锡氧化物层,
在所述铟锡氧化物层上沉积Au缓冲层,
使用电镀和无电镀中的至少一种在所述Au缓冲层上镀Cu层,其中,所述垂直结构光电子器件是GaN-基垂直结构,所述晶体衬底包括蓝宝石,并且其中,所述GaN-基垂直结构包括缓冲层,所述缓冲层除了包括GaN缓冲层或AlN缓冲层,还包括AlGaN缓冲层,以提供热扩散阻挡物来保护聚合体-基粘合层,以及
为了减轻冲击波并易于在激光剥离处理后的脱胶处理期间的分层,根据以下步骤对使用聚合体-基粘合剂的粘合层进行双涂布,其中,所述聚合体-基粘合剂包括GaN外延层和支承晶片之间的超级胶和可曝光的聚合体:
a)使用旋涂来涂超级胶层,
b)所述超级胶层的厚度为大约30微米厚,
c)同样使用旋涂以厚于20微米的厚度涂所述可曝光的聚合体,
d)用UV灯固化所述可曝光的聚合体,以及
e)使用UV灯透明蓝宝石支承物来固化所述可曝光的聚合体。
3.一种制造垂直结构的光电子器件的方法,包括以下步骤:
在晶体衬底上制造多个垂直结构的光电子器件;
使用激光剥离处理去除所述晶体衬底;以及
制造金属支承结构代替所述晶体衬底,其中,所述制造金属支承结构代替所述晶体衬底的步骤包括以下步骤:
沉积形成n-接触层的铟锡氧化物层,
在所述铟锡氧化物层上沉积Au缓冲层,
使用电镀和无电镀中的至少一种在所述Au缓冲层上镀Cu层,其中,所述垂直结构光电子器件是GaN-基垂直结构,所述晶体衬底包括蓝宝石,以及
在激光束和所述晶体衬底之间使用由对于所述激光束透明的材料制成的扩散板,以获得均匀的激光束功率分布。
4.一种制造垂直结构的光电子器件的方法,包括以下步骤:
在晶体衬底上制造多个垂直结构的光电子器件;
使用激光剥离处理去除所述晶体衬底;以及
制造金属支承结构代替所述晶体衬底,其中,所述制造金属支承结构代替所述晶体衬底的步骤包括以下步骤:
沉积形成n-接触层的铟锡氧化物层,
在所述铟锡氧化物层上沉积Au缓冲层,
使用电镀和无电镀中的至少一种在所述Au缓冲层上镀Cu层,其中,所述垂直结构光电子器件是GaN-基垂直结构,所述晶体衬底包括蓝宝石,以及
沉积Cu合金层,以逐渐软化由于厚金属层积累的应力,其中,初始Cu合金层的厚度设置到~10μm,并且其中,镀覆速率设置到3~5μm/小时。
5.根据权利要求4所述的方法,进一步包括以下步骤:沉积Cu层以提供结构刚度,其中,Cu镀的镀覆速率高达20μm/小时,其中,对于所述Cu合金镀,包含锡和铁的金属合金电镀溶液与Cu硫酸盐溶液混合,以提高Cu合金支承层的机械强度和导电率,其中,所述Cu合金支承层的总厚度是70~90μm,并且其中,在所述Cu合金镀结束时,电镀0.5~1μm厚的Au缓冲层以防止Cu合金层氧化。
6.一种制造垂直结构的光电子器件的方法,包括以下步骤:
在晶体衬底上制造多个垂直结构的光电子器件;
使用激光剥离处理去除所述晶体衬底;以及
制造金属支承结构代替所述晶体衬底;其中,所述垂直结构光电子器件是GaN-基垂直结构光电子器件,所述晶体衬底包括蓝宝石,所述金属支承结构包括Cu,并且其中,所述GaN-基垂直结构光电子器件包括缓冲层,所述缓冲层除了包括GaN缓冲层或AlN缓冲层,还包括AlGaN缓冲层,以提供热扩散阻挡物来保护聚合体-基粘合层,以及
其中,根据如下规则通过所述晶体衬底从所述GaN缓冲层形成沟道:
a)沟道尺寸大致类似于激光束光斑尺寸,以在激光剥离处理期间减轻冲击波,
b)所述沟道窄于大约100微米宽,并延伸到所述晶体衬底中不深于约3微米,以及
c)使用反应离子刻蚀来形成所述沟道。
7.一种制造垂直结构的光电子器件的方法,包括以下步骤:
在晶体衬底上制造多个垂直结构的光电子器件;
使用激光剥离处理去除所述晶体衬底;以及
制造金属支承结构代替所述晶体衬底;其中,所述垂直结构光电子器件是GaN-基垂直结构光电子器件,所述晶体衬底包括蓝宝石,所述金属支承结构包括Cu,并且其中,所述GaN-基垂直结构光电子器件包括缓冲层,所述缓冲层除了包括GaN缓冲层或AlN缓冲层,还包括AlGaN缓冲层,以提供热扩散阻挡物来保护聚合体-基粘合层,以及
其中,为了减轻冲击波并易于在激光剥离处理后的脱胶处理期间的分层,根据以下步骤对使用聚合体-基粘合剂的粘合层进行双涂布,其中,所述聚合体-基粘合剂包括GaN外延层和支承晶片之间的超级胶和可曝光的聚合体:
a)使用旋涂来涂超级胶层,
b)所述超级胶层的厚度为大约30微米厚,
c)同样使用旋涂以厚于20微米的厚度涂所述可曝光的聚合体,
d)用UV灯固化所述可曝光的聚合体,以及
e)使用UV灯透明蓝宝石支承物来固化所述可曝光的聚合体。
8.一种制造垂直结构的光电子器件的方法,包括以下步骤:
在晶体衬底上制造多个垂直结构的光电子器件;
使用激光剥离处理去除所述晶体衬底;
制造金属支承结构代替所述晶体衬底;其中,所述垂直结构光电子器件是GaN-基垂直结构光电子器件,所述晶体衬底包括蓝宝石,所述金属支承结构包括Cu,并且其中,所述GaN-基垂直结构光电子器件包括缓冲层,所述缓冲层除了包括GaN缓冲层或AlN缓冲层,还包括AlGaN缓冲层,以提供热扩散阻挡物来保护聚合体-基粘合层;以及
在激光束和所述晶体衬底之间使用由对于所述激光束透明的材料制成的扩散板,以获得均匀的激光束功率分布。
9.一种制造垂直结构的光电子器件的方法,包括以下步骤:
在晶体衬底上制造多个垂直结构的光电子器件;
使用激光剥离处理去除所述晶体衬底;以及
制造金属支承结构代替所述晶体衬底;其中,所述垂直结构光电子器件是GaN-基垂直结构光电子器件,所述晶体衬底包括蓝宝石,所述金属支承结构包括Cu,并且其中,所述GaN-基垂直结构光电子器件包括缓冲层,所述缓冲层除了包括GaN缓冲层或AlN缓冲层,还包括AlGaN缓冲层,以提供热扩散阻挡物来保护聚合体-基粘合层;以及
沉积Cu合金层,以逐渐软化由于厚金属层积累的应力,其中,初始Cu合金层的厚度设置到~10μm,并且其中,镀覆速率设置到3~5μm/小时。
10.一种制造垂直结构的光电子器件的方法,包括以下步骤:
在晶体衬底上制造多个垂直结构的光电子器件;
使用激光剥离处理去除所述晶体衬底;以及
制造金属支承结构代替所述晶体衬底;其中,所述垂直结构光电子器件是GaN-基垂直结构光电子器件,所述晶体衬底包括蓝宝石,所述金属支承结构包括Cu,并且其中,所述GaN-基垂直结构光电子器件包括缓冲层,所述缓冲层除了包括GaN缓冲层或AlN缓冲层,还包括AlGaN缓冲层,以提供热扩散阻挡物来保护聚合体-基粘合层;以及
沉积Cu层以提供结构刚度,其中,Cu镀的镀覆速率高达20μm/小时,其中,对于所述Cu合金镀,包含锡和铁的金属合金电镀溶液与Cu硫酸盐溶液混合,以提高Cu合金支承层的机械强度和导电率,其中,所述Cu合金支承层的总厚度是70~90μm,并且其中,在所述Cu合金镀结束时,电镀0.5~1μm厚的Au缓冲层以防止Cu合金层氧化。
11.一种制造垂直结构的光电子器件的方法,包括以下步骤:
在晶体衬底上制造多个垂直结构的光电子器件;
使用激光剥离处理去除所述晶体衬底;以及
制造金属支承结构代替所述晶体衬底;其中,所述垂直结构光电子器件是GaN-基垂直结构光电子器件,所述晶体衬底包括蓝宝石,以及所述金属支承结构包括Cu;
其中,去除所述晶体衬底的步骤包括:在激光束和所述晶体衬底之间沉积由对于所述激光束透明的材料制成的扩散板,以获得均匀的激光束功率分布。
12.根据权利要求11所述的方法,其中,所述制造所述金属支承结构代替所述晶体衬底的步骤包括以下步骤:使用电镀和无电镀中的至少一种镀所述金属支承结构。
13.根据权利要求11所述的方法,进一步包括以下步骤:
在所述多个垂直结构光电子器件和所述金属支承结构之间制造缓冲层。
14.根据权利要求11所述的方法,所述制造金属支承结构代替所述晶体衬底的步骤包括以下步骤:
沉积形成n-接触层的铟锡氧化物层,
在所述铟锡氧化物层上沉积Au缓冲层,以及
使用电镀和无电镀中的至少一种在所述Au缓冲层上镀Cu层。
15.根据权利要求11所述的方法,其中,所述GaN-基垂直结构光电子器件包括缓冲层,所述缓冲层除了包括GaN缓冲层或AlN缓冲层,还包括AlGaN缓冲层,以提供热扩散阻挡物来保护聚合体-基粘合层。
16.根据权利要求15所述的方法,其中,根据以下规则通过所述晶体衬底从所述GaN缓冲层形成沟道:
a)沟道尺寸大致类似于激光束光斑尺寸,以在激光剥离处理期间减轻冲击波,
b)所述沟道窄于大约100微米宽,并延伸到所述晶体衬底中不深于约3微米,以及
c)使用反应离子刻蚀形成所述沟道,所述反应离子蚀刻优选地是感耦等离子反应离子蚀刻。
17.根据权利要求15所述的方法,其中,为了减轻冲击波并易于在激光剥离处理后的脱胶处理期间的分层,根据以下步骤对使用聚合体-基粘合剂的粘合层进行双涂布,其中,所述聚合体-基粘合剂包括GaN外延层和支承晶片之间的超级胶和可曝光的聚合体:
a)使用旋涂来涂超级胶层,
b)所述超级胶层的厚度为大约30微米厚,
c)同样使用旋涂以厚于20微米的厚度涂所述可曝光的聚合体,
d)用UV灯固化所述可曝光的聚合体,以及
e)使用UV灯透明蓝宝石支承物来固化所述可曝光的聚合体。
18.根据权利要求11所述的方法,进一步包括以下步骤:在剥离的GaN晶片上执行感耦等离子反应离子蚀刻和抛光,其中,
所述感耦等离子反应离子蚀刻和抛光暴露并产生纯n-GaN的原子平坦表面,并且其中,所述纯n-GaN的原子平坦表面对产生随后沉积的反射结构的高反射率尤其有益。
19.根据权利要求11所述的方法,进一步包括以下步骤:使用电子束蒸发在所述金属支承结构的底部上沉积透明的导电反射层,其中,优选地将铟锡氧化物用于n-接触层和反射层。
20.根据权利要求11所述的方法,进一步包括以下步骤:沉积Cu合金层,以逐渐地软化由于厚金属层积累的应力,其中,初始Cu合金层的厚度设置到~10μm,并且其中,镀覆速率设置到3~5μm/小时。
21.根据权利要求20所述的方法,进一步包括以下步骤:沉积Cu层以提供结构刚度,其中,Cu镀的镀覆速率高达20μm/小时,其中,对于Cu合金镀,包含锡和铁的金属合金电镀溶液与Cu硫酸盐溶液混合,以提高Cu合金支承层的机械强度和导电率,其中,所述Cu合金支承层的总厚度是70~90μm,并且其中,在所述Cu合金镀结束时,电镀0.5~1μm厚的Au缓冲层以防止Cu合金支承层被氧化。
22.根据权利要求11所述的方法,进一步包括以下步骤:通过化学或者激光划片来切割单个器件。
23.一种制造垂直结构的光电子器件的方法,包括以下步骤:
在晶体衬底上制造多个垂直结构的光电子器件;
使用激光剥离处理去除所述晶体衬底;以及
制造金属支承结构代替所述晶体衬底,其中,所述垂直结构光电子器件是GaN-基垂直结构光电子器件,所述晶体衬底包括蓝宝石,以及通过沉积Cu合金层来形成所述金属支承结构,以逐渐地软化由于厚金属层积累的应力,其中,初始Cu合金层的厚度设置到~10μm,并且其中,镀覆速率设置到3~5μm/小时。
24.根据权利要求23所述的方法,其中,所述制造所述金属支承结构代替所述晶体衬底的步骤使用电镀或者无电镀中的至少一种。
25.根据权利要求23所述的方法,进一步包括以下步骤:
在所述多个垂直结构光电子器件和所述金属支承结构之间制造缓冲层。
26.根据权利要求23所述的方法,其中,所述制造所述金属支承结构代替所述晶体衬底的步骤包括以下步骤:
沉积形成n-接触层的铟锡氧化物层,
在所述铟锡氧化物层上沉积Au缓冲层,
使用电镀或者无电镀中的至少一种在所述Au缓冲层上镀Cu合金层。
27.根据权利要求23所述的方法,其中,所述GaN-基垂直结构光电子器件包括缓冲层,所述缓冲层除了包括GaN缓冲层或AlN缓冲层,还包括AlGaN缓冲层,以提供热扩散阻挡物来保护聚合体-基粘合层。
28.根据权利要求27所述的方法,其中,根据以下规则通过所述晶体衬底从所述GaN缓冲层形成沟道:
a)沟道尺寸大致类似于激光束光斑尺寸,以在激光剥离处理期间减轻冲击波,
b)所述沟道窄于大约100微米宽,并延伸到所述晶体衬底中不深于约3微米,以及
c)使用反应离子刻蚀来形成所述沟道,优选地是感耦等离子反应离子蚀刻。
29.根据权利要求27所述的方法,其中,为了减轻冲击波并易于在激光剥离处理后的脱胶处理期间的分层,根据以下步骤对使用聚合体-基粘合剂的粘合层进行双涂布,其中,所述聚合体-基粘合剂包括GaN外延层和支承晶片之间的超级胶和可曝光的聚合体:
a)使用旋涂来涂超级胶层,
b)所述超级胶层的厚度为大约30微米厚,
c)同样使用旋涂以厚于20微米的厚度涂所述可曝光的聚合体,
d)用UV灯固化所述可曝光的聚合体,以及
e)使用UV灯透明蓝宝石支承物来固化所述可曝光的聚合体。
30.根据权利要求23所述的方法,进一步包括以下步骤:在激光束和所述晶体衬底之间使用由对激光束透明的材料制成的扩散板,以获得均匀的激光束功率分布。
31.根据权利要求23所述的方法,进一步包括以下步骤:在剥离的GaN晶片上执行感耦等离子反应离子蚀刻和抛光,其中,所述感耦等离子反应离子蚀刻和抛光暴露并产生纯n-GaN的原子平坦表面,并且其中,所述纯n-GaN的原子平坦表面对产生随后沉积的反射结构的高反射率尤其有益。
32.根据权利要求23所述的方法,进一步包括以下步骤:使用电子束蒸发在所述金属支承结构的底部上沉积透明的导电反射层,其中,优选地将铟锡氧化物用于n-接触层和反射层。
33.根据权利要求23所述的方法,进一步包括以下步骤:沉积Cu层以提供结构刚度,其中,Cu镀的镀覆速率高达20μm/小时,其中,对于Cu合金镀,包含锡和铁的金属合金电镀溶液与Cu硫酸盐溶液混合,以提高Cu合金支承层的机械强度和导电率,其中,所述Cu合金支承层的总厚度是70~90μm,并且其中,在所述Cu合金镀结束时,电镀0.5~1μm厚的Au缓冲层以防止Cu合金支承层被氧化。
34.根据权利要求23所述的方法,进一步包括以下步骤:通过化学或者激光划片来切割单个器件。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US47600803P | 2003-06-04 | 2003-06-04 | |
US60/476,008 | 2003-06-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1998065A CN1998065A (zh) | 2007-07-11 |
CN100483612C true CN100483612C (zh) | 2009-04-29 |
Family
ID=33511746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004800186202A Expired - Fee Related CN100483612C (zh) | 2003-06-04 | 2004-06-03 | 用于制造垂直结构的复合半导体器件的方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US7384807B2 (zh) |
JP (1) | JP5142523B2 (zh) |
KR (2) | KR20110042249A (zh) |
CN (1) | CN100483612C (zh) |
TW (1) | TWI344706B (zh) |
WO (1) | WO2004109764A2 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103904015A (zh) * | 2014-03-21 | 2014-07-02 | 中国电子科技集团公司第五十五研究所 | 一种砷化镓基外延层剥离转移的方法 |
Families Citing this family (353)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2262006A3 (en) | 2003-02-26 | 2012-03-21 | Cree, Inc. | Composite white light source and method for fabricating |
CA2523544A1 (en) | 2003-04-30 | 2004-11-18 | Cree, Inc. | High powered light emitter packages with compact optics |
US7244628B2 (en) * | 2003-05-22 | 2007-07-17 | Matsushita Electric Industrial Co., Ltd. | Method for fabricating semiconductor devices |
JP5142523B2 (ja) * | 2003-06-04 | 2013-02-13 | チェオル ユー,ミュング | 縦型構造複合半導体装置 |
KR101034055B1 (ko) | 2003-07-18 | 2011-05-12 | 엘지이노텍 주식회사 | 발광 다이오드 및 그 제조방법 |
JP4766845B2 (ja) * | 2003-07-25 | 2011-09-07 | シャープ株式会社 | 窒化物系化合物半導体発光素子およびその製造方法 |
FR2862424B1 (fr) * | 2003-11-18 | 2006-10-20 | Valeo Electronique Sys Liaison | Dispositif de refroidissement d'un composant electrique et procede de fabrication de ce dispositif |
US7202141B2 (en) | 2004-03-29 | 2007-04-10 | J.P. Sercel Associates, Inc. | Method of separating layers of material |
JP5336075B2 (ja) * | 2004-04-28 | 2013-11-06 | バーティクル,インク | 縦構造半導体装置 |
TWI433343B (zh) * | 2004-06-22 | 2014-04-01 | Verticle Inc | 具有改良光輸出的垂直構造半導體裝置 |
US7633097B2 (en) * | 2004-09-23 | 2009-12-15 | Philips Lumileds Lighting Company, Llc | Growth of III-nitride light emitting devices on textured substrates |
TWI389334B (zh) * | 2004-11-15 | 2013-03-11 | Verticle Inc | 製造及分離半導體裝置之方法 |
US7473936B2 (en) * | 2005-01-11 | 2009-01-06 | Semileds Corporation | Light emitting diodes (LEDs) with improved light extraction by roughening |
US8318519B2 (en) * | 2005-01-11 | 2012-11-27 | SemiLEDs Optoelectronics Co., Ltd. | Method for handling a semiconductor wafer assembly |
US20060151801A1 (en) * | 2005-01-11 | 2006-07-13 | Doan Trung T | Light emitting diode with thermo-electric cooler |
US7432119B2 (en) * | 2005-01-11 | 2008-10-07 | Semileds Corporation | Light emitting diode with conducting metal substrate |
US20060154393A1 (en) * | 2005-01-11 | 2006-07-13 | Doan Trung T | Systems and methods for removing operating heat from a light emitting diode |
US7186580B2 (en) * | 2005-01-11 | 2007-03-06 | Semileds Corporation | Light emitting diodes (LEDs) with improved light extraction by roughening |
US8012774B2 (en) * | 2005-01-11 | 2011-09-06 | SemiLEDs Optoelectronics Co., Ltd. | Coating process for a light-emitting diode (LED) |
US8680534B2 (en) | 2005-01-11 | 2014-03-25 | Semileds Corporation | Vertical light emitting diodes (LED) having metal substrate and spin coated phosphor layer for producing white light |
US8802465B2 (en) | 2005-01-11 | 2014-08-12 | SemiLEDs Optoelectronics Co., Ltd. | Method for handling a semiconductor wafer assembly |
US7413918B2 (en) * | 2005-01-11 | 2008-08-19 | Semileds Corporation | Method of making a light emitting diode |
US7195944B2 (en) * | 2005-01-11 | 2007-03-27 | Semileds Corporation | Systems and methods for producing white-light emitting diodes |
US7524686B2 (en) * | 2005-01-11 | 2009-04-28 | Semileds Corporation | Method of making light emitting diodes (LEDs) with improved light extraction by roughening |
US7897420B2 (en) * | 2005-01-11 | 2011-03-01 | SemiLEDs Optoelectronics Co., Ltd. | Light emitting diodes (LEDs) with improved light extraction by roughening |
US8871547B2 (en) | 2005-01-11 | 2014-10-28 | SemiLEDs Optoelectronics Co., Ltd. | Method for fabricating vertical light emitting diode (VLED) structure using a laser pulse to remove a carrier substrate |
US7646033B2 (en) * | 2005-01-11 | 2010-01-12 | Semileds Corporation | Systems and methods for producing white-light light emitting diodes |
US9130114B2 (en) | 2005-01-11 | 2015-09-08 | SemiLEDs Optoelectronics Co., Ltd. | Vertical light emitting diode (VLED) dice having confinement layers with roughened surfaces and methods of fabrication |
US7563625B2 (en) * | 2005-01-11 | 2009-07-21 | SemiLEDs Optoelectronics Co., Ltd. | Method of making light-emitting diodes (LEDs) with improved light extraction by roughening |
US7378288B2 (en) * | 2005-01-11 | 2008-05-27 | Semileds Corporation | Systems and methods for producing light emitting diode array |
EP1681712A1 (en) * | 2005-01-13 | 2006-07-19 | S.O.I. Tec Silicon on Insulator Technologies S.A. | Method of producing substrates for optoelectronic applications |
CN100352116C (zh) * | 2005-01-18 | 2007-11-28 | 北京大学 | 自然解理腔面的GaN基激光二极管的制备方法 |
JP4837295B2 (ja) * | 2005-03-02 | 2011-12-14 | 株式会社沖データ | 半導体装置、led装置、ledヘッド、及び画像形成装置 |
KR100597166B1 (ko) * | 2005-05-03 | 2006-07-04 | 삼성전기주식회사 | 플립 칩 발광다이오드 및 그 제조방법 |
KR101166922B1 (ko) * | 2005-05-27 | 2012-07-19 | 엘지이노텍 주식회사 | 발광 다이오드의 제조 방법 |
TWI251357B (en) * | 2005-06-21 | 2006-03-11 | Epitech Technology Corp | Light-emitting diode and method for manufacturing the same |
WO2007001144A1 (en) * | 2005-06-27 | 2007-01-04 | Lg Chem, Ltd. | Method for preparing light emitting diode device having heat dissipation rate enhancement |
KR100658303B1 (ko) * | 2005-07-04 | 2006-12-14 | 엘지전자 주식회사 | 메탈지지층을 포함하는 수직형 구조의 발광 다이오드 |
KR100632004B1 (ko) * | 2005-08-12 | 2006-10-09 | 삼성전기주식회사 | 질화물 단결정 기판 제조방법 및 질화물 반도체 발광소자 제조방법 |
US7118930B1 (en) * | 2005-08-17 | 2006-10-10 | Dong-Sing Wuu | Method for manufacturing a light emitting device |
US7786489B2 (en) * | 2005-09-13 | 2010-08-31 | Showa Denko K.K. | Nitride semiconductor light emitting device and production method thereof |
WO2007050736A2 (en) * | 2005-10-26 | 2007-05-03 | Velox Semiconductor Corporation | Vertical structure semiconductor devices and method of fabricating the same |
US7829909B2 (en) * | 2005-11-15 | 2010-11-09 | Verticle, Inc. | Light emitting diodes and fabrication methods thereof |
KR101125339B1 (ko) | 2006-02-14 | 2012-03-27 | 엘지이노텍 주식회사 | 질화물계 반도체 발광소자 및 그 제조 방법 |
US7928462B2 (en) | 2006-02-16 | 2011-04-19 | Lg Electronics Inc. | Light emitting device having vertical structure, package thereof and method for manufacturing the same |
DE102006061167A1 (de) * | 2006-04-25 | 2007-12-20 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauelement |
US20070262341A1 (en) * | 2006-05-09 | 2007-11-15 | Wen-Huang Liu | Vertical led with eutectic layer |
TW200807760A (en) * | 2006-05-23 | 2008-02-01 | Alps Electric Co Ltd | Method for manufacturing semiconductor light emitting element |
EP2458653B1 (en) | 2006-06-23 | 2023-08-30 | LG Electronics Inc. | Light emitting diode having vertical topology |
KR100856089B1 (ko) * | 2006-08-23 | 2008-09-02 | 삼성전기주식회사 | 수직구조 질화갈륨계 발광 다이오드 소자 및 그 제조방법 |
WO2008026902A1 (en) * | 2006-08-31 | 2008-03-06 | Epivalley Co., Ltd. | Iii-nitride semiconductor light emitting device |
JP2008130799A (ja) * | 2006-11-21 | 2008-06-05 | Sharp Corp | 半導体発光素子および半導体発光素子の製造方法 |
KR101308126B1 (ko) * | 2007-02-15 | 2013-09-12 | 서울옵토디바이스주식회사 | 발광 다이오드 제조 방법 |
US20080197369A1 (en) * | 2007-02-20 | 2008-08-21 | Cree, Inc. | Double flip semiconductor device and method for fabrication |
KR101308127B1 (ko) * | 2007-02-26 | 2013-09-12 | 서울옵토디바이스주식회사 | 발광 다이오드의 제조 방법 |
US20080303033A1 (en) * | 2007-06-05 | 2008-12-11 | Cree, Inc. | Formation of nitride-based optoelectronic and electronic device structures on lattice-matched substrates |
US7915643B2 (en) * | 2007-09-17 | 2011-03-29 | Transphorm Inc. | Enhancement mode gallium nitride power devices |
US8927392B2 (en) * | 2007-11-02 | 2015-01-06 | Siva Power, Inc. | Methods for forming crystalline thin-film photovoltaic structures |
GB0721957D0 (en) * | 2007-11-08 | 2007-12-19 | Photonstar Led Ltd | Ultra high thermal performance packaging for optoelectronics devices |
US7846751B2 (en) * | 2007-11-19 | 2010-12-07 | Wang Nang Wang | LED chip thermal management and fabrication methods |
US9431589B2 (en) | 2007-12-14 | 2016-08-30 | Cree, Inc. | Textured encapsulant surface in LED packages |
KR100975659B1 (ko) * | 2007-12-18 | 2010-08-17 | 포항공과대학교 산학협력단 | 발광 소자 및 그 제조 방법 |
WO2009078574A1 (en) * | 2007-12-18 | 2009-06-25 | Seoul Opto Device Co., Ltd. | Light emitting device and method of manufacturing the same |
JP5026946B2 (ja) * | 2007-12-19 | 2012-09-19 | 古河電気工業株式会社 | 窒化物半導体単結晶基板製造方法 |
KR20090072980A (ko) | 2007-12-28 | 2009-07-02 | 서울옵토디바이스주식회사 | 발광 다이오드 및 그 제조방법 |
WO2009084857A2 (en) * | 2007-12-28 | 2009-07-09 | Seoul Opto Device Co., Ltd. | Light emitting diode and method of fabricating the same |
KR101470020B1 (ko) | 2008-03-18 | 2014-12-10 | 엘지이노텍 주식회사 | 샌드위치 구조의 웨이퍼 결합 및 포톤 빔을 이용한 단결정 반도체 박막 전이 |
JP5288852B2 (ja) * | 2008-03-21 | 2013-09-11 | スタンレー電気株式会社 | 半導体素子の製造方法 |
US7781780B2 (en) * | 2008-03-31 | 2010-08-24 | Bridgelux, Inc. | Light emitting diodes with smooth surface for reflective electrode |
WO2009145483A2 (ko) * | 2008-04-02 | 2009-12-03 | Song June O | 발광 소자 및 그 제조방법 |
CN104538507B (zh) | 2008-06-02 | 2017-08-15 | Lg伊诺特有限公司 | 用于制备半导体发光装置的方法 |
US8395168B2 (en) * | 2008-06-06 | 2013-03-12 | Hong Kong Applied Science And Technology Research Institute Co. Ltd. | Semiconductor wafers and semiconductor devices with polishing stops and method of making the same |
US20100200880A1 (en) * | 2008-06-06 | 2010-08-12 | Hong Kong Applied Science And Technology Research Institute Co. Ltd. | Semiconductor wafers and semiconductor devices and methods of making semiconductor wafers and devices |
TWI495141B (zh) * | 2008-08-01 | 2015-08-01 | Epistar Corp | 晶圓發光結構之形成方法及光源產生裝置 |
US8435816B2 (en) * | 2008-08-22 | 2013-05-07 | Lattice Power (Jiangxi) Corporation | Method for fabricating InGaAlN light emitting device on a combined substrate |
US8236603B1 (en) | 2008-09-04 | 2012-08-07 | Solexant Corp. | Polycrystalline semiconductor layers and methods for forming the same |
DE102008048648A1 (de) | 2008-09-24 | 2010-04-08 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip |
TWI389347B (zh) * | 2008-11-13 | 2013-03-11 | Epistar Corp | 光電元件及其製作方法 |
WO2010058991A2 (ko) * | 2008-11-21 | 2010-05-27 | 우리엘에스티 주식회사 | 수직형 질화물계 발광소자의 제조방법 |
CN102326228B (zh) * | 2008-12-26 | 2014-03-05 | 同和控股(集团)有限公司 | 第ⅲ族氮化物半导体生长基板、第ⅲ族氮化物半导体外延基板、第ⅲ族氮化物半导体元件、第ⅲ族氮化物半导体自立基板及它们的制造方法 |
WO2010088366A1 (en) | 2009-01-28 | 2010-08-05 | Wakonda Technologies, Inc. | Large-grain crystalline thin-film structures and devices and methods for forming the same |
US8247886B1 (en) | 2009-03-09 | 2012-08-21 | Soraa, Inc. | Polarization direction of optical devices using selected spatial configurations |
US8378715B2 (en) | 2009-04-14 | 2013-02-19 | Monolithic 3D Inc. | Method to construct systems |
US8362800B2 (en) | 2010-10-13 | 2013-01-29 | Monolithic 3D Inc. | 3D semiconductor device including field repairable logics |
US8427200B2 (en) | 2009-04-14 | 2013-04-23 | Monolithic 3D Inc. | 3D semiconductor device |
US8754533B2 (en) | 2009-04-14 | 2014-06-17 | Monolithic 3D Inc. | Monolithic three-dimensional semiconductor device and structure |
US8405420B2 (en) | 2009-04-14 | 2013-03-26 | Monolithic 3D Inc. | System comprising a semiconductor device and structure |
US9577642B2 (en) | 2009-04-14 | 2017-02-21 | Monolithic 3D Inc. | Method to form a 3D semiconductor device |
US8373439B2 (en) | 2009-04-14 | 2013-02-12 | Monolithic 3D Inc. | 3D semiconductor device |
US8669778B1 (en) | 2009-04-14 | 2014-03-11 | Monolithic 3D Inc. | Method for design and manufacturing of a 3D semiconductor device |
US8395191B2 (en) | 2009-10-12 | 2013-03-12 | Monolithic 3D Inc. | Semiconductor device and structure |
US7986042B2 (en) | 2009-04-14 | 2011-07-26 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US9509313B2 (en) | 2009-04-14 | 2016-11-29 | Monolithic 3D Inc. | 3D semiconductor device |
US8384426B2 (en) | 2009-04-14 | 2013-02-26 | Monolithic 3D Inc. | Semiconductor device and structure |
US8258810B2 (en) | 2010-09-30 | 2012-09-04 | Monolithic 3D Inc. | 3D semiconductor device |
US8058137B1 (en) | 2009-04-14 | 2011-11-15 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8362482B2 (en) | 2009-04-14 | 2013-01-29 | Monolithic 3D Inc. | Semiconductor device and structure |
US9711407B2 (en) | 2009-04-14 | 2017-07-18 | Monolithic 3D Inc. | Method of manufacturing a three dimensional integrated circuit by transfer of a mono-crystalline layer |
US20100270653A1 (en) * | 2009-04-24 | 2010-10-28 | Christopher Leitz | Crystalline thin-film photovoltaic structures and methods for forming the same |
US9583678B2 (en) | 2009-09-18 | 2017-02-28 | Soraa, Inc. | High-performance LED fabrication |
US8581349B1 (en) | 2011-05-02 | 2013-11-12 | Monolithic 3D Inc. | 3D memory semiconductor device and structure |
US10910364B2 (en) | 2009-10-12 | 2021-02-02 | Monolitaic 3D Inc. | 3D semiconductor device |
US8476145B2 (en) | 2010-10-13 | 2013-07-02 | Monolithic 3D Inc. | Method of fabricating a semiconductor device and structure |
US8536023B2 (en) | 2010-11-22 | 2013-09-17 | Monolithic 3D Inc. | Method of manufacturing a semiconductor device and structure |
US10043781B2 (en) | 2009-10-12 | 2018-08-07 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US8294159B2 (en) | 2009-10-12 | 2012-10-23 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US12027518B1 (en) | 2009-10-12 | 2024-07-02 | Monolithic 3D Inc. | 3D semiconductor devices and structures with metal layers |
US9099424B1 (en) | 2012-08-10 | 2015-08-04 | Monolithic 3D Inc. | Semiconductor system, device and structure with heat removal |
US11374118B2 (en) | 2009-10-12 | 2022-06-28 | Monolithic 3D Inc. | Method to form a 3D integrated circuit |
US11018133B2 (en) | 2009-10-12 | 2021-05-25 | Monolithic 3D Inc. | 3D integrated circuit |
US10366970B2 (en) | 2009-10-12 | 2019-07-30 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10157909B2 (en) | 2009-10-12 | 2018-12-18 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11984445B2 (en) | 2009-10-12 | 2024-05-14 | Monolithic 3D Inc. | 3D semiconductor devices and structures with metal layers |
US10354995B2 (en) | 2009-10-12 | 2019-07-16 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US10388863B2 (en) | 2009-10-12 | 2019-08-20 | Monolithic 3D Inc. | 3D memory device and structure |
US8450804B2 (en) | 2011-03-06 | 2013-05-28 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
US8742476B1 (en) | 2012-11-27 | 2014-06-03 | Monolithic 3D Inc. | Semiconductor device and structure |
WO2011071889A1 (en) | 2009-12-07 | 2011-06-16 | J.P. Sercel Associates, Inc. | Laser lift off systems and methods |
US9669613B2 (en) | 2010-12-07 | 2017-06-06 | Ipg Photonics Corporation | Laser lift off systems and methods that overlap irradiation zones to provide multiple pulses of laser irradiation per location at an interface between layers to be separated |
WO2011069242A1 (en) * | 2009-12-09 | 2011-06-16 | Cooledge Lighting Inc. | Semiconductor dice transfer-enabling apparatus and method for manufacturing transfer-enabling apparatus |
US20110151588A1 (en) * | 2009-12-17 | 2011-06-23 | Cooledge Lighting, Inc. | Method and magnetic transfer stamp for transferring semiconductor dice using magnetic transfer printing techniques |
US8334152B2 (en) * | 2009-12-18 | 2012-12-18 | Cooledge Lighting, Inc. | Method of manufacturing transferable elements incorporating radiation enabled lift off for allowing transfer from host substrate |
US10147850B1 (en) | 2010-02-03 | 2018-12-04 | Soraa, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US8900893B2 (en) | 2010-02-11 | 2014-12-02 | Tsmc Solid State Lighting Ltd. | Vertical LED chip package on TSV carrier |
US8026521B1 (en) | 2010-10-11 | 2011-09-27 | Monolithic 3D Inc. | Semiconductor device and structure |
US8373230B1 (en) | 2010-10-13 | 2013-02-12 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8541819B1 (en) | 2010-12-09 | 2013-09-24 | Monolithic 3D Inc. | Semiconductor device and structure |
US8461035B1 (en) | 2010-09-30 | 2013-06-11 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8492886B2 (en) | 2010-02-16 | 2013-07-23 | Monolithic 3D Inc | 3D integrated circuit with logic |
US9099526B2 (en) | 2010-02-16 | 2015-08-04 | Monolithic 3D Inc. | Integrated circuit device and structure |
US8298875B1 (en) | 2011-03-06 | 2012-10-30 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US9450143B2 (en) | 2010-06-18 | 2016-09-20 | Soraa, Inc. | Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices |
US8642416B2 (en) | 2010-07-30 | 2014-02-04 | Monolithic 3D Inc. | Method of forming three dimensional integrated circuit devices using layer transfer technique |
US9219005B2 (en) | 2011-06-28 | 2015-12-22 | Monolithic 3D Inc. | Semiconductor system and device |
US8901613B2 (en) | 2011-03-06 | 2014-12-02 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
US10217667B2 (en) | 2011-06-28 | 2019-02-26 | Monolithic 3D Inc. | 3D semiconductor device, fabrication method and system |
US9953925B2 (en) | 2011-06-28 | 2018-04-24 | Monolithic 3D Inc. | Semiconductor system and device |
CN102447015B (zh) * | 2010-10-01 | 2015-11-25 | 陈祖辉 | 一种垂直结构发光二极管 |
US8163581B1 (en) | 2010-10-13 | 2012-04-24 | Monolith IC 3D | Semiconductor and optoelectronic devices |
US10497713B2 (en) | 2010-11-18 | 2019-12-03 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11482440B2 (en) | 2010-12-16 | 2022-10-25 | Monolithic 3D Inc. | 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits |
US8273610B2 (en) | 2010-11-18 | 2012-09-25 | Monolithic 3D Inc. | Method of constructing a semiconductor device and structure |
US11600667B1 (en) | 2010-10-11 | 2023-03-07 | Monolithic 3D Inc. | Method to produce 3D semiconductor devices and structures with memory |
US10896931B1 (en) | 2010-10-11 | 2021-01-19 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10290682B2 (en) | 2010-10-11 | 2019-05-14 | Monolithic 3D Inc. | 3D IC semiconductor device and structure with stacked memory |
US11469271B2 (en) | 2010-10-11 | 2022-10-11 | Monolithic 3D Inc. | Method to produce 3D semiconductor devices and structures with memory |
US11158674B2 (en) | 2010-10-11 | 2021-10-26 | Monolithic 3D Inc. | Method to produce a 3D semiconductor device and structure |
US11018191B1 (en) | 2010-10-11 | 2021-05-25 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11257867B1 (en) | 2010-10-11 | 2022-02-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with oxide bonds |
US11227897B2 (en) | 2010-10-11 | 2022-01-18 | Monolithic 3D Inc. | Method for producing a 3D semiconductor memory device and structure |
US8114757B1 (en) | 2010-10-11 | 2012-02-14 | Monolithic 3D Inc. | Semiconductor device and structure |
US11024673B1 (en) | 2010-10-11 | 2021-06-01 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11315980B1 (en) | 2010-10-11 | 2022-04-26 | Monolithic 3D Inc. | 3D semiconductor device and structure with transistors |
US12094892B2 (en) | 2010-10-13 | 2024-09-17 | Monolithic 3D Inc. | 3D micro display device and structure |
US10998374B1 (en) | 2010-10-13 | 2021-05-04 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US12080743B2 (en) | 2010-10-13 | 2024-09-03 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US10943934B2 (en) | 2010-10-13 | 2021-03-09 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US11855100B2 (en) | 2010-10-13 | 2023-12-26 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US10833108B2 (en) | 2010-10-13 | 2020-11-10 | Monolithic 3D Inc. | 3D microdisplay device and structure |
US11063071B1 (en) | 2010-10-13 | 2021-07-13 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with waveguides |
US11984438B2 (en) | 2010-10-13 | 2024-05-14 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US9197804B1 (en) | 2011-10-14 | 2015-11-24 | Monolithic 3D Inc. | Semiconductor and optoelectronic devices |
US11327227B2 (en) | 2010-10-13 | 2022-05-10 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with electromagnetic modulators |
US11855114B2 (en) | 2010-10-13 | 2023-12-26 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US8379458B1 (en) | 2010-10-13 | 2013-02-19 | Monolithic 3D Inc. | Semiconductor device and structure |
US11163112B2 (en) | 2010-10-13 | 2021-11-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with electromagnetic modulators |
US11164898B2 (en) | 2010-10-13 | 2021-11-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US11437368B2 (en) | 2010-10-13 | 2022-09-06 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11404466B2 (en) | 2010-10-13 | 2022-08-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US11605663B2 (en) | 2010-10-13 | 2023-03-14 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US8283215B2 (en) | 2010-10-13 | 2012-10-09 | Monolithic 3D Inc. | Semiconductor and optoelectronic devices |
US10978501B1 (en) | 2010-10-13 | 2021-04-13 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with waveguides |
US11869915B2 (en) | 2010-10-13 | 2024-01-09 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US10679977B2 (en) | 2010-10-13 | 2020-06-09 | Monolithic 3D Inc. | 3D microdisplay device and structure |
US11929372B2 (en) | 2010-10-13 | 2024-03-12 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11694922B2 (en) | 2010-10-13 | 2023-07-04 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11133344B2 (en) | 2010-10-13 | 2021-09-28 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US11043523B1 (en) | 2010-10-13 | 2021-06-22 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
JP2012104739A (ja) * | 2010-11-12 | 2012-05-31 | Toshiba Corp | 発光素子 |
JP2012116741A (ja) * | 2010-11-12 | 2012-06-21 | Sumitomo Electric Ind Ltd | Iii族窒化物複合基板 |
US11569117B2 (en) | 2010-11-18 | 2023-01-31 | Monolithic 3D Inc. | 3D semiconductor device and structure with single-crystal layers |
US11482439B2 (en) | 2010-11-18 | 2022-10-25 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device comprising charge trap junction-less transistors |
US11735462B2 (en) | 2010-11-18 | 2023-08-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with single-crystal layers |
US11094576B1 (en) | 2010-11-18 | 2021-08-17 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US11211279B2 (en) | 2010-11-18 | 2021-12-28 | Monolithic 3D Inc. | Method for processing a 3D integrated circuit and structure |
US11784082B2 (en) | 2010-11-18 | 2023-10-10 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11443971B2 (en) | 2010-11-18 | 2022-09-13 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US11355380B2 (en) | 2010-11-18 | 2022-06-07 | Monolithic 3D Inc. | Methods for producing 3D semiconductor memory device and structure utilizing alignment marks |
US11804396B2 (en) | 2010-11-18 | 2023-10-31 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11901210B2 (en) | 2010-11-18 | 2024-02-13 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US11521888B2 (en) | 2010-11-18 | 2022-12-06 | Monolithic 3D Inc. | 3D semiconductor device and structure with high-k metal gate transistors |
US11508605B2 (en) | 2010-11-18 | 2022-11-22 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11482438B2 (en) | 2010-11-18 | 2022-10-25 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US11004719B1 (en) | 2010-11-18 | 2021-05-11 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US12068187B2 (en) | 2010-11-18 | 2024-08-20 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding and DRAM memory cells |
US11107721B2 (en) | 2010-11-18 | 2021-08-31 | Monolithic 3D Inc. | 3D semiconductor device and structure with NAND logic |
US11610802B2 (en) | 2010-11-18 | 2023-03-21 | Monolithic 3D Inc. | Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes |
US11164770B1 (en) | 2010-11-18 | 2021-11-02 | Monolithic 3D Inc. | Method for producing a 3D semiconductor memory device and structure |
US11862503B2 (en) | 2010-11-18 | 2024-01-02 | Monolithic 3D Inc. | Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11854857B1 (en) | 2010-11-18 | 2023-12-26 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11923230B1 (en) | 2010-11-18 | 2024-03-05 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11495484B2 (en) | 2010-11-18 | 2022-11-08 | Monolithic 3D Inc. | 3D semiconductor devices and structures with at least two single-crystal layers |
US11121021B2 (en) | 2010-11-18 | 2021-09-14 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11018042B1 (en) | 2010-11-18 | 2021-05-25 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11355381B2 (en) | 2010-11-18 | 2022-06-07 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US12100611B2 (en) | 2010-11-18 | 2024-09-24 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11615977B2 (en) | 2010-11-18 | 2023-03-28 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11031275B2 (en) | 2010-11-18 | 2021-06-08 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US12033884B2 (en) | 2010-11-18 | 2024-07-09 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US8786053B2 (en) | 2011-01-24 | 2014-07-22 | Soraa, Inc. | Gallium-nitride-on-handle substrate materials and devices and method of manufacture |
JP5758481B2 (ja) * | 2011-02-25 | 2015-08-05 | 学校法人 名城大学 | 半導体装置の製造方法 |
US8975670B2 (en) | 2011-03-06 | 2015-03-10 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
US9324905B2 (en) | 2011-03-15 | 2016-04-26 | Micron Technology, Inc. | Solid state optoelectronic device with preformed metal support substrate |
US10388568B2 (en) | 2011-06-28 | 2019-08-20 | Monolithic 3D Inc. | 3D semiconductor device and system |
CN102255027B (zh) * | 2011-07-15 | 2013-05-29 | 上海蓝光科技有限公司 | 一种GaN基垂直结构LED芯片结构及其制备方法 |
US8686431B2 (en) | 2011-08-22 | 2014-04-01 | Soraa, Inc. | Gallium and nitrogen containing trilateral configuration for optical devices |
US9646827B1 (en) | 2011-08-23 | 2017-05-09 | Soraa, Inc. | Method for smoothing surface of a substrate containing gallium and nitrogen |
US8912021B2 (en) | 2011-09-12 | 2014-12-16 | SemiLEDs Optoelectronics Co., Ltd. | System and method for fabricating light emitting diode (LED) dice with wavelength conversion layers |
US8841146B2 (en) | 2011-09-12 | 2014-09-23 | SemiLEDs Optoelectronics Co., Ltd. | Method and system for fabricating light emitting diode (LED) dice with wavelength conversion layers having controlled color characteristics |
US8492746B2 (en) | 2011-09-12 | 2013-07-23 | SemiLEDs Optoelectronics Co., Ltd. | Light emitting diode (LED) dice having wavelength conversion layers |
US8410508B1 (en) | 2011-09-12 | 2013-04-02 | SemiLEDs Optoelectronics Co., Ltd. | Light emitting diode (LED) package having wavelength conversion member and wafer level fabrication method |
US8687399B2 (en) | 2011-10-02 | 2014-04-01 | Monolithic 3D Inc. | Semiconductor device and structure |
US9029173B2 (en) | 2011-10-18 | 2015-05-12 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
CN103117334B (zh) * | 2011-11-17 | 2015-05-06 | 山东浪潮华光光电子股份有限公司 | 一种垂直结构GaN基发光二极管芯片及其制作方法 |
US8912025B2 (en) * | 2011-11-23 | 2014-12-16 | Soraa, Inc. | Method for manufacture of bright GaN LEDs using a selective removal process |
US8957429B2 (en) * | 2012-02-07 | 2015-02-17 | Epistar Corporation | Light emitting diode with wavelength conversion layer |
US9153732B2 (en) | 2012-02-23 | 2015-10-06 | Nthdegree Technologies Worldwide Inc. | Active LED module |
US9000557B2 (en) | 2012-03-17 | 2015-04-07 | Zvi Or-Bach | Semiconductor device and structure |
US10600888B2 (en) | 2012-04-09 | 2020-03-24 | Monolithic 3D Inc. | 3D semiconductor device |
US11735501B1 (en) | 2012-04-09 | 2023-08-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11881443B2 (en) | 2012-04-09 | 2024-01-23 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11088050B2 (en) | 2012-04-09 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device with isolation layers |
US11410912B2 (en) | 2012-04-09 | 2022-08-09 | Monolithic 3D Inc. | 3D semiconductor device with vias and isolation layers |
US11616004B1 (en) | 2012-04-09 | 2023-03-28 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11476181B1 (en) | 2012-04-09 | 2022-10-18 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11594473B2 (en) | 2012-04-09 | 2023-02-28 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11694944B1 (en) | 2012-04-09 | 2023-07-04 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11164811B2 (en) | 2012-04-09 | 2021-11-02 | Monolithic 3D Inc. | 3D semiconductor device with isolation layers and oxide-to-oxide bonding |
US8557632B1 (en) | 2012-04-09 | 2013-10-15 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US9236271B2 (en) * | 2012-04-18 | 2016-01-12 | Globalfoundries Inc. | Laser-initiated exfoliation of group III-nitride films and applications for layer transfer and patterning |
US9673132B2 (en) * | 2012-04-27 | 2017-06-06 | Taiwan Semiconductor Manufacting Company, Ltd. | Interconnection structure with confinement layer |
CN102769079B (zh) * | 2012-07-16 | 2015-02-25 | 南通玺运贸易有限公司 | P型、n型半导体出光垂直传导发光二极管的制造方法 |
CN102962773A (zh) * | 2012-09-21 | 2013-03-13 | 沈李豪 | 去除led衬底的方法及以其方法制得的led芯片 |
US9978904B2 (en) | 2012-10-16 | 2018-05-22 | Soraa, Inc. | Indium gallium nitride light emitting devices |
US8686428B1 (en) | 2012-11-16 | 2014-04-01 | Monolithic 3D Inc. | Semiconductor device and structure |
US8574929B1 (en) | 2012-11-16 | 2013-11-05 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US20140151630A1 (en) * | 2012-12-04 | 2014-06-05 | Feng-Hsu Fan | Protection for the epitaxial structure of metal devices |
US20140170792A1 (en) * | 2012-12-18 | 2014-06-19 | Nthdegree Technologies Worldwide Inc. | Forming thin film vertical light emitting diodes |
KR101878748B1 (ko) | 2012-12-20 | 2018-08-17 | 삼성전자주식회사 | 그래핀의 전사 방법 및 이를 이용한 소자의 제조 방법 |
US12051674B2 (en) | 2012-12-22 | 2024-07-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11916045B2 (en) | 2012-12-22 | 2024-02-27 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US8674470B1 (en) | 2012-12-22 | 2014-03-18 | Monolithic 3D Inc. | Semiconductor device and structure |
US11961827B1 (en) | 2012-12-22 | 2024-04-16 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11784169B2 (en) | 2012-12-22 | 2023-10-10 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11309292B2 (en) | 2012-12-22 | 2022-04-19 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11018116B2 (en) | 2012-12-22 | 2021-05-25 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US11063024B1 (en) | 2012-12-22 | 2021-07-13 | Monlithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US11967583B2 (en) | 2012-12-22 | 2024-04-23 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11217565B2 (en) | 2012-12-22 | 2022-01-04 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US10892169B2 (en) | 2012-12-29 | 2021-01-12 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11430667B2 (en) | 2012-12-29 | 2022-08-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US9385058B1 (en) | 2012-12-29 | 2016-07-05 | Monolithic 3D Inc. | Semiconductor device and structure |
US10600657B2 (en) | 2012-12-29 | 2020-03-24 | Monolithic 3D Inc | 3D semiconductor device and structure |
US11087995B1 (en) | 2012-12-29 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10651054B2 (en) | 2012-12-29 | 2020-05-12 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10903089B1 (en) | 2012-12-29 | 2021-01-26 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11004694B1 (en) | 2012-12-29 | 2021-05-11 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10115663B2 (en) | 2012-12-29 | 2018-10-30 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11430668B2 (en) | 2012-12-29 | 2022-08-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US9871034B1 (en) | 2012-12-29 | 2018-01-16 | Monolithic 3D Inc. | Semiconductor device and structure |
US11177140B2 (en) | 2012-12-29 | 2021-11-16 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US9196606B2 (en) | 2013-01-09 | 2015-11-24 | Nthdegree Technologies Worldwide Inc. | Bonding transistor wafer to LED wafer to form active LED modules |
US9177992B2 (en) | 2013-01-09 | 2015-11-03 | Nthdegree Technologies Worldwide Inc. | Active LED module with LED and transistor formed on same substrate |
US11935949B1 (en) | 2013-03-11 | 2024-03-19 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US8902663B1 (en) | 2013-03-11 | 2014-12-02 | Monolithic 3D Inc. | Method of maintaining a memory state |
US11869965B2 (en) | 2013-03-11 | 2024-01-09 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US12094965B2 (en) | 2013-03-11 | 2024-09-17 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US10325651B2 (en) | 2013-03-11 | 2019-06-18 | Monolithic 3D Inc. | 3D semiconductor device with stacked memory |
US10840239B2 (en) | 2014-08-26 | 2020-11-17 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11398569B2 (en) | 2013-03-12 | 2022-07-26 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12100646B2 (en) | 2013-03-12 | 2024-09-24 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US8994404B1 (en) | 2013-03-12 | 2015-03-31 | Monolithic 3D Inc. | Semiconductor device and structure |
US11088130B2 (en) | 2014-01-28 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11923374B2 (en) | 2013-03-12 | 2024-03-05 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US9117749B1 (en) | 2013-03-15 | 2015-08-25 | Monolithic 3D Inc. | Semiconductor device and structure |
US10224279B2 (en) | 2013-03-15 | 2019-03-05 | Monolithic 3D Inc. | Semiconductor device and structure |
JP6119335B2 (ja) * | 2013-03-18 | 2017-04-26 | 日亜化学工業株式会社 | 発光素子保持構造体 |
US11574109B1 (en) | 2013-04-15 | 2023-02-07 | Monolithic 3D Inc | Automation methods for 3D integrated circuits and devices |
US11341309B1 (en) | 2013-04-15 | 2022-05-24 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11720736B2 (en) | 2013-04-15 | 2023-08-08 | Monolithic 3D Inc. | Automation methods for 3D integrated circuits and devices |
US11030371B2 (en) | 2013-04-15 | 2021-06-08 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11270055B1 (en) | 2013-04-15 | 2022-03-08 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11487928B2 (en) | 2013-04-15 | 2022-11-01 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US9021414B1 (en) | 2013-04-15 | 2015-04-28 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
CN104241262B (zh) | 2013-06-14 | 2020-11-06 | 惠州科锐半导体照明有限公司 | 发光装置以及显示装置 |
US8994033B2 (en) | 2013-07-09 | 2015-03-31 | Soraa, Inc. | Contacts for an n-type gallium and nitrogen substrate for optical devices |
WO2015011984A1 (ja) * | 2013-07-22 | 2015-01-29 | 株式会社村田製作所 | 垂直共振面発光レーザアレイおよびその製造方法 |
US9419189B1 (en) | 2013-11-04 | 2016-08-16 | Soraa, Inc. | Small LED source with high brightness and high efficiency |
US9865523B2 (en) | 2014-01-17 | 2018-01-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Robust through-silicon-via structure |
US11031394B1 (en) | 2014-01-28 | 2021-06-08 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10297586B2 (en) | 2015-03-09 | 2019-05-21 | Monolithic 3D Inc. | Methods for processing a 3D semiconductor device |
US12094829B2 (en) | 2014-01-28 | 2024-09-17 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11107808B1 (en) | 2014-01-28 | 2021-08-31 | Monolithic 3D Inc. | 3D semiconductor device and structure |
CN103779461A (zh) * | 2014-02-13 | 2014-05-07 | 马鞍山太时芯光科技有限公司 | 一种衬底及其回收再利用的方法 |
CN103824905A (zh) * | 2014-02-24 | 2014-05-28 | 无锡晶凯科技有限公司 | 一种氮化镓led蓝宝石衬底柔性电子应用的激光剥离方法 |
CN103985664B (zh) * | 2014-04-10 | 2016-08-31 | 中国电子科技集团公司第五十五研究所 | 硅基氮化镓外延层剥离转移的方法 |
US10615222B2 (en) * | 2014-08-21 | 2020-04-07 | The University Of Hong Kong | Flexible GAN light-emitting diodes |
DE102014115105B4 (de) | 2014-10-09 | 2023-06-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Halbleitereinrichtung und Verfahren zur Herstellung einer Halbleitereinrichtung |
US10600718B1 (en) * | 2014-12-03 | 2020-03-24 | Ii-Vi Delaware, Inc. | Heat sink package |
KR102295476B1 (ko) | 2015-03-31 | 2021-08-30 | 삼성디스플레이 주식회사 | 표시 기판의 제조 방법 |
US10825779B2 (en) | 2015-04-19 | 2020-11-03 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10381328B2 (en) | 2015-04-19 | 2019-08-13 | Monolithic 3D Inc. | Semiconductor device and structure |
US11056468B1 (en) | 2015-04-19 | 2021-07-06 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11011507B1 (en) | 2015-04-19 | 2021-05-18 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11956952B2 (en) | 2015-08-23 | 2024-04-09 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US12100658B2 (en) | 2015-09-21 | 2024-09-24 | Monolithic 3D Inc. | Method to produce a 3D multilayer semiconductor device and structure |
US11937422B2 (en) | 2015-11-07 | 2024-03-19 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US11114427B2 (en) | 2015-11-07 | 2021-09-07 | Monolithic 3D Inc. | 3D semiconductor processor and memory device and structure |
US11978731B2 (en) | 2015-09-21 | 2024-05-07 | Monolithic 3D Inc. | Method to produce a multi-level semiconductor memory device and structure |
CN115942752A (zh) | 2015-09-21 | 2023-04-07 | 莫诺利特斯3D有限公司 | 3d半导体器件和结构 |
US10522225B1 (en) | 2015-10-02 | 2019-12-31 | Monolithic 3D Inc. | Semiconductor device with non-volatile memory |
US11991884B1 (en) | 2015-10-24 | 2024-05-21 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US12035531B2 (en) | 2015-10-24 | 2024-07-09 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US12016181B2 (en) | 2015-10-24 | 2024-06-18 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US10847540B2 (en) | 2015-10-24 | 2020-11-24 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11114464B2 (en) | 2015-10-24 | 2021-09-07 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12120880B1 (en) | 2015-10-24 | 2024-10-15 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US11296115B1 (en) | 2015-10-24 | 2022-04-05 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10418369B2 (en) | 2015-10-24 | 2019-09-17 | Monolithic 3D Inc. | Multi-level semiconductor memory device and structure |
WO2017077806A1 (ja) * | 2015-11-02 | 2017-05-11 | 日本碍子株式会社 | 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法 |
US11329059B1 (en) | 2016-10-10 | 2022-05-10 | Monolithic 3D Inc. | 3D memory devices and structures with thinned single crystal substrates |
US11930648B1 (en) | 2016-10-10 | 2024-03-12 | Monolithic 3D Inc. | 3D memory devices and structures with metal layers |
US11711928B2 (en) | 2016-10-10 | 2023-07-25 | Monolithic 3D Inc. | 3D memory devices and structures with control circuits |
US11869591B2 (en) | 2016-10-10 | 2024-01-09 | Monolithic 3D Inc. | 3D memory devices and structures with control circuits |
US11251149B2 (en) | 2016-10-10 | 2022-02-15 | Monolithic 3D Inc. | 3D memory device and structure |
US11812620B2 (en) | 2016-10-10 | 2023-11-07 | Monolithic 3D Inc. | 3D DRAM memory devices and structures with control circuits |
US10193301B2 (en) * | 2017-03-31 | 2019-01-29 | Nichia Corporation | Method of manufacturing light emitting device and light emitting device |
CN107195731B (zh) * | 2017-04-14 | 2019-05-24 | 扬州乾照光电有限公司 | 一种正极性高亮度AlGaInP发光二极管及其制造方法 |
CN108878596B (zh) * | 2018-05-29 | 2020-12-15 | 河源市众拓光电科技有限公司 | 一种边缘无损的垂直结构led芯片衬底的转移方法 |
CN110632808B (zh) * | 2018-06-25 | 2022-03-01 | 蓝思科技(长沙)有限公司 | 一种蓝宝石晶片与金属部件的拆解及脱胶方法 |
KR102544296B1 (ko) * | 2018-09-13 | 2023-06-16 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | 표면발광레이저 소자 및 이를 구비한 표면발광레이저 장치 |
CN111326463B (zh) * | 2018-12-14 | 2023-06-23 | 云谷(固安)科技有限公司 | 一种半导体器件激光剥离方法 |
US11763864B2 (en) | 2019-04-08 | 2023-09-19 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures with bit-line pillars |
US10892016B1 (en) | 2019-04-08 | 2021-01-12 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11296106B2 (en) | 2019-04-08 | 2022-04-05 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11018156B2 (en) | 2019-04-08 | 2021-05-25 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11158652B1 (en) | 2019-04-08 | 2021-10-26 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
CN110265864B (zh) * | 2019-07-08 | 2020-06-19 | 厦门大学 | 一种GaN基垂直腔面发射激光器的制备方法 |
CN111370542B (zh) * | 2020-03-18 | 2021-03-05 | 广东省半导体产业技术研究院 | 一种半导体结构及其制作方法 |
JP7553915B2 (ja) * | 2020-04-15 | 2024-09-19 | 国立大学法人東海国立大学機構 | 窒化ガリウム半導体装置の製造方法 |
WO2022173467A2 (en) * | 2020-09-23 | 2022-08-18 | Antora Energy, Inc. | Structures and methods for producing an optoelectronic device |
CN113264500A (zh) * | 2021-04-27 | 2021-08-17 | 歌尔微电子股份有限公司 | 微机电器件、其制造方法及电子设备 |
US11897205B2 (en) | 2022-06-02 | 2024-02-13 | Sdc U.S. Smilepay Spv | Laser-based support structure removal |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3453722A (en) | 1965-12-28 | 1969-07-08 | Texas Instruments Inc | Method for the fabrication of integrated circuits |
US4999694A (en) * | 1989-08-18 | 1991-03-12 | At&T Bell Laboratories | Photodiode |
US5331180A (en) | 1992-04-30 | 1994-07-19 | Fujitsu Limited | Porous semiconductor light emitting device |
US5631190A (en) * | 1994-10-07 | 1997-05-20 | Cree Research, Inc. | Method for producing high efficiency light-emitting diodes and resulting diode structures |
JPH0964477A (ja) * | 1995-08-25 | 1997-03-07 | Toshiba Corp | 半導体発光素子及びその製造方法 |
JPH10254370A (ja) * | 1997-03-10 | 1998-09-25 | Canon Inc | 表示パネル及びそれを用いた投射型表示装置 |
US6201262B1 (en) * | 1997-10-07 | 2001-03-13 | Cree, Inc. | Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure |
US5990694A (en) * | 1997-11-06 | 1999-11-23 | Micron Technology, Inc. | Integrated circuit probing method |
US6331208B1 (en) * | 1998-05-15 | 2001-12-18 | Canon Kabushiki Kaisha | Process for producing solar cell, process for producing thin-film semiconductor, process for separating thin-film semiconductor, and process for forming semiconductor |
JP4352473B2 (ja) | 1998-06-26 | 2009-10-28 | ソニー株式会社 | 半導体装置の製造方法 |
US6459100B1 (en) * | 1998-09-16 | 2002-10-01 | Cree, Inc. | Vertical geometry ingan LED |
US20010042866A1 (en) * | 1999-02-05 | 2001-11-22 | Carrie Carter Coman | Inxalygazn optical emitters fabricated via substrate removal |
US6713789B1 (en) | 1999-03-31 | 2004-03-30 | Toyoda Gosei Co., Ltd. | Group III nitride compound semiconductor device and method of producing the same |
US7071557B2 (en) | 1999-09-01 | 2006-07-04 | Micron Technology, Inc. | Metallization structures for semiconductor device interconnects, methods for making same, and semiconductor devices including same |
JP4060511B2 (ja) * | 2000-03-28 | 2008-03-12 | パイオニア株式会社 | 窒化物半導体素子の分離方法 |
DE10051465A1 (de) * | 2000-10-17 | 2002-05-02 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines Halbleiterbauelements auf GaN-Basis |
JP2001319896A (ja) * | 2000-05-08 | 2001-11-16 | Tokyo Electron Ltd | 半導体装置の製造方法 |
US6586762B2 (en) | 2000-07-07 | 2003-07-01 | Nichia Corporation | Nitride semiconductor device with improved lifetime and high output power |
JP3882539B2 (ja) | 2000-07-18 | 2007-02-21 | ソニー株式会社 | 半導体発光素子およびその製造方法、並びに画像表示装置 |
US6562648B1 (en) * | 2000-08-23 | 2003-05-13 | Xerox Corporation | Structure and method for separation and transfer of semiconductor thin films onto dissimilar substrate materials |
US6518198B1 (en) | 2000-08-31 | 2003-02-11 | Micron Technology, Inc. | Electroless deposition of doped noble metals and noble metal alloys |
JP2002176226A (ja) | 2000-09-22 | 2002-06-21 | Toshiba Corp | 光素子およびその製造方法 |
US6690042B2 (en) | 2000-09-27 | 2004-02-10 | Sensor Electronic Technology, Inc. | Metal oxide semiconductor heterostructure field effect transistor |
US6653662B2 (en) | 2000-11-01 | 2003-11-25 | Matsushita Electric Industrial Co., Ltd. | Semiconductor light-emitting device, method for fabricating the same, and method for driving the same |
US6864158B2 (en) | 2001-01-29 | 2005-03-08 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing nitride semiconductor substrate |
JP4744700B2 (ja) * | 2001-01-29 | 2011-08-10 | 株式会社日立製作所 | 薄膜半導体装置及び薄膜半導体装置を含む画像表示装置 |
US6649494B2 (en) | 2001-01-29 | 2003-11-18 | Matsushita Electric Industrial Co., Ltd. | Manufacturing method of compound semiconductor wafer |
JP4148664B2 (ja) | 2001-02-02 | 2008-09-10 | 三洋電機株式会社 | 窒化物系半導体レーザ素子およびその形成方法 |
JP3705142B2 (ja) | 2001-03-27 | 2005-10-12 | ソニー株式会社 | 窒化物半導体素子及びその作製方法 |
US6765232B2 (en) | 2001-03-27 | 2004-07-20 | Ricoh Company, Ltd. | Semiconductor light-emitting device, surface-emission laser diode, and production apparatus thereof, production method, optical module and optical telecommunication system |
US6498113B1 (en) | 2001-06-04 | 2002-12-24 | Cbl Technologies, Inc. | Free standing substrates by laser-induced decoherency and regrowth |
US6787435B2 (en) * | 2001-07-05 | 2004-09-07 | Gelcore Llc | GaN LED with solderable backside metal |
US6656756B2 (en) | 2001-08-24 | 2003-12-02 | Telecommunication Laboratories, Chunghwa Telecom Co., Ltd. | Technique for a surface-emitting laser diode with a metal reflector |
JP2003068654A (ja) * | 2001-08-27 | 2003-03-07 | Hoya Corp | 化合物単結晶の製造方法 |
US7148520B2 (en) * | 2001-10-26 | 2006-12-12 | Lg Electronics Inc. | Diode having vertical structure and method of manufacturing the same |
US6617261B2 (en) | 2001-12-18 | 2003-09-09 | Xerox Corporation | Structure and method for fabricating GaN substrates from trench patterned GaN layers on sapphire substrates |
US6455340B1 (en) * | 2001-12-21 | 2002-09-24 | Xerox Corporation | Method of fabricating GaN semiconductor structures using laser-assisted epitaxial liftoff |
US20030189215A1 (en) * | 2002-04-09 | 2003-10-09 | Jong-Lam Lee | Method of fabricating vertical structure leds |
US8294172B2 (en) * | 2002-04-09 | 2012-10-23 | Lg Electronics Inc. | Method of fabricating vertical devices using a metal support film |
US6967981B2 (en) * | 2002-05-30 | 2005-11-22 | Xerox Corporation | Nitride based semiconductor structures with highly reflective mirrors |
KR101030068B1 (ko) * | 2002-07-08 | 2011-04-19 | 니치아 카가쿠 고교 가부시키가이샤 | 질화물 반도체 소자의 제조방법 및 질화물 반도체 소자 |
US6744196B1 (en) * | 2002-12-11 | 2004-06-01 | Oriol, Inc. | Thin film LED |
KR100483049B1 (ko) * | 2003-06-03 | 2005-04-15 | 삼성전기주식회사 | 수직구조 질화갈륨계 발광다이오드의 제조방법 |
JP5142523B2 (ja) | 2003-06-04 | 2013-02-13 | チェオル ユー,ミュング | 縦型構造複合半導体装置 |
JP2005005421A (ja) | 2003-06-11 | 2005-01-06 | Sharp Corp | 酸化物半導体発光素子 |
EP1664393B1 (en) | 2003-07-14 | 2013-11-06 | Allegis Technologies, Inc. | METHOD OF PROducING GALLIUM NITRIDE LEDs |
US7122827B2 (en) * | 2003-10-15 | 2006-10-17 | General Electric Company | Monolithic light emitting devices based on wide bandgap semiconductor nanostructures and methods for making same |
US20050189551A1 (en) | 2004-02-26 | 2005-09-01 | Hui Peng | High power and high brightness white LED assemblies and method for mass production of the same |
JP5336075B2 (ja) * | 2004-04-28 | 2013-11-06 | バーティクル,インク | 縦構造半導体装置 |
TWI433343B (zh) * | 2004-06-22 | 2014-04-01 | Verticle Inc | 具有改良光輸出的垂直構造半導體裝置 |
TWI389334B (zh) * | 2004-11-15 | 2013-03-11 | Verticle Inc | 製造及分離半導體裝置之方法 |
US7829909B2 (en) * | 2005-11-15 | 2010-11-09 | Verticle, Inc. | Light emitting diodes and fabrication methods thereof |
-
2004
- 2004-06-03 JP JP2006515072A patent/JP5142523B2/ja not_active Expired - Fee Related
- 2004-06-03 KR KR1020117008352A patent/KR20110042249A/ko not_active Application Discontinuation
- 2004-06-03 WO PCT/US2004/017297 patent/WO2004109764A2/en active Application Filing
- 2004-06-03 US US10/861,743 patent/US7384807B2/en not_active Expired - Fee Related
- 2004-06-03 KR KR1020057023266A patent/KR20060059891A/ko active Application Filing
- 2004-06-03 CN CNB2004800186202A patent/CN100483612C/zh not_active Expired - Fee Related
- 2004-06-03 TW TW093116018A patent/TWI344706B/zh not_active IP Right Cessation
-
2006
- 2006-03-02 US US11/367,229 patent/US7977133B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103904015A (zh) * | 2014-03-21 | 2014-07-02 | 中国电子科技集团公司第五十五研究所 | 一种砷化镓基外延层剥离转移的方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20110042249A (ko) | 2011-04-25 |
JP2007526618A (ja) | 2007-09-13 |
US7977133B2 (en) | 2011-07-12 |
TW200509415A (en) | 2005-03-01 |
WO2004109764A3 (en) | 2007-02-01 |
US7384807B2 (en) | 2008-06-10 |
JP5142523B2 (ja) | 2013-02-13 |
KR20060059891A (ko) | 2006-06-02 |
US20060148115A1 (en) | 2006-07-06 |
WO2004109764A2 (en) | 2004-12-16 |
CN1998065A (zh) | 2007-07-11 |
TWI344706B (en) | 2011-07-01 |
US20040245543A1 (en) | 2004-12-09 |
US20080254561A2 (en) | 2008-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100483612C (zh) | 用于制造垂直结构的复合半导体器件的方法 | |
CN101901858B (zh) | 垂直结构半导体器件 | |
CN101027777B (zh) | 具有改善的光输出的垂直结构半导体器件 | |
US7268372B2 (en) | Vertical GaN light emitting diode and method for manufacturing the same | |
JP5859053B2 (ja) | 金属支持膜を使用した縦方向デバイスの製作方法 | |
TWI431798B (zh) | 具有導電性金屬基板之發光二極體 | |
CN100362671C (zh) | 固态元件和固态元件装置 | |
CN102097558B (zh) | 形成具有排热结构的垂直结构发光二极管的方法 | |
US20040248377A1 (en) | Method for manufacturing vertical gan light emitting diodes | |
CN101371338A (zh) | 用于制造和分离半导体器件的方法 | |
TW200404375A (en) | Semiconductor element and method for producing the same | |
CN101103457A (zh) | 用以由发光二极管移除热量的系统及方法 | |
CN101465402B (zh) | 一种基于无缝隙平面键合的薄膜led芯片器件制造方法 | |
CN102097542A (zh) | 具有排热结构的垂直结构发光二极管的形成方法 | |
US20080293172A1 (en) | Method for manufacturing light emitting diode devices | |
KR20090105462A (ko) | 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및이의 제조 방법 | |
CN100544046C (zh) | 固态元件装置 | |
CN109545931B (zh) | 一种垂直结构led晶圆及剥离方法 | |
CN103733359A (zh) | 半导体发光器件制造方法和以该方法制造的半导体发光器件 | |
CN101465319B (zh) | 形成发光二极管元件的方法 | |
KR20110131477A (ko) | 질화물 반도체 발광다이오드 및 이의 제조방법 | |
CN104617086A (zh) | 一种并联结构的集成led芯片及其生产方法 | |
KR20110131478A (ko) | 질화물 반도체 발광다이오드 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20151119 Address after: Seoul, South Kerean Patentee after: Verticle Inc. Address before: American California Patentee before: Liu Mingzhe |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090429 Termination date: 20160603 |