WO2022009767A1 - 摺動部品 - Google Patents
摺動部品 Download PDFInfo
- Publication number
- WO2022009767A1 WO2022009767A1 PCT/JP2021/024940 JP2021024940W WO2022009767A1 WO 2022009767 A1 WO2022009767 A1 WO 2022009767A1 JP 2021024940 W JP2021024940 W JP 2021024940W WO 2022009767 A1 WO2022009767 A1 WO 2022009767A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- groove portion
- deep groove
- shallow groove
- dynamic pressure
- sliding
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 81
- 239000012530 fluid Substances 0.000 claims description 71
- 239000007788 liquid Substances 0.000 abstract description 3
- 239000003507 refrigerant Substances 0.000 description 18
- 230000006835 compression Effects 0.000 description 17
- 238000007906 compression Methods 0.000 description 17
- 239000010687 lubricating oil Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0021—Systems for the equilibration of forces acting on the pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C27/00—Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
- F04C27/005—Axial sealings for working fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C27/00—Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
- F04C27/008—Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0042—Driving elements, brakes, couplings, transmissions specially adapted for pumps
- F04C29/005—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
- F04C29/0057—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/04—Sliding-contact bearings for exclusively rotary movement for axial load only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/04—Sliding-contact bearings for exclusively rotary movement for axial load only
- F16C17/045—Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/20—Sliding surface consisting mainly of plastics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/50—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/50—Bearings
- F04C2240/54—Hydrostatic or hydrodynamic bearing assemblies specially adapted for rotary positive displacement pumps or compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/80—Other components
- F04C2240/801—Wear plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
- F04C29/028—Means for improving or restricting lubricant flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/42—Pumps with cylinders or pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2362/00—Apparatus for lighting or heating
- F16C2362/52—Compressors of refrigerators, e.g. air-conditioners
Definitions
- the present invention has been made focusing on such a problem, and an object of the present invention is to provide a sliding component capable of stably reducing the frictional resistance of a sliding surface accompanied by eccentric rotation.
- the communication passage may communicate with the shallow groove portion. According to this, since the fluid can be supplied to the shallow groove portion through the communication passage, the lubricity between the sliding surfaces can be further improved.
- the communication passage may be a groove formed on the sliding surface. According to this, since the fluid is supplied from the communication passage between the sliding surfaces, the lubricity between the sliding surfaces can be improved.
- the communication passage may be a communication hole formed in the sliding component. According to this, the fluid in either the inside or the outside can be stably supplied to the deep groove portion through the communication passage without being affected by the sliding surface.
- the shallow groove portion may surround the entire circumference of the deep groove portion. According to this, dynamic pressure can be generated at any position over the entire circumference of the shallow groove portion according to the direction of the relative movement of the shallow groove portion due to the eccentric rotation.
- the sliding component of the present invention is applied to a rotating machine including an eccentric mechanism, for example, a scroll compressor C that sucks, compresses, and discharges a refrigerant as a fluid used in an air conditioning system of an automobile or the like.
- the refrigerant is a gas, and a mist-like lubricating oil is mixed therewith.
- the cover 12 is formed with a discharge communication passage 13 that connects a refrigerant circuit (not shown) and the high pressure chamber 30. Further, the cover 12 is formed with a part of the back pressure communication passage 14 connecting the high pressure chamber 30 and the back pressure chamber 50, which is branched from the discharge communication passage 13.
- the discharge communication passage 13 is provided with an oil separator 6 that separates the lubricating oil from the refrigerant.
- the movable scroll 42 is made of metal and includes a spiral wrap 42b projecting from the surface of the disk-shaped end plate 42a, that is, one end surface of the end plate 42a. Further, the movable scroll 42 is formed with a boss 42c protruding from the back surface of the end plate 42a, that is, the center of the other end surface of the end plate 42a. An eccentric portion 2a formed at one end of the rotating shaft 2 is fitted into the boss 42c so as to be relatively rotatable.
- an eccentric mechanism for eccentric rotation of the rotary shaft 2 is configured by an eccentric portion 2a of the rotary shaft 2 and a counterweight portion 2b protruding in the outer diameter direction from one end of the rotary shaft 2. Has been done.
- the side seal 7 as a sliding component in this embodiment will be described.
- the side seal 7 is made of resin and has a rectangular cross section and an annular shape in the axial direction.
- the side seal 7 is fixed to the back surface of the end plate 42a of the movable scroll 42 (see FIG. 1).
- the sliding surface 7a of the side seal 7 is shown.
- the sliding surface 7a of the side seal 7 includes a land 79 and a plurality of dynamic pressure generating mechanisms 70.
- the dynamic pressure generation mechanism 70 is arranged substantially evenly in the circumferential direction of the sliding surface 7a.
- the deep groove portion 72 of the first embodiment will be described as a portion having a substantially line-symmetrical shape with reference to a virtual arc line along the sliding surface 7a. This matter is the same for each subsequent embodiment.
- the shallow groove portion 71 is formed of a wall surface 71a and a bottom surface 71b.
- the wall surface 71a extends in a C shape in the depth direction of the shallow groove portion 71 substantially orthogonal to the flat surface 79a of the land 79.
- the bottom surface 71b extends substantially orthogonal to the end of the wall surface 71a and substantially parallel to the surface 79a of the land 79, and is formed in a C-shape and flatly.
- the deep groove portion 72 is formed of a wall surface 72a and a bottom surface 72b.
- the wall surface 72a extends substantially orthogonal to the inner diameter side end of the bottom surface 71b of the shallow groove portion 71 in the depth direction of the deep groove portion 72.
- the bottom surface 72b extends substantially orthogonal to the end of the wall surface 72a and substantially parallel to the surface 79a of the land 79, and is formed in a circular shape and flatly.
- the depth dimension L1 of the shallow groove portion 71 is a dimension from the surface 79a of the land 79 to the bottom surface 71b of the shallow groove portion 71.
- the depth dimension L2 of the deep groove portion 72 is a dimension from the surface 79a of the land 79 to the bottom surface 72b of the deep groove portion 72.
- the depth dimension L1 of the shallow groove portion 71 is shallower than the depth dimension L2 of the deep groove portion 72 (L1 ⁇ L2).
- the depth dimension L2 of the deep groove portion 72 is formed deeper than the depth dimension of the shallow groove portion 71, the depth dimensions of the shallow groove portion 71 and the deep groove portion 72 can be freely changed. Further, from the viewpoint of supplying the fluid from the deep groove portion 72 to the shallow groove portion 71, which will be described later, it is preferable that the dimensional difference between the depth dimension L1 and the depth dimension L2 is 10 times or more.
- a step 74 is formed by the bottom surface 71b of the shallow groove portion 71 and the wall surface 72a of the deep groove portion 72.
- the angle between the bottom surface 71b of the shallow groove portion 71 and the wall surface 72a of the deep groove portion 72 in the step 74 is approximately 90 degrees.
- the shallow groove portion 71 and the deep groove portion 72 communicate with each other over the portion where the step 74 is formed (see FIG. 3A).
- the communication passage 73 is rectangular and flat extending in the depth direction of the communication passage 73 substantially orthogonal to the surface 79a of the land 79 and the bottom surface 71b of the shallow groove portion 71. It is formed of a rectangular and flat bottom surface 73b extending substantially orthogonal to the ends of the wall surfaces 73a and 73c and substantially parallel to the surface 79a of the land 79 (FIG. 3 (b)). reference). That is, the communication passage 73 is a groove formed on the sliding surface 7a. Further, the circumferential dimension between the wall surfaces 73a and 73c of the communication passage 73 is smaller than the maximum circumferential dimension of the deep groove portion 72.
- the bottom surface 73b of the communication passage 73 is formed in substantially the same plane as the bottom surface 72b of the deep groove portion 72, from the end surface of the land 79 to the bottom surface 73b of the communication passage 73.
- the depth dimension of the communication passage 73 which is the dimension of, is the same depth dimension L2 as the deep groove portion 72.
- the thrust plate 8 is made of metal and has an annular shape, and a seal ring 43 is fixed to one end surface thereof, and the seal ring 43 is inside the inner casing 3. It is in contact with the peripheral surface. As a result, the thrust plate 8 functions as a thrust bearing that receives an axial load of the movable scroll 42 via the side seal 7.
- the side seal 7 and the seal ring 43 partition the low pressure chamber 20 formed on the outer diameter side of the movable scroll 42 and the back pressure chamber 50 formed on the back side of the movable scroll 42 inside the inner casing 3. is doing.
- the back pressure chamber 50 is a closed space formed between the inner casing 3 and the rotating shaft 2.
- the seal ring 44 is fixed to the inner circumference of the through hole 3a provided in the center of the other end of the inner casing 3 and is slidably contacted with the rotating shaft 2 inserted through the through hole 3a. Further, the high pressure chamber 30 and the back pressure chamber 50 are communicated with each other by a back pressure communication passage 14.
- the back pressure communication passage 14 is formed over the cover 12, the fixed scroll 41, and the inner casing 3, and is provided with an orifice (not shown).
- the refrigerant in the high pressure chamber 30 whose pressure is adjusted by the orifice is supplied to the back pressure chamber 50 together with the lubricating oil separated by the oil separator 6.
- the inner casing 3 is formed with a pressure release hole 16 that penetrates in the radial direction and communicates the low pressure chamber 20 and the back pressure chamber 50, and a pressure adjusting valve 45 is provided in the pressure release hole 16. ing.
- the pressure adjusting valve 45 is opened when the pressure in the back pressure chamber 50 exceeds a set value.
- the boss 42c of the movable scroll 42 is inserted through the through hole 8b in the center of the thrust plate 8.
- the through hole 8b is formed to have a diameter that allows eccentric rotation by the eccentric portion 2a of the rotating shaft 2 that is inserted into the boss 42c. That is, the sliding surface 7a of the side seal 7 can slide relative to the sliding surface 8a of the thrust plate 8 by the eccentric rotation of the rotating shaft 2 (see FIG. 5).
- FIGS. 3, 4, 6 to 9 A fluid containing a refrigerant, lubricating oil, and the like is stored in the dynamic pressure generation mechanism 70 even when the rotation is stopped.
- the white arrow and the dotted white arrow shown in FIG. 3A indicate the relative sliding direction of the dynamic pressure generation mechanism 70, and the white arrow indicates the case where the side seal 7 moves in the circumferential direction.
- the dotted white arrow indicates the case where the side seal 7 moves in the outer radial direction.
- FIGS. 6 to 9 the side seals 7 when viewed from the drive motor M (see FIG. 1) side are shown, and the circles shown on the wall surface 71a of the dynamic pressure generation mechanism 70 are the respective movements. The place where the pressure becomes the highest in the pressure generation mechanism 70 is shown.
- the pressure of the fluid is increased at the portion 71d downstream of the deep groove portion 72 of the shallow groove portion 71, and a positive dynamic pressure is generated.
- the dynamic pressure of positive pressure may be simply described as dynamic pressure.
- the fluid moves toward the portion 71d on the downstream side of the deep groove portion 72 of the shallow groove portion 71.
- the deep groove portion 72 not only a large amount of fluid is stored, but also there is a communication passage 73 in which a high-pressure fluid flows from the back pressure chamber 50, so that the fluid in the portion 71u does not decrease sharply, and the portion 71u Then, a slight negative pressure is generated or no negative pressure is generated.
- the fluid in the dynamic pressure generation mechanism 70 flows through the back pressure chamber 73 through the back pressure chamber 73. Even when the dynamic pressure generating mechanism 70 slides relative to each other so as to move to 50, that is, even when the side seal 7 moves in the direction indicated by the dotted white arrow in FIG. 4, the fluid flows into the communication passage 73. The high-pressure fluid that is about to flow out to the back pressure chamber 50 is suppressed.
- the dynamic pressure is generated in the vicinity of the communication passage 73 in the dynamic pressure generation mechanism 70, particularly in the vicinity of the corner portions 75a and 75b. From this, since the points where the dynamic pressure is generated in each dynamic pressure generation mechanism 70 are scattered in the substantially circumferential direction over the sliding surface 7a of the side seal 7, the relative angles between the sliding surfaces 7a and 8a are large. Is kept small.
- the dynamic pressure generation mechanism 70 since the high-pressure fluid directly flows from the back pressure chamber 50 through the communication passage 73 into the shallow groove portion 71 and the deep groove portion 72, for example, the back pressure generation 73 is not formed and the back pressure generation mechanism 70 is not formed. Since the pressure in the dynamic pressure generation mechanism 70 is relatively increased as compared with the configuration in which the high-pressure fluid does not directly flow from the compression chamber 50, it is easy to separate the sliding surfaces 7a and 8a from each other. ..
- each dynamic pressure generation mechanism 70 the pressure portion generated on the wall surface 71a gradually moves along the wall surface 71a according to the rotation angle of the boss 42c (see FIGS. 6 to 9).
- the fluid flowing out from the dynamic pressure generation mechanism 70 upstream in the direction due to the generation of dynamic pressure between the sliding surfaces 7a and 8a is likely to flow into the adjacent dynamic pressure generation mechanism 70 on the downstream side at that time. Therefore, not only is it easy for a fluid film to be formed by the fluid over the circumferential direction between the sliding surfaces 7a and 8a, but also the fluid on the land 79 is likely to be supplied into the dynamic pressure generation mechanism 70 (see FIG. 3B). ).
- the dynamic pressure generation mechanism 70 As the fluid in the shallow groove portion 71 moves, the fluid in the deep groove portion 72 moves into the shallow groove portion 71 (see FIG. 3B). As a result, dynamic pressure is generated in the shallow groove portion 71, and even if the fluid flows out from the shallow groove portion 71 to the land 79, the fluid stored in the deep groove portion 72 is supplied to the shallow groove portion 71, so that the shallow groove portion 71 is shallow. Dynamic pressure can be reliably generated in the groove 71.
- the deep groove portion 72 is formed concentrically with the shallow groove portion 71, and the wall surface 72a of the deep groove portion 72 is formed in a C shape in the axial direction and is continuous with the same radius of curvature.
- the width between the wall surface 71a of the shallow groove portion 71 and the wall surface 72a of the deep groove portion 72 is substantially uniform in the circumferential direction, and communicates with the shallow groove portion 71 over the portion where the step 74 is formed. be. Therefore, no matter where the dynamic pressure is generated in the shallow groove portion 71, the fluid is smoothly supplied to the shallow groove portion 71.
- the dynamic pressure generation mechanism 70 can supply a high-pressure fluid into the shallow groove portion 71 through the communication passage 73, not only can the dynamic pressure be reliably generated in the shallow groove portion 71, but also negative pressure can be generated. The generation of pressure can be reliably suppressed. Thereby, the lubricity between the sliding surfaces 7a and 8a can be further improved.
- the shallow groove portion 71 and the deep groove portion 72 are partitioned by the step 74, a large volume in the deep groove portion 72 can be formed.
- at least the bottom surface of the shallow groove portion and the wall surface of the deep groove portion which are comparative examples, have a tapered surface in which the radius of curvature becomes shorter as the depth increases, that is, the shallow groove portion and the deep groove portion are separated by a step. Without the configuration, the volume in the deep groove is small. In this way, since the amount of fluid that can be stored in the deep groove portion 72 can be increased, it is possible to reliably supply the fluid into the shallow groove portion 71, and it is possible to reliably generate cavitation while generating dynamic pressure. It can be suppressed.
- the cross-sectional shape of the deep groove portion does not prevent the cross-sectional shape of the deep groove portion from having various shapes, and for example, the shape may be such that the radius of curvature of the wall surface becomes longer toward the bottom surface.
- the depth dimension L2 of the deep groove portion 72 is 10 times or more the depth dimension L1 of the shallow groove portion 71, a large amount of fluid can be stored in the deep groove portion 72.
- the dynamic pressure generation mechanism 170 has a C-shaped shallow groove portion 171 in the axial direction in which the dimension in the circumferential direction is longer than the dimension in the radial direction, and a shaft similar to the shallow groove portion 171. It is composed of a deep groove portion 172 having an elliptical and C-shaped direction, and a communication passage 173 having a rectangular shape in the axial direction. For convenience of explanation, the boundary between the deep groove portion 172 and the continuous passage 173 is shown by a virtual two-dot chain line.
- the curvatures of the circumferential end portions 171c and 171d of the wall surface 171a of the shallow groove portion 171 are the smallest. Therefore, when the dynamic pressure generation mechanism 170 mainly moves relative to the circumferential direction, the fluid tends to concentrate on one of the circumferential end portion 171c and the circumferential end portion 171d located on the side opposite to the moving direction. Therefore, it is possible to increase the dynamic pressure generated at either the circumferential end portion 171c or the circumferential end portion 171d.
- the wall surface 171a of the shallow groove portion 171 and the wall surface 172a of the deep groove portion 172 have a substantially similar relationship with each other, between the wall surface 171a of the shallow groove portion 171 and the wall surface 172a of the deep groove portion 172. It is difficult for the width of the to change significantly in the circumferential direction. As a result, the fluid can be smoothly supplied from the deep groove portion 172 regardless of the position in the shallow groove portion 171 where the dynamic pressure is generated.
- the dynamic pressure generation mechanism 270 has a C-shaped shallow groove portion 271 in the axial direction, a deep groove portion 272 having a rectangular shape in the axial direction, and a deep groove portion 272 in the radial direction. It is composed of a series passage 273 having a rectangular shape in the axial direction. For convenience of explanation, the boundary between the deep groove portion 272 and the continuous passage 273 is shown by a virtual two-dot chain line.
- the high-pressure fluid flowing into the communication passage 273 can easily move to the deep groove portion 272, so that the fluid supply efficiency to the deep groove portion 272 is good.
- the deep groove portion 272 and the continuous passage 273 have substantially the same cross-sectional shape of the flow path, they are easy to form.
- the dynamic pressure generation mechanism 370 has an axially rectangular and C-shaped shallow groove portion 371 that is long in the circumferential direction and a deep groove portion that is long in the circumferential direction and has an axially rectangular shape. It is composed of 372 and a series passage 373 having a rectangular shape in the axial direction, which is elongated in the radial direction. Further, the shallow groove portion 371 extends in a direction substantially orthogonal to the communication passage 373. For convenience of explanation, the boundary between the deep groove portion 372 and the continuous passage 373 is shown by a virtual two-dot chain line.
- the deep groove portion 372 has been described as having a rectangular shape in the axial direction, it may be formed in an arc shape in the axial direction.
- the wall surface 371a of the shallow groove portion 371 and the wall surface 372a of the deep groove portion 372 are substantially similar to each other, between the wall surface 371a of the shallow groove portion 371 and the wall surface 372a of the deep groove portion 372.
- the shape is such that the width of is not significantly changed in the circumferential direction. As a result, the fluid can be smoothly supplied from the deep groove portion 372 regardless of the position in the shallow groove portion 371 where the dynamic pressure is generated.
- the deep groove portion 472 and the continuous passage 473 have substantially the same cross-sectional shape of the flow path, they are easy to form.
- the dynamic pressure generation mechanism 570 includes a shallow groove portion 571 in an annular shape in the axial direction, a deep groove portion 572 in the shape of a circular shape in the axial direction, and a depth direction of the deep groove portion 572 from the surface 79a of the land 79. It is composed of a communication passage 573 which is a communication hole having a circular shape in the radial direction and communicates with the bottom portion of the deep groove portion 572 and the inner diameter side of the side seal 507.
- the communication passage 573 is a communication hole, the fluid on the high pressure side can be stably supplied to the deep groove portion 572 through the communication passage 573 without being affected by the sliding surface 7a.
- the shallow groove portion 571 surrounds the entire circumference of the deep groove portion 572, at any position over the entire circumference of the shallow groove portion 571 according to the direction of the relative movement of the shallow groove portion 571 due to the eccentric rotation. Dynamic pressure can be generated.
- the shallow groove portion 571 is an annular shape in the axial direction, a substantially uniform dynamic pressure can be generated in each shallow groove portion 571 regardless of the direction of the relative movement of the shallow groove portion due to the eccentric rotation.
- the sliding component of the present invention has a sliding surface that slides relative to each other with eccentric rotation, it is not limited to an environment where there is a pressure difference between the inside and outside of the sliding surface, and the inside and outside of the sliding surface. It may be used in an environment where the pressures are substantially the same. Further, the sliding component of the present invention does not need to function as a seal, and may be any as long as it can reduce the friction of the sliding surface.
- the side seal having the sliding surface that slides relative to each other is described as being made of resin, and the thrust plate is made of metal, but the material of the sliding parts can be freely selected according to the usage environment and the like. May be selected for.
- the sliding surface has a sliding surface that slides relative to each other with eccentric rotation.
- a groove may be formed in the sliding region (see FIG. 5) of the sliding surface of the thrust plate which is a sliding component. Further, a groove may be formed on both the sliding surface of the side seal and the sliding surface of the thrust plate.
- a groove may be formed on a sliding surface that is provided with only one of a side seal and a thrust plate and slides relative to each other with eccentric rotation.
- a groove may be formed on either or both of the sliding surface of the thrust plate as a sliding component and the back surface of the end plate of the movable scroll.
- a groove may be formed on the sliding surface of the side seal as a sliding component. In this case, the side seal abuts on the inner peripheral surface of the inner casing and also functions as a thrust bearing that receives an axial load of the movable scroll.
- the movable scroll does not have a side seal and a thrust plate, and the back surface of the end plate of the movable scroll abuts on the inner peripheral surface of the inner casing and functions as a thrust bearing that receives the axial load of the movable scroll, the movable scroll A groove may be formed on the sliding surface formed on the back surface of the end plate.
- the dynamic pressure generation mechanism has been described as having a structure in which the shallow groove portion and the deep groove portion communicate with each other over the portion where the step is formed, but the present invention is not limited to this, and at least a part thereof.
- the lands are communicated with each other, for example, lands may be scattered between the shallow groove portion and the deep groove portion so that a part of the lands may be communicated with each other.
- the dynamic pressure generation mechanism has been described as having a structure in which the communication passage communicates with the back pressure chamber having a relatively higher pressure than the low pressure chamber, but the communication passage is not limited to this. May communicate with the low pressure chamber.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Rotary Pumps (AREA)
Abstract
Description
内外に流体が面する円環形状を成し、偏心回転を伴って相対摺動する摺動面を有する摺動部品であって、
前記摺動面は、ランドと、周方向に複数設けられている動圧発生機構と、を備え、
前記動圧発生機構は、浅溝部と、深溝部と、を具備し、
前記浅溝部は、前記深溝部に連通し、
前記深溝部から内外のいずれかの空間に連通する連通路が形成されている。
これによれば、連通路を通じて深溝部に対して流体が常時供給され、偏心回転に伴う浅溝部の相対移動の方向に応じて、深溝部内に貯留された流体が浅溝部内に安定して供給される。そのため、浅溝部内で動圧が発生し摺動面同士はわずかに離間する。これにより摺動面間に流体膜が形成されて、潤滑性を向上させることができるばかりでなく、キャビテーションの発生を抑制することができる。このようにして、摺動時における摺動面の摩擦抵抗を安定して低減することが可能となる。
これによれば、連通路を通じて浅溝部内にも流体を供給可能であるため、摺動面間における潤滑性をより向上させることができる。
これによれば、深溝部における貯留量を十分に確保することができる。
これによれば、偏心回転に伴う浅溝部の相対移動の方向に応じて、浅溝部内のいずれかの位置で動圧を発生させることができる。
これによれば、摺動面間に連通路からも流体が供給されるため、摺動面間における潤滑性を向上させることができる。
これによれば、摺動面の影響を受けずに連通路を通じて深溝部に対して内外いずれかの空間の流体を安定して供給することができる。
これによれば、偏心回転に伴う浅溝部の相対移動の方向に応じて、浅溝部内の全周に亘っていずれかの位置で動圧を発生させることができる。
2 回転軸
2a 偏心部
3 インナーケーシング
4 スクロール圧縮機構
6 オイルセパレータ
7 サイドシール(摺動部品)
7a 摺動面
8 スラストプレート
8a 摺動面
10 吸入口
13 吐出連通路
14 背圧連通路
15 吸入連通路
20 低圧室
30 高圧室
40 圧縮室
41 固定スクロール
42 可動スクロール
50 背圧室
70 動圧発生機構
71 浅溝部
72 深溝部
73 連通路
74 段差
79 ランド
107~507 サイドシール(摺動部品)
107a~507a 摺動面
170~570 動圧発生機構
171~571 浅溝部
172~572 深溝部
173~573 連通路
C スクロール圧縮機
L1 深さ寸法
L2 深さ寸法
M 駆動モータ
P 動圧発生機構の中心
Q 摺動面の中心
Claims (7)
- 内外に流体が面する円環形状を成し、偏心回転を伴って相対摺動する摺動面を有する摺動部品であって、
前記摺動面は、ランドと、周方向に複数設けられている動圧発生機構と、を備え、
前記動圧発生機構は、浅溝部と、深溝部と、を具備し、
前記浅溝部は、前記深溝部に連通し、
前記深溝部から内外のいずれかの空間に連通する連通路が形成されている摺動部品。 - 前記連通路は、前記浅溝部に連通している請求項1に記載の摺動部品。
- 前記摺動面と平行な方向の面積は、前記連通路よりも前記深溝部が大きい請求項1または2に記載の摺動部品。
- 前記浅溝部は、前記深溝部を環状に取り囲んでいる請求項1ないし3のいずれかに記載の摺動部品。
- 前記連通路は、前記摺動面に形成された溝である請求項1ないし4のいずれかに記載の摺動部品。
- 前記連通路は、前記摺動部品に形成された連通孔である請求項1ないし4のいずれかに記載の摺動部品。
- 前記浅溝部は、前記深溝部の全周を取り囲んでいる請求項6に記載の摺動部品。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022535276A JP7528219B2 (ja) | 2020-07-06 | 2021-07-01 | 摺動部品 |
US18/012,853 US11913454B2 (en) | 2020-07-06 | 2021-07-01 | Sliding component |
KR1020237000901A KR20230022986A (ko) | 2020-07-06 | 2021-07-01 | 슬라이딩 부품 |
CN202180044575.1A CN115715352A (zh) | 2020-07-06 | 2021-07-01 | 滑动部件 |
EP21838552.4A EP4177488A4 (en) | 2020-07-06 | 2021-07-01 | SLIDING COMPONENT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-116356 | 2020-07-06 | ||
JP2020116356 | 2020-07-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022009767A1 true WO2022009767A1 (ja) | 2022-01-13 |
Family
ID=79552520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/024940 WO2022009767A1 (ja) | 2020-07-06 | 2021-07-01 | 摺動部品 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11913454B2 (ja) |
EP (1) | EP4177488A4 (ja) |
JP (1) | JP7528219B2 (ja) |
KR (1) | KR20230022986A (ja) |
CN (1) | CN115715352A (ja) |
WO (1) | WO2022009767A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021182168A1 (ja) | 2020-03-09 | 2021-09-16 | イーグル工業株式会社 | 摺動部品 |
EP4177486A4 (en) * | 2020-07-06 | 2024-07-31 | Eagle Ind Co Ltd | SLIDING COMPONENT |
WO2022009767A1 (ja) | 2020-07-06 | 2022-01-13 | イーグル工業株式会社 | 摺動部品 |
WO2022009771A1 (ja) | 2020-07-06 | 2022-01-13 | イーグル工業株式会社 | 摺動部品 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS618402A (ja) * | 1984-06-20 | 1986-01-16 | Daikin Ind Ltd | スクロール形圧縮機 |
JPS63134883A (ja) * | 1986-11-27 | 1988-06-07 | Mitsubishi Electric Corp | スクロ−ル圧縮機 |
JPH0216381A (ja) * | 1988-07-01 | 1990-01-19 | Daikin Ind Ltd | スクロール型流体装置 |
JP2006009614A (ja) * | 2004-06-23 | 2006-01-12 | Matsushita Electric Ind Co Ltd | スクロール圧縮機 |
JP2006316677A (ja) * | 2005-05-11 | 2006-11-24 | Denso Corp | スクロール型圧縮機 |
JP2012082794A (ja) * | 2010-10-14 | 2012-04-26 | Sanden Corp | スクロール型流体機械 |
JP2016061208A (ja) | 2014-09-17 | 2016-04-25 | 三菱重工オートモーティブサーマルシステムズ株式会社 | スクロール圧縮機 |
Family Cites Families (186)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3380040A (en) | 1964-04-01 | 1968-04-23 | Hughes Aircraft Co | Hydrodynamic bearing support for a magnetic drum |
US3383116A (en) | 1964-09-30 | 1968-05-14 | J C Carter Company | Face seal |
FR1505487A (fr) | 1966-10-28 | 1967-12-15 | Guinard Pompes | Perfectionnement aux joints tournants à régulation de fuite |
US3704019A (en) | 1970-06-19 | 1972-11-28 | Gen Electric | Spiral groove face seals |
US3782737A (en) | 1970-07-13 | 1974-01-01 | Nasa | Spiral groove seal |
US3675935A (en) | 1970-07-13 | 1972-07-11 | Nasa | Spiral groove seal |
US4056478A (en) | 1973-10-04 | 1977-11-01 | Sargent Industries, Inc. | Bearing material employing frangible microcapsules containing lubricant |
JPS5134974A (en) | 1974-09-19 | 1976-03-25 | Kinugawa Rubber Ind | Dainamitsukushiiru no seiho |
DE2504204C3 (de) | 1975-02-01 | 1981-11-12 | Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt | Selbstdruckerzeugendes Axialgleitlager |
FR2342440A1 (fr) | 1976-02-27 | 1977-09-23 | Ca Atomic Energy Ltd | Joint facial pour arbre tournant |
DE2610045C2 (de) | 1976-03-11 | 1982-06-16 | M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen | Gasgesperrte Wellendichtung |
DE2622772C3 (de) | 1976-05-21 | 1980-05-08 | Hoesch Werke Ag, 4600 Dortmund | Einrichtung für den Transport und Wechsel von Walzen an Walzenbearbeitungsmaschinen |
JPS57163770A (en) | 1981-04-01 | 1982-10-08 | Eagle Ind Co Ltd | Mechanical seal |
DE3223703C2 (de) | 1982-06-25 | 1984-05-30 | M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen | Gasgesperrte Wellendichtung mit radialem Dichtspalt |
JPS59195253A (ja) | 1983-04-20 | 1984-11-06 | Canon Inc | 電子写真装置 |
JPS59195254A (ja) | 1983-04-20 | 1984-11-06 | Fujitsu Ltd | プリンタの露光量調整方法及び装置 |
JPH0647991B2 (ja) * | 1986-05-15 | 1994-06-22 | 三菱電機株式会社 | スクロ−ル圧縮機 |
CH677266A5 (ja) | 1986-10-28 | 1991-04-30 | Pacific Wietz Gmbh & Co Kg | |
US4889348A (en) | 1987-06-10 | 1989-12-26 | John Crane-Houdaille, Inc. | Spiral groove seal system for high vapor-pressure liquids |
JPH02136863A (ja) | 1988-11-18 | 1990-05-25 | Toshiba Corp | 画像形成装置の現像剤 |
DE3839106A1 (de) | 1988-11-18 | 1990-05-23 | Burgmann Dichtungswerk Feodor | Gleitringdichtung |
JPH06105105B2 (ja) | 1989-03-03 | 1994-12-21 | 日本ピラー工業株式会社 | 端面非接触形メカニカルシール |
US5316455A (en) * | 1989-10-25 | 1994-05-31 | Matsushita Refrigeration Company | Rotary compressor with stabilized rotor |
JPH0660690B2 (ja) | 1990-06-18 | 1994-08-10 | 日本ピラー工業株式会社 | 動圧非接触形メカニカルシール |
JPH0756345B2 (ja) | 1990-07-09 | 1995-06-14 | 株式会社荏原製作所 | 非接触端面シール |
US5071141A (en) | 1990-07-17 | 1991-12-10 | John Crane Inc. | Spiral groove seal arrangement for high vapor-pressure liquids |
US5224714A (en) | 1990-07-18 | 1993-07-06 | Ebara Corporation | Noncontacting face seal |
JPH07117167B2 (ja) | 1991-05-09 | 1995-12-18 | 日本ピラー工業株式会社 | 非接触形メカニカルシール装置 |
JP3024267B2 (ja) | 1991-06-11 | 2000-03-21 | 松下電器産業株式会社 | スクロールコンプレッサ |
JP2516301B2 (ja) | 1991-06-13 | 1996-07-24 | インターナショナル・ビジネス・マシーンズ・コーポレイション | テ―プ駆動装置 |
US5174584A (en) | 1991-07-15 | 1992-12-29 | General Electric Company | Fluid bearing face seal for gas turbine engines |
JPH0560247A (ja) | 1991-08-26 | 1993-03-09 | Nippon Pillar Packing Co Ltd | 非接触形メカニカルシール |
JPH0680623B2 (ja) | 1991-09-25 | 1994-10-12 | 北海道電力株式会社 | 電力需給用計器用変成器 |
US5447316A (en) | 1992-02-06 | 1995-09-05 | Eagle Industry Co., Ltd. | Gas seal |
JPH05296248A (ja) | 1992-04-21 | 1993-11-09 | Sumitomo Electric Ind Ltd | 摺動部材 |
JP3517888B2 (ja) | 1992-09-18 | 2004-04-12 | ブラザー工業株式会社 | カラー電子写真画像形成装置 |
JPH0769020B2 (ja) | 1992-10-07 | 1995-07-26 | 日本ピラー工業株式会社 | メカニカルシール |
JPH0769021B2 (ja) | 1992-12-11 | 1995-07-26 | 日本ピラー工業株式会社 | 非接触形軸封装置 |
JP3267396B2 (ja) * | 1993-06-22 | 2002-03-18 | 日本電産株式会社 | ブラシレスモータ |
JPH0743038A (ja) | 1993-07-30 | 1995-02-10 | Mitsubishi Heavy Ind Ltd | 吸収式冷凍機 |
US5441283A (en) | 1993-08-03 | 1995-08-15 | John Crane Inc. | Non-contacting mechanical face seal |
JP3885972B2 (ja) | 1993-09-01 | 2007-02-28 | デュラメタリック コーポレーション | 角度をつけた円環状の溝を有する面封止装置 |
US5558341A (en) | 1995-01-11 | 1996-09-24 | Stein Seal Company | Seal for sealing an incompressible fluid between a relatively stationary seal and a movable member |
US5769604A (en) | 1995-05-04 | 1998-06-23 | Eg&G Sealol, Inc. | Face seal device having high angular compliance |
JP2903458B2 (ja) | 1995-09-29 | 1999-06-07 | 日本ピラー工業株式会社 | 大型缶水循環ポンプ用熱水軸封装置 |
JPH09292034A (ja) | 1996-04-25 | 1997-11-11 | Mitsubishi Heavy Ind Ltd | メカニカルシール |
US5833518A (en) | 1996-08-02 | 1998-11-10 | Flowserve Management Company | Method for forming a wavy face ring |
US5834094A (en) | 1996-09-30 | 1998-11-10 | Surface Technologies Ltd. | Bearing having micropores and design method thereof |
JPH10281299A (ja) | 1997-04-11 | 1998-10-23 | Mitsubishi Heavy Ind Ltd | メカニカルシール装置 |
JPH10292867A (ja) | 1997-04-16 | 1998-11-04 | Mitsubishi Heavy Ind Ltd | ガスシール装置 |
JP3041592B2 (ja) | 1997-06-05 | 2000-05-15 | 株式会社ゼクセル | 横置き型スクロールコンプレッサ |
US6152452A (en) | 1997-10-17 | 2000-11-28 | Wang; Yuming | Face seal with spiral grooves |
JPH11132163A (ja) | 1997-10-23 | 1999-05-18 | Zexel:Kk | 横置き型スクロールコンプレッサ |
DE69735197T2 (de) | 1997-11-21 | 2006-07-13 | Nippon Pillar Packing Co., Ltd. | Mit statischem druck arbeitende kontaktlose gasdichtung |
CN1133834C (zh) | 1997-11-21 | 2004-01-07 | 日本皮拉工业株式会社 | 静压型非接触气封 |
JPH11287329A (ja) | 1998-04-03 | 1999-10-19 | Eagle Ind Co Ltd | 摺動材 |
JPH11303858A (ja) | 1998-04-17 | 1999-11-02 | Matsushita Electric Ind Co Ltd | 動圧多孔質軸受 |
JP3066367B1 (ja) | 1999-03-04 | 2000-07-17 | 日本ピラー工業株式会社 | 軸封装置 |
US6213473B1 (en) | 1999-03-06 | 2001-04-10 | Utex Industries, Inc. | Double gas seal with coplanar pad faces |
JP4232278B2 (ja) | 1999-06-25 | 2009-03-04 | パナソニック株式会社 | 動圧軸受及びそれを搭載したスピンドルモータ |
US7044470B2 (en) | 2000-07-12 | 2006-05-16 | Perkinelmer, Inc. | Rotary face seal assembly |
US6446976B1 (en) | 2000-09-06 | 2002-09-10 | Flowserve Management Company | Hydrodynamic face seal with grooved sealing dam for zero-leakage |
CN2460801Y (zh) | 2001-01-18 | 2001-11-21 | 王玉明 | 可双向旋转的螺旋槽端面密封装置 |
US6655693B2 (en) | 2001-04-26 | 2003-12-02 | John Crane Inc. | Non-contacting gas compressor seal |
US6692006B2 (en) | 2001-10-15 | 2004-02-17 | Stein Seal Company | High-pressure film-riding seals for rotating shafts |
JP4054608B2 (ja) | 2002-05-23 | 2008-02-27 | イーグル工業株式会社 | 板ブラシシール |
CN100427816C (zh) | 2002-09-20 | 2008-10-22 | 徐万福 | 一种由角形微槽族组成的螺旋槽端面机械密封 |
JP4316956B2 (ja) | 2002-10-23 | 2009-08-19 | イーグル工業株式会社 | 摺動部品 |
DE10324849B4 (de) | 2003-06-02 | 2005-12-22 | Minebea Co., Ltd. | Elektromotor mit einer Wellendichtung zur Abdichtung einer Motorwelle des Elektromotors |
JP4296292B2 (ja) | 2003-10-31 | 2009-07-15 | 株式会社豊田中央研究所 | 流体軸受 |
KR100548489B1 (ko) | 2003-12-20 | 2006-02-02 | 엘지전자 주식회사 | 스크롤 압축기의 급유구조 |
JP4719414B2 (ja) | 2003-12-22 | 2011-07-06 | イーグル工業株式会社 | 摺動部品 |
GB2413603A (en) | 2004-04-30 | 2005-11-02 | Corac Group Plc | A dry gas seal assembly |
JP4119398B2 (ja) | 2004-04-30 | 2008-07-16 | 日本ピラー工業株式会社 | 非接触形メカニカルシール |
US7377518B2 (en) | 2004-05-28 | 2008-05-27 | John Crane Inc. | Mechanical seal ring assembly with hydrodynamic pumping mechanism |
JP4262656B2 (ja) | 2004-09-10 | 2009-05-13 | 日本ピラー工業株式会社 | 非接触型シール装置 |
JP2006090524A (ja) | 2004-09-27 | 2006-04-06 | Nissei Co Ltd | 動圧流体軸受 |
CN101057093B (zh) | 2004-11-09 | 2013-02-13 | 伊格尔工业股份有限公司 | 机械密封装置 |
JP2006183702A (ja) | 2004-12-27 | 2006-07-13 | Hitachi Industrial Equipment Systems Co Ltd | スラスト軸受 |
JP2007162045A (ja) | 2005-12-12 | 2007-06-28 | Japan Science & Technology Agency | 摺動材及びその製造方法 |
US20070228664A1 (en) | 2006-03-31 | 2007-10-04 | Krishnamurthy Anand | Mechanical seals and methods of making |
US7793940B2 (en) | 2006-05-16 | 2010-09-14 | Skf Usa Inc. | Mechanical end face seal with ultrahard face material |
PL2047149T3 (pl) | 2006-05-26 | 2016-01-29 | Oerlikon Metco Us Inc | Uszczelnienia mechaniczne i sposób wytwarzania |
US20080284105A1 (en) | 2006-06-21 | 2008-11-20 | Thurai Manik Vasagar | Low and reverse pressure application hydrodynamic pressurizing seals |
WO2008013147A1 (fr) | 2006-07-25 | 2008-01-31 | Eagle Industry Co., Ltd. | Dispositif d'etanchéité mécanique |
US7878777B2 (en) | 2006-08-25 | 2011-02-01 | Denso Corporation | Scroll compressor having grooved thrust bearing |
JP4772623B2 (ja) | 2006-08-25 | 2011-09-14 | 株式会社デンソー | スクロール型圧縮機 |
JP4906438B2 (ja) | 2006-08-25 | 2012-03-28 | 株式会社デンソー | スクロール型圧縮機 |
US8162322B2 (en) | 2006-10-25 | 2012-04-24 | Rexnord Industries, Llc | Hydrodynamic seal with circumferentially varying lift force |
US8585060B2 (en) | 2007-11-20 | 2013-11-19 | Eagle Industry Co., Ltd. | Tandem seal device |
US20090326087A1 (en) | 2008-06-27 | 2009-12-31 | Xerox Corporation | Method for treating microcapsules for use in imaging member |
DE102008038396A1 (de) | 2008-08-19 | 2010-02-25 | Surcoatec International Ag | Gleitring für eine Gleitringdichtung |
US8100405B2 (en) | 2009-01-06 | 2012-01-24 | General Electric Company | System and method for providing compliant rotating seals |
JP5757087B2 (ja) | 2009-02-10 | 2015-07-29 | Nok株式会社 | 摺動部材及びその製造方法 |
WO2010137521A1 (ja) | 2009-05-25 | 2010-12-02 | イーグル工業株式会社 | シール装置 |
CN201496542U (zh) | 2009-08-06 | 2010-06-02 | 浙江工业大学 | 三维似鱼鳞织构底面型槽流体动压型液体机械密封结构 |
CN101793324B (zh) | 2009-08-06 | 2011-12-28 | 浙江工业大学 | 三维似鱼鳞织构底面型槽流体动压型液体机械密封结构 |
CN101644333B (zh) | 2009-08-20 | 2011-08-31 | 浙江工业大学 | 三维似羽毛织构底面型槽气体端面密封结构 |
WO2011025484A1 (en) | 2009-08-27 | 2011-03-03 | Stein Seal Company | Hydrodynamic circumferential seal system for large translations |
JP2011074931A (ja) | 2009-09-29 | 2011-04-14 | Ihi Corp | 可燃性ガス圧縮機のシール装置 |
JP4901946B2 (ja) * | 2009-12-16 | 2012-03-21 | 株式会社牧野フライス製作所 | 滑り案内装置 |
CN102483162A (zh) | 2010-02-26 | 2012-05-30 | Nok株式会社 | 密封环 |
JP5518527B2 (ja) | 2010-03-04 | 2014-06-11 | イーグル工業株式会社 | 摺動部品 |
CN102713376B (zh) | 2010-03-15 | 2015-09-09 | 伊格尔工业股份有限公司 | 滑动件 |
JP5122607B2 (ja) | 2010-06-17 | 2013-01-16 | キヤノンマシナリー株式会社 | 平面摺動機構 |
DE202010011173U1 (de) | 2010-08-09 | 2011-12-22 | Eagleburgmann Germany Gmbh & Co. Kg | Gleitring mit verbesserten Einlaufeigenschaften |
JP2012062534A (ja) | 2010-09-16 | 2012-03-29 | Jtekt Corp | 摺動部材 |
EP3321548B1 (en) | 2010-10-06 | 2019-12-11 | Eagle Industry Co., Ltd. | Sliding part |
JP2012122135A (ja) | 2010-11-18 | 2012-06-28 | Furukawa Electric Co Ltd:The | めっき助材、めっき液およびめっき材料 |
CN201972927U (zh) | 2010-12-22 | 2011-09-14 | 艾默生环境优化技术有限公司 | 用于卧式涡旋压缩机的止推板和卧式涡旋压缩机 |
JP5644636B2 (ja) * | 2011-03-30 | 2014-12-24 | オイレス工業株式会社 | スラスト滑り軸受及びこのスラスト滑り軸受とピストンロッドとの組合せ機構 |
JP5968889B2 (ja) | 2011-09-03 | 2016-08-10 | イーグル工業株式会社 | 摺動部品 |
US9494239B2 (en) | 2011-09-03 | 2016-11-15 | Eagle Industry Co., Ltd. | Sliding parts |
WO2013035503A1 (ja) | 2011-09-10 | 2013-03-14 | イーグル工業株式会社 | 摺動部品 |
CN103765060B (zh) | 2011-09-10 | 2017-02-15 | 伊格尔工业股份有限公司 | 滑动部件 |
DE102011116162A1 (de) | 2011-10-14 | 2013-04-18 | Eagleburgmann Germany Gmbh & Co. Kg | Gleitring einer Gleitringdichtungsanordnung mit laufzeitverlängernden Eigenschaften sowie Verfahren zu dessen Herstellung |
JP5752569B2 (ja) * | 2011-11-17 | 2015-07-22 | 東芝三菱電機産業システム株式会社 | 回転電機 |
JP6037622B2 (ja) | 2012-02-16 | 2016-12-07 | 三菱重工業株式会社 | スクロール型圧縮機 |
JP5928106B2 (ja) | 2012-04-02 | 2016-06-01 | オイレス工業株式会社 | 静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置 |
US9964216B2 (en) * | 2012-05-21 | 2018-05-08 | Eagle Industry Co., Ltd. | Sliding component |
US9512923B2 (en) | 2012-05-21 | 2016-12-06 | Eagle Industry Co., Ltd. | Sliding component |
CN104285088B (zh) | 2012-08-04 | 2016-09-21 | 伊格尔工业股份有限公司 | 滑动部件 |
CN104334939B (zh) * | 2012-08-04 | 2017-05-31 | 伊格尔工业股份有限公司 | 滑动部件 |
JP6279474B2 (ja) | 2012-09-11 | 2018-02-14 | イーグル工業株式会社 | 摺動部品 |
EP2853789B1 (en) | 2012-10-18 | 2019-03-06 | Eagle Industry Co., Ltd. | Slide part |
CN203098871U (zh) | 2013-01-30 | 2013-07-31 | 浙江工业大学 | 似蘑菇型槽双向旋转流体动压型机械密封结构 |
WO2014142265A1 (ja) | 2013-03-14 | 2014-09-18 | イーグルブルグマンジャパン株式会社 | メカニカルシール装置 |
WO2014148317A1 (ja) | 2013-03-17 | 2014-09-25 | イーグル工業株式会社 | 摺動部品 |
US9322436B2 (en) | 2013-03-17 | 2016-04-26 | Eagle Industry Co., Ltd. | Sliding parts |
EP2990700B1 (en) | 2013-04-24 | 2019-08-07 | Eagle Industry Co., Ltd. | Sliding part |
GB2513867A (en) | 2013-05-07 | 2014-11-12 | Mahle Int Gmbh | Sliding engine component |
CN103267132B (zh) | 2013-05-28 | 2015-08-05 | 南京林业大学 | 自泵送流体动压型机械密封 |
CN203641506U (zh) | 2013-08-20 | 2014-06-11 | 浙江工业大学 | 倾斜渐变多孔端面非接触式机械密封结构 |
JP6210814B2 (ja) | 2013-09-26 | 2017-10-11 | ポリプラスチックス株式会社 | 摺動部材 |
JP2015068330A (ja) | 2013-10-01 | 2015-04-13 | 三菱重工業株式会社 | 摺動部材 |
CN103557229A (zh) | 2013-10-22 | 2014-02-05 | 申科滑动轴承股份有限公司 | 一种水润滑阶梯瓦动压推力轴承的设计方法 |
CN103557334A (zh) | 2013-11-14 | 2014-02-05 | 江苏大学 | 一种实现零泄漏非接触的多端面组合式机械密封 |
CN105917151A (zh) * | 2014-01-24 | 2016-08-31 | Nok株式会社 | 密封圈 |
EP3112078B1 (en) | 2014-02-24 | 2020-04-15 | Eagle Industry Co., Ltd. | Sliding member and sliding member processing method |
JP6329411B2 (ja) | 2014-03-25 | 2018-05-23 | Ntn株式会社 | 内接歯車ポンプ |
US20150345642A1 (en) | 2014-05-29 | 2015-12-03 | Caterpillar Inc. | Thin film coating on mechanical face seals |
WO2016035860A1 (ja) | 2014-09-04 | 2016-03-10 | イーグル工業株式会社 | メカニカルシール |
AU2015319396B2 (en) | 2014-09-20 | 2018-07-05 | Eagle Industry Co., Ltd. | Sliding component |
JP6224568B2 (ja) | 2014-10-17 | 2017-11-01 | イーグル工業株式会社 | メカニカルシール |
CN107110370B (zh) | 2014-11-08 | 2019-09-13 | 伊格尔工业股份有限公司 | 滑动部件 |
US10519966B2 (en) | 2014-12-22 | 2019-12-31 | Eagle Industry Co., Ltd. | Plain bearing and pump |
EP3258145B1 (en) | 2015-02-14 | 2020-12-09 | Eagle Industry Co., Ltd. | Sliding component |
KR102049256B1 (ko) | 2015-04-15 | 2019-11-28 | 이구루코교 가부시기가이샤 | 슬라이딩 부품 |
CN107532723B (zh) | 2015-04-16 | 2019-11-22 | 伊格尔工业股份有限公司 | 滑动部件 |
CN107532726B (zh) | 2015-05-19 | 2020-09-22 | 伊格尔工业股份有限公司 | 滑动部件 |
US10337560B2 (en) | 2015-05-20 | 2019-07-02 | Eagle Industry Co., Ltd. | Sliding component |
CN107532724B (zh) | 2015-05-21 | 2019-10-11 | 伊格尔工业股份有限公司 | 滑动部件 |
WO2016203878A1 (ja) | 2015-06-15 | 2016-12-22 | イーグル工業株式会社 | 摺動部品 |
US10495228B2 (en) | 2015-06-30 | 2019-12-03 | Eagle Industry Co., Ltd. | Sealing device |
JP6757546B2 (ja) | 2015-10-05 | 2020-09-23 | イーグル工業株式会社 | 摺動部品 |
CN205244387U (zh) * | 2015-12-10 | 2016-05-18 | 中国石油大学(华东) | 双向旋转花瓣型端面机械密封结构 |
EP3396186B1 (en) | 2015-12-25 | 2021-06-09 | Diamet Corporation | Sintered oil-retaining bearing and process for producing the same |
US11162591B2 (en) | 2016-03-10 | 2021-11-02 | General Electric Company | Seal ring assembly for a dynamoelectric machine |
US11473626B2 (en) | 2016-05-16 | 2022-10-18 | Roller Bearing Company Of America, Inc. | Bearing system with self-lubrication features, seals, grooves and slots for maintenance-free operation |
CN205877198U (zh) | 2016-06-20 | 2017-01-11 | 昆明理工大学 | 一种具有椭圆槽的机械密封环 |
CN205877184U (zh) | 2016-06-20 | 2017-01-11 | 昆明理工大学 | 一种具有仿枫叶形槽的机械密封环 |
CN106439023B (zh) | 2016-07-28 | 2018-03-06 | 浙江工业大学 | 一种余弦曲线型机械密封端面结构 |
WO2018025629A1 (ja) | 2016-08-02 | 2018-02-08 | イーグル工業株式会社 | 密封装置 |
JPWO2018043307A1 (ja) | 2016-09-01 | 2019-07-11 | イーグル工業株式会社 | しゅう動部品 |
JP6918012B2 (ja) | 2016-11-14 | 2021-08-11 | イーグル工業株式会社 | しゅう動部品 |
EP3543569B1 (en) | 2016-11-16 | 2021-06-30 | Eagle Industry Co., Ltd. | Sliding component |
US11053974B2 (en) | 2016-12-07 | 2021-07-06 | Eagle Industry Co., Ltd. | Sliding component |
CN110168240B (zh) | 2017-01-30 | 2021-10-15 | 伊格尔工业股份有限公司 | 滑动部件 |
EP3575643B1 (en) | 2017-01-30 | 2023-03-22 | Eagle Industry Co., Ltd. | Sliding component |
WO2019009345A1 (ja) | 2017-07-07 | 2019-01-10 | イーグル工業株式会社 | 摺動部材 |
WO2019013233A1 (ja) * | 2017-07-13 | 2019-01-17 | イーグル工業株式会社 | 摺動部材 |
CN107489770A (zh) | 2017-09-29 | 2017-12-19 | 重庆三峡学院 | 一种双向机械密封环 |
WO2019069887A1 (ja) * | 2017-10-03 | 2019-04-11 | イーグル工業株式会社 | 摺動部品 |
US11603934B2 (en) | 2018-01-12 | 2023-03-14 | Eagle Industry Co., Ltd. | Sliding component |
US11320052B2 (en) | 2018-02-01 | 2022-05-03 | Eagle Industry Co., Ltd. | Sliding components |
CN112105851B (zh) | 2018-05-17 | 2023-02-28 | 伊格尔工业股份有限公司 | 密封环 |
CN112088266B (zh) | 2018-05-17 | 2022-12-06 | 伊格尔工业股份有限公司 | 密封环 |
WO2020027102A1 (ja) | 2018-08-01 | 2020-02-06 | イーグル工業株式会社 | 摺動部品 |
US10731702B2 (en) * | 2018-11-05 | 2020-08-04 | Energy Recovery, Inc. | System and method for hybrid hydrodynamic-hydrostatic thrust bearings |
CN109237042A (zh) | 2018-11-14 | 2019-01-18 | 北京动力机械研究所 | 自清洗齿形动压型槽端面机械密封结构 |
US11815184B2 (en) * | 2018-11-30 | 2023-11-14 | Eagle Industry Co., Ltd. | Sliding component |
US11396907B2 (en) | 2018-12-21 | 2022-07-26 | Tpr Co., Ltd. | Thrust washer |
KR20220099576A (ko) | 2019-12-17 | 2022-07-13 | 이구루코교 가부시기가이샤 | 슬라이딩 부품 |
CN110925426A (zh) | 2019-12-26 | 2020-03-27 | 温州市天成密封件制造有限公司 | 一种具有椭圆型槽的上游泵送机械密封环 |
CN111075878A (zh) * | 2020-01-09 | 2020-04-28 | 大连理工大学 | 一种端面阶梯槽旋转密封环 |
WO2022009767A1 (ja) | 2020-07-06 | 2022-01-13 | イーグル工業株式会社 | 摺動部品 |
-
2021
- 2021-07-01 WO PCT/JP2021/024940 patent/WO2022009767A1/ja unknown
- 2021-07-01 JP JP2022535276A patent/JP7528219B2/ja active Active
- 2021-07-01 CN CN202180044575.1A patent/CN115715352A/zh active Pending
- 2021-07-01 EP EP21838552.4A patent/EP4177488A4/en active Pending
- 2021-07-01 KR KR1020237000901A patent/KR20230022986A/ko not_active Application Discontinuation
- 2021-07-01 US US18/012,853 patent/US11913454B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS618402A (ja) * | 1984-06-20 | 1986-01-16 | Daikin Ind Ltd | スクロール形圧縮機 |
JPS63134883A (ja) * | 1986-11-27 | 1988-06-07 | Mitsubishi Electric Corp | スクロ−ル圧縮機 |
JPH0216381A (ja) * | 1988-07-01 | 1990-01-19 | Daikin Ind Ltd | スクロール型流体装置 |
JP2006009614A (ja) * | 2004-06-23 | 2006-01-12 | Matsushita Electric Ind Co Ltd | スクロール圧縮機 |
JP2006316677A (ja) * | 2005-05-11 | 2006-11-24 | Denso Corp | スクロール型圧縮機 |
JP2012082794A (ja) * | 2010-10-14 | 2012-04-26 | Sanden Corp | スクロール型流体機械 |
JP2016061208A (ja) | 2014-09-17 | 2016-04-25 | 三菱重工オートモーティブサーマルシステムズ株式会社 | スクロール圧縮機 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4177488A4 |
Also Published As
Publication number | Publication date |
---|---|
US20230258182A1 (en) | 2023-08-17 |
EP4177488A1 (en) | 2023-05-10 |
KR20230022986A (ko) | 2023-02-16 |
CN115715352A (zh) | 2023-02-24 |
JPWO2022009767A1 (ja) | 2022-01-13 |
JP7528219B2 (ja) | 2024-08-05 |
US11913454B2 (en) | 2024-02-27 |
EP4177488A4 (en) | 2024-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022009767A1 (ja) | 摺動部品 | |
WO2021125201A1 (ja) | 摺動部品 | |
JP7551264B2 (ja) | 摺動部品 | |
WO2022009771A1 (ja) | 摺動部品 | |
WO2022009766A1 (ja) | 摺動部品 | |
WO2022009768A1 (ja) | 摺動部品 | |
WO2021125200A1 (ja) | 摺動部品 | |
WO2022009770A1 (ja) | 摺動部品 | |
WO2021125199A1 (ja) | 摺動部品 | |
WO2024214575A1 (ja) | 摺動部品 | |
WO2024106230A1 (ja) | 規制部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21838552 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022535276 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237000901 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021838552 Country of ref document: EP Effective date: 20230206 |