WO2019065806A1 - ハニカム触媒 - Google Patents

ハニカム触媒 Download PDF

Info

Publication number
WO2019065806A1
WO2019065806A1 PCT/JP2018/035859 JP2018035859W WO2019065806A1 WO 2019065806 A1 WO2019065806 A1 WO 2019065806A1 JP 2018035859 W JP2018035859 W JP 2018035859W WO 2019065806 A1 WO2019065806 A1 WO 2019065806A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb
honeycomb structure
catalyst
region
length
Prior art date
Application number
PCT/JP2018/035859
Other languages
English (en)
French (fr)
Inventor
真之助 後藤
巧 東條
吉田 健
鈴木 宏昌
Original Assignee
イビデン株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社, トヨタ自動車株式会社 filed Critical イビデン株式会社
Priority to CN201880061567.6A priority Critical patent/CN111132763A/zh
Priority to EP18861518.1A priority patent/EP3689459A4/en
Publication of WO2019065806A1 publication Critical patent/WO2019065806A1/ja
Priority to US16/830,279 priority patent/US11618009B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • B01D53/9472Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • B01J35/19
    • B01J35/56
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9032Two zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9035Three zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a honeycomb catalyst.
  • Exhaust gases emitted from internal combustion engines such as automobiles include harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbons (HC).
  • harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbons (HC).
  • CO carbon monoxide
  • NOx nitrogen oxides
  • HC hydrocarbons
  • Such an exhaust gas purification catalyst for decomposing harmful gases is also referred to as a three-way catalyst, and a honeycomb monolith substrate made of cordierite or the like is washcoated with a slurry containing precious metal particles having catalytic activity, cocatalysts, etc.
  • a layer is generally provided (see Patent Document 1).
  • Patent Document 2 discloses an exhaust gas purification catalyst in which a monolith substrate contains ceria-zirconia mixed oxide particles and alumina particles of ⁇ phase, and the above-mentioned monolith substrate carries a noble metal.
  • the exhaust gas purification catalyst described in Patent Document 2 does not use cordierite as the material of the monolith substrate, but the material itself has a catalyst carrier function and a cocatalyst function, thereby reducing the bulk density and making the monolith substrate Since the temperature easily rises, it is said that the warm-up performance of the catalyst can be improved.
  • the monolith substrate is immersed in an aqueous solution in which a necessary amount of palladium nitrate and rhodium chloride is dispersed, and left for a predetermined time to support Pd and Rh on the monolith substrate. doing.
  • Patent Document 1 and Patent Document 2 when Pd and Rh are supported in a mode in which both metals are mixed on the substrate, they are alloyed and purified during the actual use as a catalyst. There is a problem that the performance is degraded.
  • the present invention has been made to solve the above problems, and there is no possibility that Pd and Rh supported during the use as a catalyst may be alloyed, or even if they are alloyed It is an object of the present invention to provide a honeycomb catalyst which is less likely to reduce exhaust gas purification performance.
  • the honeycomb catalyst of the present invention for achieving the above object is a honeycomb catalyst in which Pd and Rh are supported on the partition walls of a honeycomb structure in which a large number of through holes are arranged in parallel in the longitudinal direction with the partition walls separated.
  • the honeycomb structure is an extruded body containing ceria-zirconia composite oxide and alumina, and Pd is supported only on the partition walls in a region of a predetermined width from one end of the honeycomb structure. While a carrying region is formed, a Rh carrying region in which only Rh is carried on a partition having a predetermined width from the other end of the honeycomb structure is formed, and the Pd carrying region is at least the honeycomb structure. It is characterized in that it is 50% of the body length, and the Rh-supporting region is at least 20% of the length of the honeycomb structure.
  • the Pd-supporting region is at least 50% of the length of the honeycomb structure, and the Rh-supporting region is at least 20% of the length of the honeycomb structure.
  • the proportion is small.
  • the exhaust gas purification performance will decline.
  • a honeycomb structure is formed by an extrusion molded body and Pd and Rh are supported on the partition walls without using alumina particles or the like as a catalyst carrier there, the coating thickness of the overlapping portion of both noble metals is increased. Can suppress the rise of pressure loss.
  • the honeycomb structure desirably further includes an inorganic binder.
  • the honeycomb structure when the honeycomb structure further contains an inorganic binder, mechanical strength of the honeycomb structure can be improved.
  • the Pd supporting both Pd and Rh supported on the partition existing between the Pd supporting region and the Rh supporting region is 20% of the length of the honeycomb structure. It is desirable that
  • the Pd and Rh carrying region is 20% or less of the length of the honeycomb structure, the ratio to the entire region where the catalyst is carried is small, and the exhaust gas purification performance hardly decreases.
  • the ratio of the ceria-zirconia composite oxide in the honeycomb structure is desirably 25 to 75% by weight.
  • the oxygen storage capacity (OSC) of cerium can be increased.
  • the diameter of the honeycomb structure is preferably 130 mm or less.
  • the temperature distribution in the honeycomb structure can be reduced, so that the thermal shock resistance of the honeycomb structure can be further improved.
  • FIG. 1 (a) is a perspective view schematically showing an example of the honeycomb catalyst of the present invention
  • FIG. 1 (b) is a front view of the honeycomb catalyst shown in FIG. 1 (a).
  • 2 is an enlarged front view enlarging a portion A of the honeycomb catalyst shown in FIG. 2 (a) to 2 (c) are explanatory views schematically showing a Pd-loaded region and a Rh-loaded region in plan view of the honeycomb catalyst of the present invention
  • FIG. 2 (d) is a honeycomb of the present invention
  • FIG. 5 is an explanatory view schematically showing a Pd-loaded region, a Rh-loaded region, and a Pd-Rh loaded region when the catalyst is viewed in plan.
  • the honeycomb catalyst according to the present invention is a honeycomb catalyst in which Pd and Rh are supported on the partition walls of a honeycomb structure in which a large number of through holes are arranged in parallel in the longitudinal direction with the partition walls separated. And a Pd-carrying region carrying only Pd is formed on the partition walls of a region of a predetermined width from one end of the honeycomb structure, which is formed of an extrusion-molded body containing a ceria-zirconia composite oxide and alumina. And a Rh-supporting region in which only Rh is supported on partition walls of a predetermined width from the other end of the honeycomb structure, and the Pd-supporting region is at least 50% of the length of the honeycomb structure. The Rh-carrying region is at least 20% of the length of the honeycomb structure.
  • the honeycomb structure constituting the honeycomb catalyst of the present invention comprises a honeycomb fired body produced by firing an extrusion-formed body containing particles of ceria-zirconia composite oxide (hereinafter also referred to as CZ particles) and alumina particles.
  • the honeycomb catalyst is configured such that the catalyst is supported on the partition walls of the honeycomb structure.
  • XRD X-ray diffraction
  • honeycomb structure constituting the honeycomb catalyst of the present invention may include a single honeycomb fired body, or may include a plurality of honeycomb fired bodies, and the plurality of honeycomb fired bodies may have an adhesive layer. It may be combined by
  • honeycomb catalyst of the present invention in the longitudinal direction of the honeycomb structure constituting the honeycomb catalyst, a plurality of through holes are arranged side by side with the partition walls separated, and Pd and Rh are supported on the partition walls in the following manner. .
  • Pd and Rh functioning as a catalyst when supported on the partition walls, they can be suitably used as a honeycomb catalyst for exhaust gas purification.
  • FIG. 1 (a) is a perspective view schematically showing an example of the honeycomb catalyst of the present invention
  • FIG. 1 (b) is a front view of the honeycomb catalyst shown in FIG. 1 (a).
  • 2 is an enlarged front view enlarging a portion A of the honeycomb catalyst shown in FIG.
  • the honeycomb catalyst 10 shown in FIGS. 1 (a) and 1 (b) is formed of a single honeycomb fired body having a plurality of through holes 12 arranged in parallel in the longitudinal direction with the partition walls 13 therebetween.
  • a honeycomb structure 11 is provided.
  • the honeycomb structure 11 contains CZ particles and alumina particles, and has the shape of an extrusion-molded body. Further, as shown in FIG. 1C, the partition wall 13 supports a catalyst 15.
  • a Pd-supporting region on which only Pd is supported is formed on partition walls of a region having a predetermined width from one end of the honeycomb structure constituting the honeycomb catalyst, and the other of the honeycomb structure
  • a Rh-supporting region in which only Rh is supported is formed on the partition walls in a region having a predetermined width from the end, the Pd-supporting region is at least 50% of the length of the honeycomb structure, and the Rh-supporting region is And at least 20% of the length of the honeycomb structure.
  • FIG. 2 (a) to 2 (c) are explanatory views schematically showing a Pd-loaded region and a Rh-loaded region in plan view of the honeycomb catalyst of the present invention
  • FIG. 2 (d) is a honeycomb of the present invention
  • FIG. 5 is an explanatory view schematically showing a Pd-loaded region, a Rh-loaded region, and a Pd-Rh loaded region when the catalyst is viewed in plan.
  • the case is shown where the Pd-carrying region 21 is 70% of the length of the honeycomb structure and the Rh-carrying region 22 is 30% of the length of the honeycomb structure. .
  • the Pd-loaded region 21 is at least 50% of the length of the honeycomb structure
  • the Rh-loaded region 22 is at least 20% of the length of the honeycomb structure.
  • the Pd carrying region 21 and the Rh carrying region 22 may have Pd and Rh carrying regions in which both Pd and Rh are carried.
  • the Pd carrying region 21 needs to be 50% or more of the length of the honeycomb structure
  • the Rh carrying region 22 needs to be 20% or more of the length of the honeycomb structure.
  • the honeycomb catalyst 30 shown in FIG. 2B the case is shown where the Pd-carrying region 31 is 80% of the honeycomb structure length and the Rh-carrying region 32 is 20% of the honeycomb structure length.
  • the Pd carrying region 31 and the Rh carrying region 32 are within the scope of the present invention.
  • the honeycomb catalyst 30 shown in FIG. 2 (b) shows the case where the Pd carrying region 31 is the widest.
  • a Pd / Rh supported region in which both Pd and Rh are supported may be present in a partial region of the Pd supported region 31.
  • the Pd carrying region 31 needs to be 50% or more of the length of the honeycomb structure.
  • the honeycomb catalyst 40 shown in FIG. 2C the case is shown in which the Pd carrying region 41 is 50% of the length of the honeycomb structure and the Rh carrying region 42 is 50% of the length of the honeycomb structure.
  • the Pd carrying region 41 and the Rh carrying region 42 are within the scope of the present invention.
  • the honeycomb catalyst 40 shown in FIG. 2C shows the case where the Rh carrying region 42 is the widest.
  • a Pd / Rh supported region in which both Pd and Rh are supported may be present in part of the Rh supported region 42.
  • the Rh carrying region 42 needs to be 20% or more of the length of the honeycomb structure.
  • the Pd-loaded region 51 is 60% of the length of the honeycomb structure
  • the Rh-loaded region 52 is 20% of the length of the honeycomb structure.
  • the Pd / Rh support region 53 is 20% of the length of the honeycomb structure, but the Pd / Rh support region 53 is 20% or less of the length of the honeycomb structure Is desirable.
  • the Pd-supporting region is at least 50% of the length of the honeycomb structure, and the Rh-supporting region is at least 20% of the length of the honeycomb structure.
  • a honeycomb structure is formed by an extrusion molded body and Pd and Rh are supported on the partition walls without using alumina particles or the like as a catalyst carrier there, the coating thickness of the overlapping portion of both noble metals is increased. Can suppress the rise of pressure loss.
  • the Pd-supporting region is preferably 50 to 70% of the length of the honeycomb structure, and the Rh-supporting region is preferably 20 to 40% of the length of the honeycomb structure. .
  • the ceria-zirconia mixed oxide that constitutes the CZ particles is a material used as a cocatalyst (oxygen storage material) of the exhaust gas purification catalyst.
  • the ceria-zirconia composite oxide one in which ceria and zirconia form a solid solution is preferable.
  • the ceria-zirconia mixed oxide may further contain a rare earth element other than cerium.
  • rare earth elements scandium (Sc), yttrium (Y), lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium (Dy), Ytterbium (Yb), lutetium (Lu), etc. may be mentioned.
  • the honeycomb catalyst of the present invention comprises a honeycomb structure formed of an extrusion-molded body containing ceria-zirconia mixed oxide and alumina.
  • the ceria-zirconia mixed oxide preferably contains 30 wt% or more of ceria, more preferably 40 wt% or more, and preferably 90 wt% or less of ceria, 80 It is more preferable that the content is at most% by weight.
  • the ceria-zirconia composite oxide preferably contains 60 wt% or less of zirconia, more preferably 50 wt% or less. Such ceria-zirconia mixed oxide has a high ceria ratio, so the OSC is high.
  • the type of alumina particles constituting the honeycomb structure is not particularly limited, but is preferably alumina particles of ⁇ phase (hereinafter also referred to as ⁇ -alumina particles).
  • ⁇ -alumina particles alumina particles of ⁇ phase
  • heat resistance can be enhanced by making alumina particles into the ⁇ phase.
  • the honeycomb structure desirably contains inorganic particles used as an inorganic binder at the time of production, and more desirably contains ⁇ -alumina particles derived from boehmite.
  • the honeycomb structure desirably contains inorganic fibers, and more desirably contains alumina fibers.
  • the honeycomb structure contains inorganic fibers such as alumina fibers, mechanical properties of the honeycomb structure can be improved.
  • an inorganic fiber means that whose aspect ratio is 5 or more
  • an inorganic particle means that whose aspect ratio is less than 5.
  • the average particle diameter of the CZ particles constituting the honeycomb structure is preferably 1 to 50 ⁇ m from the viewpoint of improving the thermal shock resistance.
  • the average particle size of the CZ particles is more preferably 1 to 30 ⁇ m.
  • the surface area is increased when the honeycomb catalyst is formed, so that the OSC can be increased.
  • the average particle diameter of alumina particles constituting the honeycomb structure is not particularly limited, but is preferably 1 to 10 ⁇ m from the viewpoint of improving gas purification performance and warm-up performance, 1 to 5 ⁇ m. Is more desirable.
  • the average particle diameter of the CZ particles and the alumina particles constituting the honeycomb structure can be determined by taking a SEM photograph of the honeycomb structure using a scanning electron microscope (SEM, S-4800 manufactured by Hitachi High-Tech Co., Ltd.) it can.
  • the content ratio of CZ particles constituting the honeycomb structure is preferably 25 to 75% by weight.
  • the OSC of cerium can be increased.
  • the content of alumina particles is preferably 15 to 35% by weight.
  • the ratio of length to diameter (length / diameter) of the honeycomb structure is preferably 0.5 to 1.1, more preferably 0.6 to 0.8. desirable.
  • the diameter of the honeycomb structure is desirably 130 mm or less, and more desirably 125 mm or less.
  • the diameter of the honeycomb structure is preferably 85 mm or more.
  • the temperature distribution in the honeycomb structure can be reduced, so that the thermal shock resistance of the honeycomb structure can be further improved.
  • the length of the honeycomb structure is desirably 65 to 120 mm, and more desirably 70 to 110 mm.
  • the shape of the honeycomb structure constituting the honeycomb catalyst of the present invention is not limited to a cylindrical shape, and is a prismatic column, an elliptic cylinder, an elongated cylinder, or a prismatic column having a round chamfer (for example, a triangular column having a round chamfer) Etc.).
  • the thickness of the partition walls of the honeycomb structure is uniform.
  • the thickness of the partition walls of the honeycomb structure is desirably 0.05 to 0.50 mm, and more desirably 0.05 to 0.30 mm.
  • the shape of the through hole formed in the honeycomb structure is not limited to the square pole, and may be a triangular pole, a hexagonal pole, or the like.
  • the density of the through holes in a cross section perpendicular to the longitudinal direction of the honeycomb structure is preferably 31 to 155 / cm 2 .
  • the porosity of the honeycomb structure is desirably 40 to 70%.
  • an outer peripheral coat layer may be formed on the outer peripheral surface of the honeycomb structure.
  • the thickness of the outer peripheral coat layer is desirably 0.1 to 2.0 mm.
  • the porosity of the honeycomb structure can be measured by the weight method described below.
  • the honeycomb structure is cut into a size of 10 cells ⁇ 10 cells ⁇ 10 mm to obtain a measurement sample.
  • the sample is subjected to ultrasonic cleaning using deionized water and acetone, and then dried at 100 ° C. in an oven.
  • the total supported amount of Pd and Rh is desirably 0.1 to 15 g / L, and more desirably 0.5 to 10 g / L.
  • the total loading of Pd and Rh refers to the total weight of Pd and Rh per apparent volume of the honeycomb structure.
  • the apparent volume of the honeycomb structure is a volume including the volume of the void, and when the honeycomb structure is bonded with a plurality of honeycomb fired bodies via an adhesive layer, the volume of the adhesive layer is included. Do.
  • a method of producing the honeycomb catalyst of the present invention will be described.
  • a raw material paste preparation process In the method for manufacturing a honeycomb catalyst of the present invention, first, as a raw material paste preparation step, a raw material paste including CZ particles, alumina particles, inorganic fibers, an inorganic binder and the like is prepared.
  • the raw material paste may contain an organic binder, a pore forming agent, a forming aid, a dispersion medium, and the like.
  • the proportion by weight of CZ particles is preferably 40 to 60% by weight, and the proportion by weight of alumina particles is preferably 15 to 35% by weight.
  • the inorganic fiber is preferably 5 to 15% by weight, and the weight ratio of the inorganic binder is preferably 10 to 20% by weight.
  • CZ particles are used as co-catalysts and function to enhance the catalytic action of the supported catalyst, but if the content ratio of CZ particles is less than 40% by weight, the function to strengthen the above-mentioned catalytic action becomes weak However, when the content ratio of CZ particles exceeds 60% by weight, the ratio of other materials such as alumina decreases, which makes it difficult to produce a honeycomb structure having heat resistance. .
  • the content ratio of alumina particles is less than 15% by weight, control of the pore distribution becomes difficult, and it becomes difficult to manufacture a honeycomb structure excellent in purification performance.
  • the content ratio of alumina particles exceeds 35% by weight, the ratio of CZ particles relatively decreases, and the function of enhancing the catalytic action of CZ particles is weakened.
  • ⁇ -alumina particles are desirable.
  • the weight ratio of CZ particles to alumina particles is preferably 1.0 to 3.0.
  • CZ particles / alumina particles When the weight ratio (CZ particles / alumina particles) is 1.0 to 3.0, the content of CZ particles is high, and since this CZ particle is used as a cocatalyst, The catalytic action can be enhanced, and the performance as a honeycomb catalyst can be further enhanced.
  • the content ratio of the inorganic fibers is less than 5% by weight, the degree of reinforcement of the sintered body by the inorganic fibers is weak and the mechanical properties of the honeycomb structure deteriorate, while the content ratio of the inorganic fibers exceeds 15% by weight Since the proportion of other materials is reduced, the purification performance will be reduced.
  • the content ratio of the inorganic binder is less than 10% by weight, the content ratio of the inorganic binder is too small, the viscosity of the raw material paste becomes low, and extrusion molding becomes difficult, while the content ratio of the inorganic binder exceeds 20% by weight Since the amount of the inorganic binder is too large, the viscosity of the raw material paste is too low, and it is also difficult to form a predetermined shape by extrusion molding.
  • the average particle size of alumina particles in particular, the average particle size of ⁇ -alumina is desirably 1 to 5 ⁇ m, and the average particle size of CZ particles is also desirably 1 to 5 ⁇ m.
  • the average particle size of alumina particles used is preferably CZ particles It is desirable to be larger than the average particle size of
  • the average particle diameter of the alumina particles and CZ particles used as the raw material can be measured using a laser diffraction type particle size distribution measuring apparatus (MASTERVER® 2000 manufactured by MALVERN).
  • the pore-forming agent is not particularly limited, and examples thereof include acrylic resin, coke, starch and the like, and in the present invention, it is desirable to use two or more of acrylic resin, coke and starch.
  • the pore forming agent refers to one used to introduce pores into the inside of the fired body when the fired body is manufactured.
  • the content ratio of the pore forming agent is desirably 1 to 10% by weight based on the whole raw material composition.
  • an organic binder As another raw material used when preparing a raw material paste, an organic binder, a pore making agent, a shaping
  • the organic binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, epoxy resin and the like, and two or more kinds may be used in combination.
  • the dispersion medium is not particularly limited, and examples thereof include water, organic solvents such as benzene, alcohols such as methanol, and the like, and two or more types may be used in combination.
  • the shaping aid is not particularly limited, and ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like can be mentioned, and two or more kinds may be used in combination.
  • the raw material paste When preparing the raw material paste, it is desirable to mix and knead the above-mentioned raw materials, and when mixing and kneading, it may be mixed using a mixer, attritor etc., and may be kneaded using a kneader etc. .
  • the raw material paste prepared by the above method is formed through a mold having a lattice pattern formed thereon, whereby the plurality of through holes are separated in the partition direction and aligned in the longitudinal direction.
  • the formed honeycomb molded body is manufactured. Specifically, the raw material paste is allowed to pass through a mold and extruded to produce a honeycomb formed body.
  • a continuous body of the honeycomb formed body can be formed, and the predetermined length is cut by cutting the continuous body of the honeycomb formed body to a predetermined length.
  • a honeycomb formed body of a length can be obtained.
  • the formed body formed by the above forming step is dried.
  • the honeycomb formed body may be dried using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer or the like to produce a honeycomb dried body.
  • a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer or the like to produce a honeycomb dried body.
  • a lyophilization method using a microwave dryer and a lyophilizer is desirable. In freeze-drying, it is more desirable to decompress after freezing the honeycomb catalyst.
  • the temperature is frozen at -30 ° C or less for 1 to 48 hours, and then the frozen molded product is depressurized to 1 to 600 Pa and decompressed for 1 to 120 hours It is desirable to sublime the water under the environment.
  • honeycomb formed body before drying the honeycomb formed body before performing the firing step
  • honeycomb dried body the honeycomb dried body
  • a honeycomb fired body (honeycomb structure) constituting the honeycomb catalyst is produced by firing the formed body dried in the drying step as the firing step.
  • degreasing and firing of the honeycomb formed body are performed in this step, it may be referred to as “defatting and firing step” but for convenience, it is referred to as “firing step”.
  • the temperature of the firing step is preferably 800 to 1300 ° C., and more preferably 900 to 1200 ° C.
  • the time of the firing step is preferably 1 to 24 hours, More preferably, it is 3 to 18 hours.
  • the atmosphere in the firing step is not particularly limited, but it is desirable that the oxygen concentration be 1 to 20%.
  • the Pd-supporting region is at least 50% of the length of the honeycomb structure, and the Rh-supporting region is at least 20% of the length of the honeycomb structure. Therefore, specifically, when immersing the honeycomb structure in, for example, a solution containing Pd or a complex of Pd in the Pd-supporting region forming step, the Pd-supporting region is at least 50% of the length of the honeycomb structure. Then, the honeycomb structure is immersed in a solution containing Pd or a complex of Pd from one end face of the honeycomb structure to adhere Pd or a complex of Pd to a part of the partition wall.
  • the Rh or Rh complex is formed so that the Rh carrying region is at least 20% of the length of the honeycomb structure.
  • the solution is immersed from the other end face of the honeycomb structure that has not been immersed, and a Rh or Rh complex is attached to part of the partition walls.
  • Pd and Rh may be carried so that the Pd carrying region and the Rh carrying region do not overlap, and Pd and Rh may be carried so that the Pd carrying region and the Rh carrying region partially overlap .
  • heating After drying at a temperature of about 100 ° C., Pd and Rh are firmly fixed to the partition walls by heating. If the Pd-loaded region and the Rh-loaded region do not overlap, heating may be performed once. When the Pd-supporting region and the Rh-supporting region overlap, heating may be performed once, but heating may be performed twice after the Pd-supporting region forming step and after the Rh-supporting region forming step.
  • the heating is preferably performed at 300 to 800 ° C. for 0.5 to 3 hours under an inert atmosphere such as nitrogen.
  • the total amount of Pd and Rh carried is preferably 0.1 to 15 g / L, more preferably 0.5 to 10 g / L. desirable.
  • a honeycomb structure in which a plurality of honeycomb fired bodies are bonded via an adhesive layer is a paste for an adhesive layer on an outer peripheral surface excluding both end surfaces of the plurality of honeycomb fired bodies. After application, adhesion, and then drying and solidification, they can be produced.
  • the adhesive layer paste include those having the same composition as the raw material paste.
  • Example 1 26.4 wt% of CZ particles (average particle diameter: 2 ⁇ m), 13.2 wt% of ⁇ -alumina particles (average particle diameter: 2 ⁇ m), alumina fibers (average fiber diameter: 3 ⁇ m, average fiber length: 60 ⁇ m) 5.3% by weight, 11.3% by weight of boehmite as an inorganic binder, 5.3% by weight of methylcellulose as an organic binder, 2.1% by weight of an acrylic resin as a pore forming agent, and coke as a pore forming agent 2.
  • a raw material paste was prepared by mixing and kneading 6% by weight, 4.2% by weight of polyoxyethylene oleyl ether which is a surfactant as a forming aid, and 29.6% by weight of ion exchanged water.
  • the raw material paste was extrusion molded through a mold using an extrusion molding machine to produce a cylindrical honeycomb molded body.
  • the honeycomb formed body is dried at a power of 1.74 kW and a reduced pressure of 6.7 kPa for 12 minutes using a reduced pressure microwave dryer, and then degreased and fired at 1100 ° C. for 10 hours to form a honeycomb formed of a honeycomb fired body A structure was produced.
  • the shape of the honeycomb structure manufactured in Example 1 is a cylindrical shape having a diameter of 103 mm and a length of 105 mm, the density of through holes is 77.5 / cm 2 (500 cpsi), and the thickness of partition walls is 0. It was 127 mm (5 mil).
  • the catalyst supporting step was performed as follows. That is, first, dinitrodiammine palladium nitrate solution ([Pd (NH 3) 2 (NO 2) 2] HNO 3, palladium concentration 100 g / L) was prepared, this solution, the honeycomb structure produced by the process Was immersed from one end face, and when 70% of the length of the honeycomb structure was immersed, the movement of the honeycomb structure was stopped and the state was maintained for 24 hours.
  • dinitrodiammine palladium nitrate solution [Pd (NH 3) 2 (NO 2) 2] HNO 3, palladium concentration 100 g / L
  • a rhodium nitrate solution [Rh (NO 3 ) 3 , rhodium concentration 50 g / L) is prepared, and in this solution, the honeycomb structure obtained through the above steps is immersed in a dinitrodiammine palladium nitrate solution and The sample was immersed from another end face, and when 30% of the length of the honeycomb structure was immersed, the movement of the honeycomb structure was stopped and the state was maintained for 24 hours.
  • the honeycomb structure is dried at 110 ° C. for 2 hours, and fired in a nitrogen atmosphere at 500 ° C. for 1 hour to support 70% of the length of the honeycomb structure on the honeycomb structure by supporting Pd (palladium) catalyst.
  • the (rhodium) catalyst obtained a honeycomb catalyst supported 30% of the length of the honeycomb structure.
  • the Pd and Rh catalysts were supported separately.
  • Example 2 A honeycomb catalyst was manufactured in the same manner as Example 1, except that the catalyst supporting step was performed as follows. That is, first, dinitrodiammine palladium nitrate solution ([Pd (NH 3) 2 (NO 2) 2] HNO 3, palladium concentration 100 g / L) was prepared, this solution, the honeycomb structure produced by the process Was immersed from one end face, and when 80% of the length of the honeycomb structure was immersed, the movement of the honeycomb structure was stopped and the state was maintained for 24 hours. Thereafter, the honeycomb structure was dried at 110 ° C. for 2 hours, and baked in a nitrogen atmosphere at 500 ° C. for 1 hour to form an 80% Pd-supporting region of the length of the honeycomb structure in the honeycomb structure.
  • dinitrodiammine palladium nitrate solution [Pd (NH 3) 2 (NO 2) 2] HNO 3, palladium concentration 100 g / L) was prepared, this solution, the honeycomb structure produced by the process Was immersed from one end face,
  • a rhodium nitrate solution [Rh (NO 3 ) 3 ], rhodium concentration 50 g / L
  • the honeycomb structure was immersed from an end surface different from the end surface, and when 40% of the length of the honeycomb structure was immersed, the movement of the honeycomb structure was stopped and the state was maintained for 24 hours. Thereafter, the honeycomb structure is dried at 110 ° C. for 2 hours, and fired in a nitrogen atmosphere at 500 ° C. for 1 hour to make the Rh-supporting region 20% of the length of the honeycomb structure in the honeycomb structure.
  • a honeycomb catalyst in which the carrying region was 20% of the length of the honeycomb structure and the Pd carrying region was 60% of the length of the honeycomb structure.
  • Example 1 A honeycomb catalyst was manufactured in the same manner as Example 1, except that the catalyst supporting step was performed as follows. Dinitrodiammine palladium nitrate solution ([Pd (NH 3 ) 2 (NO 2 ) 2 ] HNO 3 , palladium concentration 100 g / L) and rhodium nitrate solution ([Rh (NO 3 ) 3 ], rhodium concentration 50 g / L) It mixed by the volume ratio of 1: 1, and prepared the mixed solution. The honeycomb structure manufactured by the above process was completely immersed in the mixed solution and held for 24 hours. Then, the honeycomb structure was dried at 110 ° C. for 2 hours, and fired in a nitrogen atmosphere at 500 ° C. for 1 hour to obtain a honeycomb catalyst in which the Pd catalyst and the Rh catalyst were supported on the entire partition walls of the honeycomb structure.
  • Dinitrodiammine palladium nitrate solution [Pd (NH 3 ) 2 (NO 2 ) 2 ] HNO 3 , palla
  • the NOx purification performance of the honeycomb catalysts produced in Examples 1 and 2 and Comparative Example 1 after the thermal durability treatment was measured by the following method.
  • the heat durability treatment of the honeycomb catalysts of Examples 1 and 2 and Comparative Example 1 was performed using a V-type 8-cylinder 4.3 L gasoline engine.
  • the catalysts of Examples 1 and 2 and Comparative Example 1 were sequentially used as the S / C catalyst.
  • the S / C bed temperature was set to 1000 ° C.
  • a cycle including stoichiometric feedback, fuel cut, rich and lean was performed for 50 hours.
  • honeycomb catalysts of Examples 1 and 2 and Comparative Example 1 after the thermal endurance treatment are set in a V-type 6-cylinder 3.5 L engine, and exhaust gases after passing each catalyst in JC 08 mode, hot and cold are set.
  • the emissions of NOx were measured.
  • the measurement conditions were in accordance with the following conditions. The obtained results are shown in Table 1. In Table 1, this result is the cold bag Nox discharge amount.
  • honeycomb catalysts after the above-mentioned thermal durability treatment of Examples 1 and 2 and Comparative Example 1 were set to a V-type 6-cylinder 3.5 L engine, and the NOx purification performance in the rich state was measured. At this time, lambda was set to be 0.98. The obtained results are shown in Table 1. In Table 1, this result is used as the Nox purification rate in the rich state.
  • the Pd-supported region is at least 50% of the length of the honeycomb structure in comparison with the honeycomb catalyst according to Comparative Example 1, and Rh It was found that the purification performance of the exhaust gas after the thermal durability treatment can be maintained by using the honeycomb catalyst in which the supporting region is at least 20% of the length of the honeycomb structure. On the other hand, in the honeycomb catalyst according to Comparative Example 1 in which both the Pd and Rh catalysts are supported at the same places of the partition walls, it was found that the purification rate after the thermal durability treatment is low and the exhaust gas purification performance is degraded.

Abstract

本発明は、多数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム構造体の上記隔壁にPdとRhとが担持されてなるハニカム触媒であって、上記ハニカム構造体は、セリア-ジルコニア複合酸化物とアルミナとを含む押出成形体からなり、上記ハニカム構造体の一の端部から所定幅の領域の隔壁に、Pdのみが担持されたPd担持領域が形成されるとともに、上記ハニカム構造体の他の端部から所定幅の領域の隔壁にRhのみが担持されたRh担持領域が形成されており、上記Pd担持領域は、少なくとも上記ハニカム構造体の長さの50%であり、上記Rh担持領域は、少なくとも上記ハニカム構造体の長さの20%であることを特徴とするハニカム触媒に関する。

Description

ハニカム触媒
本発明は、ハニカム触媒に関する。
自動車等の内燃機関から排出される排ガスには、一酸化炭素(CO)、窒素酸化物(NOx)、炭化水素(HC)等の有害ガスが含まれている。そのような有害ガスを分解する排ガス浄化触媒は三元触媒とも称され、コージェライト等からなるハニカム状のモノリス基材に触媒活性を有する貴金属粒子や助触媒等を含むスラリーをウォッシュコートして触媒層を設けたものが一般的である(特許文献1参照)。
一方、特許文献2には、モノリス基材がセリア-ジルコニア複合酸化物粒子とθ相のアルミナ粒子とを含み、上記モノリス基材に貴金属が担持された排ガス浄化触媒が開示されている。
特許文献2に記載の排ガス浄化触媒では、モノリス基材の材料としてコージェライトを用いず、自らが触媒担体機能及び助触媒機能を有する材料を用いることにより、嵩密度が小さくなり、モノリス基材の温度が上がりやすくなるため、触媒の暖機性能を向上させることができるとされている。
また、特許文献2に記載の排ガス浄化触媒では、硝酸パラジウムと塩化ロジウムを必要量分散させた水溶液中にモノリス基材を浸漬させて一定時間放置することによりモノリス基材上にPd及びRhを担持している。
特開2006-188404号公報 特開2015-85241号公報
しかしながら、特許文献1や特許文献2に記載のように、基材上に両方の金属が混在した態様でPdとRhとを担持すると、触媒として実際に使用している最中に合金化し、浄化性能が低下してしまうという問題がある。
本発明は、上記の問題を解決するためになされたものであり、触媒として使用している最中に担持されたPdとRhとが合金化するおそれがないか、合金化したとしてもその割合が少ないため、排ガス浄化性能が低下するおそれのないハニカム触媒を提供することを目的とする。
上記目的を達成するための本発明のハニカム触媒は、多数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム構造体の上記隔壁にPdとRhとが担持されてなるハニカム触媒であって、上記ハニカム構造体は、セリア-ジルコニア複合酸化物とアルミナとを含む押出成形体からなり、上記ハニカム構造体の一の端部から所定幅の領域の隔壁に、Pdのみが担持されたPd担持領域が形成されるとともに、上記ハニカム構造体の他の端部から所定幅の領域の隔壁にRhのみが担持されたRh担持領域が形成されており、上記Pd担持領域は、少なくとも上記ハニカム構造体の長さの50%であり、上記Rh担持領域は、少なくとも上記ハニカム構造体の長さの20%であることを特徴とする。
本発明のハニカム触媒によれば、上記Pd担持領域は、少なくとも上記ハニカム構造体の長さの50%であり、上記Rh担持領域は、少なくとも上記ハニカム構造体の長さの20%であるので、PdとRhとが別々に担持された充分な領域が存在し、触媒としての使用中にPdとRhとが合金化するおそれがないか、合金化する部分があっても、その割合は少ないため、排ガス浄化性能が低下するおそれがない。また、押出成形体でハニカム構造体を形成し、そこに触媒担体となるアルミナ粒子等を用いずに、PdとRhを隔壁に担持させるため、両方の貴金属が重なる部分のコーティング厚みを厚くすることがなく、圧力損失の上昇を抑制することができる。
本発明のハニカム触媒において、上記ハニカム構造体は、無機バインダをさらに含むことが望ましい。
本発明のハニカム触媒において、上記ハニカム構造体が無機バインダをさらに含むと、ハニカム構造体の機械的強度を向上させることができる。
本発明のハニカム触媒では、上記Pd担持領域と上記Rh担持領域の間に存在する上記隔壁にPd及びRhの両方が担持されたPd、Rh担持領域は、上記ハニカム構造体の長さの20%以下であることが望ましい。
本発明のハニカム触媒では、上記Pd、Rh担持領域は、上記ハニカム構造体の長さの20%以下であるので、触媒が担持された全領域に対する割合は少なく、排ガス浄化性能はほとんど低下しない。
本発明のハニカム触媒において、上記ハニカム構造体におけるセリア-ジルコニア複合酸化物の占める割合は、25~75重量%であることが望ましい。
本発明のハニカム触媒において、上記ハニカム構造体におけるセリア-ジルコニア複合酸化物の占める割合が25~75重量%であると、セリウムの酸素吸蔵能(OSC)を高めることができる。
本発明のハニカム触媒では、上記ハニカム構造体の直径は、130mm以下であることが好ましい。
本発明のハニカム触媒において、ハニカム構造体の直径を130mm以下にすることにより、ハニカム構造体内の温度分布を小さくすることができるため、ハニカム構造体の耐熱衝撃性をさらに向上させることができる。
図1(a)は、本発明のハニカム触媒の一例を模式的に示す斜視図であり、図1(b)は、図1(a)に示すハニカム触媒の正面図であり、図1(c)は、図1(b)に示したハニカム触媒の一部Aを拡大した拡大正面図である。 図2(a)~(c)は、本発明のハニカム触媒を平面視した際のPd担持領域及びRh担持領域を模式的に示す説明図であり、図2(d)は、本発明のハニカム触媒を平面視した際のPd担持領域、Rh担持領域及びPd、Rh担持領域を模式的に示す説明図である。
(発明の詳細な説明)
[ハニカム触媒]
まず、本発明のハニカム触媒について説明する。
本発明のハニカム触媒は、多数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム構造体の上記隔壁にPdとRhとが担持されてなるハニカム触媒であって、上記ハニカム構造体は、セリア-ジルコニア複合酸化物とアルミナとを含む押出成形体からなり、上記ハニカム構造体の一の端部から所定幅の領域の隔壁に、Pdのみが担持されたPd担持領域が形成されるとともに、上記ハニカム構造体の他の端部から所定幅の領域の隔壁にRhのみが担持されたRh担持領域が形成されており、上記Pd担持領域は、少なくとも上記ハニカム構造体の長さの50%であり、上記Rh担持領域は、少なくとも上記ハニカム構造体の長さの20%であることを特徴とする。
本発明のハニカム触媒を構成するハニカム構造体は、セリア-ジルコニア複合酸化物の粒子(以下、CZ粒子ともいう)とアルミナ粒子とを含む押出成形体を焼成することにより作製されたハニカム焼成体により構成されており、上記ハニカム触媒は、上記ハニカム構造体の隔壁に触媒が担持されたものである。
本発明のハニカム触媒が上記した成分を有していることは、X線回折(XRD)にて確認することができる。
本発明のハニカム触媒を構成するハニカム構造体は、単一のハニカム焼成体を備えていてもよいし、複数個のハニカム焼成体を備えていてもよく、複数個のハニカム焼成体が接着剤層により結合されていてもよい。
本発明のハニカム触媒では、ハニカム触媒を構成するハニカム構造体の長手方向には、複数の貫通孔が隔壁を隔てて並設され、上記隔壁に下記する態様でPdとRhとが担持されている。
上記ハニカム触媒において、上記隔壁に触媒として機能するPdとRhとが担持されていると、排ガス浄化用のハニカム触媒として好適に使用することができる。
本発明のハニカム触媒において、PdとRhとがハニカム構造体に担持されている態様について説明することとする。
図1(a)は、本発明のハニカム触媒の一例を模式的に示す斜視図であり、図1(b)は、図1(a)に示すハニカム触媒の正面図であり、図1(c)は、図1(b)に示したハニカム触媒の一部Aを拡大した拡大正面図である。
図1(a)及び(b)に示すハニカム触媒10は、複数の貫通孔12が隔壁13を隔てて長手方向に並設され、外周に外周壁14を備えた単一のハニカム焼成体からなるハニカム構造体11を備えている。ハニカム構造体11は、CZ粒子とアルミナ粒子とを含み、押出成形体の形状を有している。また、図1(c)に示すように、隔壁13には、触媒15が担持されている。
本発明のハニカム触媒では、ハニカム触媒を構成するハニカム構造体の一の端部から所定幅の領域の隔壁に、Pdのみが担持されたPd担持領域が形成されるとともに、ハニカム構造体の他の端部から所定幅の領域の隔壁にRhのみが担持されたRh担持領域が形成されており、上記Pd担持領域は、少なくとも上記ハニカム構造体の長さの50%であり、上記Rh担持領域は、少なくとも上記ハニカム構造体の長さの20%である。
図2(a)~(c)は、本発明のハニカム触媒を平面視した際のPd担持領域及びRh担持領域を模式的に示す説明図であり、図2(d)は、本発明のハニカム触媒を平面視した際のPd担持領域、Rh担持領域及びPd、Rh担持領域を模式的に示す説明図である。
図2(a)に示すハニカム触媒20では、Pd担持領域21がハニカム構造体の長さの70%であり、Rh担持領域22がハニカム構造体の長さの30%である場合を示している。本発明では、Pd担持領域21は、少なくともハニカム構造体の長さの50%であり、Rh担持領域22は、少なくともハニカム構造体の長さの20%であるので、Pd担持領域及びRh担持領域は、本発明の範囲内である。
図2(a)に示すハニカム触媒20では、Pd担持領域21及びRh担持領域22のうちの少なくとも一部の領域にPd及びRhの両方が担持されたPd、Rh担持領域が存在してもよい。ただし、Pd担持領域21は、ハニカム構造体の長さの50%以上であり、Rh担持領域22は、ハニカム構造体の長さの20%以上である必要がある。
図2(b)に示すハニカム触媒30では、Pd担持領域31がハニカム構造体の長さの80%であり、Rh担持領域32がハニカム構造体の長さの20%である場合を示しており、この場合のPd担持領域31及びRh担持領域32は、本発明の範囲内である。図2(b)に示すハニカム触媒30は、Pd担持領域31が最も広い場合を示している。
図2(b)に示すハニカム触媒30では、Pd担持領域31のうちの一部の領域にPd及びRhの両方が担持されたPd、Rh担持領域が存在してもよい。ただし、Pd担持領域31は、ハニカム構造体の長さの50%以上である必要がある。
図2(c)に示すハニカム触媒40では、Pd担持領域41がハニカム構造体の長さの50%であり、Rh担持領域42がハニカム構造体の長さの50%である場合を示しており、この場合のPd担持領域41及びRh担持領域42は、本発明の範囲内である。図2(c)に示すハニカム触媒40は、Rh担持領域42が最も広い場合を示している。
図2(c)に示すハニカム触媒40では、Rh担持領域42のうちの一部の領域にPd及びRhの両方が担持されたPd、Rh担持領域が存在してもよい。ただし、Rh担持領域42は、ハニカム構造体の長さの20%以上である必要がある。
図2(d)に示すハニカム触媒50では、Pd担持領域51がハニカム構造体の長さの60%であり、Rh担持領域52がハニカム構造体の長さの20%であり、Pd、Rh担持領域53がハニカム構造体の長さの20%である場合を示しており、この場合のPd担持領域51及びRh担持領域52は、本発明の範囲内である。
図2(d)に示すハニカム触媒50では、Pd、Rh担持領域53がハニカム構造体の長さの20%であるが、Pd、Rh担持領域53は、ハニカム構造体の長さの20%以下であることが望ましい。
本発明のハニカム触媒によれば、上記Pd担持領域は、少なくとも上記ハニカム構造体の長さの50%であり、上記Rh担持領域は、少なくとも上記ハニカム構造体の長さの20%であるので、PdとRhとが別々に担持された充分な領域が存在し、触媒としての使用中にPdとRhとが合金化するおそれがないか、合金化する部分があっても、その割合は少ないため、排ガス浄化性能が低下するおそれがない。
また、押出成形体でハニカム構造体を形成し、そこに触媒担体となるアルミナ粒子等を用いずに、PdとRhを隔壁に担持させるため、両方の貴金属が重なる部分のコーティング厚みを厚くすることがなく、圧力損失の上昇を抑制することができる。
本発明のハニカム触媒では、Pd担持領域は、ハニカム構造体の長さの50~70%であることが望ましく、Rh担持領域は、ハニカム構造体の長さの20~40%であることが望ましい。
上記ハニカム構造体において、CZ粒子を構成するセリア-ジルコニア複合酸化物は、排ガス浄化触媒の助触媒(酸素貯蔵材)として用いられている材料である。セリア-ジルコニア複合酸化物としては、セリアとジルコニアとが固溶体を形成したものが好ましい。
本発明のハニカム触媒において、セリア-ジルコニア複合酸化物は、セリウム以外の希土類元素をさらに含んでいてもよい。希土類元素としては、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、イッテルビウム(Yb)、ルテチウム(Lu)等が挙げられる。
本発明のハニカム触媒は、セリア-ジルコニア複合酸化物とアルミナとを含む押出成形体からなるハニカム構造体を備えている。
本発明のハニカム触媒において、セリア-ジルコニア複合酸化物は、セリアを30重量%以上含むことが好ましく、40重量%以上含むことがより好ましく、一方、セリアを90重量%以下含むことが好ましく、80重量%以下含むことがより好ましい。また、セリア-ジルコニア複合酸化物は、ジルコニアを60重量%以下含むことが好ましく、50重量%以下含むことがより好ましい。このようなセリア-ジルコニア複合酸化物はセリア比率が高いため、OSCが高い。
本発明のハニカム触媒において、ハニカム構造体を構成するアルミナ粒子の種類は特に限定されないが、θ相のアルミナ粒子(以下、θ-アルミナ粒子ともいう)であることが望ましい。
θ-アルミナ粒子をセリア-ジルコニア複合酸化物の仕切り材として用いることにより、それぞれの粒子が使用中に熱により焼結することを防ぐことができるため、触媒機能を維持することが可能となる。さらに、アルミナ粒子をθ相とすることにより、耐熱性を高くすることができる。
本発明のハニカム触媒において、ハニカム構造体は、製造時に無機バインダとして用いられる無機粒子を含むことが望ましく、ベーマイトに由来するγ-アルミナ粒子を含むことがより望ましい。
本発明のハニカム触媒において、上記ハニカム構造体は、無機繊維を含むことが望ましく、アルミナ繊維を含むことがより望ましい。
ハニカム構造体がアルミナ繊維等の無機繊維を含んでいると、ハニカム構造体の機械的特性を改善することができる。
なお、無機繊維とは、アスペクト比が5以上のものをいい、無機粒子とは、アスペクト比が5未満のものをいう。
本発明のハニカム触媒において、上記ハニカム構造体を構成するCZ粒子の平均粒子径は耐熱衝撃性を向上させる観点から、1~50μmであることが望ましい。また、CZ粒子の平均粒子径は1~30μmであることがより望ましい。CZ粒子の平均粒子径が1~50μmであると、ハニカム触媒とした際に、表面積が大きくなるため、OSCを高くすることができる。
本発明のハニカム触媒において、ハニカム構造体を構成するアルミナ粒子の平均粒子径は特に限定されないが、ガス浄化性能及び暖機性能を向上させる観点から、1~10μmであることが望ましく、1~5μmであることがより望ましい。
ハニカム構造体を構成するCZ粒子及びアルミナ粒子の平均粒子径は、走査型電子顕微鏡(SEM、日立ハイテク社製 S-4800)を用いて、ハニカム構造体のSEM写真を撮影することにより求めることができる。
本発明のハニカム触媒において、ハニカム構造体を構成するCZ粒子の含有割合は、25~75重量%であることが望ましい。
本発明のハニカム触媒において、上記ハニカム構造体におけるセリア-ジルコニア複合酸化物の占める割合が25~75重量%であると、セリウムのOSCを高めることができる。
本発明のハニカム触媒において、アルミナ粒子の含有割合は、15~35重量%であることが望ましい。
本発明のハニカム触媒において、ハニカム構造体の直径に対する長さの比(長さ/直径)は、0.5~1.1であることが望ましく、0.6~0.8であることがより望ましい。
本発明のハニカム触媒において、ハニカム構造体の直径は、130mm以下であることが望ましく、125mm以下であることがより望ましい。また、ハニカム構造体の直径は、85mm以上であることが望ましい。
本発明のハニカム触媒において、ハニカム構造体の直径を130mm以下にすることにより、ハニカム構造体内の温度分布を小さくすることができるため、ハニカム構造体の耐熱衝撃性をさらに向上させることができる。
本発明のハニカム触媒において、ハニカム構造体の長さは、65~120mmであることが望ましく、70~110mmであることがより望ましい。
本発明のハニカム触媒を構成するハニカム構造体の形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。
本発明のハニカム触媒において、ハニカム構造体の隔壁の厚さは、均一であることが望ましい。具体的には、ハニカム構造体の隔壁の厚さは、0.05~0.50mmであることが望ましく、0.05~0.30mmであることがより望ましい。
本発明のハニカム触媒において、ハニカム構造体に形成されている貫通孔の形状としては、四角柱状に限定されず、三角柱状、六角柱状等が挙げられる。
本発明のハニカム触媒において、ハニカム構造体の長手方向に垂直な断面における貫通孔の密度は、31~155個/cmであることが望ましい。
本発明のハニカム触媒において、ハニカム構造体の気孔率は、40~70%であることが望ましい。ハニカム構造体の気孔率を上記範囲とすることにより、ハニカム構造体の強度を維持しつつ、高い排ガス浄化性能を発揮することができる。
本発明のハニカム触媒において、ハニカム構造体の外周面に外周コート層が形成されていてもよい。
上記ハニカム構造体の外周面に外周コート層が形成されている場合、外周コート層の厚さは、0.1~2.0mmであることが望ましい。
ハニカム構造体の気孔率は、以下に説明する重量法にて測定することができる。
(1)ハニカム構造体を10セル×10セル×10mmの大きさに切断して、測定試料とする。この試料をイオン交換水中およびアセトンを用いて超音波洗浄した後、オーブンにて100℃で乾燥する。
(2)測定顕微鏡(Nikon社製 Measuring Microscope MM-40倍率100倍)を用いて、試料の断面形状の寸法を計測し、幾何学的な計算から体積を求める(なお、幾何学的な計算から体積を求めることができない場合は、飽水重量と水中重量を実測して、体積を計測する)。
(3)計算上求められた体積およびピクノメーターで測定した試料の真密度から、試料が完全な緻密体であったと仮定した場合の重量を計算する。なお、ピクノメーターでの測定手順は以下の通りである。
(4)ピクノメーターによる真密度の測定方法
ハニカム構造体を粉砕し、23.6ccの粉末を調整し、得られた粉末を200℃で8時間乾燥させる。その後、Auto Pycnometer 1320(Micromeritics社製)を用いて、JIS-R-1620(1995)に準拠し真密度を測定する。なお、この時の排気時間は40分とする。
(5)次に、試料の実際の重量を電子天秤(A&D社製 HR202i)にて測定する。
(6)気孔率は、以下の計算式(1)にて計算する。
100-(実際の重量/緻密体としての重量)×100(%)・・・(1)
本発明のハニカム触媒において、Pd及びRhの合計の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。
本明細書において、Pd及びRhの合計の担持量とは、ハニカム構造体の見掛けの体積当たりのPd及びRhの合計の重量をいう。なお、ハニカム構造体の見掛けの体積は、空隙の体積を含む体積であり、ハニカム構造体が複数のハニカム焼成体が接着層を介して接着されている場合は、接着層の体積を含むこととする。
[ハニカム触媒の製造方法]
次に、本発明のハニカム触媒を製造する方法について説明する。
(原料ペースト調製工程)
本発明のハニカム触媒の製造方法においては、まず、原料ペースト調製工程として、CZ粒子、アルミナ粒子、無機繊維、無機バインダ等を含む原料ペーストを調製する。上記原料ペーストには、有機バインダ、造孔剤、成形助剤、分散媒等が含まれていてもよい。
CZ粒子の重量割合は、40~60重量%が好ましく、アルミナ粒子の重量割合は、15~35重量%が好ましい。また、無機繊維は、5~15重量%が好ましく、無機バインダの重量割合は、10~20重量%が好ましい。
CZ粒子は、助触媒として使用され、担持される触媒の触媒作用を強化する働きがあるが、CZ粒子の含有割合が40重量%未満であると、上記の触媒作用を強化する働きが弱くなり、CZ粒子を使用するメリットがなくなり、一方、CZ粒子の含有割合が60重量%を超えると、アルミナ等の他の材料の割合が少なくなるので、耐熱性を有するハニカム構造体の製造が難しくなる。
アルミナ粒子の含有割合が15重量%未満では、気孔分布のコントロールが難しくなり、浄化性能に優れたハニカム構造体の製造が難しくなる。一方、アルミナ粒子の含有割合が35重量%を超えると、相対的にCZ粒子の割合が少なくなり、CZ粒子による触媒作用を強化する働きが弱くなってしまう。アルミナ粒子としては、θ-アルミナ粒子が望ましい。
アルミナ粒子に対するCZ粒子の重量比(CZ粒子/アルミナ粒子)は、1.0~3.0であることが望ましい。
重量比(CZ粒子/アルミナ粒子)が1.0~3.0であると、CZ粒子の含有率が高く、このCZ粒子は、助触媒として使用されるものであるので、担持される触媒の触媒作用を強化することができ、ハニカム触媒としての性能をより高めることができる。
無機繊維の含有割合が5重量%未満では、無機繊維による焼結体の強化の程度が弱く、ハニカム構造体の機械的特性が悪化し、一方、無機繊維の含有割合が15重量%を超えると、他の材料の割合が少なくなるので、浄化性能が低下することになる。
無機バインダの含有割合が10重量%未満では、無機バインダの含有割合が少なすぎるため、原料ペーストの粘度が低くなり、押出成形が難しくなり、一方、無機バインダの含有割合が20重量%を超えると、無機バインダの量が多すぎるため、原料ペーストの粘度が低くなりすぎ、やはり押出成形により所定の形状を形成することが難しくなる。
アルミナ粒子の平均粒子径、特にθ-アルミナの平均粒子径は、1~5μmが望ましく、CZ粒子の平均粒子径も、1~5μmが望ましいが、使用するアルミナ粒子の平均粒子径は、CZ粒子の平均粒子径よりも大きいことが望ましい。
原料として用いるアルミナ粒子及びCZ粒子の平均粒子径は、レーザー回折式粒度分布測定装置(MALVERN社製 MASTERSIZER2000)を用いて測定することができる。
上記した割合のCZ粒子、アルミナ粒子、無機繊維及び無機バインダ、並びに、造孔剤を使用することにより、暖機性能に優れたハニカム構造体を製造することができる。
上記造孔剤としては、特に限定されないが、例えば、アクリル樹脂、コークス、デンプン等が挙げられ、本発明では、アクリル樹脂、コークス及びデンプンのうち2種類以上を用いることが望ましい。
造孔剤とは、焼成体を製造する際、焼成体の内部に気孔を導入するために用いられるものをいう。造孔剤の含有割合は、原料組成物全体に対して1~10重量%が望ましい。
原料ペーストを調製する際に用いる他の原料としては、有機バインダ、造孔剤、成形助剤、分散媒等が挙げられる。
有機バインダとしては、特に限定されないが、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等が挙げられ、二種以上併用してもよい。
分散媒としては、特に限定されないが、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられ、二種以上併用してもよい。
成形助剤としては、特に限定されないが、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられ、二種以上併用してもよい。
原料ペーストを調製する際には、上記した原料を混合混練することが望ましく、混合混練の際には、ミキサー、アトライタ等を用いて混合してもよく、ニーダー等を用いて混練してもよい。
(成形工程)
本発明のハニカム触媒を製造する方法では、上記方法により調製した原料ペーストを格子状のパターンが形成された金型を介して成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する。具体的には、上記原料ペーストを金型を通過させ、押出成形することにより、ハニカム成形体を作製する。
その際、原料ペーストを押出成形用の金型を通過させることにより、ハニカム成形体の連続体を形成することができ、このハニカム成形体の連続体を所定の長さにカットすることにより、所定長さのハニカム成形体とすることができる。
(乾燥工程)
本発明のハニカム触媒を製造する方法では、上記成形工程により成形された成形体を乾燥する。
この際、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、ハニカム成形体を乾燥し、ハニカム乾燥体を作製することが望ましい。これらのなかでは、マイクロ波乾燥機及び凍結乾燥機を用いた凍結乾燥方法が望ましい。
凍結乾燥においては、ハニカム触媒を凍結した後に、減圧することがさらに望ましい。
凍結乾燥を行う際に、凍結の条件としては、温度は、-30℃以下で1~48時間凍結させ、その後、凍結した状態の成形体を1~600Paに減圧し、1~120時間、減圧環境下で水分を昇華させることが望ましい。
上記成形体を凍結乾燥することにより、原料ペースト中の多くの水分が凍結状態のまま昇華するので、マクロ気孔が形成され易く、マクロ気孔の気孔径を大きくすることができる。そのため、ハニカム触媒として使用した場合に、周囲の排ガスが気孔の内部に拡散し易く、より浄化性能に優れたハニカム触媒を製造することができる。
本明細書においては、乾燥前のハニカム成形体、焼成工程を行う前のハニカム成形体及びハニカム乾燥体をまとめてハニカム成形体とも呼ぶ。
(焼成工程)
本発明のハニカム触媒を製造する方法において、焼成工程として、乾燥工程により乾燥された成形体を焼成することにより、ハニカム触媒を構成するハニカム焼成体(ハニカム構造体)を作製する。なお、この工程は、ハニカム成形体の脱脂及び焼成が行われるため、「脱脂・焼成工程」ということもできるが、便宜上「焼成工程」という。
焼成工程の温度は、800~1300℃であることが望ましく、900~1200℃であることがより望ましい。また、焼成工程の時間は、1~24時間であることが望ましく、
3~18時間であることがより望ましい。焼成工程の雰囲気は特に限定されないが、酸素濃度が1~20%であることが望ましい。
(担持工程)
本発明のハニカム触媒を製造する方法では、ハニカム構造体の隔壁にPd及びRhを担持させる。
隔壁に貴金属を担持する方法としては、例えば、Pd又はRhもしくはPd又はRhの錯体を含む溶液にハニカム焼成体又はハニカム構造体を浸漬した後、引き上げて加熱する方法等が挙げられる。
本発明のハニカム触媒では、Pd担持領域は、少なくともハニカム構造体の長さの50%であり、Rh担持領域は、少なくとも上記ハニカム構造体の長さの20%である。
従って、具体的には、Pd担持領域形成工程として、例えば、Pd又はPdの錯体を含む溶液にハニカム構造体を浸漬する際、Pd担持領域が少なくともハニカム構造体の長さの50%となるように、Pd又はPdの錯体を含む溶液にハニカム構造体の一方の端面から浸漬してゆき、隔壁の一部にPd又はPdの錯体を付着させる。
その後、Rh担持領域形成工程として、Rh又はRhの錯体を含む溶液にハニカム構造体を浸漬する際、Rh担持領域が少なくともハニカム構造体の長さの20%となるように、Rh又はRhの錯体を含む溶液に、前のPd担持領域形成工程では、浸漬しなかったハニカム構造体の他方の端面から浸漬してゆき、隔壁の一部にRh又はRhの錯体を付着させる。
Pd担持領域とRh担持領域とは重ならないように、PdとRhとを担持してもよく、Pd担持領域とRh担持領域とが一部重なるように、PdとRhとを担持してもよい。
この後、100℃前後の温度で乾燥を行った後、加熱を行うことにより、Pd及びRhを隔壁にしっかりと定着させる。Pd担持領域とRh担持領域とが重ならない場合には、加熱は一度でよい。Pd担持領域とRh担持領域とを重なる場合には、加熱は一度でもよいが、Pd担持領域形成工程の後及びRh担持領域形成工程の後の2回に渡って加熱を行ってもよい。
上記加熱は、窒素等の不活性雰囲気の下、300~800℃で0.5~3時間行うことが望ましい。
本発明のハニカム触媒を製造する方法において、上記担持工程では、Pd及びRhの担持量の合計が0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。
本発明のハニカム触媒を製造する方法において、複数個のハニカム焼成体が接着層を介して接着されてなるハニカム構造体は、複数個のハニカム焼成体の両端面を除く外周面に接着層用ペーストを塗布して、接着させた後、乾燥固化することにより作製することができる。接着層用ペーストとしては、原料ペーストと同じ組成のものが挙げられる。
(実施例)
以下、本発明をより具体的に開示した実施例を示す。なお、本発明は、以下の実施例のみに限定されるものではない。
(実施例1)
CZ粒子(平均粒子径:2μm)を26.4重量%、θ-アルミナ粒子(平均粒子径:2μm)を13.2重量%、アルミナ繊維(平均繊維径:3μm、平均繊維長:60μm)を5.3重量%、無機バインダとしてベーマイトを11.3重量%、有機バインダとしてメチルセルロースを5.3重量%、造孔剤としてアクリル樹脂を2.1重量%、同じく造孔剤としてコークスを2.6重量%、成形助剤として界面活性剤であるポリオキシエチレンオレイルエーテルを4.2重量%、及び、イオン交換水を29.6重量%混合混練して、原料ペーストを調製した。
押出成形機を用いて、原料ペーストを金型を介して押出成形し、円柱状のハニカム成形体を作製した。
その後、減圧マイクロ波乾燥機を用いて、ハニカム成形体を出力1.74kW、減圧6.7kPaで12分間乾燥させた後、1100℃で10時間脱脂・焼成することにより、ハニカム焼成体からなるハニカム構造体を作製した。
実施例1で作製したハニカム構造体の形状は、直径が103mm、長さが105mmの円柱状であり、貫通孔の密度が77.5個/cm(500cpsi)、隔壁の厚さが0.127mm(5mil)であった。
次に、触媒担持工程を以下のように行った。
すなわち、まず、ジニトロジアンミンパラジウム硝酸溶液([Pd(NH(NO]HNO、パラジウム濃度100g/L)を用意し、この溶液中に、上記工程により製造されたハニカム構造体を一方の端面から浸漬していき、ハニカム構造体の長さの70%を浸漬した時点で、ハニカム構造体の移動を止め、その状態を24時間保持した。
次に、硝酸ロジウム溶液([Rh(NO]、ロジウム濃度50g/L)を用意し、この溶液中に、上記工程を経たハニカム構造体を、ジニトロジアンミンパラジウム硝酸溶液に浸漬した端面とは別の端面から浸漬していき、ハニカム構造体の長さの30%を浸漬した時点で、ハニカム構造体の移動を止め、その状態を24時間保持した。
その後、ハニカム構造体を110℃で2時間乾燥し、窒素雰囲気中500℃で1時間焼成することによって、ハニカム構造体にPd(パラジウム)触媒がハニカム構造体の長さの70%担持され、Rh(ロジウム)触媒がハニカム構造体の長さの30%担持されたハニカム触媒を得た。Pd触媒とRh触媒とは、別々に担持されていた。
(実施例2)
触媒担持工程を以下のように行ったほかは、実施例1と同様にしてハニカム触媒を製造した。
すなわち、まず、ジニトロジアンミンパラジウム硝酸溶液([Pd(NH(NO]HNO、パラジウム濃度100g/L)を用意し、この溶液中に、上記工程により製造されたハニカム構造体を一方の端面から浸漬していき、ハニカム構造体の長さの80%を浸漬した時点で、ハニカム構造体の移動を止め、その状態を24時間保持した。その後、ハニカム構造体を110℃で2時間乾燥し、窒素雰囲気中500℃で1時間焼成することによって、ハニカム構造体にハニカム構造体の長さの80%のPd担持領域を形成した。
次に、硝酸ロジウム溶液([Rh(NO]、ロジウム濃度50g/L)を用意し、この溶液中に、上記工程により製造されたハニカム構造体を、ジニトロジアンミンパラジウム硝酸溶液に浸漬した端面とは別の端面から浸漬していき、ハニカム構造体の長さの40%を浸漬した時点で、ハニカム構造体の移動を止め、その状態を24時間保持した。
その後、ハニカム構造体を110℃で2時間乾燥し、窒素雰囲気中500℃で1時間焼成することによって、ハニカム構造体にRh担持領域がハニカム構造体の長さの20%であり、Pd、Rh担持領域がハニカム構造体の長さの20%であり、Pd担持領域がハニカム構造体の長さの60%であるハニカム触媒を得た。
(比較例1)
触媒担持工程を以下のように行ったほかは、実施例1と同様にしてハニカム触媒を製造した。
ジニトロジアンミンパラジウム硝酸溶液([Pd(NH(NO]HNO、パラジウム濃度100g/L)と硝酸ロジウム溶液([Rh(NO]、ロジウム濃度50g/L)を3:1の体積割合で混合し、混合溶液を調製した。この混合溶液中に、上記工程により製造されたハニカム構造体を完全に浸漬し、24時間保持した。その後、ハニカム構造体を110℃で2時間乾燥し、窒素雰囲気中500℃で1時間焼成することによって、ハニカム構造体の隔壁全体にPd触媒とRh触媒とが担持されたハニカム触媒を得た。
[排ガスの浄化率の測定]
実施例1~2及び比較例1で作製したハニカム触媒を以下の方法にて熱耐久処理後のNOx浄化性能を測定した。
V型8気筒の4.3Lガソリンエンジンを用いて、実施例1、2及び比較例1のハニカム触媒の熱耐久処理を行った。スタートアップコンバータ(S/C)及び車体下部搭載コンバータ(UF/C)からなる排気ガス浄化用触媒システムにおいて、実施例1、2及び比較例1の触媒を順次、S/C触媒に使用した。まず、S/C床温を1000℃に設定した。1分間に、ストイキフィードバック、フューエルカット、リッチ及びリーンを含むサイクルを50時間実施した。
次いで、V型6気筒3.5Lエンジンに、上記熱耐久処理後の実施例1、2及び比較例1のハニカム触媒をセットし、JC08モード、ホット、コールドにて各触媒通過後の排気ガスに含まれるとNOxの排出量を測定した。測定条件は下記の条件に従った。得られた結果を表1に示す。なお、表1では、この結果をコールドbagNox排出量としている。
また、実施例1、2及び比較例1の上記熱耐久処理後のハニカム触媒を、V型6気筒3.5Lエンジンにセットし、リッチ状態でのNOx浄化性能を測定した。このときラムダは0.98となるように設定した。得られた結果を表1に示す。なお、表1では、この結果をリッチ状態のNox浄化率としている。
Figure JPOXMLDOC01-appb-T000001
表1に示す結果より明らかなように、比較例1に係るハニカム触媒に比べ、実施例1~2に係るハニカム触媒は、Pd担持領域が少なくともハニカム構造体の長さの50%であり、Rh担持領域が少なくともハニカム構造体の長さの20%であるハニカム触媒を使用することにより、熱耐久処理後の排ガスの浄化性能を維持することができることが判明した。一方、PdとRhの両方の触媒が隔壁の同じ場所に担持されている比較例1に係るハニカム触媒では、熱耐久処理後の浄化率が低く、排ガス浄化性能が劣化することが判明した。
 10、20、30、40、50 ハニカム触媒
 11 ハニカム構造体
 12 貫通孔
 13 隔壁
 14 外周壁
 15 触媒
 21、31、41、51 Pd担持領域
 22、32、42、52 Rh担持領域
 53 Pd、Rh担持領域

Claims (5)

  1. 多数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム構造体の前記隔壁にPdとRhとが担持されてなるハニカム触媒であって、
    前記ハニカム構造体は、セリア-ジルコニア複合酸化物とアルミナとを含む押出成形体からなり、
    前記ハニカム構造体の一の端部から所定幅の領域の隔壁に、Pdのみが担持されたPd担持領域が形成されるとともに、前記ハニカム構造体の他の端部から所定幅の領域の隔壁にRhのみが担持されたRh担持領域が形成されており、
    前記Pd担持領域は、少なくとも前記ハニカム構造体の長さの50%であり、前記Rh担持領域は、少なくとも前記ハニカム構造体の長さの20%であることを特徴とするハニカム触媒。
  2. 前記ハニカム構造体は、無機バインダをさらに含む請求項1に記載のハニカム触媒。
  3. 前記Pd担持領域と前記Rh担持領域の間に存在する前記隔壁にPd及びRhの両方が担持されたPd、Rh担持領域は、前記ハニカム構造体の長さの20%以下である請求項1又は2に記載のハニカム触媒。
  4. 前記ハニカム構造体におけるセリア-ジルコニア複合酸化物の占める割合は、25~75重量%である請求項1~3のいずれか1項に記載のハニカム触媒。
  5. 前記ハニカム構造体の直径は、130mm以下である請求項1~4のいずれか1項に記載のハニカム触媒。
PCT/JP2018/035859 2017-09-27 2018-09-27 ハニカム触媒 WO2019065806A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880061567.6A CN111132763A (zh) 2017-09-27 2018-09-27 蜂窝催化剂
EP18861518.1A EP3689459A4 (en) 2017-09-27 2018-09-27 HONEYCOMB CATALYST
US16/830,279 US11618009B2 (en) 2017-09-27 2020-03-26 Honeycomb catalytic converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017186477A JP2019058876A (ja) 2017-09-27 2017-09-27 ハニカム触媒
JP2017-186477 2017-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/830,279 Continuation US11618009B2 (en) 2017-09-27 2020-03-26 Honeycomb catalytic converter

Publications (1)

Publication Number Publication Date
WO2019065806A1 true WO2019065806A1 (ja) 2019-04-04

Family

ID=65902006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035859 WO2019065806A1 (ja) 2017-09-27 2018-09-27 ハニカム触媒

Country Status (5)

Country Link
US (1) US11618009B2 (ja)
EP (1) EP3689459A4 (ja)
JP (1) JP2019058876A (ja)
CN (1) CN111132763A (ja)
WO (1) WO2019065806A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372052B2 (ja) * 2019-05-15 2023-10-31 株式会社キャタラー 排ガス浄化触媒装置
JP7443200B2 (ja) * 2020-09-03 2024-03-05 日本碍子株式会社 多孔質セラミックス構造体
US11845065B2 (en) * 2021-06-10 2023-12-19 Johnson Matthey Public Limited Company Palladium fixing and low fresh oxygen storage capacity using tannic acid as a complexing and reducing agent
EP4101532A1 (en) * 2021-06-10 2022-12-14 Johnson Matthey Public Limited Company Improved twc activity using rhodium/platinum and tannic acid as a complexing and reducing agent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268543A (ja) * 1985-09-21 1987-03-28 Toyota Motor Corp 排気ガス浄化用モノリス触媒
JP2005530614A (ja) * 2002-06-27 2005-10-13 エンゲルハード・コーポレーシヨン マルチゾーン触媒コンバーター
JP2006188404A (ja) 2005-01-07 2006-07-20 Denso Corp セラミックスモノリス担体及びその製造方法
JP2009273988A (ja) * 2008-05-13 2009-11-26 Toyota Motor Corp 排ガス浄化用触媒
JP2014151306A (ja) * 2013-02-13 2014-08-25 Toyota Motor Corp 触媒コンバーター
JP2015085241A (ja) 2013-10-29 2015-05-07 トヨタ自動車株式会社 排ガス浄化触媒
WO2016060048A1 (ja) * 2014-10-16 2016-04-21 株式会社キャタラー 排ガス浄化用触媒
JP2017039069A (ja) * 2015-08-18 2017-02-23 株式会社デンソー 排ガス浄化触媒

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139992A (en) * 1989-11-08 1992-08-18 Engelhard Corporation Three-way conversion catalyst including a ceria-containing zirconia support
US5296198A (en) 1990-11-09 1994-03-22 Ngk Insulators, Ltd. Heater and catalytic converter
ATE176605T1 (de) 1990-11-26 1999-02-15 Catalytica Inc Palladium katalysatoren für unvollständige verbrennung und verfahren zu deren verwendung
JP2848970B2 (ja) * 1990-12-21 1999-01-20 日本碍子株式会社 ハニカムヒーター及び触媒コンバーター
US5376610A (en) * 1992-04-15 1994-12-27 Nissan Motor Co., Ltd. Catalyst for exhaust gas purification and method for exhaust gas purification
JP3281087B2 (ja) 1993-02-10 2002-05-13 日本碍子株式会社 排ガス浄化用触媒
JPH0760117A (ja) 1993-08-30 1995-03-07 Honda Motor Co Ltd 排気ガス浄化用触媒
US6497851B1 (en) * 1994-12-06 2002-12-24 Englehard Corporation Engine exhaust treatment apparatus and method of use
JPH09262484A (ja) 1996-03-29 1997-10-07 Ngk Insulators Ltd 高耐熱衝撃性セラミックハニカム触媒
US6087298A (en) * 1996-05-14 2000-07-11 Engelhard Corporation Exhaust gas treatment system
JPH09299811A (ja) 1996-05-17 1997-11-25 Ngk Insulators Ltd ハニカム構造体
JPH10296085A (ja) 1997-04-30 1998-11-10 Cataler Kogyo Kk 排ガス浄化用触媒
JP4889873B2 (ja) * 2000-09-08 2012-03-07 日産自動車株式会社 排気ガス浄化システム、これに用いる排気ガス浄化触媒及び排気浄化方法
US6492297B1 (en) * 2000-09-15 2002-12-10 Engelhard Corporation Catalyst composition for purifying exhaust gas
JP3827143B2 (ja) 2001-01-17 2006-09-27 トヨタ自動車株式会社 排ガス浄化用触媒
JP4079717B2 (ja) 2002-08-05 2008-04-23 株式会社日本自動車部品総合研究所 セラミック触媒体
EP1785603B1 (en) 2004-08-31 2009-06-24 Ibiden Co., Ltd. Exhaust gas purification system
JP2006075724A (ja) * 2004-09-09 2006-03-23 Toyota Motor Corp 排ガス浄化用触媒
DE602005019182D1 (de) 2004-09-30 2010-03-18 Ibiden Co Ltd Wabenstruktur
WO2006057067A1 (ja) * 2004-11-25 2006-06-01 Cataler Corporation 排ガス浄化用触媒
JP2006205050A (ja) 2005-01-27 2006-08-10 Toyota Motor Corp 排ガス浄化用触媒
JP4669322B2 (ja) * 2005-05-24 2011-04-13 株式会社キャタラー 排ガス浄化用触媒
WO2006137163A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
US8663588B2 (en) 2006-06-29 2014-03-04 Umicore Ag & Co. Kg Three way catalyst
JP2008023501A (ja) 2006-07-25 2008-02-07 Toyota Motor Corp 排ガス浄化用触媒
JP4787704B2 (ja) * 2006-09-15 2011-10-05 第一稀元素化学工業株式会社 自動車用排気ガス浄化装置に用いられる触媒系、それを用いた排気ガス浄化装置、及び排気ガス浄化方法
CN100998941B (zh) * 2007-01-04 2012-09-05 华东理工大学 一种前置催化剂及其制备方法
US8636959B2 (en) 2007-05-09 2014-01-28 N.E. Chemcat Corporation Selective catalytic reduction type catalyst, and exhaust gas purification equipment and purifying process of exhaust gas using the same
JP5173282B2 (ja) 2007-07-04 2013-04-03 株式会社キャタラー 排ガス浄化用触媒
CN101376103B (zh) 2007-08-27 2011-07-27 比亚迪股份有限公司 汽车尾气净化催化剂载体的预处理方法及汽车尾气净化催化剂
EP2044999B1 (en) 2007-10-01 2012-02-01 Mazda Motor Corporation Particulate Filter
WO2009118815A1 (ja) 2008-03-24 2009-10-01 イビデン株式会社 ハニカム構造体
WO2009118872A1 (ja) 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体
WO2009118870A1 (ja) * 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体
WO2009118869A1 (ja) * 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体および排ガス処理装置
JP2009255033A (ja) * 2008-03-27 2009-11-05 Ibiden Co Ltd ハニカム構造体および排ガス処理装置
JPWO2009118871A1 (ja) 2008-03-27 2011-07-21 イビデン株式会社 ハニカム構造体
WO2009118866A1 (ja) 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体
JP2009255032A (ja) 2008-03-27 2009-11-05 Ibiden Co Ltd ハニカム構造体
WO2009118867A1 (ja) * 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体および排ガス処理装置
WO2009118868A1 (ja) 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体
WO2009141893A1 (ja) 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
WO2009141891A1 (ja) 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
JP5322526B2 (ja) * 2008-07-17 2013-10-23 エヌ・イーケムキャット株式会社 自動車から排出される排気ガスを浄化するためのハニカム構造型触媒及びその製造方法、並びに、その触媒を使用した排気ガス浄化方法
JP5386121B2 (ja) 2008-07-25 2014-01-15 エヌ・イーケムキャット株式会社 排気ガス浄化触媒装置、並びに排気ガス浄化方法
JP2010127210A (ja) 2008-11-28 2010-06-10 Toyota Motor Corp 排ガス浄化方法
US8337791B2 (en) * 2008-12-03 2012-12-25 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Exhaust gas purification catalyst, exhaust gas purification apparatus using the same and exhaust gas purification method
JP5654733B2 (ja) * 2009-01-29 2015-01-14 日本碍子株式会社 ハニカム触媒体及びハニカム触媒体の製造方法
JP5419505B2 (ja) 2009-03-24 2014-02-19 日本碍子株式会社 ハニカム構造体の製造方法及びハニカム触媒体の製造方法
WO2011061841A1 (ja) 2009-11-19 2011-05-26 イビデン株式会社 ハニカム構造体及び排ガス浄化装置
JP5903205B2 (ja) 2010-01-04 2016-04-13 株式会社キャタラー 排ガス浄化用触媒
US9120056B2 (en) 2010-02-16 2015-09-01 Ford Global Technologies, Llc Catalyst assembly for treating engine exhaust
FR2957529B1 (fr) 2010-03-19 2012-04-06 Saint Gobain Ct Recherches Structure filtrante comprenant un materiau de bouchage ameliore
JP5635076B2 (ja) 2010-03-31 2014-12-03 日本碍子株式会社 ハニカムフィルタ
JP5573710B2 (ja) 2010-07-23 2014-08-20 トヨタ自動車株式会社 排ガス浄化用触媒
JP5376261B2 (ja) 2011-03-10 2013-12-25 トヨタ自動車株式会社 排ガス浄化用触媒
BR112013022321A2 (pt) 2011-04-08 2019-09-24 Toyota Motor Co Ltd catalisador de oxidação para purificação de gás exaurido
CN102430403B (zh) 2011-08-29 2013-09-11 重庆海特汽车排气系统有限公司 一种低贵金属含量高效三元催化剂及其制备方法
JP5807782B2 (ja) * 2011-12-28 2015-11-10 トヨタ自動車株式会社 排ガス浄化用触媒
EP2861533B1 (en) * 2012-06-15 2020-02-12 BASF Corporation Composites of mixed metal oxides for oxygen storage
EP2877266B1 (en) 2012-07-26 2016-06-29 Cormetech, Inc. Honeycomb catalytic assemblies and applications thereof
GB201220912D0 (en) * 2012-11-21 2013-01-02 Johnson Matthey Plc Oxidation catalyst for treating the exhaust gas of a compression ignition engine
US9266092B2 (en) 2013-01-24 2016-02-23 Basf Corporation Automotive catalyst composites having a two-metal layer
JP6204023B2 (ja) 2013-01-31 2017-09-27 株式会社キャタラー 排ガス浄化用触媒
CN103157470B (zh) 2013-03-15 2015-11-04 无锡威孚环保催化剂有限公司 汽车尾气三元催化剂
WO2015085300A1 (en) * 2013-12-06 2015-06-11 Johnson Matthey Public Limited Company Cold start catalyst and its use in exhaust systems
CN105813733B (zh) * 2013-12-11 2019-04-16 株式会社科特拉 排气净化用催化剂
JP6219796B2 (ja) 2014-09-04 2017-10-25 日本碍子株式会社 ハニカムフィルタ
JP6350142B2 (ja) 2014-09-08 2018-07-04 株式会社デンソー ハニカム構造体及びその製造方法
US10232299B2 (en) 2014-09-11 2019-03-19 Ngk Insulators, Ltd. Honeycomb structure
JP2016073959A (ja) 2014-10-09 2016-05-12 イビデン株式会社 ハニカム触媒
JP6565184B2 (ja) 2014-12-26 2019-08-28 日産自動車株式会社 ハニカム型モノリス触媒およびその製造方法
JP6545962B2 (ja) 2015-01-22 2019-07-17 株式会社キャタラー 排ガス浄化用触媒
JP6354670B2 (ja) 2015-06-08 2018-07-11 株式会社デンソー ハニカム構造体及びその製造方法
JP6540260B2 (ja) 2015-06-18 2019-07-10 株式会社デンソー ハニカム構造体及び自動車用触媒コンバータ
GB201518784D0 (en) 2015-10-23 2015-12-09 Johnson Matthey Plc Catalysed monolith substrate for a diesel engine
JP6635819B2 (ja) 2016-02-16 2020-01-29 日本碍子株式会社 ハニカム構造体
US20190136730A1 (en) 2016-06-07 2019-05-09 Cataler Corporation Exhaust gas purification catalyst
WO2018012566A1 (ja) 2016-07-14 2018-01-18 イビデン株式会社 ハニカム構造体及び該ハニカム構造体の製造方法
JP6934007B2 (ja) 2016-07-14 2021-09-08 イビデン株式会社 ハニカム構造体及び該ハニカム構造体の製造方法
CN109414689A (zh) 2016-07-14 2019-03-01 揖斐电株式会社 蜂窝结构体和该蜂窝结构体的制造方法
JP6698601B2 (ja) 2017-09-27 2020-05-27 イビデン株式会社 排ガス浄化用ハニカム触媒
JP6698602B2 (ja) 2017-09-27 2020-05-27 イビデン株式会社 排ガス浄化用ハニカム触媒
JP6726148B2 (ja) 2017-09-27 2020-07-22 イビデン株式会社 排ガス浄化用ハニカム触媒
JP2019058875A (ja) 2017-09-27 2019-04-18 イビデン株式会社 ハニカム触媒
JP6684257B2 (ja) 2017-09-27 2020-04-22 イビデン株式会社 排ガス浄化用ハニカム触媒

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268543A (ja) * 1985-09-21 1987-03-28 Toyota Motor Corp 排気ガス浄化用モノリス触媒
JP2005530614A (ja) * 2002-06-27 2005-10-13 エンゲルハード・コーポレーシヨン マルチゾーン触媒コンバーター
JP2006188404A (ja) 2005-01-07 2006-07-20 Denso Corp セラミックスモノリス担体及びその製造方法
JP2009273988A (ja) * 2008-05-13 2009-11-26 Toyota Motor Corp 排ガス浄化用触媒
JP2014151306A (ja) * 2013-02-13 2014-08-25 Toyota Motor Corp 触媒コンバーター
JP2015085241A (ja) 2013-10-29 2015-05-07 トヨタ自動車株式会社 排ガス浄化触媒
WO2016060048A1 (ja) * 2014-10-16 2016-04-21 株式会社キャタラー 排ガス浄化用触媒
JP2017039069A (ja) * 2015-08-18 2017-02-23 株式会社デンソー 排ガス浄化触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3689459A4

Also Published As

Publication number Publication date
EP3689459A4 (en) 2021-06-09
CN111132763A (zh) 2020-05-08
US20200222881A1 (en) 2020-07-16
JP2019058876A (ja) 2019-04-18
EP3689459A1 (en) 2020-08-05
US11618009B2 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
JP6998871B2 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
JP6934007B2 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
US11618009B2 (en) Honeycomb catalytic converter
EP3689454B1 (en) Honeycomb catalyst
JP6684257B2 (ja) 排ガス浄化用ハニカム触媒
US20200222889A1 (en) Honeycomb catalytic converter
JP6726148B2 (ja) 排ガス浄化用ハニカム触媒
JP2019058870A (ja) ハニカム触媒
JP6949019B2 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
JP2020114786A (ja) ハニカム構造体
JP7186031B2 (ja) ハニカム構造体
JP6782571B2 (ja) ハニカム構造体
JP2020115001A (ja) ハニカム構造体
JP6944834B2 (ja) ハニカム触媒
WO2019026645A1 (ja) ハニカム構造体の製造方法及びハニカム構造体
JP2019063683A (ja) ハニカム触媒の製造方法
JP7112212B2 (ja) ハニカム構造体の製造方法
JP2019026547A (ja) ハニカム構造体の製造方法
JP6944833B2 (ja) ハニカム構造体の製造方法
WO2020105665A1 (ja) ハニカム構造体
WO2020105666A1 (ja) ハニカム構造体
WO2019026646A1 (ja) ハニカム触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018861518

Country of ref document: EP

Effective date: 20200428