WO2016060048A1 - 排ガス浄化用触媒 - Google Patents

排ガス浄化用触媒 Download PDF

Info

Publication number
WO2016060048A1
WO2016060048A1 PCT/JP2015/078549 JP2015078549W WO2016060048A1 WO 2016060048 A1 WO2016060048 A1 WO 2016060048A1 JP 2015078549 W JP2015078549 W JP 2015078549W WO 2016060048 A1 WO2016060048 A1 WO 2016060048A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
exhaust gas
catalyst
partition wall
length
Prior art date
Application number
PCT/JP2015/078549
Other languages
English (en)
French (fr)
Inventor
亮太 尾上
新吾 坂神
伊藤 毅
竹内 雅彦
三好 直人
あけみ 佐藤
Original Assignee
株式会社キャタラー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55746594&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016060048(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社キャタラー, トヨタ自動車株式会社 filed Critical 株式会社キャタラー
Priority to CN202210808443.8A priority Critical patent/CN115155668A/zh
Priority to EP15850507.3A priority patent/EP3207989B2/en
Priority to CN201580056002.5A priority patent/CN107073465A/zh
Priority to JP2016554053A priority patent/JP6381663B2/ja
Priority to US15/517,311 priority patent/US10125649B2/en
Publication of WO2016060048A1 publication Critical patent/WO2016060048A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0682Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purifying catalyst provided in an exhaust system of an internal combustion engine. Specifically, the present invention relates to a wall flow type exhaust gas purification catalyst. Note that this international application claims priority based on Japanese Patent Application No. 2014-2111379 filed on October 16, 2014, the entire contents of which are incorporated herein by reference. Yes.
  • Exhaust gas emitted from internal combustion engines such as automobile engines contains harmful components such as particulate matter (particulate matter; PM), hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO x ). included.
  • particulate matter particulate matter
  • HC hydrocarbons
  • CO carbon monoxide
  • NO x nitrogen oxides
  • the wall flow type exhaust gas purification catalyst has an inlet cell with an open end on the exhaust gas inflow side, an exit cell with an open end on the exhaust gas outflow side, and a porous partition wall (rib wall) that separates both cells. And.
  • the exhaust gas discharged from the internal combustion engine flows into the inlet cell from the end on the exhaust gas inflow side, passes through the pores of the porous partition wall, and flows out from the end on the exhaust gas outflow side of the exit cell. To do.
  • the catalyst layer catalyst metal
  • the exhaust gas component is purified (detoxified).
  • Patent Documents 1 and 2 are cited as related art documents related to this.
  • Patent Document 1 discloses an exhaust gas purifying catalyst including a two-layered catalyst layer. Specifically, a second catalyst layer including a first catalyst layer including Pd in the entire partition wall and including Rh on the surface of the partition wall in contact with the inlet cell so as to completely cover the first catalyst layer.
  • An exhaust gas purifying catalyst having the above catalyst layer is disclosed.
  • the present invention has been created to solve such problems, and an object of the present invention is to provide an exhaust gas purifying catalyst excellent in exhaust gas purifying performance while suppressing an increase in pressure loss.
  • the exhaust gas purifying catalyst according to the present invention is a wall flow type exhaust gas purifying catalyst that is disposed in an exhaust pipe of an internal combustion engine such as an automobile engine and purifies exhaust gas discharged from the internal combustion engine.
  • the exhaust gas-purifying catalyst disclosed herein includes a base material having a wall flow structure, a first catalyst layer, and a second catalyst layer.
  • the substrate includes an inlet cell having an open end on the exhaust gas inflow side, an exit cell having an open end on the exhaust gas outlet side adjacent to the inlet cell, the inlet cell and the outlet cell, And a porous partition wall.
  • the first catalyst layer, the inside of the partition wall contacting the upper entry side cell is shorter than the total length L w of the partition along the extending direction of the partition wall from the end portion of the exhaust gas inlet side.
  • the second catalyst layer, the inside of the partition wall in contact with the outlet side cells, is formed shorter than the total length L w of the partition along the extending direction of the partition wall from the end portion of the exhaust gas outflow side.
  • the catalyst metal can be efficiently used by intensively arranging the catalyst layers in a region that greatly contributes to the exhaust gas purification performance, that is, in the vicinity of the end portion on the exhaust gas inflow side and the end portion on the exhaust gas outflow side. Therefore, high purification performance can be realized.
  • the first catalyst layer and the second catalyst layer are partially overlapped with each other in the extending direction of the partition wall, thereby preventing exhaust gas from “passing through” and accurately purifying (detoxifying) exhaust gas components. it can. Therefore, exhaust gas emissions can be effectively reduced.
  • the phrase “the catalyst layer is formed inside the partition wall” means that most of the catalyst layer exists (is unevenly distributed) inside the partition wall.
  • the total amount of catalyst metal in the range of a length of 0.1 Lw from the end on the exhaust gas inflow side toward the extending direction is 100 mass%.
  • the catalyst metal present on the inner side of the partition wall at this time is typically 80% by mass or more, for example 90% by mass or more, preferably 95% by mass or more. Therefore, for example, when a catalyst layer is formed outside the partition wall (typically on the surface), a part of the catalyst layer unintentionally erodes into the partition wall. Are distinguished.
  • the length of the first catalyst layer and the second catalyst layer overlap each other, 2% to 60% of the L w (preferably 10% or more 40 % Or less). Thereby, the effect of the present invention can be exhibited at a higher level.
  • the length of the first catalyst layer (average length) L 1 is 90% or less than 20% of the L w.
  • the length of the second catalyst layer (average length) L 2 is 90% or less than 20% of the L w.
  • the thickness of the bulkhead and T w in the thickness direction perpendicular to the stretching direction, the thickness of the bulkhead and T w, the thickness of the first catalyst layer and T 1, the first when the thickness of the second catalyst layer was T 2, the following formula: 0.2T w ⁇ (T w -T 1 -T 2) ⁇ 0.4T w; meets.
  • a catalyst metal can be utilized efficiently and the usage-amount of a catalyst metal can be reduced.
  • the movement of the catalyst metal is difficult to occur. For this reason, deterioration of the catalyst due to sintering or alloying can be suppressed. Therefore, the catalytic activity can be stably exhibited over a long period of time.
  • FIG. 1 is a perspective view schematically showing a base material of an exhaust gas purifying catalyst according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an end portion of the honeycomb substrate of FIG.
  • FIG. 3 is an enlarged cross-sectional view schematically showing the configuration in the vicinity of the partition wall of the exhaust gas purifying catalyst according to one embodiment of the present invention.
  • FIG. 4 is a graph comparing the purification performance of exhaust gas purification catalysts.
  • the exhaust gas-purifying catalyst disclosed herein includes a base material having a wall flow structure and two catalyst layers provided on partition walls of the base material. And in the extending
  • the exhaust gas-purifying catalyst of the present invention can be formed into a desired shape according to the application by appropriately selecting a base material, a carrier, and a catalyst metal described later.
  • FIG. 1 is a schematic diagram illustrating an example of a base material.
  • the substrate shown in FIG. 1 is a honeycomb substrate (honeycomb structure) 1 having a cylindrical outer shape.
  • the honeycomb substrate 1 has a plurality of cells regularly arranged along the extending direction (cylindrical cylinder axis direction) of the honeycomb substrate 1, and partition walls that partition the cells. Adjacent cells are alternately sealed with one open end in the extending direction and the other open end.
  • honeycomb substrate honeycomb structure
  • FIG. 2 is a schematic diagram showing a cross section of the end portion 1a of the honeycomb substrate 1.
  • the end 1a is substantially circular.
  • the sealing part 2 and the opening part 4 are arranged in a checkered pattern.
  • a porous partition wall 6 is disposed between the sealing portion 2 and the opening 4.
  • the honeycomb base material 1 can cope with, for example, a case where the internal combustion engine is exposed to a high temperature (for example, 400 ° C. or higher) exhaust gas generated when the internal combustion engine is operated under a high load condition, or a case where PM is burned and removed at a high temperature.
  • a high temperature for example, 400 ° C. or higher
  • the heat resistant material include ceramics such as cordierite, aluminum titanate, silicon carbide (SiC), and alloys such as stainless steel.
  • the capacity of the honeycomb substrate 1 (total volume of cells) is usually 0.1 L or more, preferably 0.5 L or more, for example, 5 L or less, preferably 3 L or less, more preferably 2 L or less.
  • the total length of the honeycomb substrate 1 in the extending direction (in other words, the total length L w of the partition walls 6 in the extending direction) is usually about 10 to 500 mm, for example, about 50 to 300 mm.
  • the thickness of the partition wall 6 (the length in the direction perpendicular to the stretching direction) is preferably about 0.05 to 2 mm, for example, from the viewpoint of improving exhaust gas purification performance, mechanical strength, suppressing pressure loss, and the like.
  • the porosity of the partition walls 6 is usually about 40 to 70% from the viewpoint of improving mechanical strength and suppressing pressure loss.
  • the average pore diameter of the partition walls 6 is usually about 10 to 40 ⁇ m from the viewpoint of improving PM collection performance and suppressing pressure loss.
  • the external shape of the whole honeycomb base material 1 can also be made into an elliptical cylinder shape, a polygonal cylinder shape, etc. instead of the cylindrical shape like FIG.
  • FIG. 3 is an enlarged cross-sectional view schematically showing a configuration in the vicinity of the partition wall of the exhaust gas purifying catalyst 10 according to one embodiment of the present invention.
  • the direction through which exhaust gas flows is drawn by the arrow direction. That is, the left side in FIG. 3 is upstream of the exhaust gas flow path (exhaust pipe), and the right side in FIG. 3 is downstream of the exhaust gas flow path.
  • the exhaust gas-purifying catalyst 10 has a so-called wall flow structure.
  • the exhaust gas purifying catalyst 10 has an inlet cell 24 having an open end 24a on the exhaust gas inflow side (a U-shape), and an end portion 25a on the exhaust gas outflow side adjacent to the input cell. It has an output side cell 25 and a porous partition wall 26 that partitions both cells.
  • a sealing portion 22 is disposed and sealed at an end portion 25a on the exhaust gas outflow side of the inlet cell 24 and an end portion 24a on the exhaust gas inflow side of the outlet cell 25.
  • two catalyst layers that is, a first catalyst layer 261 and a second catalyst layer
  • predetermined properties for example, length, thickness, amount of noble metal supported
  • the exhaust gas discharged from the internal combustion engine flows into the inlet cell 24 from the end 24a on the exhaust gas inflow side and passes through the pores of the porous partition wall 26. Then, it flows out from the end portion 25a on the exhaust gas outflow side of the adjacent exit side cell 25.
  • harmful components in the exhaust gas come into contact with the catalyst layer and are purified (detoxified). For example, HC components and CO components contained in the exhaust gas are oxidized by the catalytic function of the catalyst layer and converted (purified) into water (H 2 O), carbon dioxide (CO 2 ), and the like.
  • the NO x component is reduced by the catalytic function of the catalyst layer and converted (purified) into nitrogen (N 2 ). Since the PM component hardly passes through the pores of the partition walls 26, the PM component is generally deposited on the partition walls 26 in the entry-side cell 24. The deposited PM is decomposed and removed by the catalytic function of the catalyst layer or by burning at a predetermined temperature (for example, about 500 to 700 ° C.).
  • the two catalyst layers form the main body of the exhaust gas purification catalyst 10 as a place for purifying the exhaust gas.
  • Each of the two catalyst layers includes catalyst metal particles that function as an oxidation and / or reduction catalyst, and a carrier that supports the catalyst metal particles.
  • the catalytic metal various kinds of metal species that can function as an oxidation catalyst or a reduction catalyst can be considered.
  • noble metals such as rhodium (Rh), palladium (Pd), and platinum (Pt), which are platinum groups, can be used.
  • ruthenium (Ru), osmium (Os), iridium (Ir), silver (Ag), gold (Au), or the like may be used.
  • other metal species such as alkali metals, alkaline earth metals, and transition metals may be used.
  • the catalyst metal is preferably used as fine particles having a sufficiently small particle diameter from the viewpoint of increasing the contact area with the exhaust gas.
  • the average particle size of the catalyst metal particles (average value of particle sizes determined by observation with a transmission electron microscope; the same applies hereinafter) is usually about 1 to 15 nm, preferably 10 nm or less, 7 nm or less, and further 5 nm or less. .
  • the metal species contained in the first catalyst layer 261 and the second catalyst layer 262 may be the same or different.
  • one catalyst layer for example, the first catalyst layer 261 has a metal species (for example, rhodium) having a high reduction activity
  • the other catalyst layer for example, the second catalyst layer 262 has a metal species having a high oxidation activity (for example, rhodium).
  • Palladium and / or platinum can be used respectively.
  • the same kind of metal for example, rhodium
  • the first catalyst layer 261 near the exhaust gas inflow side contains at least an alloy of Rh or Rh
  • the second catalyst layer 262 near the exhaust gas outflow side contains at least Rh, Pd, Pt, or an alloy of these metals. It is out. Thereby, the purification activity of the catalytic metal can be exhibited at a high level.
  • the catalyst metal loading ratio of the first catalyst layer 261 and the second catalyst layer 262 may be the same or different.
  • the catalyst metal loading rate of each catalyst layer is not particularly limited because it may vary depending on, for example, the length and thickness of the catalyst layer. However, it is preferably about 1.5% by mass or less, and 0.05 to 1.5%.
  • the content is preferably mass%, more preferably 0.2 to 1 mass%.
  • an inorganic compound conventionally used in this type of exhaust gas purifying catalyst can be considered.
  • a porous carrier having a relatively large specific surface area here, the specific surface area measured by the BET method; hereinafter the same
  • Preferable examples include alumina (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ), silica (SiO 2 ), titania (TiO 2 ), and solid solutions thereof (for example, ceria-zirconia composite oxide ( CZ composite oxide)), or a combination thereof.
  • Carrier particles may in view of heat resistance and structural stability, a specific surface area of 10 ⁇ 500m 2 / g, for example, is 200 ⁇ 400m 2 / g.
  • the average particle size of the carrier particles is typically 1 to 500 nm, for example 10 to 200 nm. Note that the types of carriers contained in the first catalyst layer 261 and the second catalyst layer 262 may be the same or different.
  • the first catalyst layer 261, a region in contact with the partition wall 26 inside of the ingress cell 24, is formed shorter than the total length L w of the partition wall 26 from the end portion 24a of the exhaust gas inlet side in the drawing direction.
  • the exhaust gas flowing into the entry side cell 24 passes through the partition wall 26.
  • the exhaust gas purification performance when passing through the partition wall 26 can be effectively enhanced.
  • such a configuration is particularly effective from the viewpoint of reducing the pressure loss at the time of exhaust gas inflow.
  • Stretching direction length (average length) L 1 of the first catalyst layer 261 is approximately 20% or more of the L w, typically at least 25%, preferably 30% or more, for example, a 50% or more , Approximately 90% or less, typically 85% or less, preferably 80% or less, for example 70% or less.
  • the length L 1 of the first catalyst layer 261 is 60% approximately of the L w.
  • ash (ASH) made of non-combustible components tends to be easily deposited in the vicinity of the sealing portion 22 of the entry side cell 24. Therefore, when the L 1 equal to or less than a predetermined value, it is possible to suitably suppress an increase in pressure loss. Furthermore, by the L 1 equal to or higher than a predetermined value, it is possible to further suitably exhibit the exhaust gas purification performance.
  • the second catalyst layer 262 a region in contact with the partition wall 26 inside the exit-side cell 25, is formed shorter than the total length L w of the partition wall 26 from the end portion 25a of the exhaust gas outlet side along the stretching direction.
  • the length L 2 of the second catalyst layer 262 is 60% approximately of the L w. Thereby, high purification performance can be realized while suppressing an increase in pressure loss.
  • the lengths of the first catalyst layer 261 and the second catalyst layer 262 are substantially equal. However, it is not limited to this. For example, the length of one catalyst layer can be relatively long, and the length of the other catalyst layer can be relatively short.
  • the first catalyst layer 261 and the second catalyst layer 262 partially overlap each other.
  • the length in which the first catalyst layer 261 and the second catalyst layer 262 overlap in the extending direction may be different depending on, for example, the thickness of each catalyst layer, and is not particularly limited.
  • the L w is approximately 2% or more, typically 5% or more, preferably 10% or more, for example 20% or more, and generally 60% or less, typically 50% or less, preferably 40%. % Or less. Among them, from the viewpoint of highly both low cost and high performance, it is preferably about 10-25% of the L w.
  • the thickness of the first catalyst layer 261 and the second catalyst layer 262 is not particularly limited for obtaining also depends e.g. total thickness T w and the length of the extending direction of the catalyst layer of the partition wall 26 such.
  • the first catalyst layer 261 and the second catalyst layer 262, respectively are formed shorter than the total thickness T w of the partition wall 26.
  • the overall thickness T w of the partition wall, and the thickness T 1 of the first catalyst layer 261, and the thickness T 2 of the second catalyst layer 262, the following formula: 0.2T w ⁇ (T w -T 1 ⁇ T 2 ) ⁇ 0.4T w ;
  • desired catalyst performance can be exhibited stably.
  • the movement of the catalyst metal can be suppressed, and deterioration of the catalyst metal due to sintering or alloying can be suppressed.
  • the catalyst layer as described above can be formed by a method similar to the conventional method.
  • the exhaust gas-purifying catalyst 10 of the aspect shown in FIG. 3 may be formed as follows. First, a honeycomb substrate 1 as shown in FIGS. 1 and 2 is prepared, and a first catalyst layer 261 is formed inside the partition walls of the honeycomb substrate 1. Specifically, a first catalyst layer forming slurry containing a desired catalyst metal component (typically a solution containing a catalyst metal as ions) and a desired carrier powder is prepared. The properties (viscosity, solid content, etc.) of the slurry may be adjusted in consideration of the size of the honeycomb substrate 1 to be used, the porosity of the partition walls 26, and the like.
  • a desired catalyst metal component typically a solution containing a catalyst metal as ions
  • a desired carrier powder is prepared.
  • the properties (viscosity, solid content, etc.) of the slurry may be adjusted in consideration of the size of the honeycomb substrate 1 to be used, the porosity of
  • this slurry is supplied into the inlet cell 24 from the end 24a on the exhaust gas inflow side of the honeycomb substrate 1, and the first catalyst layer 261 having a desired property is formed in the pores of the partition wall 26 by an internal coating method.
  • the properties (for example, thickness and porosity) of the first catalyst layer 261 can be adjusted by, for example, the properties of the slurry and the amount of slurry supplied.
  • the outlet cell 25 may be pressurized during the supply of the slurry so as to cause a pressure difference between the inlet cell 24 and the outlet cell 25 so that the slurry does not permeate the partition wall 26 too much.
  • a second catalyst layer forming slurry is prepared.
  • the slurry is supplied from the end 25a on the exhaust gas outflow side of the honeycomb substrate 1 into the outlet cell 25, and the second catalyst layer 262 having a desired property is formed in the pores of the partition wall 26 by an internal coating method.
  • the honeycomb substrate 1 after applying the slurry is dried and fired at a predetermined temperature and time. Thereby, the exhaust gas-purifying catalyst 10 as shown in FIG. 3 can be manufactured.
  • the catalyst layer forming slurry may contain any additive component such as a conventionally known oxygen storage / release material, a binder, and an additive in addition to the catalyst metal and the carrier.
  • a conventionally known oxygen storage / release material examples include CZ composite oxide as a carrier or a non-supported material.
  • the binder examples include alumina sol and silica sol.
  • the exhaust gas purification catalyst disclosed herein can exhibit excellent exhaust gas purification performance while suppressing an increase in pressure loss. Therefore, it can arrange
  • exhaust system exhaust pipe
  • a gasoline engine is usually controlled at a stoichiometric air-fuel ratio
  • exhaust gas tends to flow through a partition wall portion near the end portion on the inflow side and a partition wall portion near the end portion on the outflow side. For this reason, the application of the present invention is particularly effective.
  • catalyst layer size As a base material, the number of cells is 300 cpsi (cells per square inch), the volume (refers to the entire bulk volume including the volume of the cell passage) is 0.9 L, the total length is 105 mm, the outer diameter is 103 mm, and the partition wall thickness is 0.3 mm.
  • a honeycomb substrate made of cordierite having a porosity of 59% was prepared.
  • 40 g of Al 2 O 3 powder ( ⁇ -Al 2 O 3 ) as a carrier, an appropriate amount of rhodium aqueous solution having a Rh content of 0.2 g as a catalyst metal, and an appropriate amount of pure water were mixed.
  • the obtained mixed solution was stirred and mixed, and then dried and fired (500 ° C., 1 hour) to obtain a catalyst metal-supported powder in which Rh was supported on Al 2 O 3 powder.
  • the catalyst metal-supported powder, a ceria-zirconia composite oxide solution with an amount of CZ composite oxide after firing of 60 g, and an appropriate amount of pure water were mixed to prepare a slurry for forming a catalyst layer.
  • the slurry is supplied from the end on the exhaust gas inflow side of the honeycomb base material into the inlet cell so that the amount of the catalyst metal after firing is 100 g per 1 liter of the base material, and the partition wall is in contact with the inlet cell
  • the first catalyst layer (length L 1 in the stretching direction: 30% of the total length of the partition walls, thickness T 1 : 35% of the thickness of the partition walls) was formed in the pores.
  • gas is supplied from the end of the outlet cell on the exhaust gas outflow side to create a relative pressure difference between the inlet cell and the outlet cell, and the depth at which the slurry penetrates into the partition wall. It was adjusted.
  • the slurry is supplied into the exit cell from the end of the honeycomb substrate on the exhaust gas outflow side so that the amount of the catalyst metal after firing is 100 g per liter of the substrate, and the partition wall is in contact with the exit cell
  • a second catalyst layer (length L 2 in the stretching direction: 30% of the total length of the partition walls, thickness T 2 : 35% of the thickness of the partition walls) was formed in the pores.
  • gas is supplied from the end portion of the inlet side cell on the exhaust gas inflow side, a relative pressure difference is generated between the inlet side cell and the outlet side cell, and the depth at which the slurry penetrates into the partition wall is set. It was adjusted.
  • Example 1 the catalyst for exhaust gas purification (Example 1) was obtained by baking at 500 degreeC for 1 hour.
  • Example 2 The length in the stretching direction of the first catalyst layer and the second catalyst layer, in the same manner as in Example 1 except that both was 50% of the total length L w of the extending direction of the partition wall, an exhaust gas purifying catalyst (Example 2) was made.
  • Example 3 The length in the stretching direction of the first catalyst layer and the second catalyst layer, in the same manner as in Example 1 except that both the 55% of the total length L w of the extending direction of the partition wall, an exhaust gas purifying catalyst (Example 3) was made.
  • the first catalyst layer and the second catalyst layer overlap each other over a length of 10% of Lw in the extending direction.
  • the first catalyst layer and the second catalyst layer are laminated in the thickness direction (through the portion where the catalyst layer is not formed) in the central portion in the extending direction of the partition walls, thereby forming a multilayer structure.
  • Example 4 to Example 9 The first catalyst layer and the second catalyst layer are the same as in Example 3 except that the lengths L 1 and L 2 in the extending direction of the first catalyst layer and the second catalyst layer are formed as shown in Table 1. Exhaust gas purifying catalysts (Examples 4 and 5) overlapping in a part of the stretching direction were produced. Further, as a reference example, the lengths L 1 and L 2 and the thicknesses T 1 and T 2 in the extending direction of the first catalyst layer and the second catalyst layer were formed as shown in Table 1, and the same as in Example 1 above. Further, exhaust gas purification catalysts (Examples 6 to 9) were prepared. The specifications of the catalyst layer are summarized in Table 1 below.
  • Example 1 The obtained exhaust gas purification catalysts (Examples 1 to 9) were mounted on the exhaust pipe of a gasoline engine, and the exhaust gas purification performance was compared. Specifically, an exhaust gas purification catalyst was installed in the exhaust system of the engine bench, and the exhaust gas evaluation temperature (inlet gas temperature) was adjusted to 400 ° C., and the purification rates of the HC component and the NO x component were measured. The results are shown in the corresponding column of Table 1.
  • FIG. 4 is a graph comparing the purification performance of the exhaust gas purification catalysts according to Examples 1 to 5.
  • Example 1 had the worst purification performance. The reason for this is considered that there was a portion in which no catalytic metal was supported in the extending direction of the partition walls, and unpurified harmful components slipped through the portion. Further, in Example 2, the purification performance was improved as compared with Example 1, but about 15% of harmful components were still discharged without being purified. In contrast, Examples 3 to 5 in which the two catalyst layers were superposed on each other in the extending direction showed relatively high purification performance. In particular, Example 3 in which the overlap in the stretching direction of 10 to 40% of the total length L w of the partition wall, showed the best purification performance in Examples 4.
  • Example 5 was an overlap in the stretching direction and 60% of the total length L w of the partition wall, Example 3, slightly purification performance was lower than in Example 4.
  • a possible reason for this is the pressure loss difference between the incoming cell and the outgoing cell. That is, in Example 5, since the catalyst metal was supported in a wide range, the pressure loss difference between the entry side cell and the exit side cell is high. As a result, the exhaust gas passes through the catalyst layer (particularly, the partition wall) earlier, and it is considered that the purification performance is reduced as compared with Examples 3 and 4.
  • Example 3 a suitable range in the thickness direction is examined by comparing test examples (Examples 3 and 8) having the same overlap in the stretching direction.
  • the purification rate of Example 3 was almost the same as Example 8 as a reference example. Therefore, in the thickness direction, between the first catalyst layer and the second catalyst layer, 20-40% of the T w (typically 25-35%) may be a gap of about. In other words, T w -T 1 -T 2 in the thickness direction may be less 0.2T w or 0.4 T w. Thereby, productivity and workability can be improved. Furthermore, the desired catalytic performance can be exhibited, the movement of the catalytic metal can be suppressed, and the deterioration of the catalytic metal due to sintering or alloying can be suppressed.
  • the catalyst layer is universal in the thickness direction. It is preferable that the first catalyst layer and the second catalyst layer are partially overlapped with each other. In other words, it is preferable to satisfy the following formula: T w ⁇ (T 1 + T 2 ) ⁇ 2T w ; Thereby, relatively high exhaust gas purification performance can be realized.
  • Example 10 to Example 12 Examination of catalytic metal species ⁇ ⁇ Example 10 to Example 12> Exhaust gas purification catalysts (Examples 10 to 12) were produced in the same manner as in Example 8 except that the type of catalyst metal was changed to that shown in Table 2. And the above I.D. Similarly, the exhaust gas purification performance was evaluated. The results are shown in the corresponding column of Table 2.
  • the purification rate was particularly high when rhodium was used for the first catalyst layer and rhodium or palladium was used for the second catalyst layer. Therefore, it is preferable to use rhodium as the catalytic metal species for the first catalyst layer and the second catalyst layer. Alternatively, as another preferred example, it is preferable to use rhodium having a high reduction activity for the first catalyst layer and palladium having a high oxidation activity for the second catalyst layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

 圧損の上昇を抑制しつつ、排ガス浄化性能に優れた排ガス浄化用触媒を提供する。排ガス浄化用触媒10は、隔壁26を有するウォールフロー構造の基材と、隔壁26内部の入側セル24と接する領域に、排ガス流入側の端部24aから隔壁26の延伸方向に沿って隔壁26の全長Lよりも短く形成されている第1触媒層261と、隔壁26内部の出側セル25と接する領域に、排ガス流出側の端部25aから隔壁26の延伸方向に沿って隔壁26の全長Lよりも短く形成されている第2触媒層262とを備えている。上記延伸方向において、第1触媒層261と第2触媒層262とは、一部が相互に重なり合って構成されている。

Description

排ガス浄化用触媒
 本発明は内燃機関の排気系に設けられる排ガス浄化用触媒に関する。詳しくは、ウォールフロー型の排ガス浄化用触媒に関する。
 なお、本国際出願は2014年10月16日に出願された日本国特許出願2014-211379号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 自動車エンジンなどの内燃機関から排出される排ガスには、粒子状物質(パティキュレートマター;PM)、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NO)などの有害成分が含まれる。従来から、これらの排ガス成分を効率よく除去するためにウォールフロー型の排ガス浄化用触媒が利用されている。
 ウォールフロー型の排ガス浄化用触媒は、排ガス流入側の端部が開口した入側セルと、排ガス流出側の端部が開口した出側セルと、両セルを仕切る多孔質な隔壁(リブ壁)とを備えている。内燃機関から排出された排ガスは、排ガス流入側の端部から入側セル内へと流入し、多孔質な隔壁の細孔内を通過して、出側セルの排ガス流出側の端部から流出する。排ガスが触媒層(触媒金属)と接触することにより、上記排ガス成分が浄化(無害化)される。
 これに関連する従来技術文献として、特許文献1,2が挙げられる。例えば特許文献1には、2層構造の触媒層を備えた排ガス浄化用触媒が開示されている。具体的には、隔壁の内部全体にPdを含む第1の触媒層を備え、且つ上記第1の触媒層を完全に覆うように入側セルと接する側の隔壁の表面にRhを含む第2の触媒層を備えた排ガス浄化用触媒が開示されている。
日本国特許出願公開2009-82915号公報 日本国特許出願公開2007-185571号公報
 しかしながら、本発明者らの検討によれば、上記排ガス浄化用触媒では触媒金属の配置に改善の余地が認められた。即ち、かかる排ガス浄化用触媒では、隔壁の内部全体に第1の触媒層を備え、その上にべったりと第2の触媒層が形成されている。このように入側セルの表面を触媒層で覆ってしまうと、圧損が過度に上昇することがあった。
 本発明はかかる課題を解決すべく創出されたものであり、その目的は、圧損の上昇を抑制しつつ、排ガス浄化性能に優れた排ガス浄化用触媒を提供することにある。
 本発明者らが様々な角度から検討を行ったところ、触媒層を隔壁全体にわたって広範に形成するよりも、排ガス流入側の端部に近い隔壁(例えば排ガス流入側の端部近傍の隔壁)と、排ガス流出側の端部に近い隔壁(例えば排ガス流出側の端部近傍の隔壁)とに集中的に形成する方が、高い浄化性能を得られることがわかった。
 一方で、本発明者らの検討によれば、隔壁の延伸方向に触媒層が形成されていない部分があると、圧損との兼ね合いで、当該部分への排ガスの流れが大きくなる。このため、排ガスの有害成分が触媒層の非形成部をすり抜けて、排気のエミッションが悪化することがわかった。
 これらの知見を基に本発明者らは更に鋭意検討を重ね、上記目的を実現することのできる本発明を創出するに至った。
 本発明に係る排ガス浄化用触媒は、自動車エンジンなどの内燃機関の排気管に配置されて該内燃機関から排出される排ガスの浄化を行うウォールフロー型の排ガス浄化用触媒である。ここに開示される排ガス浄化用触媒は、ウォールフロー構造の基材と第1触媒層と第2触媒層とを備えている。上記基材は、排ガス流入側の端部が開口した入側セルと、該入側セルに隣接し排ガス流出側の端部が開口した出側セルと、上記入側セルと上記出側セルとを仕切る多孔質な隔壁とを備えている。上記第1触媒層は、上記入側セルに接する上記隔壁の内部に、上記排ガス流入側の端部から上記隔壁の延伸方向に沿って上記隔壁の全長Lよりも短く形成されている。上記第2触媒層は、上記出側セルに接する上記隔壁の内部に、上記排ガス流出側の端部から上記隔壁の延伸方向に沿って上記隔壁の全長Lよりも短く形成されている。そして、上記延伸方向において、上記第1触媒層の長さをLとし、上記第2触媒層の長さをLとしたとき、次式:L<(L+L)<2L;を満たすよう、上記第1触媒層と上記第2触媒層とが上記延伸方向に一部重なり合って構成されている。
 排ガス浄化性能に大きく寄与する領域、即ち、排ガス流入側の端部近傍と排ガス流出側の端部近傍)に触媒層を集中的に配置することで、触媒金属を効率よく活用することができる。そのため、高い浄化性能を実現することができる。また、第1触媒層と第2触媒層とを隔壁の延伸方向で部分的に相互に重ね合わせることにより、排ガスの「すり抜け」を防止して排ガス成分を的確に浄化(無害化)することができる。そのため、排ガスのエミッションを効果的に低減することできる。更に、2つの触媒層を、それぞれ隔壁の内部に、隔壁の全長Lより短く形成することにより、圧損の上昇を抑制することができる。
 なお、本明細書において、触媒層が「隔壁の内部に形成されている」とは、触媒層の大部分が隔壁の内部に存在する(偏在する)ことを意味する。例えば第1触媒層の断面を電子顕微鏡で観察したときに、排ガス流入側の端部から延伸方向に向かって0.1Lwの長さの範囲における触媒金属の全量を100質量%とする。特に限定されるものではないが、このときに隔壁の内部側に存在する触媒金属が、典型的には80質量%以上、例えば90質量%以上、好ましくは95質量%以上であることをいう。したがって、例えば隔壁の外部(典型的には表面)に触媒層を形成しようとした結果、当該触媒層の一部が非意図的に隔壁の内部へも侵食しているような場合とは、明確に区別されるものである。
 ここに開示される排ガス浄化用触媒の好ましい一態様では、上記第1触媒層と上記第2触媒層とが重なり合う長さは、上記Lの2%以上60%以下(好ましくは10%以上40%以下)である。これにより、本発明の効果を、より高いレベルで発揮することができる。
 ここに開示される排ガス浄化用触媒の好ましい他の一態様では、上記第1触媒層の長さ(平均長さ)Lが、上記Lの20%以上90%以下である。排ガス流入側の端部から隔壁の延伸方向の全長Lに対して少なくとも20%の部分に触媒金属を配置することで、排ガス浄化能力をより一層好適に発揮させることができる。また、LをLの90%以下とすることで、圧損の上昇をより良く抑制することができる。
 ここに開示される排ガス浄化用触媒の好ましい他の一態様では、上記第2触媒層の長さ(平均長さ)Lが、上記Lの20%以上90%以下である。排ガス流出側の端部から隔壁の延伸方向の全長Lに対して少なくとも20%の部分に触媒金属を配置することで、排ガス浄化能力をより一層好適に発揮させることができる。また、LをLの90%以下とすることで、圧損の上昇をより良く抑制することができる。
 ここに開示される排ガス浄化用触媒の好ましい他の一態様では、上記延伸方向と直交する厚み方向において、上記隔壁の厚みをTとし、上記第1触媒層の厚みをTとし、上記第2触媒層の厚みをTとしたとき、次式:0.2T≦(T-T-T)≦0.4T;を満たしている。これにより、触媒金属を効率よく活用することができ、触媒金属の使用量を低減することができる。また、厚み方向に触媒層同士の重なりを無くすことで、触媒金属の移動が起こり難くなる。このため、シンタリングや合金化による触媒の劣化を抑制することができる。したがって、触媒活性を長期に亘り安定的に発揮させることができる。
図1は、本発明の一実施形態に係る排ガス浄化用触媒の基材を模式的に示す斜視図である。 図2は、図1のハニカム基材の端部を模式的に示す断面図である。 図3は、本発明の一実施形態に係る排ガス浄化用触媒の隔壁近傍の構成を模式的に示す拡大断面図である。 図4は、排ガス浄化用触媒の浄化性能を比較したグラフである。
 以下、図面を参照しつつ本発明の好適ないくつかの実施形態を説明する。以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略又は簡略化することがある。また、各図における寸法関係(長さ、幅、厚みなど)は、実際の寸法関係を必ずしも反映するものではない。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術知識とに基づいて実施することができる。
 ここに開示される排ガス浄化用触媒は、ウォールフロー構造の基材と、該基材の隔壁に設けられた2つの触媒層とを備えている。そして、上記隔壁の延伸方向において、2つの触媒層の一部分同士が重なり合っていることで特徴付けられる。したがって、その他の構成は特に限定されない。本発明の排ガス浄化用触媒は、後述する基材、担体、触媒金属を適宜選択し、用途に応じて所望する形状に成形することができる。
 まず、ウォールフロー構造の基材について説明する。基材は、ここに開示される排ガス浄化用触媒の骨格を構成するものである。基材としては、従来この種の用途に用いられるものを適宜採用することができる。図1は、基材の一例を示す模式図である。図1に示す基材は、外形が円筒形状のハニカム基材(ハニカム構造体)1である。ハニカム基材1は、ハニカム基材1の延伸方向(円筒形状の筒軸方向)に沿って規則的に配列された複数のセルと、該セルを仕切る隔壁とを有している。隣り合うセル同士は延伸方向の一の開口端と他の一の開口端とが交互に封止されている。図2は、ハニカム基材1の端部1aの断面を示す模式図である。この態様では、端部1aは略円形状である。端部1aでは封止部2と開口部4とが市松模様状に配されている。封止部2と開口部4との間には多孔質な隔壁6が配置されている。
 ハニカム基材1は、例えば内燃機関が高負荷条件で運転された際に生じる高温(例えば400℃以上)の排ガスに曝された場合や、PMを高温で燃焼除去する場合などにも対応可能なように、耐熱性素材からなるとよい。耐熱性素材としては、例えば、コーディエライト、チタン酸アルミニウム、炭化ケイ素(SiC)などのセラミックや、ステンレス鋼などの合金が挙げられる。ハニカム基材1の容量(セルの総体積)は、通常0.1L以上、好ましくは0.5L以上であり、例えば5L以下、好ましくは3L以下、より好ましくは2L以下であるとよい。ハニカム基材1の延伸方向の全長(換言すれば隔壁6の延伸方向の全長L)は、通常10~500mm、例えば50~300mm程度であるとよい。隔壁6の厚み(延伸方向に直交する方向の長さ)は、排ガス浄化性能や機械的強度の向上、圧損抑制などの観点から、例えば0.05~2mm程度であるとよい。隔壁6の気孔率は、機械的強度の向上や圧損抑制などの観点から、通常40~70%程度であるとよい。隔壁6の平均細孔径は、PMの捕集性能の向上や圧損抑制の観点から、通常10~40μm程度であるとよい。なお、ハニカム基材1全体の外形は、図1のような円筒形にかえて、例えば楕円筒形、多角筒形などとすることもできる。
 次に、ハニカム基材1を用いて形成された排ガス浄化用触媒について説明する。
 図3は、本発明の一実施形態に係る排ガス浄化用触媒10の隔壁近傍の構成を模式的に示す拡大断面図である。なお、この図では、排ガスが流れる向きを矢印方向で描いている。すなわち、図3の向かって左側が排ガス流路(排気管)の上流であり、図3の向かって右側が排ガス流路の下流である。排ガス浄化用触媒10は、いわゆるウォールフロー構造である。排ガス浄化用触媒10は、排ガス流入側の端部24aが開口した(コの字状の)入側セル24と、該入側セルに隣接し排ガス流出側の端部25aが開口した(コの字状の)出側セル25と、両セルを仕切る多孔質な隔壁26とを備えている。入側セル24の排ガス流出側の端部25aと、出側セル25の排ガス流入側の端部24aとには封止部22が配置され、目封じされている。隔壁26の内部(具体的には隔壁26の細孔内)には、所定の性状(例えば長さや厚み、貴金属担持量)の2つの触媒層(即ち、第1触媒層261と第2触媒層262)が形成されている。
 このような構成の排ガス浄化用触媒10では、内燃機関から排出された排ガスが排ガス流入側の端部24aから入側セル24内へと流入し、多孔質な隔壁26の細孔内を通過して、隣接する出側セル25の排ガス流出側の端部25aから流出する。排ガス中の有害成分は、排ガス浄化用触媒10内を通過する間に、触媒層と接触し、浄化(無害化)される。例えば、排ガスに含まれるHC成分やCO成分は触媒層の触媒機能によって酸化され、水(HO)や二酸化炭素(CO)などに変換(浄化)される。NO成分は触媒層の触媒機能によって還元され、窒素(N)に変換(浄化)される。PM成分は隔壁26の細孔内を通り難いため、一般に、入側セル24内の隔壁26上に堆積する。堆積したPMは、触媒層の触媒機能によって、或いは所定の温度(例えば、500~700℃程度)で燃焼されて、分解・除去される。
 2つの触媒層(第1触媒層261及び第2触媒層262)は、排ガスを浄化する場として排ガス浄化用触媒10の主体をなすものである。2つの触媒層は、それぞれ、酸化及び/又は還元触媒として機能する触媒金属粒子と、該触媒金属粒子を担持する担体とを備えている。
 触媒金属としては、種々の酸化触媒や還元触媒として機能し得る金属種を考慮することができる。典型的には、白金族であるロジウム(Rh)、パラジウム(Pd)、白金(Pt)などの貴金属が挙げられる。或いは、ルテニウム(Ru)、オスミウム(Os)、イリジウム(Ir)、銀(Ag)、金(Au)などを使用してもよい。また、これらの金属のうち2種以上が合金化したものを用いてもよい。更には、アルカリ金属やアルカリ土類金属、遷移金属など、他の金属種であってもよい。触媒金属は、排ガスとの接触面積を高める観点から、十分に小さい粒径の微粒子として使用されることが好ましい。上記触媒金属粒子の平均粒径(透過型電子顕微鏡観察により求められる粒径の平均値。以下同じ。)は通常1~15nm程度であり、10nm以下、7nm以下、更には5nm以下であるとよい。
 第1触媒層261と第2触媒層262とに含まれる金属種は同じであってもよく、異なっていてもよい。一例として、一方の触媒層(例えば第1触媒層261)に還元活性が高い金属種(例えばロジウム)を、もう一方の触媒層(例えば第2触媒層262)に酸化活性が高い金属種(例えばパラジウム及び/又は白金)を、それぞれ用いることができる。他の一例として、2つの触媒層(第1触媒層261及び第2触媒層262)に同種の金属(例えばロジウム)を用いることができる。
 好ましい一態様では、排ガス流入側に近い第1触媒層261に少なくともRhまたはRhの合金を含み、排ガス流出側に近い第2触媒層262に少なくともRh、Pd、Ptまたはこれらの金属の合金を含んでいる。これにより、触媒金属の浄化活性を高いレベルで発揮させることができる。
 第1触媒層261と第2触媒層262の触媒金属担持率(担体を100質量%としたときの触媒金属含有率)は、同じであってもよいし、異なっていてもよい。各触媒層の触媒金属の担持率は、例えば触媒層の長さや厚みなどによっても異なり得るため特に限定されないが、それぞれ、概ね1.5質量%以下であるとよく、0.05~1.5質量%であることが好ましく、0.2~1質量%であることがより好ましい。担持率を所定値以上とすることで、触媒金属による排ガス浄化作用が得られ易くなる。また担持率を所定値以下とすることで、金属の粒成長(シンタリング)の進行や圧損の上昇を抑制することができる。更に、コスト面でも有利である。
 触媒金属を担持する担体としては、従来この種の排ガス浄化用触媒で使用される無機化合物を考慮することができる。なかでも、比表面積(ここではBET法により測定される比表面積をいう。以下同じ。)が比較的大きな多孔質担体を好ましく用いることができる。好適例として、アルミナ(Al)、セリア(CeO)、ジルコニア(ZrO)、シリカ(SiO)、チタニア(TiO)、及びこれらの固溶体(例えば、セリア-ジルコニア複合酸化物(CZ複合酸化物))、或いはこれらの組み合わせなどが挙げられる。担体粒子(例えばアルミナ粉末やCZ複合酸化物の粉末)は、耐熱性や構造安定性の観点から、比表面積が10~500m/g、例えば200~400m/gであるとよい。担体粒子の平均粒径は、典型的には1~500nm、例えば10~200nmであるとよい。なお、第1触媒層261と第2触媒層262とに含まれる担体の種類は、同じであってもよいし、異なっていてもよい。
 第1触媒層261は、隔壁26内部の入側セル24と接する領域に、排ガス流入側の端部24aから延伸方向に沿って隔壁26の全長Lよりも短く形成されている。入側セル24へと流入した排ガスは隔壁26内を通過する。このため、第1触媒層261を隔壁26の内部に設けることで、隔壁26通過時の排ガス浄化性能を効果的に高めることができる。また、本発明者らの検討によれば、かかる構成は、排ガス流入時の圧損を低減する点からも特に有効である。
 第1触媒層261の延伸方向の長さ(平均長さ)Lは、上記Lの概ね20%以上、典型的には25%以上、好ましくは30%以上、例えば50%以上であって、概ね90%以下、典型的には85%以下、好ましくは80%以下、例えば70%以下であるとよい。図3に示す態様では、第1触媒層261の長さLが上記Lの凡そ60%である。本発明者らの検討によれば、入側セル24の封止部22近傍の部分には、不燃成分からなるアッシュ(ASH)が堆積し易い傾向がある。このため、Lを所定値以下とすることで、圧損の上昇を好適に抑制することができる。また、Lを所定値以上とすることで、排ガス浄化能力をより一層好適に発揮させることができる。
 第2触媒層262は、隔壁26内部の出側セル25と接する領域に、排ガス流出側の端部25aから延伸方向に沿って隔壁26の全長Lよりも短く形成されている。
 第2触媒層262の延伸方向の長さ(平均長さ)Lは、上記Lの概ね20%以上、典型的には25%以上、例えば30%以上、好ましくは50%以上であって、概ね90%以下、典型的には85%以下、好ましくは80%以下、例えば70%以下であるとよい。図3に示す態様では、第2触媒層262の長さLが上記Lの凡そ60%である。これにより、圧損の上昇を抑制しつつ高い浄化性能を実現することができる。
 なお、図3に示す態様では、第1触媒層261と第2触媒層262の長さが略等しい。しかし、これには限定されない。例えば、一方の触媒層の長さを相対的に長く、もう一方の触媒層の長さを相対的に短くすることもできる。
 排ガス浄化用触媒10では、隔壁26の全長Lと、第1触媒層261の長さLと、第2触媒層262の長さLとが、次式:L<(L+L)<2L;を満たしている。換言すれば、隔壁26の延伸方向において、第1触媒層261及び第2触媒層262の一部が相互に重なり合っている。第1触媒層261と第2触媒層262とを延伸方向に敢えて重ねることで、排ガスが触媒層の形成されていない部分を通過して、未浄化のまま排出されることが未然防止される。これにより、排ガス成分が的確に触媒層と接触することとなり、効果的にエミッションを低減することできる。
 第1触媒層261と第2触媒層262とが延伸方向に重なり合う長さは、例えば各触媒層の厚みなどによっても異なり得るため特に限定されない。通常は、上記Lの概ね2%以上、典型的には5%以上、好ましくは10%以上、例えば20%以上であって、概ね60%以下、典型的には50%以下、好ましくは40%以下であるとよい。なかでも、低コストと高性能とを高度に両立する観点からは、上記Lの10~25%程度であることが好ましい。
 第1触媒層261と第2触媒層262の厚み(平均厚み)は、例えば隔壁26の全体厚みTや触媒層の延伸方向の長さなどによっても異なり得るため特に限定されない。典型的には、第1触媒層261と第2触媒層262とは、それぞれ、隔壁26の全体厚みTよりも短く形成される。例えば、第1触媒層261の厚みTと第2触媒層262の厚みTとが、それぞれ、上記Tの20%以上、典型的には25%以上、好ましくは30%以上、例えば35%以上であって、90%以下、典型的には80%以下、例えば70%以下であるとよい。
 好ましい一態様では、隔壁の全体厚みTと、第1触媒層261の厚みTと、第2触媒層262の厚みTとが、次式:0.2T≦(T-T-T)≦0.4T;を満たしている。換言すれば、第1触媒層261と第2触媒層262とが厚み方向に接触しないように、隙間が空いている。つまり、厚み方向において、第1触媒層261と第2触媒層262との間には、上記Tの20~40%(例えば25~35%)程度の厚さで、基材のみからなる部分を設けるとよい。これにより、所望の触媒性能を安定して発揮できる。また、触媒金属の移動を抑制して、シンタリングや合金化による触媒金属の劣化を抑制することができる。
 上述のような触媒層は、従来と同様の方法で形成することができる。
 例えば図3に示す態様の排ガス浄化用触媒10は、以下のように形成するとよい。
 先ず、図1,2に示すようなハニカム基材1を用意し、ハニカム基材1の隔壁内部に第1触媒層261を形成する。具体的には、所望の触媒金属成分(典型的には触媒金属をイオンとして含む溶液)と、所望の担体粉末とを含む第1触媒層形成用スラリーを調製する。スラリーの性状(粘度や固形分率など)は、使用するハニカム基材1のサイズや隔壁26の気孔率などを考慮して調整するとよい。次に、このスラリーをハニカム基材1の排ガス流入側の端部24aから入側セル24内に供給し、内部コート法によって、隔壁26の細孔内に所望の性状の第1触媒層261を形成する。第1触媒層261の性状(例えば厚みや気孔率)は、例えばスラリーの性状やスラリーの供給量などによって調整することができる。或いは、上記スラリーの供給時に出側セル25を加圧して、入側セル24と出側セル25に圧力差を生じさせ、上記スラリーが隔壁26内に浸透しすぎないよう調整するのもよい。
 次に、第1触媒層261の形成時と同様に、第2触媒層形成用スラリーを調製する。このスラリーをハニカム基材1の排ガス流出側の端部25aから出側セル25内に供給し、内部コート法によって、隔壁26の細孔内に所望の性状の第2触媒層262を形成する。
 スラリーを付与した後のハニカム基材1は、所定の温度及び時間で乾燥、焼成する。これにより、図3に示すような排ガス浄化用触媒10を製造することができる。
 なお、触媒層形成用スラリーは、触媒金属及び担体に加えて、従来公知の酸素吸放出材やバインダ、添加剤などの任意の添加成分を含み得る。酸素吸放出材としては、担体又は非担持体としてのCZ複合酸化物などが挙げられる。バインダとしては、アルミナゾル、シリカゾルなどが挙げられる。
 ここに開示される排ガス浄化用触媒は、圧損の上昇を抑制しつつ、優れた排ガス浄化性能を発揮し得るものである。したがって、種々の内燃機関、例えば自動車のガソリンエンジンやディーゼルエンジンの排気系(排気管)に好適に配置することができる。なかでもガソリンエンジンは通常、理論空燃比で制御されているため、排ガスが流入側の端部に近い隔壁部分及び流出側の端部に近い隔壁部分を流れやすい。このため、本発明の適用が特に効果的である。
 以下、本発明に関するいくつかの実施例につき説明するが、本発明をかかる具体例に限定することを意図したものではない。
≪I.触媒層のサイズ(長さ、厚み)の検討≫
<例1>
 基材として、セル数300cpsi(cells per square inch)、容積(セル通路の容積も含めた全体の嵩容積をいう)0.9L、全長105mm、外径103mm、隔壁の厚み0.3mmであり、気孔率が59%のコーディエライト製のハニカム基材を準備した。
 次に、担体であるAl粉末(γ-Al)40gと、触媒金属としてのRh含有量が0.2gである適量のロジウム水溶液と、適量の純水とを混合した。得られた混合液を撹拌混合した後、乾燥、焼成(500℃、1時間)することにより、Al粉末にRhが担持された形態の触媒金属担持粉末を得た。かかる触媒金属担持粉末と、焼成後のCZ複合酸化物量が60gとなるセリア-ジルコニア複合酸化物溶液と、適量の純水とを混合し触媒層形成用スラリーを調製した。
 次に、上記スラリーを、焼成後の触媒金属の担持量が基材1L当たり100gとなるようハニカム基材の排ガス流入側の端部から入側セル内に供給し、該入側セルと接する隔壁の細孔内に第1触媒層(延伸方向の長さL:隔壁の全長の30%、厚みT:隔壁の厚みの35%)を形成した。このとき、出側セルの排ガス流出側の端部からガスを供給して、入側セルと出側セルとの間に相対的な圧力差を生じさせ、スラリーが隔壁内に浸透する深さを調整した。
 次に、上記スラリーを、焼成後の触媒金属の担持量が基材1L当たり100gとなるようハニカム基材の排ガス流出側の端部から出側セル内に供給し、該出側セルと接する隔壁の細孔内に第2触媒層(延伸方向の長さL:隔壁の全長の30%、厚みT:隔壁の厚みの35%)を形成した。このとき、入側セルの排ガス流入側の端部からガスを供給して、入側セルと出側セルとの間に相対的な圧力差を生じさせ、スラリーが隔壁内に浸透する深さを調整した。
 そして、150℃で1時間乾燥した後、500℃で1時間の焼成を行うことにより、排ガス浄化用触媒(例1)を得た。例1では、隔壁の延伸方向の中央部分において、触媒層の形成されていない部分が隔壁の全長Lの40%にわたって存在している。
<例2>
 第1触媒層及び第2触媒層の延伸方向の長さを、いずれも隔壁の延伸方向の全長Lの50%としたこと以外は上記例1と同様に、排ガス浄化用触媒(例2)を作製した。
<例3>
 第1触媒層及び第2触媒層の延伸方向の長さを、いずれも隔壁の延伸方向の全長Lの55%としたこと以外は上記例1と同様に、排ガス浄化用触媒(例3)を作製した。この例では、第1触媒層と第2触媒層とが延伸方向にLの10%の長さにわたって重なり合っている。換言すれば、隔壁の延伸方向の中央部分では、第1触媒層と第2触媒層とが(触媒層の形成されていない部分を介して)厚み方向に積層され、多層構造になっている。
<例4~例9>
 第1触媒層及び第2触媒層の延伸方向の長さL、Lを表1に示すように形成したこと以外は上記例3と同様に、第1触媒層と第2触媒層とが延伸方向の一部で重なり合っている排ガス浄化用触媒(例4、例5)を作製した。また、参考例として、第1触媒層及び第2触媒層の延伸方向の長さL、Lと厚みT、Tを表1に示すように形成したこと以外は上記例1と同様に、排ガス浄化用触媒(例6~例9)を作製した。
 触媒層の仕様を下表1に纏める。
Figure JPOXMLDOC01-appb-T000001
<排ガス浄化性能の評価>
 上記得られた排ガス浄化用触媒(例1~例9)をガソリンエンジンの排気管に装着し、排ガス浄化性能を比較した。具体的には、エンジンベンチの排気系に排ガス浄化用触媒を設置し、排ガスの評価温度(入りガス温)400℃に調節して、HC成分及びNO成分の浄化率を測定した。結果を表1の該当欄に示す。また、図4には例1~例5に係る排ガス浄化用触媒の浄化性能を比較したグラフを示す。
 まず、延伸方向の重なりの好適範囲について検討する。図4から明らかなように、例1は最も浄化性能が悪かった。この理由としては、隔壁の延伸方向に触媒金属が担持されていない部分があったために、そこから未浄化の有害成分がすり抜けたことが考えられる。また、例2は、例1に比べて浄化性能が改善されていたが、未だ15%程度の有害成分が浄化されず排出されていた。
 これに対して、2つの触媒層同士を延伸方向に相互に重ね合わせた例3~例5では、相対的に高い浄化性能を示した。特に、延伸方向の重なりを隔壁の全長Lの10~40%とした例3、例4において最も優れた浄化性能を示した。
 なお、延伸方向の重なりを隔壁の全長Lの60%とした例5では、例3、例4に比べてやや浄化性能が低下した。この理由としては、入側セルと出側セルとの圧損差が考えられる。即ち、例5では、触媒金属を広範囲に担持したため、入側セルと出側セルとの圧損差が高くなっている。これにより、排ガスが触媒層内(特には隔壁内)をより早く通り抜けてしまうこととなり、例3、例4に比べて浄化性能が低下したことが考えられる。
 以上のことから、第1触媒層と第2触媒層とを隔壁の延伸方向に一部重ね合わせることで、相対的に高い排ガス浄化性能を実現することができる。また、延伸方向の重なりは、隔壁の全長Lの2%以上60%以下(特には10%以上40%以下)とするとよい。かかる結果は、本発明の技術的意義を示すものである。
 次に、延伸方向の重なりが同等の試験例(例3、例8)を比較して、厚み方向の好適範囲を検討する。例3の浄化率は、参考例としての例8と概ね同等であった。このことから、厚み方向において、第1触媒層と第2触媒層との間には、上記Tの20~40%(典型的には25~35%)程度の隙間を設けてもよい。換言すれば、厚み方向のT-T-Tは、0.2T以上0.4T以下とすることができる。これにより、生産性や作業容易性を高めることができる。更には、所望の触媒性能を発揮できるとともに、触媒金属の移動を抑制し得、シンタリングや合金化による触媒金属の劣化を抑制することができる。
 また、例2と、参考例としての例6、例7との比較から、重なりが0(つまり、L=(L+L))の場合には、厚み方向において、触媒層が万遍なく存在しているか、あるいは第1触媒層と第2触媒層とが一部重なり合って構成されているとよい。換言すれば、次式:T≦(T+T)<2T;を満たすとよい。これにより、相対的に高い排ガス浄化性能を実現することができる。
≪II. 触媒金属種の検討≫
<例10~例12>
 触媒金属の種類を表2に示すものに変更したこと以外は上記例8と同様に、排ガス浄化用触媒(例10~例12)を作製した。そして、上記I.と同様に排ガス浄化性能を評価した。結果を表2の該当欄に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、第1触媒層にロジウムを、第2触媒層にロジウム又はパラジウムを用いた場合に、特に浄化率が高かった。このことから、触媒金属種としては、第1触媒層及び第2触媒層にロジウムを用いることが好ましい。或いは、他の好適例として、第1触媒層に還元活性が高いロジウムを、第2触媒層に酸化活性が高いパラジウムを用いることが好ましい。
≪III. 2つの触媒層の重なりに関する詳細検討≫
<例13~例16>
 第2触媒層の延伸方向の長さLを表3に示すように形成したこと以外は上記例4と同様に、排ガス浄化用触媒(例13~例16)を作製した。そして、上記I.と同様に排ガス浄化性能を評価した。結果を表3の該当欄に示す。
Figure JPOXMLDOC01-appb-T000003
 表1、3から明らかなように、2つの触媒層の延伸方向の重なりを隔壁の全長Lの10~25%とした場合、格別に浄化性能が優れていた。かかる結果は、本発明の技術的意義を示すものである。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
1    ハニカム基材
1a   端部
2    封止部
4    開口部
6、26 隔壁
10   排ガス浄化用触媒
22   封止部
24   入側セル
24a  排ガス流入側の端部
25   出側セル
25a  排ガス流出側の端部
261  第1触媒層
262  第2触媒層

Claims (6)

  1.  内燃機関の排気管に配置されて該内燃機関から排出される排ガスの浄化を行うウォールフロー型の排ガス浄化用触媒であって、
     排ガス流入側の端部が開口した入側セルと、排ガス流出側の端部が開口した出側セルとが、多孔質な隔壁によって仕切られているウォールフロー構造の基材と、
     前記隔壁の内部であって前記入側セルと接する領域に、前記排ガス流入側の端部から前記隔壁の延伸方向に沿って前記隔壁の全長Lよりも短く形成されている第1触媒層と、
     前記隔壁の内部であって前記出側セルと接する領域に、前記排ガス流出側の端部から前記隔壁の延伸方向に沿って前記隔壁の全長Lよりも短く形成されている第2触媒層と、
     を備え、
     前記延伸方向において、前記第1触媒層の長さをLとし、前記第2触媒層の長さをLとしたとき、前記Lと前記Lと前記Lとが、次式:L<(L+L)<2L;を満たし、前記第1触媒層と前記第2触媒層とが前記延伸方向に一部重なり合っている、ウォールフロー型の排ガス浄化用触媒。
  2.  前記第1触媒層と前記第2触媒層とが前記延伸方向に重なり合う長さは、前記Lの2%以上60%以下である、請求項1に記載の排ガス浄化用触媒。
  3.  前記第1触媒層と前記第2触媒層とが重なり合う長さは、前記Lの10%以上40%以下である、請求項2に記載の排ガス浄化用触媒。
  4.  前記第1触媒層の長さLが、前記Lの20%以上90%以下である、請求項1~3のいずれか一項に記載の排ガス浄化用触媒。
  5.  前記第2触媒層の長さLが、前記Lの20%以上90%以下である、請求項1~4のいずれか一項に記載の排ガス浄化用触媒。
  6.  前記延伸方向と直交する厚み方向において、前記隔壁の全体厚みをTとし、前記第1触媒層の厚みをTとし、前記第2触媒層の厚みをTとしたとき、次式:0.2T≦(T-T-T)≦0.4T;を満たしている、請求項1~5のいずれか一項に記載の排ガス浄化用触媒。
PCT/JP2015/078549 2014-10-16 2015-10-07 排ガス浄化用触媒 WO2016060048A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202210808443.8A CN115155668A (zh) 2014-10-16 2015-10-07 废气净化用催化剂
EP15850507.3A EP3207989B2 (en) 2014-10-16 2015-10-07 Exhaust gas purification catalyst
CN201580056002.5A CN107073465A (zh) 2014-10-16 2015-10-07 废气净化用催化剂
JP2016554053A JP6381663B2 (ja) 2014-10-16 2015-10-07 排ガス浄化用触媒
US15/517,311 US10125649B2 (en) 2014-10-16 2015-10-07 Exhaust gas purification catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-211379 2014-10-16
JP2014211379 2014-10-16

Publications (1)

Publication Number Publication Date
WO2016060048A1 true WO2016060048A1 (ja) 2016-04-21

Family

ID=55746594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078549 WO2016060048A1 (ja) 2014-10-16 2015-10-07 排ガス浄化用触媒

Country Status (5)

Country Link
US (1) US10125649B2 (ja)
EP (1) EP3207989B2 (ja)
JP (1) JP6381663B2 (ja)
CN (2) CN107073465A (ja)
WO (1) WO2016060048A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017200677A (ja) * 2016-05-02 2017-11-09 三菱自動車工業株式会社 排ガス浄化触媒の製造方法及び排ガス浄化触媒
GB2551608A (en) * 2016-04-01 2017-12-27 Johnson Matthey Japan Ltd Exhaust gas purification filter
JP6386697B1 (ja) * 2017-03-23 2018-09-05 株式会社キャタラー 排ガス浄化用触媒
WO2018173557A1 (ja) * 2017-03-23 2018-09-27 株式会社キャタラー 排ガス浄化用触媒
WO2019065806A1 (ja) * 2017-09-27 2019-04-04 イビデン株式会社 ハニカム触媒
WO2019078096A1 (ja) * 2017-10-19 2019-04-25 株式会社キャタラー 排ガス浄化用触媒
CN109789388A (zh) * 2016-09-26 2019-05-21 株式会社科特拉 排气净化用催化剂
JP2019081160A (ja) * 2017-10-31 2019-05-30 株式会社キャタラー 排ガス浄化用触媒
WO2019221212A1 (ja) 2018-05-17 2019-11-21 エヌ・イーケムキャット株式会社 排ガス浄化触媒及びその製造方法
WO2019221217A1 (ja) 2018-05-17 2019-11-21 エヌ・イーケムキャット株式会社 排ガス浄化触媒
WO2019221216A1 (ja) 2018-05-17 2019-11-21 エヌ・イーケムキャット株式会社 排ガス浄化触媒の製造方法
WO2019221214A1 (ja) 2018-05-17 2019-11-21 エヌ・イーケムキャット株式会社 排ガス浄化触媒
WO2020031792A1 (ja) * 2018-08-09 2020-02-13 エヌ・イーケムキャット株式会社 排ガス浄化触媒の製造方法
WO2020110379A1 (ja) * 2018-11-28 2020-06-04 エヌ・イーケムキャット株式会社 排ガス浄化触媒及びその製造方法
WO2020262623A1 (ja) * 2019-06-26 2020-12-30 株式会社キャタラー パティキュレートフィルタ
WO2021059883A1 (ja) 2019-09-26 2021-04-01 エヌ・イーケムキャット株式会社 排ガス浄化触媒の製造方法
WO2021131630A1 (ja) * 2019-12-27 2021-07-01 株式会社キャタラー 排ガス浄化用触媒
JP2021137766A (ja) * 2020-03-09 2021-09-16 トヨタ自動車株式会社 排ガス浄化装置
US11298685B2 (en) 2017-09-27 2022-04-12 Ibiden Co., Ltd. Honeycomb catalytic converter
US11298686B2 (en) 2017-09-27 2022-04-12 Ibiden Co., Ltd. Honeycomb catalytic converter
US11298687B2 (en) 2017-09-27 2022-04-12 Ibiden Co., Ltd. Honeycomb catalytic converter

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10071368B2 (en) * 2015-02-17 2018-09-11 Cataler Corporation Exhaust gas purification catalyst
JP6864677B2 (ja) * 2016-05-24 2021-04-28 株式会社キャタラー 排ガス浄化用触媒
JP6487982B1 (ja) * 2017-09-28 2019-03-20 株式会社キャタラー 排ガス浄化用触媒
US10220376B1 (en) * 2017-12-05 2019-03-05 James G. Davidson Catalytic composition and system for exhaust purification
EP3501647A1 (de) 2017-12-19 2019-06-26 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
EP3501648B1 (de) 2017-12-19 2023-10-04 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
DE202017007047U1 (de) 2017-12-19 2019-04-29 Umicore Ag & Co. Kg Katalytisch aktives Partikelfilter
DE202017007046U1 (de) 2017-12-19 2019-04-29 Umicore Ag & Co. Kg Katalytisch aktives Partikelfilter
EP3505245B1 (de) 2017-12-19 2019-10-23 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
CN111770794B (zh) * 2018-03-30 2021-08-13 三井金属矿业株式会社 废气净化催化剂
CN111801163B (zh) * 2018-03-30 2023-01-06 三井金属矿业株式会社 废气净化催化剂
JP7037985B2 (ja) * 2018-03-30 2022-03-17 日本碍子株式会社 ハニカムフィルタ
EP3842142A4 (en) * 2018-08-22 2021-06-30 Mitsui Mining & Smelting Co., Ltd. EXHAUST GAS PURIFICATION CATALYST
JP7195995B2 (ja) * 2019-03-27 2022-12-26 株式会社キャタラー 排ガス浄化用触媒
CN113412145A (zh) 2019-03-29 2021-09-17 优美科股份公司及两合公司 催化活性微粒过滤器
WO2020200398A1 (de) 2019-03-29 2020-10-08 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
CN113646063A (zh) 2019-03-29 2021-11-12 优美科股份公司及两合公司 催化活性微粒过滤器
JP7120959B2 (ja) * 2019-04-22 2022-08-17 トヨタ自動車株式会社 構造体
JP7211893B2 (ja) * 2019-05-24 2023-01-24 トヨタ自動車株式会社 排ガス浄化装置
JP7381372B2 (ja) 2020-03-12 2023-11-15 トヨタ自動車株式会社 排ガス浄化装置
JP2022178611A (ja) * 2021-05-20 2022-12-02 トヨタ自動車株式会社 排ガス浄化装置
JP2022186014A (ja) * 2021-06-04 2022-12-15 トヨタ自動車株式会社 排ガス浄化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154223A (ja) * 2001-07-18 2003-05-27 Ibiden Co Ltd 触媒つきフィルタ、その製造方法及び排気ガス浄化システム
JP2010269205A (ja) * 2009-05-19 2010-12-02 Toyota Motor Corp 排ガス浄化用触媒
JP2013158678A (ja) * 2012-02-03 2013-08-19 Nippon Soken Inc 排ガス浄化フィルタ及びその製造方法
WO2014002772A1 (ja) * 2012-06-28 2014-01-03 三井金属鉱業株式会社 ディーゼルパティキュレートフィルタ及び排気ガス浄化装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048754A (ja) * 2002-10-31 2005-02-24 Denso Corp 内燃機関の排ガス浄化装置
US7119044B2 (en) 2003-06-11 2006-10-10 Delphi Technologies, Inc. Multiple washcoats on filter substrate
US7722829B2 (en) * 2004-09-14 2010-05-25 Basf Catalysts Llc Pressure-balanced, catalyzed soot filter
US7754160B2 (en) 2005-08-31 2010-07-13 Ngk Insulators Honeycomb catalytic body and process for manufacturing honeycomb catalytic body
JP2007185571A (ja) 2006-01-11 2007-07-26 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒及びその製造方法
JP5073303B2 (ja) * 2006-03-24 2012-11-14 日本碍子株式会社 触媒コンバータ及び触媒コンバータの製造方法
US20080020922A1 (en) * 2006-07-21 2008-01-24 Li Cheng G Zone catalyzed soot filter
JP5173180B2 (ja) * 2006-10-30 2013-03-27 株式会社キャタラー 排ガス浄化用触媒
DE102007046158B4 (de) 2007-09-27 2014-02-13 Umicore Ag & Co. Kg Verwendung eines katalytisch aktiven Partikelfilters zur Entfernung von Partikeln aus dem Abgas von mit überwiegend stöchiometrischem Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren
TW200942320A (en) * 2008-03-26 2009-10-16 Honda Motor Co Ltd Catalyst apparatus, method for production of catalyst apparatus, and structure retaining catalyst carrier
GB0812544D0 (en) * 2008-07-09 2008-08-13 Johnson Matthey Plc Exhaust system for a lean burn IC engine
FR2934804A1 (fr) 2008-08-07 2010-02-12 Inergy Automotive Systems Res Procede pour la fabrication d'un reservoir a carburant en matiere plastique.
US8844274B2 (en) * 2009-01-09 2014-09-30 Ford Global Technologies, Llc Compact diesel engine exhaust treatment system
US8758695B2 (en) 2009-08-05 2014-06-24 Basf Se Treatment system for gasoline engine exhaust gas
US8246922B2 (en) 2009-10-02 2012-08-21 Basf Corporation Four-way diesel catalysts and methods of use
JP2011147901A (ja) * 2010-01-22 2011-08-04 Toyota Motor Corp 排ガス浄化用触媒
US8722000B2 (en) * 2011-03-29 2014-05-13 Basf Corporation Multi-component filters for emissions control
JP2012236180A (ja) 2011-05-13 2012-12-06 Nippon Soken Inc 排ガス浄化フィルタ
EP2707118B1 (en) 2011-05-13 2019-12-04 Basf Se Catalyzed soot filter with layered design
US8789356B2 (en) 2011-07-28 2014-07-29 Johnson Matthey Public Limited Company Zoned catalytic filters for treatment of exhaust gas
GB201207313D0 (en) * 2012-04-24 2012-06-13 Johnson Matthey Plc Filter substrate comprising three-way catalyst
JP6532826B2 (ja) 2013-12-11 2019-06-19 株式会社キャタラー 排ガス浄化材
RU2688080C2 (ru) 2014-03-12 2019-05-17 Басф Се Усовершенствованный каталитический фильтр сажи
JP6564637B2 (ja) 2014-10-09 2019-08-21 株式会社キャタラー 排ガス浄化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154223A (ja) * 2001-07-18 2003-05-27 Ibiden Co Ltd 触媒つきフィルタ、その製造方法及び排気ガス浄化システム
JP2010269205A (ja) * 2009-05-19 2010-12-02 Toyota Motor Corp 排ガス浄化用触媒
JP2013158678A (ja) * 2012-02-03 2013-08-19 Nippon Soken Inc 排ガス浄化フィルタ及びその製造方法
WO2014002772A1 (ja) * 2012-06-28 2014-01-03 三井金属鉱業株式会社 ディーゼルパティキュレートフィルタ及び排気ガス浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3207989A4 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233803B2 (en) 2016-04-01 2019-03-19 Johnson Matthey Public Limited Company Exhaust gas purification filter
GB2551608A (en) * 2016-04-01 2017-12-27 Johnson Matthey Japan Ltd Exhaust gas purification filter
JP2017200677A (ja) * 2016-05-02 2017-11-09 三菱自動車工業株式会社 排ガス浄化触媒の製造方法及び排ガス浄化触媒
US10814311B2 (en) 2016-09-26 2020-10-27 Cataler Corporation Exhaust gas purifying catalyst
EP3513873A4 (en) * 2016-09-26 2019-07-24 Cataler Corporation CATALYST FOR PURIFYING EXHAUST GASES
CN109789388B (zh) * 2016-09-26 2022-03-25 株式会社科特拉 排气净化用催化剂
CN109789388A (zh) * 2016-09-26 2019-05-21 株式会社科特拉 排气净化用催化剂
JP6386697B1 (ja) * 2017-03-23 2018-09-05 株式会社キャタラー 排ガス浄化用触媒
WO2018173557A1 (ja) * 2017-03-23 2018-09-27 株式会社キャタラー 排ガス浄化用触媒
CN110446551A (zh) * 2017-03-23 2019-11-12 株式会社科特拉 排气净化用催化剂
US11618009B2 (en) 2017-09-27 2023-04-04 Ibiden Co., Ltd. Honeycomb catalytic converter
US11298687B2 (en) 2017-09-27 2022-04-12 Ibiden Co., Ltd. Honeycomb catalytic converter
US11298686B2 (en) 2017-09-27 2022-04-12 Ibiden Co., Ltd. Honeycomb catalytic converter
CN111132763A (zh) * 2017-09-27 2020-05-08 揖斐电株式会社 蜂窝催化剂
US11298685B2 (en) 2017-09-27 2022-04-12 Ibiden Co., Ltd. Honeycomb catalytic converter
WO2019065806A1 (ja) * 2017-09-27 2019-04-04 イビデン株式会社 ハニカム触媒
JP2019058876A (ja) * 2017-09-27 2019-04-18 イビデン株式会社 ハニカム触媒
WO2019078096A1 (ja) * 2017-10-19 2019-04-25 株式会社キャタラー 排ガス浄化用触媒
JPWO2019078096A1 (ja) * 2017-10-19 2020-12-03 株式会社キャタラー 排ガス浄化用触媒
US11364489B2 (en) 2017-10-19 2022-06-21 Cataler Corporation Exhaust gas purifying catalyst
JP2019081160A (ja) * 2017-10-31 2019-05-30 株式会社キャタラー 排ガス浄化用触媒
JP7174516B2 (ja) 2017-10-31 2022-11-17 株式会社キャタラー 排ガス浄化用触媒
WO2019221217A1 (ja) 2018-05-17 2019-11-21 エヌ・イーケムキャット株式会社 排ガス浄化触媒
WO2019221214A1 (ja) 2018-05-17 2019-11-21 エヌ・イーケムキャット株式会社 排ガス浄化触媒
WO2019221212A1 (ja) 2018-05-17 2019-11-21 エヌ・イーケムキャット株式会社 排ガス浄化触媒及びその製造方法
WO2019221216A1 (ja) 2018-05-17 2019-11-21 エヌ・イーケムキャット株式会社 排ガス浄化触媒の製造方法
JP2020025898A (ja) * 2018-08-09 2020-02-20 エヌ・イーケムキャット株式会社 排ガス浄化触媒の製造方法
WO2020031792A1 (ja) * 2018-08-09 2020-02-13 エヌ・イーケムキャット株式会社 排ガス浄化触媒の製造方法
CN112203764A (zh) * 2018-08-09 2021-01-08 N.E.化学株式会社 废气净化催化剂的制造方法
CN112203764B (zh) * 2018-08-09 2021-08-06 N.E.化学株式会社 废气净化催化剂的制造方法
WO2020110379A1 (ja) * 2018-11-28 2020-06-04 エヌ・イーケムキャット株式会社 排ガス浄化触媒及びその製造方法
JPWO2020110379A1 (ja) * 2018-11-28 2021-10-21 エヌ・イーケムキャット株式会社 排ガス浄化触媒及びその製造方法
JP7319293B2 (ja) 2018-11-28 2023-08-01 エヌ・イーケムキャット株式会社 排ガス浄化触媒及びその製造方法
US11808188B2 (en) 2019-06-26 2023-11-07 Cataler Corporation Particulate filter
WO2020262623A1 (ja) * 2019-06-26 2020-12-30 株式会社キャタラー パティキュレートフィルタ
WO2021059883A1 (ja) 2019-09-26 2021-04-01 エヌ・イーケムキャット株式会社 排ガス浄化触媒の製造方法
WO2021131630A1 (ja) * 2019-12-27 2021-07-01 株式会社キャタラー 排ガス浄化用触媒
JP7475138B2 (ja) 2019-12-27 2024-04-26 株式会社キャタラー 排ガス浄化用触媒
JP2021137766A (ja) * 2020-03-09 2021-09-16 トヨタ自動車株式会社 排ガス浄化装置
JP7323483B2 (ja) 2020-03-09 2023-08-08 トヨタ自動車株式会社 排ガス浄化装置

Also Published As

Publication number Publication date
CN115155668A (zh) 2022-10-11
EP3207989B1 (en) 2020-09-09
US20170306823A1 (en) 2017-10-26
JP6381663B2 (ja) 2018-08-29
JPWO2016060048A1 (ja) 2017-07-20
US10125649B2 (en) 2018-11-13
EP3207989B2 (en) 2023-07-19
EP3207989A1 (en) 2017-08-23
EP3207989A4 (en) 2017-11-08
CN107073465A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
JP6381663B2 (ja) 排ガス浄化用触媒
JP6353918B2 (ja) 排ガス浄化用触媒
JP6353919B2 (ja) 排ガス浄化用触媒
JP6527935B2 (ja) 排ガス浄化用触媒
JP6655060B2 (ja) 排ガス浄化用触媒
JP6472677B2 (ja) 排ガス浄化用触媒
US10183253B2 (en) Exhaust gas purification device
JP6279448B2 (ja) 排ガス浄化装置
WO2018173557A1 (ja) 排ガス浄化用触媒
JP6539666B2 (ja) 排ガス浄化用触媒
JP2007038072A (ja) 排ガス浄化用触媒
CN111295244B (zh) 排气净化用催化剂
JP6386697B1 (ja) 排ガス浄化用触媒
WO2019065206A1 (ja) 排ガス浄化用触媒
JP6445228B1 (ja) 排ガス浄化用触媒
WO2015087873A1 (ja) 排ガス浄化用触媒
WO2019221212A1 (ja) 排ガス浄化触媒及びその製造方法
JP2019081160A (ja) 排ガス浄化用触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016554053

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15517311

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015850507

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015850507

Country of ref document: EP