WO2018147320A1 - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
WO2018147320A1
WO2018147320A1 PCT/JP2018/004194 JP2018004194W WO2018147320A1 WO 2018147320 A1 WO2018147320 A1 WO 2018147320A1 JP 2018004194 W JP2018004194 W JP 2018004194W WO 2018147320 A1 WO2018147320 A1 WO 2018147320A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
substrate
light emitting
region
Prior art date
Application number
PCT/JP2018/004194
Other languages
English (en)
French (fr)
Inventor
研吾 森安
Original Assignee
ウシオオプトセミコンダクター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオオプトセミコンダクター株式会社 filed Critical ウシオオプトセミコンダクター株式会社
Priority to KR1020197025146A priority Critical patent/KR102229114B1/ko
Priority to US16/484,330 priority patent/US11114588B2/en
Publication of WO2018147320A1 publication Critical patent/WO2018147320A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials

Definitions

  • the present invention relates to a semiconductor light emitting device.
  • n-side electrode an electrode in contact with an n-type semiconductor layer
  • p-side electrode an electrode in contact with a p-type semiconductor layer
  • FIG. 13 is a cross-sectional view schematically showing a semiconductor light emitting device disclosed in Patent Document 1.
  • the conventional semiconductor light emitting device 100 includes a substrate 101 and a semiconductor layer 110 formed on the substrate 101.
  • the semiconductor layer 110 is formed by stacking a p-type semiconductor layer 111, an active layer 112, and an n-type semiconductor layer 113.
  • An n-side electrode 121 is formed on the upper layer of the n-type semiconductor layer 113.
  • a p-side electrode 122 is formed below the p-type semiconductor layer 111.
  • the p-side electrode 122 is disposed in a region including a position facing the n-side electrode 121 in the direction orthogonal to the surface of the substrate 101.
  • the p-side electrode 122 is made of a highly reflective material.
  • the p-side electrode 122 is made of Ag or Al.
  • a metal layer 103 for bonding is formed on the upper layer of the substrate 101. A part of the metal layer 103 is in contact with the p-side electrode 122.
  • the substrate 101 included in the semiconductor light emitting device 100 is a conductive substrate, and a power supply electrode 125 is formed on the back surface of the substrate 101. Further, a current blocking layer 109 is provided for the purpose of suppressing current concentration at a position immediately below the n-side electrode 121.
  • an insulating layer 105 is provided on the upper layer of the substrate 101 so that a part thereof is located outside the semiconductor layer 110.
  • the insulating layer 105 is provided for the purpose of functioning as an etching stopper when the semiconductor layer 110 is etched along a direction orthogonal to the surface of the substrate 101 in the element isolation step. As shown in FIG. 13, the insulating layer 105 is formed in a region including a lower layer position of a region constituting the outer edge portion of the semiconductor layer 110 and a position outside the semiconductor layer 110.
  • the insulating layer 105 is preferably made of SiO 2 or SiN.
  • the semiconductor light emitting device 100 as shown in FIG. 13 starts to decrease in luminance when it is continuously lit for a predetermined time or more and eventually reaches a non-lighting state.
  • An object of this invention is to implement
  • an n-type or p-type first semiconductor layer, an active layer formed on the first semiconductor layer, and an upper layer formed on the active layer have different conductivity types.
  • a semiconductor light emitting device formed with a second semiconductor layer, The first direction perpendicular to the surface of the substrate is formed closer to the substrate than the first semiconductor layer, and is the surface of the first semiconductor layer on the substrate side when viewed from the first direction.
  • a first insulating layer formed to protrude outward from one surface;
  • a first electrode made of a highly reflective material, located on the inner side of the first insulating layer as viewed from the first direction and formed in contact with the first surface directly or via a thin film;
  • a second electrode formed in contact with the surface of the second semiconductor layer opposite to the substrate; The first region facing the first surface and the first insulating layer and the second region facing the first surface and the first electrode are separated from each other in a second direction parallel to the surface of the substrate. It is characterized by being.
  • the present inventor considers the reason why the luminance starts to decrease when the conventional semiconductor light emitting element continues to be lighted for a predetermined time and eventually reaches a non-lighting state as follows.
  • the insulating layer 105 included in the semiconductor light emitting device 100 shown in FIG. 13 is not a dense structure. In addition, a minute gap is inevitably formed between the insulating layer 105 and the semiconductor layer 110 (p-type semiconductor layer 111). As shown in FIG. 13, since the insulating layer 105 is located outside the semiconductor layer 110, the insulating layer 105 has a region in contact with the atmosphere. Therefore, the air can pass through the insulating layer 105 and reach the p-side electrode 122 provided in contact with the insulating layer 105.
  • the material constituting the p-side electrode 122 causes ion migration due to the presence of moisture contained in the atmosphere adsorbed on the surface of the p-side electrode 122.
  • the p-side electrode 122 is composed of Ag
  • Ag ions for example, Ag +
  • the semiconductor layer 110 and the p-side electrode are It moves toward the outer edge along the vicinity of the interface with the electrode 122 (see FIG. 14A).
  • the Ag ions move through the interface between the semiconductor layer 110 and the insulating layer 105 or through the insulating layer 105 and eventually reach a position outside the semiconductor layer 110. Thereafter, the Ag ions move to the n-side electrode 121 side on the surface of the semiconductor layer 110 or through the layer.
  • the Ag ions When the migration of the material constituting the p-side electrode 122 (here, Ag ions) further progresses, the Ag ions eventually reach the active layer 112, and a leakage current path is formed in the semiconductor layer 110. As a result, the amount of current flowing in the active layer 112 is reduced, and the luminance of the semiconductor light emitting device 100 is reduced. As migration further progresses, Ag ions reach the n-side electrode 121 (see FIG. 14B), and a complete leak is formed. After such a situation, the semiconductor light emitting element 100 is hardly lit or not lit.
  • the region of the first semiconductor layer on the substrate side (first surface) and the first insulating layer are opposed to each other, and the region where the first surface and the first electrode are opposed to each other.
  • the first insulating layer and the first electrode are not in contact with each other on the surface of the first semiconductor layer on the substrate side or in the vicinity of the surface.
  • the amount of air reaching the surface of the first electrode can be reduced as compared with the conventional configuration. That is, according to the structure of this invention, compared with the conventional structure, since the progress of the migration of the material which comprises a 1st electrode is suppressed, a lifetime improves.
  • the first semiconductor layer-side surface including a region protruding outward from the first surface of the first semiconductor layer; and the first A region (corresponding to the “first region”) facing the first surface of the semiconductor layer, a surface of the first electrode on the first semiconductor layer side, and a surface of the first semiconductor layer A region facing the first surface (corresponding to the “second region”) may be separated in a direction parallel to the surface of the substrate.
  • the first electrode may be made of a metal material containing at least one of Ag and Al. These materials have high reflectivity with respect to light emitted from the active layer, but are prone to migration. However, according to said structure, since the progress of the migration of the material which comprises a 1st electrode is suppressed, a high reflectance can be maintained over a long time. As a result, a semiconductor light emitting device capable of maintaining high light extraction efficiency over a long period of time is realized.
  • the first insulating layer may be a layer provided to realize the function of an etching stopper.
  • the first insulating layer may be configured to be in contact with an outer edge portion of the substrate-side surface (first surface) of the first semiconductor layer.
  • the first semiconductor layer can be a p-type semiconductor layer
  • the second semiconductor layer can be an n-type semiconductor layer
  • the semiconductor light emitting element is In the third region sandwiched between the first region and the second region with respect to the second direction, the first surface comes into contact with the first electrode and the material has a higher contact resistance than the first electrode. It does not matter as having the first conductive layer.
  • the first conductive layer is formed at a position between the first electrode and the first insulating layer in the direction (second direction) parallel to the surface of the substrate.
  • the first conductive layer is made of a material whose contact resistance with the first semiconductor layer is higher than that of the first electrode.
  • the first conductive layer has a charge having the same polarity (here, “+”) stronger than that of the first electrode.
  • Examples of the first conductive layer include a single layer structure made of Ti, TiW, Pt, Ni, W, Au, or the like, or a multilayer structure thereof.
  • the first conductive layer may be formed so as to connect the substrate-side surface of the first electrode, the side surface of the first electrode, and the third region.
  • the semiconductor light emitting element is A bonding layer including a solder material formed on an upper layer of the substrate; Formed in contact with the surface of the bonding layer opposite to the substrate, the surface of the first conductive layer on the substrate side, and the surface of the first insulating layer on the substrate side; and May have a second conductive layer made of a different material.
  • the second conductive layer may be a layer provided for the purpose of suppressing the material (solder material) contained in the bonding layer from diffusing to the first electrode side.
  • the second conductive layer can be composed of Ti / Pt.
  • the first conductive layer is made of a material different from that of the second conductive layer, and can be made of TiW / Pt, for example.
  • the first insulating layer may be formed so as to be in contact with the surface of the first conductive layer on the substrate side at a position facing the second electrode in the first direction.
  • the first insulating layer not only functions as an etching stopper, but also functions to expand the current flowing between the first electrode and the second electrode in a direction parallel to the surface of the substrate (second direction). Doubles as That is, the light emitting region in the active layer is expanded in the second direction. As a result, a semiconductor light emitting device in which high light extraction efficiency is maintained for a long time is realized.
  • An insulating layer (second insulating layer) for spreading the current flowing between the first electrode and the second electrode in a direction (second direction) parallel to the surface of the substrate is provided separately from the first insulating layer. It does not matter as a configuration. That is, the semiconductor light emitting element is in contact with the substrate-side surface of the first conductive layer at a position facing the second electrode with respect to the first direction, and with the first insulating layer with respect to the second direction. A second insulating layer formed at a distance may be provided.
  • the semiconductor light emitting element is A bonding layer including a solder material formed on an upper layer of the substrate; A second conductive layer made of a material different from the first conductive layer, formed in contact with a surface of the bonding layer opposite to the substrate; A third conductive layer formed at a position sandwiched between the first conductive layer and the second conductive layer with respect to the first direction and made of a material different from the first conductive layer and the second conductive layer; , The first conductive layer is formed by extending in the second direction so as to contact the surface of the first insulating layer on the substrate side, The third conductive layer may be formed in a region including a position facing the first insulating layer in the first direction.
  • the semiconductor light emitting element is At a position facing the second electrode with respect to the first direction, and sandwiched between the third conductive layer and the second conductive layer, and formed apart from the first insulating layer with respect to the second direction, A second insulating layer may be provided.
  • the semiconductor light emitting element is A bonding layer including a solder material formed on an upper layer of the substrate;
  • the first conductive layer may be formed in contact with the surface of the bonding layer opposite to the substrate.
  • the semiconductor light emitting element is Having a fourth conductive layer sandwiched between the first conductive layer and the first insulating layer and formed in contact with the first surface in a part of the third region;
  • the fourth conductive layer may be made of a material that is different from the first conductive layer and has a higher contact resistance with respect to the first surface than the first electrode.
  • the semiconductor light emitting element is A bonding layer including a solder material formed on an upper layer of the substrate;
  • the first conductive layer is in contact with the first semiconductor layer in at least a part of the region facing the first insulating layer with respect to the first direction, the side surface of the first electrode, the third region, It may be formed so as to communicate with the first region.
  • the third region may be opposed to the second electrode in the first direction. Even in such a configuration, the effect of spreading the current flowing in the active layer in the direction parallel to the surface of the substrate (second direction) is realized. At this time, the first conductive layer may have a Schottky contact with the first surface in the third region.
  • the third region may be located outside the second electrode when viewed from the first direction.
  • a semiconductor light emitting device having a longer life characteristic than the conventional one is realized.
  • FIG. 1B It is a top view which shows typically the semiconductor light-emitting device of 1st embodiment. It is sectional drawing which shows typically the semiconductor light-emitting device of 1st embodiment. It is a partially expanded view of FIG. 1B. It is a part of process sectional drawing which shows typically the manufacturing method of the semiconductor light-emitting device of 1st embodiment. It is a part of process sectional drawing which shows typically the manufacturing method of the semiconductor light-emitting device of 1st embodiment. It is a part of process sectional drawing which shows typically the manufacturing method of the semiconductor light-emitting device of 1st embodiment. It is a part of process sectional drawing which shows typically the manufacturing method of the semiconductor light-emitting device of 1st embodiment. It is a part of process sectional drawing which shows typically the manufacturing method of the semiconductor light-emitting device of 1st embodiment.
  • FIG. 4A It is a partially expanded sectional view which shows typically the example of another structure of the semiconductor light-emitting device of 2nd embodiment. It is sectional drawing which shows typically the semiconductor light-emitting device of 3rd embodiment.
  • FIG. 6B is a partially enlarged view of FIG. 6A. It is sectional drawing which shows typically the semiconductor light-emitting device of 4th embodiment.
  • FIG. 7B is a partially enlarged view of FIG. 7A. It is sectional drawing which shows typically the semiconductor light-emitting device of 5th embodiment.
  • FIG. 8A It is sectional drawing which shows typically the example of another structure of the semiconductor light-emitting device of 5th embodiment. It is a partially expanded view of FIG. 8C.
  • FIG. 9B is a partially enlarged view of FIG. 9A. It is sectional drawing which shows typically the example of another structure of the semiconductor light-emitting device of 6th embodiment. It is a partially expanded sectional view which shows typically the semiconductor light-emitting device of another embodiment. It is a top view which shows typically the semiconductor light-emitting device of another embodiment. It is sectional drawing which shows typically the semiconductor light-emitting device of another embodiment.
  • FIG. 6 is a drawing schematically showing a state in which migration occurs in a conventional semiconductor light emitting device. It is drawing which shows typically a mode that migration further progressed from the state of FIG. 14A.
  • the expression “the B layer is formed on the upper layer of the A layer” means that the thin film is formed on the surface of the A layer as well as the B layer is formed directly on the surface of the A layer. It is also intended to include the case where the B layer is formed through.
  • the “thin film” refers to a layer having a thickness of 10 nm or less, preferably a layer having a thickness of 5 nm or less.
  • AlGaN is synonymous with the description Al m Ga 1-m N (0 ⁇ m ⁇ 1), and the description of the composition ratio of Al and Ga is simply omitted. It is not intended to limit the composition ratio of Al and Ga to 1: 1. The same applies to the description “InGaN”.
  • FIG. 1A and 1B are drawings schematically showing the semiconductor light emitting device 1 of the first embodiment.
  • FIG. 1A corresponds to a plan view when the semiconductor light emitting element 1 is viewed from the light extraction surface.
  • FIG. 1B corresponds to a cross-sectional view of the semiconductor light emitting device 1 taken along the line X1-X1 in FIG. 1A.
  • FIG. 1C is an enlarged view of a portion of FIG. 1B.
  • the light extraction surface is defined as the XY plane, and the direction orthogonal to the XY plane is defined as the Z direction.
  • the Z direction corresponds to the “first direction”
  • the direction parallel to the XY plane corresponds to the “second direction”.
  • the semiconductor light emitting element 1 may be simply abbreviated as “light emitting element 1” as appropriate.
  • the light emitting element 1 includes a substrate 3.
  • the substrate 3 is composed of a conductive substrate such as CuW, W, or Mo, or a semiconductor substrate such as Si.
  • the light emitting element 1 includes a semiconductor layer 5 formed on the upper layer of the substrate 3.
  • the semiconductor layer 5 is configured by laminating a first semiconductor layer 11, an active layer 9, and a second semiconductor layer 7 in order from the side close to the substrate 3.
  • the first semiconductor layer 11 is a p-type semiconductor layer
  • the second semiconductor layer 7 is an n-type semiconductor layer.
  • the first semiconductor layer 11 is composed of a nitride semiconductor layer doped with a p-type impurity such as Mg, Be, Zn, or C, for example.
  • a nitride semiconductor layer for example, GaN, AlGaN, AlInGaN, or the like can be used.
  • the active layer 9 is composed of a semiconductor layer in which, for example, a light emitting layer composed of InGaN and a barrier layer composed of n-type AlGaN are periodically repeated.
  • the barrier layer is n-type, but it may be undoped or p-type doped.
  • the active layer 9 only needs to be configured by laminating layers made of at least two kinds of materials having different energy band gaps. The constituent material of the active layer 9 is appropriately selected according to the wavelength of light to be generated.
  • the second semiconductor layer 7 is composed of a nitride semiconductor layer doped with an n-type impurity such as Si, Ge, S, Se, Sn, or Te.
  • this nitride semiconductor layer for example, GaN, AlGaN, AlInGaN or the like can be used.
  • the second semiconductor layer 7 may be made of a material having a composition different from that of the p-type semiconductor layer 11.
  • the light emitting element 1 includes a first electrode 13.
  • the first electrode 13 is formed in contact with the first semiconductor layer 11. More specifically, as shown in FIG. 1C, the first semiconductor layer 11 is formed in contact with the first surface 11 a that is the surface on the substrate 3 side.
  • the first electrode 13 constitutes a p-side electrode.
  • the first electrode 13 is made of a conductive material exhibiting a high reflectance (for example, 80% or more, more preferably 90% or more) with respect to light emitted from the active layer 9. . More specifically, it is made of, for example, Ag, Al, or a metal material containing at least Ag or Al.
  • the light emitting element 1 includes a second electrode 15.
  • the second electrode 15 is formed on the upper surface of the second semiconductor layer 7 and is made of, for example, Cr—Au.
  • the second electrode 15 constitutes an n-side electrode.
  • the second electrode 15 is light configured by the second semiconductor layer 7. It is formed so as to surround the take-out surface. More specifically, the second electrode 15 is configured to extend in a predetermined direction at three spaced locations. However, the number of the second electrodes 15 to be stretched is not limited to three, and may be four or more.
  • the shape of the second electrode 15 shown in FIG. 1A is merely an example, and may be appropriately changed according to the design.
  • the second electrode 15 has a wide region 15a when viewed from the light extraction direction in some portions.
  • the region 15a may be configured as a pad electrode by connecting a wire 16 made of, for example, Au or Cu. At this time, the other end of the wire 16 may be connected to a power supply pattern of the package substrate. Note that the second electrode 15 does not necessarily have to include the wide region 15a.
  • the first electrode 13 is made of a material that exhibits a high reflectance with respect to the light generated in the active layer 9.
  • the light emitting element 1 is assumed to extract light emitted from the active layer 9 to the second semiconductor layer 7 side.
  • the first electrode 13 functions to increase the light extraction efficiency by reflecting light emitted from the active layer 9 toward the substrate 3 toward the second semiconductor layer 7.
  • the light emitting element 1 includes a first insulating layer 17.
  • the first insulating layer 17 is composed for example SiO 2, SiN, Zr 2 O 3, AlN, etc. Al 2 O 3.
  • the first insulating layer 17 contacts the outer edge portion of the first surface 11 a of the first semiconductor layer 11, and from the first surface 11 a when viewed from the Z direction (first direction). Is also formed to protrude outward. As will be described later in the section of the manufacturing method, the first insulating layer 17 functions as an etching stopper at the time of element isolation.
  • the region (first region 61) where the first insulating layer 17 and the first surface 11 a of the first semiconductor layer 11 are in contact is the first electrode 13 and the first semiconductor layer 11. It is separated from the area (second area 62) in contact with the surface 11a in the X direction. In the example of FIG. 1C, this X direction corresponds to the “second direction”.
  • the first insulating layer 17 is configured to cover the outer periphery of the semiconductor layer 5 when the light emitting element 1 is viewed from the Z direction. That is, the light emitting element 1 of the present embodiment includes a region (first region 61) where the first insulating layer 17 and the first surface 11 a of the first semiconductor layer 11 are in contact, the first electrode 13, and the first semiconductor layer 11. The region (second region 62) in contact with the first surface 11a may be separated in the Y direction. In this case, the Y direction corresponds to the “second direction”.
  • the first region 61 and the second region 62 are separated in a direction (second direction) parallel to the XY plane. The same applies to the following embodiments.
  • the light emitting element 1 includes a first protective layer 31 made of TiW and a second protective layer 32 made of Pt.
  • the first protective layer 31 is formed below the first electrode 13.
  • the second protective layer 32 is formed below the first protective layer 31.
  • the first protective layer 31 and the second protective layer 32 correspond to the “first conductive layer 41”.
  • the first conductive layer 41 is in contact with the first surface 11a of the first semiconductor layer 11. Yes. More specifically, the first conductive layer 41 is formed so as to connect the surface of the first electrode 13 on the substrate 3 side, the side surface of the first electrode 13, and the third region 63.
  • a part of the first insulating layer 17 is located below the first conductive layer 41. More specifically, a part of the first insulating layer 17 is formed in contact with the first conductive layer 41 at a position facing the second electrode 15 in the Z direction.
  • the first protective layer 31 may have a structure containing Ni in the uppermost layer for the purpose of improving adhesion.
  • the light emitting element 1 includes a second insulating layer 19.
  • the second insulating layer 19 is formed in contact with the first conductive layer 41 at a position facing the second electrode 15 in the Z direction.
  • the current flowing in the active layer 9 is spread in a direction parallel to the XY plane in the region closer to the center than the outer edge portion of the light emitting element 1, thereby improving the light emission efficiency. To do.
  • the second insulating layer 19 is composed for example SiO 2, SiN, Zr 2 O 3, AlN, etc. Al 2 O 3.
  • the light emitting element 1 includes a bonding layer 20.
  • the bonding layer 20 includes a solder material made of, for example, Au—Sn, Au—In, Au—Cu—Sn, Cu—Sn, Pd—Sn, or Sn. Note that the bonding layer 20 may include the solder material and a Ti layer provided so as to sandwich them. As will be described later, the bonding layer 20 is formed after the bonding layer 21 formed on the upper layer of the substrate 3 and the bonding layer 22 formed on the upper layer of another substrate (a growth substrate 25 described later) face each other. It is formed by pasting both together. In FIG. 1B, these bonding layers (21, 22) are illustrated as constituting a bonding layer 20 that is integrated. However, it is recognized that each bonding layer (21, 22) is laminated. It may be possible.
  • the light emitting element 1 includes a third protective layer 33.
  • the third protective layer 33 has a multilayer structure including, for example, a laminated body in which Ti / Pt is laminated in one cycle or multiple cycles and a laminated body in which TiW / Pt is laminated in one cycle or multiple cycles.
  • the third protective layer 33 may be composed only of a laminate in which Ti / Pt is laminated in one cycle or multiple cycles, or may be composed only of a laminate in which TiW / Pt is laminated in one cycle or multiple cycles. It doesn't matter.
  • the third protective layer 33 is formed under the insulating layers (17, 19) and the first conductive layer 41.
  • the third protective layer 33 is formed on the surface of the bonding layer 20 opposite to the substrate 3, the surface of the first conductive layer 41 on the substrate 3 side, and the surface of the first insulating layer 17 on the substrate 3 side. It is formed in contact.
  • the third protective layer 33 constitutes the “second conductive layer 42”.
  • the third protective layer 33 has a function of preventing the material (solder material) contained in the bonding layer 20 from diffusing to the first electrode 13 side. If the solder material diffuses into the first electrode 13, the reflectance of the first electrode 13 decreases, and the light extraction efficiency decreases. By forming the third protective layer 33 between the bonding layer 20 and the first electrode 13, it is possible to suppress a decrease in the reflectance of the first electrode 13.
  • the third protective layer 33 may have a structure containing Ni in the uppermost layer for the purpose of improving adhesion.
  • the light emitting element 1 includes a fourth protective layer 34. Similar to the third protective layer 33, the fourth protective layer 34 is provided for the purpose of suppressing the diffusion of the solder material contained in the bonding layer 20. However, whether or not the light emitting element 1 includes the fourth protective layer 34 is arbitrary.
  • the region (first region 61) where the first surface 11 a of the first semiconductor layer 11 and the first insulating layer 17 are in contact with each other is separated from the direction parallel to the XY plane.
  • the first conductive layer 41 is in contact with the first surface 11 a of the first semiconductor layer 11 in a region (third region 63) sandwiched between the first region 61 and the second region 62.
  • the first conductive layer 41 located in the third region 63 is a metal material and has a dense structure as compared with the first insulating layer 17. For this reason, even if the air enters the light emitting element 1 through the first insulating layer 17, the first conductive layer 41 prevents the air from entering. The amount of air that reaches the surface is reduced. Therefore, in contrast to the conventional configuration, the progress of migration of the material (for example, Ag, Al) constituting the first electrode 13 is suppressed, so that the element lifetime is improved.
  • the material for example, Ag, Al
  • TiW and Pt constituting the first conductive layer 41 are materials having a higher contact resistance with the first semiconductor layer 11 than Ag and Al constituting the first electrode 13. For this reason, even if the material constituting the first electrode 13 is ionized, the material constituting the first conductive layer 41 prevents the metal ion from reaching the outer edge portion of the light emitting element 1. Thereby, the progress of migration is further suppressed as compared with the conventional configuration.
  • Step S1 First, the growth substrate 25 is prepared. Next, as shown in FIG. 2A, the undoped layer 26, the second semiconductor layer 7, the active layer 9, and the first semiconductor layer 11 are sequentially grown on the growth substrate 25.
  • the growth substrate 25 is cleaned.
  • the furnace temperature is set while flowing a predetermined flow rate of hydrogen gas. This is done by raising the temperature.
  • a low-temperature buffer layer made of GaN is formed on the upper surface of the growth substrate 25, and a base layer made of GaN is formed thereon. These low-temperature buffer layer and underlayer correspond to the undoped layer 26.
  • TMG trimethylgallium
  • the furnace temperature of the MOCVD apparatus is raised to 1150 ° C., for example.
  • nitrogen gas and hydrogen gas as carrier gases, and TMG and ammonia as raw material gases are respectively supplied into the processing furnace at a predetermined flow rate for a predetermined time.
  • an underlayer made of GaN having a thickness of 1.7 ⁇ m, for example, is formed on the surface of the low-temperature buffer layer.
  • TMG nitrogen gas and hydrogen gas as carrier gas
  • TMA trimethylaluminum
  • ammonia as raw material gas in a state where the pressure inside the reactor is 30 kPa and the furnace temperature is 1150 ° C.
  • tetraethylsilane are respectively supplied into the processing furnace at a predetermined flow rate for a predetermined time.
  • the second semiconductor layer 7 having a composition of n-Al 0.06 Ga 0.94 N and a thickness of 2 ⁇ m is formed on the undoped layer 26.
  • Tetraethylsilane is an example of a source gas for doping Si as an n-type impurity.
  • the second semiconductor layer 7 includes an n-AlGaN layer and an n-GaN layer.
  • the n-type impurity contained in the second semiconductor layer 7 is Si has been described.
  • the n-type impurity Ge, S, Se, Sn, Te, or the like can be used in addition to Si.
  • the source gas is appropriately selected according to the dopant.
  • an active layer 9 in which a light-emitting layer made of InGaN having a thickness of 2 nm and a barrier layer made of n-AlGaN having a thickness of 7 nm are stacked for 15 periods is formed into the second semiconductor. Formed on top of layer 7.
  • the furnace temperature is raised to 1025 ° C. while flowing nitrogen gas and hydrogen gas as carrier gases.
  • TMG, TMA, ammonia, and biscyclopentadienylmagnesium (Cp 2 Mg) as source gases are respectively supplied into the processing furnace at a predetermined flow rate for a predetermined time.
  • p-Al 0.3 Ga 0.7 N having a thickness of 20 nm is formed on the surface of the active layer 9.
  • TMA as appropriate, for example, p-Al 0.13 Ga 0.87 N having a thickness of 120 nm is formed.
  • the first semiconductor layer 11 is formed of these p-AlGaN.
  • the supply of TMA is stopped and the flow rate of Cp 2 Mg may be changed as appropriate to form a p-GaN layer having a thickness of about 5 nm.
  • the first semiconductor layer 11 includes a p-AlGaN layer and a p-GaN layer.
  • Step S3 An activation process is performed on the wafer obtained in step S2.
  • activation treatment is performed for 15 minutes at 650 ° C. in a nitrogen atmosphere using an RTA (Rapid Thermal Anneal) device.
  • RTA Rapid Thermal Anneal
  • Step S4 As shown in FIG. 2B, the first electrode 13, the first protective layer 31, the second protective layer 32, the first insulating layer 17, and the second insulating layer 19 are formed on the first semiconductor layer 11.
  • An example of a specific method is as follows.
  • the constituent material of the first electrode 13 is formed in a predetermined region on the upper surface of the first semiconductor layer 11, more specifically, in a region excluding the outer edge.
  • Ag having a thickness of about 150 nm is formed by sputtering.
  • Ag is an example of a material that exhibits a high reflectance (90% or more) with respect to light emitted from the active layer 9.
  • a film made of another material such as Ni may be formed on the upper layer of Ag.
  • the second protective layer 32 made of Pt is formed.
  • the first protective layer 31 and the second protective layer 32 are formed so as to be in contact with a part of the upper surface of the first semiconductor layer 11.
  • An example of the film thickness of the first protective layer 31 is 60 nm
  • an example of the film thickness of the second protective layer 32 is 60 nm.
  • contact annealing is performed in a dry air or inert gas atmosphere using an RTA apparatus or the like at 400 ° C. to 550 ° C. for 60 seconds to 300 seconds. Thereby, the first electrode 13 in ohmic contact with the first semiconductor layer 11 is formed.
  • the first insulating layer 17 is formed so as to connect a part of the upper surface of the first semiconductor layer 11 exposed at the outer edge and a part of the upper surface of the second protective layer 32, and a part of the second protective layer 32 is formed.
  • a second insulating layer 19 is formed on the upper surface of the substrate.
  • both insulating layers (17, 19) may be formed at the same time.
  • an insulating layer (17, 19) is formed by depositing SiO 2 with a film thickness of about 50 nm by plasma CVD and then patterning it by etching.
  • the material for forming the film may be an insulating material, and may be SiN or Al 2 O 3 in addition to SiO 2 .
  • Step S5 As shown in FIG. 2C, the third protective layer 33 is formed so as to cover the upper surface of the insulating layers (17, 19), and then the bonding layer 21 is formed on the upper surface of the third protective layer 33.
  • the third protective layer 33 is formed by depositing 200 nm of Ti and 50 nm of Pt for three periods by sputtering.
  • the third protective layer 33 is formed by depositing Ti with a thickness of 50 nm and Pt with a thickness of 200 nm, and then depositing two cycles of TiW with a thickness of 200 nm and Pt with a thickness of 50 nm. .
  • Ni having a thickness of about 100 nm may be formed on the uppermost surface of the third protective layer 33.
  • the bonding layer 21 is formed by depositing Au—Sn solder composed of Au 80% Sn 20% to a thickness of 3 ⁇ m.
  • Step S6 As shown in FIG. 2D, the fourth protective layer 34 and the bonding layer 22 are formed on the upper surface of the substrate 3 prepared separately from the growth substrate 25 by the same method as in step S5.
  • a conductive substrate such as CuW, W, or Mo, or a semiconductor substrate such as Si can be used.
  • the fourth protective layer 34 may not be formed.
  • Step S7 As shown in FIG. 2E, the bonding layer 21 formed on the growth substrate 25 and the bonding layer 22 formed on the substrate 3 are bonded to each other so that the growth substrate 25 and the substrate 3 are bonded to each other. Is done. As a specific example, the bonding process is performed at a temperature of 280 ° C. and a pressure of 0.2 MPa.
  • the bonding layer 21 and the bonding layer 22 are melted and bonded to form a structure in which the substrate 3 and the growth substrate 25 are bonded to the front and back surfaces. That is, the bonding layer 21 and the bonding layer 22 may constitute the integrated bonding layer 20 after this step. Then, since the protective layers (33, 34) are formed in the stage before the execution of step S7, it is possible to suppress the diffusion of the constituent material (more specifically, the solder material) of the bonding layers (21, 22). Has been.
  • Step S8 Next, as shown in FIG. 2F, the growth substrate 25 is peeled off. More specifically, laser light is irradiated from the growth substrate 25 side with the growth substrate 25 facing upward and the substrate 3 facing downward.
  • the irradiated laser light passes through the constituent material of the growth substrate 25 (in this embodiment, sapphire) and has a wavelength such that it is absorbed by the constituent material of the undoped layer 26 (in this embodiment, GaN). To do.
  • the laser light is absorbed by the undoped layer 26, so the interface between the growth substrate 25 and the undoped layer 26 is heated to decompose GaN, and the growth substrate 25 is peeled off.
  • the GaN (undoped layer 26) remaining on the wafer is removed by wet etching using hydrochloric acid or the like, or dry etching using an ICP apparatus, so that the second semiconductor layer 7 is exposed.
  • the undoped layer 26 is removed, and the semiconductor layer 5 in which the first semiconductor layer 11, the active layer 9, and the second semiconductor layer 7 are stacked in this order from the substrate 3 side remains.
  • Step S9 Next, as shown in FIG. 2G, adjacent elements are separated from each other. Specifically, the semiconductor layer 5 is etched until the upper surface of the first insulating layer 17 is exposed to the boundary region with the adjacent element using an ICP apparatus. At this time, as described above, the first insulating layer 17 functions as an etching stopper.
  • the side surface of the semiconductor layer 5 is illustrated as being inclined with respect to the vertical direction, but this is an example and is not intended to be limited to such a shape.
  • Step S10 Next, as shown in FIG. 1B, a predetermined region on the upper surface of the second semiconductor layer 7, more specifically, facing the insulating layer (17, 19) in the Z direction in the upper surface of the second semiconductor layer 7.
  • the second electrode 15 is formed in a part of the region to be processed.
  • a film thickness of 100 nm is formed on the upper surface of the second semiconductor layer 7 in a state where a region other than the region where the second electrode 15 is to be formed is masked with a resist or the like. Cr and 3 ⁇ m thick Au are deposited. Thereafter, after the mask is peeled off, annealing is performed at 250 ° C. for about 1 minute in a nitrogen atmosphere.
  • each element is separated by, for example, a laser dicing apparatus. Thereafter, the back surface of the substrate 3 is bonded to the package by, for example, Ag paste. Thereafter, wire bonding is performed on a partial region of the second electrode 15.
  • the light emitting element 1 is manufactured through the above steps.
  • step S9 or after step S10 a step of forming fine irregularities on the upper surface of the second semiconductor layer 7 by wet etching may be executed. This unevenness is provided for the purpose of improving the light extraction efficiency. Further, after that, the exposed upper surface of the second semiconductor layer 7 and side surfaces of the semiconductor layer 5 may be covered with a passivation film made of an insulating material such as SiO 2 .
  • the first protective layer 31 is in contact with the first semiconductor layer 11 and the second protective layer 32 is not in contact with the first semiconductor layer 11 in the third region 63. I do not care.
  • the first protective layer 31 corresponds to the “first conductive layer 41”.
  • the light-emitting element 1 may not have the second protective layer 32. Also in this configuration, the first protective layer 31 corresponds to the “first conductive layer 41”.
  • FIG. 4A is a drawing schematically showing the semiconductor light emitting device 1a of the second embodiment.
  • FIG. 4B is a partially enlarged view of FIG. 4A.
  • the plan view is the same as that of the semiconductor light emitting device 1 of the first embodiment, and is not shown.
  • the light emitting element 1a of the present embodiment is different from the light emitting element 1 of the first embodiment in the formation region of the first insulating layer 17. That is, unlike the first embodiment, the first insulating layer 17 is not in contact with the bottom surface of the first conductive layer 41. A second insulating layer 19 that contacts the bottom surface of the first conductive layer 41 is formed independently of the first insulating layer 17 at a position facing the second electrode 15 in the Z direction. In the third region 63, the first conductive layer 41 and the third protective layer 33 are in contact with the first semiconductor layer 11.
  • the first insulating layer 17 and the first electrode 13 are not in contact with each other on the first surface 11 a of the first semiconductor layer 11. Since the progress of migration of the material (for example, Ag, Al) constituting the electrode 13 is suppressed, the lifetime is improved.
  • the formation locations of the first insulating layer 17 and the second insulating layer 19 may be changed in step S4 according to the configuration of the light emitting element 1a.
  • the third protective layer is formed in the third region 63 by bringing the side surface of the first insulating layer 17 and the side surface of the first conductive layer 41 into contact with each other. You may comprise so that 33 may not contact the 1st surface 11a. Further, similarly to the configuration illustrated in FIG. 3A, the second protective layer 32 may not be in contact with the first semiconductor layer 11 in the third region 63. Further, similarly to the configuration shown in FIG. 3B, the second protective layer 32 may not be provided.
  • FIG. 6A is a drawing schematically showing the semiconductor light emitting device 1b of the third embodiment.
  • 6B is a partially enlarged view of FIG. 6A.
  • the light emitting element 1b of the present embodiment is different from the light emitting element 1a of the second embodiment in the formation regions of the first protective layer 31 and the second protective layer 32.
  • the first protective layer 31 is formed so as to contact the surface of the first electrode 13 on the substrate 3 side, the first surface 11 a of the first semiconductor layer 11, and the surface of the first insulating layer 17 on the substrate 3 side.
  • the second protective layer 32 is formed in contact with the surface of the first protective layer 31 on the substrate 3 side and the surface of the third protective layer 33 opposite to the substrate 3.
  • the second protective layer 32 is formed in contact with the first protective layer 31 even at a position facing the first insulating layer 17 in the Z direction.
  • the first protective layer 31 corresponds to the “first conductive layer 41”
  • the third protective layer 33 corresponds to the “second conductive layer 42”
  • the second protective layer 32 corresponds to the “third conductive layer 41”. 43 ".
  • the first insulating layer 17 and the first electrode 13 are not in contact with each other on the first surface 11 a of the first semiconductor layer 11. Since the progress of migration of the material (for example, Ag, Al) constituting the electrode 13 is suppressed, the lifetime is improved.
  • the formation positions of the first insulating layer 17, the second insulating layer 19, the first protective layer 31, and the second protective layer 32 are determined according to the configuration of the light emitting element 1b. Change it.
  • FIG. 7A is a drawing schematically showing the semiconductor light emitting device 1c of the fourth embodiment.
  • FIG. 7B is a partially enlarged view of FIG. 7A.
  • the light emitting element 1c of the present embodiment is different in the formation region of the first protective layer 31 compared to the light emitting element 1b of the third embodiment.
  • the first protective layer 31 does not contact the surface of the first electrode 13 on the substrate 3 side, but contacts the first surface 11a of the first semiconductor layer 11 and the surface of the first insulating layer 17 on the substrate 3 side. Is formed.
  • the light emitting element 1 c does not include the second protective layer 32.
  • the first protective layer 31 and the third protective layer 33 are in contact with the first semiconductor layer 11 in the third region 63.
  • the third protective layer 33 corresponds to the “first conductive layer 41”
  • the first protective layer 31 corresponds to the “fourth conductive layer 44”.
  • the first insulating layer 17 and the first electrode 13 are not in contact with each other on the first surface 11 a of the first semiconductor layer 11. Since the progress of migration of the material (for example, Ag, Al) constituting the electrode 13 is suppressed, the lifetime is improved.
  • the formation locations of the first insulating layer 17, the second insulating layer 19, and the first protective layer 31 may be changed according to the configuration of the light emitting element 1c.
  • FIG. 8A is a drawing schematically showing a semiconductor light emitting device 1d of the fifth embodiment.
  • FIG. 8B is a partially enlarged view of FIG. 8A.
  • the light emitting element 1d of the present embodiment is different from the light emitting element 1c of the fourth embodiment in that the first protective layer 31 is not provided. That is, as shown in FIG. 8B, the third protective layer 33 is in contact with the first semiconductor layer 11 in the third region 63. The third protective layer 33 is also in contact with the side surface of the first electrode 13 and the side surface of the first insulating layer 17. In the present embodiment, the third protective layer 33 corresponds to the “first conductive layer 41”.
  • the first insulating layer 17 and the first electrode 13 are not in contact with each other on the first surface 11 a of the first semiconductor layer 11. Since the progress of migration of the material (for example, Ag, Al) constituting the electrode 13 is suppressed, the lifetime is improved.
  • the film-forming process of the 1st protective layer 31 should just be skipped in step S4.
  • the first electrode 13 may not be formed in a region that does not face the second electrode 15 in the Z direction.
  • FIG. 8D is a partially enlarged view of FIG. 8C. 8C and 8D, the first protective layer 31 and the second protective layer 32 are provided in the lower layer of the first electrode 13. However, these layers may not be provided. .
  • the second insulating layer 19 may be provided below the third protective layer 33 in the third region 63.
  • the light emitting element 1d can be manufactured by forming the third protective layer (33, 33a) in two steps.
  • the first insulating layer 17 is extended to a position facing the second electrode 15 near the outer edge, and is opposed to the second electrode 15 provided near the center of the light emitting element 1d.
  • the second insulating layer 19 may be provided in the region.
  • FIG. 9A is a drawing schematically showing a semiconductor light emitting device 1e of the sixth embodiment.
  • FIG. 9B is an enlarged view of a part of FIG. 9A.
  • the light emitting element 1e is different from the light emitting element 1d shown in FIG. 8F in that the second insulating layer 19 is configured to contact the first semiconductor layer 11 through the fifth protective layer 35.
  • the fifth protective layer 35 is made of Ti, for example.
  • the fifth protective layer 35 is formed so as to contact the surface of the first semiconductor layer 11 on the substrate 3 side and cover the side surfaces of the first electrode 13, the first protective layer 31, and the second protective layer 32. Yes.
  • the first semiconductor layer 11 and the fifth protective layer 35 are in contact with each other at the outer edge portion of the semiconductor layer 5, and the first insulating layer 17 is located below the fifth protective layer 35. Yes. Since the first insulating layer 17 functions as an etching stopper, the first insulating layer 17 is formed to protrude outward from the semiconductor layer 5 as in the above-described embodiments.
  • the first surface 11a of the first semiconductor layer 11 and the first insulating layer 17 are opposed to each other in the Z direction (first region 61), the first surface 11a of the first semiconductor layer 11 and the first surface A region facing the one electrode 13 in the Z direction (second region 62) is separated in a direction parallel to the XY plane.
  • the fifth protective layer 35 is in contact with the first surface 11 a of the first semiconductor layer 11 in a region (third region 63) sandwiched between the first region 61 and the second region 62. Therefore, similarly to the other embodiments described above, even if the atmosphere enters the light emitting element 1e through the first insulating layer 17, the fifth protective layer 35 prevents the atmosphere from entering. In contrast, the amount of air that reaches the surface of the first electrode 13 decreases. That is, in the light emitting element 1e of the present embodiment, the fifth protective layer 35 corresponds to the “first conductive layer 41”.
  • the fifth protective layer 35 may be formed so as to cover the bottom surface of the second protective layer 32. 9A and 9C, a part of the second insulating layer 19 may contact the bottom surface of the fifth protective layer 35.
  • the light emitting elements (1a, 1b, 1c) of the second, third, and fourth embodiments described above may not include the second insulating layer 19.
  • the first electrode 13 and the first semiconductor layer 11 are connected to the Schottky in a region facing the second electrode 15 in the Z direction. You may make it contact.
  • the first electrode 13 and the third protective layer 33 may be brought into Schottky contact.
  • FIG. 10 illustrates a configuration in which the first electrode 13 is in contact with the first semiconductor layer 11 through the thin film 51 in the light emitting device 1 of the first embodiment illustrated in FIG. 1C.
  • the thin film 51 is made of Ni, for example.
  • the thin film 51 is provided for the purpose of enhancing ohmic contact between the first electrode 13 and the first semiconductor layer 11. The same applies to the light emitting elements (1a, 1b, 1c, 1d) of the second, third, fourth, and fifth embodiments.
  • the shape of the second electrode 15 is arbitrary.
  • the second electrode 15 may be configured to extend in a direction in which the pad electrode 15 a faces (X direction in the drawing).
  • the extending direction of the second electrode 15 is not limited to the X direction or the Y direction, and may be an oblique direction or a direction along a curve.
  • the second electrode 15 is preferably formed in a frame shape along the shape of the substrate 3.
  • the first semiconductor layer 11 is a p-type semiconductor layer and the second semiconductor layer 7 is an n-type semiconductor layer.
  • the conductivity type may be reversed.
  • the sixth protective layer 36 included in the light emitting device 1f shown in FIG. 12 is formed so as to cover the surface and the side surface of the first conductive layer 41 on the substrate 3 side.
  • the sixth protective layer 36 is made of, for example, Ti / Pt.
  • a second insulating layer 19 is formed at a position facing the second electrode 15 in the Z direction, and a third protective layer 33 is formed below the second insulating layer 19.
  • the light emitting element 1f is opposite to the second electrode 15 formed in the position closest to the outer edge in the Z direction, like the light emitting element 1b shown in FIG. 6A and the light emitting element 1c shown in FIG. 7A.
  • the second insulating layer 19 is also formed at the position where it does.
  • the second insulating layer 19 is illustrated as extending to a position facing the first insulating layer 17 in the Z direction, but this structure is an example.
  • the second insulating layer 19 may be formed inside the first insulating layer 17 when viewed from the Z direction.
  • the present invention does not exclude a configuration realized by arbitrarily combining the configurations described in the embodiments.
  • the first electrode 13 may not be formed in a region facing the second electrode 15 in the Z direction. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

従来よりも寿命特性に優れた半導体発光素子を実現する。 半導体発光素子は、基板上に、n型又はp型の第一半導体層と、第一半導体層の上層に形成された活性層と、活性層の上層に形成され第一半導体層とは導電型の異なる第二半導体層とが形成されている。この発光素子は、基板の面に直交する第一方向から見て第一半導体層の基板側の面である第一面よりも外側に突出して形成された第一絶縁層と、第一方向から見て第一絶縁層よりも内側に位置し、第一面に対して直接又は薄膜を介して接触して形成された、高反射材料からなる第一電極と、第二半導体層の基板とは反対側の面に接触して形成された第二電極とを有する。第一面及び第一絶縁層が対向する第一領域と、第一面及び第一電極が対向する第二領域とは、基板の面に平行な第二方向に関して離間している。

Description

半導体発光素子
 本発明は、半導体発光素子に関する。
 近年、「縦型構造」と呼ばれる半導体発光素子の開発が進められている。縦型構造とは、n型半導体層と接触する電極(n側電極)と、p型半導体層に接触する電極(p側電極)とが、基板の面に直交する方向に対向して配置された構造を指す。縦型構造を有する半導体発光素子の一例が、下記特許文献1に開示されている。
 図13は、特許文献1に開示されている半導体発光素子を模式的に示す断面図である。図13に示されるように、従来の半導体発光素子100は、基板101と、基板101上に形成された半導体層110とを有する。半導体層110は、p型半導体層111と、活性層112と、n型半導体層113とが積層されて構成されている。
 n型半導体層113の上層には、n側電極121が形成されている。p型半導体層111の下層には、p側電極122が形成されている。p側電極122は、基板101の面に直交する方向に関して、n側電極121と対向する位置を含む領域に配置されている。半導体発光素子100は、n型半導体層113が光取り出し面を構成するため、p側電極122は反射性の高い材料が用いられる。一例として、p側電極122は、AgやAlで構成される。
 基板101の上層には貼り合わせのための金属層103が形成されている。金属層103の一部は、p側電極122と接触している。特許文献1では、半導体発光素子100が備える基板101は導電性基板とされており、基板101の裏面に給電用電極125が形成されている。また、n側電極121の直下の位置における電流の集中を抑制する目的で電流阻止層109が設けられている。
 更に、基板101の上層において、一部が半導体層110よりも外側に位置するように絶縁層105が設けられている。この絶縁層105は、素子分離工程において、半導体層110を基板101の面に直交する方向に沿ってエッチングする際に、エッチングストッパとして機能させる目的で設けられている。図13に示されるように、この絶縁層105は、半導体層110の外縁部を構成する領域の下層の位置、及び半導体層110よりも外側の位置を含む領域に形成されている。
 特許文献1によれば、絶縁層105は、SiO2やSiNが好適に用いられるとされている。
特開2010-27643号公報
 本発明者の鋭意研究によれば、図13に示されるような半導体発光素子100は、所定の時間以上点灯を継続すると、輝度が低下をし始め、やがて不点灯状態に達することを確認した。本発明は、従来よりも寿命特性に優れた半導体発光素子を実現することを目的とする。
 本発明は、
 基板上に、n型又はp型の第一半導体層と、前記第一半導体層の上層に形成された活性層と、前記活性層の上層に形成され前記第一半導体層とは導電型の異なる第二半導体層とが形成されてなる半導体発光素子であって、
 前記基板の面に直交する第一方向に関して前記第一半導体層よりも前記基板に近い位置に形成されると共に、前記第一方向から見て前記第一半導体層の前記基板側の面である第一面よりも外側に突出して形成された第一絶縁層と、
 前記第一方向から見て前記第一絶縁層よりも内側に位置し、前記第一面に対して直接又は薄膜を介して接触して形成された、高反射材料からなる第一電極と、
 前記第二半導体層の前記基板とは反対側の面に接触して形成された第二電極とを有し、
 前記第一面及び前記第一絶縁層が対向する第一領域と、前記第一面及び前記第一電極が対向する第二領域とは、前記基板の面に平行な第二方向に関して離間していることを特徴とする。
 従来の半導体発光素子を所定の時間にわたって点灯を継続すると、輝度が低下し始め、やがて不点灯状態に達するという現象が生じた理由について、本発明者は以下のように考察している。
 図13に示す半導体発光素子100が備える絶縁層105は、緻密な構造ではない。また、絶縁層105と半導体層110(p型半導体層111)との間には、微細な隙間が不可避的に形成される。図13に示されるように、絶縁層105は半導体層110よりも外側に位置しているため、絶縁層105には大気に接触する領域が存在する。従って、大気が、絶縁層105内を通過して、当該絶縁層105に接触して設けられているp側電極122に達し得る。
 この状態で半導体発光素子100の点灯状態が継続すると、p側電極122の表面に吸着された大気中に含まれる水分の存在により、p側電極122を構成する材料がイオンマイグレーションを起こす。例えば、p側電極122がAgで構成されている場合、イオンマイグレーションによって生成されたAgイオン(例えばAg+)が、n側電極121側の負電荷に引かれることで、半導体層110とp側電極122との界面近傍に沿って外縁部に向かって移動する(図14A参照)。
 更に、このAgイオンは、半導体層110と絶縁層105との界面、又は絶縁層105内を通じて移動し、やがて半導体層110よりも外側の位置に達する。その後、このAgイオンは、半導体層110の面上、又は層内を通じてn側電極121側に移動する。
 p側電極122を構成する材料(ここではAgイオン)のマイグレーションが更に進展すると、このAgイオンはやがて活性層112に達し、半導体層110内にリーク電流経路が形成される。これにより、活性層112内を流れる電流量が低下し、半導体発光素子100の輝度が低下する。なお、更にマイグレーションが進展すると、Agイオンがn側電極121に達し(図14B参照)、完全なリークが形成されてしまう。このような状況になった後は、半導体発光素子100がほとんど点灯しないか、不点灯となる。
 本発明に係る半導体発光素子によれば、第一半導体層の基板側の面(第一面)と第一絶縁層とが対向する領域と、第一面と第一電極とが対向する領域とが、基板の面に平行な方向に関して離間している。つまり、第一半導体層の基板側の面上、又は面近傍において、第一絶縁層と第一電極とが接触していない。この結果、仮に第一絶縁層を通じて大気が半導体発光素子の内部に侵入したとしても、従来の構成と対比して、第一電極の面に到達する大気の量を低下させることができる。つまり、本発明の構成によれば、従来の構成と対比して、第一電極を構成する材料のマイグレーションの進展が抑制されるため、寿命が向上する。
 より詳細には、前記第一絶縁層の面のうちの、前記第一半導体層の前記第一面よりも外側に突出している領域を含む前記第一半導体層の側の面と、前記第一半導体層の前記第一面とが対向する領域(上記「第一領域」に対応)と、前記第一電極の面のうちの、前記第一半導体層側の面と、前記第一半導体層の前記第一面とが対向する領域(上記「第二領域」に対応)とが、前記基板の面に平行な方向に離間しているものとすることができる。
 前記第一電極は、Ag、Alの少なくとも一方を含む金属材料からなるものとすることができる。これらの材料は、活性層から放射される光に対する反射率が高い反面、マイグレーションを起こしやすい材料である。しかし、上記の構成によれば、第一電極を構成する材料のマイグレーションの進展が抑制されるため、高い反射率を長時間にわたって維持することができる。これにより、高い光取り出し効率を長期間にわたって維持することのできる半導体発光素子が実現される。
 前記第一絶縁層は、エッチングストッパの機能を実現するために設けられた層であるものとすることができる。前記第一絶縁層は、前記第一半導体層の基板側の面(第一面)の外縁部に接触するように構成されているものとしても構わない。
 前記第一半導体層をp型半導体層とし、前記第二半導体層をn型半導体層とすることができる。
 前記半導体発光素子は、
 前記第二方向に関して前記第一領域と前記第二領域とに挟まれた第三領域において前記第一面と接触し、前記第一電極と比較して前記第一面に対する接触抵抗の高い材料からなる第一導電層を有するものとしても構わない。
 上記の構成によれば、基板の面に平行な方向(第二方向)に関し、第一電極と第一絶縁層との間の位置に第一導電層が形成されている。第一導電層は、第一半導体層との間の接触抵抗が、第一電極よりも高い材料で構成されている。このとき、第一導電層は、第一電極よりも、強い同極性(ここでは「+」とする)の電荷を有することになる。この結果、仮に、第一電極を構成する材料がイオン化し、第一電極と第二電極との間の電界に起因して当該イオンが移動したとしても、第一電極と第一絶縁層との間に形成された第一導電層の存在により、第一絶縁層側への移動が制限される。つまり、上記の構成によれば、マイグレーションを抑制する効果が更に高められる。
 第一導電層の一例としては、Ti、TiW、Pt、Ni、W、Auなどからなる単層構造、又はこれらの多層構造が挙げられる。
 前記第一導電層は、前記第一電極の前記基板側の面、前記第一電極の側面、及び前記第三領域を連絡するように形成されているものとしても構わない。
 このとき、前記半導体発光素子は、
 前記基板の上層に形成された、ハンダ材料を含む接合層と、
 前記接合層の前記基板とは反対側の面、前記第一導電層の前記基板側の面、及び前記第一絶縁層の前記基板側の面に接触して形成され、前記第一導電層とは異なる材料からなる第二導電層とを有するものとしても構わない。
 この第二導電層は、接合層に含まれる材料(ハンダ材料)が、第一電極側に拡散するのを抑制する目的で設けられた層であるものとすることができる。例えば、第二導電層はTi/Ptで構成することができる。一方、第一導電層は、第二導電層とは異なる材料で構成されており、例えば、TiW/Ptで構成することができる。
 前記第一絶縁層は、前記第一方向に関して前記第二電極と対向する位置において、前記第一導電層の前記基板側の面に接触するように形成されているものとしても構わない。
 この構成によれば、第一絶縁層は、エッチングストッパとしての機能だけではなく、第一電極と第二電極との間を流れる電流を基板の面に平行な方向(第二方向)に拡げる機能を兼ねる。すなわち、活性層における発光領域が第二方向に拡げられる。この結果、高い光取り出し効率が長時間にわたって維持された、半導体発光素子が実現される。
 なお、第一電極と第二電極との間を流れる電流を基板の面に平行な方向(第二方向)に拡げるための絶縁層(第二絶縁層)を、第一絶縁層とは別に設ける構成としても構わない。すなわち、前記半導体発光素子は、前記第一方向に関して前記第二電極と対向する位置において、前記第一導電層の前記基板側の面に接触すると共に、前記第二方向に関して前記第一絶縁層と離間して形成された、第二絶縁層を備えるものとしても構わない。
 また、前記半導体発光素子は、
 前記基板の上層に形成された、ハンダ材料を含む接合層と、
 前記接合層の前記基板とは反対側の面に接触して形成された、前記第一導電層とは異なる材料からなる第二導電層と、
 前記第一方向に関して前記第一導電層と前記第二導電層とに挟まれる位置に形成され、前記第一導電層及び前記第二導電層とは異なる材料からなる第三導電層とを有し、
 前記第一導電層は、前記第一絶縁層の前記基板側の面に接触するように前記第二方向に延伸して形成され、
 前記第三導電層は、前記第一方向に関し、前記第一絶縁層に対向する位置を含む領域に形成されているものとしても構わない。
 前記半導体発光素子は、
 前記第一方向に関して前記第二電極と対向する位置において、前記第三導電層と前記第二導電層とに挟まれると共に、前記第二方向に関して前記第一絶縁層と離間して形成された、第二絶縁層を備えるものとしても構わない。
 前記半導体発光素子は、
 前記基板の上層に形成された、ハンダ材料を含む接合層を有し、
 前記第一導電層は、前記接合層の前記基板とは反対側の面に接触して形成されているものとしても構わない。
 この構成によれば、成膜される層の数を少なくしながらも、マイグレーションの進展を抑制することができる。
 前記半導体発光素子は、
 前記第一導電層と前記第一絶縁層とに挟まれると共に、前記第三領域の一部において前記第一面に接触して形成された第四導電層を有し、
 前記第四導電層は、前記第一導電層とは異なる材料であって、前記第一電極と比較して前記第一面に対する接触抵抗の高い材料からなるものとしても構わない。
 前記半導体発光素子は、
 前記基板の上層に形成された、ハンダ材料を含む接合層を有し、
 前記第一導電層は、前記第一方向に関して前記第一絶縁層と対向する少なくとも一部の領域において前記第一半導体層と接触すると共に、前記第一電極の側面と、前記第三領域と、前記第一領域とを連絡するように形成されているものとしても構わない。
 前記第三領域は、前記第一方向に関して前記第二電極と対向するものとしても構わない。このような構成においても、活性層内を流れる電流を基板の面に平行な方向(第二方向)に拡げる効果が実現される。なお、このとき、前記第一導電層は、前記第三領域において前記第一面との間でショットキー接触が形成されているものとしても構わない。
 前記第三領域は、前記第一方向から見て前記第二電極よりも外側に位置しているものとしても構わない。
 これにより、半導体発光素子の外縁と第一電極との間の距離がある程度確保される。この結果、第一電極の面に侵入する水分量を低下させることができる。更に、第一電極を構成する材料のイオンが、マイグレーションによって半導体発光素子の外縁に達するまでに要する時間を更に長くすることができ、長寿命化に寄与する。
 本発明によれば、従来よりも寿命特性に優れた半導体発光素子が実現される。
第一実施形態の半導体発光素子を模式的に示す平面図である。 第一実施形態の半導体発光素子を模式的に示す断面図である。 図1Bの一部拡大図である。 第一実施形態の半導体発光素子の製造方法を模式的に示す工程断面図の一部である。 第一実施形態の半導体発光素子の製造方法を模式的に示す工程断面図の一部である。 第一実施形態の半導体発光素子の製造方法を模式的に示す工程断面図の一部である。 第一実施形態の半導体発光素子の製造方法を模式的に示す工程断面図の一部である。 第一実施形態の半導体発光素子の製造方法を模式的に示す工程断面図の一部である。 第一実施形態の半導体発光素子の製造方法を模式的に示す工程断面図の一部である。 第一実施形態の半導体発光素子の製造方法を模式的に示す工程断面図の一部である。 第一実施形態の半導体発光素子の別構成例を模式的に示す一部拡大断面図である。 第一実施形態の半導体発光素子の別構成例を模式的に示す一部拡大断面図である。 第二実施形態の半導体発光素子を模式的に示す断面図である。 図4Aの一部拡大図である。 第二実施形態の半導体発光素子の別構成例を模式的に示す一部拡大断面図である。 第三実施形態の半導体発光素子を模式的に示す断面図である。 図6Aの一部拡大図である。 第四実施形態の半導体発光素子を模式的に示す断面図である。 図7Aの一部拡大図である。 第五実施形態の半導体発光素子を模式的に示す断面図である。 図8Aの一部拡大図である。 第五実施形態の半導体発光素子の別構成例を模式的に示す断面図である。 図8Cの一部拡大図である。 第五実施形態の半導体発光素子の別構成例を模式的に示す一部拡大断面図である。 第五実施形態の半導体発光素子の別構成例を模式的に示す断面図である。 第六実施形態の半導体発光素子を模式的に示す断面図である。 図9Aの一部拡大図である。 第六実施形態の半導体発光素子の別構成例を模式的に示す断面図である。 別実施形態の半導体発光素子を模式的に示す一部拡大断面図である。 別実施形態の半導体発光素子を模式的に示す平面図である。 別実施形態の半導体発光素子を模式的に示す断面図である。 従来の半導体発光素子を模式的に示す断面図である。 従来の半導体発光素子にマイグレーションが生じている様子を模式的に示す図面である。 図14Aの状態から更にマイグレーションが進展した様子を模式的に示す図面である。
 本発明の半導体発光素子につき、図面を参照して説明する。なお、各図において、図面の寸法比と実際の寸法比は必ずしも一致しない。
 本明細書内において、「A層の上層にB層が形成されている」という表現は、A層の面上に直接B層が形成されている場合はもちろん、A層の面上に薄膜を介してB層が形成されている場合も含む意図である。なお、ここでいう「薄膜」とは、膜厚10nm以下の層を指し、好ましくは5nm以下の層を指すものとして構わない。
 以下において、「AlGaN」という記述は、AlGa1-mN(0<m<1)という記述と同義であり、AlとGaの組成比の記述を単に省略して記載したものであって、AlとGaの組成比が1:1である場合に限定する趣旨ではない。「InGaN」という記述についても同様である。
 [第一実施形態]
  〈構造〉
 図1A及び図1Bは、第一実施形態の半導体発光素子1を模式的に示す図面である。図1Aは、半導体発光素子1を光取り出し面から見たときの平面図に対応する。図1Bは、図1A内におけるX1-X1線で半導体発光素子1を切断したときの断面図に対応する。図1Cは、図1Bの一部分の拡大図である。
 以下では、図1Aに示すように、光取り出し面をX-Y平面と規定し、このX-Y平面に直交する方向をZ方向と規定する。本実施形態において、Z方向が「第一方向」に対応し、X-Y平面に平行な方向が「第二方向」に対応する。また、半導体発光素子1を単に「発光素子1」と適宜略記することがある。
 (基板3)
 発光素子1は、基板3を備える。基板3は、例えばCuW、W、Moなどの導電性基板、又はSiなどの半導体基板で構成される。
 (半導体層5)
 発光素子1は、基板3の上層に形成された半導体層5を備える。半導体層5は、基板3に近い側から順に、第一半導体層11、活性層9、及び第二半導体層7が積層されて構成されている。本実施形態では、第一半導体層11がp型半導体層であり、第二半導体層7がn型半導体層であるものとして説明する。
 第一半導体層11は、例えばMg、Be、Zn、又はCなどのp型不純物がドープされた窒化物半導体層で構成される。窒化物半導体層としては、例えばGaN、AlGaN、AlInGaN等を利用することができる。
 活性層9は、例えばInGaNで構成される発光層と、n型AlGaNで構成される障壁層とが、周期的に繰り返されてなる半導体層で構成される。この実施例では、障壁層をn型としているが、アンドープでもp型にドープされていても構わない。活性層9は、少なくともエネルギーバンドギャップの異なる2種類の材料からなる層が積層されて構成されていればよい。活性層9の構成材料は、生成したい光の波長に応じて適宜選択される。
 第二半導体層7は、例えばSi、Ge、S、Se、Sn、又はTeなどのn型不純物がドープされた窒化物半導体層で構成される。この窒化物半導体層としては、例えばGaN、AlGaN、AlInGaN等を利用することができる。なお、第二半導体層7は、p型半導体層11と異なる組成の材料で構成されているものとしても構わない。
 (第一電極13)
 発光素子1は、第一電極13を備える。本実施形態において、第一電極13は、第一半導体層11に接触して形成されている。より詳細には、図1Cに示すように、第一半導体層11の面のうち、基板3側の面である第一面11aに接触して形成されている。本実施形態では、第一電極13がp側電極を構成する。
 本実施形態において、第一電極13は、活性層9から放射される光に対して高い反射率(例えば80%以上であり、より好ましくは90%以上)を示す導電性の材料で構成される。より具体的には、例えばAg、Al、又は少なくともAgかAlを含む金属材料で構成される。
 (第二電極15)
 発光素子1は、第二電極15を備える。本実施形態において、第二電極15は第二半導体層7の上面に形成されており、例えばCr-Auで構成される。本実施形態では、第二電極15はn側電極を構成する。
 図1Aに示されるように、基板3とは反対側から、すなわち光取り出し方向から本実施形態の発光素子1を見たときに、第二電極15は、第二半導体層7によって構成される光取り出し面を取り囲むように形成されている。より詳細には、第二電極15は、離間した3箇所において、所定の方向に延伸するように構成されている。ただし、この第二電極15の延伸する本数については、3本に限られるものではなく4本以上であっても構わない。図1Aに示した第二電極15の形状はあくまで一例であって、設計に応じて適宜変更して構わない。
 なお、図1Aに示す例では、第二電極15が、一部の箇所において光取り出し方向から見て幅広な領域15aを有している。この領域15aは、例えばAu、Cuなどで構成されるワイヤ16が連結されることで、パッド電極を構成するものとしても構わない。このとき、ワイヤ16の他端はパッケージ基板の給電パターンなどに接続されるものとして構わない。なお、第二電極15は、この幅広な領域15aを必ずしも備えなければならないというものではない。
 第一電極13と第二電極15との間に電圧が印加されることで、活性層9内を電流が流れ、活性層9が発光する。
 第一電極13は、上述したように、活性層9で生成される光に対して高い反射率を示す材料で構成される。発光素子1は、活性層9から放射された光を第二半導体層7側に取り出すことが想定されている。第一電極13は、活性層9から基板3側に向けて放射された光を第二半導体層7側に向けて反射させることで、光取り出し効率を高める機能を果たしている。
 (第一絶縁層17)
 発光素子1は、第一絶縁層17を備える。第一絶縁層17は、例えばSiO2、SiN、Zr23、AlN、Al23などで構成される。
 図1A及び図1Cに示されるように、第一絶縁層17は、第一半導体層11の第一面11aの外縁部に接触し、Z方向(第一方向)から見て第一面11aよりも外側に突出して形成されている。製造方法の項で後述されるように、第一絶縁層17は、素子分離時におけるエッチングストッパとして機能する。
 図1Cに示されるように、第一絶縁層17と第一半導体層11の第一面11aとが接触する領域(第一領域61)は、第一電極13と第一半導体層11の第一面11aとが接触する領域(第二領域62)と、X方向に離間している。図1Cの例では、このX方向が「第二方向」に対応する。
 なお、図1Aに図示されるように、発光素子1をZ方向から見たとき、第一絶縁層17が半導体層5の外周を覆うように構成されている。すなわち、本実施形態の発光素子1は、第一絶縁層17と第一半導体層11の第一面11aとが接触する領域(第一領域61)と、第一電極13と第一半導体層11の第一面11aとが接触する領域(第二領域62)とが、Y方向にも離間しているものとして構わない。この場合、Y方向が「第二方向」に対応する。
 すなわち、これらの記載をまとめると、発光素子1は、第一領域61と第二領域62とが、X-Y平面に平行な方向(第二方向)に離間している。以下の実施形態においても同様である。
 (第一保護層31,第二保護層32)
 発光素子1は、TiWからなる第一保護層31と、Ptからなる第二保護層32とを含む。第一保護層31は、第一電極13の下層に形成されている。第二保護層32は、第一保護層31の下層に形成されている。図1B及び図1Cに示される発光素子1において、第一保護層31と第二保護層32とが「第一導電層41」に対応する。
 図1Cに示されるように、第一領域61と第二領域62とに挟まれた第三領域63内において、第一導電層41は、第一半導体層11の第一面11aと接触している。より詳細には、第一導電層41は、第一電極13の基板3側の面、第一電極13の側面、及び第三領域63を連絡するように形成されている。
 本実施形態では、第一絶縁層17の一部が、第一導電層41の下層に位置している。より詳細には、第一絶縁層17の一部が、Z方向に関して第二電極15と対向する位置において、第一導電層41に接触するように形成されている。発光素子1がこのように構成されることで、発光素子1の外縁部に近い領域においても活性層9内を流れる電流がX-Y平面に平行な方向に拡げられるため、発光効率が向上する。
 第一保護層31は、密着性を高める目的で、最上層にNiを含む構造であっても構わない。
 (第二絶縁層19)
 図1Bに示されるように、本実施形態において、発光素子1は第二絶縁層19を備える。第二絶縁層19は、Z方向に関して第二電極15と対向する位置において、第一導電層41に接触するように形成されている。第二絶縁層19が設けられることで、発光素子1の、外縁部よりも中央に近い領域において、活性層9内を流れる電流がX-Y平面に平行な方向に拡げられ、発光効率が向上する。
 第二絶縁層19は、例えばSiO2、SiN、Zr23、AlN、Al23などで構成される。
 (接合層20)
 図1B及び図1Cに示されるように、本実施形態において、発光素子1は接合層20を備える。接合層20は、例えばAu-Sn、Au-In、Au-Cu-Sn、Cu-Sn、Pd-Sn、Snなどからなるハンダ材料を含んで構成される。なお、接合層20は、前記ハンダ材料と、これらを挟むように設けられたTi層とを含んで構成されるものとしても構わない。後述されるように、接合層20は、基板3の上層に形成された接合層21と、別の基板(後述する成長基板25)の上層に形成された接合層22とが対向された後に、両者が貼り合わされることで形成される。図1Bでは、これらの接合層(21,22)が一体化された接合層20を構成しているものとして図示しているが、各々の接合層(21,22)が積層された状態で認識可能であっても構わない。
 (第三保護層33)
 本実施形態において、発光素子1は第三保護層33を備える。第三保護層33は、例えば、Ti/Ptが一周期又は多周期積層された積層体と、TiW/Ptが一周期又は多周期積層された積層体とを含む多層構造で構成される。ただし、第三保護層33は、Ti/Ptが一周期又は多周期積層された積層体のみで構成されても構わないし、TiW/Ptが一周期又は多周期積層された積層体のみで構成されても構わない。図1B及び図1Cに示されるように、第三保護層33は、絶縁層(17,19)及び第一導電層41の下層に形成されている。より詳細には、第三保護層33は、接合層20の基板3とは反対側の面、第一導電層41の基板3側の面、及び第一絶縁層17の基板3側の面に接触して形成されている。本実施形態では、第三保護層33が「第二導電層42」を構成する。
 第三保護層33は、接合層20に含まれる材料(ハンダ材料)が第一電極13側に拡散するのを防止する機能を有する。仮に、ハンダ材料が第一電極13内に拡散すると、第一電極13の反射率が低下してしまい、光取り出し効率が低下してしまう。第三保護層33が、接合層20と第一電極13との間に形成されることで、第一電極13の反射率が低下することが抑制される。
 第三保護層33は、密着性を高める目的で、最上層にNiを含む構造であっても構わない。
 (第四保護層34)
 図1Bに示される例では、発光素子1は第四保護層34を備える。第四保護層34は、第三保護層33と同様、接合層20に含まれるハンダ材料が拡散するのを抑制する目的で設けられている。ただし、発光素子1が第四保護層34を備えるか否かは任意である。
  〈作用〉
 図1Cを参照して上述したように、発光素子1によれば、第一半導体層11の第一面11aと第一絶縁層17とが接触している領域(第一領域61)と、第一半導体層11の第一面11aと第一電極13とが接触している領域(第二領域62)とは、X-Y平面に平行な方向に関して離間している。そして、これら第一領域61と第二領域62とに挟まれた領域(第三領域63)において、第一導電層41が第一半導体層11の第一面11aと接触している。
 つまり、第一半導体層11の第一面11a上において、第一絶縁層17と第一電極13とが接触していない。そして、第三領域63内に位置している第一導電層41は、金属材料であり、第一絶縁層17と比較して緻密な構造を有する。このため、仮に第一絶縁層17を通じて大気が発光素子1の内部に侵入したとしても、第一導電層41によって大気の侵入が阻まれるため、従来の構成と対比して、第一電極13の面に到達する大気の量が低下する。従って、従来の構成と対比して、第一電極13を構成する材料(例えばAg、Al)のマイグレーションの進展が抑制されるため、素子寿命が向上する。
 更に、第一導電層41を構成するTiWやPtは、第一電極13を構成するAgやAlと比較して、第一半導体層11との接触抵抗が高い材料である。このため、仮に、第一電極13を構成する材料がイオン化したとしても、この第一導電層41を構成する材料に阻まれて、当該金属イオンが発光素子1の外縁部にまで到達しにくい。これにより、従来の構成と対比して、マイグレーションの進展が更に抑制される。
  〈製造方法〉
 本実施形態の発光素子1の製造方法の一例につき、図2A~図2Gに模式的に示す工程断面図を参照して説明される。以下で説明される製造条件や膜厚等の寸法は、あくまで一例である。
 (ステップS1)
 まず、成長基板25が準備される。次に、図2Aに示されるように、成長基板25の上層に、アンドープ層26、第二半導体層7、活性層9、及び第一半導体層11が順次成長される。
 準備工程として、成長基板25のクリーニングが行われる。このクリーニングは、一例として、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相蒸着)装置の処理炉内に成長基板25を配置した状態で、所定流量の水素ガスを流しながら、炉内温度を昇温することにより行われる。
 次に、成長基板25の上面に、GaNよりなる低温バッファ層を形成し、その上層にGaNよりなる下地層を形成する。これらの低温バッファ層及び下地層がアンドープ層26に対応する。
 一例として、МОCVD装置の炉内圧力を100kPa、炉内温度を480℃程度とした状態で、キャリアガスとしての窒素ガス及び水素ガス、並びに、原料ガスとしてのトリメチルガリウム(TMG)及びアンモニアが、それぞれ所定流量にて、処理炉内に所定時間供給される。これにより、成長基板25の表面に、例えば厚みが20nmのGaNよりなる低温バッファ層が形成される。
 次に、MOCVD装置の炉内温度が例えば1150℃に昇温される。そして、キャリアガスとしての窒素ガス及び水素ガス、並びに、原料ガスとしてのTMG及びアンモニアが、それぞれ所定流量にて、処理炉内に所定時間供給される。これにより、低温バッファ層の表面に、例えば、厚みが1.7μmのGaNよりなる下地層が形成される。
 次に、例えば、МОCVD装置の炉内圧力を30kPa、炉内温度を1150℃とした状態で、キャリアガスとしての窒素ガス及び水素ガス、並びに、原料ガスとしてのTMG、トリメチルアルミニウム(TMA)、アンモニア及びテトラエチルシランが、それぞれ所定流量にて、処理炉内に所定時間供給される。これにより、例えばn-Al0.06Ga0.94Nの組成を有し、厚みが2μmの第二半導体層7がアンドープ層26の上層に形成される。テトラエチルシランは、n型不純物としてのSiをドーピングするための原料ガスの一例である。
 なお、この後、TMAの供給を停止すると共に、それ以外の原料ガスを所定時間供給することにより、n-AlGaN層の上層に、n-GaN層が形成されるものとしてもよい。この場合、第二半導体層7は、n-AlGaN層とn-GaN層とを含む構成である。
 上記の説明では、第二半導体層7に含まれるn型不純物がSiである場合について説明したが、n型不純物としては、Si以外にGe、S、Se、Sn又はTe等を用いることができる。原料ガスは、ドーパントに応じて適宜選択される。
 次に、例えば、MOCVD装置の炉内圧力を100kPa、炉内温度を830℃とした状態で、処理炉内にキャリアガスとしての窒素ガス及び水素ガス、並びに、原料ガスとしての、TMG、トリメチルインジウム(TMI)及びアンモニアが、それぞれ所定流量にて、処理炉内に所定時間供給される。その後、流量が適宜調整されて、TMG、TMA、テトラエチルシラン及びアンモニアが処理炉内に所定時間供給される。以下、これらの処理が繰り返されることで、例えば、厚みが2nmのInGaNよりなる発光層、及び厚みが7nmのn-AlGaNよりなる障壁層が15周期積層されてなる活性層9が、第二半導体層7の上層に形成される。
 次に、例えば、MOCVD装置の炉内圧力が100kPaに維持された状態で、キャリアガスとしての窒素ガス及び水素ガスを流しながら、炉内温度が1025℃に昇温される。そして、原料ガスとしてのTMG、TMA、アンモニア及びビスシクロペンタジエニルマグネシウム(Cp2Mg)が、それぞれ所定流量にて、処理炉内に所定時間供給される。これにより、例えば、活性層9の表面に、厚みが20nmのp-Al0.3Ga0.7Nが形成される。その後、TMAの流量が適宜変更されることで、例えば厚みが120nmのp-Al0.13Ga0.87Nが形成される。これらのp-AlGaNにより第一半導体層11が形成される。
 なお、この工程の後、TMAの供給を停止すると共に、Cp2Mgの流量が適宜変更されることで、厚みが5nm程度のp-GaN層が形成されるものとしてもよい。この場合、第一半導体層11は、p-AlGaN層とp-GaN層とを含む構成である。
 (ステップS3)
 ステップS2で得られたウェハに対して活性化処理が行われる。具体的な一例としては、RTA(Rapid Thermal Anneal:急速加熱)装置を用いて、窒素雰囲気下中650℃で15分間の活性化処理が行われる。
 (ステップS4)
 図2Bに示されるように、第一半導体層11の上層に、第一電極13、第一保護層31、第二保護層32、第一絶縁層17、第二絶縁層19が形成される。具体的な方法の一例は、以下の通りである。
 第一半導体層11の上面の所定領域、より詳細には、外縁部を除く領域内に第一電極13の構成材料が成膜される。一例としては、スパッタリング法によって膜厚150nm程度のAgが成膜される。上述したように、Agは、活性層9から放射される光に対して高い反射率(90%以上)を示す材料の一例である。また、密着性を確保するため、Agの上層に、Niなどの他の材料からなる膜が成膜されるものとしても構わない。
 次に、例えばスパッタリング法によって、TiWからなる第一保護層31が形成された後、Ptからなる第二保護層32が形成される。このとき、本実施形態では、第一保護層31及び第二保護層32が、それぞれ第一半導体層11の上面の一部と接触するように形成される。第一保護層31の膜厚の一例は、60nmであり、第二保護層32の膜厚の一例は、60nmである。
 その後、RTA装置等を用いてドライエア又は不活性ガス雰囲気中で例えば400℃~550℃、60秒~300秒間のコンタクトアニール処理が行われる。これにより、第一半導体層11との間でオーミック接触した第一電極13が形成される。
 次に、外縁部において露出している第一半導体層11の上面と第二保護層32の上面の一部を連絡するように第一絶縁層17が形成され、第二保護層32の一部の上面に第二絶縁層19が形成される。第一絶縁層17と第二絶縁層19とが同一の材料で構成される場合には、両絶縁層(17,19)が同時に成膜されるものとして構わない。一例としては、プラズマCVD法によってSiO2が50nm程度の膜厚で成膜された後、エッチングによってパターニングされることで、絶縁層(17,19)が形成される。なお、成膜する材料は絶縁性材料であればよく、SiO2の他、SiNやAl23でも構わない。
 (ステップS5)
 図2Cに示されるように、絶縁層(17,19)の上面を覆うように第三保護層33が形成され、その後、第三保護層33の上面に接合層21が形成される。
 一例として、スパッタリング法によって、膜厚200nmのTiと膜厚50nmのPtを3周期成膜することで第三保護層33が形成される。別の一例として、膜厚50nmのTiと膜厚200nmのPtを成膜した後、膜厚200nmのTiWと膜厚50nmのPtを2周期成膜することで第三保護層33が形成される。なお、第三保護層33の最上面に膜厚100nm程度のNiが成膜されるものとしても構わない。次に、例えば、膜厚300nmのTiが蒸着された後、Au80%Sn20%で構成されるAu-Snハンダが膜厚3μm蒸着されることで接合層21が形成される。
 (ステップS6)
 図2Dに示されるように、成長基板25とは別に準備された基板3の上面に、ステップS5と同様の方法で、第四保護層34及び接合層22が形成される。基板3としては、上述したようにCuW、W、Mo等の導電性基板、又はSi等の半導体基板が利用され得る。なお、第四保護層34は形成されないものとしても構わない。
 (ステップS7)
 図2Eに示されるように、成長基板25の上層に形成された接合層21と、基板3の上層に形成された接合層22とを貼り合わせることで、成長基板25と基板3との貼り合わせが行われる。具体的な一例としては、280℃の温度、0.2MPaの圧力下で、貼り合わせ処理が行われる。
 この工程により、接合層21及び接合層22が溶融して接合されることで、基板3と成長基板25が表裏面に貼り合わされた構造が形成される。つまり、接合層21と接合層22は、本ステップ以後においては一体化された接合層20を構成するものとして構わない。そして、本ステップS7の実行前の段階で保護層(33,34)が形成されていることで、接合層(21,22)の構成材料(より詳細にはハンダ材料)が拡散するのが抑制されている。
 (ステップS8)
 次に、図2Fに示されるように、成長基板25が剥離される。より具体的には、成長基板25を上に向け、基板3を下に向けた状態で、成長基板25側からレーザ光が照射される。ここで、照射されるレーザ光を、成長基板25の構成材料(本実施形態ではサファイア)を透過し、アンドープ層26の構成材料(本実施形態ではGaN)によって吸収されるような波長の光とする。これにより、アンドープ層26でレーザ光が吸収されるため、成長基板25とアンドープ層26との界面が高温化してGaNが分解され、成長基板25が剥離される。
 その後、ウェハ上に残存しているGaN(アンドープ層26)が、塩酸等を用いたウェットエッチング、又はICP装置を用いたドライエッチングによって除去されることで、第二半導体層7が露出される。本ステップS8においてアンドープ層26が除去されて、第一半導体層11、活性層9、及び第二半導体層7が、基板3側からこの順に積層されてなる半導体層5が残存する。
 (ステップS9)
 次に、図2Gに示されるように、隣接する素子同士を分離する。具体的には、隣接素子との境界領域に対し、ICP装置を用いて第一絶縁層17の上面が露出するまで半導体層5がエッチングされる。このとき、上述したように第一絶縁層17はエッチングストッパとして機能する。
 なお、図2Gでは、半導体層5の側面が鉛直方向に対して傾斜を有するように図示されているが、これは一例であって、このような形状に限定する趣旨ではない。
 (ステップS10)
 次に、図1Bに示されるように、第二半導体層7の上面の所定の領域、より詳細には、第二半導体層7の上面のうち、Z方向に関して絶縁層(17,19)に対向する領域の一部に、第二電極15が形成される。具体的な方法の一例としては、第二半導体層7の上面のうち、第二電極15を形成する予定の領域以外をレジスト等でマスクした状態で、第二半導体層7の上面に膜厚100nmのCrと膜厚3μmのAuが蒸着される。その後、マスクが剥離された後、窒素雰囲気中で250℃、1分間程度のアニール処理がされる。
 (ステップS11)
 次に、各素子同士が例えばレーザダイシング装置によって分離される。その後、基板3の裏面が例えばAgペーストにてパッケージと接合される。その後、第二電極15の一部領域に対してワイヤボンディングが行われる。以上の工程を経て発光素子1が製造される。
 なお、ステップS9の後、又はステップS10の後において、第二半導体層7の上面にウェットエッチングによって微細な凹凸を形成するステップが実行されるものとしても構わない。この凹凸は、光取り出し効率を向上する目的で設けられる。また、その後に、露出している、第二半導体層7の上面及び半導体層5の側面を、SiO2などの絶縁性材料からなるパッシベーション膜で覆うものとしても構わない。
 〈別構成例〉
 図3Aに示されるように、第三領域63内においては第一保護層31が第一半導体層11と接触し、第二保護層32は第一半導体層11と接触しないように構成しても構わない。この構成においては、第一保護層31が「第一導電層41」に対応する。
 更に、図3Bに示されるように、発光素子1が第二保護層32を備えない構成としても構わない。この構成においても、第一保護層31が「第一導電層41」に対応する。
 [第二実施形態]
 本発明の第二実施形態につき、第一実施形態と異なる箇所を説明する。図4Aは、第二実施形態の半導体発光素子1aを模式的に示す図面である。図4Bは、図4Aの一部拡大図である。なお、以下の各実施形態において、平面図についてはいずれも第一実施形態の半導体発光素子1と共通であるため、図示を割愛する。
 本実施形態の発光素子1aは、第一実施形態の発光素子1と比較して、第一絶縁層17の形成領域が異なる。すなわち、第一実施形態と異なり、第一絶縁層17は第一導電層41の底面には接触していない。そして、Z方向に関して第二電極15と対向する位置には、第一導電層41の底面に接触する第二絶縁層19が、第一絶縁層17とは独立して形成されている。第三領域63内において、第一導電層41と第三保護層33とが第一半導体層11と接触している。
 このような構成であっても、第一半導体層11の第一面11a上において、第一絶縁層17と第一電極13とが接触していないため、従来の構成と対比して、第一電極13を構成する材料(例えばAg、Al)のマイグレーションの進展が抑制されるため、寿命が向上する。発光素子1aを製造するに際しては、ステップS4において、第一絶縁層17及び第二絶縁層19の形成箇所を発光素子1aの構成に応じて変更すればよい。
 なお、発光素子1aの変形例として、図5に示されるように、第一絶縁層17の側面と第一導電層41の側面を接触させることで、第三領域63内において、第三保護層33が第一面11aと接触しないように構成しても構わない。また、図3Aに示した構成と同様に、第三領域63内において、第二保護層32が第一半導体層11と接触しないような構成としても構わない。また、図3Bに示した構成と同様に、第二保護層32を備えないものとしても構わない。
 [第三実施形態]
 本発明の第三実施形態につき、第二実施形態と異なる箇所を説明する。図6Aは、第三実施形態の半導体発光素子1bを模式的に示す図面である。図6Bは、図6Aの一部拡大図である。
 本実施形態の発光素子1bは、第二実施形態の発光素子1aと比較して、第一保護層31及び第二保護層32の形成領域が異なる。第一保護層31は、第一電極13の基板3側の面、第一半導体層11の第一面11a、及び第一絶縁層17の基板3側の面に接触するように形成されている。第二保護層32は、第一保護層31の基板3側の面、第三保護層33の基板3とは反対側の面に接触して形成されている。第二保護層32は、Z方向に関し、第一絶縁層17に対向する位置においても第一保護層31と接触して形成されている。
 本実施形態では、第一保護層31が「第一導電層41」に対応し、第三保護層33が「第二導電層42」に対応し、第二保護層32が「第三導電層43」に対応する。
 このような構成であっても、第一半導体層11の第一面11a上において、第一絶縁層17と第一電極13とが接触していないため、従来の構成と対比して、第一電極13を構成する材料(例えばAg、Al)のマイグレーションの進展が抑制されるため、寿命が向上する。発光素子1bを製造するに際しては、ステップS4において、第一絶縁層17、第二絶縁層19、第一保護層31,及び第二保護層32の形成箇所を、発光素子1bの構成に応じて変更すればよい。
 [第四実施形態]
 本発明の第四実施形態につき、第三実施形態と異なる箇所を説明する。図7Aは、第四実施形態の半導体発光素子1cを模式的に示す図面である。図7Bは、図7Aの一部拡大図である。
 本実施形態の発光素子1cは、第三実施形態の発光素子1bと比較して、第一保護層31の形成領域が異なる。第一保護層31は、第一電極13の基板3側の面には接触せず、第一半導体層11の第一面11a、及び第一絶縁層17の基板3側の面に接触するように形成されている。また、この発光素子1cは、第二保護層32を備えていない。
 発光素子1cは、第三領域63内において、第一保護層31及び第三保護層33が第一半導体層11と接触している。本実施形態では、第三保護層33が「第一導電層41」に対応し、第一保護層31が「第四導電層44」に対応する。
 このような構成であっても、第一半導体層11の第一面11a上において、第一絶縁層17と第一電極13とが接触していないため、従来の構成と対比して、第一電極13を構成する材料(例えばAg、Al)のマイグレーションの進展が抑制されるため、寿命が向上する。発光素子1cを製造するに際しては、ステップS4において、第一絶縁層17、第二絶縁層19、及び第一保護層31の形成箇所を、発光素子1cの構成に応じて変更すればよい。
 [第五実施形態]
 本発明の第五実施形態につき、第四実施形態と異なる箇所を説明する。図8Aは、第五実施形態の半導体発光素子1dを模式的に示す図面である。図8Bは、図8Aの一部拡大図である。
 本実施形態の発光素子1dは、第四実施形態の発光素子1cと比較して、第一保護層31を備えていない点が異なる。すなわち、図8Bに示されるように、第三保護層33が、第三領域63内において第一半導体層11と接触している。第三保護層33は、第一電極13の側面及び第一絶縁層17の側面とも接触している。本実施形態では、第三保護層33が「第一導電層41」に対応する。
 このような構成であっても、第一半導体層11の第一面11a上において、第一絶縁層17と第一電極13とが接触していないため、従来の構成と対比して、第一電極13を構成する材料(例えばAg、Al)のマイグレーションの進展が抑制されるため、寿命が向上する。発光素子1dを製造するに際しては、第三実施形態の発光素子1cの製造方法と比較して、ステップS4において第一保護層31の成膜工程を省略すればよい。
 〈別構成例〉
 図8Cに示されるように、Z方向に関して第二電極15に対向しない領域には第一電極13を形成しない構成としても構わない。図8Dは、図8Cの一部拡大図である。なお、図8C及び図8Dに示される発光素子1dは、第一電極13の下層に第一保護層31及び第二保護層32を設けているが、これらの層を備えないものとしても構わない。
 更に、図8Eに示されるように、第三領域63内において、第三保護層33の下層に第二絶縁層19を設けるものとしても構わない。この発光素子1dは、第三保護層(33,33a)を二回に分けて成膜することで製造することができる。
 また、図8Fに示されるように、外縁部に近い第二電極15に対向する位置まで第一絶縁層17を延伸させると共に、発光素子1dの中央付近に設けられた第二電極15に対向する領域に第二絶縁層19を設けるものとしても構わない。
 [第六実施形態]
 本発明の第六実施形態につき、第五実施形態と異なる箇所を説明する。図9Aは、第六実施形態の半導体発光素子1eを模式的に示す図面である。また、図9Bは、図9Aの一部分の拡大図である。
 発光素子1eは、図8Fに示す発光素子1dと比較して、第二絶縁層19が第五保護層35を介して第一半導体層11と接触するように構成されている点が異なる。第五保護層35は、例えばTiで構成される。この第五保護層35は、第一半導体層11の基板3側の面と接触すると共に、第一電極13、第一保護層31、及び第二保護層32の側面を覆うように形成されている。
 図9Aに示される例では、半導体層5の外縁部において、第一半導体層11と第五保護層35とが接触し、この第五保護層35の下層に第一絶縁層17が位置している。なお、第一絶縁層17はエッチングストッパとして機能するため、上述した各実施形態と同様に、半導体層5よりも外側に突出して形成されている。
 図9Bによれば、第一半導体層11の第一面11aと第一絶縁層17とがZ方向に対向する領域(第一領域61)と、第一半導体層11の第一面11aと第一電極13とがZ方向に対向する領域(第二領域62)とが、X-Y平面に平行な方向に関して離間している。そして、これら第一領域61と第二領域62とに挟まれた領域(第三領域63)において、第五保護層35が第一半導体層11の第一面11aと接触している。よって、上述した他の実施形態と同様に、仮に第一絶縁層17を通じて大気が発光素子1eの内部に侵入したとしても、第五保護層35によって大気の侵入が阻まれるため、従来の構成と対比して、第一電極13の面に到達する大気の量が低下する。すなわち、本実施形態の発光素子1eでは、第五保護層35が「第一導電層41」に対応する。
 なお、図9Cに示されるように、第五保護層35が第二保護層32の底面も覆うように形成されるものとしても構わない。また、図9A及び図9Cの構成において、第二絶縁層19の一部が第五保護層35の底面に接触しても構わない。
 [別実施形態]
 以下、別実施形態の構成について説明する。
 〈1〉 上述した第二、第三、及び第四実施形態の各発光素子(1a,1b,1c)において、第二絶縁層19を備えないものとしても構わない。この場合、活性層9を流れる電流をX-Y平面に平行な方向に拡げる目的で、Z方向に関して第二電極15と対向する領域において、第一電極13と第一半導体層11とをショットキー接触させるものとしても構わない。
 図8C及び図8Dに示した第五実施形態の発光素子1dにおいても、活性層9を流れる電流をX-Y平面に平行な方向に拡げる目的で、Z方向に関して第二電極15と対向する領域において、第一電極13と第三保護層33とをショットキー接触させるものとしても構わない。
 〈2〉 上述した各実施形態では、第一電極13は、第一半導体層11と直接接触している場合について説明したが、第一電極13が、導電性の薄膜を介して第一半導体層11と接触していても構わない。図10は、図1Cに示した第一実施形態の発光素子1において、第一電極13が、薄膜51を介して第一半導体層11と接触している構成を図示したものである。この薄膜51は、例えばNiで構成される。この薄膜51は、第一電極13と第一半導体層11とのオーミック接触を高める目的で設けられる。第二、第三、第四、及び第五実施形態の各発光素子(1a,1b,1c,1d)についても同様である。
 〈3〉 各発光素子(1,1a,1b,1c,1d)において、第二電極15の形状は任意である。例えば、図11に示されるように、第二電極15が、パッド電極15aが対向する方向(図面上はX方向)に延伸する構成であっても構わない。また、第二電極15の延伸方向は、X方向又はY方向に限定されるものではなく、斜めの方向であっても構わないし、曲線に沿う方向であっても構わない。
 ただし、図1や図11に示したように、第二電極15が基板3の形状に沿った枠状に形成されるのが好ましい。このような構成を採用することで、第二電極15の特定の箇所に電界が集中しやすくすることが防止されるため、マイグレーションの抑制の効果が高められる。
 〈4〉 上記各実施形態において、第一半導体層11をp型半導体層とし、第二半導体層7をn型半導体層として説明したが、導電型を反転させても構わない。
 〈5〉 上記各実施形態では、第二絶縁層19は、第一導電層41に接触して形成される場合について説明した。しかし、第二絶縁層19と第一導電層41との間に別の層(第六保護層36)が介在しても構わない(図12参照)。
 図12に示される発光素子1fが備える第六保護層36は、第一導電層41の基板3側の面、及び側面を覆うように形成されている。第六保護層36は、例えばTi/Ptで構成される。第二電極15に対してZ方向に対向する位置には第二絶縁層19が形成されており、第二絶縁層19の下層には第三保護層33が形成されている。なお、この発光素子1fは、図6Aに示される発光素子1b、図7Aに示される発光素子1cと同様に、外縁部に最も近い位置に形成された第二電極15に対してZ方向に対向する位置においても、第二絶縁層19が形成されている。
 図12では、この第二絶縁層19が、第一絶縁層17とZ方向に対向する位置まで延伸するように図示されているが、この構造は一例である。第二絶縁層19は、Z方向から見たときに、第一絶縁層17よりも内側に形成されているものとしても構わない。
 〈6〉 本発明は、各実施形態で説明された構成を任意に組み合わせて実現する構成を排除しない。例えば、第一、第二、第三、又は第四実施形態において、上述した図8Cのように、Z方向に関して第二電極15に対向する領域に第一電極13を形成しないものとしても構わない。
    1,1a,1b,1c,1d,1e,1f   :  半導体発光素子
    3   :  基板
    5   :  半導体層
    7   :  第二半導体層
    9   :  活性層
   11   :  第一半導体層
   11a  :  第一半導体層の基板側の面(第一面)
   13   :  第一電極
   15   :  第二電極
   15a  :  パッド電極
   16   :  ワイヤ
   17   :  第一絶縁層
   19   :  第二絶縁層
   20,21,22   :  接合層
   25   :  成長基板
   26   :  アンドープ層
   31   :  第一保護層
   32   :  第二保護層
   33,33a   :  第三保護層
   34   :  第四保護層
   35   :  第五保護層
   36   :  第六保護層
   41   :  第一導電層
   42   :  第二導電層
   43   :  第三導電層
   44   :  第四導電層
   51   :  薄膜
   61   :  第一領域
   62   :  第二領域
   63   :  第三領域
  100   :  従来の半導体発光素子
  101   :  基板
  103   :  金属層
  105   :  絶縁層
  109   :  電流阻止層
  110   :  半導体層
  111   :  p型半導体層
  112   :  活性層
  113   :  n型半導体層
  121   :  n側電極
  122   :  p側電極
  125   :  給電用電極

Claims (15)

  1.  基板上に、n型又はp型の第一半導体層と、前記第一半導体層の上層に形成された活性層と、前記活性層の上層に形成され前記第一半導体層とは導電型の異なる第二半導体層とが形成されてなる半導体発光素子であって、
     前記基板の面に直交する第一方向に関して前記第一半導体層よりも前記基板に近い位置に形成されると共に、前記第一方向から見て前記第一半導体層の前記基板側の面である第一面よりも外側に突出して形成された第一絶縁層と、
     前記第一方向から見て前記第一絶縁層よりも内側に位置し、前記第一面に対して直接又は薄膜を介して接触して形成された、高反射材料からなる第一電極と、
     前記第二半導体層の前記基板とは反対側の面に接触して形成された第二電極とを有し、
     前記第一面及び前記第一絶縁層が対向する第一領域と、前記第一面及び前記第一電極が対向する第二領域とは、前記基板の面に平行な第二方向に関して離間していることを特徴とする半導体発光素子。
  2.  前記第二方向に関して前記第一領域と前記第二領域とに挟まれた第三領域において前記第一面と接触し、前記第一電極と比較して前記第一面に対する接触抵抗の高い材料からなる第一導電層を有することを特徴とする請求項1に記載の半導体発光素子。
  3.  前記第一導電層は、前記第一電極の前記基板側の面、前記第一電極の側面、及び前記第三領域を連絡するように形成されていることを特徴とする請求項2に記載の半導体発光素子。
  4.  前記基板の上層に形成された、ハンダ材料を含む接合層と、
     前記接合層の前記基板とは反対側の面、前記第一導電層の前記基板側の面、及び前記第一絶縁層の前記基板側の面に接触して形成され、前記第一導電層とは異なる材料からなる第二導電層とを有することを特徴とする請求項3に記載の半導体発光素子。
  5.  前記第一絶縁層は、前記第一方向に関して前記第二電極と対向する位置において、前記第一導電層の前記基板側の面に接触するように形成されていることを特徴とする請求項4に記載の半導体発光素子。
  6.  前記第一方向に関して前記第二電極と対向する位置において、前記第一導電層の前記基板側の面に接触すると共に、前記第二方向に関して前記第一絶縁層と離間して形成された、第二絶縁層を備えたことを特徴とする請求項4に記載の半導体発光素子。
  7.  前記基板の上層に形成された、ハンダ材料を含む接合層と、
     前記接合層の前記基板とは反対側の面に接触して形成された、前記第一導電層とは異なる材料からなる第二導電層と、
     前記第一方向に関して前記第一導電層と前記第二導電層とに挟まれる位置に形成され、前記第一導電層及び前記第二導電層とは異なる材料からなる第三導電層とを有し、
     前記第一導電層は、前記第一絶縁層の前記基板側の面に接触するように前記第二方向に延伸して形成され、
     前記第三導電層は、前記第一方向に関し、前記第一絶縁層に対向する位置を含む領域に形成されていることを特徴とする請求項3に記載の半導体発光素子。
  8.  前記第一方向に関して前記第二電極と対向する位置において、前記第三導電層と前記第二導電層とに挟まれると共に、前記第二方向に関して前記第一絶縁層と離間して形成された、第二絶縁層を備えたことを特徴とする請求項7に記載の半導体発光素子。
  9.  前記基板の上層に形成された、ハンダ材料を含む接合層を有し、
     前記第一導電層は、前記接合層の前記基板とは反対側の面に接触して形成されていることを特徴とする請求項3に記載の半導体発光素子。
  10.  前記第一導電層と前記第一絶縁層とに挟まれると共に、前記第三領域の一部において前記第一面に接触して形成された第四導電層を有し、
     前記第四導電層は、前記第一導電層とは異なる材料であって、前記第一電極と比較して前記第一面に対する接触抵抗の高い材料からなることを特徴とする請求項9に記載の半導体発光素子。
  11.  前記基板の上層に形成された、ハンダ材料を含む接合層を有し、
     前記第一導電層は、前記第一方向に関して前記第一絶縁層と対向する少なくとも一部の領域において前記第一半導体層と接触すると共に、前記第一電極の側面と、前記第三領域と、前記第一領域とを連絡するように形成されていることを特徴とする請求項2に記載の半導体発光素子。
  12.  前記第三領域は、前記第一方向に関して前記第二電極と対向することを特徴とする請求項2~11のいずれか1項に記載の半導体発光素子。
  13.  前記第一導電層は、前記第三領域において前記第一面との間でショットキー接触が形成されていることを特徴とする請求項12に記載の半導体発光素子。
  14.  前記第三領域は、前記第一方向から見て前記第二電極よりも外側に位置していることを特徴とする請求項2~11のいずれか1項に記載の半導体発光素子。
  15.  前記第一電極は、Ag、Alの少なくとも一方を含む金属材料からなることを特徴とする請求項1~14のいずれか1項に記載の半導体発光素子。
     
PCT/JP2018/004194 2017-02-08 2018-02-07 半導体発光素子 WO2018147320A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197025146A KR102229114B1 (ko) 2017-02-08 2018-02-07 반도체 발광 소자
US16/484,330 US11114588B2 (en) 2017-02-08 2018-02-07 Semiconductor light emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-021647 2017-02-08
JP2017021647A JP6824501B2 (ja) 2017-02-08 2017-02-08 半導体発光素子

Publications (1)

Publication Number Publication Date
WO2018147320A1 true WO2018147320A1 (ja) 2018-08-16

Family

ID=63108309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004194 WO2018147320A1 (ja) 2017-02-08 2018-02-07 半導体発光素子

Country Status (5)

Country Link
US (1) US11114588B2 (ja)
JP (1) JP6824501B2 (ja)
KR (1) KR102229114B1 (ja)
TW (1) TWI728218B (ja)
WO (1) WO2018147320A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018101389A1 (de) * 2018-01-23 2019-07-25 Osram Opto Semiconductors Gmbh Strahlungsemittierender halbleiterchip und verfahren zur herstellung eines strahlungsemittierenden halbleiterchips
CN112993108B (zh) * 2019-12-13 2022-09-02 深圳第三代半导体研究院 一种发光二极管
KR20220036534A (ko) * 2020-09-16 2022-03-23 에스케이하이닉스 주식회사 관통 전극을 포함하는 반도체 칩, 및 이 반도체 칩을 포함하는 반도체 패키지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140151711A1 (en) * 2012-12-04 2014-06-05 High Power Opto. Inc. Semiconductor light-emitting device
JP2014183295A (ja) * 2013-03-21 2014-09-29 Ushio Inc Led素子
JP2014207327A (ja) * 2013-04-12 2014-10-30 スタンレー電気株式会社 半導体発光素子
US20150144980A1 (en) * 2013-11-28 2015-05-28 Epistar Corporation Light-emitting device and manufacturing method thereof
JP2016195187A (ja) * 2015-03-31 2016-11-17 ウシオ電機株式会社 半導体発光素子
JP2016195176A (ja) * 2015-03-31 2016-11-17 ウシオ電機株式会社 窒化物半導体発光素子
JP2017005157A (ja) * 2015-06-12 2017-01-05 ウシオ電機株式会社 半導体発光素子及びその製造方法

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105977B1 (en) * 2002-01-28 2014-06-25 Nichia Corporation Nitride semiconductor element with supporting substrate and method for producing nitride semiconductor element
JP2004006498A (ja) * 2002-05-31 2004-01-08 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
JP2006066868A (ja) * 2004-03-23 2006-03-09 Toyoda Gosei Co Ltd 固体素子および固体素子デバイス
EP2426743B1 (en) * 2004-10-22 2019-02-20 Seoul Viosys Co., Ltd GaN compound semiconductor light emitting element and method of manufacturing the same
JP2007184411A (ja) * 2006-01-06 2007-07-19 Sony Corp 発光ダイオードおよびその製造方法ならびに集積型発光ダイオードおよびその製造方法ならびに発光ダイオードバックライトならびに発光ダイオード照明装置ならびに発光ダイオードディスプレイならびに電子機器ならびに電子装置およびその製造方法
JP4946195B2 (ja) * 2006-06-19 2012-06-06 サンケン電気株式会社 半導体発光素子及びその製造方法
US20080042145A1 (en) * 2006-08-18 2008-02-21 Helmut Hagleitner Diffusion barrier for light emitting diodes
US8410510B2 (en) * 2007-07-03 2013-04-02 Nichia Corporation Semiconductor light emitting device and method for fabricating the same
JP2009049267A (ja) * 2007-08-22 2009-03-05 Toshiba Corp 半導体発光素子及びその製造方法
JP4985260B2 (ja) * 2007-09-18 2012-07-25 日立電線株式会社 発光装置
US8368100B2 (en) * 2007-11-14 2013-02-05 Cree, Inc. Semiconductor light emitting diodes having reflective structures and methods of fabricating same
KR100975659B1 (ko) * 2007-12-18 2010-08-17 포항공과대학교 산학협력단 발광 소자 및 그 제조 방법
KR101007099B1 (ko) * 2008-04-21 2011-01-10 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
DE102009025015A1 (de) * 2008-07-08 2010-02-18 Seoul Opto Device Co. Ltd., Ansan Lichtemittierende Vorrichtung und Verfahren zu ihrer Herstellung
JP5334158B2 (ja) 2008-07-15 2013-11-06 シャープ株式会社 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
KR101017395B1 (ko) * 2008-12-24 2011-02-28 서울옵토디바이스주식회사 복수개의 발광셀들을 갖는 발광 소자 및 그것을 제조하는 방법
JP2010171376A (ja) * 2008-12-26 2010-08-05 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
KR101064091B1 (ko) * 2009-02-23 2011-09-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP5310371B2 (ja) * 2009-08-10 2013-10-09 ソニー株式会社 半導体発光素子及びその製造方法
JP5139519B2 (ja) * 2009-09-01 2013-02-06 株式会社東芝 半導体発光素子及び半導体発光装置
KR101072034B1 (ko) * 2009-10-15 2011-10-10 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR101081193B1 (ko) * 2009-10-15 2011-11-07 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
EP2660883B1 (en) * 2009-12-09 2019-03-27 LG Innotek Co., Ltd. Light emitting device, light emitting device manufacturing method, light emitting package, and lighting system
KR101020945B1 (ko) * 2009-12-21 2011-03-09 엘지이노텍 주식회사 발광 소자, 발광 소자 패키지 및 발광 소자 제조방법
KR101039904B1 (ko) * 2010-01-15 2011-06-09 엘지이노텍 주식회사 발광 소자, 발광 소자 패키지 및 발광 소자 제조방법
KR100986523B1 (ko) * 2010-02-08 2010-10-07 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
US9136436B2 (en) * 2010-02-09 2015-09-15 Epistar Corporation Optoelectronic device and the manufacturing method thereof
KR100986318B1 (ko) * 2010-02-09 2010-10-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR100999798B1 (ko) * 2010-02-11 2010-12-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR100969131B1 (ko) * 2010-03-05 2010-07-07 엘지이노텍 주식회사 발광 소자 제조방법
JP5185308B2 (ja) * 2010-03-09 2013-04-17 株式会社東芝 半導体発光装置の製造方法
JP5845557B2 (ja) * 2010-03-30 2016-01-20 ソニー株式会社 半導体発光素子の製造方法
JP5725927B2 (ja) * 2010-05-18 2015-05-27 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. 高効率発光ダイオード及びその製造方法
KR20120039412A (ko) * 2010-10-15 2012-04-25 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법, 발광 소자 패키지 및 조명 시스템
KR101125025B1 (ko) * 2010-07-23 2012-03-27 엘지이노텍 주식회사 발광소자 및 그 제조방법
KR101189081B1 (ko) * 2010-12-16 2012-10-10 엘지이노텍 주식회사 웨이퍼 기판 접합 구조, 이를 포함하는 발광 소자 및 그 제조 방법
TWI553903B (zh) * 2010-12-20 2016-10-11 Lg伊諾特股份有限公司 發光元件及其製造方法
JP5782823B2 (ja) * 2011-04-27 2015-09-24 日亜化学工業株式会社 窒化物半導体発光素子およびその製造方法
JP2012248795A (ja) * 2011-05-31 2012-12-13 Toshiba Corp 半導体発光素子およびその製造方法
US9728676B2 (en) * 2011-06-24 2017-08-08 Cree, Inc. High voltage monolithic LED chip
US8686429B2 (en) * 2011-06-24 2014-04-01 Cree, Inc. LED structure with enhanced mirror reflectivity
US10243121B2 (en) * 2011-06-24 2019-03-26 Cree, Inc. High voltage monolithic LED chip with improved reliability
US9142743B2 (en) * 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
JP6077201B2 (ja) * 2011-08-11 2017-02-08 昭和電工株式会社 発光ダイオードおよびその製造方法
JP5776535B2 (ja) * 2011-12-16 2015-09-09 豊田合成株式会社 Iii族窒化物半導体発光素子
JP5787739B2 (ja) * 2011-12-16 2015-09-30 株式会社東芝 半導体発光装置およびその製造方法
JP5694215B2 (ja) * 2012-03-07 2015-04-01 株式会社東芝 半導体発光素子
JP2013232477A (ja) * 2012-04-27 2013-11-14 Toshiba Corp 発光モジュール
JP2013232478A (ja) * 2012-04-27 2013-11-14 Toshiba Corp 半導体発光装置及びその製造方法
JP5989420B2 (ja) * 2012-06-28 2016-09-07 株式会社東芝 半導体発光装置
TWI533472B (zh) * 2012-09-12 2016-05-11 聯勝光電股份有限公司 半導體發光元件及其製造方法
US9196798B2 (en) * 2012-09-12 2015-11-24 High Power Opto. Inc. Semiconductor light-emitting device and fabricating method thereof
JP5440674B1 (ja) * 2012-09-18 2014-03-12 ウシオ電機株式会社 Led素子及びその製造方法
DE102012108883A1 (de) * 2012-09-20 2014-03-20 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zur Herstellung von optoelektronischen Halbleiterchips
US8835940B2 (en) * 2012-09-24 2014-09-16 LuxVue Technology Corporation Micro device stabilization post
TWI557942B (zh) * 2013-02-04 2016-11-11 財團法人工業技術研究院 發光二極體
JP6307907B2 (ja) * 2013-02-12 2018-04-11 日亜化学工業株式会社 発光素子の製造方法
JP5839293B2 (ja) * 2013-03-29 2016-01-06 ウシオ電機株式会社 窒化物発光素子及びその製造方法
KR102086365B1 (ko) * 2013-04-19 2020-03-09 삼성전자주식회사 반도체 발광소자
JP6100598B2 (ja) * 2013-04-25 2017-03-22 スタンレー電気株式会社 半導体発光素子及び半導体発光装置
JP6221926B2 (ja) * 2013-05-17 2017-11-01 日亜化学工業株式会社 半導体発光素子およびその製造方法
TWI577045B (zh) * 2013-07-10 2017-04-01 晶元光電股份有限公司 發光元件
KR102181381B1 (ko) * 2013-08-05 2020-11-20 엘지이노텍 주식회사 발광소자
JP6261927B2 (ja) * 2013-09-24 2018-01-17 スタンレー電気株式会社 半導体発光素子
KR102098923B1 (ko) * 2013-11-26 2020-04-09 엘지이노텍 주식회사 발광소자, 발광 소자 제조방법 및 발광 소자 패키지
TWI637534B (zh) * 2013-11-29 2018-10-01 晶元光電股份有限公司 發光裝置
JP6094819B2 (ja) * 2013-12-13 2017-03-15 ウシオ電機株式会社 半導体発光素子及びその製造方法
US9196812B2 (en) * 2013-12-17 2015-11-24 Samsung Electronics Co., Ltd. Semiconductor light emitting device and semiconductor light emitting apparatus having the same
KR102122358B1 (ko) * 2014-01-20 2020-06-15 삼성전자주식회사 반도체 발광 소자
JP2015177132A (ja) * 2014-03-17 2015-10-05 ウシオ電機株式会社 半導体発光素子及びその製造方法
JP6185415B2 (ja) * 2014-03-27 2017-08-23 株式会社東芝 半導体発光装置
JP2015191976A (ja) * 2014-03-27 2015-11-02 ウシオ電機株式会社 半導体発光素子及びその製造方法
JP6106120B2 (ja) * 2014-03-27 2017-03-29 株式会社東芝 半導体発光装置
TWI600184B (zh) * 2014-04-08 2017-09-21 晶元光電股份有限公司 發光裝置
US9385279B2 (en) * 2014-05-30 2016-07-05 Nichia Corporation Light-emitting device and method for manufacturing the same
US9543488B2 (en) * 2014-06-23 2017-01-10 Seoul Viosys Co., Ltd. Light emitting device
CN104134723A (zh) * 2014-08-08 2014-11-05 映瑞光电科技(上海)有限公司 垂直型led芯片结构及其制备方法
US20160064602A1 (en) * 2014-08-29 2016-03-03 High Power Opto. Inc. Semiconductor light-emitting device and fabricating method thereof
JP2016054260A (ja) * 2014-09-04 2016-04-14 株式会社東芝 半導体発光素子
JP6299540B2 (ja) * 2014-09-16 2018-03-28 豊田合成株式会社 Iii族窒化物半導体発光素子の製造方法
TWI548123B (zh) * 2014-12-03 2016-09-01 隆達電子股份有限公司 發光二極體結構
EP3038173B1 (en) * 2014-12-23 2019-05-22 LG Innotek Co., Ltd. Light emitting device
CN105870280B (zh) * 2015-01-21 2019-07-09 展晶科技(深圳)有限公司 发光二极管晶粒
WO2016122076A1 (en) * 2015-01-27 2016-08-04 Seoul Viosys Co., Ltd. Light emitting device
US10411163B2 (en) * 2015-03-05 2019-09-10 Xiamen Sanan Optoelectronics Technology Co., Ltd. Light emitting diode and fabrication method thereof
JP6545981B2 (ja) * 2015-03-12 2019-07-17 アルパッド株式会社 半導体発光装置
DE102015114590B4 (de) * 2015-09-01 2020-01-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauteils
JP6604786B2 (ja) * 2015-09-11 2019-11-13 三星電子株式会社 半導体発光装置およびその製造方法
US20170162745A1 (en) * 2015-12-04 2017-06-08 Ushio Denki Kabushiki Kaisha Semiconductor light-emitting device and method for manufacturing same
JP2017139271A (ja) * 2016-02-01 2017-08-10 ウシオ電機株式会社 半導体発光素子、半導体発光素子用ウェハ、半導体発光素子の製造方法、検査装置、半導体発光素子の製造システム、半導体発光素子用ウェハの製造システム
KR20170102782A (ko) * 2016-03-02 2017-09-12 엘지이노텍 주식회사 발광 모듈 및 표시장치
JP7171568B2 (ja) * 2016-11-24 2022-11-15 エルジー イノテック カンパニー リミテッド 半導体素子およびこれを含む表示装置
US9893254B1 (en) * 2017-04-20 2018-02-13 High Power Opto. Inc. Structure of high temperature resistant reflecting layer of light-emitting diode
KR102302592B1 (ko) * 2017-07-18 2021-09-15 삼성전자주식회사 반도체 발광 소자
KR102407739B1 (ko) * 2017-11-24 2022-06-10 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140151711A1 (en) * 2012-12-04 2014-06-05 High Power Opto. Inc. Semiconductor light-emitting device
JP2014183295A (ja) * 2013-03-21 2014-09-29 Ushio Inc Led素子
JP2014207327A (ja) * 2013-04-12 2014-10-30 スタンレー電気株式会社 半導体発光素子
US20150144980A1 (en) * 2013-11-28 2015-05-28 Epistar Corporation Light-emitting device and manufacturing method thereof
JP2016195187A (ja) * 2015-03-31 2016-11-17 ウシオ電機株式会社 半導体発光素子
JP2016195176A (ja) * 2015-03-31 2016-11-17 ウシオ電機株式会社 窒化物半導体発光素子
JP2017005157A (ja) * 2015-06-12 2017-01-05 ウシオ電機株式会社 半導体発光素子及びその製造方法

Also Published As

Publication number Publication date
KR20190105106A (ko) 2019-09-11
JP6824501B2 (ja) 2021-02-03
TW201838199A (zh) 2018-10-16
TWI728218B (zh) 2021-05-21
JP2018129403A (ja) 2018-08-16
US20190386179A1 (en) 2019-12-19
US11114588B2 (en) 2021-09-07
KR102229114B1 (ko) 2021-03-17

Similar Documents

Publication Publication Date Title
WO2015141517A1 (ja) 半導体発光素子及びその製造方法
JP6094819B2 (ja) 半導体発光素子及びその製造方法
WO2018147320A1 (ja) 半導体発光素子
US20150280073A1 (en) Semiconductor light-emitting element and production method therefor
JP2017069282A (ja) 半導体発光素子及びその製造方法
JP5818031B2 (ja) Led素子
JP6617875B2 (ja) Led素子及びその製造方法
KR20160117178A (ko) 반도체 발광 소자
WO2016158093A1 (ja) 窒化物半導体発光素子
JP2017103439A (ja) 半導体発光素子及びその製造方法
WO2016072326A1 (ja) 半導体発光素子
JP2016018974A (ja) 半導体発光素子
JP6690139B2 (ja) 半導体発光素子及びその製造方法
JP6468459B2 (ja) 半導体発光素子
JP2017005156A (ja) 半導体発光素子及びその製造方法
JP2016195168A (ja) 半導体発光素子及びその製造方法
JP2017139298A (ja) 半導体発光素子及びその製造方法
JP2015153827A (ja) 半導体発光素子及びその製造方法
WO2015029727A1 (ja) 半導体発光素子
JP2015050381A (ja) 半導体発光素子及びその製造方法
WO2015151542A1 (ja) 半導体発光素子、発光デバイス
JP2016195170A (ja) 半導体発光素子の製造方法、半導体発光素子
JP2017117966A (ja) 半導体発光素子
JP5880880B2 (ja) 窒化物発光素子
JP2017139270A (ja) 半導体発光素子の製造方法、半導体発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197025146

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18751439

Country of ref document: EP

Kind code of ref document: A1