WO2018113485A1 - Électrode à membrane de pile à combustible à membrane échangeuse de protons à haute densité de puissance et son procédé de préparation - Google Patents

Électrode à membrane de pile à combustible à membrane échangeuse de protons à haute densité de puissance et son procédé de préparation Download PDF

Info

Publication number
WO2018113485A1
WO2018113485A1 PCT/CN2017/113215 CN2017113215W WO2018113485A1 WO 2018113485 A1 WO2018113485 A1 WO 2018113485A1 CN 2017113215 W CN2017113215 W CN 2017113215W WO 2018113485 A1 WO2018113485 A1 WO 2018113485A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
proton exchange
exchange membrane
membrane electrode
carbon nanotubes
Prior art date
Application number
PCT/CN2017/113215
Other languages
English (en)
Chinese (zh)
Inventor
廖世军
侯三英
池滨
刘广智
舒婷
宋慧宇
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2018113485A1 publication Critical patent/WO2018113485A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to the field of proton exchange membrane fuel cells, and in particular to a high power density membrane electrode comprising a hydrophilic carbon nanotube or a carbon nanotube as a cathode catalytic layer or a cathode gas diffusion layer and a preparation method thereof.
  • PEMFC Proton exchange membrane fuel cell
  • Proton exchange membrane fuel cell membrane electrode mainly consists of anode/cathode catalytic layer, anode/cathode gas diffusion layer and Nafion Proton exchange membrane composition. It is well known that the microstructure of the catalytic layer in the membrane electrode is determined by the slurry coated on the proton exchange membrane, and the composition and degree of dispersion of the slurry have a catalyst utilization rate, a proton migration rate, and a diffusion of reactants and products. Great impact.
  • a common catalytic layer is prepared by mixing a catalyst, a binder and a dispersant into a slurry, and then distributing the slurry on both sides of the proton exchange membrane by a coating, transfer or spray method to form a catalytic layer.
  • the cathode catalytic layer prepared by the conventional method is disadvantageous to the utilization of the catalyst, the transport of the reactants and the product, thereby degrading the performance of the battery.
  • the diffusion and transport of reactants and products in the gas diffusion layer affects the performance of the battery.
  • the common diffusion layer is prepared by dispersing the carbon powder and the binder in an ethanol solvent, dispersing the slurry into a slurry, and then passing the slurry through the scraping.
  • the coating or spraying method is carried on one side of the carbon paper or carbon cloth to form a diffusion layer.
  • the diffusion layer prepared by the conventional method is disadvantageous to the diffusion of the reactants and products to block the pores, thereby lowering the battery performance.
  • Both the catalytic layer and the gas diffusion layer are in contact with the reactants and products, and their structure and properties have a great influence on the output performance and power density of the battery.
  • Chinese patent ZL201410568683.0 discloses 'a method for preparing a hydrogen fuel cell membrane electrode' The patent proposes to add a pore-forming agent (ammonium hydrogencarbonate, ammonium oxalate, sodium chloride, etc.) to a conventional catalytic layer material, and the pore-forming agent forms a certain pore in the process of heating and decomposition, thereby increasing the pore size distribution of the membrane electrode. Reduce gas mass transfer resistance.
  • a pore-forming agent ammonium hydrogencarbonate, ammonium oxalate, sodium chloride, etc.
  • Cipheral Patent ZL201310333544.5 discloses 'membrane electrode for fuel cell and its preparation method' This patent application adds a thickener (glycerol, ethylene glycol, butyl acetate, etc.) and additives (ammonium hydrogencarbonate, ammonium acetate, dimethicone, etc.) to the conventional catalyst slurry, wherein the thickener Have a higher Dielectric constant and viscosity, ammonium bicarbonate and ammonium acetate in the additive are pore formers, which can also increase the porosity of the catalytic layer. Improve the transport of reactants and products at the high current density of the cathode catalytic layer.
  • a thickener glycorol, ethylene glycol, butyl acetate, etc.
  • additives ammonium hydrogencarbonate, ammonium acetate, dimethicone, etc.
  • the pore former introduced in the method generates a toxic gas during the pyrolysis process, and the pore-forming agent pyrolysis is not completely retained in the catalytic layer, thereby causing an increase in the contact resistance of the catalyst layer and lowering the battery performance.
  • Chinese patent ZL200710019376.7 discloses 'Preparation method of fuel cell gas diffusion layer'
  • the patent proposes to put carbon paper or carbon cloth into carbon black powder (acetylene black or activated carbon black), distilled water, PTFE or PVDF emulsion, dispersant (XH-1, AEO-9, FC4430, Dip for 0.5-15 minutes in a slurry consisting of Tween-60 or Triton X-100), remove and dry, repeat the above steps until the desired carbon black and PTFE or PVDF are obtained.
  • the gas diffusion layer prepared by the method has stable structure and is suitable for large-scale production of fuel cells.
  • the slurry is easily dispersed on both sides and the inner side of the gas diffusion layer substrate, which is unfavorable for controlling the quality of the product, and the prepared microporous layer is not firmly contacted with the substrate, which may bring about an increase in internal resistance of the battery and a decrease in battery performance. .
  • Chinese patent ZL201210197913.8 discloses 'based on 3 Ordered single-electrode and membrane electrode of proton-conductor and preparation method ', this patent proposes an ordered membrane electrode with nanofiber array 3
  • the proton-conductor is a substrate, and a proton conductor nanofiber array is grown on both sides of the proton exchange membrane, and a catalytic layer of active metal is uniformly plated on the array.
  • the membrane electrode prepared by the method increases the contact area between the membrane and the catalytic layer, is beneficial to the diffusion of reactants and products, and accelerates proton transport.
  • the ordered structure of the membrane electrode prepared by the method is destroyed by the action of pressure during assembly and assembly, and the assembled fuel cell loses the ordered structure, which is not conducive to the diffusion of reactants and products, and reduces the catalyst. Utilization efficiency.
  • Chinese patent ZL201080019534.9 discloses 'gas diffusion layer for fuel cells' This patent proposes to provide a hydrophilic material (activated carbon, zeolite, silica gel, alumina, etc.) having micropores in the gas diffusion layer by diffusing water retained in the cathode catalytic layer during the reaction to have a water absorbing material.
  • a hydrophilic material activated carbon, zeolite, silica gel, alumina, etc.
  • the phenomenon of hindering the diffusion of the reactant due to the freezing of the product in the cathode catalytic layer during the low-temperature operation can be prevented, thereby improving the starting ability of the battery in a low temperature environment.
  • the addition of the water absorbing material increases the amount of stagnant water in the gas diffusion layer, which also hinders the distribution and diffusion of the reactants in the gas diffusion layer, and the addition of the non-conductive water absorbing material increases the internal resistance of the fuel cell, which is disadvantageous for Improved battery performance.
  • CiO 2 oxygen storage material
  • the diffusion layer has a strong oxygen transmission capacity, and is used for a cathode gas diffusion layer, and the battery performance is remarkably improved.
  • the oxygen storage material in the method has poor conductivity or even no conductivity, and the introduction of an oxygen storage material such as CeO 2 may bring about an increase in internal resistance.
  • Chinese patent ZL201410521061.2 discloses 'a method for preparing an electrode suitable for a fuel cell'
  • the patent proposes to add carbon nanotubes or carbon nanofibers to a conventional microporous layer material, and to form a microporous layer by a wet or dry method, the microporous layer can realize reactants and products in the film. Redistribution in the electrodes.
  • the patent also proposes to add a pore-forming agent, which can adjust the pore size distribution of the microporous layer and improve the mass transfer performance of the microporous layer, thereby effectively improving the output performance of the battery.
  • the present invention provides a high power density proton exchange membrane fuel cell membrane electrode and a preparation method thereof, by adding suitable materials in the catalytic layer and the gas diffusion layer and optimizing the electrode fabrication.
  • the process, the resulting catalytic layer and the gas diffusion layer have a high specific surface area, high catalyst exposure, and a significantly increased diffusion capacity of the reactants and products, resulting in a substantial increase in the power density of the resulting membrane electrode.
  • the object of the invention is achieved at least by one of the following technical solutions.
  • a method for preparing a high power density proton exchange membrane fuel cell membrane electrode comprises the following steps:
  • the proton exchange membrane is sequentially oxidized and acidified with hydrogen peroxide and sulfuric acid, and then stored in deionized water for storage. When used, the proton exchange membrane is taken out, the surface moisture is absorbed, and it is fixed in a special tool for coating.
  • a carbon-supported platinum catalyst or an alloy catalyst of platinum with other metals, a perfluorosulfonic acid polymer, pretreated carbon nanotubes or carbon fibers, and a volatile solvent are 10:2-5:0-5:200
  • the ink-like slurry is prepared by ultrasonic dispersion treatment after 0.5-2 hours, and then the ink-like slurry is coated on one side of the proton exchange membrane by spraying or brushing, Pt loading The amount is controlled between 0.1-1 mg cm -2 , and then the proton exchange membrane coated with the catalytic layer is heat-treated at 50-80 ° C for 20-60 minutes to prepare a cathode catalytic layer containing carbon nanotubes;
  • XC-72 toner, polytetrafluoroethylene emulsion and volatile solvent are 10:1-4: 200-2000
  • the mass is more than mixed, ultrasonically dispersed for 30-80 minutes to prepare an ink-like slurry, which is applied by spraying or brushing to one side of the hydrophobized carbon paper, and the sprayed carbon paper is 50-80 °C Bake for 20-60 minutes, dry and calcine at 340-430 °C for 0.5-2 hours to prepare an anode gas diffusion layer;
  • the concentration concentration of the polytetrafluoroethylene emulsion is 10-25 wt% ;
  • a high power density proton exchange membrane fuel cell membrane electrode prepared by introducing carbon nanotubes or carbon fiber materials into a cathode catalyst slurry or a cathode gas diffusion layer.
  • the carbon nanotubes and carbon fiber materials include one or more of untreated carbon nanotubes or carbon fibers, acid-treated carbon nanotubes or carbon fibers, carbon nanotubes or carbon fibers.
  • the proton exchange membrane is a hydrogen proton exchange membrane having a thickness of 20 to 50 micrometers, respectively, including but not limited to the United States. Nafion212, Nafion211 membranes produced by DuPont.
  • a catalyst having a high platinum content is used, and the catalyst is Pt/C having a Pt content of 20% - 60% or PtM/C catalyst, where M is Ru, Pd or Au; including but not limited to catalysts from Johanson Matthey.
  • the perfluorosulfonic acid polymer is added in the form of a perfluorosulfonic acid polymer solution having a mass percent concentration of 2-5% Nafion solution.
  • the volatile solvent is one or more selected from the group consisting of distilled water, ethanol, and isopropyl alcohol.
  • step (2 In the pretreatment of carbon nanotubes or carbon fibers, including acid treatment or nitridation treatment, acid treatment and nitridation treatment;
  • the acid treatment or nitridation treatment steps are as follows:
  • the acid-treated carbon nanotubes or carbon fibers into a quartz tube furnace, adjust the temperature program, and control the flow rate of ammonia to 60-150 ml / In the minute, it is calcined at 700-900 °C for 0.5-3 hours, then lowered to room temperature, and the ammonia gas is replaced with nitrogen or argon to remove ammonia in the system, and the sample is taken out to obtain carbon nanotubes.
  • carbon nanotubes or carbon fibers to the catalyst layer and the gas diffusion layer, the carbon nanotubes or nano carbon fibers being untreated carbon nanotubes or carbon fibers, acid-treated carbon nanotubes or carbon fibers, and nitrided carbon nanotubes or carbon fibers,
  • the amount added is the total mass of the catalytic layer or the gas diffusion layer. 5 - 50%.
  • the specific process of the step (1) is: placing the proton exchange membrane in hydrogen peroxide at a concentration of 5%-15%, boiling at 60-100 °C for 0.5-2 hours, washing with distilled water, and then Place in a 5-1 mol L -1 sulfuric acid solution, cook at 60-100 °C for 0.5-2 hours, then wash with distilled water to complete the pretreatment.
  • the specific process is: treating the TGP-H-60 carbon paper in acetone 0.5-2 In order to remove surface organic impurities, dry and soak for 2-15 minutes in a 5%-15% by weight polytetrafluoroethylene emulsion, and dry, PTFE accounts for 10% of the weight of the entire carbon paper - 25% After baking at 300 - 500 °C for 0.5 - 2 hours, the polytetrafluoroethylene is sintered in carbon paper to complete the hydrophobic treatment of the carbon paper.
  • the invention has the following advantages:
  • the carbon nanotubes used in the present invention are directly added to the cathode catalyst slurry or the cathode gas diffusion layer slurry, and the introduction of carbon nanotubes or carbon fibers into the cathode catalytic layer can effectively improve the diffusion of the reactants and the utilization efficiency of the cathode catalyst.
  • the introduction of carbon nanotubes or carbon fibers in the cathode diffusion layer can effectively increase the diffusion of reactants and products, thereby improving the battery performance in a large current density region;
  • the high power density performance of the membrane electrode prepared by the invention is as follows: in the high current density region, the water generated by the cathode catalytic layer can be rapidly diffused into the gas diffusion layer and discharged, and the reaction gas is accelerated to participate in the reaction in the catalytic layer. Thereby achieving the purpose of improving the output performance of the battery.
  • the preparation method of the high power density membrane electrode of the invention is simple and easy, does not require special equipment and equipment, has low cost and can be mass-produced;
  • the single cell assembled by using the membrane electrode of the invention has good performance, and the performance in the low current density region is higher than that of the common battery without carbon nanotube or carbon fiber; in the high current density region, the performance is even superior. No performance in adding carbon nanotubes or carbon fiber batteries.
  • 1 is a schematic view showing the structure of a five-in-one membrane electrode with carbon nanotubes added
  • FIG. 2 (a) shows the membrane electrode prepared in Examples 1 to 3 and the blank 212 prepared in Comparative Example 1.
  • the membrane electrode and the blank 211 membrane electrode prepared in Comparative Example 2 had a hydrogen-air battery temperature of 70 degrees, a cathode anode back pressure of 30 psi, and a relative humidity of 100%. Comparison of single cell polarization curves;
  • Figure 2 (b) shows the membrane electrode prepared in Examples 1 to 3 and the blank 212 prepared in Comparative Example 1.
  • the membrane electrode and the blank 211 membrane electrode prepared in Comparative Example 2 had a hydrogen-air battery temperature of 70 degrees, a cathode anode back pressure of 30 psi, and a relative humidity of 100%. Comparison of single cell power density;
  • Figure 3 (a) shows the membrane electrode prepared in Examples 4 to 6 and the blank 212 prepared in Comparative Example 1.
  • the membrane electrode and the blank 211 membrane electrode prepared in Comparative Example 2 had a hydrogen-air fuel cell temperature of 70 degrees, a cathode anode back pressure of 30 psi, and a relative humidity of 100%. Comparison chart of the single cell polarization curves;
  • Figure 3 (b) shows the membrane electrode prepared in Examples 4 to 6 and the blank 212 prepared in Comparative Example 1.
  • the membrane electrode and the blank 211 membrane electrode prepared in Comparative Example 2 had a hydrogen-air fuel cell temperature of 70 degrees, a cathode anode back pressure of 30 psi, and a relative humidity of 100%. Comparison of single cell power density;
  • Figure 4 (a) shows the membrane electrode prepared in Examples 2, 5, and 7 and the blank 212 prepared in Comparative Example 1.
  • the membrane electrode and the blank 211 membrane electrode prepared in Comparative Example 2 had a hydrogen-air fuel cell temperature of 70 degrees, an anode-anode back pressure of 30 psi, and a relative humidity of 100%. Comparison chart of the single cell polarization curves;
  • Figure 4 (b) shows the membrane electrode prepared in Examples 2, 5, and 7 and the blank 212 prepared in Comparative Example 1.
  • the membrane electrode and the blank 211 membrane electrode prepared in Comparative Example 2 had a hydrogen-air fuel cell temperature of 70 degrees, a cathode anode back pressure of 30 psi, and a relative humidity of 100%. The comparison of the single cell power density.
  • FIG. 1 The components in Figure 1 are as follows: proton exchange membrane 1, anode catalytic layer 2, cathode catalytic layer 3, microporous layer of anode gas diffusion layer 4.1 Microporous layer of cathode gas diffusion layer 4.2, carbon paper 5; microporous layer 4.1 and carbon paper 5 of anode gas diffusion layer are anode gas diffusion layer, microporous layer of cathode gas diffusion layer 4.2 and carbon paper 5 is a cathode gas diffusion layer.
  • the first step is to take a 4cm ⁇ 4cm Nafion211 proton exchange membrane, firstly treated at 80 °C in 5% by mass of hydrogen peroxide for 1 hour, washed with distilled water, and treated at 0.5 °L -1 in sulfuric acid solution at 80 °C. 1 hour, then rinse with distilled water.
  • the treated Nafion membrane was placed on a fixed frame for preparing the membrane electrode, and the active area was 5 cm 2 to prevent the membrane from shrinking and deforming during spraying of the catalyst slurry;
  • the second step is to soon the carbon nanotubes in a concentrated sulfuric acid / concentrated nitric acid solution at a volume ratio of 3:1 for 30 minutes at 80 °C. After refluxing for 8 hours, filtering and washing the carbon nanotubes with deionized water to neutrality, that is, obtaining acid-treated carbon nanotubes;
  • Step 3 Put the second step of acid-treated carbon nanotubes into a quartz tube furnace, adjust the temperature program, and control the flow rate of ammonia to 120 ml / In a minute, calcination at 900 °C for 2 hours, then lowering to room temperature, replacing ammonia gas with nitrogen or argon to remove ammonia in the system, and taking out the sample to obtain carbon nanotubes;
  • the fourth step is to weigh 4.2 mg Pt/C catalyst (John Matthey) with Pt content of 60% and 33 mg perfluorosulfonic acid polymer solution (5wt% Nafion, DuPont) according to the mass ratio of 10:2.5:1:500.
  • Step 6 Cut TGP-H-60 carbon paper (Toray) to 2.5 cm ⁇ 2.5 cm
  • the small pieces were placed in acetone for 2 hours to remove surface organic impurities. After drying, they were immersed in a 5% by weight polytetrafluoroethylene emulsion for 5 minutes, and dried to make the polytetrafluoroethylene account for the entire carbon. Paper weight 15%, calcined at 500 °C for 1 hour, so that the polytetrafluoroethylene is sintered in carbon paper, that is, the carbon paper is treated with water.
  • Step 7 Weigh 30mg XC-72 toner, 132.5 mg by mass ratio of 10:1.7: 500 a polytetrafluoroethylene emulsion (mass fraction of 5%) and 1.6 g of isopropyl alcohol solution, mixed and ultrasonically dispersed to form an ink slurry, which is sprayed onto one side of the hydrophobized carbon paper, Sprayed carbon paper at Baking at 70 ° C for 30 minutes, drying and baking at 350 ° C for 1 hour to obtain a gas diffusion layer;
  • Step 8 The two gas diffusion layers sprayed in the seventh step are respectively attached to both sides of the proton exchange membrane sprayed with the anode and cathode catalyst layers in the fifth step, thereby preparing a membrane electrode. (Structure shown in Figure 1)
  • the membrane electrode was placed in a single cell, and the activation treatment was carried out under the condition that the battery temperature was 70 ° C and the anode and cathode were completely humidified. Hours, repeated discharge to fully activate, battery performance test conditions are as follows: fuel gas is hydrogen, oxidant is air, battery temperature is 70 °C, anode and cathode back pressure are 30 psi, cathode and anode relative humidity is 100%.
  • the polarization curve of the battery is shown in Fig. 2a and Fig. 2b.
  • the voltage is 0.7V and 0.6V, the current density can reach 700mA cm -2 respectively.
  • the maximum power density is 814 mW cm -2 .
  • Example 2 Except for the carbon-supported platinum catalyst, perfluorosulfonic acid polymer, carbon nitride carbon nanotubes and isopropanol in a mass ratio of 1 0:2.5:2:500, the other steps are the same as in Example 1, the battery activation mode and The test method is exactly the same as in Example 1.
  • the cell polarization curve is shown in Figure 2. At voltages of 0.7V and 0.6V, the current density can reach 700 mA cm -2 and 1300 mA cm -2 , respectively . The maximum power density is 822 mW cm -2 .
  • Example 2 Except for carbon-supported platinum catalyst, perfluorosulfonic acid polymer, carbon nitride carbon nanotubes and isopropanol in a mass ratio of 10:2.5:3:500, the other steps are the same as in Example 1, battery activation mode and test The method is exactly the same as in Example 1.
  • the cell polarization curve is shown in Figure 2. At voltages of 0.7V and 0.6V, the current density can reach 700 mA cm -2 and 1250 mA cm -2 , respectively . The maximum power density is 780 mW cm -2 .
  • the first step taken Nafion212 4cm ⁇ 4cm proton exchange membrane is first placed in mass percent concentration of 5% hydrogen peroxide treated 80 °C 1 hour, washed with distilled water, under treatment 0.5mol L -1 sulfuric acid solution 80 °C 1 hour, then rinse with distilled water.
  • the treated Nafion membrane was placed on a fixed frame for preparing the membrane electrode, and the active area was 5 cm 2 to prevent the membrane from shrinking and deforming during spraying of the catalyst slurry;
  • the third step is to weigh 3.1 mg Pt/C catalyst (Hispec4100, Johnson Matthey) with a Pt content of 40%, 25 mg perfluorosulfonic acid polymer solution (5wt% Nafion, DuPont) and 10:2.5:500 mass ratio. 0.2g of isopropanol, mixed and ultrasonically dispersed to form a catalyst slurry, sprayed on the other side of the proton exchange membrane sprayed in the second step under infrared light irradiation, and then sprayed the proton exchange membrane at 70 °C The lower end of the heat treatment was carried out for 30 minutes to prepare an anode catalytic layer of the membrane electrode, wherein the loading of Pt was 0.1 mg cm -1 .
  • Step 4 Cut TGP-H- 60 (Toray) carbon paper to 2.5 cm ⁇ 2.5 cm
  • the small pieces were placed in acetone for 2 hours to remove surface organic impurities. After drying, they were immersed in a 5% by weight polytetrafluoroethylene emulsion for 5 minutes, and dried to make the polytetrafluoroethylene account for the entire carbon. Paper weight 15%, calcined at 500 °C for 1 hour, so that the polytetrafluoroethylene is sintered in carbon paper, that is, the water treatment of carbon paper is completed.
  • Step 5 Weigh 30mg XC-72 toner, 132.5m g by mass ratio of 10:1.7:500 a polytetrafluoroethylene emulsion (mass fraction of 5%) and 1.6 g of isopropyl alcohol solution, mixed and ultrasonically dispersed to form an ink slurry, which is sprayed onto one side of the hydrophobized carbon paper, Sprayed carbon paper at 70 Baking at °C for 30 minutes, drying and calcining at 350 °C for 1 hour to obtain a gas diffusion layer;
  • Step 6 The two gas diffusion layers sprayed in the fifth step were respectively attached to both sides of the proton exchange membrane coated with the anode and cathode catalytic layers in the fifth step, thereby preparing a membrane electrode, which was named as a blank 212 membrane electrode.
  • the polarization performance was tested under the same test conditions as in Example 1 as shown in Fig. 2a and Fig. 2b. At 70 ° C and 100% relative humidity, the current density was 0.7 V and 0.6 V, respectively. Up to 600 mA cm -2 and 1000 mA cm -2 . The maximum power density is 691 mW cm -2 .
  • the polarization performance was tested under the same test conditions as in Example 1. As shown in Fig. 2, the current density reached 700 mA at voltages of 0.7 V and 0.6 V at 70 ° C and 100% relative humidity, respectively. Cm -2 and 1200 mA cm -2 . The maximum power density is 781 mW cm -2 .
  • the first step was to take a 4cm ⁇ 4cm Nafion211 proton exchange membrane, firstly treated in a hydrogen peroxide solution at a concentration of 5% by weight at 80 °C for 1 hour, washed with distilled water, and treated at 0.5 °L in a 0.5 mol L -1 sulfuric acid solution. 1 hour, then rinse with distilled water.
  • the treated Nafion membrane was placed on a fixed frame for preparing the membrane electrode, and the active area was 5 cm 2 to prevent the membrane from shrinking and deforming during spraying of the catalyst slurry;
  • the second step is to soon the carbon nanotubes in a concentrated sulfuric acid / concentrated nitric acid solution at a volume ratio of 3:1 for 30 minutes and reflux at 80 °C. After 8 hours, the carbon nanotubes were filtered and washed with deionized water to neutrality, i.e., acid treated carbon nanotubes were obtained.
  • Step 3 Put the second step of acid-treated carbon nanotubes into a quartz tube furnace, adjust the temperature program, and control the flow rate of ammonia to 120 ml / In a minute, calcination at 900 °C for 2 hours, then lowering to room temperature, replacing ammonia gas with nitrogen or argon to remove ammonia in the system, and taking out the sample to obtain carbon nanotubes;
  • Step 6 Cut TGP-H-60 (Toray) carbon paper into 2.5 cm ⁇ 2.5 cm
  • the small pieces were treated in acetone for 2 hours to remove surface organic impurities, and dried and immersed in a 5%-15% by weight polytetrafluoroethylene emulsion. Minutes, dry, make PTFE account for 15% of the weight of the whole carbon paper, and calcine at 500 °C for 1 hour to sinter the polytetrafluoroethylene in carbon paper, that is, complete the water treatment of carbon paper.
  • Step 7 Weigh 30mg XC-72 toner, 132.5 mg by mass ratio of 10:1.7:1:500 PTFE emulsion (5% by mass), 3.8mg carbon nanotubes and 1.6g
  • the isopropyl alcohol solution is mixed and ultrasonically dispersed to form an ink slurry.
  • the slurry is sprayed onto one side of the hydrophobized carbon paper, and the sprayed carbon paper is baked at 70 ° C for 30 minutes, and dried. After 350 °C Blowing for 1 hour to obtain a cathode gas diffusion layer;
  • Step 8 Weigh 30mg XC-72 toner and 132.5mg according to the mass ratio of 10:1.7:500.
  • Step 9 The gas diffusion layers sprayed by the seventh step and the eighth step are respectively attached to both sides of the proton exchange membrane sprayed with the anode and cathode catalytic layers in the fifth step, thereby preparing a membrane electrode.
  • the polarization properties were tested under the same test conditions as in Example 1 as shown in Figures 3a and 3b. At voltages of 0.7V and 0.6V, the current densities were 800 mA cm -2 and 1300 mA cm -2 , respectively . The maximum power density is 808 mW cm -2 .
  • Example 4 Except for XC-72 toner, polytetrafluoroethylene emulsion (mass fraction 5%), carbon nitride carbon nanotubes and isopropyl alcohol in the mass ratio of 10:1.7:2:500, other steps and examples 4 Similarly, the battery activation method and test method are exactly the same as in Example 4.
  • the cell polarization curve is shown in Figure 3. At voltages of 0.7V and 0.6V, the current density can reach 800 mA cm -2 and 1300 mA cm -2 , respectively . The maximum power density is 822 mW cm -2 .
  • Example 4 Except for XC-72 toner, polytetrafluoroethylene emulsion (mass fraction 5%), carbon nitride carbon nanotubes and isopropanol in the mass ratio of 10:1.7:3:500, other steps and examples 4 Similarly, the battery activation method and test method are exactly the same as in Example 4.
  • the cell polarization curve is shown in Figure 3. At voltages of 0.7V and 0.6V, the current density can reach 800 mA cm -2 and 1200 mA cm -2 , respectively . The maximum power density is 730 mW cm -2 .
  • the first step is to take a 4cm ⁇ 4cm Nafion211 proton exchange membrane, firstly treated at 80 °C in 5% by mass of hydrogen peroxide for 1 hour, washed with distilled water, and treated at 0.5 °L -1 in sulfuric acid solution at 80 °C. 1 hour, then rinse with distilled water.
  • the treated Nafion membrane was placed on a fixed frame for preparing the membrane electrode, and the active area was 5 cm 2 to prevent the membrane from shrinking and deforming during spraying of the catalyst slurry;
  • the second step is to soon the carbon nanotubes in a concentrated sulfuric acid / concentrated nitric acid solution at a volume ratio of 3:1 for 30 minutes at 80 °C. After refluxing for 8 hours, the carbon nanotubes were filtered and washed with deionized water to neutrality to obtain acid-treated carbon nanotubes.
  • Step 3 Put the second step of acid-treated carbon nanotubes into a quartz tube furnace, adjust the temperature program, and control the flow rate of ammonia to 120 ml / In a minute, calcination at 900 °C for 2 hours, then lowering to room temperature, replacing ammonia gas with nitrogen or argon to remove ammonia in the system, and taking out the sample to obtain carbon nanotubes;
  • the fourth step is to weigh 4.2 mg Pt/C catalyst (John Matthey) with Pt content of 60%, 33 mg perfluorosulfonic acid polymer solution (5 wt% Nafion, DuPont), according to the mass ratio of 10:2.5:2:500.
  • a cathode catalytic layer was prepared, wherein the loading of Pt was 0.2 mg cm -1 ;
  • Step 6 Cut TGP-H-60 (Toray) carbon paper into 2.5 cm ⁇ 2.5 cm The small pieces were placed in acetone for 2 hours to remove surface organic impurities, dried and soaked in a 5%-15% by weight polytetrafluoroethylene emulsion for 5 minutes, and dried. Polytetrafluoroethylene accounts for 15% of the weight of the whole carbon paper, and is calcined at 500 °C for 1 hour to sinter the polytetrafluoroethylene in carbon paper to complete the water treatment of the carbon paper.
  • Step 7 Weigh 30mg XC-72 toner, 132.5 mg by mass ratio of 10:1.7:2:500 PTFE emulsion (5% by mass), 7.5mg carbon nanotubes and 1.6g
  • the isopropyl alcohol solution is mixed and ultrasonically dispersed to form an ink slurry.
  • the slurry is sprayed onto one side of the hydrophobized carbon paper, and the sprayed carbon paper is baked at 70 ° C for 30 minutes, and dried. After 350 °C Blowing for 1 hour to obtain a cathode gas diffusion layer;
  • Step 8 Weigh 30mg XC-72 toner, 132.5 mg by mass ratio of 10:1.7:500 a polytetrafluoroethylene emulsion (mass fraction of 5%) and 1.6 g of isopropyl alcohol solution, mixed and ultrasonically dispersed to form an ink slurry, which is sprayed onto one side of the hydrophobized carbon paper, Sprayed carbon paper at 70 Baking at °C for 30 minutes, drying and calcining at 350 °C for 1 hour to obtain an anode gas diffusion layer;
  • Step 9 The gas diffusion layers sprayed by the seventh step and the eighth step are respectively attached to both sides of the proton exchange membrane sprayed with the anode and cathode catalytic layers in the fifth step, thereby preparing a membrane electrode.
  • the polarization properties were tested under the same test conditions as in Example 1 as shown in Fig. 4a and Fig. 4b. At 70 °C and 100% relative humidity, the current densities were respectively at voltages of 0.7 V and 0.6 V. Up to 1000 mA cm -2 and 1600 mA cm -2 . The maximum power density is 997 mW cm -2 .
  • the membrane electrode preparation step and the membrane electrode test step are the same as the embodiment except that the untreated carbon nanotube is used instead of the nitrided carbon nanotube in the embodiment 7. 7 .
  • the above embodiments are merely preferred embodiments of the present invention and are not intended to limit the scope of the present invention.
  • the current densities were 700 mA cm -2 and 1300 mA cm -2 at voltages of 0.7 V and 0.6 V, respectively.
  • the maximum power density is 872 mW cm -2 .
  • the membrane electrode preparation step and the membrane electrode test step are the same as the embodiment except that the carbon nanotubes in the embodiment 7 are replaced by the acid-treated carbon nanotubes. 7 .
  • the above embodiments are merely preferred embodiments of the present invention and are not intended to limit the scope of the present invention.
  • the current densities were 800 mA cm -2 and 1300 mA cm -2 at voltages of 0.7 V and 0.6 V, respectively.
  • the maximum power density is 872 mW cm -2 .
  • the membrane electrode preparation step and the membrane electrode test procedure are the same as in the embodiment 7 except that the carbon nitride carbon nanotubes in Example 7 are replaced by carbon nitride fibers. .
  • the above embodiments are merely preferred embodiments of the present invention and are not intended to limit the scope of the present invention.
  • the current densities were 900 mA cm -2 and 1500 mA cm -2 at voltages of 0.7 V and 0.6 V, respectively.
  • the maximum power density is 926 mW cm -2 .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne une électrode à membrane d'une pile à combustible à membrane échangeuse de protons à haute densité de puissance et son procédé de préparation. Dans le procédé, la densité de puissance de l'électrode à membrane est fortement augmentée en réduisant l'épaisseur d'un électrolyte solide, en réduisant l'épaisseur d'une couche de catalyseur à l'aide d'un contenu de catalyseur élevé, et en introduisant des nanotubes de carbone ou des fibres de carbone dans une couche de catalyseur de cathode (3) et/ou une couche de diffusion de gaz pour améliorer le transfert de masse entre la couche de catalyseur et la couche de diffusion. Le procédé de préparation est simple, pratique et faisable, et a un faible coût ; et peut être utilisé pour réduire l'épaisseur d'une électrode à membrane tout en améliorant les performances de l'électrode à membrane, en facilitant la préparation de piles à combustible à haute densité de puissance, de piles galvaniques et de systèmes.
PCT/CN2017/113215 2016-12-19 2017-11-27 Électrode à membrane de pile à combustible à membrane échangeuse de protons à haute densité de puissance et son procédé de préparation WO2018113485A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611177018.4 2016-12-19
CN201611177018.4A CN106784943B (zh) 2016-12-19 2016-12-19 一种高功率密度的质子交换膜燃料电池膜电极及其制备方法

Publications (1)

Publication Number Publication Date
WO2018113485A1 true WO2018113485A1 (fr) 2018-06-28

Family

ID=58889797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113215 WO2018113485A1 (fr) 2016-12-19 2017-11-27 Électrode à membrane de pile à combustible à membrane échangeuse de protons à haute densité de puissance et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN106784943B (fr)
WO (1) WO2018113485A1 (fr)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119664A (zh) * 2018-08-28 2019-01-01 北京林业大学 一种基于生物质热解产物的燃料电池及膜电极的制备方法
CN110247089A (zh) * 2019-07-10 2019-09-17 浙江博氢新能源有限公司 低Pt载量膜电极及其制备方法
CN110947405A (zh) * 2019-11-08 2020-04-03 武汉科技大学 一种规则排列的g-C3N4纳米管催化剂及其制备方法
CN112421059A (zh) * 2020-12-15 2021-02-26 深圳市通用氢能科技有限公司 一种气体扩散层及制备方法
CN112993280A (zh) * 2021-03-11 2021-06-18 大连交通大学 一种锂空气电池气体扩散层微孔层制备方法
CN113078338A (zh) * 2021-03-26 2021-07-06 一汽解放汽车有限公司 一种燃料电池用膜电极及其制备方法和应用
CN113233544A (zh) * 2021-05-31 2021-08-10 青岛大学 一种基于ptfe中空纤维膜的油水分离装置及分离方法
CN113504285A (zh) * 2021-07-09 2021-10-15 杭州麦乐克科技股份有限公司 一种甲醛电化学传感器膜电极的制备方法
CN114204049A (zh) * 2021-12-03 2022-03-18 中国科学院大连化学物理研究所 一种低铂载量质子交换膜燃料电池膜电极的制备方法
CN114243034A (zh) * 2021-12-15 2022-03-25 中国科学院大连化学物理研究所 一种抗沉淀催化剂浆料及其制备方法
CN114400335A (zh) * 2022-01-05 2022-04-26 海南大学 一种新型二维构型化电极的制备方法与装置
CN114447383A (zh) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 一种有机-无机复合质子交换膜及其制备方法
CN114512680A (zh) * 2022-01-19 2022-05-17 东风汽车集团股份有限公司 一种质子交换膜燃料电池催化层浆料的制备方法
CN114551919A (zh) * 2022-01-24 2022-05-27 东风汽车集团股份有限公司 一种水凝胶、微孔层浆料和气体扩散层及其制备方法
CN114614061A (zh) * 2022-03-29 2022-06-10 广州工业智能研究院 一种微生物燃料电池空气阴极及其制备方法
CN114628701A (zh) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 多层催化剂层、其制备方法和应用
CN114665131A (zh) * 2022-02-24 2022-06-24 南京工业大学 一种表征氧电极材料的h3o+传输性的方法
CN114864971A (zh) * 2022-04-14 2022-08-05 深圳市氢瑞燃料电池科技有限公司 一种燃料电池抗反极催化层及其制备方法与应用
CN115000446A (zh) * 2022-07-22 2022-09-02 上海电气集团股份有限公司 一种气体扩散层及其制备方法、膜电极、电池和应用
CN115020736A (zh) * 2022-04-20 2022-09-06 中国科学院大连化学物理研究所 一种基于纤维排布型微孔层的气体扩散层及其制备方法与应用
CN115011986A (zh) * 2022-05-25 2022-09-06 同济大学 一种孔结构可控调节的电解槽膜电极及其制备方法和应用
CN115084606A (zh) * 2022-08-03 2022-09-20 上海捷氢科技股份有限公司 一种燃料电池膜电极及其制备方法和应用
CN115101765A (zh) * 2022-07-05 2022-09-23 山西大学 一种带正电碳点调控膜电极催化剂层的方法及其应用
CN115133043A (zh) * 2022-07-07 2022-09-30 一汽解放汽车有限公司 一种含梯度化阴极催化层的膜电极及其制备方法和应用
CN115584046A (zh) * 2022-11-25 2023-01-10 杭州德海艾科能源科技有限公司 钒电池用全氟磺酸/己酮糖复合离子交换膜及其制备方法
CN116344839A (zh) * 2023-01-13 2023-06-27 一汽解放汽车有限公司 一种高电位催化剂及其制备方法和应用
CN116845253A (zh) * 2023-06-27 2023-10-03 哈尔滨工业大学 一种质子交换膜燃料电池催化层三相界面的调控方法
CN117328099A (zh) * 2023-11-27 2024-01-02 山东东岳未来氢能材料股份有限公司 一种低能耗催化层及其制备方法
CN117577906A (zh) * 2023-12-16 2024-02-20 杭州质子动力有限公司 一种空冷燃料电池自增湿膜电极及其制备方法
CN116344839B (zh) * 2023-01-13 2024-05-28 一汽解放汽车有限公司 一种高电位催化剂及其制备方法和应用

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784943B (zh) * 2016-12-19 2019-05-14 华南理工大学 一种高功率密度的质子交换膜燃料电池膜电极及其制备方法
CN107437628B (zh) * 2017-07-20 2019-09-24 河南豫氢动力有限公司 一种燃料电池膜电极组件的制备方法
CN107611452A (zh) * 2017-08-15 2018-01-19 华南理工大学 一种含有三维疏水阴极催化层的膜电极的制备方法
CN107482228A (zh) * 2017-08-18 2017-12-15 福建亚南电机有限公司 一种阳极催化剂构筑的免增湿膜电极及其制备方法
CN107634232B (zh) * 2017-09-18 2020-06-05 大连交通大学 憎水性质子交换膜燃料电池膜电极的制备方法
CN109524674B (zh) * 2017-09-19 2022-06-21 粟青青 提升燃料电池膜电极阴极催化层性能的方法
CN107681163A (zh) * 2017-09-21 2018-02-09 上海交通大学 一种燃料电池膜电极及其制备方法和应用
CN109065923A (zh) * 2018-07-06 2018-12-21 华南理工大学 添加亲水性碳材料制备的具有自增湿能力的高性能高功率密度膜电极及其制备方法
CN111038079B (zh) * 2018-10-12 2021-11-19 浙江森马服饰股份有限公司 一种水性无胶边弹力烫画工艺
CN109524676A (zh) * 2018-11-20 2019-03-26 安徽明天氢能科技股份有限公司 一种立体化的燃料电池催化层电极及其制备方法
CN109713331A (zh) * 2018-12-18 2019-05-03 新源动力股份有限公司 一种催化剂浆料、催化剂涂膜、膜电极组件及其用途
CN110444791A (zh) * 2019-08-28 2019-11-12 深圳市通用氢能科技有限公司 催化剂涂覆膜、燃料电池及制备方法
CN111172556B (zh) * 2020-01-02 2021-04-20 万华化学集团股份有限公司 膜电极组件及其在电化学反应制备乙醛酸中的应用
CN113140736A (zh) * 2020-06-08 2021-07-20 上海嘉资新材料有限公司 一种燃料电池气体扩散层结构、制备方法、膜电极组件以及燃料电池
CN112928255B (zh) * 2021-01-25 2022-05-06 合肥工业大学 一种锂硫电池复合正极材料及其制备方法与应用
CN113684458B (zh) * 2021-07-06 2022-08-12 华南理工大学 利用质子交换膜燃料电池用的具有多壁无序结构碳纳米管制备的膜电极及制备方法与应用
CN113745612A (zh) * 2021-07-30 2021-12-03 上海唐锋能源科技有限公司 具有高效质子传输网络的膜电极及其制备方法
CN113991125B (zh) * 2021-10-28 2023-07-04 一汽解放汽车有限公司 一种质子交换膜燃料电池催化剂浆料及其制备方法和应用
CN114068955A (zh) * 2021-10-29 2022-02-18 浙江天能氢能源科技有限公司 一种燃料电池膜电极及其制备方法
CN114361479B (zh) * 2021-12-22 2024-05-17 苏州大学 一种高输出功率燃料电池及其制备方法
CN114524493B (zh) * 2022-01-25 2023-04-07 中南大学 一种电化学处理硝酸盐废水的氨回收装置及方法
CN114540854A (zh) * 2022-03-18 2022-05-27 中国科学院长春应用化学研究所 一种spewe膜电极及其制备方法
CN114622245A (zh) * 2022-03-18 2022-06-14 中国科学院长春应用化学研究所 一种用于水电解制氢的催化剂浆料及其制备方法
CN115000420A (zh) * 2022-05-17 2022-09-02 一汽解放汽车有限公司 阴极催化膜、膜电极及其制备方法、燃料电池
CN115133048B (zh) * 2022-08-09 2024-04-09 一汽解放汽车有限公司 一种气体扩散层及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078122A (zh) * 2012-12-20 2013-05-01 华南理工大学 用于质子交换膜燃料电池的自增湿膜电极及制备方法
CN103531826A (zh) * 2013-10-30 2014-01-22 中国科学院上海高等研究院 一种基于牺牲模板法构建直接甲醇燃料电池纳米多孔结构膜电极的方法
CN105024084A (zh) * 2015-08-19 2015-11-04 哈尔滨工业大学 高温质子交换膜燃料电池膜电极及其制备方法
WO2016177951A1 (fr) * 2015-05-06 2016-11-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Catalyseur supporte par des nanotubes de carbone et par du graphene, et son procédé de préparation
CN106159283A (zh) * 2015-04-08 2016-11-23 宜兴市四通家电配件有限公司 一种质子交换膜燃料电池膜电极及其制备方法
CN106784943A (zh) * 2016-12-19 2017-05-31 华南理工大学 一种高功率密度的质子交换膜燃料电池膜电极及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4787474B2 (ja) * 2004-06-28 2011-10-05 株式会社巴川製紙所 膜−電極接合体用積層膜の製造方法
CN100438174C (zh) * 2007-05-14 2008-11-26 武汉理工大学 一种地聚合物基复合材料双极板及其制备方法
CN101621126B (zh) * 2009-08-13 2011-06-08 上海交通大学 一种燃料电池膜电极的制备方法
CN102623717B (zh) * 2012-03-31 2014-07-02 中国科学院长春应用化学研究所 膜电极的制备方法和膜电极

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078122A (zh) * 2012-12-20 2013-05-01 华南理工大学 用于质子交换膜燃料电池的自增湿膜电极及制备方法
CN103531826A (zh) * 2013-10-30 2014-01-22 中国科学院上海高等研究院 一种基于牺牲模板法构建直接甲醇燃料电池纳米多孔结构膜电极的方法
CN106159283A (zh) * 2015-04-08 2016-11-23 宜兴市四通家电配件有限公司 一种质子交换膜燃料电池膜电极及其制备方法
WO2016177951A1 (fr) * 2015-05-06 2016-11-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Catalyseur supporte par des nanotubes de carbone et par du graphene, et son procédé de préparation
CN105024084A (zh) * 2015-08-19 2015-11-04 哈尔滨工业大学 高温质子交换膜燃料电池膜电极及其制备方法
CN106784943A (zh) * 2016-12-19 2017-05-31 华南理工大学 一种高功率密度的质子交换膜燃料电池膜电极及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOU SANYING ET AL.: "Enhanced performance of proton exchange membrane fuel cell by introducing nitrogen-doped CNTs in both catalyst layer and gas di- ffusion layer", ELECTROCHIMICA ACTA, 30 August 2017 (2017-08-30), XP085213275, ISSN: 0013-4686, DOI: doi:10.1016/j.electacta.2017.08.160 *

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119664A (zh) * 2018-08-28 2019-01-01 北京林业大学 一种基于生物质热解产物的燃料电池及膜电极的制备方法
CN109119664B (zh) * 2018-08-28 2023-12-12 北京林业大学 一种基于生物质热解产物的燃料电池及膜电极的制备方法
CN110247089A (zh) * 2019-07-10 2019-09-17 浙江博氢新能源有限公司 低Pt载量膜电极及其制备方法
CN110947405A (zh) * 2019-11-08 2020-04-03 武汉科技大学 一种规则排列的g-C3N4纳米管催化剂及其制备方法
CN110947405B (zh) * 2019-11-08 2023-07-28 武汉科技大学 一种规则排列的g-C3N4纳米管催化剂及其制备方法
CN114447383A (zh) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 一种有机-无机复合质子交换膜及其制备方法
CN114628701A (zh) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 多层催化剂层、其制备方法和应用
CN114628701B (zh) * 2020-12-11 2024-02-09 中国科学院大连化学物理研究所 多层催化剂层、其制备方法和应用
CN112421059A (zh) * 2020-12-15 2021-02-26 深圳市通用氢能科技有限公司 一种气体扩散层及制备方法
CN112993280B (zh) * 2021-03-11 2023-11-14 大连交通大学 一种锂空气电池气体扩散层微孔层制备方法
CN112993280A (zh) * 2021-03-11 2021-06-18 大连交通大学 一种锂空气电池气体扩散层微孔层制备方法
CN113078338A (zh) * 2021-03-26 2021-07-06 一汽解放汽车有限公司 一种燃料电池用膜电极及其制备方法和应用
CN113233544A (zh) * 2021-05-31 2021-08-10 青岛大学 一种基于ptfe中空纤维膜的油水分离装置及分离方法
CN113233544B (zh) * 2021-05-31 2022-09-13 青岛大学 一种基于ptfe中空纤维膜的油水分离装置及分离方法
CN113504285A (zh) * 2021-07-09 2021-10-15 杭州麦乐克科技股份有限公司 一种甲醛电化学传感器膜电极的制备方法
CN114204049A (zh) * 2021-12-03 2022-03-18 中国科学院大连化学物理研究所 一种低铂载量质子交换膜燃料电池膜电极的制备方法
CN114204049B (zh) * 2021-12-03 2023-11-10 中国科学院大连化学物理研究所 一种低铂载量质子交换膜燃料电池膜电极的制备方法
CN114243034B (zh) * 2021-12-15 2023-11-14 中国科学院大连化学物理研究所 一种抗沉淀催化剂浆料及其制备方法
CN114243034A (zh) * 2021-12-15 2022-03-25 中国科学院大连化学物理研究所 一种抗沉淀催化剂浆料及其制备方法
CN114400335A (zh) * 2022-01-05 2022-04-26 海南大学 一种新型二维构型化电极的制备方法与装置
CN114512680B (zh) * 2022-01-19 2024-03-26 东风汽车集团股份有限公司 一种质子交换膜燃料电池催化层浆料的制备方法
CN114512680A (zh) * 2022-01-19 2022-05-17 东风汽车集团股份有限公司 一种质子交换膜燃料电池催化层浆料的制备方法
CN114551919B (zh) * 2022-01-24 2023-12-19 东风汽车集团股份有限公司 一种水凝胶、微孔层浆料和气体扩散层及其制备方法
CN114551919A (zh) * 2022-01-24 2022-05-27 东风汽车集团股份有限公司 一种水凝胶、微孔层浆料和气体扩散层及其制备方法
CN114665131B (zh) * 2022-02-24 2024-01-16 南京工业大学 一种表征氧电极材料的h3o+传输性的方法
CN114665131A (zh) * 2022-02-24 2022-06-24 南京工业大学 一种表征氧电极材料的h3o+传输性的方法
CN114614061B (zh) * 2022-03-29 2023-07-25 广州工业智能研究院 一种微生物燃料电池空气阴极及其制备方法
CN114614061A (zh) * 2022-03-29 2022-06-10 广州工业智能研究院 一种微生物燃料电池空气阴极及其制备方法
CN114864971B (zh) * 2022-04-14 2024-05-17 深圳市氢瑞燃料电池科技有限公司 一种燃料电池抗反极催化层及其制备方法与应用
CN114864971A (zh) * 2022-04-14 2022-08-05 深圳市氢瑞燃料电池科技有限公司 一种燃料电池抗反极催化层及其制备方法与应用
CN115020736B (zh) * 2022-04-20 2024-01-26 中国科学院大连化学物理研究所 一种基于纤维排布型微孔层的气体扩散层及其制备方法与应用
CN115020736A (zh) * 2022-04-20 2022-09-06 中国科学院大连化学物理研究所 一种基于纤维排布型微孔层的气体扩散层及其制备方法与应用
CN115011986A (zh) * 2022-05-25 2022-09-06 同济大学 一种孔结构可控调节的电解槽膜电极及其制备方法和应用
CN115101765A (zh) * 2022-07-05 2022-09-23 山西大学 一种带正电碳点调控膜电极催化剂层的方法及其应用
CN115133043A (zh) * 2022-07-07 2022-09-30 一汽解放汽车有限公司 一种含梯度化阴极催化层的膜电极及其制备方法和应用
CN115000446B (zh) * 2022-07-22 2024-05-31 上海电气集团股份有限公司 一种气体扩散层及其制备方法、膜电极、电池和应用
CN115000446A (zh) * 2022-07-22 2022-09-02 上海电气集团股份有限公司 一种气体扩散层及其制备方法、膜电极、电池和应用
CN115084606A (zh) * 2022-08-03 2022-09-20 上海捷氢科技股份有限公司 一种燃料电池膜电极及其制备方法和应用
CN115584046B (zh) * 2022-11-25 2023-02-28 杭州德海艾科能源科技有限公司 钒电池用全氟磺酸/己酮糖复合离子交换膜及其制备方法
CN115584046A (zh) * 2022-11-25 2023-01-10 杭州德海艾科能源科技有限公司 钒电池用全氟磺酸/己酮糖复合离子交换膜及其制备方法
CN116344839B (zh) * 2023-01-13 2024-05-28 一汽解放汽车有限公司 一种高电位催化剂及其制备方法和应用
CN116344839A (zh) * 2023-01-13 2023-06-27 一汽解放汽车有限公司 一种高电位催化剂及其制备方法和应用
CN116845253B (zh) * 2023-06-27 2024-01-26 哈尔滨工业大学 一种质子交换膜燃料电池催化层三相界面的调控方法
CN116845253A (zh) * 2023-06-27 2023-10-03 哈尔滨工业大学 一种质子交换膜燃料电池催化层三相界面的调控方法
CN117328099A (zh) * 2023-11-27 2024-01-02 山东东岳未来氢能材料股份有限公司 一种低能耗催化层及其制备方法
CN117328099B (zh) * 2023-11-27 2024-04-12 山东东岳未来氢能材料股份有限公司 一种低能耗催化层及其制备方法
CN117577906A (zh) * 2023-12-16 2024-02-20 杭州质子动力有限公司 一种空冷燃料电池自增湿膜电极及其制备方法
CN117577906B (zh) * 2023-12-16 2024-05-03 杭州质子动力有限公司 一种空冷燃料电池自增湿膜电极及其制备方法

Also Published As

Publication number Publication date
CN106784943B (zh) 2019-05-14
CN106784943A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018113485A1 (fr) Électrode à membrane de pile à combustible à membrane échangeuse de protons à haute densité de puissance et son procédé de préparation
CN110148759B (zh) 面向高电流密度的质子交换膜燃料电池气体扩散层的制备方法
CN110504472B (zh) 一种提高催化剂利用率的直接甲醇燃料电池膜电极及其制备方法
JP4745330B2 (ja) プロトン交換膜燃料電池用のガス拡散電極及び膜電極アセンブリ
CN100384001C (zh) 直接喷涂制备燃料电池膜电极的方法
CN101557001B (zh) 一种燃料电池膜电极及其制备方法
US20120107719A1 (en) Electrode catalyst for membrane electrode of fuel cell and its method of preparation and fuel cell membrane electrode
CN111009666A (zh) 一种双层微孔层式气体扩散层制备方法
CN101800321A (zh) 基于催化剂/膜技术的亲疏水可调的质子交换膜燃料电池用膜电极的制备方法
CN114300702B (zh) 一种含有氧化铈改性碳纳米纤维的燃料电池气体扩散层结构及其制备方法
CN111370717A (zh) 一种阴极催化剂浆料、阴极催化剂层、膜电极及燃料电池
CN109065923A (zh) 添加亲水性碳材料制备的具有自增湿能力的高性能高功率密度膜电极及其制备方法
CN111162299A (zh) 低温质子交换膜燃料电池膜电极的制备方法
CN114171748A (zh) 一种形成离聚物网络的燃料电池催化剂浆料及其制备方法
CN113066999A (zh) 一种质子交换膜燃料电池多孔电极及其制备方法
CN112615033A (zh) 一种直接甲醇燃料电池催化层梯度化膜电极及其制备方法
CN101140990A (zh) 一种电极气体扩散层在质子交换膜燃料电池中的应用
CN104701552A (zh) 一种高性能的质子交换膜燃料电池用膜电极的制备方法
KR20050016145A (ko) 계면 저항을 감소시킨 하이브리드 전극-막 접합체 및 그제조방법
JP2000299119A (ja) 触媒層の製造方法
KR20090080160A (ko) 고분자전해질 연료전지용 가스확산층의 제조 방법
CN115425239A (zh) 一种具有疏水性和透气性双梯度的微孔层的制备方法
KR20080067837A (ko) 정전 분사법에 의한 연료전지용 막-전극 어셈블리 제조방법
CN115101754A (zh) 一种基于石墨烯气凝胶的直接甲醇燃料电池的气体扩散电极的制备方法及膜电极
CN108461760A (zh) 一种膜电极用扩散层及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205 DATED 02/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17883994

Country of ref document: EP

Kind code of ref document: A1