CN101800321A - 基于催化剂/膜技术的亲疏水可调的质子交换膜燃料电池用膜电极的制备方法 - Google Patents

基于催化剂/膜技术的亲疏水可调的质子交换膜燃料电池用膜电极的制备方法 Download PDF

Info

Publication number
CN101800321A
CN101800321A CN201010140301A CN201010140301A CN101800321A CN 101800321 A CN101800321 A CN 101800321A CN 201010140301 A CN201010140301 A CN 201010140301A CN 201010140301 A CN201010140301 A CN 201010140301A CN 101800321 A CN101800321 A CN 101800321A
Authority
CN
China
Prior art keywords
catalyst
proton exchange
exchange membrane
water
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010140301A
Other languages
English (en)
Other versions
CN101800321B (zh
Inventor
潘牧
田明星
艾勇诚
宛朝辉
李虎
胡阿勇
陈磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUHAN WUT NEW ENERGY CO Ltd
Original Assignee
WUHAN WUT NEW ENERGY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUHAN WUT NEW ENERGY CO Ltd filed Critical WUHAN WUT NEW ENERGY CO Ltd
Priority to CN2010101403016A priority Critical patent/CN101800321B/zh
Publication of CN101800321A publication Critical patent/CN101800321A/zh
Application granted granted Critical
Publication of CN101800321B publication Critical patent/CN101800321B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

一种基于催化剂/膜技术的亲疏水可调的质子交换膜燃料电池用膜电极的制备方法。制备步骤为:将去离子水与疏水剂混匀,再将含醇质子传导聚合物溶液加入其中混匀,配成疏水剂与质子传导聚合物分散液;催化剂用去离子水润湿;将疏水剂与质子传导聚合物分散液加入到润湿的催化剂中分散,制成催化剂浆料;将催化剂浆料涂覆在二个介质上并加热烘干,热处理,得到带有催化层的二个介质,将质子交换膜置于带有催化层的二个介质的催化层之间,通过热压将二个介质上的催化层分别转移到质子交换膜的二个表面上,得到催化剂覆盖质子交换膜组件;将该组件置于二个气体扩散层之间,热压制成膜电极,其中质子交换膜二个表面正对二个气体扩散层。

Description

基于催化剂/膜技术的亲疏水可调的质子交换膜燃料电池用膜电极的制备方法
技术领域
本发明涉及一种质子交换膜燃料电池用膜电极的制备方法,特别涉及基于催化剂覆盖膜(简写为:催化剂/膜)技术的亲疏水可调的质子交换膜燃料电池用膜电极的制备方法。
背景技术
质子交换膜燃料电池(PEMFC)具有高功率密度、高能量转换效率、低温启动、环境友好等优点,最有希望成为零污染零排放电动汽车的动力源,这使其在全球能源危机和环境日益恶化的今天,成为国际高新技术竞争的热点之一。质子交换膜燃料电池用的核心组件-催化剂/膜组件(催化剂覆盖质子交换膜组件,catalyst coated membrane,CCM)则是近年来发展起来有别于传统膜电极(membrane electrode assembly,MEA)结构的质子交换膜燃料电池核心组件。传统的膜电极(MEA)制作方法主要是将催化剂涂覆在扩散层上形成催化层,然后将催化层浸渍在质子传导聚合物溶液中或在催化层表面喷涂质子传导聚合物溶液,最后与质子交换膜热压制成膜电极。这种结构的膜电极,催化层与质子交换膜结合较差,而且最大的一个缺点是浸渍或喷涂的质子传导聚合物只能进入催化层表面而不能进入到催化层内部,因而催化层的质子传导性受到很大影响。对于质子交换膜燃料电池来讲,催化层的质子、电子、气体传输良好缺一不可,传统膜电极的催化层质子传导性较差,直接影响了膜电极的性能。而催化剂/膜技术将催化层直接转移到质子交换膜上,催化层与膜结合紧密,且催化层可以做得很薄,催化层的质子传导性非常好,这不仅提高了催化层的电化学反应活性,而且还可以减少贵金属的使用量,降低了膜电极的制造成本。
现有的质子交换膜燃料电池使用的催化剂/膜组件(CCM),催化层一般使用亲水的质子传导聚合物作粘结剂。[US5211984,US5234777]首先介绍了一种燃料电池催化剂/膜组件的制备方法,将Pt/C催化剂分散在质子传导聚合物中,然后将该催化剂浆料形成一层厚度小于10μm的催化层,再将该催化层转移到质子交换膜上,这种结构的催化层质子传导性较好,但亲水性太强,易造成催化层水淹,进而影响反应气体传输到催化剂表面,使得燃料电池的发电能力降低。
[US6933003]介绍了一种连续化制备催化剂/膜组件的方法,并且可重复使用转移介质。该方法使用的催化剂浆料包括质子传导材料、电子传导材料、催化剂和溶剂,其膜电极制备过程为:首先将催化剂浆料涂覆在介质上干燥后形成催化层薄膜,然后将催化层薄膜粘接到质子交换膜上。这种催化层同样存在水淹的问题。[US7285307]介绍了一种更简单的连续化制备催化剂/膜组件的方法,先将催化剂、质子传导聚合物溶液和溶剂制成催化剂浆料,再将浆料直接涂覆到带衬底的质子交换膜的一面,然后将衬底膜撕掉再涂覆第二层催化层到质子交换膜的另一面形成催化剂/膜组件。这种方法通过衬底固定质子交换膜,防止催化剂浆料直接涂敷到质子交换膜表面引起质子交换膜的变形。但是这种方法的操作过程复杂,而且同时也存在催化层水淹和结构稳定性欠佳的问题。
[US7473468]介绍了一种催化剂/膜组件的制备方法,通过增加靠近质子交换膜的催化层部分的质子传导聚合物的含量并降低远离质子交换膜的催化层部分的质子传导聚合物的含量来改善催化剂/膜组件的耐久性。
[US20060110631]介绍了一种采用非水溶剂与催化剂和质子传导聚合物形成的浆料直接涂覆在质子交换膜上的方法。
从以上专利看出,催化剂/膜组件催化层均使用质子传导聚合物作为粘结剂,故都存在水淹的问题。另一方面,靠近电化学反应区域附近的质子交换膜在长时间使用过程中存在老化问题,而作为电化学反应区域的催化层中的质子传导聚合物更容易老化,进而会使催化层的稳定性降低。为了同时解决催化层的质子传导和水管理的问题并提高催化层的结构稳定性,本发明在催化层中除了加入质子传导聚合物外,还添加电化学稳定性更好的疏水剂,从而既为催化层提供了足够的疏水通道保证反应气体传输通畅,又能加强催化层的稳定性。
发明内容
本发明的目的是提供一种基于催化剂/膜技术的亲疏水可调、燃料电池电输出性能好的质子交换膜燃料电池用膜电极的制备方法,其特点是这种膜电极对水的润湿角可以通过制备过程调节,从而使膜电极在燃料电池实际应用中对水管理有很好的适应性,同时该制备方法制备的催化剂浆料性能稳定,分散均匀性好并易于后续操作。另外,该方法可以减少对质子交换膜的损伤,使膜电极具备高性能的同时质子交换膜的寿命不受影响,而且可提高催化层的结构稳定性,延长膜电极组件的寿命。
为了实现上述目的,本发明的技术方案是:
1.一种亲疏水可调的质子交换膜燃料电池用膜电极的制备方法,其特征是,该方法基于催化剂覆盖质子交换膜技术,其制备步骤包括:
1)疏水剂与质子传导聚合物混合分散:按去离子水与疏水剂重量比为1∶1~40混合均匀,制成疏水剂乳液,将质子传导聚合物溶液加入到疏水剂乳液中混合均匀,质子传导聚合物与疏水剂重量比为1∶0.01~1,配成疏水剂与质子传导聚合物分散液,其中所述的疏水剂为含氟疏水剂;所述的质子传导聚合物溶液为含质子传导聚合物1wt%~10wt%,正丙醇30wt%~80wt%的水溶液;
2)催化剂润湿:按催化剂与去离子水重量比为1∶0.1~5将去离子水加入到入催化剂中,使催化剂充分润湿;
3)将步骤1)制备的疏水剂乳液与质子传导聚合物分散液加入到步骤2)的润湿的催化剂中均匀分散,制成催化剂浆料;
4)将催化剂浆料涂覆在第一介质和第二介质上并加热烘干,再将该带有催化剂浆料的两个介质热处理,得到带有催化层的第一介质和第二介质,然后将质子交换膜置于带有催化层的第一介质和第二介质的催化层之间,通过热压将第一介质上的催化层和第二介质上的催化层分别转移到质子交换膜的第一表面和第二表面上,得到催化剂覆盖质子交换膜组件;
5)将催化剂覆盖质子交换膜组件置于第一气体扩散层和第二气体扩散层之间,通过热压方式制成膜电极,其中质子交换膜第一表面正对第一气体扩散层,质子交换膜第二表面正对第二气体扩散层。
上述的一种亲疏水可调的质子交换膜燃料电池用膜电极的制备方法中,所述的第一介质和第二介质为钢化平板玻璃、聚四氟乙烯膜或金属薄板。
所述的含氟疏水剂为聚偏二氟乙烯、氟化乙烯丙烯、聚全氟乙丙烯、全氟烷基丙烯酸酯、六氟丙烯共聚物、聚四氟乙烯、四氟乙烯与六氟丙烯和氟化亚乙烯基三元聚合物、聚氟乙烯中的至少一种。
所述的催化剂为载体担载贵金属或非担载贵金属催化剂,其中,载体包括石墨、碳黑、碳纳米管、碳纤维、C-SBA-15、富勒烯、导电高分子、Al2O3、SiO2、MgO、TiO2、分子筛中的一种或两种以上;贵金属包括Pt、Pd、Ru、Rh、Ir、Os、Au、Ag中的一种或两种以上,或者是贵金属与Fe、Cr、Ni、Co或Mn形成的二元以上合金。
其步骤4)中所述的带有催化浆料的第一介质和第二介质需要热处理,其具体步骤是:
1)将带有催化层的第一介质和第二介质放入含Na离子化合物溶液中浸泡,使质子传导聚合物中的H离子被Na离子取代,再用去离子水清洗后在N2或者惰性气体气氛中270~340℃高温下处理,使催化层中的疏水剂纤维化;
2)将步骤1)热处理后的带有催化剂层的第一介质和第二介质放入H2SO4溶液中浸泡后用去离子水清洗,以去除催化层内质子传导聚合物中的Na离子;
其中所述的含Na离子化合物包括:NaOH、Na2CO3、NaHCO3、NaCl、Na2SO4、NaSO3或NaNO3
步骤1)所述的含Na离子化合物溶液的浓度为0.1~5mol/L,浸泡时间为0.5~12小时。步骤2)所述的H2SO4溶液的浓度为0.1~5mol/L,浸泡时间为0.5~12小时。
所述的质子传导聚合物是指具有质子传导能力的全氟磺酸树脂,如DuPont公司的Nafion树脂或Nafion溶液,Dias公司的Kraton G1650树脂,或是Flemion质子传导聚合物等;或者是部分磺化含氟磺酸树脂,或具有质子交换功能磺化热稳定性聚合物,如磺化三氟苯乙烯、磺化聚醚醚酮等。除了上述的列举的质子传导聚合物外,其它具有质子传导功能的聚合物均可以采用。
所述的气体扩散层由气体扩散基体和微孔层构成,气体扩散层基体为碳纸、碳纤维毡或者碳布。气体扩散层微孔层为高比表面积、导电性好、稳定性好的物质和疏水剂组成,优先选择碳粉和聚四氟乙烯乳液。
所述的催化剂包括载体担载贵金属或非担载贵金属催化剂。载体担载贵金属催化剂指贵金属颗粒附着在粒径更大的载体表面,燃料电池中的载体粒径通常为几十到几百个纳米范围,贵金属颗粒为几个纳米。对于纳米金属颗粒,即使将贵金属做的很小电化学比表面积很大,但它们有着强烈的团聚趋势也会使其颗粒变大电化学比表面积减小,使得贵金属的利用率降低。正如花草的根系扎入土中保证花草能够固定,贵金属颗粒长在载体表面也有很强的作用力,这种作用力能够防止贵金属移动后发生接触,进而阻止了贵金属颗的长大,因而载体的作用就是防止纳米级的贵金属颗粒团聚。质子交换膜燃料电池最常用的载体担载贵金属催化剂为Pt/C和Pt-Ru/C。其中Pt/C适用于氢气纯度高的条件,Pt-Ru/C适用于氢气中含有CO等杂质气体条件;非担载催化剂最常用的为Pt黑。
任何合适的质子交换膜可用在本发明的实践中。所述的质子交换膜通常由质子传导聚合物组成,具有带磺酸根基团的支链,且质子传导聚合物中不含有在水溶液中可以电离的其它基团的聚合物。可以是全氟磺酸树脂、磺化三氟苯乙烯、聚甲基苯基磺酸硅氧烷、磺化聚醚醚酮、磺化聚苯乙烯-聚乙烯共聚物、磺化聚苯乙烯-聚乙烯与丁烯-聚苯乙烯以及其它符合该条件的聚合物。如
Figure GSA00000076149500041
膜、
Figure GSA00000076149500042
膜、
Figure GSA00000076149500043
膜、膜;部分磺化质子交换膜,如Ballard公司的BAM3G膜;非氟化的质子交换膜,如磺化聚醚醚酮膜;以PTFE多孔膜为基底的复合膜,如Gore-selectTM。所述的质子交换膜厚度通常小于0.200mm,优选小于0.050mm,最优选小于0.030mm。所述质子传导聚合物的当量通常为1200或者更小,更优选为1100或更小,最优选当量约1000。
本发明采用基于催化剂/膜技术的亲疏水可调的质子交换膜燃料电池用膜电极的制备方法,催化层对水的润湿角在70°~140°范围内可以调节;质子传导聚合物与疏水剂质量比为1∶0.01~1,当质子传导聚合物与疏水剂质量比中的疏水剂取大值时,其润湿角为大值。疏水剂通常使用含氟聚合物,例如聚偏二氟乙烯、氟化乙烯丙烯(FEP)、聚全氟乙丙烯、全氟烷基丙烯酸酯、六氟丙烯共聚物、聚四氟乙烯(PTFE)、四氟乙烯与六氟丙烯和氟化亚乙烯基三元聚合物、聚氟乙烯中的至少一种。
本发明中催化剂浆料涂覆到第一介质和第二介质可采用手工刷涂、丝网印刷、切口棒涂覆、绕线棒涂覆、带液体涂覆、狭缝给料刮涂、喷涂等方法。
为了进一步增加催化层的疏水范围,特别是提高催化层的稳定性,需要对催化层进行热处理,其具体步骤是:1、将带有催化剂层的第一介质和第二介质放入0.1~5mol/L的含Na离子化合物溶液中浸泡0.5~12小时,使质子传导聚合物中的H离子被Na离子取代,再用去离子水清洗后在N2或者惰性气体气氛中270~340℃高温下处理,使催化层中的疏水剂纤维化;2、将步骤1热处理后的带有催化剂层的介质放入0.1~5mol/L H2SO4溶液中浸泡0.5~12小时,然后用去离子水清洗,以去除催化层内质子传导聚合物中的Na离子;在对催化层在270~340℃热处理的时候催化层必须保证带有催化层的介质在270~340℃条件下不会熔化和变形以确保催化剂层的平整,可用耐高温的平板或卷材固定介质,使之与带有催化层的介质一起放入高温炉中进行热处理。同时催化层中含有质子传导聚合物树脂,在热处理前需对催化层采用上述含Na离子溶液进行Na化处理,使催化层中的质子传导聚合物的H离子被Na离子取代,从而使催化层中的质子传导树脂能够耐受270~340℃高温。
本发明的特点是这种膜电极的催化层中除加了质子传导聚合物外,还加入了含氟疏水剂,这种疏水剂的加入使得催化层在电化学腐蚀和湿度变化等作用下,结构更稳定,延长了膜电极寿命。此外,膜电极对水的润湿角可以通过制备过程调节,从而使膜电极在燃料电池实际应用中对水管理有很好的适应性。
附图说明
图1是本发明实施例1和比较例1的单电池极化曲线图
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容。
下述制备亲疏水可调的质子交换膜燃料电池用膜电极的方法,基于催化剂覆盖质子交换膜技术,在如下工艺条件范围内任取值,去离子水与疏水剂重量比为1∶1~40,质子传导聚合物与疏水剂重量比为1∶0.01~1,催化剂与去离子水重量比为1∶0.1~5;带有催化剂浆料的介质热处理温度为270~340℃,浸泡带有催化层的介质的含Na离子化合物溶液的浓度为0.1~5mol/L,浸泡时间为0.5~12小时,浸泡带有催化层的介质的H2SO4溶液的浓度为0.1~5mol/L,浸泡时间为0.5~12小时。本发明的内容不仅仅局限于下面的实施例。
实施例1
亲疏水可调的质子交换膜燃料电池用膜电极的制备方法,制备步骤如下:
1、取Pt/C催化剂(碳载Pt催化剂,Pt的质量含量为40%)3g,加入15g水与催化剂混合均匀使催化剂润湿;另取质量浓度为60%的PTFE乳液1g,加入12g水混合均匀,然后加入20g质量浓度为5%的
Figure GSA00000076149500051
溶液(DuPont公司生产,5%为Nafion树脂,95%为水及低沸点醇成分),将这些混合溶液倒入已润湿的催化剂中混合均匀制备成料浆;
2、质子交换膜的预处理:取膜为质子交换膜,膜厚为51μm;浸入质量浓度为5%的H2O2中,70℃下热处理1小时,用去离子水冲洗3次,再浸入0.5mol/L的H2SO4溶液中70℃下热处理1小时,然后在去离子水中70℃下热处理1小时,期间更换3次去离子水;
3、用无水乙醇清洗PTFE膜表面并烘干;采用喷涂设备将制备的料浆均匀喷涂到PTFE膜上;以N2为保护气氛,在100~120℃条件下对带有催化剂浆料的PTFE膜进行干燥,加热去掉溶剂后,在PTFE膜上形成催化层;将涂有催化层的PTFE膜介质放入2mol/L的Na2SO4溶液中浸泡12小时,将所述的介质取出后在N2或其他惰性气体气氛保护、340℃条件下对催化层中的PTFE进行高温处理并使其纤维化;高温处理前将涂有催化剂的PTFE膜用两块钢板压紧,以使其在高温处理过程中始终保持平整;再浸入0.5mol/L的H2SO4溶液中70℃下热处理1小时,使催化层中Na型Nafion树脂质子化;然后在去离子水中70℃下热处理1小时,期间更换3次去离子水;最后将
Figure GSA00000076149500061
膜置于两张涂有催化剂的PTFE膜的催化剂之间,通过传送装置送入压光机中热压处理,辊压温度为130℃,压强为7Mpa,膜走速为2m/min,采用自动剥离机剥除上述膜两侧的PTFE膜,得到催化剂覆盖质子交换膜组件(简写为催化剂/膜组件)。
该方法制备的催化剂/膜组件的催化层分散均匀,Pt载量0.62mg/cm2,其中阳极0.20mg/cm2,阴极0.42mg/cm2。催化层的润湿角为68°,催化剂/膜的质子传导率为0.048s/cm。
比较例1
采用Nafion树脂为粘结剂,催化剂前驱体混合溶液中不加PTFE乳液,且催化层不经过340℃热处理工艺,所以也无需Na化和质子化,其他过程同实施例1。制备的催化层均匀性良好,催化层的Pt载量为0.61mg/cm2,其中阳极0.21mg/cm2,阴极0.40mg/cm2。催化层的润湿角为41°,催化剂/膜组件的质子传导率为0.053s/cm。
催化剂/膜组件单电池组装及性能测试
采用WUT公司生产的GDL作为气体扩散层,碳纸预先经过30wt%PTFE疏水处理,采用在一侧开有平行槽道的石墨板作为集流板,端板为镀金不锈钢板。操作条件为:阴极与阳极分别使用空气和氢气,空气过量系数为2.5,氢气过量系数1.5,电池温度为65℃,阳极100%增湿,阴极80%增湿。实施例1和比较例1的单电池极化曲线见图1。图1说明本发明的燃料电池膜电极电输出性能较比较例1好。
实施例2
亲疏水可调的质子交换膜燃料电池用膜电极的制备方法,制备步骤如下:
1、取Pt黑催化剂1.2g,加入3.6g水将催化剂润湿;另取质量浓度为60%的PTFE乳液2g,加入5g水分散均匀,然后加入3%的磺化三氟苯乙烯溶液40g混合均匀,最后将这些混合溶液倒入已润湿的催化剂中均匀分散制得料浆;
2、
Figure GSA00000076149500063
膜、PTFE膜的预处理方法与实施例1相同,采用丝网印刷设备将料浆涂覆到PTFE膜上,以N2为保护气,在100~120℃条件下干燥,加热去掉溶剂,在PTFE膜上形成催化层;丝网规格40~200目尼龙网,单程印刷面积为15×30cm。将涂有催化剂层的PTFE膜介质放入2mol/L的NaOH溶液中浸泡24h,在N2或惰性气体气氛保护、340℃条件下使催化层中PTFE烧结,烧结时将涂有催化剂的PTFE膜用两块钢板压紧以使其平整;热处理完后再将其浸入0.5mol/L的H2SO4溶液中70℃下热处理1h,使催化层中Na型Nafion树脂质子化;然后在去离子水中70℃下热处理1小时,期间更换3次去离子水;
3、将
Figure GSA00000076149500071
膜置于两张有催化剂层的PTFE膜的催化剂之间,通过传送装置送入压光机种热压处理,辊压温度为130℃,压强为7Mpa,膜走速为2m/min,采用自动剥离机剥除
Figure GSA00000076149500072
膜两侧的PTFE膜,得到催化剂/膜组件。
制备的催化剂/膜组件催化层均匀性良好,催化层Pt载量为0.51mg/cm2,其中阳极0.21mg/cm2,阴极0.30mg/cm2。催化层的润湿角为85°,催化剂/膜组件的质子传导率为0.048s/cm。

Claims (7)

1.一种亲疏水可调的质子交换膜燃料电池用膜电极的制备方法,其特征是,该方法基于催化剂覆盖质子交换膜技术,其制备步骤包括:
1)疏水剂与质子传导聚合物混合分散:按去离子水与疏水剂重量比为1∶1~40混合均匀,制成疏水剂乳液,将质子传导聚合物溶液加入到疏水剂乳液中混合均匀,质子传导聚合物与疏水剂重量比为1∶0.01~1,配成疏水剂与质子传导聚合物分散液,其中所述的疏水剂为含氟疏水剂;所述的质子传导聚合物溶液为含质子传导聚合物1wt%~10wt%,正丙醇30wt%~80wt%的水溶液;
2)催化剂润湿:按催化剂与去离子水重量比为1∶0.1~5将去离子水加入到入催化剂中,使催化剂充分润湿;
3)将步骤1)制备的疏水剂乳液与质子传导聚合物分散液加入到步骤2)的润湿的催化剂中均匀分散,制成催化剂浆料;
4)将催化剂浆料涂覆在第一介质和第二介质上并加热烘干,再将该带有催化剂浆料的两个介质热处理,得到带有催化层的第一介质和第二介质,然后将质子交换膜置于带有催化层的第一介质和第二介质的催化层之间,通过热压将第一介质上的催化层和第二介质上的催化层分别转移到质子交换膜的第一表面和第二表面上,得到催化剂覆盖质子交换膜组件;
5)将催化剂覆盖质子交换膜组件置于第一气体扩散层和第二气体扩散层之间,通过热压方式制成膜电极,其中质子交换膜第一表面正对第一气体扩散层,质子交换膜第二表面正对第二气体扩散层。
2.根据权利要求1所述的一种亲疏水可调的质子交换膜燃料电池用膜电极的制备方法,其特征是:所述的第一介质和第二介质为钢化平板玻璃、聚四氟乙烯膜或金属薄板。
3.根据权利要求1所述的一种亲疏水可调的质子交换膜燃料电池用膜电极的制备方法,其特征是:所述的含氟疏水剂为聚偏二氟乙烯、氟化乙烯丙烯、聚全氟乙丙烯、全氟烷基丙烯酸酯、六氟丙烯共聚物、聚四氟乙烯、四氟乙烯与六氟丙烯和氟化亚乙烯基三元聚合物、聚氟乙烯中的至少一种。
4.根据权利要求1所述的一种亲疏水可调的质子交换膜燃料电池用膜电极的制备方法,其特征是:所述的催化剂为载体担载贵金属或非担载贵金属催化剂,其中,载体包括石墨、碳黑、碳纳米管、碳纤维、C-SBA-15、富勒烯、导电高分子、Al2O3、SiO2、MgO、TiO2、分子筛中的一种或两种以上;贵金属包括Pt、Pd、Ru、Rh、Ir、Os、Au、Ag中的一种或两种以上,或者是贵金属与Fe、Cr、Ni、Co或Mn形成的二元以上合金。
5.根据权利要求1所述的一种亲疏水可调的质子交换膜燃料电池用膜电极的制备方法,其特征是:步骤4)中所述的带有催化浆料的第一介质和第二介质热处理,其具体步骤是:
1)将带有催化层的第一介质和第二介质放入含Na离子化合物溶液中浸泡,使质子传导聚合物中的H离子被Na离子取代,再用去离子水清洗后在N2或者惰性气体气氛中270~340℃高温下处理,使催化层中的疏水剂纤维化;
2)将步骤1)热处理后的带有催化剂层的第一介质和第二介质放入H2SO4溶液中浸泡后用去离子水清洗,以去除催化层内质子传导聚合物中的Na离子;
其中所述的含Na离子化合物包括:NaOH、Na2CO3、NaHCO3、NaCl、Na2SO4、NaSO3或NaNO3
6.根据权利要求5所述的一种亲疏水可调的质子交换膜燃料电池用膜电极的制备方法,其特征是:步骤1)所述的含Na离子化合物溶液的浓度为0.1~5mol/L,浸泡时间为0.5~12小时。
7.根据权利要求5所述的一种亲疏水可调的质子交换膜燃料电池用膜电极的制备方法,其特征是:步骤2)所述的H2SO4溶液的浓度为0.1~5mol/L,浸泡时间为0.5~12小时。
CN2010101403016A 2010-03-31 2010-03-31 基于催化剂/膜技术的亲疏水可调的质子交换膜燃料电池用膜电极的制备方法 Active CN101800321B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101403016A CN101800321B (zh) 2010-03-31 2010-03-31 基于催化剂/膜技术的亲疏水可调的质子交换膜燃料电池用膜电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101403016A CN101800321B (zh) 2010-03-31 2010-03-31 基于催化剂/膜技术的亲疏水可调的质子交换膜燃料电池用膜电极的制备方法

Publications (2)

Publication Number Publication Date
CN101800321A true CN101800321A (zh) 2010-08-11
CN101800321B CN101800321B (zh) 2012-07-18

Family

ID=42595893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101403016A Active CN101800321B (zh) 2010-03-31 2010-03-31 基于催化剂/膜技术的亲疏水可调的质子交换膜燃料电池用膜电极的制备方法

Country Status (1)

Country Link
CN (1) CN101800321B (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103120939A (zh) * 2011-11-18 2013-05-29 中国科学院兰州化学物理研究所 生物质重油加氢提质催化剂及其制备方法和应用
CN105070933A (zh) * 2015-07-30 2015-11-18 同济大学 一种燃料电池用复合质子交换膜及其制备方法
CN105372308A (zh) * 2015-12-09 2016-03-02 广东南海普锐斯科技有限公司 一种低贵金属用量甲醛传感器膜电极组件及其制备方法
CN107681163A (zh) * 2017-09-21 2018-02-09 上海交通大学 一种燃料电池膜电极及其制备方法和应用
CN109860636A (zh) * 2019-02-26 2019-06-07 武汉理工大学 一种改进质子交换膜燃料电池性能的催化层的制备方法
CN110513686A (zh) * 2019-08-02 2019-11-29 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种无预混的氢气催化燃烧供热装置
CN111313033A (zh) * 2018-12-12 2020-06-19 中国科学院大连化学物理研究所 一种燃料电池气体扩散电极催化层制备及载量控制方法
CN111628183A (zh) * 2020-05-27 2020-09-04 先进储能材料国家工程研究中心有限责任公司 燃料电池催化剂浆料的制备方法
CN111725523A (zh) * 2020-06-04 2020-09-29 浙江高成绿能科技有限公司 一种薄层疏水的燃料电池膜电极及其制备方法
CN111952599A (zh) * 2019-05-14 2020-11-17 中国科学院大连化学物理研究所 一种高稳定性质子交换膜燃料电池纳米纤维电极及其制备方法与应用
CN112310420A (zh) * 2019-07-29 2021-02-02 上海济平新能源科技有限公司 燃料电池用电极、膜电极组件、芯片、催化剂层、催化剂分散液及其制备方法
CN112786937A (zh) * 2021-01-27 2021-05-11 浙江高成绿能科技有限公司 一种燃料电池膜电极及其制备方法
CN112820883A (zh) * 2020-12-31 2021-05-18 武汉理工氢电科技有限公司 一种微孔层浆料、气体扩散层、燃料电池及制备方法
CN113632265A (zh) * 2019-04-09 2021-11-09 凸版印刷株式会社 膜电极接合体及固体高分子型燃料电池
CN113745551A (zh) * 2021-08-13 2021-12-03 国家电投集团氢能科技发展有限公司 一种阳极催化层浆料及其制备方法
CN114243033A (zh) * 2021-12-09 2022-03-25 同济大学 一种无瑕疵的催化剂直接涂布质子交换膜及其制备方法与应用
CN114614026A (zh) * 2020-12-09 2022-06-10 中国科学院大连化学物理研究所 一种燃料电池膜电极的催化层结构
CN114628701A (zh) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 多层催化剂层、其制备方法和应用
CN114865028A (zh) * 2022-05-05 2022-08-05 大连理工大学 一种用于调节燃料电池一体化膜电极疏水性的方法及应用
CN114914503A (zh) * 2022-06-10 2022-08-16 中国第一汽车股份有限公司 一种燃料电池用膜电极及其制备方法与用途
CN116171094A (zh) * 2023-03-20 2023-05-26 中科嘉鸿(佛山市)新能源科技有限公司 一种温差发电器件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701552A (zh) * 2015-03-09 2015-06-10 万盛精密钣金江苏有限公司 一种高性能的质子交换膜燃料电池用膜电极的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910378A (en) * 1997-10-10 1999-06-08 Minnesota Mining And Manufacturing Company Membrane electrode assemblies
CN1862855A (zh) * 2006-03-23 2006-11-15 武汉理工大学 一种亲疏水性可调的质子交换膜燃料电池用核心组件的制备方法
CN101281971A (zh) * 2008-05-21 2008-10-08 北京科技大学 直接甲醇燃料电池膜电极制备方法
CN101667643A (zh) * 2009-08-18 2010-03-10 新源动力股份有限公司 一种质子交换膜燃料电池的催化剂涂层膜电极的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910378A (en) * 1997-10-10 1999-06-08 Minnesota Mining And Manufacturing Company Membrane electrode assemblies
CN1862855A (zh) * 2006-03-23 2006-11-15 武汉理工大学 一种亲疏水性可调的质子交换膜燃料电池用核心组件的制备方法
CN101281971A (zh) * 2008-05-21 2008-10-08 北京科技大学 直接甲醇燃料电池膜电极制备方法
CN101667643A (zh) * 2009-08-18 2010-03-10 新源动力股份有限公司 一种质子交换膜燃料电池的催化剂涂层膜电极的制备方法

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103120939B (zh) * 2011-11-18 2014-12-03 中国科学院兰州化学物理研究所 生物质重油加氢提质催化剂及其制备方法和应用
CN103120939A (zh) * 2011-11-18 2013-05-29 中国科学院兰州化学物理研究所 生物质重油加氢提质催化剂及其制备方法和应用
CN105070933A (zh) * 2015-07-30 2015-11-18 同济大学 一种燃料电池用复合质子交换膜及其制备方法
CN105372308A (zh) * 2015-12-09 2016-03-02 广东南海普锐斯科技有限公司 一种低贵金属用量甲醛传感器膜电极组件及其制备方法
CN105372308B (zh) * 2015-12-09 2018-04-24 广东南海普锐斯科技有限公司 一种低贵金属用量甲醛传感器膜电极组件及其制备方法
CN107681163A (zh) * 2017-09-21 2018-02-09 上海交通大学 一种燃料电池膜电极及其制备方法和应用
CN111313033B (zh) * 2018-12-12 2021-07-27 中国科学院大连化学物理研究所 一种燃料电池气体扩散电极催化层制备及载量控制方法
CN111313033A (zh) * 2018-12-12 2020-06-19 中国科学院大连化学物理研究所 一种燃料电池气体扩散电极催化层制备及载量控制方法
CN109860636A (zh) * 2019-02-26 2019-06-07 武汉理工大学 一种改进质子交换膜燃料电池性能的催化层的制备方法
CN113632265B (zh) * 2019-04-09 2024-05-14 凸版印刷株式会社 膜电极接合体及固体高分子型燃料电池
CN113632265A (zh) * 2019-04-09 2021-11-09 凸版印刷株式会社 膜电极接合体及固体高分子型燃料电池
CN111952599B (zh) * 2019-05-14 2021-10-08 中国科学院大连化学物理研究所 一种质子交换膜燃料电池纳米纤维电极的制备方法与应用
CN111952599A (zh) * 2019-05-14 2020-11-17 中国科学院大连化学物理研究所 一种高稳定性质子交换膜燃料电池纳米纤维电极及其制备方法与应用
CN112310420A (zh) * 2019-07-29 2021-02-02 上海济平新能源科技有限公司 燃料电池用电极、膜电极组件、芯片、催化剂层、催化剂分散液及其制备方法
CN110513686A (zh) * 2019-08-02 2019-11-29 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种无预混的氢气催化燃烧供热装置
CN111628183A (zh) * 2020-05-27 2020-09-04 先进储能材料国家工程研究中心有限责任公司 燃料电池催化剂浆料的制备方法
CN111725523A (zh) * 2020-06-04 2020-09-29 浙江高成绿能科技有限公司 一种薄层疏水的燃料电池膜电极及其制备方法
CN114614026A (zh) * 2020-12-09 2022-06-10 中国科学院大连化学物理研究所 一种燃料电池膜电极的催化层结构
CN114614026B (zh) * 2020-12-09 2023-11-10 中国科学院大连化学物理研究所 一种燃料电池膜电极的催化层结构
CN114628701A (zh) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 多层催化剂层、其制备方法和应用
CN114628701B (zh) * 2020-12-11 2024-02-09 中国科学院大连化学物理研究所 多层催化剂层、其制备方法和应用
CN112820883B (zh) * 2020-12-31 2022-03-08 武汉理工氢电科技有限公司 一种微孔层浆料、气体扩散层、燃料电池及制备方法
CN112820883A (zh) * 2020-12-31 2021-05-18 武汉理工氢电科技有限公司 一种微孔层浆料、气体扩散层、燃料电池及制备方法
CN112786937B (zh) * 2021-01-27 2022-03-15 浙江高成绿能科技有限公司 一种燃料电池膜电极及其制备方法
CN112786937A (zh) * 2021-01-27 2021-05-11 浙江高成绿能科技有限公司 一种燃料电池膜电极及其制备方法
CN113745551A (zh) * 2021-08-13 2021-12-03 国家电投集团氢能科技发展有限公司 一种阳极催化层浆料及其制备方法
CN114243033A (zh) * 2021-12-09 2022-03-25 同济大学 一种无瑕疵的催化剂直接涂布质子交换膜及其制备方法与应用
CN114865028B (zh) * 2022-05-05 2024-04-16 大连理工大学 一种用于调节燃料电池一体化膜电极疏水性的方法及应用
CN114865028A (zh) * 2022-05-05 2022-08-05 大连理工大学 一种用于调节燃料电池一体化膜电极疏水性的方法及应用
CN114914503A (zh) * 2022-06-10 2022-08-16 中国第一汽车股份有限公司 一种燃料电池用膜电极及其制备方法与用途
CN116171094A (zh) * 2023-03-20 2023-05-26 中科嘉鸿(佛山市)新能源科技有限公司 一种温差发电器件
CN116171094B (zh) * 2023-03-20 2023-12-08 中科嘉鸿(佛山市)新能源科技有限公司 一种温差发电器件

Also Published As

Publication number Publication date
CN101800321B (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
CN101800321B (zh) 基于催化剂/膜技术的亲疏水可调的质子交换膜燃料电池用膜电极的制备方法
CN110148759B (zh) 面向高电流密度的质子交换膜燃料电池气体扩散层的制备方法
CN110380063B (zh) 一种质子交换膜燃料电池用气体扩散层及其制备方法和质子交换膜燃料电池
WO2018113485A1 (zh) 一种高功率密度的质子交换膜燃料电池膜电极及其制备方法
KR101376362B1 (ko) 연료전지용 고분자 전해질막 및 그 제조방법
JP3922451B2 (ja) 燃料電池用膜−電極−ガスケット接合体の製造方法
JP6235554B2 (ja) 高分子電解質膜、その製造方法及びそれを含む膜−電極アセンブリ
CN101557001B (zh) 一种燃料电池膜电极及其制备方法
CN106164147B (zh) 基材膜、催化剂转印片材、膜电极复合体的制造方法及被覆有催化剂层的电解质膜的制造方法
CN100405641C (zh) 质子交换膜燃料电池膜电极的制备方法
JP4898394B2 (ja) 積層型燃料電池の製造方法
CA2767891A1 (en) Gas diffusion layer member for solid polymer type fuel cell and solid polymer type fuel cell
CN100392896C (zh) 一种亲疏水性可调的质子交换膜燃料电池用核心组件的制备方法
KR20110043908A (ko) 고분자 전해질 연료전지용 막전극접합체 제조 방법
CN111584880B (zh) 一种低铂质子交换膜燃料电池膜电极及其制备方法
CN100392897C (zh) 一种亲疏水性可调的质子交换膜燃料电池用膜电极的制备方法
EP1378952A1 (en) Treated gas diffusion backings and their use in fuel cells
CN104701552A (zh) 一种高性能的质子交换膜燃料电池用膜电极的制备方法
CN1299373C (zh) 燃料电池用电极及其制造方法
KR101881139B1 (ko) 연료전지용 미세다공층, 이를 포함하는 기체확산층 및 이를 포함하는 연료전지
JP2005108770A (ja) 電解質膜電極接合体の製造方法
JP2000299119A (ja) 触媒層の製造方法
CN113437338B (zh) 一种燃料电池膜电极及其制备方法
WO2017154475A1 (ja) 触媒組成物、高分子電解質膜電極接合体の製造方法、および高分子電解質膜電極接合体
CN115425239A (zh) 一种具有疏水性和透气性双梯度的微孔层的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant