CN104701552A - 一种高性能的质子交换膜燃料电池用膜电极的制备方法 - Google Patents

一种高性能的质子交换膜燃料电池用膜电极的制备方法 Download PDF

Info

Publication number
CN104701552A
CN104701552A CN201510102086.3A CN201510102086A CN104701552A CN 104701552 A CN104701552 A CN 104701552A CN 201510102086 A CN201510102086 A CN 201510102086A CN 104701552 A CN104701552 A CN 104701552A
Authority
CN
China
Prior art keywords
proton exchange
exchange membrane
catalytic layer
membrane electrode
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510102086.3A
Other languages
English (en)
Inventor
唐浩林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WANSHENG PRECISION MACHINERY JIANGSU CO Ltd
Original Assignee
WANSHENG PRECISION MACHINERY JIANGSU CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WANSHENG PRECISION MACHINERY JIANGSU CO Ltd filed Critical WANSHENG PRECISION MACHINERY JIANGSU CO Ltd
Priority to CN201510102086.3A priority Critical patent/CN104701552A/zh
Publication of CN104701552A publication Critical patent/CN104701552A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明涉及一种质子交换膜燃料电池用的膜电极的制备方法。一种高性能的质子交换膜燃料电池用膜电极的制备方法,其特征是它包括如下步骤:1)制备料浆:按质子传导聚合物与聚四氟乙烯重量比为0.1∶1-1∶0.1选取重量浓度为3-40%的质子传导聚合物溶液与重量浓度为60-70%的聚四氟乙烯乳液,制备成料浆;2)将料浆首先丝网印刷、浇铸、涂布或喷涂在扩散层上,加热去掉溶剂,得到带催化层的气体扩散电极;将质子交换膜置于两张带催化层的气体扩散电极之间,在100-130℃热压0.5-3分钟形成膜电极。其特点是这种膜电极对水的润湿角可以通过制备过程调节,从而使膜电极在燃料电池中实际应用时对水管理具有很好的适应性。

Description

一种高性能的质子交换膜燃料电池用膜电极的制备方法
技术领域
本发明涉及一种质子交换膜燃料电池用的膜电极的制备方法。
背景技术
质子交换膜燃料电池(PEMFC)具有高功率密度,高能量转换效率,低温启动,环境友好等优点,最有希望成为零污染排放电汽车的动力源,使其在全球能源危机和环境日益恶化的今天,成为国际高新技术竞争的热点之一。质子交换膜(PEM)是质子交换膜燃料电池的关键材料,其性能特征与燃料电池的输出性能密切相关。理想的质子交换膜不仅要具有较好的质子传导能力和化学稳定性,还需要有低的气体透过率,足够的机械强度和较好的尺寸稳定性。目前质子交换膜燃料电池主要采用的是全氟磺酸型质子交换膜,如美国杜邦公司的Nafion系列膜,传统的膜电极(MEA)制作方法主要是将催化剂转移到扩散层上形成催化层,然后与质子交换膜热压,再在其催化层上浸渍或喷涂质子传导树脂溶液。催化层一般使用亲水的质子传导树脂或者疏水的聚四氟乙烯(PTFE)作为粘结剂。采用质子传导树脂作为粘结剂时,质子传导性非常好,但这种膜电极亲水性太强,难以对水管理进行调节容易使催化层堵水而电池性能急剧下降。采用聚四氟乙烯(PTFE,一般为乳液)作为粘结剂时,催化层具有良好的疏水性,但催化层的质子传导能力大大低于采用质子传导聚合物作为粘结剂的催化层。
发明内容
本发明的目的是提供一种亲疏水性可调、燃料电池输出性能好的质子交换膜燃料电池用的膜电极的制备方法,其特点是这种膜电极对水的润湿角可以通过制备过程调节,从而使膜电极在燃料电池中实际应用时对水管理具有很好的适应性。
为了实现上述目的,本发明的技术方案是:一种高性能的质子交换膜燃料电池用膜电极的制备方法,它包括如下步骤:
1)制备料浆:按质子传导聚合物与聚四氟乙烯重量比为0.1∶1-1∶0.1选取重量浓度为3-40%的质子传导聚合物溶液与重量浓度为60-70%的聚四氟乙烯乳液,在3000转/分-20000转/分的高速搅拌下制备成聚四氟乙烯/质子传导聚合物混合液体,再将催化剂按质子传导聚合物∶催化剂重量比为1∶3-3∶1的范围内投入聚四氟乙烯/质子传导聚合物混合液体中制备成料浆;如需润湿角大,则质子传导聚合物与聚四氟乙烯重量比中的聚四氟乙烯取大值;
2)将料浆首先丝网印刷、浇铸、涂布或喷涂在扩散层上,加热去掉溶剂,得到带催化层的气体扩散电极:将质子交换膜置于两张带催化层的气体扩散电极之间,在100-130℃热压0.5-3分钟形成膜电极。
所述的扩散层为碳纸、碳纤维毡或者碳布。
所述的质子交换膜的需预处理:将质子交换膜浸入重量浓度为3-10wt%H2O2中,70-90℃下热处理0.5-2h,用去离子水冲洗3-5次;再浸入0.3-2mol/L的H2SO4溶液中70-90℃下热处理0.5-2h;然后在去离子水中70-90℃下热处理0.5-2h,其间更换3-5次去离子水。通过上述的预处理过程,可以去除质子交换膜生产过程中带入的有机和无机杂质。
所述的质子传导聚合物是指含有磺酸基团的具有质子交换能力的全氟磺酸树脂,如DuPont公司的Nafion树脂或Nafion溶液,Dias公司的Kraton G 1650树脂,或是Flemion质子传导聚合物等;也可以是部分磺化含氟磺酸树脂,或具有质子交换功能磺化热稳定性聚合物,如磺化三氟苯乙烯、磺化聚醚醚酮等。
所述的催化剂是指Pt、Pd、Ru、Rh、Ir、Os贵金属或其碳载物Pt/C、Pd/C、Ru/C、Rh/C、Ir/C、Os/C,Pt与Pd、Ru、Rh、Ir、Os的二元合金PtPd、PtRu、PtRh、PtIr、PtOs或其碳载物,Pt、Pd、Ru、Rh、Ir、Os贵金属与Fe、Cr、Ni、Co形成的二元合金、三元合金或其碳载二元合金、三元合金。上述载体碳通常为导电碳黑或碳纳米管、碳纳米纤维。
所述的质子交换膜为全氟磺酸膜,部分磺化质子交换膜,非氟化的质子交换膜,以PTFE多孔膜为基底的复合膜。
本发明直接采用步骤1)和步骤2)的流程,催化层对水的润湿角(亲疏水性)在40-100°范围内可以调节;质子传导聚合物与聚四氟乙烯重量比为0.1∶1-1∶0.1,当质子传导聚合物与聚四氟乙烯重量比中的聚四氟乙烯取大值时,其润湿角为大值。
为了进一步增加催化层的疏水范围,特别是提高催化层的稳定性,需要对步骤2)中带催化层的气体扩散电极或膜电极需进行热处理:将带催化层的气体扩散电极或膜电极放入0.5-2mol/L的NaCI、Na2SO4或者NaNO3溶液中浸泡0.5-2h,去离子水清洗后在N2或还原气体气氛中,340-350℃高温下处理20-40min使催化层中的聚四氟乙烯(PTFE)玻璃化和结晶;步骤2)中膜电极经热处理后放入0.3-2mol/L H2SO4溶液中浸泡,浸泡0.5-2h并去离子水清洗去除质子交换膜和催化层内质子传导聚合物中的的Na离子并质子化。这样所制备的膜电极,在步骤1)和步骤2)的流程下,催化层对水的润湿角在50-130°范围内可以调节。
本发明中对催化层水湿角的调节是通过改变质子传导聚合物与聚四氟乙烯(PTFE)的剂量比,以及催化层后处理温度实现。质子传导聚合物与聚四氟乙烯质量比在0.1∶1-1∶0.1范围内调节,不对催化层进行热处理,润湿角在40-100°范围内相应变化;若对催化层在340-350℃热处理,润湿角在50-130°范围内相应变化。对催化层在340-350℃热处理的时候,催化层以及质子交换膜必须采用NaCI溶液Na化处理,以使质子交换膜和催化层中的的质子传导聚合物转变为Na型从而具有340℃以上的玻璃化温度。
本发明的特点是这种催化层对水的润湿角可以通过制备过程调节,从而使质子交换膜燃料电池用的膜电极在燃料电池中实际应用时对水管理具有很好的适应性。本发明采用质子传导聚合物与聚四氟乙烯按一定的配比混合,所制备的催化层中PTFEI质子传导聚合物具有很好的分散性,使本发明具有燃料电池输出性能好的特点。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容。
实施例1:
取20g重量浓度为5wt%的溶液(Du Pont公司生产,5wt%为树脂,95wt%为水及乙醇、异丙醇等低沸点醇成分),加入重量浓度为60wt%的PTFE乳液1g,电动搅拌30min,转速3000转/分。加入3gPt/C催化剂(Johnson Matthey公司生产,催化活性颗粒Pt的平均粒径为3nm,Pt载量为40wt%),超声搅拌20min制得料浆。质子交换膜的预处理:取212膜为质子交换膜,膜厚51μm;浸入重量浓度为5wt%H2O2中,70℃下热处理1h,用去离子水冲洗3次;再浸入0.5mol/L的H2SO4溶液中70℃下热处理1h;然后在去离子水中70℃下热处理1h,其间更换3次去离子水。
采用喷涂设备将料浆涂喷涂到碳纸(E-TEK公司生产,厚度100μm,经过30wt%PTFE疏水处理)上,以N2为保护气氛,在100-130℃条件下进行干燥,得到带催化层的气体扩散电极。将经过预处理的212膜置于两张涂了催化剂层的碳纸(即带催化层的气体扩散电极)之间,放在压光机中热压处理,辊压温度为130℃,压力为0.6MPa,得到本发明所述的MEA。
制备的带催化层的气体扩散电极厚度为106μm,误差10%以内,催化层均匀性良好。催化层厚度6±1μm,Pt载量0.25mg/cm2。催化层的润湿角为101°。
实施例2:
采用喷涂技术制备质子交换膜燃料电池用MEA。212膜的预处理方法与实施例1相同。取4g40wt%的磺化聚醚醚酮(SPEEK),加入60wt%的PTFE乳液3g,电动搅拌30min,转速15000转/分;加入3gPt/CNTs催化剂(Pt载量为40wt%),超声搅拌20min制得料浆。采用喷涂设备将料浆涂喷涂到碳纸(E-TEK公司生产,厚度100μm,经过30wt%PTFE疏水处理)上,以N2为保护气氛,在100-130℃条件下进行干燥,得到带催化层的气体扩散电极。催化层的气体扩散电极放入1mol/L的NaCI溶液中浸泡1h,在N2或惰性气体气氛保护、350℃条件下使催化层中PTFE烧结。将经过预处理的212膜置于两张涂了催化剂层的碳纸(即经过350℃条件下热处理后的催化层的气体扩散电极)之间,放在压光机中热压处理,辊压温度为130℃,压力为0.2MPa;放入0.3-2mol/LH2SO4溶液中浸泡,浸泡去离子水清洗去除质子交换膜和催化层内质子传导聚合物中的的Na离子并质子化,本发明所述的MEA。制备的带催化层的气体扩散电极厚度为106μm,误差10%以内,催化层均匀性良好。催化层厚度6±1μm,Pt载量0.27mg/cm2。催化层的润湿角为89°。
作为比较例2,取60wt%的PTFE乳液1g,加入3gPt/C催化剂(Pt载量为40wt%)超声搅拌20min制得料浆。质子交换膜的预处理、催化层转移到碳纸和高温处理过程同实施例2,然后往催化层表面喷一层5wt%的磺化聚醚醚酮(SPEEK)溶液。将经过预处理的212膜置于两张涂了催化剂层的碳纸之间,放在压光机中热压处理,辊压温度为130℃,压力为0.2MPa,得到传统方法制备的MEA。制备的带催化层的气体扩散电极厚度为105μm,误差10%以内,催化层均匀性良好。催化层厚度5.5±1μm,Pt载量0.26mg/cm2。催化层的润湿角为64°。
单电池性能测试。采用在一侧开有平行槽到的石墨板为集流板,端板为镀金不锈钢板。操作条件为:PCO2=PH2=OMPa,电池温度为60℃,阳极100%加湿,加湿温度为70℃,实验结果表明本发明燃料电池输出性能好。

Claims (4)

1.一种高性能的质子交换膜燃料电池用膜电极的制备方法,其特征是它包括如下步骤:
1)制备料浆:按质子传导聚合物与聚四氟乙烯重量比为0.1∶1-1∶0.1选取重量浓度为3-40%的质子传导聚合物溶液与重量浓度为60-70%的聚四氟乙烯乳液,在3000转/分-20000转/分的高速搅拌下制备成聚四氟乙烯/质子传导聚合物混合液体,再将催化剂按质子传导聚合物:催化剂重量比为1∶3-3∶1的范围内投入聚四氟乙烯/质子传导聚合物混合液体中制备成料浆;如需润湿角大,则质子传导聚合物与聚四氟乙烯重量比中的聚四氟乙烯取大值;
2)将料浆首先丝网印刷、浇铸、涂布或喷涂在扩散层上,加热去掉溶剂,得到带催化层的气体扩散电极:将质子交换膜置于两张带催化层的气体扩散电极之间,在100-130℃热压0.5-3分钟形成膜电极。
2.根据权利要求1所述的一种高性能的质子交换膜燃料电池用膜电极的制备方法,其特征是:所述的扩散层为碳纸、碳纤维毡或者碳布。
3.根据权利要求1所述的一种高性能的质子交换膜燃料电池用膜电极的制备方法,其特征是:所述的质子交换膜的需预处理:将质子交换膜浸入重量浓度为3-10wt%H2O2中,70-90℃下热处理0.5-2h,用去离子水冲洗3-5次;再浸入0.3-2mol/L的H2SO4溶液中70-90℃下热处理0.5-2h;然后在去离子水中70-90℃下热处理0.5-2h,其间更换3-5次去离子水。
4.根据权利要求1所述的一种高性能的质子交换膜燃料电池用膜电极的制备方法,其特征是:步骤2)中带催化层的气体扩散电极或膜电极需进行热处理:将带催化层的气体扩散电极或膜电极放入0.5-2mol/L的NaCI、Na2SO4或者NaNO3溶液中浸泡0.5-2h,去离子水清洗后在N2或还原气体气氛中,340-350℃高温下处理20-40min使催化层中的聚四氟乙烯玻璃化和结晶步;骤2)中膜电极经热处理后放入0.3-2mol/L H2SO4溶液中浸泡,浸泡0.5-2h并去离子水清洗去除质子交换膜和催化层内质子传导聚合物中的Na离子并质子化。
CN201510102086.3A 2015-03-09 2015-03-09 一种高性能的质子交换膜燃料电池用膜电极的制备方法 Pending CN104701552A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510102086.3A CN104701552A (zh) 2015-03-09 2015-03-09 一种高性能的质子交换膜燃料电池用膜电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510102086.3A CN104701552A (zh) 2015-03-09 2015-03-09 一种高性能的质子交换膜燃料电池用膜电极的制备方法

Publications (1)

Publication Number Publication Date
CN104701552A true CN104701552A (zh) 2015-06-10

Family

ID=53348455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510102086.3A Pending CN104701552A (zh) 2015-03-09 2015-03-09 一种高性能的质子交换膜燃料电池用膜电极的制备方法

Country Status (1)

Country Link
CN (1) CN104701552A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654309A (zh) * 2016-11-25 2017-05-10 清华大学 一种燃料电池膜电极催化剂浆料的制备方法
CN106972176A (zh) * 2017-03-09 2017-07-21 西安交通大学 高温电碱盐联产直接甲酸盐燃料电池
CN107017409A (zh) * 2017-03-09 2017-08-04 西安交通大学 电碱盐联产直接甲酸盐燃料电池
CN107313068A (zh) * 2016-04-26 2017-11-03 中国科学院大连化学物理研究所 一种合成酸性过氧化氢的电化学方法
CN114628694A (zh) * 2020-12-12 2022-06-14 中国科学院大连化学物理研究所 一种膜电极的制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822416A (zh) * 2006-03-23 2006-08-23 武汉理工大学 一种亲疏水性可调的质子交换膜燃料电池用膜电极的制备方法
CN101800321B (zh) * 2010-03-31 2012-07-18 武汉理工新能源有限公司 基于催化剂/膜技术的亲疏水可调的质子交换膜燃料电池用膜电极的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822416A (zh) * 2006-03-23 2006-08-23 武汉理工大学 一种亲疏水性可调的质子交换膜燃料电池用膜电极的制备方法
CN101800321B (zh) * 2010-03-31 2012-07-18 武汉理工新能源有限公司 基于催化剂/膜技术的亲疏水可调的质子交换膜燃料电池用膜电极的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107313068A (zh) * 2016-04-26 2017-11-03 中国科学院大连化学物理研究所 一种合成酸性过氧化氢的电化学方法
CN106654309A (zh) * 2016-11-25 2017-05-10 清华大学 一种燃料电池膜电极催化剂浆料的制备方法
CN106972176A (zh) * 2017-03-09 2017-07-21 西安交通大学 高温电碱盐联产直接甲酸盐燃料电池
CN107017409A (zh) * 2017-03-09 2017-08-04 西安交通大学 电碱盐联产直接甲酸盐燃料电池
CN106972176B (zh) * 2017-03-09 2019-10-18 西安交通大学 高温电碱盐联产直接甲酸盐燃料电池
CN107017409B (zh) * 2017-03-09 2020-03-31 西安交通大学 电碱盐联产直接甲酸盐燃料电池
CN114628694A (zh) * 2020-12-12 2022-06-14 中国科学院大连化学物理研究所 一种膜电极的制备方法及其应用

Similar Documents

Publication Publication Date Title
CN101800321B (zh) 基于催化剂/膜技术的亲疏水可调的质子交换膜燃料电池用膜电极的制备方法
WO2018113485A1 (zh) 一种高功率密度的质子交换膜燃料电池膜电极及其制备方法
CN1974639B (zh) 燃料电池用聚合物电解质膜及燃料电池系统
US20060105226A1 (en) Metal catalyst and fuel cell with electrode including the same
US8623572B2 (en) Method for preparing metal catalyst and electrode
CN101557001B (zh) 一种燃料电池膜电极及其制备方法
CN101237060B (zh) 基于多孔基体的燃料电池催化剂层、膜电极及制备方法
CN100392896C (zh) 一种亲疏水性可调的质子交换膜燃料电池用核心组件的制备方法
US20120279648A1 (en) Preparing method for integrated membrane-catalyst coated layer membrane electrode for a fuel cell
CN110459774A (zh) 一种燃料电池膜电极的制备方法
CN100392897C (zh) 一种亲疏水性可调的质子交换膜燃料电池用膜电极的制备方法
CN104701552A (zh) 一种高性能的质子交换膜燃料电池用膜电极的制备方法
CN113517449A (zh) 一种膜电极组件及制备方法
Pu et al. Understanding of hydrocarbon ionomers in catalyst layers for enhancing the performance and durability of proton exchange membrane fuel cells
CN111261878B (zh) 含水凝胶的催化剂浆料及制得的催化层和燃料电池电极
CN101237059B (zh) 基于多孔基体的燃料电池催化剂层、燃料电池芯片及制备方法
CN109065923A (zh) 添加亲水性碳材料制备的具有自增湿能力的高性能高功率密度膜电极及其制备方法
CN113991129A (zh) 一种质子交换膜燃料电池气体扩散层微孔层及其制备方法
CN108511777A (zh) 具有三维高比表面积表面的质子交换膜的构建方法及其基于这种质子交换膜的高性能膜电极
CN100527494C (zh) 低温燃料电池电极用ptfe/c复合粉体及应用
CN101777657B (zh) 用功能性氟树脂制备的燃料电池用含氟质子交换膜
CN105789633B (zh) 一种非贵金属多孔骨架气体扩散电极及其制备和应用
Gupta et al. A study on synthesis of chemical crosslinked polyvinyl alcohol-based alkaline membrane for the use in low-temperature alkaline direct ethanol fuel cell
CN111554955A (zh) 一种自增湿复合质子交换膜制备方法和膜电极及燃料电池
CN107546399B (zh) 主链与离子交换基团分离的离子交换膜及其制备和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150610