WO2017146148A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2017146148A1
WO2017146148A1 PCT/JP2017/006830 JP2017006830W WO2017146148A1 WO 2017146148 A1 WO2017146148 A1 WO 2017146148A1 JP 2017006830 W JP2017006830 W JP 2017006830W WO 2017146148 A1 WO2017146148 A1 WO 2017146148A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
peak
semiconductor substrate
concentration
lifetime killer
Prior art date
Application number
PCT/JP2017/006830
Other languages
English (en)
French (fr)
Inventor
田村 隆博
勇一 小野澤
美咲 高橋
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2018501760A priority Critical patent/JP6610768B2/ja
Priority to DE112017000064.5T priority patent/DE112017000064T5/de
Priority to CN201780002628.7A priority patent/CN107851584B/zh
Publication of WO2017146148A1 publication Critical patent/WO2017146148A1/ja
Priority to US15/879,417 priority patent/US10734230B2/en
Priority to US16/933,993 priority patent/US11183388B2/en
Priority to US17/455,664 priority patent/US11569092B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/221Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities of killers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0664Vertical bipolar transistor in combination with diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Definitions

  • the present invention relates to a semiconductor device.
  • Patent Document 1 US Patent No. 7842590
  • n-type impurities such as protons
  • the defects such as protons terminate defects and the like in the semiconductor substrate, and the carrier lifetime is recovered.
  • the carrier lifetime on the back surface side of the semiconductor substrate becomes too long, the tail current in reverse recovery operation becomes large, and the reverse recovery loss will increase.
  • a semiconductor device provided with a semiconductor substrate is provided.
  • a first region of a first conductivity type may be formed on the front surface side of the semiconductor substrate.
  • a drift region of the second conductivity type may be formed on the back surface side of the semiconductor substrate than the first region.
  • a buffer region of the second conductivity type may be formed on the back surface side of the semiconductor substrate rather than the drift region.
  • the buffer region may include one or more peaks of impurity concentration higher than the impurity concentration of the drift region.
  • the semiconductor substrate may be provided with a lifetime killer which is disposed on the back surface side of the semiconductor substrate to shorten the carrier lifetime. The peak of the concentration of the lifetime killer may be disposed between the peak on the front surface side of the semiconductor substrate among the peaks of the impurity concentration in the buffer region and the back surface of the semiconductor substrate.
  • the semiconductor substrate further includes a second region of the first conductivity type formed between the peak on the back surface side of the semiconductor substrate among the peaks of the impurity concentration in the buffer region and the back surface of the semiconductor substrate.
  • the peak of the concentration of lifetime killer may be disposed on the front surface side of the semiconductor substrate than the peak of the impurity concentration in the second region.
  • the impurity concentration distribution in the buffer region may have a plurality of peaks.
  • the peak of the concentration of the lifetime killer may be disposed closer to the back surface side of the semiconductor substrate than the peak on the back surface side of the semiconductor substrate among the peaks of the impurity concentration in the buffer region.
  • the distance between the lifetime killer concentration peak and the impurity concentration peak in the second region is the distance between the lifetime killer concentration peak and the peak on the back surface side of the semiconductor substrate among the impurity concentration peaks in the buffer region It may be bigger than.
  • a lifetime killer concentration peak may be placed between any two peaks of impurity concentration in the buffer region.
  • the concentration peak of the lifetime killer may be located at a position not overlapping any of the impurity concentration peaks in the buffer region.
  • the peak of the concentration of the lifetime killer may be higher than the peak of the impurity concentration peak in the buffer region than the peak on the back surface side of the semiconductor substrate.
  • the peak of concentration of lifetime killer may be lower than the peak of concentration in the second region.
  • Protons may be injected into the buffer region.
  • the lifetime killer may be helium.
  • the full width at half maximum of the concentration distribution of the lifetime killer in the depth direction of the semiconductor substrate may be 5 ⁇ m or more.
  • the buffer region may have two peaks of impurity concentration sandwiching a peak of concentration of lifetime killer, and the full width at half maximum of concentration distribution of lifetime killer may be 70% or more of the interval of the two peaks.
  • the semiconductor substrate may have a transistor portion in which a transistor is formed and a diode portion in which a diode is formed.
  • the second regions may be discretely provided in the diode section. In a plane parallel to the back surface of the semiconductor substrate, the distance D between the boundary of the transistor portion and the diode portion and the second region may be larger than the distance between the second regions.
  • the distance D may be larger than the thickness of the semiconductor substrate.
  • the distance D may be larger than the width of the second region.
  • FIG. 6 is a view showing an example of impurity concentration distribution in cathode region 24, intermediate region 22, FS region 20 and drift region 18. It is the figure which expanded the impurity concentration distribution of middle region 22 and the 4th peak 26-4 vicinity.
  • FIG. 6 is a diagram showing a positional relationship between a concentration concentration peak of the lifetime killer 28 and a peak 26 in the FS region 20.
  • FIG. 6 is a view showing measurement results of leakage current of the semiconductor device 100.
  • FIG. 16 is a diagram showing temporal waveforms of reverse voltage Vr and reverse current Ir during reverse recovery operation of semiconductor device 100.
  • FIG. 7 is a diagram showing an example of a manufacturing process of the semiconductor device 100.
  • FIG. 6 is a view showing an example of impurity concentration distribution in cathode region 24, intermediate region 22, FS region 20 and drift region 18. It is the figure which expanded the impurity concentration distribution of middle region 22 and the 4th peak 26-4 vicinity.
  • FIG. 6 is a diagram showing a positional relationship between
  • FIG. 6 is a cross-sectional view showing another structural example of the semiconductor device 100. It is a figure which shows the cross section of the semiconductor device 200 which concerns on other embodiment. It is a figure which shows the cross section of the semiconductor device 300 concerning other embodiment.
  • FIG. 18 is a view showing another example of the cross section of the semiconductor device 300.
  • FIG. 12 is a view showing an arrangement example of intermediate regions 22 in a plane parallel to the back surface of semiconductor device 300 shown in FIG. 11. It is a figure which shows the other example of concentration distribution in the depth direction of the lifetime killer.
  • FIG. 1 is a view showing a cross section of a semiconductor device 100 according to an embodiment.
  • the semiconductor device 100 is a vertical semiconductor device in which electrodes are formed on the front surface and the back surface of the semiconductor substrate 10 and current flows in the depth direction of the semiconductor substrate 10.
  • a diode is shown as an example of the semiconductor device 100.
  • the diode may function as a free wheel diode (FWD) provided in parallel with a switching element such as an IGBT.
  • FWD free wheel diode
  • the semiconductor device 100 includes a semiconductor substrate 10, an anode electrode 12 and a cathode electrode 14.
  • the anode electrode 12 is provided in contact with the front surface of the semiconductor substrate 10.
  • the cathode electrode 14 is provided in contact with the back surface of the semiconductor substrate 10.
  • the anode electrode 12 and the cathode electrode 14 are formed of, for example, a metal material containing aluminum.
  • the semiconductor substrate 10 is formed of a semiconductor material such as silicon or a compound semiconductor.
  • the semiconductor substrate 10 is doped with an impurity of a predetermined concentration.
  • impurity refers to a dopant which is doped in a semiconductor material to exhibit n-type or p-type conductivity unless otherwise specified.
  • the semiconductor substrate 10 of this example has n-type conductivity.
  • the n-type is an example of the second conduction type.
  • the p-type is an example of the first conduction type. However, the first conduction type and the second conduction type may be opposite to each other.
  • the semiconductor substrate 10 has an anode region 16, a drift region 18, a buffer region (FS region 20), an intermediate region 22 and a cathode region 24.
  • the anode region 16 is an example of a first region
  • the middle region 22 is an example of a second region.
  • the buffer region may function as a field stop layer that suppresses the spread of the depletion layer.
  • Drift region 18 has the same conductivity type as semiconductor substrate 10.
  • a region in which the anode region 16, the FS region 20, the intermediate region 22 and the cathode region 24 are not formed functions as the drift region 18.
  • the anode region 16 is formed on the front surface side of the drift region 18 and electrically connected to the anode electrode 12.
  • the anode region 16 is doped with an impurity of a conductivity type different from that of the drift region 18.
  • the anode region 16 is p-type.
  • the FS region 20 is formed on the back surface side of the drift region 18.
  • the FS region 20 has the same conductivity type as the drift region 18, and the impurity is implanted at a higher concentration than the drift region 18.
  • the FS area 20 is n-type.
  • the impurity implanted into the FS region 20 is referred to as a first impurity.
  • the first impurity is, for example, hydrogen or phosphorus.
  • Hydrogen combines with vacancies (V) and oxygen (O) in the form of clusters in the semiconductor material to form composite defects (VOH defects). Since this VOH defect serves as a donor, the VOH defect serves as an n-type dopant (impurity). Hydrogen may be introduced into the semiconductor material by implantation of hydrogen ions such as protons or dutrons. Oxygen may be contained in the production of the semiconductor material or may be intentionally introduced into the semiconductor region during the production of the semiconductor device.
  • the semiconductor material may be manufactured by a float zone method (FZ method), a Czochralski method (CZ method), a magnetic field application type Czochralski method (MCZ method) or the like.
  • the concentration of oxygen in the semiconductor material is 1 ⁇ 10 17 / cm 3 or more and 1 ⁇ 10 18 / cm 3 or less, the dopant by the VOH defect can be suitably formed.
  • the holes may be included in the semiconductor material manufacturing or may be intentionally introduced into the semiconductor region during the manufacturing of the semiconductor device.
  • the provision of the high concentration FS region 20 can prevent the depletion layer extending from the interface of the anode region 16 from reaching the intermediate region 22 or the cathode region 24.
  • the holes may be introduced by ion implantation of, for example, a proton, an electron beam, helium or the like.
  • the concentration distribution of the first impurity in the depth direction of the semiconductor substrate 10 has one or more peaks 26 in the FS region 20.
  • the semiconductor device 100 illustrated in FIG. 1 has a first peak 26-1, a second peak 26-2, a third peak 26-3 and a fourth peak 26-4.
  • the impurity concentration at each peak 26 is higher than the impurity concentration at drift region 18.
  • the middle region 22 is formed on the back side of the FS region 20.
  • the intermediate region 22 in this example is locally formed in a plane parallel to the back surface of the semiconductor substrate 10.
  • Intermediate region 22 has the same conductivity type as anode region 16.
  • the intermediate region 22 is p-type.
  • the impurity implanted into the intermediate region 22 is referred to as a second impurity.
  • the second impurity is, for example, boron.
  • the region where the intermediate region 22 is not formed on the back surface side of the FS region 20 is the same conductivity type as the drift region 18.
  • the impurity concentration of the region may be substantially the same as the impurity concentration at the end on the back surface side of the FS region 20.
  • the cathode region 24 is formed on the back side of the intermediate region 22.
  • the cathode region 24 has the same conductivity type as the FS region 20.
  • the impurity concentration in the cathode region 24 of this example is higher than the impurity concentration in each of the FS region 20 and the intermediate region 22.
  • the cathode region 24 is n + -type.
  • the impurity implanted into the cathode region 24 is referred to as a third impurity.
  • the third impurity is, for example, phosphorus.
  • the cathode region 24 is electrically connected to the cathode electrode 14.
  • the reverse recovery operation of the semiconductor device 100 can be soft recovery.
  • the semiconductor device 100 of this example is disposed on the back surface side of the semiconductor substrate 10 and has a lifetime killer 28 that shortens the carrier lifetime.
  • the lifetime killer 28 is, for example, helium.
  • the peak of the concentration distribution in the depth direction of the lifetime killer 28 is the first peak 26-1 on the front surface side of the peaks 26 in the FS region 20 and the back surface of the semiconductor substrate 10 (in this example, the cathode It is disposed between the electrode 14 and the contacting surface). With such a configuration, it is possible to shorten the carrier lifetime in the region contributing to the tail current and to reduce the tail current.
  • FIG. 2 is a diagram showing an example of the impurity concentration distribution in the cathode region 24, the intermediate region 22, the FS region 20 and the drift region 18. Further, in FIG. 2, the concentration distribution of the lifetime killer 28 is also shown.
  • the impurity concentration distribution in the cathode region 24, the intermediate region 22, the FS region 20, and the drift region 18 indicates a net impurity concentration (net doping concentration) obtained by integrating the concentration of each impurity other than the lifetime killer 28.
  • the peak of the impurity concentration of the lifetime killer 28 is the first peak 26-of the impurity concentration peak 26 in the FS region 20 on the most front side (ie, the most drift region 18 side). 1 and the back surface of the semiconductor substrate 10.
  • the peak concentration of the first peak 26-1 on the front surface side may be higher than the peak concentration of the second peak 26-2 adjacent to the back surface.
  • the peak of the impurity concentration of the lifetime killer 28 is arranged on the front surface side of the semiconductor substrate 10 than the peak 23 of the impurity concentration in the intermediate region 22. Thereby, carrier loss in the intermediate region 22 due to the injection of the lifetime killer 28 can be suppressed.
  • the peak of the impurity concentration of the lifetime killer 28 may be disposed between any two peaks 26 of the plurality of peaks 26.
  • the impurity concentration peak of the lifetime killer 28 may be disposed between the first peak 26-1 on the front side and the adjacent second peak 26-2, and the backmost side It may be disposed between the fourth peak 26-4 and the adjacent third peak 26-3, and between the two peaks 26 disposed other than the front side or the back side. It may be arranged.
  • the peak of the impurity concentration of the lifetime killer 28 may be disposed on the other side of the fourth peak 26-4 on the back surface side among the peaks 26 of the impurity concentration in the FS region 20.
  • the peak of the impurity concentration of the lifetime killer 28 By disposing the peak of the impurity concentration of the lifetime killer 28 on the other side of the fourth peak 26-4, the peak of the lifetime killer 28 can be disposed in a region where the depletion layer extending from the anode does not reach. Therefore, the increase of the leakage current due to the injection of the lifetime killer 28 can also be suppressed.
  • FIG. 3 is an enlarged view of the impurity concentration distribution in the vicinity of the intermediate region 22 and the fourth peak 26-4.
  • the peak of the concentration of the lifetime killer 28 is disposed between the peak 23 of the impurity concentration in the intermediate region 22 and the fourth peak 26-4.
  • the depth position of the peak of the impurity concentration in the intermediate region 22 is P1
  • the depth position of the fourth peak 26-4 is P2
  • the depth position of the concentration peak of the lifetime killer 28 is P3.
  • the position of each peak is the position at which the concentration shows the maximum value.
  • the distance (P3-P1) between the concentration peak of the lifetime killer 28 and the peak 23 of the impurity concentration in the intermediate region 22 is the peak of the concentration of the lifetime killer 28 and the fourth on the back surface side in the FS region 20. Is preferably larger than the distance (P2-P3) to the peak 26-4 of That is, it is preferable that the concentration peak of the lifetime killer 28 be disposed closer to the fourth peak 26-4 between the peak 23 and the fourth peak 26-4.
  • the distance (P3-P1) may be twice or more and three times or more of the distance (P2-P3).
  • the peak value D3 of the concentration of the lifetime killer 28 may be lower than the peak value D1 of the concentration in the intermediate region 22. Thus, even when carriers in the intermediate region 22 are partially lost by injecting the lifetime killer 28, the oscillation suppression function of the intermediate region 22 can be exhibited.
  • the peak value D3 of the concentration of the lifetime killer 28 may be 80% or less or 50% or less of the peak value D1.
  • the peak value D3 of the concentration of the lifetime killer 28 may be higher than the peak value D2 of the fourth peak 26-4 on the back surface side among the peaks 26 of the impurity concentration in the FS region 20. .
  • the peak value D3 of the concentration of the lifetime killer 28 may be twice or more, five times or more, or ten times or more of the peak value D2.
  • FIG. 4 is a view showing the positional relationship between the concentration peak of the lifetime killer 28 and the peak 26 in the FS region 20. As shown in FIG. It is preferable that the concentration peak of the lifetime killer 28 be located at a position not overlapping any of the impurity concentration peaks 26 in the FS region 20. As a result, it is possible to suppress excessive recovery of defects caused by the lifetime killer 28 due to protons or the like injected into the FS region 20.
  • the peaks of concentration do not overlap means that the distance X between peaks is equal to or more than a predetermined value.
  • the distance X may be equal to or more than the half width half width Y / 2 of the concentration distribution of the lifetime killer 28, may be equal to or more than the half width full width Y, and may be twice or more the half width full width Y.
  • the concentration peak of the lifetime killer 28 does not overlap with the impurity concentration peak 23 of the intermediate region 22.
  • the lifetime killer 28 can suppress the loss of carriers in the intermediate region 22.
  • the lifetime killer 28 may be injected at a plurality of positions in the depth direction.
  • the concentration peak of lifetime killer 28 is located between peak 23 of intermediate region 22 and fourth peak 26-4 in FS region 20 and between any two peaks 26 in FS region 20. May be formed.
  • the values of the plurality of concentration peaks of the lifetime killer 28 may be smaller as the distance from the cathode side is larger.
  • FIG. 5 is a diagram showing the measurement results of the leakage current of the semiconductor device 100.
  • the lifetime killer 28 is injected between the peak 23 of the intermediate region 22 and the fourth peak 26-4 from the most cathode of the FS region 20.
  • the horizontal axis indicates the reverse bias voltage Vr
  • the vertical axis indicates the leakage current Ir.
  • an example in which the lifetime killer 28 is injected is indicated by a solid line
  • an example in which the lifetime killer 28 is not injected is indicated by a dotted line.
  • FIG. 6 is a diagram showing time waveforms of the reverse voltage Vr and the reverse current Ir at the time of reverse recovery operation of the semiconductor device 100.
  • an example in which the lifetime killer 28 is injected is indicated by a solid line, and an example in which the lifetime killer 28 is not injected is indicated by a dotted line.
  • the tail current in the reverse current Ir is reduced by injecting the lifetime killer 28. Thereby, the loss at the time of reverse recovery operation can be reduced. In addition, no large voltage and current oscillations occur during reverse recovery operation.
  • FIG. 7 is a view showing an example of a manufacturing process of the semiconductor device 100.
  • the front structure formation step S700 the structure on the front surface side of the semiconductor device 100 is formed.
  • the anode electrode 12 and the anode region 16 are formed.
  • the back surface side of the semiconductor substrate 10 is ground to adjust the thickness of the semiconductor substrate 10 according to a predetermined withstand voltage.
  • an impurity is injected from the back surface side of the semiconductor substrate 10 to form the cathode region 24.
  • the impurity in S702 is phosphorus
  • the dose amount is 1 ⁇ 10 15 / cm 2
  • the acceleration voltage is 40 keV.
  • an impurity is locally implanted from the back surface side of the semiconductor substrate 10 to form an intermediate region 22.
  • the impurity in S704 is boron
  • the dose amount is 1 ⁇ 10 13 / cm 2
  • the acceleration voltage is 240 keV.
  • the dose amount of boron may be 3 ⁇ 10 12 / cm 2 or more and 3 ⁇ 10 13 / cm 2 or less.
  • the region into which the impurity is implanted from the back surface side of the semiconductor substrate 10 is annealed.
  • protons are injected from the back surface side of the semiconductor substrate 10 to form the FS region 20.
  • protons are injected four times with different acceleration voltages.
  • the dose of proton corresponding to the fourth peak 26-4 is 3.0 ⁇ 10 14 / cm 2
  • the acceleration voltage is 400 keV
  • the dose of proton corresponding to the third peak 26-3 is 1. 0 ⁇ 10 13 / cm 2
  • acceleration voltage is 820 keV
  • proton dose corresponding to the second peak 26-2 is 7.0 ⁇ 10 12 / cm 2
  • acceleration voltage is 1100 keV
  • first peak 26-1 The dose of protons corresponding to is 1.0 ⁇ 10 13 / cm 2 and the acceleration voltage is 1450 keV.
  • a first furnace annealing step S710 the semiconductor substrate 10 is annealed in an annealing furnace such as a nitrogen atmosphere.
  • the annealing temperature is 370 degrees, and the annealing time is 5 hours.
  • a helium injection step S712 helium is injected from the back surface side of the semiconductor substrate 10 to form a lifetime killer 28.
  • He 2+ is implanted at a dose of 2 ⁇ 10 12 / cm 2 and an acceleration energy of 700 keV.
  • the electron beam is irradiated from the back surface side of the semiconductor substrate 10.
  • the electron beam irradiation dose is 160 kGy.
  • the semiconductor substrate 10 is annealed in an annealing furnace such as a nitrogen atmosphere.
  • the annealing temperature is 360 degrees, and the annealing time is 1 hour.
  • the cathode electrode 14 is formed.
  • the cathode electrode 14 may be formed by sputtering.
  • the cathode electrode 14 may be a laminated electrode in which an aluminum layer, a titanium layer, a nickel layer, and the like are laminated.
  • the semiconductor device 100 can be manufactured by such a process.
  • FIG. 8 is a cross-sectional view showing another structural example of the semiconductor device 100. As shown in FIG. The semiconductor device 100 in this example is different from the semiconductor device 100 shown in FIG. 1 in the position of the intermediate region 22. The other structure may be identical to that of the semiconductor device 100 shown in FIG.
  • the intermediate region 22 in the present example is formed at the same depth position as the cathode region 24.
  • the lifetime killer 28 is added between any peak 26 of the FS region 20 and the concentration peak of the intermediate region 22 to form any peak 26 of the FS region 20 and the concentration peak of the cathode region 24. Is also formed between.
  • the position in the depth direction of the lifetime killer 28 formed above the intermediate region 22 and the lifetime killer 28 formed above the cathode region 24 may be the same. With such a configuration, it is also possible to reduce the tail current at the time of reverse recovery operation and to suppress the increase of the leakage current.
  • FIG. 9 is a view showing a cross section of a semiconductor device 200 according to another embodiment.
  • the semiconductor device 200 is an IGBT (Insulated Gate Bipolar Transistor).
  • the semiconductor device 200 includes a semiconductor substrate 10, an emitter electrode 112, and a collector electrode 130.
  • Emitter electrode 112 is provided in contact with the front surface of semiconductor substrate 10.
  • the collector electrode 130 is provided in contact with the back surface of the semiconductor substrate 10.
  • Emitter electrode 112 and collector electrode 130 are formed of, for example, a metal material containing aluminum.
  • a gate structure 120 is formed on the front surface side of the semiconductor substrate 10. Although the gate structure 120 in this example is a trench type, the gate structure 120 may be a planar type.
  • the gate structure 120 has a gate insulating film 122 and a gate electrode 124.
  • the gate insulating film 122 is formed to cover the periphery of the gate electrode 124.
  • the gate insulating film 122 of this example is formed to cover the inner wall of the gate trench formed on the front surface of the semiconductor substrate 10.
  • the gate electrode 124 is formed at a position facing the base region 118 where a channel is to be formed.
  • the gate electrode 124 in this example is polysilicon which is formed so as to be covered by the gate insulating film 122 inside the gate trench.
  • the gate electrode 124 in this example faces the base region 118 along the depth direction of the semiconductor substrate 10.
  • An interlayer insulating film 114 covering the gate structure 120 is formed on the front surface of the semiconductor substrate 10. Thereby, the emitter electrode 112 and the gate structure 120 are isolated.
  • an n + -type emitter region 116 and a p-type base region 118 are formed on the front side of the semiconductor substrate 10.
  • the base region 118 is an example of a first region.
  • the gate structure 120 of this example is formed through the base region 118.
  • Emitter region 116 is formed in a region adjacent to gate structure 120.
  • Emitter region 116 and base region 118 are in contact with emitter electrode 112 on the front surface of semiconductor substrate 10.
  • An n ⁇ -type drift region 126 is formed on the back surface side of the base region 118.
  • An FS region 20 is formed on the back surface side of the drift region 126.
  • a p + -type collector region 128 is formed on the back surface side of the FS region 20.
  • the collector region 128 is an example of a second region.
  • the concentration peak of the lifetime killer 28 is the first peak 26-1 on the front surface side of the semiconductor substrate 10 among the peaks 26 of the impurity concentration in the FS region 20 and the back of the semiconductor substrate 10. It is placed between the faces.
  • the concentration peak of the lifetime killer 28 is disposed between the fourth peak 26-4 on the back surface side of the semiconductor substrate 10 among the peaks 26 of the impurity concentration in the FS region 20 and the concentration peak of the collector region 128. Is preferred.
  • FIG. 10 is a view showing a cross section of a semiconductor device 300 according to another embodiment.
  • the semiconductor device 300 is a reverse conducting IGBT (RC-IGBT) in which an IGBT and a reverse recovery diode are formed on the same substrate.
  • the semiconductor device 300 includes a semiconductor substrate 10, an emitter electrode 112, and a collector electrode 130.
  • a p + -type collector region 128 is formed in the transistor portion 70 which functions as an IGBT, and an n + -type cathode region is formed in the diode portion 80 which functions as a diode. 24 are formed.
  • the mesa portion 150 of the transistor portion 70 the region of the semiconductor substrate sandwiched by the trench portions
  • the position in contact with the collector region 128 of the cathode region 24 is projected to the front or the closest position.
  • the emitter region 116 may not be provided on the front surface of the base region 118, and the p + -type contact region 115 may be formed.
  • the structure of the transistor unit 70 is the same as that of the semiconductor device 200 shown in FIG. However, in the present embodiment, a plurality of gate structures 120 are formed in the transistor section 70. In at least one of the plurality of gate structures 120, the gate electrode 124 is electrically connected to the gate terminal. In addition, in at least one of the plurality of gate structures 120, the gate electrode 124 may be electrically connected to the emitter electrode 112 and function as a dummy trench. By providing the dummy trench, a charge injection promoting effect (IE effect) can be generated.
  • IE effect charge injection promoting effect
  • the structure of the region functioning as a diode is similar to that of the semiconductor device 100 shown in FIG. 1 or FIG.
  • the base region 118 shown in FIG. 10 functions as an anode region of the diode.
  • the intermediate region 22 is omitted. Similar to the semiconductor device 100 shown in FIG. 1, an intermediate region 22 may be locally formed above the cathode region 24 shown in FIG.
  • one or more dummy trench structures 140 are provided on the front surface side of the diode section 80.
  • the dummy trench structure 140 has the same structure as the gate structure 120. However, the gate electrode in dummy trench structure 140 is electrically connected to emitter electrode 112.
  • the concentration peak of the lifetime killer 28 in the region functioning as a diode is provided at the same position as that of the semiconductor device 100 shown in FIG. 1 or FIG. Further, the concentration peak of the lifetime killer 28 in the transistor portion 70 is provided at the same position as that of the semiconductor device 200 shown in FIG.
  • the lifetime killer 28 may be formed at the same depth position in the transistor unit 70 and the diode unit 80.
  • FIG. 11 is a view showing another example of the cross section of the semiconductor device 300. As shown in FIG.
  • the semiconductor device 300 of this example has an intermediate region 22.
  • the structure other than the intermediate region 22 may be the same as that of the semiconductor device 300 shown in FIG.
  • a region functioning as a transistor such as an IGBT is referred to as a transistor unit 70, and a region functioning as a diode such as an FWD is referred to as a diode unit 80.
  • An emitter region 116 is formed on the front surface of the transistor portion 70, and a collector region 128 is formed on the back surface.
  • the emitter region 116 is not formed on the front surface of the diode section 80, the base region 118 is formed, and the cathode region 24 is formed on the back surface.
  • the boundary between the collector region 128 and the cathode region 24 is taken as the boundary between the transistor portion 70 and the diode portion 80.
  • the position in contact with the collector region 128 of the cathode region 24 is projected onto the front surface or projected.
  • the emitter region 116 may not be present on the front surface of the base region 118, and the P + -type contact region 115 may be formed.
  • the diode portion 80 is provided with an intermediate region 22.
  • the intermediate region 22 may be formed on the cathode region 24 as shown in FIG. 1, or may be formed at the same depth position as the cathode region 24 as shown in FIG.
  • Gate structure 120 having a trench structure and dummy trench structure 140 are formed extending in a direction perpendicular to the cross section shown in FIG.
  • the direction in which the gate structure 120 and the dummy trench structure 140 extend is the trench longitudinal direction (Y-axis direction in FIG. 11), and the direction orthogonal to the trench longitudinal direction in the front surface of the semiconductor substrate 10 is the trench lateral direction It is assumed that X axis direction in FIG.
  • D be the distance between the boundary of the transistor portion 70 and the diode portion 80 and the intermediate region 22 closest to the transistor portion 70 in the trench short direction (X-axis direction) in a plane parallel to the back surface of the semiconductor substrate 10 . That is, the distance between the collector region 128 and the intermediate region 22 in the X-axis direction is D.
  • a plurality of intermediate regions 22 are discretely formed in a plane parallel to the back surface of the semiconductor substrate 10.
  • the distance between the middle regions 22 in the trench short direction (X-axis direction) is L1
  • the width of the middle region 22 is L2.
  • the interval L1 and the width L2 of the intermediate regions 22 may use the average value of the plurality of intermediate regions 22 or may use the maximum value.
  • the thickness of the semiconductor substrate 10 in the depth direction (the Z-axis direction in FIG. 11) orthogonal to both the trench longitudinal direction and the trench lateral direction is W.
  • the distance D between the collector region 128 and the middle region 22 is larger than the distance L1 between the middle regions 22. That is, in the end region of the diode unit 80 adjacent to the transistor unit 70, the density of the intermediate region 22 is smaller than that of the other regions.
  • the end region of the diode portion 80 is, by way of example, one or more sandwiching one or more mesa portions 150 in the lateral direction of the trench from the position projected on the front surface of the position contacting the collector region 128 of the cathode region 24. It may be a trench portion. In the vicinity of the boundary between the transistor portion 70 and the diode portion 80, the collector region 128 can function in the same manner as the intermediate region 22 during reverse recovery.
  • the boundary between the transistor unit 70 and the diode unit 80 may be, for example, a position where the cathode region 24 is in contact with the collector region 128.
  • the intermediate region 22 is not provided in the end region of the diode section 80, the total area of the intermediate region 22 in the XY plane can be reduced. Therefore, the operation of the diode unit 80 can be stabilized, and the forward voltage of the diode unit 80 can be reduced.
  • the distance D between the collector region 128 and the intermediate region 22 may be larger than the width L 2 of the intermediate region 22. Further, the distance D between the collector region 128 and the intermediate region 22 may be larger than the thickness W of the semiconductor substrate 10. Thus, even if the intermediate region 22 is disposed, the collector region 128 of the transistor unit 70 is provided, so that the oscillation of the voltage and current at the time of reverse recovery can be suppressed. If the distance D is made larger, the characteristics of the diode unit 80 such as the forward voltage can be further improved.
  • FIG. 12 is a view showing an arrangement example of the intermediate region 22 in a plane parallel to the back surface of the semiconductor device 300 shown in FIG.
  • the positions of the intermediate region 22, the gate structure 120, the dummy trench structure 140, the cathode region 24, the gate connection portion 160, and the dummy connection portion 170 are shown in an overlapping manner.
  • a collector region 128 is formed in a region where the cathode region 24 is not formed on the back surface side of the semiconductor substrate 10.
  • gate structure 120 and the dummy trench structure 140 of this example have a U shape, the shapes of the gate structure 120 and the dummy trench structure 140 are not limited thereto.
  • Gate structure 120 and dummy trench structure 140 each have straight portions formed extending in the Y-axis direction. A region sandwiched by the straight portions of the gate structure 120 or the dummy trench structure 140 is referred to as a mesa portion 150.
  • the gate connection portion 160 is a gate runner connected to the gate electrode 124 of the gate structure 120.
  • the dummy connection portion 170 is a dummy runner connected to an electrode in the dummy trench structure 140.
  • the gate connection portion 160 and the dummy connection portion 170 in this example are formed of polysilicon or the like.
  • the gate connection portion 160 and the dummy connection portion 170 are formed above the front surface of the semiconductor substrate 10.
  • An insulating film such as an interlayer insulating film 114 is formed between the gate connection portion 160 and the dummy connection portion 170 and the semiconductor substrate 10.
  • Gate connection portion 160 and dummy connection portion 170 are in contact with the front surface of semiconductor substrate 10 through the contact holes formed in interlayer insulating film 114.
  • the gate connection portion 160 may be connected to a gate pad formed of a metal material.
  • the dummy connection portion 170 may be connected to the emitter electrode 112.
  • the gate structure 120 is formed on the front surface side of the transistor section 70, and the collector region 128 is formed on the back surface side.
  • one or more linear portions of the dummy trench structure 140 may be alternately formed in the X-axis direction with one or more linear portions of the gate structure 120.
  • a dummy trench structure 140 is formed on the front surface side of the diode section 80, and a cathode region 24 and an intermediate region 22 are formed on the back surface side.
  • the distance D between the end of the cathode region 24 and the intermediate region 22 in the X-axis direction may be larger than the width L 3 of the mesa 150. That is, in the end region of the diode unit 80 in the X-axis direction, the intermediate region 22 may not be formed below the at least one mesa unit 150. In the end region of the diode unit 80 in the X-axis direction, the intermediate region 22 may not be formed below the plurality of mesa units 150.
  • the distance between the end of the cathode region 24 (portion in contact with the collector region 128) and the intermediate region 22 is DY.
  • the distance DY may be larger than the interval L4 in the Y-axis direction of the intermediate region 22, larger than the width L5 in the Y-axis direction of the intermediate region 22, and larger than the thickness W of the semiconductor substrate 10.
  • the distance DY may be the same as the distance D.
  • FIG. 13 is a view showing another example of the concentration distribution in the depth direction of the lifetime killer 28.
  • the position P6 of the peak of the lifetime killer 28 is located between the positions P4 and P5 of the two peaks 26-a and 26-b in the FS region 20.
  • Position P6 may be centrally located between positions P4 and P5.
  • the concentration distribution of the lifetime killer 28 of this example has a relatively broad distribution.
  • the semiconductor device 100 can perform a soft recovery operation.
  • the influence of the variation can be reduced.
  • the full width half maximum FWHM of the concentration distribution of the lifetime killer 28 is 5 ⁇ m or more.
  • the full width at half maximum FWHM may be 7 ⁇ m or more, and may be 9 ⁇ m or more.
  • the full width half maximum FWHM of the concentration distribution of the lifetime killer 28 is 70% or more with respect to the interval (P4-P5) of the two peaks 26-a and 26-b sandwiching the concentration peak of the lifetime killer 28 May be
  • the full width at half maximum FWHM may be 80% or more or 100% or more of the interval (P4-P5) of the peaks 26 of the FS region 20.
  • the lifetime killer 28 may be distributed to a position overlapping with the two peaks 26-a and 26-b of the FS region 20.
  • the concentration of the lifetime killer 28 may be 1% or more or 10% or more of the peak concentration of the lifetime killer 28 at both the position P4 and the position P5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

半導体基板のおもて面側に形成された第1領域と、第1領域よりも半導体基板のうら面側に形成されたドリフト領域と、ドリフト領域よりも半導体基板のうら面側に形成され、ドリフト領域の不純物濃度よりも高い不純物濃度のピークを1以上含むバッファ領域と、半導体基板のうら面側に配置され、キャリアライフタイムを短くするライフタイムキラーとを備え、ライフタイムキラーの濃度のピークが、バッファ領域における不純物濃度のピークのうち最も半導体基板のおもて面側のピークと、半導体基板のうら面との間に配置された半導体装置を提供する。

Description

半導体装置
 本発明は、半導体装置に関する。
 従来、パワー半導体素子において、フィールドストップ層を設ける構造が知られている(例えば、特許文献1参照)。フィールドストップ層には、プロトン等のn型不純物が注入される。
 特許文献1 米国特許第7842590号明細書
解決しようとする課題
 半導体基板にプロトン等のn型不純物を注入して熱処理すると、半導体基板中の欠陥等をプロトン等の不純物が終端して、キャリアライフタイムが回復する。しかし、半導体基板のうら面側におけるキャリアライフタイムが長くなりすぎると、逆回復動作時のテール電流が大きくなり、逆回復損失が増大してしまう。
一般的開示
 本発明の一つの態様においては、半導体基板を備える半導体装置を提供する。半導体基板のおもて面側には、第1導電型の第1領域が形成されてよい。半導体基板には、第1領域よりも半導体基板のうら面側に第2導電型のドリフト領域が形成されてよい。半導体基板には、ドリフト領域よりも半導体基板のうら面側に形成された第2導電型のバッファ領域が形成されてよい。バッファ領域は、ドリフト領域の不純物濃度よりも高い不純物濃度のピークを1以上含んでよい。半導体基板には、半導体基板のうら面側に配置され、キャリアライフタイムを短くするライフタイムキラーが形成されてよい。ライフタイムキラーの濃度のピークが、バッファ領域における不純物濃度のピークのうち最も半導体基板のおもて面側のピークと、半導体基板のうら面との間に配置されてよい。
 半導体基板には、バッファ領域における不純物濃度のピークのうち最も半導体基板のうら面側のピークと、半導体基板のうら面との間に形成された第1導電型の第2領域が更に形成されてよい。ライフタイムキラーの濃度のピークが、第2領域における不純物濃度のピークよりも半導体基板のおもて面側に配置されてよい。
 バッファ領域における不純物濃度分布は複数のピークを有してよい。ライフタイムキラーの濃度のピークが、バッファ領域における不純物濃度のピークのうち最も半導体基板のうら面側のピークよりも、半導体基板のうら面側に配置されてよい。
 ライフタイムキラーの濃度のピークと第2領域における不純物濃度のピークとの距離が、ライフタイムキラーの濃度のピークとバッファ領域における不純物濃度のピークのうち最も半導体基板のうら面側のピークとの距離よりも大きくてよい。
 ライフタイムキラーの濃度のピークが、バッファ領域における不純物濃度のいずれか2つのピークの間に配置されてよい。
 ライフタイムキラーの濃度のピークが、バッファ領域における不純物濃度のピークのいずれにも重ならない位置に配置されてよい。
 ライフタイムキラーの濃度のピークは、バッファ領域における不純物濃度のピークのうち最も半導体基板のうら面側のピークよりも高濃度であってよい。ライフタイムキラーの濃度のピークは、第2領域における濃度のピークよりも低濃度であってよい。
 バッファ領域にはプロトンが注入されてよい。ライフタイムキラーはヘリウムであってよい。
 半導体基板の深さ方向における、前記ライフタイムキラーの濃度分布の半値全幅が、5μm以上であってよい。バッファ領域は、ライフタイムキラーの濃度のピークを挟む不純物濃度の2つのピークを有し、ライフタイムキラーの濃度分布の半値全幅が、当該2つのピークの間隔の70%以上であってよい。
 半導体基板は、トランジスタが形成されるトランジスタ部と、ダイオードが形成されるダイオード部とを有してよい。記第2領域は、ダイオード部において離散的に設けられてよい。半導体基板のうら面と平行な面において、トランジスタ部およびダイオード部の境界と、第2領域との距離Dが、第2領域どうしの間隔より大きくてよい。
 距離Dが、半導体基板の厚みよりも大きくてよい。距離Dが、第2領域の幅より大きくてよい。
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
一つの実施形態に係る半導体装置100の断面を示す図である。 カソード領域24、中間領域22、FS領域20およびドリフト領域18における不純物濃度分布の一例を示す図である。 中間領域22および第4のピーク26-4近傍の不純物濃度分布を拡大した図である。 ライフタイムキラー28の濃度のピークと、FS領域20におけるピーク26との位置関係を示す図である。 半導体装置100の漏れ電流の測定結果を示す図である。 半導体装置100の逆回復動作時における逆方向電圧Vrおよび逆方向電流Irの時間波形を示す図である。 半導体装置100の製造工程の一例を示す図である。 半導体装置100の他の構造例を示す断面図である。 他の実施形態に係る半導体装置200の断面を示す図である。 他の実施形態に係る半導体装置300の断面を示す図である。 半導体装置300の断面の他の例を示す図である。 図11に示した半導体装置300のうら面と平行な面における、中間領域22の配置例を示す図である。 ライフタイムキラー28の深さ方向における濃度分布の他の例を示す図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、一つの実施形態に係る半導体装置100の断面を示す図である。半導体装置100は、半導体基板10のおもて面およびうら面に電極が形成され、半導体基板10の深さ方向に電流が流れる縦型の半導体装置である。なお、本明細書において単におもて面およびうら面と記載した場合、半導体基板10のおもて面およびうら面を指す。図1では、半導体装置100の一例としてダイオードを示している。当該ダイオードは、IGBT等のスイッチング素子と並列に設けられるフリーホイールダイオード(FWD)として機能してよい。
 半導体装置100は、半導体基板10、アノード電極12およびカソード電極14を備える。アノード電極12は、半導体基板10のおもて面に接して設けられる。カソード電極14は、半導体基板10のうら面に接して設けられる。アノード電極12およびカソード電極14は、例えばアルミニウムを含む金属材料で形成される。
 半導体基板10は、シリコンまたは化合物半導体等の半導体材料で形成される。半導体基板10には所定の濃度の不純物がドープされる。本明細書における不純物とは、特に断りがなければ、半導体材料にドープされてn型またはp型の伝導型を示すドーパントのことである。本例の半導体基板10は、n-型の伝導型を有する。n型は、第2伝導型の一例である。また、p型は、第1伝導型の一例である。ただし、第1伝導型および第2伝導型は、それぞれ逆の伝導型であってもよい。
 半導体基板10は、アノード領域16、ドリフト領域18、バッファ領域(FS領域20)、中間領域22およびカソード領域24を有する。アノード領域16は第1領域の一例であり、中間領域22は第2領域の一例である。バッファ領域は、空乏層の広がりを抑制するフィールドストップ層として機能してよい。
 ドリフト領域18は、半導体基板10と同一の伝導型を有する。本例では、半導体基板10のうち、アノード領域16、FS領域20、中間領域22およびカソード領域24が形成されない領域が、ドリフト領域18として機能する。
 アノード領域16は、ドリフト領域18のおもて面側に形成され、アノード電極12と電気的に接続する。アノード領域16には、ドリフト領域18とは異なる伝導型の不純物がドープされる。本例においてアノード領域16はp型である。
 FS領域20は、ドリフト領域18のうら面側に形成される。FS領域20は、ドリフト領域18と同一の伝導型を有し、且つ、ドリフト領域18よりも高濃度に不純物が注入される。本例においてFS領域20はn型である。また、FS領域20に注入されている不純物を第1不純物と称する。第1不純物は、例えば水素またはリンである。
 水素は、半導体材料において空孔(V)および酸素(O)とクラスター状に結合して複合欠陥(VOH欠陥)を構成する。このVOH欠陥がドナーとなるので、VOH欠陥はn型のドーパント(不純物)となる。水素は、プロトンやデュトロンといった水素イオンの注入により、半導体材料に導入されてよい。酸素は、半導体材料の製造時に含まれているか、半導体装置を製造する途中で半導体領域中に意図的に導入されてよい。半導体材料は、フロートゾーン法(FZ法)、チョクラルスキー法(CZ法)、磁場印加型チョクラルスキー法(MCZ法)等で製造されてよい。例えばCZ法、MCZ法であれば、半導体材料中の酸素の濃度が1×1017/cm以上、1×1018/cm以下となるので、VOH欠陥によるドーパントが好適に形成できる。
 空孔は、半導体材料製造時に含まれているか、半導体装置を製造する途中で半導体領域中に意図的に導入されてよい。高濃度のFS領域20を設けることで、アノード領域16の界面から延びる空乏層が、中間領域22またはカソード領域24まで到達することを防ぐことができる。空孔は、例えばプロトン、電子線、ヘリウム等のイオン注入で導入されてよい。
 半導体基板10の深さ方向での第1不純物の濃度分布は、FS領域20において1以上のピーク26を有する。図1に例示する半導体装置100は、第1のピーク26-1、第2のピーク26-2、第3のピーク26-3および第4のピーク26-4を有する。それぞれのピーク26における不純物濃度は、ドリフト領域18における不純物濃度よりも高い。
 中間領域22は、FS領域20のうら面側に形成される。本例の中間領域22は、半導体基板10のうら面と平行な面において局所的に形成される。中間領域22は、アノード領域16と同一の伝導型を有する。本例において中間領域22はp型である。また、中間領域22に注入されている不純物を第2不純物と称する。第2不純物は、例えばボロンである。FS領域20のうら面側において中間領域22が形成されていない領域は、ドリフト領域18と同一の導電型である。当該領域の不純物濃度は、FS領域20のうら面側の端部における不純物濃度とほぼ同一であってよい。
 カソード領域24は、中間領域22のうら面側に形成される。カソード領域24は、FS領域20と同一の伝導型を有する。本例のカソード領域24における不純物濃度は、FS領域20および中間領域22のそれぞれの不純物濃度よりも高い。本例においてカソード領域24はn+型である。また、カソード領域24に注入されている不純物を第3不純物と称する。第3不純物は、例えばリンである。カソード領域24は、カソード電極14と電気的に接続される。
 定格電流の1/10程度の小さい電流でダイオードを逆回復させると、カソード側のキャリアが枯渇し、電流または電圧波形が激しく発振する現象が知られている。本例の半導体装置100は、逆回復時にアノード側から空乏層が広がり、カソード側のキャリアが枯渇しそうになると、中間領域22およびカソード領域24との間のpn接合に高電界が印加され、当該接合がアバランシェ降伏する。これにより、カソード側からドリフト領域18に正孔が注入され、カソード側のドリフト領域18のキャリア密度を高くすることができる。その結果、キャリアの枯渇による電圧・電流の振動を抑制することができる。
 また、FS領域20にプロトン等の不純物を注入した後に、半導体基板10を熱処理すると、プロトン等の不純物が拡散して欠陥を終端する。これにより、プロトン等の不純物が拡散した領域のライフタイムが回復する。これにより、半導体装置100の逆回復動作をソフトリカバリ化することができる。
 一方で、カソード側のキャリアライフタイムが長くなりすぎると、逆回復動作時のテール電流が大きくなる。テール電流が大きくなると、逆回復損失が増大してしまう。これに対して本例の半導体装置100は、半導体基板10のうら面側に配置され、キャリアライフタイムを短くするライフタイムキラー28を有する。ライフタイムキラー28は、例えばヘリウムである。
 ライフタイムキラー28の深さ方向における濃度分布のピークは、FS領域20におけるピーク26のうち最もおもて面側の第1のピーク26-1と、半導体基板10のうら面(本例ではカソード電極14と接触する面)との間に配置される。このような構成により、テール電流に寄与する領域のキャリアライフタイムを短くして、テール電流を小さくすることができる。
 図2は、カソード領域24、中間領域22、FS領域20およびドリフト領域18における不純物濃度分布の一例を示す図である。また、図2においてはライフタイムキラー28の濃度分布を合わせて示している。なお、カソード領域24、中間領域22、FS領域20およびドリフト領域18における不純物濃度分布は、ライフタイムキラー28以外の各不純物の濃度を総合した正味の不純物濃度(ネットドーピング濃度)を示している。上述したように、ライフタイムキラー28の不純物濃度のピークは、FS領域20における不純物濃度のピーク26のうち、最もおもて面側(すなわち、最もドリフト領域18側)の第1のピーク26-1と、半導体基板10のうら面との間に配置される。最もおもて面側の第1のピーク26-1のピーク濃度は、うら面に向かって隣の第2のピーク26-2のピーク濃度より高くてよい。
 なお、半導体基板10が中間領域22を有する場合、ライフタイムキラー28の不純物濃度のピークは、中間領域22における不純物濃度のピーク23よりも、半導体基板10のおもて面側に配置される。これにより、ライフタイムキラー28を注入したことによる、中間領域22におけるキャリア消失を抑制することができる。
 また、FS領域20においてピーク26が複数存在する場合、ライフタイムキラー28の不純物濃度のピークは、複数のピーク26のうちいずれか2つのピーク26の間に配置されてよい。ライフタイムキラー28の不純物濃度のピークは、最もおもて面側の第1のピーク26-1と、隣接する第2のピーク26-2との間に配置されてよく、最もうら面側の第4のピーク26-4と、隣接する第3のピーク26-3との間に配置されてよく、最もおもて面側または最もうら面側以外に配置された2つのピーク26の間に配置されてもよい。
 また、ライフタイムキラー28の不純物濃度のピークは、FS領域20における不純物濃度のピーク26のうち、最もうら面側の第4のピーク26-4よりもうら面側に配置されてもよい。ライフタイムキラー28の不純物濃度のピークを、第4のピーク26-4よりもうら面側に配置することで、アノード側から広がる空乏層が到達しない領域にライフタイムキラー28のピークを配置できる。従って、ライフタイムキラー28を注入したことによる漏れ電流の増大も抑制することができる。
 図3は、中間領域22および第4のピーク26-4近傍の不純物濃度分布を拡大した図である。本例では、中間領域22における不純物濃度のピーク23と、第4のピーク26-4との間にライフタイムキラー28の濃度のピークが配置されている。本例では、中間領域22における不純物濃度のピークの深さ位置をP1、第4のピーク26-4の深さ位置をP2、ライフタイムキラー28の濃度ピークの深さ位置をP3とする。それぞれのピークの位置は、濃度が極大値を示す位置である。
 ライフタイムキラー28の濃度のピークと、中間領域22における不純物濃度のピーク23との距離(P3-P1)は、ライフタイムキラー28の濃度のピークと、FS領域20における最もうら面側の第4のピーク26-4との距離(P2-P3)よりも大きいことが好ましい。つまり、ライフタイムキラー28の濃度ピークは、ピーク23と第4のピーク26-4との間において、第4のピーク26-4に近い側に配置されることが好ましい。
 これにより、ライフタイムキラー28を注入したことによる、中間領域22におけるキャリア消失を抑制することができる。距離(P3-P1)は、距離(P2-P3)の2倍以上であってよく、3倍以上であってもよい。
 また、ライフタイムキラー28の濃度のピーク値D3は、中間領域22における濃度のピーク値D1よりも低濃度であってよい。これにより、ライフタイムキラー28を注入することで中間領域22におけるキャリアが部分的に消失した場合であっても、中間領域22の発振抑制機能を発揮させることができる。ライフタイムキラー28の濃度のピーク値D3は、ピーク値D1の80%以下であってよく、50%以下であってもよい。
 また、ライフタイムキラー28の濃度のピーク値D3は、FS領域20における不純物濃度のピーク26のうち、最もうら面側の第4のピーク26-4のピーク値D2よりも高濃度であってよい。これにより、プロトン等によりキャリアライフタイムが回復しても、逆回復動作時におけるうら面側の余剰キャリアを十分に減少させることができる。ライフタイムキラー28の濃度のピーク値D3は、ピーク値D2の2倍以上であってよく、5倍以上であってよく、10倍以上であってもよい。
 図4は、ライフタイムキラー28の濃度のピークと、FS領域20におけるピーク26との位置関係を示す図である。ライフタイムキラー28の濃度のピークは、FS領域20における不純物濃度のピーク26のいずれにも重ならない位置に配置されることが好ましい。これにより、ライフタイムキラー28により生じた欠陥が、FS領域20に注入されたプロトン等により過剰に回復してしまうことを抑制できる。
 なお、濃度のピークが重ならないとは、ピーク間の距離Xが所定値以上であることを指す。一例として、距離Xは、ライフタイムキラー28の濃度分布の半値半幅Y/2以上であってよく、半値全幅Y以上であってよく、半値全幅Yの2倍以上であってもよい。
 同様に、ライフタイムキラー28の濃度のピークは、中間領域22の不純物濃度のピーク23と重ならないことが好ましい。これにより、ライフタイムキラー28により、中間領域22におけるキャリアが消失してしまうことを抑制できる。
 また、ライフタイムキラー28は、深さ方向における複数の位置に注入されてもよい。一例として、中間領域22のピーク23と、FS領域20における第4のピーク26-4との間、および、FS領域20におけるいずれか2つのピーク26の間のそれぞれにライフタイムキラー28の濃度ピークが形成されてよい。ライフタイムキラー28の複数の濃度ピークの値は、カソード側からの距離が大きいほど小さくなってよい。
 図5は、半導体装置100の漏れ電流の測定結果を示す図である。本例の半導体装置100は、図3に示すように、中間領域22のピーク23と、FS領域20の最もカソードよりの第4のピーク26-4との間にライフタイムキラー28が注入されている。図5において横軸は逆バイアス電圧Vrを示し、縦軸は漏れ電流Irを示す。
 また、図5においては、ライフタイムキラー28を注入した例を実線で、ライフタイムキラー28を注入していない例を点線で示している。図5に示すように、ライフタイムキラー28を注入しても、漏れ電流が増大していない。
 図6は、半導体装置100の逆回復動作時における逆方向電圧Vrおよび逆方向電流Irの時間波形を示す図である。図5においては、ライフタイムキラー28を注入した例を実線で、ライフタイムキラー28を注入していない例を点線で示している。
 図6に示すように、ライフタイムキラー28を注入することで、逆方向電流Irにおけるテール電流が減少していることがわかる。これにより、逆回復動作時の損失を低減することができる。また、逆回復動作時に電圧・電流の大きな振動も発生していない。
 図7は、半導体装置100の製造工程の一例を示す図である。まず、おもて構造形成段階S700において、半導体装置100のおもて面側の構造を形成する。図1に示した例では、アノード電極12およびアノード領域16を形成する。また、S700においては、おもて面側の構造を形成した後、半導体基板10のうら面側を研削して、半導体基板10の厚みを、所定の耐圧に応じて調整する。
 次に、カソード領域形成段階S702において、半導体基板10のうら面側から不純物を注入してカソード領域24を形成する。一例として、S702における不純物はリン、ドーズ量は1×1015/cm、加速電圧は40keVである。
 次に、中間領域形成段階S704において、半導体基板10のうら面側から不純物を局所的に注入して中間領域22を形成する。一例として、S704における不純物はボロン、ドーズ量は1×1013/cm、加速電圧は240keVである。ボロンのドーズ量は、3×1012/cm以上、3×1013/cm以下であってよい。次に、レーザーアニール段階S706において、半導体基板10のうら面側から不純物を注入した領域をアニールする。
 次に、プロトン注入段階S708において、半導体基板10のうら面側からプロトンを注入してFS領域20を形成する。図2に示すように、FS領域20に4つのピーク26を形成する場合、加速電圧を異ならせてプロトンを4回注入する。
 一例として、第4のピーク26-4に対応するプロトンのドーズ量は3.0×1014/cm、加速電圧は400keV、第3のピーク26-3に対応するプロトンのドーズ量は1.0×1013/cm、加速電圧は820keV、第2のピーク26-2に対応するプロトンのドーズ量は7.0×1012/cm、加速電圧は1100keV、第1のピーク26-1に対応するプロトンのドーズ量は1.0×1013/cm、加速電圧は1450keVである。
 次に、第1炉アニール段階S710で、半導体基板10を窒素雰囲気等のアニール炉でアニールする。一例としてアニール温度は370度、アニール時間は5時間である。次に、ヘリウム注入段階S712で、半導体基板10のうら面側からヘリウムを注入してライフタイムキラー28を形成する。一例として、S712ではHe2+を、ドーズ量2×1012/cm、加速エネルギー700keVで注入する。
 次に、電子線照射段階S714で、半導体基板10のうら面側から電子線を照射する。一例として電子線照射量は160kGyである。次に、第2炉アニール段階S716で、半導体基板10を窒素雰囲気等のアニール炉でアニールする。一例としてアニール温度は360度、アニール時間は1時間である。
 次に、うら面電極形成段階S718で、カソード電極14を形成する。カソード電極14は、スパッタ法により形成してよい。また、カソード電極14は、アルミニウム層、チタン層、ニッケル層等が積層された積層電極であってよい。このような工程で、半導体装置100を製造することができる。
 図8は、半導体装置100の他の構造例を示す断面図である。本例における半導体装置100は、図1に示した半導体装置100に比べて、中間領域22の位置が異なる。他の構造は、図1に示した半導体装置100と同一であってよい。
 本例における中間領域22は、カソード領域24と同一の深さ位置に形成される。この場合、ライフタイムキラー28は、FS領域20のいずれかのピーク26と、中間領域22の濃度ピークとの間に加えて、FS領域20のいずれかのピーク26と、カソード領域24の濃度ピークとの間にも形成される。
 中間領域22の上方に形成されるライフタイムキラー28と、カソード領域24の上方に形成されるライフタイムキラー28の深さ方向における位置は同一であってよい。このような構成によっても、逆回復動作時におけるテール電流を低減し、且つ、漏れ電流の増大を抑制できる。
 図9は、他の実施形態に係る半導体装置200の断面を示す図である。半導体装置200は、IGBT(Insulated Gate Bipolar Transistor)である。半導体装置200は、半導体基板10、エミッタ電極112およびコレクタ電極130を備える。
 エミッタ電極112は、半導体基板10のおもて面に接して設けられる。コレクタ電極130は、半導体基板10のうら面に接して設けられる。エミッタ電極112およびコレクタ電極130は、例えばアルミニウムを含む金属材料で形成される。
 半導体基板10のおもて面側には、ゲート構造120が形成される。本例におけるゲート構造120はトレンチ型であるが、ゲート構造120はプレナー型であってもよい。ゲート構造120はゲート絶縁膜122およびゲート電極124を有する。
 ゲート絶縁膜122は、ゲート電極124の周囲を覆って形成される。本例のゲート絶縁膜122は、半導体基板10のおもて面に形成されたゲートトレンチの内壁を覆って形成される。ゲート電極124は、チャネルが形成されるベース領域118と対向する位置に形成される。本例のゲート電極124は、ゲートトレンチの内部においてゲート絶縁膜122に覆われて形成されたポリシリコンである。本例のゲート電極124は、半導体基板10の深さ方向に沿ってベース領域118と対向する。
 半導体基板10のおもて面には、ゲート構造120を覆う層間絶縁膜114が形成される。これにより、エミッタ電極112とゲート構造120が絶縁される。
 半導体基板10のおもて面側には、n+型のエミッタ領域116およびp型のベース領域118が形成される。ベース領域118は、第1領域の一例である。本例のゲート構造120は、ベース領域118を貫通して形成される。エミッタ領域116は、ゲート構造120に隣接する領域に形成される。エミッタ領域116およびベース領域118は、半導体基板10のおもて面においてエミッタ電極112と接触する。
 ベース領域118のうら面側にはn-型のドリフト領域126が形成される。ドリフト領域126のうら面側にはFS領域20が形成される。FS領域20のうら面側には、p+型のコレクタ領域128が形成される。コレクタ領域128は、第2領域の一例である。
 本例においても、ライフタイムキラー28の濃度ピークは、FS領域20における不純物濃度のピーク26のうち最も半導体基板10のおもて面側の第1のピーク26-1と、半導体基板10のうら面との間に配置される。ライフタイムキラー28の濃度ピークは、FS領域20における不純物濃度のピーク26のうち最も半導体基板10のうら面側の第4のピーク26-4と、コレクタ領域128の濃度ピークとの間に配置されることが好ましい。
 図10は、他の実施形態に係る半導体装置300の断面を示す図である。半導体装置300は、IGBTおよび逆回復用のダイオードが同一の基板に形成された逆導通IGBT(RC-IGBT)である。半導体装置300は、半導体基板10、エミッタ電極112およびコレクタ電極130を備える。
 本例の半導体基板10のうら面側には、IGBTとして機能する領域であるトランジスタ部70にp+型のコレクタ領域128が形成され、ダイオードとして機能する領域であるダイオード部80にn+型のカソード領域24が形成されている。なお、トランジスタ部70のメサ部150(トレンチ部に挟まれた半導体基板の領域)のうち、カソード領域24のコレクタ領域128に接する位置をおもて面に投影した位置にあるか、あるいは最も近い位置にあるトレンチ部120に隣り合うメサ部150では、ベース領域118のおもて面には、エミッタ領域116が無くてよく、p+型のコンタクト領域115が形成されてよい。
 トランジスタ部70の構造は、図9に示した半導体装置200と同様である。ただし本例では、トランジスタ部70に複数のゲート構造120が形成されている。複数のゲート構造120のうち少なくとも一つは、ゲート電極124がゲート端子に電気的に接続される。また、複数のゲート構造120のうち少なくとも一つは、ゲート電極124がエミッタ電極112に電気的に接続され、ダミートレンチとして機能してもよい。ダミートレンチを設けることで、電荷注入促進効果(IE効果)を生じさせることができる。
 ダイオードとして機能する領域の構造は、図1または図8に示した半導体装置100と同様である。なお、図10に示すベース領域118が、ダイオードのアノード領域として機能する。
 また、図10においては中間領域22を省略している。図10に示すカソード領域24の上方には、図1に示した半導体装置100と同様に、中間領域22が局所的に形成されてもよい。また、図10に示す半導体基板10においては、ダイオード部80のおもて面側に、1以上のダミートレンチ構造140を有する。ダミートレンチ構造140は、ゲート構造120と同様の構造を有する。ただし、ダミートレンチ構造140におけるゲート電極は、エミッタ電極112に電気的に接続される。
 ダイオードとして機能する領域におけるライフタイムキラー28の濃度ピークは、図1または図8に示した半導体装置100と同様の位置に設けられる。また、トランジスタ部70におけるライフタイムキラー28の濃度ピークは、図9に示した半導体装置200と同様の位置に設けられる。なお、トランジスタ部70と、ダイオード部80とで、同一の深さ位置にライフタイムキラー28が形成されてよい。
 図11は、半導体装置300の断面の他の例を示す図である。本例の半導体装置300は、中間領域22を有する。中間領域22以外の構造は、図10に示した半導体装置300と同一であってよい。
 本例では、半導体基板10のうち、IGBT等のトランジスタとして機能する領域をトランジスタ部70、FWD等のダイオードとして機能する領域をダイオード部80とする。トランジスタ部70のおもて面にはエミッタ領域116が形成され、うら面にはコレクタ領域128が形成される。ダイオード部80のおもて面にはエミッタ領域116が形成されておらず、ベース領域118が形成され、うら面にはカソード領域24が形成されている。コレクタ領域128とカソード領域24との境界を、トランジスタ部70とダイオード部80との境界とする。
 なお、トランジスタ部70のメサ部150(トレンチ部に挟まれた半導体基板の領域)のうち、カソード領域24のコレクタ領域128に接する位置をおもて面に投影した位置にあるか、あるいは投影した位置に最も近い位置にあるトレンチ部120に隣り合うメサ部150では、ベース領域118のおもて面には、エミッタ領域116が無くてよく、P+型のコンタクト領域115が形成されてよい。
 ダイオード部80には中間領域22が設けられる。中間領域22は、図1に示したようにカソード領域24の上に形成されてよく、図8に示したようにカソード領域24と同一の深さ位置に形成されてもよい。
 トレンチ構造を有するゲート構造120およびダミートレンチ構造140は、図11に示した断面とは垂直な方向に延伸して形成されている。ゲート構造120およびダミートレンチ構造140が延伸している方向をトレンチ長手方向(図11におけるY軸方向)とし、半導体基板10のおもて面においてトレンチ長手方向と直交する方向をトレンチ短手方向(図11におけるX軸方向)とする。
 トランジスタ部70およびダイオード部80の境界と、トランジスタ部70に最も近い中間領域22との、半導体基板10のうら面と平行な面内のトレンチ短手方向(X軸方向)における距離をDとする。つまり、X軸方向におけるコレクタ領域128と中間領域22との距離をDとする。
 また、中間領域22は、半導体基板10のうら面と平行な面において離散的に複数形成されている。トレンチ短手方向(X軸方向)における中間領域22どうしの間隔をL1、中間領域22の幅をL2とする。中間領域22の間隔L1および幅L2は、複数の中間領域22における平均値を用いてよく、最大値を用いてもよい。また、トレンチ長手方向およびトレンチ短手方向の双方に直交する深さ方向(図11におけるZ軸方向)の半導体基板10の厚みをWとする。
 コレクタ領域128と中間領域22との距離Dは、中間領域22どうしの間隔L1よりも大きい。つまり、トランジスタ部70と隣接するダイオード部80の端部領域においては、他の領域に比べて中間領域22の密度が小さい。ダイオード部80の端部領域とは、一例として、カソード領域24のコレクタ領域128に接する位置をおもて面に投影した位置から、トレンチ短手方向に1以上のメサ部150を挟む1以上のトレンチ部であってよい。トランジスタ部70とダイオード部80との境界近傍においては、逆回復時に、コレクタ領域128が中間領域22と同様に機能できる。このため、ダイオード部80の端部領域においては、中間領域22を設けずとも、逆回復時における電圧および電流の振動を抑制できる。トランジスタ部70とダイオード部80との境界とは、一例として、カソード領域24がコレクタ領域128に接する位置であってよい。
 ダイオード部80の端部領域に中間領域22を設けないので、XY面における中間領域22の総面積を小さくできる。このため、ダイオード部80の動作を安定化させ、また、ダイオード部80の順方向電圧を低減できる。
 また、コレクタ領域128と中間領域22との距離Dは、中間領域22の幅L2より大きくてもよい。また、コレクタ領域128と中間領域22との距離Dは、半導体基板10の厚みWよりも大きくてよい。このように中間領域22を配置しても、トランジスタ部70のコレクタ領域128が設けられているので、逆回復時における電圧および電流の振動を抑制できる。距離Dをより大きくすれば、ダイオード部80の順方向電圧等の特性をより改善できる。
 図12は、図11に示した半導体装置300のうら面と平行な面における、中間領域22の配置例を示す図である。図12においては、中間領域22、ゲート構造120、ダミートレンチ構造140、カソード領域24、ゲート接続部160およびダミー接続部170の位置を重ねて示している。半導体基板10のうら面側において、カソード領域24が形成されていない領域には、コレクタ領域128が形成されている。
 本例のゲート構造120およびダミートレンチ構造140は、U字形状を有しているが、ゲート構造120およびダミートレンチ構造140の形状はこれに限定されない。ゲート構造120およびダミートレンチ構造140は、それぞれY軸方向に延伸して形成された直線部分を有する。ゲート構造120またはダミートレンチ構造140の直線部分に挟まれた領域をメサ部150とする。
 ゲート接続部160は、ゲート構造120のゲート電極124と接続されるゲートランナーである。ダミー接続部170は、ダミートレンチ構造140の内部の電極と接続されるダミーランナーである。本例のゲート接続部160およびダミー接続部170は、ポリシリコン等で形成される。ゲート接続部160およびダミー接続部170は、半導体基板10のおもて面の上方に形成される。ゲート接続部160およびダミー接続部170と、半導体基板10との間には、層間絶縁膜114等の絶縁膜が形成されている。ゲート接続部160およびダミー接続部170は、層間絶縁膜114に形成されたコンタクトホールを通って半導体基板10のおもて面に接触する。ゲート接続部160は、金属材料で形成されたゲートパッドと接続されてよい。ダミー接続部170は、エミッタ電極112に接続されてよい。
 上述したように、トランジスタ部70のおもて面側には、ゲート構造120が形成され、うら面側にはコレクタ領域128が形成されている。トランジスタ部70には、ダミートレンチ構造140の1つ以上の直線部分が、ゲート構造120の1つ以上の直線部分と、X軸方向において交互に形成されていてもよい。
 ダイオード部80のおもて面側には、ダミートレンチ構造140が形成され、うら面側にはカソード領域24および中間領域22が形成されている。X軸方向におけるカソード領域24の端部と、中間領域22との距離Dは、メサ部150の幅L3より大きくてよい。つまり、X軸方向のダイオード部80の端部領域において、少なくとも一つ1のメサ部150の下方には、中間領域22が形成されなくてよい。X軸方向のダイオード部80の端部領域において、複数のメサ部150の下方に、中間領域22が形成されていなくともよい。
 また、Y軸方向において、カソード領域24の端部(コレクタ領域128と接する部分)と、中間領域22との距離をDYとする。距離DYは、中間領域22のY軸方向における間隔L4より大きくてよく、中間領域22のY軸方向における幅L5より大きくてよく、半導体基板10の厚みWより大きくてもよい。距離DYは、距離Dと同一であってよい。
 図13は、ライフタイムキラー28の深さ方向における濃度分布の他の例を示す図である。本例では、ライフタイムキラー28のピークの位置P6は、FS領域20における2つのピーク26-a、26-bの位置P4およびP5の間に配置される。位置P6は、位置P4およびP5の間の中央に配置されてよい。上述したように、ライフタイムキラー28のピーク位置と、FS領域20におけるピーク位置とを離して配置することで、ライフタイムキラー28と、FS領域20におけるプロトン等とが相殺されるのを抑制する。
 本例のライフタイムキラー28の濃度分布は、比較的にブロードな分布を有する。ライフタイムキラー28がブロードな濃度分布を有することで、半導体装置100をソフトリカバリ動作させることができる。また、ライフタイムキラー28の注入位置にバラツキが生じた場合でも、当該バラツキの影響を低減することができる。一例として、ライフタイムキラー28の濃度分布の半値全幅FWHMは、5μm以上である。半値全幅FWHMは、7μm以上であってよく、9μm以上であってもよい。
 また、ライフタイムキラー28の濃度のピークを挟む2つのピーク26-aおよび26-bの間隔(P4-P5)に対して、ライフタイムキラー28の濃度分布の半値全幅FWHMが70%以上であってもよい。半値全幅FWHMは、FS領域20のピーク26の間隔(P4-P5)の80%以上であってよく、100%以上であってもよい。
 また、ライフタイムキラー28は、FS領域20の2つのピーク26-aおよび26-bと重なる位置まで分布していてもよい。一例として、位置P4および位置P5の双方において、ライフタイムキラー28の濃度が、ライフタイムキラー28のピーク濃度の1%以上であってよく、10%以上であってもよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10・・・半導体基板、12・・・アノード電極、14・・・カソード電極、16・・・アノード領域、18・・・ドリフト領域、20・・・FS領域、22・・・中間領域、23・・・ピーク、24・・・カソード領域、26・・・ピーク、28・・・ライフタイムキラー、70・・・トランジスタ部、80・・・ダイオード部、100・・・半導体装置、112・・・エミッタ電極、114・・・層間絶縁膜、115・・・コンタクト領域、116・・・エミッタ領域、118・・・ベース領域、120・・・ゲート構造、122・・・ゲート絶縁膜、124・・・ゲート電極、126・・・ドリフト領域、128・・・コレクタ領域、130・・・コレクタ電極、140・・・ダミートレンチ構造、150・・・メサ部、160・・・ゲート接続部、170・・・ダミー接続部、200・・・半導体装置、300・・・半導体装置

Claims (14)

  1.  半導体基板と、
     前記半導体基板のおもて面側に形成された第1導電型の第1領域と、
     前記第1領域よりも前記半導体基板のうら面側に形成された第2導電型のドリフト領域と、
     前記ドリフト領域よりも前記半導体基板のうら面側に形成され、前記ドリフト領域の不純物濃度よりも高い不純物濃度のピークを1以上含む、第2導電型のバッファ領域と、
     前記半導体基板のうら面側に配置され、キャリアライフタイムを短くするライフタイムキラーと
     を備え、
     前記ライフタイムキラーの濃度のピークが、前記バッファ領域における不純物濃度のピークのうち最も前記半導体基板のおもて面側のピークと、前記半導体基板のうら面との間に配置された半導体装置。
  2.  前記バッファ領域における不純物濃度のピークのうち最も前記半導体基板のうら面側のピークと、前記半導体基板のうら面との間に形成された第1導電型の第2領域を更に備え、
     前記ライフタイムキラーの濃度のピークが、前記第2領域における不純物濃度のピークよりも前記半導体基板のおもて面側に配置された
     請求項1に記載の半導体装置。
  3.  前記バッファ領域における不純物濃度分布は複数のピークを有し、
     前記ライフタイムキラーの濃度のピークが、前記バッファ領域における不純物濃度のピークのうち最も前記半導体基板のうら面側のピークよりも、前記半導体基板のうら面側に配置された
     請求項2に記載の半導体装置。
  4.  前記ライフタイムキラーの濃度のピークと前記第2領域における不純物濃度のピークとの距離が、前記ライフタイムキラーの濃度のピークと前記バッファ領域における不純物濃度のピークのうち最も前記半導体基板のうら面側のピークとの距離よりも大きい
     請求項2または3に記載の半導体装置。
  5.  前記バッファ領域における不純物濃度分布は複数のピークを有し、
     前記ライフタイムキラーの濃度のピークが、前記バッファ領域における不純物濃度のいずれか2つのピークの間に配置された
     請求項2に記載の半導体装置。
  6.  前記ライフタイムキラーの濃度のピークが、前記バッファ領域における不純物濃度のピークのいずれにも重ならない位置に配置された
     請求項1から5のいずれか一項に記載の半導体装置。
  7.  前記ライフタイムキラーの濃度のピークは、前記バッファ領域における不純物濃度のピークのうち最も前記半導体基板のうら面側のピークよりも高濃度である
     請求項1から6のいずれか一項に記載の半導体装置。
  8.  前記ライフタイムキラーの濃度のピークは、前記第2領域における濃度のピークよりも低濃度である
     請求項2から5のいずれか一項に記載の半導体装置。
  9.  前記バッファ領域にはプロトンが注入されており、
     前記ライフタイムキラーはヘリウムである
     請求項1から8のいずれか一項に記載の半導体装置。
  10.  前記半導体基板の深さ方向における、前記ライフタイムキラーの濃度分布の半値全幅が、5μm以上である
     請求項1から9のいずれか一項に記載の半導体装置。
  11.  前記バッファ領域は、前記ライフタイムキラーの濃度のピークを挟む不純物濃度の2つのピークを有し、
     前記ライフタイムキラーの濃度分布の半値全幅が、当該2つのピークの間隔の70%以上である
     請求項5に記載の半導体装置。
  12.  前記半導体基板は、トランジスタが形成されるトランジスタ部と、ダイオードが形成されるダイオード部とを有し、
     前記第2領域は、前記ダイオード部において離散的に設けられ、
     前記半導体基板のうら面と平行な面において、前記トランジスタ部および前記ダイオード部の境界と、前記第2領域との距離Dが、前記第2領域どうしの間隔より大きい
     請求項2から5のいずれか一項に記載の半導体装置。
  13.  前記距離Dが、前記半導体基板の厚みよりも大きい
     請求項12に記載の半導体装置。
  14.  前記距離Dが、前記第2領域の幅より大きい
     請求項12または13に記載の半導体装置。
PCT/JP2017/006830 2016-02-23 2017-02-23 半導体装置 WO2017146148A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018501760A JP6610768B2 (ja) 2016-02-23 2017-02-23 半導体装置
DE112017000064.5T DE112017000064T5 (de) 2016-02-23 2017-02-23 Halbleitervorrichtung
CN201780002628.7A CN107851584B (zh) 2016-02-23 2017-02-23 半导体装置
US15/879,417 US10734230B2 (en) 2016-02-23 2018-01-24 Insulated-gate bipolar transistor (IGBT) or diode including buffer region and lifetime killer region
US16/933,993 US11183388B2 (en) 2016-02-23 2020-07-20 Semiconductor device
US17/455,664 US11569092B2 (en) 2016-02-23 2021-11-18 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016032401 2016-02-23
JP2016-032401 2016-02-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/879,417 Continuation US10734230B2 (en) 2016-02-23 2018-01-24 Insulated-gate bipolar transistor (IGBT) or diode including buffer region and lifetime killer region

Publications (1)

Publication Number Publication Date
WO2017146148A1 true WO2017146148A1 (ja) 2017-08-31

Family

ID=59685196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006830 WO2017146148A1 (ja) 2016-02-23 2017-02-23 半導体装置

Country Status (5)

Country Link
US (3) US10734230B2 (ja)
JP (1) JP6610768B2 (ja)
CN (1) CN107851584B (ja)
DE (1) DE112017000064T5 (ja)
WO (1) WO2017146148A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659236A (zh) * 2018-12-17 2019-04-19 吉林华微电子股份有限公司 降低vdmos恢复时间的工艺方法及其vdmos半导体器件
CN109755239A (zh) * 2017-11-06 2019-05-14 富士电机株式会社 半导体装置
JP2019080035A (ja) * 2017-10-26 2019-05-23 株式会社デンソー 炭化珪素半導体装置およびその製造方法
EP3511987A1 (en) * 2018-01-11 2019-07-17 Toyota Jidosha Kabushiki Kaisha Semiconductor apparatus
JP2019161125A (ja) * 2018-03-15 2019-09-19 富士電機株式会社 半導体装置
WO2019176810A1 (ja) * 2018-03-15 2019-09-19 富士電機株式会社 半導体装置
JP2019161126A (ja) * 2018-03-15 2019-09-19 富士電機株式会社 半導体装置
WO2019181852A1 (ja) * 2018-03-19 2019-09-26 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2020100997A1 (ja) * 2018-11-16 2020-05-22 富士電機株式会社 半導体装置および製造方法
WO2020100995A1 (ja) * 2018-11-16 2020-05-22 富士電機株式会社 半導体装置および製造方法
WO2020138218A1 (ja) * 2018-12-28 2020-07-02 富士電機株式会社 半導体装置および製造方法
JP2021028930A (ja) * 2019-08-09 2021-02-25 富士電機株式会社 半導体装置
WO2021125140A1 (ja) * 2019-12-17 2021-06-24 富士電機株式会社 半導体装置
WO2021145397A1 (ja) * 2020-01-17 2021-07-22 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2022230216A1 (ja) * 2021-04-27 2022-11-03 株式会社デンソー 半導体装置
WO2022265061A1 (ja) * 2021-06-17 2022-12-22 富士電機株式会社 半導体装置および半導体装置の製造方法
DE112021004531T5 (de) 2021-01-22 2023-06-15 Hitachi Power Semiconductor Device, Ltd. Verfahren zum herstellen einer halbleitervorrichtung, halbleitervorrichtung, halbleitermodul und leistungswandlervorrichtung
US11901419B2 (en) 2019-10-11 2024-02-13 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of semiconductor device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292605B (zh) * 2016-06-24 2021-08-27 富士电机株式会社 半导体装置的制造方法和半导体装置
CN110140220B (zh) * 2017-07-18 2022-04-29 富士电机株式会社 半导体装置
JP6777245B2 (ja) * 2017-11-16 2020-10-28 富士電機株式会社 半導体装置
CN109713041B (zh) * 2018-12-27 2022-05-24 四川立泰电子有限公司 一种适用于超结dmos器件的改良结构
CN113396481B (zh) * 2019-02-04 2024-08-09 住友电气工业株式会社 碳化硅半导体器件
EP3842574B1 (en) * 2019-04-26 2024-03-27 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method
CN112310226B (zh) * 2019-07-29 2022-01-28 珠海格力电器股份有限公司 快恢复二极管及其制备方法
CN110797405A (zh) * 2019-10-22 2020-02-14 上海睿驱微电子科技有限公司 一种沟槽栅igbt半导体器件及其制备方法
CN113707706A (zh) * 2020-05-21 2021-11-26 华大半导体有限公司 功率半导体装置及其制备方法
CN111900087B (zh) * 2020-08-31 2022-09-20 华虹半导体(无锡)有限公司 Igbt器件的制造方法
CN113555416B (zh) * 2021-09-22 2021-12-31 四川上特科技有限公司 一种功率二极管器件
CN113571415B (zh) * 2021-09-22 2022-01-11 上海积塔半导体有限公司 Igbt器件及其制作方法
CN113851379A (zh) * 2021-09-24 2021-12-28 上海积塔半导体有限公司 Igbt器件及其制作方法
CN113921395A (zh) * 2021-10-13 2022-01-11 南瑞联研半导体有限责任公司 一种低损耗igbt芯片集电极结构及其制备方法
CN113659014B (zh) * 2021-10-20 2022-01-18 四川洪芯微科技有限公司 一种含有阴极短接槽栅结构的功率二极管

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156849A1 (ja) * 2013-03-25 2014-10-02 富士電機株式会社 半導体装置
JP2015211149A (ja) * 2014-04-28 2015-11-24 トヨタ自動車株式会社 半導体装置及び半導体装置の製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125200A (ja) * 1994-10-25 1996-05-17 Mitsubishi Electric Corp 半導体装置及びその製造方法
DE10361136B4 (de) * 2003-12-23 2005-10-27 Infineon Technologies Ag Halbleiterdiode und IGBT
DE102004039208B4 (de) 2004-08-12 2014-01-16 Infineon Technologies Ag Verfahren zur Herstellung eines Leistungsbauelements mit einer vergrabenen n-dotierten Halbleiterzone und Leistungsbauelement
JP4843253B2 (ja) * 2005-05-23 2011-12-21 株式会社東芝 電力用半導体装置
JP5374883B2 (ja) * 2008-02-08 2013-12-25 富士電機株式会社 半導体装置およびその製造方法
US7842590B2 (en) 2008-04-28 2010-11-30 Infineon Technologies Austria Ag Method for manufacturing a semiconductor substrate including laser annealing
JP2011086883A (ja) * 2009-10-19 2011-04-28 Denso Corp 絶縁ゲートバイポーラトランジスタおよびその設計方法
KR101794182B1 (ko) * 2009-11-02 2017-11-06 후지 덴키 가부시키가이샤 반도체 장치 및 반도체 장치의 제조 방법
CN102208454B (zh) * 2010-03-31 2013-03-13 比亚迪股份有限公司 快速恢复二极管
JP5605073B2 (ja) * 2010-08-17 2014-10-15 株式会社デンソー 半導体装置
JP2012256628A (ja) * 2011-06-07 2012-12-27 Renesas Electronics Corp Igbtおよびダイオード
JP2013074181A (ja) * 2011-09-28 2013-04-22 Toyota Motor Corp 半導体装置とその製造方法
WO2013073623A1 (ja) * 2011-11-15 2013-05-23 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2013100155A1 (ja) * 2011-12-28 2013-07-04 富士電機株式会社 半導体装置および半導体装置の製造方法
CN103999225B (zh) * 2012-01-19 2017-02-22 富士电机株式会社 半导体装置及其制造方法
CN104054159B (zh) * 2012-03-19 2017-06-30 富士电机株式会社 半导体装置的制造方法
CN104145326B (zh) * 2012-03-30 2017-11-17 富士电机株式会社 半导体装置的制造方法
US20150318385A1 (en) * 2012-12-05 2015-11-05 Toyota Jidosha Kabushiki Kaisha Semiconductor device
US9627517B2 (en) 2013-02-07 2017-04-18 Infineon Technologies Ag Bipolar semiconductor switch and a manufacturing method therefor
JP6037012B2 (ja) * 2013-06-26 2016-11-30 富士電機株式会社 半導体装置および半導体装置の製造方法
CN103594503A (zh) * 2013-11-19 2014-02-19 西安永电电气有限责任公司 具有浮结结构的igbt
JP2015153784A (ja) * 2014-02-10 2015-08-24 トヨタ自動車株式会社 半導体装置の製造方法及び半導体装置
DE112015000206T5 (de) * 2014-10-03 2016-08-25 Fuji Electric Co., Ltd. Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung
JP2016162807A (ja) * 2015-02-27 2016-09-05 トヨタ自動車株式会社 半導体装置とその製造方法
WO2017047285A1 (ja) * 2015-09-16 2017-03-23 富士電機株式会社 半導体装置および半導体装置の製造方法
US10637658B2 (en) 2017-01-25 2020-04-28 Salesforce.Com, Inc. Secure internal user authentication leveraging public key cryptography and key splitting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156849A1 (ja) * 2013-03-25 2014-10-02 富士電機株式会社 半導体装置
JP2015211149A (ja) * 2014-04-28 2015-11-24 トヨタ自動車株式会社 半導体装置及び半導体装置の製造方法

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7102948B2 (ja) 2017-10-26 2022-07-20 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP2019080035A (ja) * 2017-10-26 2019-05-23 株式会社デンソー 炭化珪素半導体装置およびその製造方法
CN109755239A (zh) * 2017-11-06 2019-05-14 富士电机株式会社 半导体装置
JP2019087623A (ja) * 2017-11-06 2019-06-06 富士電機株式会社 半導体装置
CN109755239B (zh) * 2017-11-06 2023-10-03 富士电机株式会社 半导体装置
JP7069646B2 (ja) 2017-11-06 2022-05-18 富士電機株式会社 半導体装置
US10700054B2 (en) 2018-01-11 2020-06-30 Denso Corporation Semiconductor apparatus
JP2019125597A (ja) * 2018-01-11 2019-07-25 トヨタ自動車株式会社 半導体装置
JP7151084B2 (ja) 2018-01-11 2022-10-12 株式会社デンソー 半導体装置
KR102131288B1 (ko) * 2018-01-11 2020-07-07 도요타 지도샤(주) 반도체 장치
EP3511987A1 (en) * 2018-01-11 2019-07-17 Toyota Jidosha Kabushiki Kaisha Semiconductor apparatus
KR20190085857A (ko) * 2018-01-11 2019-07-19 도요타 지도샤(주) 반도체 장치
US12087765B2 (en) 2018-03-15 2024-09-10 Fuji Electric Co., Ltd. Semiconductor device
JP2019161125A (ja) * 2018-03-15 2019-09-19 富士電機株式会社 半導体装置
CN111066149A (zh) * 2018-03-15 2020-04-24 富士电机株式会社 半导体装置
JP7102808B2 (ja) 2018-03-15 2022-07-20 富士電機株式会社 半導体装置
CN111066149B (zh) * 2018-03-15 2024-02-06 富士电机株式会社 半导体装置
JP2019161126A (ja) * 2018-03-15 2019-09-19 富士電機株式会社 半導体装置
JPWO2019176810A1 (ja) * 2018-03-15 2020-09-24 富士電機株式会社 半導体装置
WO2019176810A1 (ja) * 2018-03-15 2019-09-19 富士電機株式会社 半導体装置
US11476249B2 (en) 2018-03-15 2022-10-18 Fuji Electric Co., Ltd. Semiconductor device
JP7187787B2 (ja) 2018-03-15 2022-12-13 富士電機株式会社 半導体装置
US20240047535A1 (en) * 2018-03-19 2024-02-08 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device manufacturing method
JP2021073733A (ja) * 2018-03-19 2021-05-13 富士電機株式会社 半導体装置および半導体装置の製造方法
US11824095B2 (en) 2018-03-19 2023-11-21 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device manufacturing method
CN111095569B (zh) * 2018-03-19 2023-11-28 富士电机株式会社 半导体装置及半导体装置的制造方法
JPWO2019181852A1 (ja) * 2018-03-19 2020-10-01 富士電機株式会社 半導体装置および半導体装置の製造方法
CN111095569A (zh) * 2018-03-19 2020-05-01 富士电机株式会社 半导体装置及半导体装置的制造方法
WO2019181852A1 (ja) * 2018-03-19 2019-09-26 富士電機株式会社 半導体装置および半導体装置の製造方法
US11239324B2 (en) 2018-03-19 2022-02-01 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device manufacturing method
JP7024896B2 (ja) 2018-03-19 2022-02-24 富士電機株式会社 半導体装置および半導体装置の製造方法
JP7078133B2 (ja) 2018-11-16 2022-05-31 富士電機株式会社 半導体装置および製造方法
JP7400874B2 (ja) 2018-11-16 2023-12-19 富士電機株式会社 半導体装置および製造方法
US11373869B2 (en) 2018-11-16 2022-06-28 Fuji Electric Co., Ltd. Semiconductor device and fabrication method
JP2022097741A (ja) * 2018-11-16 2022-06-30 富士電機株式会社 半導体装置および製造方法
JP7099541B2 (ja) 2018-11-16 2022-07-12 富士電機株式会社 半導体装置および製造方法
DE112019001738B4 (de) 2018-11-16 2024-10-10 Fuji Electric Co., Ltd. Halbleitervorrichtung und herstellungsverfahren
WO2020100997A1 (ja) * 2018-11-16 2020-05-22 富士電機株式会社 半導体装置および製造方法
US12015058B2 (en) 2018-11-16 2024-06-18 Fuji Electric Co., Ltd. Semiconductor device
JP7351380B2 (ja) 2018-11-16 2023-09-27 富士電機株式会社 半導体装置
JPWO2020100995A1 (ja) * 2018-11-16 2021-05-20 富士電機株式会社 半導体装置および製造方法
JP2022126855A (ja) * 2018-11-16 2022-08-30 富士電機株式会社 半導体装置
WO2020100995A1 (ja) * 2018-11-16 2020-05-22 富士電機株式会社 半導体装置および製造方法
US11854782B2 (en) 2018-11-16 2023-12-26 Fuji Electric Co., Ltd. Semiconductor device and fabrication method
US11715771B2 (en) 2018-11-16 2023-08-01 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method
JPWO2020100997A1 (ja) * 2018-11-16 2021-05-13 富士電機株式会社 半導体装置および製造方法
CN109659236A (zh) * 2018-12-17 2019-04-19 吉林华微电子股份有限公司 降低vdmos恢复时间的工艺方法及其vdmos半导体器件
CN109659236B (zh) * 2018-12-17 2022-08-09 吉林华微电子股份有限公司 降低vdmos恢复时间的工艺方法及其vdmos半导体器件
JP2022126856A (ja) * 2018-12-28 2022-08-30 富士電機株式会社 半導体装置
WO2020138218A1 (ja) * 2018-12-28 2020-07-02 富士電機株式会社 半導体装置および製造方法
JP7099550B2 (ja) 2018-12-28 2022-07-12 富士電機株式会社 半導体装置および製造方法
JP7563425B2 (ja) 2018-12-28 2024-10-08 富士電機株式会社 半導体装置
JPWO2020138218A1 (ja) * 2018-12-28 2021-06-10 富士電機株式会社 半導体装置および製造方法
US11972950B2 (en) 2018-12-28 2024-04-30 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing
JP2021028930A (ja) * 2019-08-09 2021-02-25 富士電機株式会社 半導体装置
JP7404702B2 (ja) 2019-08-09 2023-12-26 富士電機株式会社 半導体装置
US11901419B2 (en) 2019-10-11 2024-02-13 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
WO2021125140A1 (ja) * 2019-12-17 2021-06-24 富士電機株式会社 半導体装置
US12051591B2 (en) 2019-12-17 2024-07-30 Fuji Electric Co., Ltd. Semiconductor device
JPWO2021125140A1 (ja) * 2019-12-17 2021-12-16 富士電機株式会社 半導体装置
WO2021145397A1 (ja) * 2020-01-17 2021-07-22 富士電機株式会社 半導体装置および半導体装置の製造方法
JPWO2021145397A1 (ja) * 2020-01-17 2021-07-22
JP7231066B2 (ja) 2020-01-17 2023-03-01 富士電機株式会社 半導体装置および半導体装置の製造方法
DE112021004531T5 (de) 2021-01-22 2023-06-15 Hitachi Power Semiconductor Device, Ltd. Verfahren zum herstellen einer halbleitervorrichtung, halbleitervorrichtung, halbleitermodul und leistungswandlervorrichtung
WO2022230216A1 (ja) * 2021-04-27 2022-11-03 株式会社デンソー 半導体装置
WO2022265061A1 (ja) * 2021-06-17 2022-12-22 富士電機株式会社 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
DE112017000064T5 (de) 2018-03-29
US20220076956A1 (en) 2022-03-10
US20180166279A1 (en) 2018-06-14
JP6610768B2 (ja) 2019-11-27
US10734230B2 (en) 2020-08-04
JPWO2017146148A1 (ja) 2018-06-07
US20200350170A1 (en) 2020-11-05
CN107851584A (zh) 2018-03-27
CN107851584B (zh) 2021-06-11
US11569092B2 (en) 2023-01-31
US11183388B2 (en) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2017146148A1 (ja) 半導体装置
US10867790B2 (en) Semiconductor device and method for manufacturing the same
CN109075213B (zh) 半导体装置
US10204979B2 (en) Semiconductor device and method of manufacturing the same
JP5900521B2 (ja) 半導体装置
WO2015190579A1 (ja) 半導体装置
WO2021075330A1 (ja) 半導体装置および半導体装置の製造方法
WO2021251011A1 (ja) 半導体装置
JP3952452B2 (ja) 半導体装置の製造方法
JP2012009629A (ja) 半導体装置の製造方法
CN116169162A (zh) Rc-igbt功率器件及制备方法
JP6780335B2 (ja) 逆阻止mos型半導体装置および逆阻止mos型半導体装置の製造方法
KR101811922B1 (ko) 고주파수 전력 다이오드 및 그 제조 방법
WO2021177422A1 (ja) 半導体装置、半導体装置の製造方法および半導体装置を備えた電力変換装置
WO2022265061A1 (ja) 半導体装置および半導体装置の製造方法
JP2002353454A (ja) 半導体装置およびその製造方法
WO2023176887A1 (ja) 半導体装置および半導体装置の製造方法
CN216980575U (zh) 一种快速恢复二极管
WO2021161668A1 (ja) 半導体装置およびその製造方法
CN114068728A (zh) 一种快速恢复二极管及其制备方法
JP2010147366A (ja) 半導体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501760

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112017000064

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756586

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756586

Country of ref document: EP

Kind code of ref document: A1