WO2021161668A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2021161668A1
WO2021161668A1 PCT/JP2020/048125 JP2020048125W WO2021161668A1 WO 2021161668 A1 WO2021161668 A1 WO 2021161668A1 JP 2020048125 W JP2020048125 W JP 2020048125W WO 2021161668 A1 WO2021161668 A1 WO 2021161668A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor device
semiconductor substrate
lifetime control
front surface
Prior art date
Application number
PCT/JP2020/048125
Other languages
English (en)
French (fr)
Inventor
鉄太郎 今川
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2022500251A priority Critical patent/JP7364027B2/ja
Priority to CN202080053170.XA priority patent/CN114144890A/zh
Priority to DE112020003167.5T priority patent/DE112020003167T5/de
Publication of WO2021161668A1 publication Critical patent/WO2021161668A1/ja
Priority to US17/581,965 priority patent/US20220149150A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the same.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2015-138801
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2017-11000
  • Patent Document 3 International Publication No. 2018/030440
  • Patent Document 4 International Publication No. 2019/142706
  • the present invention is a semiconductor device including a transistor portion and a diode portion, and the first conductive type drift region provided on the semiconductor substrate and the transistor portion and the diode portion are more than the drift region.
  • a semiconductor having a first conductive storage region provided on the front surface side of the semiconductor substrate and a first lifetime control region provided on the front surface side of the semiconductor substrate in the transistor portion and the diode portion. Provide the device.
  • the first lifetime control area may be provided on the entire surface of the semiconductor substrate.
  • a second lifetime control area provided on the entire back surface side of the semiconductor substrate may be provided.
  • the semiconductor device may include a plurality of trench portions provided on the front surface of the semiconductor substrate.
  • the depth of the first lifetime control region may be deeper than the depth of the plurality of trench portions.
  • the depth of the storage region may be within the trench depths of the plurality of trench portions.
  • the depth of the first lifetime control region may be deeper than twice the depth of the boundary between the storage region and the drift region.
  • the depth of the first lifetime control region may be 5 ⁇ m or more and 20 ⁇ m or less.
  • Dose of lifetime killer of the first lifetime control region 0.5E10cm -2 or more, it may be at 1E13 cm -2 or less.
  • the first lifetime control region may be injected from the back surface side of the semiconductor substrate.
  • the storage area may have a first storage area provided on the front surface side of the drift area and a second storage area provided below the first storage area.
  • the dose amount of ion implantation in the accumulation region may be 1E12 cm -2 or more and 1E 13 cm -2 or less.
  • the depth of the storage region may be 1 ⁇ m or more and 5 ⁇ m or less.
  • the transistor portion may have a first conductive type emitter region having a higher doping concentration than the drift region.
  • the storage region may be provided in a wider area than the region where the emitter region is provided in a plan view.
  • the transistor portion may have a boundary portion adjacent to the diode portion and a dummy trench portion electrically connected to the emitter electrode.
  • the trench portion at the boundary portion may be a dummy trench portion.
  • the boundary portion includes an accumulation region, a second conductive type base region provided on the front surface side, and a contact region provided on the front surface side of the base region and having a higher doping concentration than the base region. It may have a second conductive type plug region provided on the front surface side of the contact region and having a higher doping concentration than the contact region.
  • the boundary portion does not have to have an emitter region.
  • a second aspect of the present invention is a method for manufacturing a semiconductor device having a transistor portion and a diode portion, wherein a first conductive type drift region is provided on the semiconductor substrate, and the transistor portion and the diode portion drift.
  • a stage in which a first conductive type storage region is provided on the front surface side of the semiconductor substrate with respect to the region, and a stage in which a first lifetime control region is provided on the front surface side of the semiconductor substrate in the transistor portion and the diode portion. Provide a manufacturing method comprising.
  • the step of providing the first lifetime control region may include a step of irradiating impurities from the back surface side of the semiconductor substrate.
  • the step of providing the first lifetime control region may include a step of injecting impurities with a dose amount of 0.5E10 cm-2 or more and 1E12 cm- 2 or less.
  • the step of providing the accumulation region may include a step of ion implantation with a dose amount of 3E12 cm-2 or more and 6E12 cm- 2 or less.
  • FIG. 1A An example of the top view of the semiconductor device 100 according to the Example is shown. It is a figure which shows an example of the aa'cross section in FIG. 1A. It is a figure which shows an example of the bb'cross section in FIG. 1A.
  • An example of the top view of the semiconductor device 100 according to the Example is shown. It is a figure which shows an example of the cc'cross section in FIG. 2A. It is a figure which shows an example of the dd'cross section in FIG. 2A. It is a figure for demonstrating the difference of a characteristic by the number of stages of a storage area 16. This is an example of an enlarged cross-sectional view of the vicinity of the mesa portion 71.
  • An example of the top view of the chip end portion of the semiconductor device 100 is shown. It is an example of the cross-sectional view of the semiconductor device 500 which concerns on a comparative example.
  • one side in the direction parallel to the depth direction of the semiconductor substrate is referred to as “upper” and the other side is referred to as “lower”.
  • the upper surface is referred to as the upper surface and the other surface is referred to as the lower surface.
  • the directions of "top”, “bottom”, “front”, and “back” are not limited to the direction of gravity or the direction of mounting on a substrate or the like when mounting a semiconductor device.
  • Cartesian coordinate axes of the X-axis, the Y-axis, and the Z-axis In the present specification, technical matters may be described using Cartesian coordinate axes of the X-axis, the Y-axis, and the Z-axis.
  • the plane parallel to the upper surface of the semiconductor substrate is defined as the XY plane
  • the depth direction of the semiconductor substrate is defined as the Z axis.
  • the case where the semiconductor substrate is viewed in the Z-axis direction is referred to as a plan view.
  • the first conductive type is N type and the second conductive type is P type, but the first conductive type may be P type and the second conductive type may be N type.
  • the conductive types such as the substrate, the layer, and the region in each embodiment have opposite polarities.
  • n and p mean that electrons or holes are a large number of carriers in the layers and regions marked with n or p, respectively.
  • + and-attached to n and p mean that the doping concentration is higher and the doping concentration is lower than that of the layer or region to which it is not attached, respectively, and ++ is a higher doping concentration than +, ⁇ Means a lower doping concentration than-.
  • the doping concentration refers to the concentration of a donor or acceptorized dopant.
  • the unit is / cm 3.
  • the concentration difference between the donor and the acceptor (that is, the net doping concentration) may be referred to as the doping concentration.
  • the doping concentration can be measured by the SR method.
  • the chemical concentration of the donor and the acceptor may be used as the doping concentration.
  • the doping concentration can be measured by the SIMS method.
  • any of the above may be used as the doping concentration.
  • the peak value of the doping concentration distribution in the doping region may be used as the doping concentration in the doping region.
  • the dose amount means the number of ions per unit area implanted in the wafer when ion implantation is performed. Therefore, the unit is / cm 2 .
  • the dose amount in the semiconductor region can be an integral concentration obtained by integrating the doping concentration over the depth direction of the semiconductor region.
  • the unit of the integrated concentration is / cm 2 . Therefore, the dose amount and the integrated concentration may be treated as the same.
  • the integrated concentration may be an integrated value up to the full width at half maximum, and when it overlaps with the spectrum of another semiconductor region, it may be derived excluding the influence of the other semiconductor region.
  • the high and low doping concentration can be read as the high and low dose amount. That is, when the doping concentration in one region is higher than the doping concentration in the other region, it can be understood that the dose amount in the one region is higher than the dose amount in the other region.
  • FIG. 1A shows an example of a top view of the semiconductor device 100 according to the embodiment.
  • the semiconductor device 100 of this example is a semiconductor chip including a transistor unit 70 and a diode unit 80.
  • the semiconductor device 100 is a reverse conduction IGBT (RC-IGBT: Reverse Conducting IGBT).
  • RC-IGBT Reverse Conducting IGBT
  • the transistor portion 70 is a region in which a collector region 22 provided on the back surface side of the semiconductor substrate 10 is projected onto the upper surface of the semiconductor substrate 10.
  • the collector region 22 has a second conductive type.
  • the collector area 22 of this example is a P + type as an example.
  • the transistor unit 70 includes a transistor such as an IGBT.
  • the transistor portion 70 includes a boundary portion 90 located at the boundary between the transistor portion 70 and the diode portion 80.
  • the diode portion 80 is a region in which the cathode region 82 provided on the back surface side of the semiconductor substrate 10 is projected onto the upper surface of the semiconductor substrate 10.
  • the cathode region 82 has a first conductive type.
  • the cathode region 82 of this example is N + type as an example.
  • the diode section 80 includes a diode such as a freewheeling diode (FWD: Free Wheel Diode) provided adjacent to the transistor section 70 on the upper surface of the semiconductor substrate 10.
  • FWD Free Wheel Diode
  • an edge termination structure portion may be provided in a region on the negative side in the Y-axis direction of the semiconductor device 100 of this example.
  • the edge termination structure relaxes the electric field concentration on the upper surface side of the semiconductor substrate 10.
  • the edge termination structure has, for example, a guard ring, a field plate, a resurf, and a structure in which these are combined. In this example, for convenience, the negative edge in the Y-axis direction will be described, but the same applies to the other edges of the semiconductor device 100.
  • the semiconductor substrate 10 may be a silicon substrate, a silicon carbide substrate, a nitride semiconductor substrate such as gallium nitride, or the like.
  • the semiconductor substrate 10 of this example is a silicon substrate.
  • the gate trench portion 40, the dummy trench portion 30, the emitter region 12, the base region 14, the contact region 15, and the well region 17 are provided on the front surface of the semiconductor substrate 10. Be prepared. Further, the semiconductor device 100 of this example includes an emitter electrode 52 and a gate metal layer 50 provided above the front surface of the semiconductor substrate 10.
  • the emitter electrode 52 is provided above the gate trench portion 40, the dummy trench portion 30, the emitter region 12, the base region 14, the contact region 15, and the well region 17. Further, the gate metal layer 50 is provided above the gate trench portion 40 and the well region 17.
  • the emitter electrode 52 and the gate metal layer 50 are formed of a material containing metal.
  • the emitter electrode 52 may be formed of an aluminum, aluminum-silicon alloy, or aluminum-silicon-copper alloy.
  • At least a portion of the gate metal layer 50 may be formed of aluminum, aluminum-silicon alloy, or aluminum-silicon-copper alloy.
  • the emitter electrode 52 and the gate metal layer 50 may have a barrier metal formed of titanium, a titanium compound, or the like in the lower layer of a region formed of aluminum or the like.
  • the emitter electrode 52 and the gate metal layer 50 are provided separately from each other.
  • the emitter electrode 52 and the gate metal layer 50 are provided above the semiconductor substrate 10 with the interlayer insulating film 38 interposed therebetween.
  • the interlayer insulating film 38 is omitted in FIG. 1A.
  • the interlayer insulating film 38 is provided with a contact hole 54, a contact hole 55, and a contact hole 56 penetrating.
  • the contact hole 55 connects the gate metal layer 50 and the gate conductive portion in the transistor portion 70.
  • a plug made of tungsten or the like may be formed inside the contact hole 55.
  • the contact hole 56 connects the emitter electrode 52 and the dummy conductive portion in the dummy trench portion 30.
  • a plug made of tungsten or the like may be formed inside the contact hole 56.
  • the connecting portion 25 electrically connects the front surface side electrode such as the emitter electrode 52 or the gate metal layer 50 with the semiconductor substrate 10.
  • the connecting portion 25 is provided between the gate metal layer 50 and the gate conductive portion.
  • the connecting portion 25 is also provided between the emitter electrode 52 and the dummy conductive portion.
  • the connecting portion 25 is a conductive material such as polysilicon doped with impurities.
  • the connecting portion 25 is polysilicon (N +) doped with N-type impurities.
  • the connecting portion 25 is provided above the front surface of the semiconductor substrate 10 via an insulating film such as an oxide film.
  • the gate trench portions 40 are arranged at predetermined intervals along a predetermined arrangement direction (X-axis direction in this example).
  • the gate trench portion 40 of this example has two stretched portions 41 and 2 that are parallel to the front surface of the semiconductor substrate 10 and stretched along a stretch direction (Y-axis direction in this example) perpendicular to the arrangement direction. It may have a connecting portion 43 connecting the two stretched portions 41.
  • the connecting portion 43 is formed in a curved shape.
  • the dummy trench portion 30 is a trench portion electrically connected to the emitter electrode 52. Similar to the gate trench portion 40, the dummy trench portions 30 are arranged at predetermined intervals along a predetermined arrangement direction (X-axis direction in this example). Like the gate trench portion 40, the dummy trench portion 30 of this example may have a U-shape on the front surface of the semiconductor substrate 10. That is, the dummy trench portion 30 may have two stretching portions 31 that stretch along the stretching direction and a connecting portion 33 that connects the two stretching portions 31.
  • the transistor portion 70 of this example has a structure in which two gate trench portions 40 and three dummy trench portions 30 are repeatedly arranged. That is, the transistor portion 70 of this example has a gate trench portion 40 and a dummy trench portion 30 at a ratio of 2: 3. For example, the transistor portion 70 has one stretched portion 31 between the two stretched portions 41. Further, the transistor portion 70 has two extending portions 31 adjacent to the gate trench portion 40.
  • the ratio of the gate trench portion 40 and the dummy trench portion 30 is not limited to this example.
  • the ratio of the gate trench portion 40 to the dummy trench portion 30 may be 1: 1 or 2: 4.
  • the transistor portion 70 may have a so-called full gate structure in which the dummy trench portion 30 is not provided and all the gate trench portions 40 are used.
  • the well region 17 is a second conductive type region provided on the front surface side of the semiconductor substrate 10 with respect to the drift region 18 described later.
  • the well region 17 is an example of a well region provided on the edge side of the semiconductor device 100.
  • the well region 17 is P + type as an example.
  • the well region 17 is formed in a predetermined range from the end of the active region on the side where the gate metal layer 50 is provided.
  • the diffusion depth of the well region 17 may be deeper than the depth of the gate trench portion 40 and the dummy trench portion 30.
  • a part of the gate trench portion 40 and the dummy trench portion 30 on the gate metal layer 50 side is formed in the well region 17.
  • the bottoms of the ends of the gate trench portion 40 and the dummy trench portion 30 in the extending direction may be covered with the well region 17.
  • the contact hole 54 is formed in the transistor portion 70 above each region of the emitter region 12 and the contact region 15. Further, the contact hole 54 is provided above the base region 14 in the diode portion 80. The contact hole 54 is provided above the contact area 15 at the boundary 90. The contact hole 54 is provided above the base region 14 in the diode portion 80. None of the contact holes 54 are provided above the well regions 17 provided at both ends in the Y-axis direction. As described above, one or a plurality of contact holes 54 are formed in the interlayer insulating film. The one or more contact holes 54 may be provided by being stretched in the stretching direction. A plug region 19 may be provided below the contact hole 54. The plug area 19 will be described later.
  • the boundary portion 90 is a region provided in the transistor portion 70 and adjacent to the diode portion 80.
  • the boundary 90 has a contact area 15.
  • the boundary portion 90 of this example does not have an emitter region 12.
  • the trench portion of the boundary portion 90 is a dummy trench portion 30.
  • the boundary portion 90 of this example is arranged so that both ends in the X-axis direction are dummy trench portions 30.
  • the mesas portion 71, the mesas portion 91, and the mesas portion 81 are mesas portions provided adjacent to the trench portion in a plane parallel to the front surface of the semiconductor substrate 10.
  • the mesa portion is a portion of the semiconductor substrate 10 sandwiched between two adjacent trench portions, and may be a portion from the front surface of the semiconductor substrate 10 to the depth of the deepest bottom portion of each trench portion. ..
  • the extended portion of each trench portion may be used as one trench portion. That is, the region sandwiched between the two stretched portions may be the mesa portion.
  • the mesa portion 71 is provided adjacent to at least one of the dummy trench portion 30 or the gate trench portion 40 in the transistor portion 70.
  • the mesa portion 71 has a well region 17, an emitter region 12, a base region 14, and a contact region 15 on the front surface of the semiconductor substrate 10.
  • the emitter region 12 and the contact region 15 are alternately provided in the stretching direction.
  • the mesa portion 91 is provided at the boundary portion 90.
  • the mesa portion 91 has a contact region 15 and a well region 17 on the front surface of the semiconductor substrate 10.
  • the mesa portion 81 is provided in the diode portion 80 in a region sandwiched between adjacent dummy trench portions 30.
  • the mesa portion 81 has a base region 14, a contact region 15, and a well region 17 on the front surface of the semiconductor substrate 10.
  • the base region 14 is a second conductive type region provided on the front surface side of the semiconductor substrate 10 in the transistor portion 70 and the diode portion 80.
  • the base region 14 is P-type as an example.
  • the base region 14 may be provided at both ends of the mesa portion 71 and the mesa portion 91 in the Y-axis direction on the front surface of the semiconductor substrate 10. Note that FIG. 1A shows only one end of the base region 14 in the Y-axis direction.
  • the emitter region 12 is a first conductive type region having a higher doping concentration than the drift region 18.
  • the emitter region 12 of this example is N + type as an example.
  • An example of a dopant in the emitter region 12 is arsenic (As).
  • the emitter region 12 is provided in contact with the gate trench portion 40 on the front surface of the mesa portion 71.
  • the emitter region 12 may be provided so as to extend in the X-axis direction from one of the two trench portions sandwiching the mesa portion 71 to the other.
  • the emitter region 12 is also provided below the contact hole 54.
  • the emitter region 12 may or may not be in contact with the dummy trench portion 30.
  • the emitter region 12 of this example is in contact with the dummy trench portion 30.
  • the emitter region 12 does not have to be provided in the mesa portion 91 of the boundary portion 90.
  • the contact region 15 is a second conductive type region having a higher doping concentration than the base region 14.
  • the contact region 15 of this example is a P + type as an example.
  • the contact region 15 of this example is provided on the front surface of the mesa portion 71 and the mesa portion 91.
  • the contact region 15 may be provided in the X-axis direction from one of the two trench portions sandwiching the mesa portion 71 or the mesa portion 91 to the other.
  • the contact region 15 may or may not be in contact with the gate trench portion 40. Further, the contact region 15 may or may not be in contact with the dummy trench portion 30. In this example, the contact region 15 is in contact with the dummy trench portion 30 and the gate trench portion 40.
  • the contact region 15 is also provided below the contact hole 54.
  • the contact region 15 may also be provided in the mesa portion 81.
  • FIG. 1B is a diagram showing an example of a'a'cross section in FIG. 1A.
  • the aa'cross section is an XZ plane that passes through the emitter region 12 in the transistor portion 70.
  • the semiconductor device 100 of this example has a semiconductor substrate 10, an interlayer insulating film 38, an emitter electrode 52, and a collector electrode 24 in the aa'cross section.
  • the emitter electrode 52 is formed above the semiconductor substrate 10 and the interlayer insulating film 38.
  • the drift region 18 is a first conductive type region provided on the semiconductor substrate 10.
  • the drift region 18 of this example is N-type as an example.
  • the drift region 18 may be a region remaining in the semiconductor substrate 10 without forming another doping region. That is, the doping concentration of the drift region 18 may be the doping concentration of the semiconductor substrate 10.
  • the buffer region 20 is a first conductive type region provided below the drift region 18.
  • the buffer area 20 of this example is N-type as an example.
  • the doping concentration in the buffer region 20 is higher than the doping concentration in the drift region 18.
  • the buffer region 20 may function as a field stop layer that prevents the depletion layer extending from the lower surface side of the base region 14 from reaching the second conductive type collector region 22 and the first conductive type cathode region 82.
  • the collector area 22 is provided below the buffer area 20 in the transistor unit 70.
  • the cathode region 82 is provided below the buffer region 20 in the diode portion 80.
  • the boundary between the collector region 22 and the cathode region 82 is the boundary between the transistor portion 70 and the diode portion 80.
  • the collector electrode 24 is formed on the back surface 23 of the semiconductor substrate 10.
  • the collector electrode 24 is made of a conductive material such as metal.
  • the base region 14 is a second conductive type region provided above the drift region 18 in the mesa portion 71, the mesa portion 91, and the mesa portion 81.
  • the base region 14 is provided in contact with the gate trench portion 40.
  • the base region 14 may be provided in contact with the dummy trench portion 30.
  • the emitter region 12 is provided between the base region 14 and the front surface 21 in the mesa portion 71.
  • the emitter region 12 is provided in contact with the gate trench portion 40.
  • the emitter region 12 may or may not be in contact with the dummy trench portion 30.
  • the emitter region 12 does not have to be provided in the mesa portion 91.
  • the contact area 15 is provided above the base area 14 in the mesa portion 91.
  • the contact region 15 is provided in the mesa portion 91 in contact with the gate trench portion 40. In another cross section, the contact region 15 may be provided on the front surface 21 of the mesa portion 71.
  • the plug region 19 is a second conductive type region having a higher doping concentration than the contact region 15.
  • the plug area 19 of this example is a P ++ type as an example.
  • the plug region 19 of this example is provided on the front surface 21. In the mesa portion 91, the plug region 19 is provided above the contact region 15. In the mesa portion 81, the plug region 19 is provided above the base region 14.
  • the plug region 19 may be provided in the mesa portion 91 and the mesa portion 81 so as to extend in the Y-axis direction along the contact hole 54.
  • the storage region 16 is a first conductive type region provided on the front surface 21 side of the semiconductor substrate 10 with respect to the drift region 18.
  • the storage area 16 of this example is N + type as an example.
  • the storage region 16 is provided in the transistor portion 70 and the diode portion 80.
  • the storage area 16 of this example is also provided at the boundary portion 90. As a result, the semiconductor device 100 can avoid the mask shift of the storage region 16.
  • the storage area 16 is provided in contact with the gate trench portion 40.
  • the storage region 16 may or may not be in contact with the dummy trench portion 30.
  • the doping concentration in the accumulation region 16 is higher than the doping concentration in the drift region 18.
  • the dose amount of ion implantation in the accumulation region 16 may be 1E12 cm -2 or more and 1E 13 cm -2 or less. Further, the ion implantation dose amount of the accumulation region 16 may be 3E12 cm-2 or more and 6E12 cm- 2 or less.
  • the carrier injection promoting effect IE effect
  • E is meant a power of 10, for example, 1E12 cm -2 refers to 1 ⁇ 10 12 cm -2.
  • One or more gate trench portions 40 and one or more dummy trench portions 30 are provided on the front surface 21.
  • Each trench portion is provided from the front surface 21 to the drift region 18.
  • each trench portion also penetrates these regions and reaches the drift region 18.
  • the penetration of the trench portion through the doping region is not limited to those manufactured in the order of forming the doping region and then forming the trench portion. Those in which a doping region is formed between the trench portions after the trench portion is formed are also included in those in which the trench portion penetrates the doping region.
  • the gate trench portion 40 has a gate trench, a gate insulating film 42, and a gate conductive portion 44 formed on the front surface 21.
  • the gate insulating film 42 is formed so as to cover the inner wall of the gate trench.
  • the gate insulating film 42 may be formed by oxidizing or nitriding the semiconductor on the inner wall of the gate trench.
  • the gate conductive portion 44 is formed inside the gate trench inside the gate insulating film 42.
  • the gate insulating film 42 insulates the gate conductive portion 44 and the semiconductor substrate 10.
  • the gate conductive portion 44 is formed of a conductive material such as polysilicon.
  • the gate trench portion 40 is covered with an interlayer insulating film 38 on the front surface 21.
  • the gate conductive portion 44 includes a region facing the adjacent base region 14 on the mesa portion 71 side with the gate insulating film 42 interposed therebetween in the depth direction of the semiconductor substrate 10.
  • a predetermined voltage is applied to the gate conductive portion 44, a channel due to an electron inversion layer is formed on the surface layer of the interface in the base region 14 in contact with the gate trench.
  • the dummy trench portion 30 may have the same structure as the gate trench portion 40.
  • the dummy trench portion 30 has a dummy trench formed on the front surface 21 side, a dummy insulating film 32, and a dummy conductive portion 34.
  • the dummy insulating film 32 is formed so as to cover the inner wall of the dummy trench.
  • the dummy conductive portion 34 is formed inside the dummy trench and inside the dummy insulating film 32.
  • the dummy insulating film 32 insulates the dummy conductive portion 34 and the semiconductor substrate 10.
  • the dummy trench portion 30 is covered with an interlayer insulating film 38 on the front surface 21.
  • the interlayer insulating film 38 is provided on the front surface 21.
  • An emitter electrode 52 is provided above the interlayer insulating film 38.
  • the interlayer insulating film 38 is provided with one or a plurality of contact holes 54 for electrically connecting the emitter electrode 52 and the semiconductor substrate 10. Similarly, the contact hole 55 and the contact hole 56 may be provided so as to penetrate the interlayer insulating film 38.
  • the lifetime control region 150 is an region in which a lifetime killer is intentionally formed by injecting impurities into the semiconductor substrate 10 or the like.
  • the lifetime killer is the carrier's recombination center.
  • the lifetime killer may be a crystal defect.
  • the lifetime killer may be a hole, a double hole, a composite defect between these and an element constituting the semiconductor substrate 10, or a dislocation.
  • the lifetime killer may be a rare gas element such as helium or neon, a metal element such as platinum, or the like.
  • the lifetime control region 150 can be formed by injecting helium or the like into the semiconductor substrate 10.
  • the lifetime control region 150 is provided on the front surface 21 side of the semiconductor substrate 10.
  • the lifetime control region 150 is provided in both the transistor portion 70 and the diode portion 80.
  • the lifetime control region 150 may be formed by injecting impurities from the front surface 21 side, or may be formed by injecting impurities from the back surface 23 side.
  • the lifetime control area 150 is an example of a first lifetime control area provided on the front surface 21 side.
  • the lifetime control region 150 of this example is provided on the entire surface of the semiconductor substrate 10. Therefore, the lifetime control region 150 can be formed without using a mask. Dose of the impurity for forming the lifetime control region 150, 0.5E10cm -2 or more, it may be at 1E13 cm -2 or less. Further, the dose amount of impurities for forming the lifetime control region 150 may be 5E10 cm-2 or more and 5E11 cm- 2 or less.
  • the lifetime control region 150 of this example is formed by injection from the back surface 23 side.
  • the lifetime control region 150 is formed by irradiating helium from the back surface 23 side. Thereby, the influence on the front surface 21 side of the semiconductor device 100 can be avoided.
  • whether the lifetime control region 150 is formed by injection from the front surface 21 side or by injection from the back surface 23 side is determined by the SR method or the measurement of the leak current on the front surface. It can be determined by acquiring the state of the 21 side.
  • the lifetime control area 160 is provided on the back surface 23 side of the semiconductor substrate 10.
  • the lifetime control region 160 is provided in both the transistor portion 70 and the diode portion 80.
  • the lifetime control area 160 is provided on the front surface 21 side of the buffer area 20.
  • the lifetime control area 160 may be provided in the buffer area 20.
  • the lifetime control area 160 is provided on the entire surface of the semiconductor substrate 10 on the back surface 23 side. That is, the lifetime control region 160 can be formed without using a mask.
  • the lifetime control region 160 may be formed by any of the methods for forming the lifetime control region 150. It may be formed by injecting impurities from the back surface 23 side of the semiconductor substrate 10.
  • the lifetime control region 160 is an example of a second lifetime control region provided on the back surface 23 side of the semiconductor substrate 10.
  • FIG. 1C is a diagram showing an example of a bb'cross section in FIG. 1A.
  • the bb'cross section is an XZ plane that passes through the contact region 15 in the transistor portion 70.
  • the mesa portion 71 has a base region 14, a contact region 15, a storage region 16, and a plug region 19.
  • the mesa portion 91 has a base region 14, a contact region 15, a storage region 16, and a plug region 19 as in the case of the aa'cross section.
  • the mesa portion 71 has the same structure as the mesa portion 91.
  • the mesa portion 81 has a base region 14, a storage region 16, and a plug region 19 as in the case of the aa'cross section.
  • the lifetime control region 150 and the lifetime control region 160 are provided in both the transistor portion 70 and the diode portion 80, as in the case of the aa'cross section.
  • the semiconductor device 100 of this example includes the lifetime control region 150 in both the transistor section 70 and the diode section 80, the holes are uniformly removed at the time of turn-off, and the carrier balance between the transistor section 70 and the diode section 80 is balanced. Improve. Then, the RBSOA resistance and the short-circuit resistance are improved, and the latch-up resistance is also improved.
  • FIG. 2A shows an example of a top view of the semiconductor device 100 according to the embodiment.
  • the arrangement of the dummy trench portion 30 and the gate trench portion 40 is different from that of the semiconductor device 100 of FIG. 1A.
  • the differences from the embodiment of FIG. 1A will be particularly described.
  • the ratio of the dummy trench portion 30 is larger than that in the case of the embodiment of FIG. 1A.
  • the gate trench portion 40 and the dummy trench portion 30 are repeatedly arranged so that the ratio of the gate trench portion 40 to the dummy trench portion 30 is 2: 4.
  • a set of dummy trench portions 30 connected by the connecting portion 33 is provided inside a set of gate trench portions 40 connected by the connecting portion 43.
  • FIG. 2B is a diagram showing an example of a cc'cross section in FIG. 2A.
  • the cc'cross section is an XZ plane that passes through the emitter region 12 in the transistor portion 70.
  • the semiconductor device 100 of this example differs from the semiconductor device 100 of FIG. 1B in that it includes a two-stage storage region 16 including a storage region 16a and a storage region 16b. In this example, the differences from the embodiment of FIG. 1B will be particularly described.
  • the storage area 16a and the storage area 16b are provided in both the transistor section 70 and the diode section 80.
  • the doping concentrations of the accumulation region 16a and the accumulation region 16b may be the same or different.
  • the doping concentration in the storage region 16a may be higher or lower than the doping concentration in the storage region 16b.
  • the doping concentration of the accumulation region 16 may refer to the peak value of the doping concentration of each accumulation region 16.
  • the storage region 16a is a first storage region provided on the front surface 21 side of the drift region 18.
  • the storage region 16a is provided below the base region 14.
  • the dose amount of ion implantation in the accumulation region 16a is 1E12cm- 2 or more and 1E13cm- 2 or less.
  • the storage region 16a is formed with a dose amount of 3E12cm-2 and an acceleration energy of 2.6MeV.
  • the storage area 16b is a second storage area provided below the storage area 16a.
  • the dose amount of ion implantation in the accumulation region 16b is 1E12cm- 2 or more and 1E13cm- 2 or less.
  • the storage region 16b is formed with a dose amount of 3E12cm-2 and an acceleration energy of 3.9MeV.
  • the drift region 18 may be between the storage region 16a and the storage region 16b.
  • the semiconductor device 100 of this example includes a two-stage storage area 16, it may include a three-stage or more storage area 16.
  • FIG. 2C is a diagram showing an example of a dd'cross section in FIG. 2A.
  • the dd'cross section is an XZ plane that passes through the contact region 15 in the transistor portion 70.
  • the semiconductor device 100 of this example differs from the semiconductor device 100 of FIG. 1C in that it includes a storage region 16a and a storage region 16b. In this example, the differences from the embodiment of FIG. 1C will be particularly described.
  • the storage region 16a and the storage region 16b are provided in both the transistor portion 70 and the diode portion 80, as in the case of the cc'cross section.
  • the storage area 16a and the storage area 16b may be provided under the same conditions as the cc'cross section.
  • the semiconductor device 100 By providing the two-stage storage region 16 in the semiconductor device 100, the IE effect can be improved and the on-resistance of the transistor portion 70 can be easily reduced. Further, the semiconductor device 100 can suppress a decrease in withstand capacity by providing the lifetime control region 150 on the entire surface. Therefore, the semiconductor device 100 of this example can suppress a decrease in withstand capacity while reducing the on-resistance.
  • FIG. 2D is a diagram for explaining the difference in characteristics depending on the number of stages of the storage area 16.
  • the vertical axis shows the turn-off loss Eoff (mJ), and the horizontal axis shows the collector-emitter saturation voltage Vce (sat) (V).
  • Curve 101 shows the characteristics when the storage area 16 has one stage. That is, the curve 101 corresponds to the semiconductor device 100 of FIGS. 1A to 1C.
  • the curve 102 shows the characteristics when the storage area 16 has two stages. Curve 102 corresponds to the semiconductor device 100 of FIGS. 2A-2C.
  • the doping concentration is set so that the total doping concentration of the two-stage storage region 16a and the storage region 16b is equal to the doping concentration of the storage region 16 in the case of the first stage. Further, the doping concentration of the accumulation region 16a is the same as the doping concentration of the accumulation region 16b. For example, when the doping concentration of the one-stage accumulation region 16 is 1E12cm- 3 , the corresponding two-stage doping concentration is 0.5E12cm- 3 , respectively. The doping concentration corresponding to each plot is shown in the figure.
  • the plot of this example shows the cases where the doping concentration of the accumulation region 16 is 1E12cm- 3 , 3E12cm- 3 , 6E12cm- 3 , 1E13cm- 3 and 1.2E13cm- 3 , respectively.
  • the collector-emitter saturation voltage Vce (sat) tends to decrease as the doping concentration in the storage region 16 increases. However, in the region where the doping concentration of the accumulation region 16 is high, the turn-off loss Off tends to increase due to the IE effect.
  • the curve 101 and the curve 102 overlap, and the difference in characteristics is small.
  • the turn-off loss Eoff of the curve 102 is smaller than that of the curve 101.
  • the storage region 16 when the storage region 16 is configured in two stages, it becomes easier to reduce the turn-off loss Eoff while suppressing the collector-emitter saturation voltage Vce (sat). Further, in the semiconductor device 100, when the storage region 16 is configured in two stages, the doping concentration of the storage region 16 can be increased without increasing the turn-off loss Off.
  • FIG. 3 is an example of an enlarged cross-sectional view of the vicinity of the mesa portion 71.
  • the mesa portion 71 sandwiched between the dummy trench portion 30 and the gate trench portion 40 is shown.
  • the depth D1 is the depth of the trench of the dummy trench portion 30 or the gate trench portion 40.
  • the depth D1 may be the depth of the lower end of the dummy insulating film 32 or the gate insulating film 42.
  • the depth D1 is appropriately set according to the characteristics of the semiconductor device 100 and the like.
  • Depth D2 is the depth of the lifetime control area 150 from the front surface 21.
  • the depth D2 of this example is deeper than the depth D1. That is, the lifetime control region 150 is provided below the dummy trench portion 30 and the gate trench portion 40.
  • the depth D2 is 5 ⁇ m or more and 20 ⁇ m or less.
  • Depth D3 is the depth of the accumulation region 16 from the front surface 21.
  • the depth D3 is the depth of the lower end of the storage area 16.
  • the depth D3 may be the depth of the lower end of the storage area 16 provided at the lowermost position.
  • the lower end of the storage area 16 is the depth of the boundary between the storage area 16 and the drift area 18. That is, the lower end of the accumulation region 16 is a position where the doping concentration of the accumulation region 16 becomes the doping concentration of the drift region 18.
  • the depth D3 may be the depth of the peak position of the doping concentration in the accumulation region 16.
  • the depth D3 is 1 ⁇ m or more and 5 ⁇ m or less. In one example, the depth D3 is 3 ⁇ m.
  • the depth D2 is deeper than the depth D1.
  • the depth D2 may be deeper than twice the depth D3.
  • an interval having a depth of D3 or more is provided between the lifetime control area 150 and the storage area 16.
  • the depth of the lifetime control area 150 from the front surface 21 is within 20 ⁇ m. In one example, the depth of the lifetime control region 150 from the front surface 21 is 10 ⁇ m.
  • Depth D3 is within the trench depth of the trench portion.
  • the term "within the trench depth” includes a case where the depth is the same as the trench depth and a case where the depth is shallower than the trench depth.
  • the storage region 16 does not have to be provided at a position deeper than the trench portion. That is, the depth D3 ⁇ the depth D1 holds.
  • FIG. 4 shows an example of a top view of the chip end portion of the semiconductor device 100.
  • top views of the emitter electrodes 52 at the negative end portions in the X-axis direction and the Y-axis direction are shown.
  • the emitter electrode 52 is provided so as to cover the dummy trench portion 30 and the gate trench portion 40.
  • the gate trench portion 40 of this example is electrically connected to the gate metal layer 50 via a gate runner 45.
  • the gate runner 45 electrically connects the gate metal layer 50 and the gate trench portion 40 via a contact hole provided in the interlayer insulating film 38.
  • the gate runner 45 of this example is electrically connected to the gate conductive portion 44 on the front surface 21.
  • the gate runner 45 is not connected to the dummy conductive portion in the dummy trench portion 30.
  • the gate runner 45 is made of polysilicon doped with impurities or the like.
  • Region R12 indicates a region in which the emitter region 12 is repeatedly provided with the contact region 15. That is, it is not necessary that the emitter region 12 is provided on the entire surface of the region R12.
  • the outer circumference of the region R12 is defined by the outermost emitter region 12 in a plan view.
  • the region R12 functions as an active region through which the main current of the transistor unit 70 flows.
  • Area R16 is an area provided with the storage area 16.
  • the storage region 16 may be provided on the entire surface. However, even in the region R16, the storage region 16 does not have to be provided in the region where the dummy trench portion 30 and the gate trench portion 40 are provided.
  • the region R16 of this example is provided in a wider range than the region R12 in a plan view.
  • Area R15 is an area provided with the contact area 15.
  • the region R15 may include a region in which the emitter region 12 and the contact region 15 are repeatedly provided, as in the region R12.
  • the plug region 19 may be repeatedly provided in the region R15.
  • the region R16 is provided so as to cover the region R12. As a result, the active region of the transistor portion 70 is less likely to be affected by the mask shift of the storage region 16. Further, in the semiconductor device 100, the region R15 is provided so as to cover the region R16. Further, the lifetime control area 150 is provided so that the lifetime control area 150 covers the area R15, so that the influence of the mask shift of the lifetime control area 150 can be avoided. When the lifetime control region 150 is provided on the entire surface of the semiconductor substrate 10, the influence of the mask deviation of the lifetime control region 150 does not occur.
  • FIG. 5 is an example of a cross-sectional view of the semiconductor device 500 according to the comparative example.
  • a cross-sectional view of a boundary portion between the transistor portion 570 and the diode portion 580 included in the semiconductor device 500 is shown.
  • the semiconductor device 500 includes a storage region 516 in the transistor unit 570.
  • the semiconductor device 500 does not include the storage region 516 in the diode portion 580, and may be affected by the mask deviation of the storage region 516.
  • the semiconductor device 500 includes a lifetime control region 550 provided on the front surface 21 side of the semiconductor substrate 10.
  • the semiconductor device 500 includes a lifetime control region 560 provided on the back surface 23 side of the semiconductor substrate 10.
  • the lifetime control area 550 is provided in the diode section 580, but is not provided in the transistor section 570. That is, the lifetime control region 550 is formed by partial irradiation instead of full irradiation of impurities. A mask such as a resist mask or a metal mask is required for partial irradiation of the lifetime control region 550. Therefore, the semiconductor device 500 may be affected by the mask deviation of the lifetime control region 550.
  • the transistor unit 70 and the diode unit 80 are provided with the lifetime control region 150, mask deviation can be avoided. Further, since it is not necessary to form a mask for forming the lifetime control region 150, the process process can be simplified. In the semiconductor device 100, the holes are uniformly removed at the time of turn-off, and the carrier balance between the transistor portion 70 and the diode portion 80 is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

トランジスタ部とダイオード部とを備える半導体装置であって、半導体基板に設けられた第1導電型のドリフト領域と、トランジスタ部およびダイオード部において、ドリフト領域よりも半導体基板のおもて面側に設けられた第1導電型の蓄積領域と、トランジスタ部およびダイオード部において、半導体基板のおもて面側に設けられた第1ライフタイム制御領域とを備える半導体装置を提供する。

Description

半導体装置およびその製造方法
 本発明は、半導体装置およびその製造方法に関する。
 従来、トランジスタ部およびダイオード部を有する半導体装置が知られている(例えば、特許文献1-4参照)。
 特許文献1 特開2015-138801号公報
 特許文献2 特開2017-11000号公報
 特許文献3 国際公開第2018/030440号
 特許文献4 国際公開第2019/142706号
解決しようとする課題
 従来の半導体装置では、トランジスタ部とダイオード部とのキャリアのバランスを改善することが好ましい。
一般的開示
 本発明の第1の態様においては、トランジスタ部とダイオード部とを備える半導体装置であって、半導体基板に設けられた第1導電型のドリフト領域と、トランジスタ部およびダイオード部において、ドリフト領域よりも半導体基板のおもて面側に設けられた第1導電型の蓄積領域と、トランジスタ部およびダイオード部において、半導体基板のおもて面側に設けられた第1ライフタイム制御領域とを備える半導体装置を提供する。
 第1ライフタイム制御領域は、半導体基板の全面に設けられてよい。
 半導体基板の裏面側の全面に設けられた第2ライフタイム制御領域を備えてよい。
 半導体装置は、半導体基板のおもて面に設けられた複数のトレンチ部を備えてよい。第1ライフタイム制御領域の深さは、複数のトレンチ部の深さよりも深くてよい。
 蓄積領域の深さは、複数のトレンチ部のトレンチ深さ以内であってよい。
 第1ライフタイム制御領域の深さは、蓄積領域のドリフト領域との境界の深さの2倍よりも深くてよい。
 第1ライフタイム制御領域の深さは、5μm以上、20μm以内であってよい。
 第1ライフタイム制御領域のライフタイムキラーのドーズ量は、0.5E10cm-2以上、1E13cm-2以下であってよい。
 第1ライフタイム制御領域は、半導体基板の裏面側から注入されていてよい。
 蓄積領域は、ドリフト領域よりもおもて面側に設けられた第1の蓄積領域と、第1の蓄積領域の下方に設けられた第2の蓄積領域とを有してよい。
 蓄積領域のイオン注入のドーズ量は、1E12cm-2以上、1E13cm-2以下であってよい。
 蓄積領域の深さは、1μm以上、5μm以下であってよい。
 トランジスタ部は、ドリフト領域よりも高ドーピング濃度である第1導電型のエミッタ領域を有してよい。蓄積領域は、平面視において、エミッタ領域が設けられた領域よりも広範囲に設けられてよい。
 トランジスタ部は、ダイオード部と隣接する境界部と、エミッタ電極と電気的に接続されたダミートレンチ部とを有してよい。境界部のトレンチ部は、ダミートレンチ部であってよい。
 境界部は、蓄積領域と、おもて面側に設けられた第2導電型のベース領域と、ベース領域よりもおもて面側に設けられ、ベース領域よりもドーピング濃度の高いコンタクト領域と、コンタクト領域のおもて面側に設けられ、コンタクト領域よりもドーピング濃度の高い第2導電型のプラグ領域とを有してよい。
 境界部は、エミッタ領域を有さなくてよい。
 本発明の第2の態様においては、トランジスタ部とダイオード部とを有する半導体装置の製造方法であって、半導体基板に第1導電型のドリフト領域を設ける段階と、トランジスタ部およびダイオード部において、ドリフト領域よりも半導体基板のおもて面側に第1導電型の蓄積領域を設ける段階と、トランジスタ部およびダイオード部において、半導体基板のおもて面側に第1ライフタイム制御領域を設ける段階とを備える製造方法を提供する。
 第1ライフタイム制御領域を設ける段階は、半導体基板の裏面側から不純物を照射する段階を有してよい。
 第1ライフタイム制御領域を設ける段階は、0.5E10cm-2以上、1E12cm-2以下のドーズ量で不純物を注入する段階を有してよい。
 蓄積領域を設ける段階は、3E12cm-2以上、6E12cm-2以下のドーズ量でイオン注入する段階を有してよい。
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
実施例に係る半導体装置100の上面図の一例を示す。 図1Aにおけるa-a'断面の一例を示す図である。 図1Aにおけるb-b'断面の一例を示す図である。 実施例に係る半導体装置100の上面図の一例を示す。 図2Aにおけるc-c'断面の一例を示す図である。 図2Aにおけるd-d'断面の一例を示す図である。 蓄積領域16の段数による特性の違いを説明するための図である。 メサ部71の近傍を拡大した断面図の一例である。 半導体装置100のチップ端部における上面図の一例を示す。 比較例に係る半導体装置500の断面図の一例である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 本明細書においては、半導体基板の深さ方向と平行な方向における一方の側を「上」、他方の側を「下」と称する。基板、層またはその他の部材の2つの主面のうち、一方の面を上面、他方の面を下面と称する。「上」、「下」、「おもて」、「裏」の方向は重力方向、または、半導体装置の実装時における基板等への取り付け方向に限定されない。
 本明細書では、X軸、Y軸およびZ軸の直交座標軸を用いて技術的事項を説明する場合がある。本明細書では、半導体基板の上面と平行な面をXY面とし、半導体基板の深さ方向をZ軸とする。なお、本明細書において、Z軸方向に半導体基板を視た場合について平面視と称する。
 各実施例においては、第1導電型をN型、第2導電型をP型とした例を示しているが、第1導電型をP型、第2導電型をN型としてもよい。この場合、各実施例における基板、層、領域等の導電型は、それぞれ逆の極性となる。
 本明細書では、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれ、それが付されていない層や領域よりも高ドーピング濃度および低ドーピング濃度であることを意味し、++は+よりも高ドーピング濃度、--は-よりも低ドーピング濃度であることを意味する。
 本明細書においてドーピング濃度とは、ドナーまたはアクセプタ化したドーパントの濃度を指す。したがって、その単位は、/cmである。本明細書において、ドナーおよびアクセプタの濃度差(すなわちネットドーピング濃度)をドーピング濃度とする場合がある。この場合、ドーピング濃度はSR法で測定できる。また、ドナーおよびアクセプタの化学濃度をドーピング濃度としてもよい。この場合、ドーピング濃度はSIMS法で測定できる。特に限定していなければ、ドーピング濃度として、上記のいずれを用いてもよい。特に限定していなければ、ドーピング領域におけるドーピング濃度分布のピーク値を、当該ドーピング領域におけるドーピング濃度としてよい。
 また、本明細書においてドーズ量とは、イオン注入を行う際に、ウェーハに注入される単位面積あたりのイオンの個数をいう。したがって、その単位は、/cmである。なお、半導体領域のドーズ量は、その半導体領域の深さ方向にわたってドーピング濃度を積分した積分濃度とすることができる。その積分濃度の単位は、/cmである。したがって、ドーズ量と積分濃度とを同じものとして扱ってよい。積分濃度は、半値幅までの積分値としてもよく、他の半導体領域のスペクトルと重なる場合には、他の半導体領域の影響を除いて導出してよい。
 よって、本明細書では、ドーピング濃度の高低をドーズ量の高低として読み替えることができる。即ち、一の領域のドーピング濃度が他の領域のドーピング濃度よりも高い場合、当該一の領域のドーズ量が他の領域のドーズ量よりも高いものと理解することができる。
 図1Aは、実施例に係る半導体装置100の上面図の一例を示す。本例の半導体装置100は、トランジスタ部70およびダイオード部80を備える半導体チップである。例えば、半導体装置100は、逆導通IGBT(RC-IGBT:Reverse Conducting IGBT)である。
 トランジスタ部70は、半導体基板10の裏面側に設けられたコレクタ領域22を半導体基板10の上面に投影した領域である。コレクタ領域22は、第2導電型を有する。本例のコレクタ領域22は、一例としてP+型である。トランジスタ部70は、IGBT等のトランジスタを含む。トランジスタ部70は、トランジスタ部70とダイオード部80の境界に位置する境界部90を含む。
 ダイオード部80は、半導体基板10の裏面側に設けられたカソード領域82を半導体基板10の上面に投影した領域である。カソード領域82は、第1導電型を有する。本例のカソード領域82は、一例としてN+型である。ダイオード部80は、半導体基板10の上面においてトランジスタ部70と隣接して設けられた還流ダイオード(FWD:Free Wheel Diode)等のダイオードを含む。
 図1Aにおいては、半導体装置100のエッジ側であるチップ端部周辺の領域を示しており、他の領域を省略している。例えば、本例の半導体装置100のY軸方向の負側の領域には、エッジ終端構造部が設けられてよい。エッジ終端構造部は、半導体基板10の上面側の電界集中を緩和する。エッジ終端構造部は、例えばガードリング、フィールドプレート、リサーフおよびこれらを組み合わせた構造を有する。なお、本例では、便宜上、Y軸方向の負側のエッジについて説明するものの、半導体装置100の他のエッジについても同様である。
 半導体基板10は、シリコン基板であってよく、炭化シリコン基板であってよく、窒化ガリウム等の窒化物半導体基板等であってもよい。本例の半導体基板10は、シリコン基板である。
 本例の半導体装置100は、半導体基板10のおもて面において、ゲートトレンチ部40と、ダミートレンチ部30と、エミッタ領域12と、ベース領域14と、コンタクト領域15と、ウェル領域17とを備える。また、本例の半導体装置100は、半導体基板10のおもて面の上方に設けられたエミッタ電極52およびゲート金属層50を備える。
 エミッタ電極52は、ゲートトレンチ部40、ダミートレンチ部30、エミッタ領域12、ベース領域14、コンタクト領域15およびウェル領域17の上方に設けられている。また、ゲート金属層50は、ゲートトレンチ部40およびウェル領域17の上方に設けられている。
 エミッタ電極52およびゲート金属層50は、金属を含む材料で形成される。例えば、エミッタ電極52の少なくとも一部の領域は、アルミニウム、アルミニウム‐シリコン合金、またはアルミニウム‐シリコン-銅合金で形成されてよい。ゲート金属層50の少なくとも一部の領域は、アルミニウム、アルミニウム‐シリコン合金、またはアルミニウム‐シリコン-銅合金で形成されてよい。エミッタ電極52およびゲート金属層50は、アルミニウム等で形成された領域の下層にチタンやチタン化合物等で形成されたバリアメタルを有してよい。エミッタ電極52およびゲート金属層50は、互いに分離して設けられる。
 エミッタ電極52およびゲート金属層50は、層間絶縁膜38を挟んで、半導体基板10の上方に設けられる。層間絶縁膜38は、図1Aでは省略されている。層間絶縁膜38には、コンタクトホール54、コンタクトホール55およびコンタクトホール56が貫通して設けられている。
 コンタクトホール55は、ゲート金属層50とトランジスタ部70内のゲート導電部とを接続する。コンタクトホール55の内部には、タングステン等で形成されたプラグが形成されてもよい。
 コンタクトホール56は、エミッタ電極52とダミートレンチ部30内のダミー導電部とを接続する。コンタクトホール56の内部には、タングステン等で形成されたプラグが形成されてもよい。
 接続部25は、エミッタ電極52またはゲート金属層50等のおもて面側電極と、半導体基板10とを電気的に接続する。一例において、接続部25は、ゲート金属層50とゲート導電部との間に設けられる。接続部25は、エミッタ電極52とダミー導電部との間にも設けられている。接続部25は、不純物がドープされたポリシリコン等の、導電性を有する材料である。ここでは、接続部25は、N型の不純物がドープされたポリシリコン(N+)である。接続部25は、酸化膜等の絶縁膜等を介して、半導体基板10のおもて面の上方に設けられる。
 ゲートトレンチ部40は、所定の配列方向(本例ではX軸方向)に沿って所定の間隔で配列される。本例のゲートトレンチ部40は、半導体基板10のおもて面に平行であって配列方向と垂直な延伸方向(本例ではY軸方向)に沿って延伸する2つの延伸部分41と、2つの延伸部分41を接続する接続部分43を有してよい。
 接続部分43は、少なくとも一部が曲線状に形成されることが好ましい。ゲートトレンチ部40の2つの延伸部分41の端部を接続することで、延伸部分41の端部における電界集中を緩和できる。ゲートトレンチ部40の接続部分43において、ゲート金属層50がゲート導電部と接続されてよい。
 ダミートレンチ部30は、エミッタ電極52と電気的に接続されたトレンチ部である。ダミートレンチ部30は、ゲートトレンチ部40と同様に、所定の配列方向(本例ではX軸方向)に沿って所定の間隔で配列される。本例のダミートレンチ部30は、ゲートトレンチ部40と同様に、半導体基板10のおもて面においてU字形状を有してよい。即ち、ダミートレンチ部30は、延伸方向に沿って延伸する2つの延伸部分31と、2つの延伸部分31を接続する接続部分33を有してよい。
 本例のトランジスタ部70は、2つのゲートトレンチ部40と3つのダミートレンチ部30を繰り返し配列させた構造を有する。即ち、本例のトランジスタ部70は、2:3の比率でゲートトレンチ部40とダミートレンチ部30を有している。例えば、トランジスタ部70は、2本の延伸部分41の間に1本の延伸部分31を有する。また、トランジスタ部70は、ゲートトレンチ部40と隣接して、2本の延伸部分31を有している。
 但し、ゲートトレンチ部40とダミートレンチ部30の比率は本例に限定されない。ゲートトレンチ部40とダミートレンチ部30の比率は、1:1であってもよく、2:4であってもよい。また、トランジスタ部70においてダミートレンチ部30を設けず、全てゲートトレンチ部40としたいわゆるフルゲート構造としてもよい。
 ウェル領域17は、後述するドリフト領域18よりも半導体基板10のおもて面側に設けられた第2導電型の領域である。ウェル領域17は、半導体装置100のエッジ側に設けられるウェル領域の一例である。ウェル領域17は、一例としてP+型である。ウェル領域17は、ゲート金属層50が設けられる側の活性領域の端部から、予め定められた範囲で形成される。ウェル領域17の拡散深さは、ゲートトレンチ部40およびダミートレンチ部30の深さよりも深くてよい。ゲートトレンチ部40およびダミートレンチ部30の、ゲート金属層50側の一部の領域は、ウェル領域17に形成される。ゲートトレンチ部40およびダミートレンチ部30の延伸方向の端の底は、ウェル領域17に覆われてよい。
 コンタクトホール54は、トランジスタ部70において、エミッタ領域12およびコンタクト領域15の各領域の上方に形成される。また、コンタクトホール54は、ダイオード部80において、ベース領域14の上方に設けられる。コンタクトホール54は、境界部90において、コンタクト領域15の上方に設けられる。コンタクトホール54は、ダイオード部80において、ベース領域14の上方に設けられる。いずれのコンタクトホール54も、Y軸方向両端に設けられたウェル領域17の上方には設けられていない。このように、層間絶縁膜には、1又は複数のコンタクトホール54が形成されている。1又は複数のコンタクトホール54は、延伸方向に延伸して設けられてよい。なお、コンタクトホール54の下方には、プラグ領域19が設けられてよい。プラグ領域19については後述する。
 境界部90は、トランジスタ部70に設けられ、ダイオード部80と隣接する領域である。境界部90は、コンタクト領域15を有する。本例の境界部90は、エミッタ領域12を有さない。一例において、境界部90のトレンチ部は、ダミートレンチ部30である。本例の境界部90は、X軸方向における両端がダミートレンチ部30となるように配置されている。
 メサ部71、メサ部91およびメサ部81は、半導体基板10のおもて面と平行な面内において、トレンチ部に隣接して設けられたメサ部である。メサ部とは、隣り合う2つのトレンチ部に挟まれた半導体基板10の部分であって、半導体基板10のおもて面から、各トレンチ部の最も深い底部の深さまでの部分であってよい。各トレンチ部の延伸部分を1つのトレンチ部としてよい。即ち、2つの延伸部分に挟まれる領域をメサ部としてよい。
 メサ部71は、トランジスタ部70において、ダミートレンチ部30またはゲートトレンチ部40の少なくとも1つに隣接して設けられる。メサ部71は、半導体基板10のおもて面において、ウェル領域17と、エミッタ領域12と、ベース領域14と、コンタクト領域15とを有する。メサ部71では、エミッタ領域12およびコンタクト領域15が延伸方向において交互に設けられている。
 メサ部91は、境界部90に設けられている。メサ部91は、半導体基板10のおもて面において、コンタクト領域15およびウェル領域17を有する。
 メサ部81は、ダイオード部80において、隣り合うダミートレンチ部30に挟まれた領域に設けられる。メサ部81は、半導体基板10のおもて面において、ベース領域14と、コンタクト領域15と、ウェル領域17とを有する。
 ベース領域14は、トランジスタ部70およびダイオード部80において、半導体基板10のおもて面側に設けられた第2導電型の領域である。ベース領域14は、一例としてP-型である。ベース領域14は、半導体基板10のおもて面において、メサ部71およびメサ部91のY軸方向における両端部に設けられてよい。なお、図1Aは、当該ベース領域14のY軸方向の一方の端部のみを示している。
 エミッタ領域12は、ドリフト領域18よりもドーピング濃度の高い第1導電型の領域である。本例のエミッタ領域12は、一例としてN+型である。エミッタ領域12のドーパントの一例はヒ素(As)である。エミッタ領域12は、メサ部71のおもて面において、ゲートトレンチ部40と接して設けられる。エミッタ領域12は、メサ部71を挟んだ2本のトレンチ部の一方から他方まで、X軸方向に延伸して設けられてよい。エミッタ領域12は、コンタクトホール54の下方にも設けられている。
 また、エミッタ領域12は、ダミートレンチ部30と接してもよいし、接しなくてもよい。本例のエミッタ領域12は、ダミートレンチ部30と接している。エミッタ領域12は、境界部90のメサ部91には設けられなくてよい。
 コンタクト領域15は、ベース領域14よりもドーピング濃度の高い第2導電型の領域である。本例のコンタクト領域15は、一例としてP+型である。本例のコンタクト領域15は、メサ部71およびメサ部91のおもて面に設けられている。コンタクト領域15は、メサ部71またはメサ部91を挟んだ2本のトレンチ部の一方から他方まで、X軸方向に設けられてよい。コンタクト領域15は、ゲートトレンチ部40と接してもよいし、接しなくてもよい。また、コンタクト領域15は、ダミートレンチ部30と接してもよいし、接しなくてもよい。本例においては、コンタクト領域15が、ダミートレンチ部30およびゲートトレンチ部40と接する。コンタクト領域15は、コンタクトホール54の下方にも設けられている。なお、コンタクト領域15は、メサ部81にも設けられてよい。
 図1Bは、図1Aにおけるa-a'断面の一例を示す図である。a-a'断面は、トランジスタ部70において、エミッタ領域12を通過するXZ面である。本例の半導体装置100は、a-a'断面において、半導体基板10、層間絶縁膜38、エミッタ電極52およびコレクタ電極24を有する。エミッタ電極52は、半導体基板10および層間絶縁膜38の上方に形成される。
 ドリフト領域18は、半導体基板10に設けられた第1導電型の領域である。本例のドリフト領域18は、一例としてN-型である。ドリフト領域18は、半導体基板10において他のドーピング領域が形成されずに残存した領域であってよい。即ち、ドリフト領域18のドーピング濃度は半導体基板10のドーピング濃度であってよい。
 バッファ領域20は、ドリフト領域18の下方に設けられた第1導電型の領域である。本例のバッファ領域20は、一例としてN型である。バッファ領域20のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。バッファ領域20は、ベース領域14の下面側から広がる空乏層が、第2導電型のコレクタ領域22および第1導電型のカソード領域82に到達することを防ぐフィールドストップ層として機能してよい。
 コレクタ領域22は、トランジスタ部70において、バッファ領域20の下方に設けられる。カソード領域82は、ダイオード部80において、バッファ領域20の下方に設けられる。コレクタ領域22とカソード領域82との境界は、トランジスタ部70とダイオード部80との境界である。
 コレクタ電極24は、半導体基板10の裏面23に形成される。コレクタ電極24は、金属等の導電材料で形成される。
 ベース領域14は、メサ部71、メサ部91およびメサ部81において、ドリフト領域18の上方に設けられる第2導電型の領域である。ベース領域14は、ゲートトレンチ部40に接して設けられる。ベース領域14は、ダミートレンチ部30に接して設けられてよい。
 エミッタ領域12は、メサ部71において、ベース領域14とおもて面21との間に設けられる。エミッタ領域12は、ゲートトレンチ部40と接して設けられる。エミッタ領域12は、ダミートレンチ部30と接してもよいし、接しなくてもよい。なお、エミッタ領域12は、メサ部91に設けられなくてよい。
 コンタクト領域15は、メサ部91において、ベース領域14の上方に設けられる。コンタクト領域15は、メサ部91において、ゲートトレンチ部40に接して設けられる。他の断面において、コンタクト領域15は、メサ部71のおもて面21に設けられてよい。
 プラグ領域19は、コンタクト領域15よりもドーピング濃度の高い第2導電型の領域である。本例のプラグ領域19は、一例としてP++型である。本例のプラグ領域19は、おもて面21に設けられている。メサ部91において、プラグ領域19は、コンタクト領域15の上方に設けられる。メサ部81において、プラグ領域19は、ベース領域14の上方に設けられる。プラグ領域19は、メサ部91およびメサ部81において、コンタクトホール54に沿ってY軸方向に延伸して設けられてよい。
 蓄積領域16は、ドリフト領域18よりも半導体基板10のおもて面21側に設けられる第1導電型の領域である。本例の蓄積領域16は、一例としてN+型である。蓄積領域16は、トランジスタ部70およびダイオード部80に設けられる。本例の蓄積領域16は、境界部90にも設けられている。これにより、半導体装置100は、蓄積領域16のマスクずれを回避できる。
 また、蓄積領域16は、ゲートトレンチ部40に接して設けられる。蓄積領域16は、ダミートレンチ部30に接してもよいし、接しなくてもよい。蓄積領域16のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。蓄積領域16のイオン注入のドーズ量は、1E12cm-2以上、1E13cm-2以下であってよい。また、蓄積領域16のイオン注入ドーズ量は、3E12cm-2以上、6E12cm-2以下であってもよい。蓄積領域16を設けることで、キャリア注入促進効果(IE効果)を高めて、トランジスタ部70のオン電圧を低減できる。なお、Eは10のべき乗を意味し、例えば1E12cm-2は1×1012cm-2を意味する。
 1つ以上のゲートトレンチ部40および1つ以上のダミートレンチ部30は、おもて面21に設けられる。各トレンチ部は、おもて面21からドリフト領域18まで設けられる。エミッタ領域12、ベース領域14、コンタクト領域15および蓄積領域16の少なくともいずれかが設けられる領域においては、各トレンチ部はこれらの領域も貫通して、ドリフト領域18に到達する。トレンチ部がドーピング領域を貫通するとは、ドーピング領域を形成してからトレンチ部を形成する順序で製造したものに限定されない。トレンチ部を形成した後に、トレンチ部の間にドーピング領域を形成したものも、トレンチ部がドーピング領域を貫通しているものに含まれる。
 ゲートトレンチ部40は、おもて面21に形成されたゲートトレンチ、ゲート絶縁膜42およびゲート導電部44を有する。ゲート絶縁膜42は、ゲートトレンチの内壁を覆って形成される。ゲート絶縁膜42は、ゲートトレンチの内壁の半導体を酸化または窒化して形成してよい。ゲート導電部44は、ゲートトレンチの内部においてゲート絶縁膜42よりも内側に形成される。ゲート絶縁膜42は、ゲート導電部44と半導体基板10とを絶縁する。ゲート導電部44は、ポリシリコン等の導電材料で形成される。ゲートトレンチ部40は、おもて面21において層間絶縁膜38により覆われる。
 ゲート導電部44は、半導体基板10の深さ方向において、ゲート絶縁膜42を挟んでメサ部71側で隣接するベース領域14と対向する領域を含む。ゲート導電部44に所定の電圧が印加されると、ベース領域14のうちゲートトレンチに接する界面の表層に、電子の反転層によるチャネルが形成される。
 ダミートレンチ部30は、ゲートトレンチ部40と同一の構造を有してよい。ダミートレンチ部30は、おもて面21側に形成されたダミートレンチ、ダミー絶縁膜32およびダミー導電部34を有する。ダミー絶縁膜32は、ダミートレンチの内壁を覆って形成される。ダミー導電部34は、ダミートレンチの内部に形成され、且つ、ダミー絶縁膜32よりも内側に形成される。ダミー絶縁膜32は、ダミー導電部34と半導体基板10とを絶縁する。ダミートレンチ部30は、おもて面21において層間絶縁膜38により覆われる。
 層間絶縁膜38は、おもて面21に設けられている。層間絶縁膜38の上方には、エミッタ電極52が設けられている。層間絶縁膜38には、エミッタ電極52と半導体基板10とを電気的に接続するための1又は複数のコンタクトホール54が設けられている。コンタクトホール55およびコンタクトホール56も同様に、層間絶縁膜38を貫通して設けられてよい。
 ライフタイム制御領域150は、半導体基板10の内部に不純物を注入すること等により意図的にライフタイムキラーが形成された領域である。ライフタイムキラーは、キャリアの再結合中心である。ライフタイムキラーは、結晶欠陥であってよい。例えば、ライフタイムキラーは、空孔、複空孔、これらと半導体基板10を構成する元素との複合欠陥、または転位であってよい。また、ライフタイムキラーは、ヘリウム、ネオンなどの希ガス元素、白金などの金属元素などでもよい。ライフタイム制御領域150は、半導体基板10にヘリウム等を注入することで形成できる。
 ライフタイム制御領域150は、半導体基板10のおもて面21側に設けられる。ライフタイム制御領域150は、トランジスタ部70およびダイオード部80の両方に設けられる。ライフタイム制御領域150は、おもて面21側から不純物を注入することにより形成されてもよく、裏面23側から不純物を注入することにより形成されてもよい。ライフタイム制御領域150は、おもて面21側に設けられた第1ライフタイム制御領域の一例である。
 本例のライフタイム制御領域150は、半導体基板10の全面に設けられる。よって、ライフタイム制御領域150は、マスクを使用せずに形成できる。ライフタイム制御領域150を形成するための不純物のドーズ量は、0.5E10cm-2以上、1E13cm-2以下であってよい。また、ライフタイム制御領域150を形成するための不純物のドーズ量は、5E10cm-2以上、5E11cm-2以下であってもよい。
 また、本例のライフタイム制御領域150は、裏面23側からの注入により形成されている。例えば、ライフタイム制御領域150は、裏面23側からヘリウムを照射することにより形成される。これにより、半導体装置100のおもて面21側への影響を回避できる。ここで、ライフタイム制御領域150がおもて面21側からの注入により形成されているか、裏面23側からの注入により形成されているかは、SR法またはリーク電流の測定によって、おもて面21側の状態を取得することで判断できる。
 ライフタイム制御領域160は、半導体基板10の裏面23側に設けられる。ライフタイム制御領域160は、トランジスタ部70およびダイオード部80の両方に設けられる。ライフタイム制御領域160は、バッファ領域20よりもおもて面21側に設けられている。ライフタイム制御領域160は、バッファ領域20に設けられてもよい。
 また、ライフタイム制御領域160は、半導体基板10の裏面23側の全面に設けられている。即ち、ライフタイム制御領域160は、マスクを使用せずに形成できる。ライフタイム制御領域160は、ライフタイム制御領域150の形成方法のうち、いずれかの方法で形成されてよい。半導体基板10の裏面23側から不純物を注入することにより形成されてよい。ライフタイム制御領域160は、半導体基板10の裏面23側に設けられた第2ライフタイム制御領域の一例である。
 図1Cは、図1Aにおけるb-b'断面の一例を示す図である。b-b'断面は、トランジスタ部70において、コンタクト領域15を通過するXZ面である。
 メサ部71は、ベース領域14と、コンタクト領域15と、蓄積領域16と、プラグ領域19とを有する。プラグ領域19を設けることにより、RBSOA(逆バイアス安全動作領域)耐量が向上する。メサ部91は、a-a'断面の場合と同様に、ベース領域14と、コンタクト領域15と、蓄積領域16と、プラグ領域19とを有する。b-b'断面において、メサ部71は、メサ部91と同一の構造を有している。メサ部81は、a-a'断面の場合と同様に、ベース領域14と、蓄積領域16と、プラグ領域19とを有する。
 ライフタイム制御領域150およびライフタイム制御領域160は、a-a'断面の場合と同様に、トランジスタ部70およびダイオード部80の両方に設けられている。
 本例の半導体装置100は、トランジスタ部70およびダイオード部80の両方にライフタイム制御領域150を備えるので、ターンオフの時のホールの抜けが均一になり、トランジスタ部70とダイオード部80のキャリアバランスが改善する。そして、RBSOA耐量および短絡耐量が改善して、ラッチアップ耐性も向上する。
 図2Aは、実施例に係る半導体装置100の上面図の一例を示す。本例の半導体装置100では、ダミートレンチ部30とゲートトレンチ部40の配列が、図1Aの半導体装置100と相違する。本例では、図1Aの実施例と相違する点について特に説明する。本例では、ダミートレンチ部30の比率が図1Aの実施例の場合よりも大きい。
 トランジスタ部70は、ゲートトレンチ部40とダミートレンチ部30の比率が2:4となるようにゲートトレンチ部40およびダミートレンチ部30を繰り返し配列している。接続部分43で接続された一組のゲートトレンチ部40の内側には、接続部分33で接続された一組のダミートレンチ部30が設けられている。
 図2Bは、図2Aにおけるc-c'断面の一例を示す図である。c-c'断面は、トランジスタ部70において、エミッタ領域12を通過するXZ面である。本例の半導体装置100は、蓄積領域16aおよび蓄積領域16bからなる2段の蓄積領域16を備える点で、図1Bの半導体装置100と相違する。本例では、図1Bの実施例と相違する点について特に説明する。
 蓄積領域16aおよび蓄積領域16bは、トランジスタ部70およびダイオード部80の両方に設けられる。蓄積領域16aおよび蓄積領域16bのドーピング濃度は、同一であっても、異なっていてもよい。蓄積領域16aのドーピング濃度は、蓄積領域16bのドーピング濃度よりも大きくてもよいし、小さくてもよい。なお、蓄積領域16のドーピング濃度とは、それぞれの蓄積領域16のドーピング濃度のピーク値を指してよい。
 蓄積領域16aは、ドリフト領域18よりもおもて面21側に設けられた第1の蓄積領域である。蓄積領域16aは、ベース領域14の下方に設けられる。一例において、蓄積領域16aのイオン注入のドーズ量は、1E12cm-2以上、1E13cm-2以下である。例えば、蓄積領域16aは、3E12cm-2のドーズ量および2.6MeVの加速エネルギーで形成される。
 蓄積領域16bは、蓄積領域16aの下方に設けられた第2の蓄積領域である。一例において、蓄積領域16bのイオン注入のドーズ量は、1E12cm-2以上、1E13cm-2以下である。例えば、蓄積領域16bは、3E12cm-2のドーズ量および3.9MeVの加速エネルギーで形成される。蓄積領域16aと蓄積領域16bとの間は、ドリフト領域18であってよい。なお、本例の半導体装置100は、2段の蓄積領域16を備えるが、3段以上の蓄積領域16を備えてもよい。
 図2Cは、図2Aにおけるd-d'断面の一例を示す図である。d-d'断面は、トランジスタ部70において、コンタクト領域15を通過するXZ面である。本例の半導体装置100は、蓄積領域16aおよび蓄積領域16bを備える点で、図1Cの半導体装置100と相違する。本例では、図1Cの実施例と相違する点について特に説明する。
 蓄積領域16aおよび蓄積領域16bは、c-c'断面と同様に、トランジスタ部70およびダイオード部80の両方に設けられる。蓄積領域16aおよび蓄積領域16bは、c-c'断面と同様の条件で設けられてよい。
 半導体装置100は、2段の蓄積領域16を備えることにより、IE効果を向上して、トランジスタ部70のオン抵抗を低減しやすくなる。また、半導体装置100は、ライフタイム制御領域150を全面に設けることにより、耐量低下を抑制できる。したがって、本例の半導体装置100は、オン抵抗を低減しつつ、耐量低下を抑制できる。
 図2Dは、蓄積領域16の段数による特性の違いを説明するための図である。縦軸はターンオフ損失Eoff(mJ)を示し、横軸はコレクタエミッタ間飽和電圧Vce(sat)(V)を示す。
 曲線101は、蓄積領域16が1段の場合の特性を示す。即ち、曲線101は、図1A~図1Cの半導体装置100に対応する。曲線102は、蓄積領域16が2段の場合の特性を示す。曲線102は、図2A~図2Cの半導体装置100に対応する。
 ドーピング濃度は、2段の蓄積領域16aと蓄積領域16bのドーピング濃度の合計が、1段の場合の蓄積領域16のドーピング濃度と等しくなるように設定している。また、蓄積領域16aのドーピング濃度は、蓄積領域16bのドーピング濃度と同一である。例えば、1段の蓄積領域16のドーピング濃度が1E12cm-3の場合、対応する2段のドーピング濃度は、それぞれ0.5E12cm-3となる。図中には各プロットに対応するドーピング濃度がそれぞれ記載されている。本例のプロットは、蓄積領域16のドーピング濃度が1E12cm-3、3E12cm-3、6E12cm-3、1E13cm-3および1.2E13cm-3の場合をそれぞれ示す。
 コレクタエミッタ間飽和電圧Vce(sat)は、蓄積領域16のドーピング濃度が大きいほど小さくなる傾向にある。但し、蓄積領域16のドーピング濃度が大きい領域では、IE効果によって、ターンオフ損失Eoffが増加する傾向にある。
 コレクタエミッタ間飽和電圧Vce(sat)が比較的大きい領域では、曲線101と曲線102が重なっており、特性の差異が小さくなっている。一方、コレクタエミッタ間飽和電圧Vce(sat)が比較的小さい領域では、曲線102の方が曲線101よりもターンオフ損失Eoffが小さくなっている。
 したがって、半導体装置100は、蓄積領域16を2段構成とした方が、コレクタエミッタ間飽和電圧Vce(sat)を抑制しつつ、ターンオフ損失Eoffを低減しやすくなる。また、半導体装置100は、蓄積領域16を2段構成とした方が、ターンオフ損失Eoffを増加させることなく、蓄積領域16のドーピング濃度を高くできる。
 図3は、メサ部71の近傍を拡大した断面図の一例である。本例では、ダミートレンチ部30およびゲートトレンチ部40で挟まれたメサ部71を示している。
 深さD1は、ダミートレンチ部30またはゲートトレンチ部40のトレンチの深さである。深さD1は、ダミー絶縁膜32またはゲート絶縁膜42の下端の深さであってよい。深さD1は、半導体装置100の特性等に応じて適宜設定される。
 深さD2は、おもて面21からのライフタイム制御領域150の深さである。本例の深さD2は、深さD1よりも深い。即ち、ライフタイム制御領域150は、ダミートレンチ部30およびゲートトレンチ部40の下方に設けられている。例えば、深さD2は、5μm以上、20μm以内である。
 深さD3は、おもて面21からの蓄積領域16の深さである。一例において、深さD3は、蓄積領域16の下端の深さである。蓄積領域16が複数段の場合、深さD3は、最も下方に設けられた蓄積領域16の下端の深さであってよい。蓄積領域16の下端とは、蓄積領域16のドリフト領域18との境界の深さである。即ち、蓄積領域16の下端は、蓄積領域16のドーピング濃度がドリフト領域18のドーピング濃度となる位置である。また、深さD3は、蓄積領域16のドーピング濃度のピーク位置の深さであってもよい。例えば、深さD3は、1μm以上、5μm以下である。一例において、深さD3は、3μmである。
 なお、深さD2は、深さD1よりも深い。深さD2は、深さD3の2倍よりも深くてよい。この場合、ライフタイム制御領域150と蓄積領域16との間に、深さD3以上の間隔が設けられる。このように、ライフタイム制御領域150と蓄積領域16との間に間隔を設けることにより、蓄積領域16によるオン抵抗の低減の効果を犠牲にすることなく、ライフタイム制御領域150によって耐量を向上できる。
 ライフタイム制御領域150のおもて面21からの深さは、20μm以内である。一例において、ライフタイム制御領域150のおもて面21からの深さは、10μmである。
 深さD3は、トレンチ部のトレンチ深さ以内である。トレンチ深さ以内とは、トレンチ深さと同一の深さの場合と、トレンチ深さよりも浅い場合とを含む。蓄積領域16は、トレンチ部よりも深い位置には設けられなくてよい。即ち、深さD3≦深さD1が成り立つ。
 図4は、半導体装置100のチップ端部における上面図の一例を示す。本例では、エミッタ電極52のX軸方向およびY軸方向の負側の端部における上面図が示されている。
 エミッタ電極52は、ダミートレンチ部30およびゲートトレンチ部40を覆うように設けられている。本例のゲートトレンチ部40は、ゲートランナ45を介してゲート金属層50と電気的に接続されている。
 ゲートランナ45は、層間絶縁膜38に設けられたコンタクトホールを介して、ゲート金属層50とゲートトレンチ部40とを電気的に接続する。本例のゲートランナ45は、おもて面21において、ゲート導電部44と電気的に接続される。ゲートランナ45は、ダミートレンチ部30内のダミー導電部とは接続されない。例えば、ゲートランナ45は、不純物がドープされたポリシリコン等で形成される。
 領域R12は、エミッタ領域12がコンタクト領域15と繰り返し設けられた領域を示す。即ち、領域R12の全面にエミッタ領域12が設けられている必要はない。領域R12の外周は、平面視で、最も外側に設けられたエミッタ領域12によって画定されている。例えば、領域R12は、トランジスタ部70の主電流が流れるアクティブ領域として機能する。
 領域R16は、蓄積領域16が設けられた領域である。領域R16では、全面に蓄積領域16が設けられてよい。但し、領域R16であっても、ダミートレンチ部30およびゲートトレンチ部40が設けられた領域には蓄積領域16が設けられなくてよい。本例の領域R16は、平面視において、領域R12よりも広範囲に設けられている。
 領域R15は、コンタクト領域15が設けられた領域である。領域R15は、領域R12のように、エミッタ領域12およびコンタクト領域15が繰り返し設けられた領域を含んでよい。領域R15には、プラグ領域19が繰り返し設けられてよい。
 本例の半導体装置100では、領域R16が領域R12を覆うように設けられている。これにより、トランジスタ部70のアクティブ領域が、蓄積領域16のマスクずれの影響を受けにくくなる。また、半導体装置100では、領域R15が領域R16を覆うように設けられている。さらに、ライフタイム制御領域150は、ライフタイム制御領域150が領域R15を覆うように設けられることによって、ライフタイム制御領域150のマスクずれの影響を回避できる。なお、ライフタイム制御領域150が半導体基板10の全面に設けられる場合、ライフタイム制御領域150のマスクずれの影響は生じない。
 図5は、比較例に係る半導体装置500の断面図の一例である。本例では、半導体装置500が備えるトランジスタ部570とダイオード部580の境界部分の断面図を示している。
 半導体装置500は、トランジスタ部570に蓄積領域516を備える。半導体装置500は、ダイオード部580に蓄積領域516を備えておらず、蓄積領域516のマスクずれの影響を受ける場合もある。
 また、半導体装置500は、半導体基板10のおもて面21側に設けられたライフタイム制御領域550を備える。半導体装置500は、半導体基板10の裏面23側に設けられたライフタイム制御領域560を備える。
 ライフタイム制御領域550は、ダイオード部580に設けられているが、トランジスタ部570には設けられていない。即ち、ライフタイム制御領域550は、不純物の全面照射ではなく、部分照射によって形成されている。ライフタイム制御領域550の部分照射のためには、レジストマスクまたはメタルマスク等のマスクが必要である。よって、半導体装置500は、ライフタイム制御領域550のマスクずれの影響を受ける場合がある。
 これに対して、実施例に係る半導体装置100は、トランジスタ部70およびダイオード部80にライフタイム制御領域150を備えるので、マスクずれを回避できる。また、ライフタイム制御領域150を形成するためのマスクを形成する必要がないので、プロセス工程を簡略化できる。半導体装置100では、ターンオフの時のホールの抜けが均一になり、トランジスタ部70とダイオード部80のキャリアバランスが改善する。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10・・・半導体基板、12・・・エミッタ領域、14・・・ベース領域、15・・・コンタクト領域、16・・・蓄積領域、17・・・ウェル領域、18・・・ドリフト領域、19・・・プラグ領域、20・・・バッファ領域、21・・・おもて面、22・・・コレクタ領域、23・・・裏面、24・・・コレクタ電極、25・・・接続部、30・・・ダミートレンチ部、31・・・延伸部分、32・・・ダミー絶縁膜、33・・・接続部分、34・・・ダミー導電部、38・・・層間絶縁膜、40・・・ゲートトレンチ部、41・・・延伸部分、42・・・ゲート絶縁膜、43・・・接続部分、44・・・ゲート導電部、45・・・ゲートランナ、50・・・ゲート金属層、52・・・エミッタ電極、54・・・コンタクトホール、55・・・コンタクトホール、56・・・コンタクトホール、70・・・トランジスタ部、71・・・メサ部、80・・・ダイオード部、81・・・メサ部、82・・・カソード領域、90・・・境界部、91・・・メサ部、100・・・半導体装置、101・・・曲線、102・・・曲線、150・・・ライフタイム制御領域、160・・・ライフタイム制御領域、500・・・半導体装置、516・・・蓄積領域、550・・・ライフタイム制御領域、560・・・ライフタイム制御領域、570・・・トランジスタ部、580・・・ダイオード部

Claims (20)

  1.  トランジスタ部とダイオード部とを備える半導体装置であって、
     半導体基板に設けられた第1導電型のドリフト領域と、
     前記トランジスタ部および前記ダイオード部において、前記ドリフト領域よりも前記半導体基板のおもて面側に設けられた第1導電型の蓄積領域と、
     前記トランジスタ部および前記ダイオード部において、前記半導体基板のおもて面側に設けられた第1ライフタイム制御領域と
     を備える半導体装置。
  2.  前記第1ライフタイム制御領域は、前記半導体基板の全面に設けられる
     請求項1に記載の半導体装置。
  3.  前記半導体基板の裏面側の全面に設けられた第2ライフタイム制御領域を備える
     請求項1または2に記載の半導体装置。
  4.  前記半導体基板のおもて面に設けられた複数のトレンチ部を備え、
     前記第1ライフタイム制御領域の深さは、前記複数のトレンチ部の深さよりも深い
     請求項1から3のいずれか一項に記載の半導体装置。
  5.  前記蓄積領域の深さは、複数のトレンチ部のトレンチ深さ以内である
     請求項1から4のいずれか一項に記載の半導体装置。
  6.  前記第1ライフタイム制御領域の深さは、前記蓄積領域の前記ドリフト領域との境界の深さの2倍よりも深い
     請求項1から5のいずれか一項に記載の半導体装置。
  7.  前記第1ライフタイム制御領域の深さは、5μm以上、20μm以内である
     請求項1から6のいずれか一項に記載の半導体装置。
  8.  前記第1ライフタイム制御領域のライフタイムキラーのドーズ量は、0.5E10cm-2以上、1E13cm-2以下である
     請求項1から7のいずれか一項に記載の半導体装置。
  9.  前記第1ライフタイム制御領域は、前記半導体基板の裏面側から注入されている
     請求項8に記載の半導体装置。
  10.  前記蓄積領域は、
     前記ドリフト領域よりも前記おもて面側に設けられた第1の蓄積領域と、
     前記第1の蓄積領域の下方に設けられた第2の蓄積領域と
     を有する
     請求項1から9のいずれか一項に記載の半導体装置。
  11.  前記蓄積領域のイオン注入のドーズ量は、1E12cm-2以上、1E13cm-2以下である
     請求項1から10のいずれか一項に記載の半導体装置。
  12.  前記蓄積領域の深さは、1μm以上、5μm以下である
     請求項1から11のいずれか一項に記載の半導体装置。
  13.  前記トランジスタ部は、前記ドリフト領域よりも高ドーピング濃度である第1導電型のエミッタ領域を有し、
     前記蓄積領域は、平面視において、前記エミッタ領域が設けられた領域よりも広範囲に設けられる
     請求項1から12のいずれか一項に記載の半導体装置。
  14.  前記トランジスタ部は、
     前記ダイオード部と隣接する境界部と、
     エミッタ電極と電気的に接続されたダミートレンチ部と
     を有し、
     前記境界部のトレンチ部は、前記ダミートレンチ部である
     請求項1から13のいずれか一項に記載の半導体装置。
  15.  前記境界部は、
     前記蓄積領域と、
     前記おもて面側に設けられた第2導電型のベース領域と、
     前記ベース領域よりも前記おもて面側に設けられ、前記ベース領域よりもドーピング濃度の高いコンタクト領域と、
     前記コンタクト領域のおもて面側に設けられ、前記コンタクト領域よりもドーピング濃度の高い第2導電型のプラグ領域と
     を有する
     請求項14に記載の半導体装置。
  16.  前記境界部は、エミッタ領域を有さない
     請求項14または15に記載の半導体装置。
  17.  トランジスタ部とダイオード部とを有する半導体装置の製造方法であって、
     半導体基板に第1導電型のドリフト領域を設ける段階と、
     前記トランジスタ部および前記ダイオード部において、前記ドリフト領域よりも前記半導体基板のおもて面側に第1導電型の蓄積領域を設ける段階と、
     前記トランジスタ部および前記ダイオード部において、前記半導体基板のおもて面側に第1ライフタイム制御領域を設ける段階と
     を備える製造方法。
  18.  前記第1ライフタイム制御領域を設ける段階は、前記半導体基板の裏面側から不純物を照射する段階を有する
     請求項17に記載の製造方法。
  19.  前記第1ライフタイム制御領域を設ける段階は、0.5E10cm-2以上、1E12cm-2以下のドーズ量で不純物を注入する段階を有する
     請求項17または18に記載の製造方法。
  20.  前記蓄積領域を設ける段階は、3E12cm-2以上、6E12cm-2以下のドーズ量でイオン注入する段階を有する
     請求項17から19のいずれか一項に記載の製造方法。
PCT/JP2020/048125 2020-02-12 2020-12-23 半導体装置およびその製造方法 WO2021161668A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022500251A JP7364027B2 (ja) 2020-02-12 2020-12-23 半導体装置およびその製造方法
CN202080053170.XA CN114144890A (zh) 2020-02-12 2020-12-23 半导体装置及其制造方法
DE112020003167.5T DE112020003167T5 (de) 2020-02-12 2020-12-23 Halbleitervorrichtung und dessen herstellungsverfahren
US17/581,965 US20220149150A1 (en) 2020-02-12 2022-01-23 Semiconductor device and manufacturing method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020021436 2020-02-12
JP2020-021436 2020-02-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/581,965 Continuation US20220149150A1 (en) 2020-02-12 2022-01-23 Semiconductor device and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2021161668A1 true WO2021161668A1 (ja) 2021-08-19

Family

ID=77291499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048125 WO2021161668A1 (ja) 2020-02-12 2020-12-23 半導体装置およびその製造方法

Country Status (5)

Country Link
US (1) US20220149150A1 (ja)
JP (1) JP7364027B2 (ja)
CN (1) CN114144890A (ja)
DE (1) DE112020003167T5 (ja)
WO (1) WO2021161668A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204097A1 (ja) * 2015-06-17 2016-12-22 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2019244485A1 (ja) * 2018-06-22 2019-12-26 富士電機株式会社 半導体装置の製造方法および半導体装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143288A1 (ja) * 2009-06-11 2010-12-16 トヨタ自動車株式会社 半導体装置
EP2657958B1 (en) * 2010-11-10 2016-02-10 Toyota Jidosha Kabushiki Kaisha Method of manufacturing semiconductor device
DE112011105681B4 (de) * 2011-09-28 2015-10-15 Toyota Jidosha Kabushiki Kaisha Verfahren zur Herstellung einer Halbleitervorrichtung
JP5895950B2 (ja) * 2014-01-20 2016-03-30 トヨタ自動車株式会社 半導体装置の製造方法
JP6277814B2 (ja) * 2014-03-25 2018-02-14 株式会社デンソー 半導体装置
JP6384425B2 (ja) * 2015-08-21 2018-09-05 株式会社デンソー 半導体装置
JP6443267B2 (ja) * 2015-08-28 2018-12-26 株式会社デンソー 半導体装置
JP6531589B2 (ja) * 2015-09-17 2019-06-19 株式会社デンソー 半導体装置
JP6676988B2 (ja) * 2016-01-29 2020-04-08 株式会社デンソー 半導体装置
CN107924951B (zh) * 2016-03-10 2021-11-23 富士电机株式会社 半导体装置
CN108604594B (zh) 2016-08-12 2021-10-08 富士电机株式会社 半导体装置及半导体装置的制造方法
DE112017000689T5 (de) 2016-09-14 2018-10-25 Fuji Electric Co., Ltd. Halbleitervorrichtung und Herstellungsverfahren dafür
US10559663B2 (en) * 2016-10-14 2020-02-11 Fuji Electric Co., Ltd. Semiconductor device with improved current flow distribution
JP6973510B2 (ja) 2018-01-17 2021-12-01 富士電機株式会社 半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204097A1 (ja) * 2015-06-17 2016-12-22 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2019244485A1 (ja) * 2018-06-22 2019-12-26 富士電機株式会社 半導体装置の製造方法および半導体装置

Also Published As

Publication number Publication date
JPWO2021161668A1 (ja) 2021-08-19
DE112020003167T5 (de) 2022-06-30
US20220149150A1 (en) 2022-05-12
CN114144890A (zh) 2022-03-04
JP7364027B2 (ja) 2023-10-18

Similar Documents

Publication Publication Date Title
KR102204272B1 (ko) 게이트 트렌치들 및 매립된 종단 구조체들을 갖는 전력 반도체 디바이스들 및 관련 방법들
US8450777B2 (en) Method for manufacturing a reverse-conducting insulated gate bipolar transistor
JP7020570B2 (ja) 半導体装置およびその製造方法
US10593789B2 (en) Semiconductor apparatus and method of manufacturing the same
US11355595B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2020077674A (ja) 半導体装置および製造方法
JP2018152426A (ja) 半導体装置
WO2021210293A1 (ja) 半導体装置および半導体装置の製造方法
WO2021251011A1 (ja) 半導体装置
WO2022004084A1 (ja) 半導体装置
JP6984749B2 (ja) 半導体装置の製造方法および半導体装置
JP2022016842A (ja) 半導体装置
WO2021161668A1 (ja) 半導体装置およびその製造方法
WO2021221092A1 (ja) 半導体装置
WO2022014623A1 (ja) 半導体装置
WO2022265061A1 (ja) 半導体装置および半導体装置の製造方法
US20230402533A1 (en) Semiconductor device
WO2022264697A1 (ja) 半導体装置
US20230299077A1 (en) Semiconductor device
WO2021145079A1 (ja) 半導体装置
WO2022205556A1 (zh) 绝缘栅双极型晶体管装置及其制备方法
CN117577671A (zh) 超结igbt器件
JP2024084070A (ja) 半導体装置
JP2024013911A (ja) 半導体装置
JP2021150405A (ja) 炭化珪素半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500251

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20918201

Country of ref document: EP

Kind code of ref document: A1