WO2021210293A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2021210293A1
WO2021210293A1 PCT/JP2021/008891 JP2021008891W WO2021210293A1 WO 2021210293 A1 WO2021210293 A1 WO 2021210293A1 JP 2021008891 W JP2021008891 W JP 2021008891W WO 2021210293 A1 WO2021210293 A1 WO 2021210293A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench
contact
region
contact layer
semiconductor device
Prior art date
Application number
PCT/JP2021/008891
Other languages
English (en)
French (fr)
Inventor
原田 祐一
晴司 野口
典宏 小宮山
伊倉 巧裕
洋輔 桜井
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to DE112021000105.1T priority Critical patent/DE112021000105T5/de
Priority to CN202180005621.7A priority patent/CN114503280A/zh
Priority to JP2022515241A priority patent/JP7384274B2/ja
Publication of WO2021210293A1 publication Critical patent/WO2021210293A1/ja
Priority to US17/700,534 priority patent/US20220216314A1/en
Priority to JP2023191365A priority patent/JP2024010217A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-158013
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2013-065724
  • Patent Document 3 International Publication No. 2018/052099
  • the first conductive type drift region provided on the semiconductor substrate, the second conductive type base region provided above the drift region, and the second conductive type base region provided above the base region are provided.
  • a plurality of trench portions arranged in a predetermined arrangement direction on the front surface side of the semiconductor substrate, and two adjacent trench portions among the plurality of trench portions.
  • the trench contact portion is provided with a trench contact portion provided on the front surface side of the semiconductor substrate and a second conductive type contact layer provided below the trench contact portion and having a higher doping concentration than the base region.
  • a semiconductor device in which the lower end of the light is deeper than the lower end of the emitter region and the emitter region and the contact layer are in contact with each other on the side wall of the trench contact portion.
  • the length of contact between the lower end of the emitter region and the base region may be larger than the shortest distance between the contact layer and the adjacent trench portion of the plurality of trench portions.
  • the maximum distance from the bottom of the side wall of the trench contact portion to the contact layer may be larger than the shortest distance between the contact layer and the adjacent trench portion among the plurality of trench portions.
  • the shortest distance between the contact layer and the adjacent trench portion among the plurality of trench portions may be 0.1 ⁇ m or more.
  • the contact layer may have a stretched region extending toward the front surface side of the semiconductor substrate from the lower end of the emitter region.
  • the trench contact portion may have a substantially flat bottom surface.
  • the trench contact portion may have a concave bottom surface recessed on the back surface side of the semiconductor substrate.
  • the contact layer may have a first contact layer provided on the side wall of the trench contact portion and a second contact layer provided below the first contact layer on the side wall of the trench contact portion.
  • the shortest distance between the first contact layer and the adjacent trench portion among the plurality of trench portions may be larger than the shortest distance between the second contact layer and the adjacent trench portion among the plurality of trench portions.
  • the doping concentration of the first contact layer may be lower than the doping concentration of the second contact layer.
  • the trench contact portion may be provided by extending in the stretching direction of a plurality of trench portions.
  • a contact layer may be provided on the side wall of the terminal portion, which is the end portion of the trench contact portion in the extending direction.
  • the side wall of the terminal portion may be covered with an emitter region and a contact layer.
  • the side wall of the terminal portion may be covered with a second conductive type region.
  • the front surface of the semiconductor substrate may be provided with a second conductive type contact region having a higher doping concentration than the base region.
  • the side wall of the termination may be covered with a contact area, a base area and a contact layer.
  • the front surface of the semiconductor substrate may be provided with a second conductive type contact region having a higher doping concentration than the base region.
  • the side wall of the termination may be covered with a contact area and a contact layer.
  • a step of providing a first conductive type drift region on the semiconductor substrate, a stage of providing a second conductive type base region above the drift region, and a step of providing a first conductive type above the base region A stage in which an emitter region of a mold is provided, a stage in which a plurality of trench portions are arranged in a predetermined arrangement direction on the front surface side of the semiconductor substrate, and two adjacent trench portions among the plurality of trench portions.
  • a step of providing a trench contact portion on the front surface side of the semiconductor substrate and a step of providing a second conductive type contact layer having a higher doping concentration than the base region below the trench contact portion are provided.
  • a method for manufacturing a semiconductor device in which the lower end of the trench contact portion is deeper than the lower end of the emitter region and the emitter region and the contact layer are in contact with each other on the side wall of the trench contact portion.
  • the method for manufacturing a semiconductor device may include a step of implanting ions to form a contact layer after a step of providing a contact hole in the trench contact portion.
  • the method for manufacturing a semiconductor device may include a step of forming an oxide film mask on the semiconductor substrate and a step of ion implantation to form a contact layer using the oxide film mask as a mask.
  • the method for manufacturing a semiconductor device may include a step of forming a first contact layer on the side wall of the trench contact portion and a step of forming a second contact layer below the first contact layer on the side wall of the trench contact portion. ..
  • the implantation width of the ion implantation for forming the first contact layer may be smaller than the implantation width of the ion implantation for forming the second contact layer.
  • the method for manufacturing a semiconductor device may include a step of forming a first contact layer on the side wall of the trench contact portion and a step of forming a second contact layer below the first contact layer on the side wall of the trench contact portion. ..
  • the doping concentration of the first contact layer may be smaller than the doping concentration of the second contact layer.
  • An example of the top view of the semiconductor device 100 according to the Example is shown. It is a figure which shows an example of the aa'cross section in FIG. 1A. It is a figure which shows an example of the bb'cross section in FIG. 1A. An example of an enlarged view of the vicinity of the trench contact portion 27 is shown. An example of the doping concentration distribution around the trench contact portion 27 is shown. An example of an enlarged cross-sectional view showing the vicinity of the end portion 28 is shown. An example of an enlarged view of the vicinity of the trench contact portion 27 is shown. An example of an enlarged cross-sectional view showing the vicinity of the end portion 28 is shown. An example of the top view of the semiconductor device 100 according to the Example is shown.
  • An example of an enlarged cross-sectional view showing the vicinity of the terminal portion 28 of FIG. 4A is shown.
  • An example of the manufacturing method of the contact layer 19 having a one-stage structure is shown.
  • An example of the manufacturing method of the contact layer 19 having a two-stage structure is shown.
  • the configuration of the semiconductor device 500 according to the comparative example is shown.
  • one side in the direction parallel to the depth direction of the semiconductor substrate is referred to as “upper” and the other side is referred to as “lower”.
  • the upper surface is referred to as the upper surface and the other surface is referred to as the lower surface.
  • the directions of "top”, “bottom”, “front”, and “back” are not limited to the direction of gravity or the direction of mounting on a substrate or the like when mounting a semiconductor device.
  • the first conductive type is N type and the second conductive type is P type, but the first conductive type may be P type and the second conductive type may be N type.
  • the conductive types such as the substrate, the layer, and the region in each embodiment have opposite polarities.
  • n and p mean that electrons or holes are a large number of carriers in the layers and regions marked with n or p, respectively.
  • + and-attached to n and p mean that the doping concentration is higher and the doping concentration is lower than that of the layer or region to which it is not attached, respectively, and ++ is a higher doping concentration than +, ⁇ Means a lower doping concentration than-.
  • the doping concentration refers to the concentration of a donor or acceptorized dopant.
  • the unit is / cm 3.
  • the concentration difference between the donor and the acceptor (that is, the net doping concentration) may be referred to as the doping concentration.
  • the doping concentration can be measured by the SR method.
  • the chemical concentration of the donor and the acceptor may be used as the doping concentration.
  • the doping concentration can be measured by the SIMS method.
  • any of the above may be used as the doping concentration.
  • the peak value of the doping concentration distribution in the doping region may be used as the doping concentration in the doping region.
  • the dose amount means the number of ions per unit area implanted in the wafer when ion implantation is performed. Therefore, the unit is / cm 2 .
  • the dose amount in the semiconductor region can be an integral concentration obtained by integrating the doping concentration over the depth direction of the semiconductor region.
  • the unit of the integrated concentration is / cm 2 . Therefore, the dose amount and the integrated concentration may be treated as the same.
  • the integrated concentration may be an integrated value up to the full width at half maximum, and when it overlaps with the spectrum of another semiconductor region, it may be derived excluding the influence of the other semiconductor region.
  • the high and low doping concentration can be read as the high and low dose amount. That is, when the doping concentration in one region is higher than the doping concentration in the other region, it can be understood that the dose amount in the one region is higher than the dose amount in the other region.
  • FIG. 1A shows an example of a top view of the semiconductor device 100 according to the embodiment.
  • the semiconductor device 100 of this example is a semiconductor chip including a transistor unit 70 and a diode unit 80.
  • the semiconductor device 100 is a reverse conduction IGBT (RC-IGBT: Reverse Conducting IGBT).
  • the semiconductor device 100 may be an IGBT or a MOS transistor.
  • the transistor portion 70 is a region in which a collector region 22 provided on the back surface side of the semiconductor substrate 10 is projected onto the upper surface of the semiconductor substrate 10.
  • the collector region 22 has a second conductive type.
  • the collector area 22 of this example is a P + type as an example.
  • the transistor unit 70 includes a transistor such as an IGBT.
  • the transistor portion 70 includes a boundary portion 90 located at the boundary between the transistor portion 70 and the diode portion 80.
  • the diode portion 80 is a region in which the cathode region 82 provided on the back surface side of the semiconductor substrate 10 is projected onto the upper surface of the semiconductor substrate 10.
  • the cathode region 82 has a first conductive type.
  • the cathode region 82 of this example is N + type as an example.
  • the diode section 80 includes a diode such as a freewheeling diode (FWD: Free Wheel Diode) provided adjacent to the transistor section 70 on the upper surface of the semiconductor substrate 10.
  • FWD Free Wheel Diode
  • an edge termination structure portion may be provided in a region on the negative side in the Y-axis direction of the semiconductor device 100 of this example.
  • the edge termination structure relaxes the electric field concentration on the upper surface side of the semiconductor substrate 10.
  • the edge termination structure has, for example, a guard ring, a field plate, a resurf, and a structure in which these are combined. In this example, for convenience, the negative edge in the Y-axis direction will be described, but the same applies to the other edges of the semiconductor device 100.
  • the semiconductor substrate 10 may be a silicon substrate, a silicon carbide substrate, a nitride semiconductor substrate such as gallium nitride, or the like.
  • the semiconductor substrate 10 of this example is a silicon substrate.
  • the semiconductor device 100 of this example has a gate trench portion 40, a dummy trench portion 30, an emitter region 12, a base region 14, a contact region 15, and a well region 17 on the front surface 21 of the semiconductor substrate 10. To be equipped. The front surface 21 will be described later. Further, the semiconductor device 100 of this example includes an emitter electrode 52 and a gate metal layer 50 provided above the front surface 21 of the semiconductor substrate 10.
  • the emitter electrode 52 is provided above the gate trench portion 40, the dummy trench portion 30, the emitter region 12, the base region 14, the contact region 15, and the well region 17. Further, the gate metal layer 50 is provided above the gate trench portion 40 and the well region 17.
  • the emitter electrode 52 and the gate metal layer 50 are formed of a material containing metal.
  • the emitter electrode 52 may be formed of an aluminum, aluminum-silicon alloy, or aluminum-silicon-copper alloy.
  • At least a portion of the gate metal layer 50 may be formed of aluminum, aluminum-silicon alloy, or aluminum-silicon-copper alloy.
  • the emitter electrode 52 and the gate metal layer 50 may have a barrier metal formed of titanium, a titanium compound, or the like in the lower layer of a region formed of aluminum or the like.
  • the emitter electrode 52 and the gate metal layer 50 are provided separately from each other.
  • the emitter electrode 52 and the gate metal layer 50 are provided above the semiconductor substrate 10 with the interlayer insulating film 38 interposed therebetween.
  • the interlayer insulating film 38 is omitted in FIG. 1A.
  • the interlayer insulating film 38 is provided with a contact hole 54, a contact hole 55, and a contact hole 56 penetrating.
  • the contact hole 55 connects the gate metal layer 50 and the gate conductive portion in the transistor portion 70.
  • a plug made of tungsten or the like may be formed inside the contact hole 55.
  • the contact hole 56 connects the emitter electrode 52 and the dummy conductive portion in the dummy trench portion 30.
  • a plug made of tungsten or the like may be formed inside the contact hole 56.
  • the connecting portion 25 electrically connects the front surface side electrode such as the emitter electrode 52 or the gate metal layer 50 with the semiconductor substrate 10.
  • the connecting portion 25 is provided between the gate metal layer 50 and the gate conductive portion.
  • the connecting portion 25 is also provided between the emitter electrode 52 and the dummy conductive portion.
  • the connection portion 25 is a conductive material such as polysilicon doped with impurities.
  • the connecting portion 25 is polysilicon (N +) doped with N-type impurities.
  • the connecting portion 25 is provided above the front surface 21 of the semiconductor substrate 10 via an insulating film such as an oxide film.
  • the gate trench portions 40 are arranged at predetermined intervals along a predetermined arrangement direction (X-axis direction in this example).
  • the gate trench portion 40 of this example includes two stretched portions 41 that are parallel to the front surface 21 of the semiconductor substrate 10 and stretched along a stretch direction (Y-axis direction in this example) perpendicular to the arrangement direction. It may have a connecting portion 43 connecting the two stretched portions 41.
  • the connecting portion 43 is formed in a curved shape.
  • the dummy trench portion 30 is a trench portion electrically connected to the emitter electrode 52. Similar to the gate trench portion 40, the dummy trench portions 30 are arranged at predetermined intervals along a predetermined arrangement direction (X-axis direction in this example). Like the gate trench portion 40, the dummy trench portion 30 of this example may have a U-shape on the front surface 21 of the semiconductor substrate 10. That is, the dummy trench portion 30 may have two stretching portions 31 that stretch along the stretching direction and a connecting portion 33 that connects the two stretching portions 31.
  • the transistor portion 70 of this example has a structure in which two gate trench portions 40 and three dummy trench portions 30 are repeatedly arranged. That is, the transistor portion 70 of this example has a gate trench portion 40 and a dummy trench portion 30 at a ratio of 2: 3. For example, the transistor portion 70 has one stretched portion 31 between the two stretched portions 41. Further, the transistor portion 70 has two extending portions 31 adjacent to the gate trench portion 40.
  • the ratio of the gate trench portion 40 and the dummy trench portion 30 is not limited to this example.
  • the ratio of the gate trench portion 40 to the dummy trench portion 30 may be 1: 1 or 2: 4.
  • the transistor portion 70 may have a so-called full gate structure in which the dummy trench portion 30 is not provided and all the gate trench portions 40 are used.
  • the well region 17 is a second conductive type region provided on the front surface 21 side of the semiconductor substrate 10 with respect to the drift region 18 described later.
  • the well region 17 is an example of a well region provided on the edge side of the semiconductor device 100.
  • the well region 17 is P + type as an example.
  • the well region 17 is formed in a predetermined range from the end of the active region on the side where the gate metal layer 50 is provided.
  • the diffusion depth of the well region 17 may be deeper than the depth of the gate trench portion 40 and the dummy trench portion 30.
  • a part of the gate trench portion 40 and the dummy trench portion 30 on the gate metal layer 50 side is formed in the well region 17.
  • the bottom of the extending end of the gate trench 40 and the dummy trench 30 may be covered by the well region 17.
  • the contact hole 54 is formed in the transistor portion 70 above each region of the emitter region 12 and the contact region 15. Further, the contact hole 54 is provided above the base region 14 in the diode portion 80. The contact hole 54 is provided above the contact area 15 at the boundary 90. The contact hole 54 is provided above the base region 14 in the diode portion 80. None of the contact holes 54 are provided above the well regions 17 provided at both ends in the Y-axis direction. As described above, one or a plurality of contact holes 54 are formed in the interlayer insulating film. The one or more contact holes 54 may be provided by being stretched in the stretching direction.
  • the trench contact portion 27 electrically connects the emitter electrode 52 and the semiconductor substrate 10.
  • the trench contact portion 27 is provided in the contact hole 54.
  • the trench contact portion 27 is provided so as to be stretched in the stretching direction.
  • the end portion 28 is the end portion of the trench contact portion 27 in the stretching direction.
  • the terminal portion 28 is provided in the mesa portion 71 in a region where the contact region 15 is formed on the front surface 21.
  • the end portion 28 may be provided in the mesa portion 81 or the mesa portion 91 in a region where the contact region 15 is formed on the front surface 21.
  • the boundary portion 90 is a region provided in the transistor portion 70 and adjacent to the diode portion 80.
  • the boundary 90 has a contact area 15.
  • the boundary portion 90 of this example does not have an emitter region 12.
  • the trench portion of the boundary portion 90 is a dummy trench portion 30.
  • the boundary portion 90 of this example is arranged so that both ends in the X-axis direction are dummy trench portions 30.
  • the mesa portion 71, the mesa portion 91, and the mesa portion 81 are the mesa portions provided adjacent to the trench portion in the plane parallel to the front surface 21 of the semiconductor substrate 10.
  • the mesa portion is a portion of the semiconductor substrate 10 sandwiched between two adjacent trench portions, and is a portion from the front surface 21 of the semiconductor substrate 10 to the depth of the deepest bottom of each trench portion. good.
  • the extended portion of each trench portion may be used as one trench portion. That is, the region sandwiched between the two stretched portions may be the mesa portion.
  • the mesa portion 71 is provided adjacent to at least one of the dummy trench portion 30 or the gate trench portion 40 in the transistor portion 70.
  • the mesa portion 71 has a well region 17, an emitter region 12, a base region 14, and a contact region 15 on the front surface 21 of the semiconductor substrate 10.
  • the emitter region 12 and the contact region 15 are alternately provided in the stretching direction.
  • the mesa portion 91 is provided at the boundary portion 90.
  • the mesa portion 91 has a contact region 15 on the front surface 21 of the semiconductor substrate 10.
  • the mesa portion 91 of this example has a base region 14 and a well region 17 on the negative side in the Y-axis direction.
  • the mesa portion 81 is provided in the diode portion 80 in a region sandwiched between adjacent dummy trench portions 30.
  • the mesa portion 81 has a contact region 15 on the front surface 21 of the semiconductor substrate 10.
  • the mesa portion 81 of this example has a base region 14 and a well region 17 on the negative side in the Y-axis direction.
  • the base region 14 is a second conductive type region provided on the front surface 21 side of the semiconductor substrate 10 in the transistor portion 70 and the diode portion 80.
  • the base region 14 is P-type as an example.
  • the base region 14 may be provided on the front surface 21 of the semiconductor substrate 10 at both ends of the mesa portion 71 and the mesa portion 91 in the Y-axis direction. Note that FIG. 1A shows only one end of the base region 14 in the Y-axis direction.
  • the emitter region 12 is a first conductive type region having a higher doping concentration than the drift region 18.
  • the emitter region 12 of this example is N + type as an example.
  • An example of a dopant in the emitter region 12 is arsenic (As).
  • the emitter region 12 is provided in contact with the gate trench portion 40 on the front surface 21 of the mesa portion 71.
  • the emitter region 12 may be provided so as to extend in the X-axis direction from one of the two trench portions sandwiching the mesa portion 71 to the other.
  • the emitter region 12 is also provided below the contact hole 54.
  • the emitter region 12 may or may not be in contact with the dummy trench portion 30.
  • the emitter region 12 of this example is in contact with the dummy trench portion 30.
  • the emitter region 12 does not have to be provided in the mesa portion 81 and the mesa portion 91.
  • the contact region 15 is a second conductive type region having a higher doping concentration than the base region 14.
  • the contact region 15 of this example is a P + type as an example.
  • the contact region 15 of this example is provided on the front surface 21 of the mesa portion 71, the mesa portion 81, and the mesa portion 91.
  • the contact region 15 may be provided in the X-axis direction from one of the two trench portions sandwiching the mesa portion 71, the mesa portion 81, or the mesa portion 91 to the other.
  • the contact region 15 may or may not be in contact with the gate trench portion 40. Further, the contact region 15 may or may not be in contact with the dummy trench portion 30. In this example, the contact region 15 is in contact with the dummy trench portion 30 and the gate trench portion 40.
  • the contact area 15 is also provided below the contact hole 54.
  • FIG. 1B is a diagram showing an example of a'a'cross section in FIG. 1A.
  • the aa'cross section is an XZ plane that passes through the emitter region 12 in the transistor portion 70.
  • the semiconductor device 100 of this example has a semiconductor substrate 10, an interlayer insulating film 38, an emitter electrode 52, and a collector electrode 24 in the aa'cross section.
  • the emitter electrode 52 is formed above the semiconductor substrate 10 and the interlayer insulating film 38.
  • the drift region 18 is a first conductive type region provided on the semiconductor substrate 10.
  • the drift region 18 of this example is N-type as an example.
  • the drift region 18 may be a region remaining in the semiconductor substrate 10 without forming another doping region. That is, the doping concentration of the drift region 18 may be the doping concentration of the semiconductor substrate 10.
  • the buffer region 20 is a first conductive type region provided below the drift region 18.
  • the buffer area 20 of this example is N-type as an example.
  • the doping concentration in the buffer region 20 is higher than the doping concentration in the drift region 18.
  • the buffer region 20 may function as a field stop layer that prevents the depletion layer extending from the lower surface side of the base region 14 from reaching the second conductive type collector region 22 and the first conductive type cathode region 82.
  • the collector area 22 is provided below the buffer area 20 in the transistor unit 70.
  • the cathode region 82 is provided below the buffer region 20 in the diode portion 80.
  • the boundary between the collector region 22 and the cathode region 82 is the boundary between the transistor portion 70 and the diode portion 80.
  • the collector electrode 24 is formed on the back surface 23 of the semiconductor substrate 10.
  • the collector electrode 24 is made of a conductive material such as metal.
  • the base region 14 is a second conductive type region provided above the drift region 18 in the mesa portion 71, the mesa portion 91, and the mesa portion 81.
  • the base region 14 is provided in contact with the gate trench portion 40.
  • the base region 14 may be provided in contact with the dummy trench portion 30.
  • the emitter region 12 is provided between the base region 14 and the front surface 21.
  • the emitter region 12 of this example is provided in the mesa portion 71, and is not provided in the mesa portion 81 and the mesa portion 91.
  • the emitter region 12 is provided in contact with the gate trench portion 40.
  • the emitter region 12 may or may not be in contact with the dummy trench portion 30.
  • the contact region 15 is provided above the base region 14 in the mesa portion 81 and the mesa portion 91.
  • the contact region 15 is provided in the mesa portion 81 and the mesa portion 91 in contact with the dummy trench portion 30.
  • the contact region 15 may be provided on the front surface 21 of the mesa portion 71.
  • the trench contact portion 27 has a conductive material filled in the contact hole 54.
  • the trench contact portion 27 is provided between two adjacent trench portions among the plurality of trench portions.
  • the trench contact portion 27 is provided in contact with the contact layer 19 on the front surface 21 side.
  • the trench contact portion 27 of this example is provided so as to penetrate the emitter region 12 from the front surface 21.
  • the trench contact portion 27 may have the same material as the emitter electrode 52.
  • the lower end of the trench contact portion 27 is deeper than the lower end of the emitter region 12.
  • the trench contact portion 27 has a substantially flat bottom surface.
  • the bottom surface of the trench contact portion 27 is covered with the contact layer 19.
  • the trench contact portion 27 of this example has a tapered shape with an inclined side wall.
  • the side wall of the trench contact portion 27 may be provided substantially perpendicular to the front surface 21.
  • the contact layer 19 is provided below the trench contact portion 27.
  • the contact layer 19 is a second conductive type region having a higher doping concentration than the base region 14.
  • the contact layer 19 of this example is of P + type as an example.
  • the contact layer 19 is formed by ion implantation of boron (B) or boron fluoride (BF 2).
  • the contact layer 19 may have the same doping concentration as the contact region 15.
  • the contact layer 19 suppresses latch-up by pulling out a small number of carriers.
  • the contact layer 19 is provided on the side wall and the bottom surface of the trench contact portion 27.
  • the contact layer 19 of this example is provided in each of the mesa portion 71, the mesa portion 81, and the mesa portion 91.
  • the contact layer 19 may be provided so as to extend in the Y-axis direction.
  • the emitter region 12 and the contact layer 19 are in contact with each other on the side wall of the trench contact portion 27.
  • the side wall of the trench contact portion 27 of this example is covered with the emitter region 12 and the contact layer 19. That is, the trench contact portion 27 is not in contact with the base region 14.
  • the contact layer 19 can improve the extraction efficiency of a small number of carriers and stabilize the potential of the base region 14.
  • the storage region 16 is a first conductive type region provided on the front surface 21 side of the semiconductor substrate 10 with respect to the drift region 18.
  • the storage area 16 of this example is N + type as an example.
  • the storage region 16 is provided in the transistor portion 70 and the diode portion 80. However, the storage area 16 may not be provided.
  • the storage area 16 is provided in contact with the gate trench portion 40.
  • the storage region 16 may or may not be in contact with the dummy trench portion 30.
  • the doping concentration in the accumulation region 16 is higher than the doping concentration in the drift region 18.
  • the dose amount of ion implantation in the accumulation region 16 may be 1E12 cm -2 or more and 1E 13 cm -2 or less. Further, the ion implantation dose amount of the accumulation region 16 may be 3E12 cm-2 or more and 6E12 cm- 2 or less.
  • the carrier injection promoting effect IE effect
  • E is meant a power of 10, for example, 1E12 cm -2 refers to 1 ⁇ 10 12 cm -2.
  • One or more gate trench portions 40 and one or more dummy trench portions 30 are provided on the front surface 21.
  • Each trench portion is provided from the front surface 21 to the drift region 18.
  • each trench portion also penetrates these regions and reaches the drift region 18.
  • the penetration of the trench portion through the doping region is not limited to those manufactured in the order of forming the doping region and then forming the trench portion. Those in which a doping region is formed between the trench portions after the trench portion is formed are also included in those in which the trench portion penetrates the doping region.
  • the gate trench portion 40 has a gate trench, a gate insulating film 42, and a gate conductive portion 44 formed on the front surface 21.
  • the gate insulating film 42 is formed so as to cover the inner wall of the gate trench.
  • the gate insulating film 42 may be formed by oxidizing or nitriding the semiconductor on the inner wall of the gate trench.
  • the gate conductive portion 44 is formed inside the gate trench inside the gate insulating film 42.
  • the gate insulating film 42 insulates the gate conductive portion 44 and the semiconductor substrate 10.
  • the gate conductive portion 44 is formed of a conductive material such as polysilicon.
  • the gate trench portion 40 is covered with an interlayer insulating film 38 on the front surface 21.
  • the gate conductive portion 44 includes a region facing the adjacent base region 14 on the mesa portion 71 side with the gate insulating film 42 interposed therebetween in the depth direction of the semiconductor substrate 10.
  • a predetermined voltage is applied to the gate conductive portion 44, a channel due to an electron inversion layer is formed on the surface layer of the interface in the base region 14 in contact with the gate trench.
  • the dummy trench portion 30 may have the same structure as the gate trench portion 40.
  • the dummy trench portion 30 has a dummy trench formed on the front surface 21 side, a dummy insulating film 32, and a dummy conductive portion 34.
  • the dummy insulating film 32 is formed so as to cover the inner wall of the dummy trench.
  • the dummy conductive portion 34 is formed inside the dummy trench and inside the dummy insulating film 32.
  • the dummy insulating film 32 insulates the dummy conductive portion 34 and the semiconductor substrate 10.
  • the dummy trench portion 30 is covered with an interlayer insulating film 38 on the front surface 21.
  • the interlayer insulating film 38 is provided on the front surface 21.
  • An emitter electrode 52 is provided above the interlayer insulating film 38.
  • the interlayer insulating film 38 is provided with one or a plurality of contact holes 54 for electrically connecting the emitter electrode 52 and the semiconductor substrate 10. Similarly, the contact hole 55 and the contact hole 56 may be provided so as to penetrate the interlayer insulating film 38.
  • FIG. 1C is a diagram showing an example of a bb'cross section in FIG. 1A.
  • the bb'cross section is an XZ plane that passes through the contact region 15 in the transistor portion 70.
  • the mesa portion 71 has a base region 14, a contact region 15, an accumulation region 16, and a contact layer 19 in a bb'cross section.
  • the mesa portion 91 has a contact region 15, an accumulation region 16, and a contact layer 19 as in the case of the aa'cross section.
  • the mesa portion 71 has the same structure as the mesa portion 91.
  • the mesa portion 81 has a base region 14, a contact region 15, an accumulation region 16, and a contact layer 19 as in the case of the aa'cross section.
  • FIG. 1D shows an example of an enlarged view of the vicinity of the trench contact portion 27.
  • the mesa portion 71 between the dummy trench portion 30 and the gate trench portion 40 will be described, but the mesa portion 81 or the mesa portion 91 may have the same structure.
  • Mesa width W M is the X-axis direction of the width of the mesa.
  • Mesa portion 71, the mesa section 81 and the mesa portion 91 may have the same mesa width W M.
  • Mesa width W M of the present embodiment 0.8 or more and 1.5 ⁇ m or less.
  • the length A is the length at which the lower end of the emitter region 12 and the base region 14 are in contact with each other in the arrangement direction.
  • the length A is greater than 0.1 ⁇ m and less than 0.3 ⁇ m.
  • the length B is the shortest distance between the contact layer 19 and the adjacent trench portion among the plurality of trench portions.
  • the contact layer 19 is provided apart from the adjacent trench portion in order to form a channel.
  • the length B is 0.1 ⁇ m or more.
  • Length A is larger than length B. That is, the width of the base region 14 through which the minority carriers pass is smaller than the width of the lower surface of the emitter region 12. This facilitates pulling out the minority carriers in the contact layer 19 before the minority carriers move to the vicinity of the emitter region 12.
  • the stretched region E is a region of the contact layer 19 that is stretched toward the front surface 21 side of the lower end of the emitter region 12.
  • the length C is the difference between the upper end depth of the contact layer 19 and the lower end depth of the emitter region 12. That is, the length C refers to the amount of stretching of the stretching region E to the emitter region 12. The larger the length C, the more the contact layer 19 extends to the emitter region 12.
  • the length D is the maximum distance from the side wall bottom 29 of the trench contact portion 27 to the contact layer 19 in the arrangement direction.
  • the length D of this example is larger than the length B. That is, the contact layer 19 extends closer to the trench portion than the side wall bottom portion 29 of the trench contact portion 27. This makes it easier to guide the minority carriers to the contact layer 19, and it is possible to suppress the amount of minority carriers passing between the contact layer 19 and the trench portion toward the emitter region 12.
  • the trench contact portion 27 has a concave bottom surface recessed on the back surface 23 side.
  • the concave bottom surface of the trench contact portion 27 of this example is recessed from the side wall bottom portion 29 toward the center of the trench contact portion 27.
  • the bottom surface of the trench contact portion 27 may be recessed in an arc.
  • the concave bottom surface of the trench contact portion 27 is formed by etching for forming the contact hole 54 of the trench contact portion 27.
  • the length L1 is the difference between the lower end of the emitter region 12 and the bottom surface of the trench contact portion 27.
  • the contact layer 19 since the contact layer 19 is in contact with the emitter region 12, carrier injection from the emitter region 12 can be suppressed even when the length L1 becomes large.
  • the length L2 is the distance from the front surface 21 to the upper end of the dummy conductive portion 34 or the upper end of the gate conductive portion 44.
  • the length L2 may be the distance from the front surface 21 to the uppermost end of the dummy conductive portion 34 or the gate conductive portion 44.
  • the length L2 is 0.1 ⁇ m or more and 0.4 ⁇ m or less.
  • the depth D12 is the depth from the front surface 21 to the lower end of the emitter region 12.
  • the depth D12 is 0.3 ⁇ m or more and 0.7 ⁇ m or less.
  • the depth D12 may be greater than the length L2. That is, the emitter region 12 is provided so as to extend from the front surface 21 to a depth facing the dummy conductive portion 34 or the gate conductive portion 44.
  • the depth D27 is the depth from the front surface 21 to the bottom surface of the trench contact portion 27.
  • the depth D27 of this example is the depth from the front surface 21 to the lower end of the side wall of the trench contact portion 27.
  • the depth D27 is larger than the depth D12.
  • the depth D27 is 0.5 ⁇ m or more and 1.0 ⁇ m or less.
  • FIG. 1E shows an example of the doping concentration distribution around the trench contact portion 27.
  • the vertical axis represents the doping concentration (cm -2 ), and the horizontal axis represents the distance ( ⁇ m) from the upper end of the contact layer 19 in the depth direction.
  • the solid line shows the doping concentration distribution at the ZZ'position.
  • the broken line indicates the doping concentration of the emitter region 12 having the same depth as the solid line.
  • the contact layer 19 is formed by ion implantation through the trench contact portion 27.
  • the contact layer 19 has one peak, but may have a plurality of peaks.
  • the peak position of the contact layer 19 may be formed at a position deeper than the lower end of the emitter region 12.
  • the peak of the contact layer 19 in this example is approximately 1E20 cm -2 .
  • the distribution of the doping concentration in this example is just an example. In order to realize the semiconductor device 100 disclosed in the present specification, the magnitude and depth of the peak of the doping concentration may be appropriately changed.
  • FIG. 1F shows an example of an enlarged cross-sectional view in the vicinity of the terminal portion 28.
  • the figure shows an XZ plane passing through the end 28.
  • the side wall of the end portion 28 of the trench contact portion 27 is covered with a second conductive type region.
  • the side wall of the end portion 28 of the trench contact portion 27 of this example is covered with the contact region 15 and the contact layer 19.
  • the contact layer 19 may be provided in contact with the emitter region 12 or may be provided in contact with the contact region 15.
  • the length A' is the length at which the lower end of the contact region 15 and the base region 14 are in contact with each other in the arrangement direction.
  • the length A is greater than 0.1 ⁇ m and less than 0.3 ⁇ m.
  • the depth D15 is the depth from the front surface 21 to the lower end of the contact area 15.
  • the depth D15 is 0.3 ⁇ m or more and 0.7 ⁇ m or less.
  • the depth D15 may be larger than the length L2. Further, the depth D15 may be the same as or different from the depth D12 of the emitter region 12.
  • FIG. 2 shows an example of an enlarged view of the vicinity of the trench contact portion 27.
  • the contact layer 19 of this example includes a two-stage contact layer of the contact layer 19a and the contact layer 19b.
  • the contact layer 19a is an example of the first contact layer
  • the contact layer 19b is an example of the second contact layer.
  • the contact layer 19a is provided on the side wall of the trench contact portion 27.
  • the contact layer 19a is provided in contact with the emitter region 12.
  • the contact layer 19a has a stretched region E extending from the lower end of the emitter region 12 to the front surface 21. Even when the trench contact portion 27 is provided so as to project from the emitter region 12 toward the back surface 23 side, the contact layer 19a comes into contact with the emitter region 12. Therefore, the extraction efficiency of a small number of carriers can be improved and latch-up can be suppressed.
  • the contact layer 19b is provided below the contact layer 19a on the side wall of the trench contact portion 27.
  • the contact layer 19b is provided in contact with the contact layer 19a on the side wall of the trench contact portion 27. That is, the side wall of the trench contact portion 27 is covered with the emitter region 12, the contact layer 19a, and the contact layer 19b.
  • the doping concentration of the contact layer 19a may be the same as the doping concentration of the contact layer 19b. Further, the doping concentration of the contact layer 19a and the contact layer 19b may be the same as the doping concentration of the contact region 15. Further, the doping concentration of the contact layer 19a may be lower than the doping concentration of the contact layer 19b.
  • the length B1 is the shortest distance between the contact layer 19a and the adjacent trench portion among the plurality of trench portions.
  • the length B2 is the shortest distance between the contact layer 19b and the adjacent trench portion among the plurality of trench portions.
  • the length B1 is larger than the length B2.
  • FIG. 3 shows an example of an enlarged cross-sectional view in the vicinity of the terminal portion 28.
  • the figure shows an XZ plane passing through the end 28.
  • the differences from the cross-sectional view of FIG. 1D will be particularly described.
  • the side wall of the terminal portion 28 is covered with a second conductive type region.
  • a contact layer 19 is provided on the side wall of the terminal portion 28 of this example.
  • the side wall of the end 28 is covered with a base region 14, a contact region 15 and a contact layer 19. In this way, when the contact region 15 is provided on the front surface 21, the contact layer 19 may be provided at a distance from the contact region 15.
  • FIG. 4A shows an example of a top view of the semiconductor device 100 according to the embodiment.
  • the semiconductor device 100 of this example differs from the top view of FIG. 1A in that the end portion 28 of the front surface 21 is provided in the emitter region 12.
  • the differences from the cross-sectional view of FIG. 1A will be particularly described.
  • the base region 14 is provided adjacent to the emitter region 12 in the mesa portion 71.
  • the emitter region 12 and the contact region 15 are alternately provided on the front surface 21 in the Y-axis direction.
  • the end portion 28 of this example is provided in the region where the emitter region 12 is formed.
  • FIG. 4B shows an example of an enlarged cross-sectional view of the vicinity of the terminal portion 28 of FIG. 4A.
  • the figure shows an XZ plane passing through the end 28.
  • the semiconductor device 100 of this example differs from the cross-sectional view of FIG. 1F in that the emitter region 12 is provided on the front surface 21 of the terminal portion 28. In this example, the differences from the cross-sectional view of FIG. 1F will be particularly described.
  • the side wall of the terminal portion 28 of the trench contact portion 27 is covered with the emitter region 12 and the contact layer 19. As shown in FIG. 1D, the contact layer 19 is provided in contact with the emitter region 12.
  • FIG. 5 shows an example of a method for manufacturing the one-stage contact layer 19.
  • step S100 the emitter region 12 and the base region 14 are formed on the semiconductor substrate 10.
  • An interlayer insulating film 38 is formed on the upper surface of the emitter region 12 of the front surface 21.
  • step S102 the contact hole 54 is formed by penetrating the emitter region 12 and etching to the base region 14.
  • an oxide film mask is formed above the semiconductor substrate 10.
  • step S104 ions are implanted to form the contact layer 19 using the interlayer insulating film 38 as a mask.
  • the dashed line indicates the region in which the dopant of the contact layer 19 is injected.
  • the contact layer 19 is formed by heat treatment.
  • the contact layer 19 may be provided by being stretched to the emitter region 12 by heat treatment. As a result, the emitter region 12 and the contact layer 19 come into contact with each other on the side wall of the trench contact portion 27.
  • ions are implanted to form the contact layer 19. That is, since the dopant of the contact layer 19 is ion-implanted using the interlayer insulating film 38 as a mask, the alignment accuracy of the contact layer 19 with respect to the trench contact portion 27 is improved.
  • FIG. 6 shows an example of a method for manufacturing the contact layer 19 having a two-stage structure.
  • step S200 a dopant for forming the contact layer 19a is injected.
  • the broken line indicates the region where the dopant of the contact layer 19a is injected.
  • step S202 the contact layer 19a is activated by heat treatment.
  • the heat treatment for activating the contact layer 19a is omitted, and the heat treatment may be performed together with the contact layer 19b.
  • step S204 the contact hole 54 is formed by penetrating the emitter region 12 and etching to the base region 14. A part of the contact layer 19a remains on the side wall of the contact hole 54.
  • step S206 a dopant for forming the contact layer 19b is ion-implanted and heat-treated.
  • the contact layer 19b is formed below the contact layer 19a.
  • the dashed line indicates the region where the dopant of the contact layer 19b is injected.
  • the implantation width of the ion implantation for forming the contact layer 19a may be smaller than the implantation width of the ion implantation for forming the contact layer 19b. Further, the doping concentration of the contact layer 19a may be smaller than the doping concentration of the contact layer 19b. As a result, the contact layer 19b can be formed in a wider range than the contact layer 19a.
  • FIG. 7 shows the configuration of the semiconductor device 500 according to the comparative example.
  • a cross-sectional view corresponding to the aa'cross section of FIG. 1A is shown.
  • the contact layer 519 is separated from the emitter region 512 on the side wall of the trench contact portion 527. Therefore, in the semiconductor device 500, it is difficult to suppress the injection of carriers from the emitter region 512.
  • the contact layer 19 is in contact with the emitter region 12, the injection of carriers from the emitter region 12 can be suppressed and the fracture resistance can be improved.
  • gate conductive part 50. ⁇ ⁇ Gate metal layer, 52 ⁇ ⁇ ⁇ Emitter electrode, 54 ⁇ ⁇ ⁇ Contact hole, 55 ⁇ ⁇ ⁇ Contact hole, 56 ⁇ ⁇ ⁇ Contact hole, 70 ⁇ ⁇ ⁇ Transistor part, 71 ⁇ ⁇ ⁇ Mesa part, 80 ⁇ ⁇ Diode part, 81 ⁇ ⁇ ⁇ Mesa part, 82 ⁇ ⁇ ⁇ Cathode region, 90 ⁇ ⁇ ⁇ Boundary part, 91 ⁇ ⁇ ⁇ Mesa part, 100 ⁇ ⁇ ⁇ Semiconductor device, 500 ⁇ ⁇ ⁇ Semiconductor device, 512 ⁇ ⁇ Emitter region, 519 ⁇ ⁇ ⁇ Contact layer, 527 ⁇ ⁇ ⁇ Trench contact part

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

半導体基板に設けられた第1導電型のドリフト領域と、ドリフト領域の上方に設けられた第2導電型のベース領域と、ベース領域の上方に設けられた第1導電型のエミッタ領域と、半導体基板のおもて面側において、予め定められた配列方向に配列された複数のトレンチ部と、複数のトレンチ部のうち隣接する2つのトレンチ部の間において、半導体基板のおもて面側に設けられたトレンチコンタクト部と、トレンチコンタクト部の下方に設けられ、ベース領域よりも高ドーピング濃度である第2導電型のコンタクト層とを備え、トレンチコンタクト部の下端がエミッタ領域の下端よりも深く、トレンチコンタクト部の側壁において、エミッタ領域とコンタクト層とが接触している半導体装置を提供する。

Description

半導体装置および半導体装置の製造方法
 本発明は、半導体装置および半導体装置の製造方法に関する。
 従来、トレンチコンタクト部を備える半導体装置が知られている(例えば、特許文献1-3参照)。
 特許文献1 特開2014-158013号公報
 特許文献2 特開2013-065724号公報
 特許文献3 国際公開第2018/052099号公報
解決しようとする課題
 トレンチコンタクト部を備える半導体装置の破壊耐量の改善が望まれている。
一般的開示
 本発明の第1の態様においては、半導体基板に設けられた第1導電型のドリフト領域と、ドリフト領域の上方に設けられた第2導電型のベース領域と、ベース領域の上方に設けられた第1導電型のエミッタ領域と、半導体基板のおもて面側において、予め定められた配列方向に配列された複数のトレンチ部と、複数のトレンチ部のうち隣接する2つのトレンチ部の間において、半導体基板のおもて面側に設けられたトレンチコンタクト部と、トレンチコンタクト部の下方に設けられ、ベース領域よりも高ドーピング濃度である第2導電型のコンタクト層とを備え、トレンチコンタクト部の下端がエミッタ領域の下端よりも深く、トレンチコンタクト部の側壁において、エミッタ領域とコンタクト層とが接触している半導体装置を提供する。
 配列方向において、エミッタ領域の下端とベース領域とが接する長さは、コンタクト層と複数のトレンチ部のうち隣接するトレンチ部との最短距離よりも大きくてよい。
 配列方向において、トレンチコンタクト部の側壁底部からコンタクト層までの最大距離は、コンタクト層と複数のトレンチ部のうち隣接するトレンチ部との最短距離よりも大きくてよい。
 コンタクト層と複数のトレンチ部のうち隣接するトレンチ部との最短距離は、0.1μm以上であってよい。
 コンタクト層は、エミッタ領域の下端よりも半導体基板のおもて面側に延伸した延伸領域を有してよい。
 トレンチコンタクト部は、略平面形状の底面を有してよい。
 トレンチコンタクト部は、半導体基板の裏面側に窪んだ凹状の底面を有してよい。
 コンタクト層は、トレンチコンタクト部の側壁に設けられた第1コンタクト層と、トレンチコンタクト部の側壁において、第1コンタクト層の下方に設けられた第2コンタクト層とを有してよい。
 第1コンタクト層と、複数のトレンチ部のうち隣接するトレンチ部との最短距離は、第2コンタクト層と、複数のトレンチ部のうち隣接するトレンチ部との最短距離よりも大きくてよい。
 第1コンタクト層のドーピング濃度は、第2コンタクト層のドーピング濃度よりも低くてよい。
 トレンチコンタクト部は、複数のトレンチ部の延伸方向に延伸して設けられてよい。トレンチコンタクト部の延伸方向における端部である終端部の側壁には、コンタクト層が設けられてよい。
 終端部の側壁は、エミッタ領域およびコンタクト層で覆われていてよい。
 終端部の側壁は、第2導電型の領域で覆われていてよい。
 半導体基板のおもて面において、ベース領域よりも高ドーピング濃度である第2導電型のコンタクト領域を備えてよい。終端部の側壁は、コンタクト領域、ベース領域およびコンタクト層で覆われていてよい。
 半導体基板のおもて面において、ベース領域よりも高ドーピング濃度である第2導電型のコンタクト領域を備えてよい。終端部の側壁は、コンタクト領域およびコンタクト層で覆われていてよい。
 本発明の第2の態様においては、半導体基板に第1導電型のドリフト領域を設ける段階と、ドリフト領域の上方に第2導電型のベース領域を設ける段階と、ベース領域の上方に第1導電型のエミッタ領域を設ける段階と、半導体基板のおもて面側において、複数のトレンチ部を予め定められた配列方向に配列して設ける段階と、複数のトレンチ部のうち隣接する2つのトレンチ部の間において、半導体基板のおもて面側にトレンチコンタクト部を設ける段階と、トレンチコンタクト部の下方に、ベース領域よりも高ドーピング濃度である第2導電型のコンタクト層を設ける段階とを備え、トレンチコンタクト部の下端がエミッタ領域の下端よりも深く、トレンチコンタクト部の側壁において、エミッタ領域とコンタクト層とが接触している半導体装置の製造方法を提供する。
 半導体装置の製造方法は、トレンチコンタクト部のコンタクトホールを設ける段階の後に、コンタクト層を形成するためにイオン注入する段階を備えてよい。
 半導体装置の製造方法は、半導体基板の上方に酸化膜マスクを形成する段階と、酸化膜マスクをマスクとしてコンタクト層を形成するためにイオン注入する段階とを備えてよい。
 半導体装置の製造方法は、トレンチコンタクト部の側壁に第1コンタクト層を形成する段階と、トレンチコンタクト部の側壁において、第1コンタクト層の下方に第2コンタクト層を形成する段階とを備えてよい。第1コンタクト層を形成するためのイオン注入の注入幅は、第2コンタクト層を形成するためのイオン注入の注入幅よりも小さくてよい。
 半導体装置の製造方法は、トレンチコンタクト部の側壁に第1コンタクト層を形成する段階と、トレンチコンタクト部の側壁において、第1コンタクト層の下方に第2コンタクト層を形成する段階とを備えてよい。第1コンタクト層のドーピング濃度は、第2コンタクト層のドーピング濃度よりも小さくてよい。
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
実施例に係る半導体装置100の上面図の一例を示す。 図1Aにおけるa-a'断面の一例を示す図である。 図1Aにおけるb-b'断面の一例を示す図である。 トレンチコンタクト部27近傍の拡大図の一例を示す。 トレンチコンタクト部27の周辺のドーピング濃度分布の一例を示す。 終端部28の近傍を拡大した断面図の一例を示す。 トレンチコンタクト部27近傍の拡大図の一例を示す。 終端部28の近傍を拡大した断面図の一例を示す。 実施例に係る半導体装置100の上面図の一例を示す。 図4Aの終端部28の近傍を拡大した断面図の一例を示す。 1段構成のコンタクト層19の製造方法の一例を示す。 2段構成のコンタクト層19の製造方法の一例を示す。 比較例に係る半導体装置500の構成を示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 本明細書においては、半導体基板の深さ方向と平行な方向における一方の側を「上」、他方の側を「下」と称する。基板、層またはその他の部材の2つの主面のうち、一方の面を上面、他方の面を下面と称する。「上」、「下」、「おもて」、「裏」の方向は重力方向、または、半導体装置の実装時における基板等への取り付け方向に限定されない。
 本明細書では、X軸、Y軸およびZ軸の直交座標軸を用いて技術的事項を説明する場合がある。本明細書では、半導体基板の上面と平行な面をXY面とし、半導体基板の深さ方向をZ軸とする。なお、本明細書において、Z軸方向に半導体基板を視た場合について平面視と称する。
 各実施例においては、第1導電型をN型、第2導電型をP型とした例を示しているが、第1導電型をP型、第2導電型をN型としてもよい。この場合、各実施例における基板、層、領域等の導電型は、それぞれ逆の極性となる。
 本明細書では、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれ、それが付されていない層や領域よりも高ドーピング濃度および低ドーピング濃度であることを意味し、++は+よりも高ドーピング濃度、--は-よりも低ドーピング濃度であることを意味する。
 本明細書においてドーピング濃度とは、ドナーまたはアクセプタ化したドーパントの濃度を指す。したがって、その単位は、/cmである。本明細書において、ドナーおよびアクセプタの濃度差(すなわちネットドーピング濃度)をドーピング濃度とする場合がある。この場合、ドーピング濃度はSR法で測定できる。また、ドナーおよびアクセプタの化学濃度をドーピング濃度としてもよい。この場合、ドーピング濃度はSIMS法で測定できる。特に限定していなければ、ドーピング濃度として、上記のいずれを用いてもよい。特に限定していなければ、ドーピング領域におけるドーピング濃度分布のピーク値を、当該ドーピング領域におけるドーピング濃度としてよい。
 また、本明細書においてドーズ量とは、イオン注入を行う際に、ウェーハに注入される単位面積あたりのイオンの個数をいう。したがって、その単位は、/cmである。なお、半導体領域のドーズ量は、その半導体領域の深さ方向にわたってドーピング濃度を積分した積分濃度とすることができる。その積分濃度の単位は、/cmである。したがって、ドーズ量と積分濃度とを同じものとして扱ってよい。積分濃度は、半値幅までの積分値としてもよく、他の半導体領域のスペクトルと重なる場合には、他の半導体領域の影響を除いて導出してよい。
 よって、本明細書では、ドーピング濃度の高低をドーズ量の高低として読み替えることができる。即ち、一の領域のドーピング濃度が他の領域のドーピング濃度よりも高い場合、当該一の領域のドーズ量が他の領域のドーズ量よりも高いものと理解することができる。
 図1Aは、実施例に係る半導体装置100の上面図の一例を示す。本例の半導体装置100は、トランジスタ部70およびダイオード部80を備える半導体チップである。例えば、半導体装置100は、逆導通IGBT(RC-IGBT:Reverse Conducting IGBT)である。なお、半導体装置100は、IGBTであっても、MOSトランジスタであってもよい。
 トランジスタ部70は、半導体基板10の裏面側に設けられたコレクタ領域22を半導体基板10の上面に投影した領域である。コレクタ領域22は、第2導電型を有する。本例のコレクタ領域22は、一例としてP+型である。トランジスタ部70は、IGBT等のトランジスタを含む。トランジスタ部70は、トランジスタ部70とダイオード部80の境界に位置する境界部90を含む。
 ダイオード部80は、半導体基板10の裏面側に設けられたカソード領域82を半導体基板10の上面に投影した領域である。カソード領域82は、第1導電型を有する。本例のカソード領域82は、一例としてN+型である。ダイオード部80は、半導体基板10の上面においてトランジスタ部70と隣接して設けられた還流ダイオード(FWD:Free Wheel Diode)等のダイオードを含む。
 図1Aにおいては、半導体装置100のエッジ側であるチップ端部周辺の領域を示しており、他の領域を省略している。例えば、本例の半導体装置100のY軸方向の負側の領域には、エッジ終端構造部が設けられてよい。エッジ終端構造部は、半導体基板10の上面側の電界集中を緩和する。エッジ終端構造部は、例えばガードリング、フィールドプレート、リサーフおよびこれらを組み合わせた構造を有する。なお、本例では、便宜上、Y軸方向の負側のエッジについて説明するものの、半導体装置100の他のエッジについても同様である。
 半導体基板10は、シリコン基板であってよく、炭化シリコン基板であってよく、窒化ガリウム等の窒化物半導体基板等であってもよい。本例の半導体基板10は、シリコン基板である。
 本例の半導体装置100は、半導体基板10のおもて面21において、ゲートトレンチ部40と、ダミートレンチ部30と、エミッタ領域12と、ベース領域14と、コンタクト領域15と、ウェル領域17とを備える。おもて面21については後述する。また、本例の半導体装置100は、半導体基板10のおもて面21の上方に設けられたエミッタ電極52およびゲート金属層50を備える。
 エミッタ電極52は、ゲートトレンチ部40、ダミートレンチ部30、エミッタ領域12、ベース領域14、コンタクト領域15およびウェル領域17の上方に設けられている。また、ゲート金属層50は、ゲートトレンチ部40およびウェル領域17の上方に設けられている。
 エミッタ電極52およびゲート金属層50は、金属を含む材料で形成される。例えば、エミッタ電極52の少なくとも一部の領域は、アルミニウム、アルミニウム‐シリコン合金、またはアルミニウム‐シリコン-銅合金で形成されてよい。ゲート金属層50の少なくとも一部の領域は、アルミニウム、アルミニウム‐シリコン合金、またはアルミニウム‐シリコン-銅合金で形成されてよい。エミッタ電極52およびゲート金属層50は、アルミニウム等で形成された領域の下層にチタンやチタン化合物等で形成されたバリアメタルを有してよい。エミッタ電極52およびゲート金属層50は、互いに分離して設けられる。
 エミッタ電極52およびゲート金属層50は、層間絶縁膜38を挟んで、半導体基板10の上方に設けられる。層間絶縁膜38は、図1Aでは省略されている。層間絶縁膜38には、コンタクトホール54、コンタクトホール55およびコンタクトホール56が貫通して設けられている。
 コンタクトホール55は、ゲート金属層50とトランジスタ部70内のゲート導電部とを接続する。コンタクトホール55の内部には、タングステン等で形成されたプラグが形成されてもよい。
 コンタクトホール56は、エミッタ電極52とダミートレンチ部30内のダミー導電部とを接続する。コンタクトホール56の内部には、タングステン等で形成されたプラグが形成されてもよい。
 接続部25は、エミッタ電極52またはゲート金属層50等のおもて面側電極と、半導体基板10とを電気的に接続する。一例において、接続部25は、ゲート金属層50とゲート導電部との間に設けられる。接続部25は、エミッタ電極52とダミー導電部との間にも設けられている。接続部25は、不純物がドープされたポリシリコン等の、導電性を有する材料である。ここでは、接続部25は、N型の不純物がドープされたポリシリコン(N+)である。接続部25は、酸化膜等の絶縁膜等を介して、半導体基板10のおもて面21の上方に設けられる。
 ゲートトレンチ部40は、予め定められた配列方向(本例ではX軸方向)に沿って予め定められた間隔で配列される。本例のゲートトレンチ部40は、半導体基板10のおもて面21に平行であって配列方向と垂直な延伸方向(本例ではY軸方向)に沿って延伸する2つの延伸部分41と、2つの延伸部分41を接続する接続部分43を有してよい。
 接続部分43は、少なくとも一部が曲線状に形成されることが好ましい。ゲートトレンチ部40の2つの延伸部分41の端部を接続することで、延伸部分41の端部における電界集中を緩和できる。ゲートトレンチ部40の接続部分43において、ゲート金属層50がゲート導電部と接続されてよい。
 ダミートレンチ部30は、エミッタ電極52と電気的に接続されたトレンチ部である。ダミートレンチ部30は、ゲートトレンチ部40と同様に、予め定められた配列方向(本例ではX軸方向)に沿って予め定められた間隔で配列される。本例のダミートレンチ部30は、ゲートトレンチ部40と同様に、半導体基板10のおもて面21においてU字形状を有してよい。即ち、ダミートレンチ部30は、延伸方向に沿って延伸する2つの延伸部分31と、2つの延伸部分31を接続する接続部分33を有してよい。
 本例のトランジスタ部70は、2つのゲートトレンチ部40と3つのダミートレンチ部30を繰り返し配列させた構造を有する。即ち、本例のトランジスタ部70は、2:3の比率でゲートトレンチ部40とダミートレンチ部30を有している。例えば、トランジスタ部70は、2本の延伸部分41の間に1本の延伸部分31を有する。また、トランジスタ部70は、ゲートトレンチ部40と隣接して、2本の延伸部分31を有している。
 但し、ゲートトレンチ部40とダミートレンチ部30の比率は本例に限定されない。ゲートトレンチ部40とダミートレンチ部30の比率は、1:1であってもよく、2:4であってもよい。また、トランジスタ部70においてダミートレンチ部30を設けず、全てゲートトレンチ部40としたいわゆるフルゲート構造としてもよい。
 ウェル領域17は、後述するドリフト領域18よりも半導体基板10のおもて面21側に設けられた第2導電型の領域である。ウェル領域17は、半導体装置100のエッジ側に設けられるウェル領域の一例である。ウェル領域17は、一例としてP+型である。ウェル領域17は、ゲート金属層50が設けられる側の活性領域の端部から、予め定められた範囲で形成される。ウェル領域17の拡散深さは、ゲートトレンチ部40およびダミートレンチ部30の深さよりも深くてよい。ゲートトレンチ部40およびダミートレンチ部30の、ゲート金属層50側の一部の領域は、ウェル領域17に形成される。ゲートトレンチ部40およびダミートレンチ部30の延伸方向の端の底は、ウェル領域17に覆われてよい。
 コンタクトホール54は、トランジスタ部70において、エミッタ領域12およびコンタクト領域15の各領域の上方に形成される。また、コンタクトホール54は、ダイオード部80において、ベース領域14の上方に設けられる。コンタクトホール54は、境界部90において、コンタクト領域15の上方に設けられる。コンタクトホール54は、ダイオード部80において、ベース領域14の上方に設けられる。いずれのコンタクトホール54も、Y軸方向両端に設けられたウェル領域17の上方には設けられていない。このように、層間絶縁膜には、1又は複数のコンタクトホール54が形成されている。1又は複数のコンタクトホール54は、延伸方向に延伸して設けられてよい。
 トレンチコンタクト部27は、エミッタ電極52と半導体基板10とを電気的に接続する。トレンチコンタクト部27は、コンタクトホール54に設けられている。トレンチコンタクト部27は、延伸方向に延伸して設けられている。
 終端部28は、トレンチコンタクト部27における延伸方向の端部である。終端部28は、メサ部71において、おもて面21にコンタクト領域15が形成された領域に設けられる。終端部28は、メサ部81またはメサ部91において、おもて面21にコンタクト領域15が形成された領域に設けられてもよい。
 境界部90は、トランジスタ部70に設けられ、ダイオード部80と隣接する領域である。境界部90は、コンタクト領域15を有する。本例の境界部90は、エミッタ領域12を有さない。一例において、境界部90のトレンチ部は、ダミートレンチ部30である。本例の境界部90は、X軸方向における両端がダミートレンチ部30となるように配置されている。
 メサ部71、メサ部91およびメサ部81は、半導体基板10のおもて面21と平行な面内において、トレンチ部に隣接して設けられたメサ部である。メサ部とは、隣り合う2つのトレンチ部に挟まれた半導体基板10の部分であって、半導体基板10のおもて面21から、各トレンチ部の最も深い底部の深さまでの部分であってよい。各トレンチ部の延伸部分を1つのトレンチ部としてよい。即ち、2つの延伸部分に挟まれる領域をメサ部としてよい。
 メサ部71は、トランジスタ部70において、ダミートレンチ部30またはゲートトレンチ部40の少なくとも1つに隣接して設けられる。メサ部71は、半導体基板10のおもて面21において、ウェル領域17と、エミッタ領域12と、ベース領域14と、コンタクト領域15とを有する。メサ部71では、エミッタ領域12およびコンタクト領域15が延伸方向において交互に設けられている。
 メサ部91は、境界部90に設けられている。メサ部91は、半導体基板10のおもて面21において、コンタクト領域15を有する。本例のメサ部91は、Y軸方向の負側において、ベース領域14およびウェル領域17を有する。
 メサ部81は、ダイオード部80において、隣り合うダミートレンチ部30に挟まれた領域に設けられる。メサ部81は、半導体基板10のおもて面21において、コンタクト領域15を有する。本例のメサ部81は、Y軸方向の負側において、ベース領域14およびウェル領域17を有する。
 ベース領域14は、トランジスタ部70およびダイオード部80において、半導体基板10のおもて面21側に設けられた第2導電型の領域である。ベース領域14は、一例としてP-型である。ベース領域14は、半導体基板10のおもて面21において、メサ部71およびメサ部91のY軸方向における両端部に設けられてよい。なお、図1Aは、当該ベース領域14のY軸方向の一方の端部のみを示している。
 エミッタ領域12は、ドリフト領域18よりもドーピング濃度の高い第1導電型の領域である。本例のエミッタ領域12は、一例としてN+型である。エミッタ領域12のドーパントの一例はヒ素(As)である。エミッタ領域12は、メサ部71のおもて面21において、ゲートトレンチ部40と接して設けられる。エミッタ領域12は、メサ部71を挟んだ2本のトレンチ部の一方から他方まで、X軸方向に延伸して設けられてよい。エミッタ領域12は、コンタクトホール54の下方にも設けられている。
 また、エミッタ領域12は、ダミートレンチ部30と接してもよいし、接しなくてもよい。本例のエミッタ領域12は、ダミートレンチ部30と接している。エミッタ領域12は、メサ部81およびメサ部91には設けられなくてよい。
 コンタクト領域15は、ベース領域14よりもドーピング濃度の高い第2導電型の領域である。本例のコンタクト領域15は、一例としてP+型である。本例のコンタクト領域15は、メサ部71、メサ部81およびメサ部91のおもて面21に設けられている。コンタクト領域15は、メサ部71、メサ部81またはメサ部91を挟んだ2本のトレンチ部の一方から他方まで、X軸方向に設けられてよい。コンタクト領域15は、ゲートトレンチ部40と接してもよいし、接しなくてもよい。また、コンタクト領域15は、ダミートレンチ部30と接してもよいし、接しなくてもよい。本例においては、コンタクト領域15が、ダミートレンチ部30およびゲートトレンチ部40と接する。コンタクト領域15は、コンタクトホール54の下方にも設けられている。
 図1Bは、図1Aにおけるa-a'断面の一例を示す図である。a-a'断面は、トランジスタ部70において、エミッタ領域12を通過するXZ面である。本例の半導体装置100は、a-a'断面において、半導体基板10、層間絶縁膜38、エミッタ電極52およびコレクタ電極24を有する。エミッタ電極52は、半導体基板10および層間絶縁膜38の上方に形成される。
 ドリフト領域18は、半導体基板10に設けられた第1導電型の領域である。本例のドリフト領域18は、一例としてN-型である。ドリフト領域18は、半導体基板10において他のドーピング領域が形成されずに残存した領域であってよい。即ち、ドリフト領域18のドーピング濃度は半導体基板10のドーピング濃度であってよい。
 バッファ領域20は、ドリフト領域18の下方に設けられた第1導電型の領域である。本例のバッファ領域20は、一例としてN型である。バッファ領域20のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。バッファ領域20は、ベース領域14の下面側から広がる空乏層が、第2導電型のコレクタ領域22および第1導電型のカソード領域82に到達することを防ぐフィールドストップ層として機能してよい。
 コレクタ領域22は、トランジスタ部70において、バッファ領域20の下方に設けられる。カソード領域82は、ダイオード部80において、バッファ領域20の下方に設けられる。コレクタ領域22とカソード領域82との境界は、トランジスタ部70とダイオード部80との境界である。
 コレクタ電極24は、半導体基板10の裏面23に形成される。コレクタ電極24は、金属等の導電材料で形成される。
 ベース領域14は、メサ部71、メサ部91およびメサ部81において、ドリフト領域18の上方に設けられる第2導電型の領域である。ベース領域14は、ゲートトレンチ部40に接して設けられる。ベース領域14は、ダミートレンチ部30に接して設けられてよい。
 エミッタ領域12は、ベース領域14とおもて面21との間に設けられる。本例のエミッタ領域12は、メサ部71に設けられており、メサ部81およびメサ部91には設けられていない。エミッタ領域12は、ゲートトレンチ部40と接して設けられる。エミッタ領域12は、ダミートレンチ部30と接してもよいし、接しなくてもよい。
 コンタクト領域15は、メサ部81およびメサ部91において、ベース領域14の上方に設けられる。コンタクト領域15は、メサ部81およびメサ部91において、ダミートレンチ部30に接して設けられる。他の断面において、コンタクト領域15は、メサ部71のおもて面21に設けられてよい。
 トレンチコンタクト部27は、コンタクトホール54に充填された導電性の材料を有する。トレンチコンタクト部27は、複数のトレンチ部のうち隣接する2つのトレンチ部の間に設けられる。トレンチコンタクト部27は、おもて面21側において、コンタクト層19と接して設けられる。本例のトレンチコンタクト部27は、おもて面21からエミッタ領域12を貫通して設けられる。トレンチコンタクト部27は、エミッタ電極52と同一の材料を有してよい。
 トレンチコンタクト部27の下端は、エミッタ領域12の下端よりも深い。トレンチコンタクト部27を設けることにより、ベース領域14の抵抗が低減し、少数キャリア(例えば、正孔)の引き抜きしやすくなる。これにより、少数キャリアに起因するラッチアップ耐量などの破壊耐量を向上することができる。
 トレンチコンタクト部27は、略平面形状の底面を有する。トレンチコンタクト部27の底面は、コンタクト層19で覆われている。本例のトレンチコンタクト部27は、側壁が傾斜したテーパ形状を有する。但し、トレンチコンタクト部27の側壁は、おもて面21に対して、略垂直に設けられてもよい。
 コンタクト層19は、トレンチコンタクト部27の下方に設けられる。コンタクト層19は、ベース領域14よりもドーピング濃度の高い第2導電型の領域である。本例のコンタクト層19は、一例としてP+型である。例えば、コンタクト層19は、ボロン(B)またはフッ化ボロン(BF)をイオン注入することにより形成される。コンタクト層19は、コンタクト領域15と同一のドーピング濃度であってよい。コンタクト層19は、少数キャリアを引き抜くことにより、ラッチアップを抑制する。
 コンタクト層19は、トレンチコンタクト部27の側壁および底面に設けられる。本例のコンタクト層19は、メサ部71、メサ部81およびメサ部91のそれぞれに設けられている。コンタクト層19は、Y軸方向に延伸して設けられてよい。
 トレンチコンタクト部27の側壁において、エミッタ領域12とコンタクト層19とが接触している。本例のトレンチコンタクト部27の側壁は、エミッタ領域12およびコンタクト層19で覆われている。即ち、トレンチコンタクト部27は、ベース領域14と接触していない。
 本例では、エミッタ領域12とコンタクト層19とが接触していることにより、エミッタ領域12からのキャリアの注入を抑制して、破壊耐量を向上することができる。また、半導体装置100に大電流を流した場合であっても、コンタクト層19によって少数キャリアの引き抜き効率を向上させ、ベース領域14の電位を安定させることができる。
 蓄積領域16は、ドリフト領域18よりも半導体基板10のおもて面21側に設けられる第1導電型の領域である。本例の蓄積領域16は、一例としてN+型である。蓄積領域16は、トランジスタ部70およびダイオード部80に設けられる。但し、蓄積領域16が設けられなくてもよい。
 また、蓄積領域16は、ゲートトレンチ部40に接して設けられる。蓄積領域16は、ダミートレンチ部30に接してもよいし、接しなくてもよい。蓄積領域16のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。蓄積領域16のイオン注入のドーズ量は、1E12cm-2以上、1E13cm-2以下であってよい。また、蓄積領域16のイオン注入ドーズ量は、3E12cm-2以上、6E12cm-2以下であってもよい。蓄積領域16を設けることで、キャリア注入促進効果(IE効果)を高めて、トランジスタ部70のオン電圧を低減できる。なお、Eは10のべき乗を意味し、例えば1E12cm-2は1×1012cm-2を意味する。
 1つ以上のゲートトレンチ部40および1つ以上のダミートレンチ部30は、おもて面21に設けられる。各トレンチ部は、おもて面21からドリフト領域18まで設けられる。エミッタ領域12、ベース領域14、コンタクト領域15および蓄積領域16の少なくともいずれかが設けられる領域においては、各トレンチ部はこれらの領域も貫通して、ドリフト領域18に到達する。トレンチ部がドーピング領域を貫通するとは、ドーピング領域を形成してからトレンチ部を形成する順序で製造したものに限定されない。トレンチ部を形成した後に、トレンチ部の間にドーピング領域を形成したものも、トレンチ部がドーピング領域を貫通しているものに含まれる。
 ゲートトレンチ部40は、おもて面21に形成されたゲートトレンチ、ゲート絶縁膜42およびゲート導電部44を有する。ゲート絶縁膜42は、ゲートトレンチの内壁を覆って形成される。ゲート絶縁膜42は、ゲートトレンチの内壁の半導体を酸化または窒化して形成してよい。ゲート導電部44は、ゲートトレンチの内部においてゲート絶縁膜42よりも内側に形成される。ゲート絶縁膜42は、ゲート導電部44と半導体基板10とを絶縁する。ゲート導電部44は、ポリシリコン等の導電材料で形成される。ゲートトレンチ部40は、おもて面21において層間絶縁膜38により覆われる。
 ゲート導電部44は、半導体基板10の深さ方向において、ゲート絶縁膜42を挟んでメサ部71側で隣接するベース領域14と対向する領域を含む。ゲート導電部44に所定の電圧が印加されると、ベース領域14のうちゲートトレンチに接する界面の表層に、電子の反転層によるチャネルが形成される。
 ダミートレンチ部30は、ゲートトレンチ部40と同一の構造を有してよい。ダミートレンチ部30は、おもて面21側に形成されたダミートレンチ、ダミー絶縁膜32およびダミー導電部34を有する。ダミー絶縁膜32は、ダミートレンチの内壁を覆って形成される。ダミー導電部34は、ダミートレンチの内部に形成され、且つ、ダミー絶縁膜32よりも内側に形成される。ダミー絶縁膜32は、ダミー導電部34と半導体基板10とを絶縁する。ダミートレンチ部30は、おもて面21において層間絶縁膜38により覆われる。
 層間絶縁膜38は、おもて面21に設けられている。層間絶縁膜38の上方には、エミッタ電極52が設けられている。層間絶縁膜38には、エミッタ電極52と半導体基板10とを電気的に接続するための1又は複数のコンタクトホール54が設けられている。コンタクトホール55およびコンタクトホール56も同様に、層間絶縁膜38を貫通して設けられてよい。
 図1Cは、図1Aにおけるb-b'断面の一例を示す図である。b-b'断面は、トランジスタ部70において、コンタクト領域15を通過するXZ面である。
 メサ部71は、b-b'断面において、ベース領域14と、コンタクト領域15と、蓄積領域16と、コンタクト層19とを有する。メサ部91は、a-a'断面の場合と同様に、コンタクト領域15と、蓄積領域16と、コンタクト層19とを有する。b-b'断面において、メサ部71は、メサ部91と同一の構造を有している。メサ部81は、a-a'断面の場合と同様に、ベース領域14と、コンタクト領域15と、蓄積領域16と、コンタクト層19とを有する。
 図1Dは、トレンチコンタクト部27近傍の拡大図の一例を示す。本例では、ダミートレンチ部30とゲートトレンチ部40との間のメサ部71を用いて説明するが、メサ部81またはメサ部91も同様の構造であってよい。
 メサ幅Wは、メサ部のX軸方向の幅である。メサ部71、メサ部81およびメサ部91は、同一のメサ幅Wを有してよい。本例のメサ幅Wは、0.8以上、1.5μm以下である。
 長さAは、配列方向において、エミッタ領域12の下端とベース領域14とが接する長さである。例えば、長さAは、0.1μmよりも大きく、0.3μmよりも小さい。
 長さBは、コンタクト層19と複数のトレンチ部のうち隣接するトレンチ部との最短距離である。コンタクト層19は、チャネルを形成するために、隣接するトレンチ部と離間して設けられる。例えば、長さBは、0.1μm以上である。これにより、ゲート閾値電圧Vthに対する影響を回避しつつ、破壊耐量を向上できる。
 長さAは、長さBよりも大きい。即ち、エミッタ領域12の下面よりも、少数キャリアが通過するベース領域14の幅の方が小さい。これにより、少数キャリアがエミッタ領域12の近傍まで移動する前に、コンタクト層19で少数キャリアを引き抜きやすくなる。
 延伸領域Eは、コンタクト層19において、エミッタ領域12の下端よりもおもて面21側に延伸した領域である。延伸領域Eを設けることにより、エミッタ領域12とコンタクト層19を確実に接触させることができる。また、少数キャリアの引き抜き効率が向上するので、ラッチアップを抑制しやすくなる。
 長さCは、コンタクト層19の上端深さとエミッタ領域12の下端深さとの差分である。即ち、長さCは、延伸領域Eのエミッタ領域12への延伸量を指す。長さCが大きいほど、コンタクト層19がエミッタ領域12に延伸していることを示す。
 長さDは、配列方向における、トレンチコンタクト部27の側壁底部29からコンタクト層19までの最大距離である。本例の長さDは、長さBよりも大きい。即ち、コンタクト層19は、トレンチコンタクト部27の側壁底部29よりもトレンチ部の近くまで延伸している。これにより、少数キャリアをコンタクト層19に誘導しやすくなり、コンタクト層19とトレンチ部の間を通過して、エミッタ領域12に向かう少数キャリアの量を抑制することができる。
 トレンチコンタクト部27は、裏面23側に窪んだ凹状の底面を有する。本例のトレンチコンタクト部27の凹状の底面は、側壁底部29からトレンチコンタクト部27の中心に向かって窪んでいる。トレンチコンタクト部27の底面は、円弧上に窪んでもよい。トレンチコンタクト部27の凹状の底面は、トレンチコンタクト部27のコンタクトホール54を形成するためのエッチングによって形成される。
 長さL1は、エミッタ領域12の下端とトレンチコンタクト部27の底面との差である。長さL1が大きいほど、トレンチコンタクト部27がエミッタ領域12から延伸して設けられることになり、少数キャリアを引き抜きやすくなる。本例の半導体装置100は、コンタクト層19をエミッタ領域12と接触させているので、長さL1が大きくなった場合であっても、エミッタ領域12からのキャリアの注入を抑制できる。
 長さL2は、おもて面21からダミー導電部34の上端またはゲート導電部44の上端までの距離である。ダミー導電部34またはゲート導電部44が上端に窪みを有する場合、長さL2は、おもて面21からダミー導電部34またはゲート導電部44の最上端までの距離であってよい。例えば、長さL2は、0.1μm以上、0.4μm以下である。
 深さD12は、おもて面21からエミッタ領域12の下端までの深さである。例えば、深さD12は、0.3μm以上、0.7μm以下である。深さD12は、長さL2よりも大きくてよい。即ち、エミッタ領域12は、おもて面21から、ダミー導電部34またはゲート導電部44と対向する深さまで延伸して設けられている。
 深さD27は、おもて面21からトレンチコンタクト部27の底面までの深さである。本例の深さD27は、おもて面21からトレンチコンタクト部27の側壁の下端までの深さである。深さD27は、深さD12よりも大きい。例えば、深さD27は、0.5μm以上、1.0μm以下である。
 図1Eは、トレンチコンタクト部27の周辺のドーピング濃度分布の一例を示す。縦軸はドーピング濃度(cm-2)を示し、横軸はコンタクト層19の上端から深さ方向への距離(μm)を示す。実線は、Z-Z'位置におけるドーピング濃度分布を示す。破線は、実線と同じ深さのエミッタ領域12のドーピング濃度を示す。
 コンタクト層19は、トレンチコンタクト部27越しにイオン注入することにより形成される。コンタクト層19は、1つのピークを有するが、複数のピークを有してもよい。コンタクト層19のピーク位置は、エミッタ領域12の下端よりも深い位置に形成されてよい。本例のコンタクト層19のピークは、およそ1E20cm-2である。
 なお、本例のドーピング濃度の分布は、あくまで一例である。本願明細書に開示された半導体装置100を実現するために、ドーピング濃度のピークの大きさおよび深さ等が適宜変更されてよい。
 図1Fは、終端部28の近傍を拡大した断面図の一例を示す。同図は、終端部28を通過するXZ面を示している。
 トレンチコンタクト部27の終端部28の側壁は、第2導電型の領域で覆われている。本例のトレンチコンタクト部27の終端部28の側壁は、コンタクト領域15およびコンタクト層19で覆われている。このように、コンタクト層19は、エミッタ領域12に接触して設けられてもよいし、コンタクト領域15に接触して設けられてもよい。
 長さA'は、配列方向において、コンタクト領域15の下端とベース領域14とが接する長さである。例えば、長さAは、0.1μmよりも大きく、0.3μmよりも小さい。
 深さD15は、おもて面21からコンタクト領域15の下端までの深さである。例えば、深さD15は、0.3μm以上、0.7μm以下である。深さD15は、長さL2よりも大きくてよい。また、深さD15は、エミッタ領域12の深さD12と同一であっても、異なっていてもよい。
 図2は、トレンチコンタクト部27近傍の拡大図の一例を示す。本例のコンタクト層19は、コンタクト層19aおよびコンタクト層19bの2段のコンタクト層を含む。コンタクト層19aは第1コンタクト層の一例であり、コンタクト層19bは第2コンタクト層の一例である。
 コンタクト層19aは、トレンチコンタクト部27の側壁に設けられている。コンタクト層19aは、エミッタ領域12と接して設けられている。コンタクト層19aは、エミッタ領域12の下端よりもおもて面21に延伸した延伸領域Eを有する。トレンチコンタクト部27がエミッタ領域12から裏面23側に突出して設けられている場合であっても、コンタクト層19aがエミッタ領域12と接触する。そのため、少数キャリアの引き抜き効率を向上させてラッチアップを抑制できる。
 コンタクト層19bは、トレンチコンタクト部27の側壁において、コンタクト層19aの下方に設けられている。コンタクト層19bは、トレンチコンタクト部27の側壁において、コンタクト層19aと接して設けられている。即ち、トレンチコンタクト部27の側壁は、エミッタ領域12、コンタクト層19aおよびコンタクト層19bで覆われている。
 コンタクト層19aのドーピング濃度は、コンタクト層19bのドーピング濃度と同一であってよい。また、コンタクト層19aおよびコンタクト層19bのドーピング濃度は、コンタクト領域15のドーピング濃度と同一であってもよい。また、コンタクト層19aのドーピング濃度は、コンタクト層19bのドーピング濃度よりも低くてよい。
 長さB1は、コンタクト層19aと複数のトレンチ部のうち隣接するトレンチ部との最短距離である。長さB2は、コンタクト層19bと複数のトレンチ部のうち隣接するトレンチ部との最短距離である。長さB1は、長さB2よりも大きい。これにより、コンタクト層19bは、少数キャリアを確実に引き抜くことができる。
 図3は、終端部28の近傍を拡大した断面図の一例を示す。同図は、終端部28を通過するXZ面を示している。本例では、図1Dの断面図と相違する点について特に説明する。
 終端部28の側壁は、第2導電型の領域で覆われている。本例の終端部28の側壁には、コンタクト層19が設けられている。終端部28の側壁は、ベース領域14、コンタクト領域15およびコンタクト層19で覆われている。このように、おもて面21にコンタクト領域15が設けられている場合、コンタクト層19がコンタクト領域15と離間して設けられてもよい。
 図4Aは、実施例に係る半導体装置100の上面図の一例を示す。本例の半導体装置100は、おもて面21の終端部28がエミッタ領域12に設けられている点で、図1Aの上面図と相違する。本例では、図1Aの断面図と相違する点について特に説明する。
 ベース領域14は、メサ部71において、エミッタ領域12と隣接して設けられている。エミッタ領域12およびコンタクト領域15は、おもて面21において、Y軸方向に交互に設けられている。本例の終端部28は、エミッタ領域12が形成された領域に設けられている。
 図4Bは、図4Aの終端部28の近傍を拡大した断面図の一例を示す。同図は、終端部28を通過するXZ面を示している。本例の半導体装置100は、終端部28のおもて面21にエミッタ領域12が設けられている点で、図1Fの断面図と相違する。本例では、図1Fの断面図と相違する点について特に説明する。
 トレンチコンタクト部27の終端部28の側壁は、エミッタ領域12およびコンタクト層19で覆われている。図1Dで示したように、コンタクト層19がエミッタ領域12と接して設けられている。
 図5は、1段構成のコンタクト層19の製造方法の一例を示す。
 ステップS100において、半導体基板10にエミッタ領域12およびベース領域14を形成する。また、おもて面21のエミッタ領域12の上面には、層間絶縁膜38が形成されている。
 ステップS102において、エミッタ領域12を貫通してベース領域14までエッチングすることによりコンタクトホール54を形成する。ここで、層間絶縁膜38をエッチングすることにより、半導体基板10の上方に酸化膜マスクが形成される。
 ステップS104において、層間絶縁膜38をマスクとして、コンタクト層19を形成するためにイオン注入する。破線は、コンタクト層19のドーパントが注入された領域を示す。
 ステップS106において、熱処理によって、コンタクト層19が形成される。コンタクト層19は、熱処理によってエミッタ領域12に延伸して設けられてよい。これにより、トレンチコンタクト部27の側壁において、エミッタ領域12とコンタクト層19とが接触する。
 なお、本例では、トレンチコンタクト部27のコンタクトホール54を設けた後に、コンタクト層19を形成するためにイオン注入している。即ち、層間絶縁膜38をマスクとして、コンタクト層19のドーパントをイオン注入するので、トレンチコンタクト部27に対するコンタクト層19の位置合わせ精度が向上する。
 図6は、2段構成のコンタクト層19の製造方法の一例を示す。
 ステップS200において、コンタクト層19aを形成するためのドーパントが注入される。破線は、コンタクト層19aのドーパントが注入された領域を示す。
 ステップS202において、コンタクト層19aを熱処理によって活性化させる。コンタクト層19aを活性化するための熱処理は省略され、コンタクト層19bとまとめて熱処理されてよい。
 ステップS204において、エミッタ領域12を貫通してベース領域14までエッチングすることによりコンタクトホール54を形成する。コンタクトホール54の側壁において、コンタクト層19aの一部が残る。
 ステップS206において、コンタクト層19bを形成するためのドーパントをイオン注入して熱処理する。コンタクト層19bは、コンタクト層19aの下方に形成される。破線は、コンタクト層19bのドーパントが注入された領域を示す。
 コンタクト層19aを形成するためのイオン注入の注入幅は、コンタクト層19bを形成するためのイオン注入の注入幅よりも小さくてよい。また、コンタクト層19aのドーピング濃度は、コンタクト層19bのドーピング濃度よりも小さくてよい。これにより、コンタクト層19bをコンタクト層19aよりも広範囲に形成することができる。
 図7は、比較例に係る半導体装置500の構成を示す。本例では、図1Aのa-a'断面に対応する断面図を示している。
 コンタクト層519は、トレンチコンタクト部527の側壁において、エミッタ領域512と離間している。そのため、半導体装置500では、エミッタ領域512からのキャリアの注入の抑制が困難である。
 これに対して、半導体装置100では、コンタクト層19がエミッタ領域12と接触しているので、エミッタ領域12からのキャリアの注入を抑制して、破壊耐量を向上することができる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10・・・半導体基板、12・・・エミッタ領域、14・・・ベース領域、15・・・コンタクト領域、16・・・蓄積領域、17・・・ウェル領域、18・・・ドリフト領域、19・・・コンタクト層、21・・・おもて面、22・・・コレクタ領域、23・・・裏面、24・・・コレクタ電極、25・・・接続部、27・・・トレンチコンタクト部、28・・・終端部、29・・・側壁底部、30・・・ダミートレンチ部、31・・・延伸部分、32・・・ダミー絶縁膜、33・・・接続部分、34・・・ダミー導電部、38・・・層間絶縁膜、40・・・ゲートトレンチ部、41・・・延伸部分、42・・・ゲート絶縁膜、43・・・接続部分、44・・・ゲート導電部、50・・・ゲート金属層、52・・・エミッタ電極、54・・・コンタクトホール、55・・・コンタクトホール、56・・・コンタクトホール、70・・・トランジスタ部、71・・・メサ部、80・・・ダイオード部、81・・・メサ部、82・・・カソード領域、90・・・境界部、91・・・メサ部、100・・・半導体装置、500・・・半導体装置、512・・・エミッタ領域、519・・・コンタクト層、527・・・トレンチコンタクト部

Claims (20)

  1.  半導体基板に設けられた第1導電型のドリフト領域と、
     前記ドリフト領域の上方に設けられた第2導電型のベース領域と、
     前記ベース領域の上方に設けられた第1導電型のエミッタ領域と、
     前記半導体基板のおもて面側において、予め定められた配列方向に配列された複数のトレンチ部と、
     前記複数のトレンチ部のうち隣接する2つのトレンチ部の間において、前記半導体基板のおもて面側に設けられたトレンチコンタクト部と、
     前記トレンチコンタクト部の下方に設けられ、前記ベース領域よりも高ドーピング濃度である第2導電型のコンタクト層と
     を備え、
     前記トレンチコンタクト部の下端が前記エミッタ領域の下端よりも深く、
     前記トレンチコンタクト部の側壁において、前記エミッタ領域と前記コンタクト層とが接触している
     半導体装置。
  2.  前記配列方向において、前記エミッタ領域の下端と前記ベース領域とが接する長さは、前記コンタクト層と前記複数のトレンチ部のうち隣接するトレンチ部との最短距離よりも大きい
     請求項1に記載の半導体装置。
  3.  前記配列方向において、前記トレンチコンタクト部の側壁底部から前記コンタクト層までの最大距離は、前記コンタクト層と前記複数のトレンチ部のうち隣接するトレンチ部との最短距離よりも大きい
     請求項1または2に記載の半導体装置。
  4.  前記コンタクト層と前記複数のトレンチ部のうち隣接するトレンチ部との最短距離は、0.1μm以上である
     請求項1から3のいずれか一項に記載の半導体装置。
  5.  前記コンタクト層は、前記エミッタ領域の下端よりも前記半導体基板のおもて面側に延伸した延伸領域を有する
     請求項1から4のいずれか一項に記載の半導体装置。
  6.  前記トレンチコンタクト部は、略平面形状の底面を有する
     請求項1から5のいずれか一項に記載の半導体装置。
  7.  前記トレンチコンタクト部は、前記半導体基板の裏面側に窪んだ凹状の底面を有する
     請求項1から5のいずれか一項に記載の半導体装置。
  8.  前記コンタクト層は、
     前記トレンチコンタクト部の側壁に設けられた第1コンタクト層と、
     前記トレンチコンタクト部の側壁において、前記第1コンタクト層の下方に設けられた第2コンタクト層と
     を有する請求項1から7のいずれか一項に記載の半導体装置。
  9.  前記第1コンタクト層と、前記複数のトレンチ部のうち隣接するトレンチ部との最短距離は、前記第2コンタクト層と、前記複数のトレンチ部のうち隣接するトレンチ部との最短距離よりも大きい
     請求項8に記載の半導体装置。
  10.  前記第1コンタクト層のドーピング濃度は、前記第2コンタクト層のドーピング濃度よりも低い
     請求項8または9に記載の半導体装置。
  11.  前記トレンチコンタクト部は、前記複数のトレンチ部の延伸方向に延伸して設けられ、
     前記トレンチコンタクト部の前記延伸方向における端部である終端部の側壁には、前記コンタクト層が設けられている
     請求項1から10のいずれか一項に記載の半導体装置。
  12.  前記終端部の側壁は、前記エミッタ領域および前記コンタクト層で覆われている
     請求項11に記載の半導体装置。
  13.  前記終端部の側壁は、第2導電型の領域で覆われている
     請求項11に記載の半導体装置。
  14.  前記半導体基板のおもて面において、前記ベース領域よりも高ドーピング濃度である第2導電型のコンタクト領域を備え、
     前記終端部の側壁は、前記コンタクト領域、前記ベース領域および前記コンタクト層で覆われている
     請求項13に記載の半導体装置。
  15.  前記半導体基板のおもて面において、前記ベース領域よりも高ドーピング濃度である第2導電型のコンタクト領域を備え、
     前記終端部の側壁は、前記コンタクト領域および前記コンタクト層で覆われている
     請求項13に記載の半導体装置。
  16.  半導体基板に第1導電型のドリフト領域を設ける段階と、
     前記ドリフト領域の上方に第2導電型のベース領域を設ける段階と、
     前記ベース領域の上方に第1導電型のエミッタ領域を設ける段階と、
     前記半導体基板のおもて面側において、複数のトレンチ部を予め定められた配列方向に配列して設ける段階と、
     前記複数のトレンチ部のうち隣接する2つのトレンチ部の間において、前記半導体基板のおもて面側にトレンチコンタクト部を設ける段階と、
     前記トレンチコンタクト部の下方に、前記ベース領域よりも高ドーピング濃度である第2導電型のコンタクト層を設ける段階と
     を備え、
     前記トレンチコンタクト部の下端が前記エミッタ領域の下端よりも深く、
     前記トレンチコンタクト部の側壁において、前記エミッタ領域と前記コンタクト層とが接触している
     半導体装置の製造方法。
  17.  前記トレンチコンタクト部のコンタクトホールを設ける段階の後に、前記コンタクト層を形成するためにイオン注入する段階を備える
     請求項16に記載の半導体装置の製造方法。
  18.  前記半導体基板の上方に酸化膜マスクを形成する段階と、
     前記酸化膜マスクをマスクとして前記コンタクト層を形成するためにイオン注入する段階と
     を備える請求項16または17に記載の半導体装置の製造方法。
  19.  前記トレンチコンタクト部の側壁に第1コンタクト層を形成する段階と、
     前記トレンチコンタクト部の側壁において、前記第1コンタクト層の下方に第2コンタクト層を形成する段階と
     を備え、
     前記第1コンタクト層を形成するためのイオン注入の注入幅は、前記第2コンタクト層を形成するためのイオン注入の注入幅よりも小さい
     請求項16から18のいずれか一項に記載の半導体装置の製造方法。
  20.  前記トレンチコンタクト部の側壁に第1コンタクト層を形成する段階と、
     前記トレンチコンタクト部の側壁において、前記第1コンタクト層の下方に第2コンタクト層を形成する段階と
     を備え、
     前記第1コンタクト層のドーピング濃度は、前記第2コンタクト層のドーピング濃度よりも小さい
     請求項16から18のいずれか一項に記載の半導体装置の製造方法。
PCT/JP2021/008891 2020-04-16 2021-03-08 半導体装置および半導体装置の製造方法 WO2021210293A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112021000105.1T DE112021000105T5 (de) 2020-04-16 2021-03-08 Halbleitervorrichtung und verfahren zur herstellung einer halbleitervorrichtung
CN202180005621.7A CN114503280A (zh) 2020-04-16 2021-03-08 半导体装置及半导体装置的制造方法
JP2022515241A JP7384274B2 (ja) 2020-04-16 2021-03-08 半導体装置および半導体装置の製造方法
US17/700,534 US20220216314A1 (en) 2020-04-16 2022-03-22 Semiconductor device and fabrication method of semiconductor device
JP2023191365A JP2024010217A (ja) 2020-04-16 2023-11-09 半導体装置および半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-073309 2020-04-16
JP2020073309 2020-04-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/700,534 Continuation US20220216314A1 (en) 2020-04-16 2022-03-22 Semiconductor device and fabrication method of semiconductor device

Publications (1)

Publication Number Publication Date
WO2021210293A1 true WO2021210293A1 (ja) 2021-10-21

Family

ID=78085302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008891 WO2021210293A1 (ja) 2020-04-16 2021-03-08 半導体装置および半導体装置の製造方法

Country Status (5)

Country Link
US (1) US20220216314A1 (ja)
JP (2) JP7384274B2 (ja)
CN (1) CN114503280A (ja)
DE (1) DE112021000105T5 (ja)
WO (1) WO2021210293A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244802A1 (ja) * 2021-05-19 2022-11-24 富士電機株式会社 半導体装置および製造方法
WO2024166493A1 (ja) * 2023-02-07 2024-08-15 富士電機株式会社 半導体装置
WO2024166492A1 (ja) * 2023-02-07 2024-08-15 富士電機株式会社 半導体装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117497574B (zh) * 2023-08-31 2024-05-14 海信家电集团股份有限公司 半导体装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246225A (ja) * 2008-03-31 2009-10-22 Rohm Co Ltd 半導体装置
JP2013065724A (ja) * 2011-09-16 2013-04-11 Toshiba Corp 半導体装置及びその製造方法
JP2014158013A (ja) * 2013-01-17 2014-08-28 Denso Corp 半導体装置およびその製造方法
WO2018052099A1 (ja) * 2016-09-14 2018-03-22 富士電機株式会社 Rc-igbtおよびその製造方法
JP2018206842A (ja) * 2017-05-31 2018-12-27 ルネサスエレクトロニクス株式会社 半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160039A (ja) * 2006-12-26 2008-07-10 Nec Electronics Corp 半導体装置及びその製造方法
US8067798B2 (en) * 2008-03-31 2011-11-29 Rohm Co., Ltd. Semiconductor device
WO2011048800A1 (ja) * 2009-10-23 2011-04-28 パナソニック株式会社 半導体装置およびその製造方法
JP6958093B2 (ja) * 2017-08-09 2021-11-02 富士電機株式会社 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246225A (ja) * 2008-03-31 2009-10-22 Rohm Co Ltd 半導体装置
JP2013065724A (ja) * 2011-09-16 2013-04-11 Toshiba Corp 半導体装置及びその製造方法
JP2014158013A (ja) * 2013-01-17 2014-08-28 Denso Corp 半導体装置およびその製造方法
WO2018052099A1 (ja) * 2016-09-14 2018-03-22 富士電機株式会社 Rc-igbtおよびその製造方法
JP2018206842A (ja) * 2017-05-31 2018-12-27 ルネサスエレクトロニクス株式会社 半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244802A1 (ja) * 2021-05-19 2022-11-24 富士電機株式会社 半導体装置および製造方法
JP7468786B2 (ja) 2021-05-19 2024-04-16 富士電機株式会社 半導体装置および製造方法
WO2024166493A1 (ja) * 2023-02-07 2024-08-15 富士電機株式会社 半導体装置
WO2024166492A1 (ja) * 2023-02-07 2024-08-15 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
JP7384274B2 (ja) 2023-11-21
JP2024010217A (ja) 2024-01-23
JPWO2021210293A1 (ja) 2021-10-21
US20220216314A1 (en) 2022-07-07
DE112021000105T5 (de) 2022-06-30
CN114503280A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
US11094810B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2021210293A1 (ja) 半導体装置および半導体装置の製造方法
JP7020570B2 (ja) 半導体装置およびその製造方法
JP6958011B2 (ja) 半導体装置および半導体装置の製造方法
CN113314603B (zh) 半导体装置
JPWO2018052098A1 (ja) 半導体装置およびその製造方法
WO2022004084A1 (ja) 半導体装置
US20240096965A1 (en) Semiconductor device
US11094787B2 (en) Method of manufacturing semiconductor device and semiconductor device
US11257943B2 (en) Semiconductor device
JP2023096841A (ja) 半導体装置およびその製造方法
CN113937159A (zh) 半导体装置
WO2021161668A1 (ja) 半導体装置およびその製造方法
US20230299078A1 (en) Semiconductor device
US20230246097A1 (en) Semiconductor device and manufacturing method of semiconductor device
US20230299077A1 (en) Semiconductor device
US20240088221A1 (en) Semiconductor device
US20240234493A1 (en) Semiconductor device
US20240234554A1 (en) Semiconductor device
US20240014207A1 (en) Semiconductor device
WO2023084939A1 (ja) 半導体装置の製造方法および半導体装置
US20240304668A1 (en) Semiconductor device
US20230402533A1 (en) Semiconductor device
US20230335627A1 (en) Semiconductor device
US20240072152A1 (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21787773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515241

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21787773

Country of ref document: EP

Kind code of ref document: A1