JP6384425B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP6384425B2
JP6384425B2 JP2015163924A JP2015163924A JP6384425B2 JP 6384425 B2 JP6384425 B2 JP 6384425B2 JP 2015163924 A JP2015163924 A JP 2015163924A JP 2015163924 A JP2015163924 A JP 2015163924A JP 6384425 B2 JP6384425 B2 JP 6384425B2
Authority
JP
Japan
Prior art keywords
region
main surface
cell
diode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015163924A
Other languages
English (en)
Other versions
JP2017041601A (ja
Inventor
広光 田邊
広光 田邊
河野 憲司
憲司 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015163924A priority Critical patent/JP6384425B2/ja
Priority to PCT/JP2016/071515 priority patent/WO2017033636A1/ja
Priority to US15/570,834 priority patent/US10256234B2/en
Priority to CN201680038146.2A priority patent/CN107710409B/zh
Publication of JP2017041601A publication Critical patent/JP2017041601A/ja
Application granted granted Critical
Publication of JP6384425B2 publication Critical patent/JP6384425B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0664Vertical bipolar transistor in combination with diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/221Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities of killers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、絶縁ゲートバイポーラトランジスタ(IGBT)とダイオードとが同一の半導体基板に形成された半導体装置に関する。
IGBTとダイオードが同一の半導体基板に形成される、いわゆる逆導通絶縁ゲートバイポーラトランジスタ(RC−IGBT)では、しばしばイオン照射によるライフタイム制御が行われる。
特許文献1に記載の半導体装置は、ダイオードセルに重点的にイオン照射がされている。これによれば、ダイオードセルにおけるライフタイムの制御を実現しつつ、半導体基板の全面に亘ってイオン照射される場合に較べてIGBTのオン電圧を低減できる。さらにこの半導体装置では、イオン照射する箇所をダイオードセルからIGBTセルに張り出すようにしており、イオン照射による格子欠陥層がIGBTセルからダイオードセルへの電荷の注入を抑制するようになっている。これによれば、スイッチング損失やリカバリ損失を低減できる。
特開2011−216825号公報
しかしながら、イオン照射による格子欠陥層の、IGBTセルへの張り出し量が小さいと、スイッチング損失やリカバリ損失の低減効果が十分に発揮されない。また、格子欠陥層のIGBTセルへの張り出し量が大きいと、オン電圧の特性が悪化してしまう虞がある。
本発明は、上記問題点を鑑みてなされたものであり、オン電圧を低減しつつスイッチング損失およびリカバリ損失を低減可能な半導体装置を提供することを目的とする。
ここに開示される発明は、上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。
上記目的を達成するために、本発明は、第1主面(50a)およびその裏面の第2主面(50b)を有する半導体基板(50)に、第2主面の表層にコレクタ領域(14)を有するIGBTセル(10)と、第2主面の表層にカソード領域(22)を有するダイオードセル(20)とが併設され、第1主面と第2主面との間に電荷の移動経路となるドリフト領域(17)を備え、さらに、ダイオードセルにおけるドリフト領域に形成され、イオン照射により形成された格子欠陥層(15)である第1欠陥層(15a)と、第1欠陥層と同時に形成され、第1欠陥層がダイオードセルからIGBTセル側に延長するように張り出して形成された第2欠陥層(15b)と、を備える半導体装置であって、ドリフト領域において、IGBTセルとダイオードセルとの、第1主面に直交する界面(B)と、コレクタ領域とカソード領域との境界であって、コレクタ領域のドリフト領域の界面に沿う境界線を通り、第1主面と角度45度で交わる平面(C)と、により囲まれる領域を境界領域として定義するとき、ダイオードセルは、ドリフト領域における第1主面側の表面のうち、境界領域が占める面積Sと、ダイオードセルが占める面積SDIと、がSDI>Sの関係を満たすように形成されることを特徴としている。
発明者のデバイスシミュレーションの結果によれば、SDI>Sの関係を満たすようにダイオードセルを形成することにより、スイッチング損失(Eon)とリカバリ損失(Err)の和を従来構成に較べて小さくできる。これは、ダイオードセルおよび境界領域に蓄積される総電荷量に占める、境界領域に蓄積される電荷量の割合を小さくできるためである。つまり、本発明を採用すれば、IGBTセルの動作時におけるオン電圧を増大させることなく、Eon+Errを低減することができる。したがって、第2欠陥層のIGBTセルに占める面積を過剰に大きくすることなく、ダイオードのリカバリ損失を抑制することができる。換言すれば、IGBTのオン電圧とダイオードのリカバリ損失のトレードオフを解消することができる。
一方、ダイオードセルおよび境界領域に蓄積される総電荷量に占める、ダイオードセルに蓄積される電荷量の割合を大きくすることによっても、上記と同様の効果を奏することができる。
すなわち、上記目的を達成するために、別の発明は、第1主面(50a)およびその裏面の第2主面(50b)を有する半導体基板(50)に、第2主面の表層にコレクタ領域(14)を有するIGBTセル(10)と、第2主面の表層にカソード領域(22)を有するダイオードセル(20)とが併設され、第1主面と第2主面との間に電荷の移動経路となるドリフト領域(17)を備え、さらに、ダイオードセルにおけるドリフト領域に形成され、イオン照射により形成された格子欠陥層(15)である第1欠陥層(15a)と、第1欠陥層と同時に形成され、第1欠陥層がダイオードセルからIGBTセル側に延長するように張り出して形成された第2欠陥層(15b)と、を備える半導体装置であって、IGBTセルおよびダイオードセルは、ダイオードセルの動作時において、IGBTセルの動作時に比較して、ドリフト領域を流れる電流密度が高くなるように形成され、格子欠陥層を形成するためのイオン照射の量は、ダイオードセルの動作時における順電圧−損失特性に基づいて、ドリフト領域に蓄積される総電荷量が予め規定された所定の量となるように決定され、IGBTセルは第1主面の表層に形成されるベース領域(11)を有するとともに、ダイオードセルは第1主面の表層に形成されるアノード領域(21)を有し、ベース領域の不純物濃度は、予め規定されたIGBTセルの動作にかかる閾値電圧に基づいて決定され、アノード領域の不純物濃度は、ベース領域の不純物濃度よりも高濃度とされアノード領域のうち、IGBTセルに隣接する領域の不純物濃度が、ベース領域の不純物濃度と同一とされることを特徴とする。
これによれば、格子欠陥層を形成するためのイオン照射の量は、ダイオードセルの動作時における順電圧−損失特性に基づいて決定される。具体的には、ドリフト領域に予め規定された所定の電荷量が蓄積されるようにイオン照射量が決定される。すなわち、ドリフト領域の総電荷量を一定にしつつ、ダイオードセルに蓄積される電荷量の割合を大きくすることができるので、ダイオードセルとIGBTセルとの間の境界近傍に蓄積された電荷による損失の増加を抑制することができる。換言すれば、IGBTセルからダイオード領域への余分な電荷の注入を抑制することができる。これにより、第2欠陥層の張り出し量を増加させることなく、Eon+Errを低減することができる。
これは、視点を変えれば、第1欠陥層の形成にかかるイオン照射の量を従来構成に較べて大きくする必要があることを意味している。つまり、第2欠陥層を形成するためのイオン照射の量は、従来に較べて大きくなるので、IGBTセルからダイオードセルへの電荷の注入量が境界領域により抑制され、ダイオードセルの動作時においてリカバリ損失を低減することができる。したがって、第2欠陥層のIGBTセルに占める面積を過剰に大きくすることなくダイオードのリカバリ損失も抑制することができる。換言すれば、IGBTのオン電圧とダイオードのリカバリ損失のトレードオフを解消することができる。
第1実施形態にかかる半導体装置の概略構成を示す断面図である。 半導体装置におけるIGBTセルとダイオードセルの面積の関係を示す上面図である。 シミュレーション結果を示す図である。 シミュレーション結果を示す図である。 変形例1にかかる半導体装置におけるIGBTセルとダイオードセルの面積の関係を示す上面図である。 第2実施形態にかかる半導体装置の概略構成を示す断面図である。 変形例2にかかる半導体装置の概略構成を示す断面図である。 第3実施形態にかかる半導体装置の概略構成を示す断面図である。 変形例3にかかる半導体装置の概略構成を示す断面図である。 第4実施形態にかかる半導体装置の概略構成を示す断面図である。 変形例4にかかる半導体装置の概略構成を示す断面図である。 第5実施形態にかかる半導体装置の概略構成を示す断面図である。 変形例5にかかる半導体装置の概略構成を示す断面図である。
以下、本発明の実施の形態を図面に基づいて説明する。なお、以下の各図相互において、互いに同一もしくは均等である部分に、同一符号を付与する。
(第1実施形態)
最初に、図1および図2を参照して、本実施形態に係る半導体装置の概略構成について説明する。
図1に示すように、この半導体装置100は、IGBTセル10とダイオードセル20とが一つの半導体基板50に形成されて成る逆通電型IGBT、所謂RC−IGBTである。この半導体装置100は、IGBTセル10の構成要素として、ベース領域11、トレンチゲート12、エミッタ領域13、コレクタ領域14および格子欠陥層15を備えている。
また、ダイオードセル20の構成要素として、アノード領域21およびカソード領域22を備えている。
さらに、本実施形態における半導体装置100は、ベース領域11に囲まれて形成されたベースコンタクト領域16a、および、アノード領域21に囲まれて形成されたアノードコンタクト領域16bを備えている。なお、以降の説明において、ベースコンタクト領域16aとアノードコンタクト領域16bをまとめてコンタクト領域16と云うことがある。
そして、ベース領域11とコレクタ領域14の間、および、アノード領域21とカソード領域22の間にドリフト領域17が形成されている。
半導体基板50は、シリコンに不純物がドープされてn導電型とされている。半導体基板50はシリコンウェハから切りだされ、第1主面50aとその裏面である第2主面50bとを有しており、各主面にイオンインプラを行うことにより、IGBTセル10およびダイオードセル20が作り込まれる。なお、本実施形態では、第1主面50aを正面視した場合に、コレクタ領域14を有する部分をIGBTセル10と称し、カソード領域22を有する部分をダイオードセル20と称する。
ベース領域11は、IGBTセル10において、半導体基板50の第1主面50a側の表層に形成されている。ベース領域11は、例えば、不純物としてホウ素がドープされることによってp導電型とされている。このベース領域11は、後述するトレンチゲート12に所定に電圧が印加されることによってチャネルを生じる。これによってエミッタ領域13とコレクタ領域14との間で電流が流れる。
トレンチゲート12は、第1主面50aから半導体基板50の深さ方向に延びて形成されている。トレンチゲート12はベース領域11を貫通して後述のドリフト領域17まで到達するように形成されている。トレンチゲート12は、半導体基板50の第1主面50aに掘られたトレンチの内壁を絶縁膜で被覆し、トレンチ内部をポリシリコンで埋めた構造をしているが、一般的によく知られる構造であるため、図1では詳細を図示していない。トレンチゲート12は、IGBTセル10の制御端子であるゲート端子に接続されて、スイッチングの制御に用いられる。
エミッタ領域13は、第1主面50a側の表層に選択的に形成されている。エミッタ領域13は、例えば、不純物としてヒ素やリンがドープされることによってn導電型とされている。エミッタ領域13はトレンチゲート12に接触し、且つ、ベース領域11の覆われるように形成されている。なお、エミッタ領域13は、IGBTセル10に相当する部分にのみ形成されており、IGBTセル10の出力端子であるエミッタ端子に接続され、例えばGND電位とされている。
コレクタ領域14は、IGBTセル10における第2主面50b側の表層に形成されている。コレクタ領域14は、例えば、不純物としてホウ素がドープされることによってp導電型とされている。なお、コレクタ領域14の不純物濃度は、ベース領域11の不純物濃度よりも高くされている。コレクタ領域14はIGBTセル10の出力端子であるコレクタ端子に接続され、エミッタ領域13との間でコレクタ電流が流れる。
アノード領域21は、ダイオードセル20において、半導体基板50の第1主面50a側の表層に形成されている。アノード領域21は、例えば、不純物としてホウ素がドープされることによってp導電型とされている。なお、アノード領域21は、IGBTセル10におけるベース領域11と同一の工程で形成することができ、アノード領域21が形成される第1主面50aからの深さや不純物濃度はベース領域11と同一である。アノード領域21は、後述のカソード領域22およびドリフト領域17との間でPN接合を成し、ダイオードとしての機能を発揮する。
カソード領域22は、ダイオードセル20における第2主面50b側の表層に形成されている。カソード領域22は、例えば、不純物としてヒ素やリンがドープされることによってn導電型とされている。なお、カソード領域22の不純物濃度は、半導体基板50の不純物濃度よりも高くされている。
格子欠陥層15は、ドリフト領域17を移動する電荷のライフタイムを短くすることにより、電荷の蓄積量を調整する層である。格子欠陥層15は、イオン照射によって半導体基板50の結晶構造にダメージを与え、格子欠陥を生じさせることで形成される。半導体基板50に照射するイオン種としては、例えば、プロトンやヘリウムイオン、アルゴンイオンを採用することができる。
本実施形態における格子欠陥層15は、ドリフト領域17においてダイオードセル20の第1主面50a側に形成された第1欠陥層15aと、第1欠陥層15aから連続的にIGBTセル10側に張り出して形成された第2欠陥層15bと、IGBTセル10とダイオードセル20に跨って第2主面50b側に形成された第3欠陥層15cとを有している。第1欠陥層15aはダイオードセルの動作時における順電圧(VF)およびリカバリ損失(Err)を制御している。第2欠陥層15bはダイオードセルの動作時において、意図せずIGBTセル10側から電荷が注入されることを防止するための障壁として作用している。なお、第2欠陥層15bは、IGBTセル10とダイオードセル20との界面Bからの張り出し量として、300μm以下とされることが好ましい。また、第3欠陥層15cは、IGBTセル10側ではIGBTのオン電圧(Von)およびスイッチング損失(Eon)を制御するために形成されており、ダイオードセル20側では順電圧(VF)およびリカバリ損失(Err)を制御するために形成されている。
なお、照射するイオンの量が多ければ多いほど格子欠陥層15におけるダメージが大きくなるため、電荷のライフタイムを短くすることができる。つまり、設計者は、イオン照射量によってVon、Eon、VF、Errの各特性を調整することができる。逆にいえば、イオン照射量は、要求されるVon、Eon、VF、Errを満たすように設定されなければならない。第1欠陥層15a、第2欠陥層15bおよび第3欠陥層15cのイオン照射量、換言すればイオン照射時間は求められる用途によって最適化されうるが、本実施形態では、例えば、それぞれ0.01μs〜10μs程度に設定されている。
ベースコンタクト領域16aおよびアノードコンタクト領域16bは、それぞれベース領域11およびアノード領域21よりも不純物濃度が高くされたp導電型の半導体領域である。コンタクト領域16は、半導体装置100がダイオードとして動作する際にアノードとして機能するとともに、半導体装置100がIGBTとして動作する際に、コレクタ領域14から半導体基板50に注入された電荷を、ターンオフ時において効率よく抜き取るように機能している。
ドリフト領域17は、半導体基板50にベース領域11、コレクタ領域14、アノード領域21およびカソード領域22が形成されることにより規定される領域である。具体的には、ベース領域11とコレクタ領域14との間の領域、および、アノード領域21とカソード領域22との間の領域であり、言うまでもなくn導電型であって、不純物濃度は半導体基板50と同一である。
以降の説明のため、境界領域を次のように定義する。すなわち、図1に斜線にて示すように、ドリフト領域17の第1主面50a側の表面Aと、IGBTセル10とダイオードセル20との界面Bと、コレクタ領域14とカソード領域22との境界であってドリフト領域17とコレクタ領域14との界面に沿う境界線を通り、第1主面50aと角度45度で交わる平面Cと、に囲まれた領域を境界領域Rと定義する。
境界領域Rは三次元的な領域であって、IGBTセル10とダイオードセル20の界面に沿って形成されることになる。また、上記定義から、境界領域Rにおける表面Aのダイオードセル20からの張り出し量は、平面Cが第1主面50aと略45度で交わるからドリフト領域17の厚さLと同一である。平面Cの第1主面50aに対する角度45度は、カソード領域22からドリフト領域17に注入される電荷の広がりが略45度となることに依る。図2に示すように、境界領域Rの定義にともなって、ドリフト領域17における第1主面50a側の表面のうち境界領域が占める面積Sを定義することができる。面積Sは、ドリフト領域17の厚さLと、第1主面50aを正面視したときのダイオードセル20の形状に依存する。
本実施形態におけるダイオードセル20は、第1主面50aを正面視したときに長方形を成している。そしてその面積をSDIと示す。境界領域Rはダイオードセル20の外縁に沿って環状に形成されることになる。本実施形態におけるダイオードセル20は、面積Sと面積SDIがSDI>Sの関係を満たすように形成されている。
次に、図3および図4を参照して、本実施形態にかかる半導体装置100の作用効果について説明する。
発明者は、ダイオードセル20に基づく面積SDIと、境界領域Rに基づく面積Sと、の比SDI/Sに対する、スイッチング損失(Eon)とリカバリ損失(Err)の和の変化についてシミュレーションを実施した。図3はシミュレーションの結果を示している。図3によれば、第2欠陥層15bのIGBTセル10への張り出し量を大きくすることなく、SDI/S>1の条件において優位にEon+Errを低減することができることが判った。
スイッチング損失Eonとリカバリ損失Errは、ダイオード動作時にドリフト領域17に蓄積される総電荷量と、IGBTセル10からの注入量によって決まる。SDI/S>1の条件とは、総電荷量に占める境界領域Rにおける電荷量の割合を小さくすることを意味し、IGBTセル10からダイオードセル20へ注入される電荷の損失に与える影響が十分小さくなる条件である。
また、SDI/Sを大きくしすぎるとダイオードのリカバリ耐量が低下するなどの背反があり、SDI/S>5の範囲ではEon+Errが一定の値に漸近するため、必要以上にダイオードセル20に基づく面積SDIを大きくする必要はない。つまり、SDI/S<5が好適である。以上のように、半導体装置100は、ダイオードセル20が、S<SDI<5Sの関係を満たすように形成されることにより、Eon+Errの低減効果を発揮することができる。
なお、図4に示すように、Eon+Errは第2欠陥層15bの張り出し量に依存する。SDI/Sを大きくすることによるEon+Errの低減量は、第2欠陥層15bの張り出し量が300μm以下の場合に顕著になる。すなわち、第2欠陥層15bの張り出し量を300μm以下とすることが、本実施例においてSDI/Sを大きくすることによる損失低減の効果が大きい。
しかしながら、この境界領域Rは第2欠陥層15bとは独立に定義されているものであり、Eon+Errの調整のために第2欠陥層15bの張り出し量を必ずしも調整する必要はない。つまり、本実施形態にかかる半導体装置100を採用すれば、IGBTセル10の動作時におけるオン電圧(Von)を増大させることなく、Eon+Errを低減させることができる。
(変形例1)
DI/S>1の条件を満たすためには、ダイオードセル20の形状を、面積Sに対して面積SDIができるだけ小さくなるように設定することが好ましい。図5に示すように、ダイオードセル20は、第1主面50aから正面視したときに、その形状が真円になるように形成されていると、同一面積を有するその他の形状に較べて、境界領域Rに基づく面積SDIを最小にすることができる。
(第2実施形態)
第1実施形態では、境界領域Rの第1主面50aに沿う面積SDIと、ダイオードセル20の面積Sとの関係について、所定の条件を満たすようにダイオードセル20を形成することでIGBTセル10からダイオードセル20への電荷の注入を抑制する例について説明した。すなわち、総電荷量に占める境界領域Rに蓄積される電荷量を小さくする例について説明した。これに対して、総電荷量に対してダイオードセル20に蓄積される電荷量の割合を大きくすることによっても同様の効果を奏することができる。本実施形態では、面積比SDI/Sに依らないダイオードセル20の形成条件について説明する。
本実施形態の半導体装置200は、第1実施形態と同様、図6に示すように、IGBTセル10の構成要素として、ベース領域11、トレンチゲート12、エミッタ領域13、コレクタ領域14および格子欠陥層15を備えている。また、ダイオードセル20の構成要素として、アノード領域21およびカソード領域22を備えている。そして、ベース領域11あるいはアノード領域21に囲まれて形成されたコンタクト領域16を備えている。また、ベース領域11とコレクタ領域14の間、および、アノード領域21とカソード領域22の間にドリフト領域17が形成されている。
なお、アノード領域21の不純物濃度、格子欠陥層15のうち第1欠陥層15aと第2欠陥層15bを形成するためのイオン照射量、および面積比SDI/Sの条件を除く要件は、第1実施形態における半導体装置100と同様であるため、詳しく説明を省略する。
本実施形態における半導体装置200では面積比SDI/Sに条件はなく、代わりに、アノード領域21の不純物濃度が、ベース領域11よりも高くされている。すなわち、本実施形態では、ベース領域11とアノード領域21とを同一工程で形成せず、それぞれ独立の別の工程で形成している。
また、第1欠陥層15aと第2欠陥層15bを形成するためのイオン照射量が、第1実施形態に較べて大きく設定されている。
この半導体装置200では、アノード領域21の不純物濃度がベース領域11よりも高くされているので、アノード領域21の不純物濃度がベース領域11と同一である条件に較べて、ダイオード導通時の蓄積電荷量は大きくなる。このため、リカバリ損失(Err)が増大してしまう。しかしながら、上記したように、第1欠陥層15aと第2欠陥層15bを形成するためのイオン照射量が第1実施形態に較べて大きく設定されているので、Errの増大を抑制することができる。
上記したように、イオン照射量は、ダイオードセル20の動作時における順電圧−損失特性において、第1実施形態に対してリカバリ損失(Err)を変えないように設定されている。すなわち、ダイオード動作時においてドリフト領域17に蓄積される総電荷量が所定の値になるように設定されている。これにより第2欠陥層15bを形成するためのイオン照射量が第1実施形態に較べて相対的に増大することになる。この増大した欠陥によって、この半導体装置200では、面積比SDI/Sの条件を規定することなく、IGBTセル10からダイオードセル20への電荷の注入量を抑制することができる。
(変形例2)
第2実施形態における半導体装置200は、ダイオードセル20におけるアノード領域21の不純物濃度を、IGBTセル10におけるベース領域11に対して一律に高濃度とする形態である。しかしながら、アノード領域21の全領域に亘ってベース領域11に較べて高濃度である必要はない。
図7に示すように、第2実施形態の半導体装置200に対して、アノード領域21のうち、IGBTセル10に近い側の部分において、その他のアノード領域21に較べて不純物濃度を低濃度としてもよい。本変形例における半導体装置210では、例えば、アノード領域21のうちIGBTセル10に近い側の不純物濃度がIGBTセル10におけるベース領域11と同一とされている。
これによれば、本変形例における半導体装置210は、第2実施形態の半導体装置200に較べて、ダイオード動作時の電荷の絶対量を抑制することができるので、IGBTセル10からダイオードセル20への電荷の注入量を抑制することができる。
(第3実施形態)
本実施形態では、総電荷量に対してダイオードセル20に蓄積される電荷量の割合を大きくする例について説明する。
本実施形態における半導体装置300は面積比SDI/Sに条件はなく、代わりに、図8に示すように、第1実施形態の半導体装置100に加えて電荷蓄積層18を備えている。電荷蓄積層18は、ドリフト領域17よりも不純物濃度の高いn導電型とされ、IGBTセル10において、第2欠陥層15bよりも第1主面50a側であってベース領域11に接する位置に形成されている。
電荷蓄積層18は、ドリフト領域17よりも高い不純物濃度を有しているので、ベース領域11−電荷蓄積層18間の内蔵電位は、ベース領域11−ドリフト領域17間の内蔵電位に較べて高くなる。これにより、IGBTセル10からダイオードセル20への電荷(ホール)の注入量を抑制することができ、ダイオード導通時のドリフト領域17に蓄積する総電荷量に対するダイオードセル20に蓄積される電荷量の割合をIGBTセル10よりも高くできる。すなわち、IGBTセル10からダイオードセル20への電荷(ホール)の注入量の抑制によってEon+Errを低減することができる。
(変形例3)
第3実施形態における半導体装置300は、IGBTセル10にのみ電荷蓄積層18を備える形態である。これに対して、本変形例における半導体装置310は、図9に示すように、IGBTセル10からダイオードセル20側のドリフト領域17の一部領域に電荷蓄積層18が延長された構造とされている。
これによれば、本変形例における半導体装置310は、第3実施形態の半導体装置300に較べて、ダイオード動作時の電荷の絶対量を抑制することができるので、IGBTセル10からダイオードセル20への電荷の注入量をより抑制することができる。
(第4実施形態)
本実施形態では、第3実施形態同様、総電荷量に対してダイオードセル20に蓄積される電荷量の割合を大きくする例について説明する。
本実施形態における半導体装置400は面積比SDI/Sに条件はなく、代わりに、図10に示すように、IGBTセル10における第1主面50a側が埋め込みコンタクト構造を成している。
埋め込みコンタクト構造とされた半導体装置400は、第1実施形態におけるIGBTセル10の構造に加えて、トレンチコンタクト19を有している。トレンチコンタクト19は、隣り合うトレンチゲート12の間に配置され、第1主面50aから半導体基板50の厚さ方向に延びて形成された導体であり、例えばタングステンより成る。トレンチコンタクト19の延びた先端がベースコンタクト領域16aに接続されている。トレンチコンタクト19とトレンチゲート12との間にエミッタ領域13が形成されており、ベース領域11およびベースコンタクト領域16aは第1主面50aに露出しないようになっている。換言すれば、ベース領域11およびベースコンタクト領域16aは半導体基板50の内部に埋め込まれた構造をしている。このため、この半導体装置400におけるエミッタ領域13は第1実施形態に較べて第1主面50aから見て深い位置まで形成されることになる。
これにより、ダイオード導通時のドリフト領域17に蓄積する総電荷量に対するダイオードセル20に蓄積される電荷量の割合をIGBTセル10よりも高くできる。つまり、第3実施形態と同様に、IGBTセル10からダイオードセル20への電荷の注入量が第1実施形態に較べて抑制することができ、Eon+Errを低減することができる。
(変形例4)
第4実施形態における半導体装置400は、IGBTセル10にのみ埋め込みコンタクト構造を採用する形態である。これに対して、本変形例における半導体装置410は、図11に示すように、IGBTセル10からダイオードセル20側の一部領域に埋め込みコンタクト構造が延長された構造とされている。
これによれば、本変形例における半導体装置410は、第4実施形態の半導体装置400に較べて、ダイオード動作時の電荷の絶対量を抑制することができるので、IGBTセル10からダイオードセル20への電荷の注入量をより抑制することができる。
(第5実施形態)
本実施形態では、第3および第4実施形態同様、総電荷量に対してダイオードセル20に蓄積される電荷量の割合を大きくする例について説明する。
本実施形態における半導体装置500は面積比SDI/Sに条件はなく、代わりに、図12に示すように、IGBTセル10における第1主面50a側に間引き部30を有している。間引き部30は、隣り合うトレンチゲート12の間の領域において、エミッタ領域13およびベースコンタクト領域16aが形成されておらず、ベース領域11が第1主面50aに露出した構造を成している。間引き部30のベース領域11の不純物濃度は、間引き部30を除くベース領域11よりも低くされている。
これにより、ダイオード導通時のドリフト領域17に蓄積する総電荷量に対するダイオードセル20に蓄積される電荷量の割合をIGBTセル10よりも高くできる。したがって、IGBTセル10からダイオードセル20への電荷の注入量が第1実施形態に較べて抑制することができ、Eon+Errを低減することができる。
(変形例5)
第5実施形態における半導体装置500は、IGBTセル10にのみ間引き部30が形成される形態である。これに対して、本変形例の半導体装置510は、図13に示すように、アノード領域21のうち、IGBTセル10に近い側の部分の不純物濃度が、間引き部30におけるベース領域11の不純物濃度と同等にされている。本変形例における半導体装置510では、例えば、アノード領域21のうちIGBTセル10に近い側の不純物濃度が間引き部30におけるベース領域11と同一とされている。
これによれば、本変形例における半導体装置510は、第5実施形態の半導体装置500に較べて、ダイオード動作時の電荷の絶対量を抑制することができるので、IGBTセル10からダイオードセル20への電荷の注入量を抑制することができる。
(その他の実施形態)
以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
第1実施形態およびその変形例では、ダイオードセル20の形状として長方形あるいは真円を採用する例について説明したが、その形状は任意である。ダイオードセル20は、面積の関係SDI>Sを満たすように形成されていれば良い。
第2〜第5実施形態および変形例2〜5については、種々組み合わせて実施することが可能である。例えば、第2実施形態において説明したように、ダイオードセル20におけるアノード領域21を高濃度化しつつ、IGBTセル10には、第3実施形態において説明したような電荷蓄積層18を形成するようにしても良い。
また、上記した各実施形態においては、第3欠陥層15cを有する構成について説明したが、第3欠陥層15cは必ずしも必要ではなく、IGBTセル10のオン電圧やスイッチング損失、ダイオードセル20の順電圧やリカバリ損失の要求に応じて適宜形成することができる。言うまでもなく、第3欠陥層15cはIGBTセル10およびダイオードセル20において部分的に形成されていても良い。
なお、第1実施形態と、第2〜第5実施形態とは、ダイオード動作時において蓄積される総電荷量に占める、IGBTセル10とダイオードセル20の境界近傍の電荷量の割合を小さくする、換言すれば、ダイオードセル20の電荷量の割合を大きくする、という同一の技術思想に基づく半導体装置の形態である。よって、各実施形態および各変形例において、トレンチゲート12を有するトレンチゲート型RC−IGBTを例に説明したが、プレーナ型のRC−IGBTであっても、同思想に基づいて、各実施形態の態様をプレーナ型RC−IGBTに適用することができる。
10…IGBTセル,11…ベース領域,12…トレンチゲート,13…エミッタ領域,14…コレクタ領域,15…格子欠陥層,16…コンタクト領域,17…ドリフト領域,20…ダイオードセル,21…アノード領域,22…カソード領域

Claims (13)

  1. 第1主面(50a)およびその裏面の第2主面(50b)を有する半導体基板(50)に、
    前記第2主面の表層にコレクタ領域(14)を有するIGBTセル(10)と、前記第2主面の表層にカソード領域(22)を有するダイオードセル(20)とが併設され、前記第1主面と前記第2主面との間に電荷の移動経路となるドリフト領域(17)を備え、
    さらに、前記ダイオードセルにおける前記ドリフト領域に形成され、イオン照射により形成された格子欠陥層(15)である第1欠陥層(15a)と、
    前記第1欠陥層と同時に形成され、前記第1欠陥層が前記ダイオードセルから前記IGBTセル側に延長するように張り出して形成された第2欠陥層(15b)と、を備える半導体装置であって、
    前記ドリフト領域において、
    前記IGBTセルと前記ダイオードセルとの、前記第1主面に直交する界面(B)と、
    前記コレクタ領域と前記カソード領域との境界であって、前記コレクタ領域の前記ドリフト領域の界面に沿う境界線を通り、前記第1主面と角度45度で交わる平面(C)と、により囲まれる領域を境界領域として定義するとき、
    前記ダイオードセルは、
    前記ドリフト領域における第1主面側の表面のうち、前記境界領域が占める面積Sと、前記ダイオードセルが占める面積SDIと、がSDI>Sの関係を満たすように形成されることを特徴とする半導体装置。
  2. 前記ダイオードセルは、SDI<5Sを満たすように形成されることを特徴とする請求項1に記載の半導体装置。
  3. 前記ダイオードセルは、前記第1主面を正面視したとき、真円状に形成されることを特徴とする請求項1または請求項2に記載の半導体装置。
  4. 第1主面(50a)およびその裏面の第2主面(50b)を有する半導体基板(50)に、
    前記第2主面の表層にコレクタ領域(14)を有するIGBTセル(10)と、前記第2主面の表層にカソード領域(22)を有するダイオードセル(20)とが併設され、前記第1主面と前記第2主面との間に電荷の移動経路となるドリフト領域(17)を備え、
    さらに、前記ダイオードセルにおける前記ドリフト領域に形成され、イオン照射により形成された格子欠陥層(15)である第1欠陥層(15a)と、
    前記第1欠陥層と同時に形成され、前記第1欠陥層が前記ダイオードセルから前記IGBTセル側に延長するように張り出して形成された第2欠陥層(15b)と、を備える半導体装置であって、
    前記IGBTセルおよび前記ダイオードセルは、前記ダイオードセルの動作時において、前記IGBTセルの動作時に比較して、前記ドリフト領域を流れる電流密度が高くなるように形成され、
    前記格子欠陥層を形成するためのイオン照射の量は、前記ダイオードセルの動作時における順電圧−損失特性に基づいて、前記ドリフト領域に蓄積される総電荷量が予め規定された所定の量となるように決定され
    前記IGBTセルは前記第1主面の表層に形成されるベース領域(11)を有するとともに、前記ダイオードセルは前記第1主面の表層に形成されるアノード領域(21)を有し、
    前記ベース領域の不純物濃度は、予め規定された前記IGBTセルの動作にかかる閾値電圧に基づいて決定され、
    前記アノード領域の不純物濃度は、前記ベース領域の不純物濃度よりも高濃度とされ
    前記アノード領域のうち、前記IGBTセルに隣接する領域の不純物濃度が、前記ベース領域の不純物濃度と同一とされることを特徴とする半導体装置。
  5. 第1主面(50a)およびその裏面の第2主面(50b)を有する半導体基板(50)に、
    前記第2主面の表層にコレクタ領域(14)を有するIGBTセル(10)と、前記第2主面の表層にカソード領域(22)を有するダイオードセル(20)とが併設され、前記第1主面と前記第2主面との間に電荷の移動経路となるドリフト領域(17)を備え、
    さらに、前記ダイオードセルにおける前記ドリフト領域に形成され、イオン照射により形成された格子欠陥層(15)である第1欠陥層(15a)と、
    前記第1欠陥層と同時に形成され、前記第1欠陥層が前記ダイオードセルから前記IGBTセル側に延長するように張り出して形成された第2欠陥層(15b)と、を備える半導体装置であって、
    前記IGBTセルおよび前記ダイオードセルは、前記ダイオードセルの動作時において、前記IGBTセルの動作時に比較して、前記ドリフト領域を流れる電流密度が高くなるように形成され、
    前記格子欠陥層を形成するためのイオン照射の量は、前記ダイオードセルの動作時における順電圧−損失特性に基づいて、前記ドリフト領域に蓄積される総電荷量が予め規定された所定の量となるように決定され
    前記IGBTセルの前記ドリフト領域において、前記第2欠陥層よりも前記第1主面側に、第1導電型の電荷蓄積層(18)を備え、
    前記電荷蓄積層は、前記ダイオードセルの一部の領域に張り出して形成されることを特徴とする半導体装置。
  6. 第1主面(50a)およびその裏面の第2主面(50b)を有する半導体基板(50)に、
    前記第2主面の表層にコレクタ領域(14)を有するIGBTセル(10)と、前記第2主面の表層にカソード領域(22)を有するダイオードセル(20)とが併設され、前記第1主面と前記第2主面との間に電荷の移動経路となるドリフト領域(17)を備え、
    さらに、前記ダイオードセルにおける前記ドリフト領域に形成され、イオン照射により形成された格子欠陥層(15)である第1欠陥層(15a)と、
    前記第1欠陥層と同時に形成され、前記第1欠陥層が前記ダイオードセルから前記IGBTセル側に延長するように張り出して形成された第2欠陥層(15b)と、を備える半導体装置であって、
    前記IGBTセルおよび前記ダイオードセルは、前記ダイオードセルの動作時において、前記IGBTセルの動作時に比較して、前記ドリフト領域を流れる電流密度が高くなるように形成され、
    前記格子欠陥層を形成するためのイオン照射の量は、前記ダイオードセルの動作時における順電圧−損失特性に基づいて、前記ドリフト領域に蓄積される総電荷量が予め規定された所定の量となるように決定され
    前記IGBTセルは、前記第1主面の表層に形成されたベース領域(11)と、前記第1主面に直交して前記半導体基板の深さ方向に延びて形成されたトレンチゲート(12)と、隣り合う前記トレンチゲートの間であって前記第1主面から深さ方向に延びて形成されたトレンチコンタクト(19)と、を有し、
    前記IGBTセルにおいて、前記コレクタ領域との間で電流の経路となるエミッタ領域(13)が、前記トレンチゲートと前記トレンチコンタクトとの間に形成されることにより、前記ベース領域が前記第1主面に露出しないようにされた埋め込みコンタクト構造を成し、
    前記ダイオードセルは、前記第1主面の表層に、前記カソード領域との間で電流の経路となるアノード領域(21)を有し、
    前記ダイオードセルのうち前記IGBTセルに隣接する一部の領域が前記埋め込みコンタクト構造を成すことにより、前記埋め込みコンタクト構造とされた前記アノード領域が前記第1主面に露出しないことを特徴とする半導体装置。
  7. 第1主面(50a)およびその裏面の第2主面(50b)を有する半導体基板(50)に、
    前記第2主面の表層にコレクタ領域(14)を有するIGBTセル(10)と、前記第2主面の表層にカソード領域(22)を有するダイオードセル(20)とが併設され、前記第1主面と前記第2主面との間に電荷の移動経路となるドリフト領域(17)を備え、
    さらに、前記ダイオードセルにおける前記ドリフト領域に形成され、イオン照射により形成された格子欠陥層(15)である第1欠陥層(15a)と、
    前記第1欠陥層と同時に形成され、前記第1欠陥層が前記ダイオードセルから前記IGBTセル側に延長するように張り出して形成された第2欠陥層(15b)と、を備える半導体装置であって、
    前記IGBTセルおよび前記ダイオードセルは、前記ダイオードセルの動作時において、前記IGBTセルの動作時に比較して、前記ドリフト領域を流れる電流密度が高くなるように形成され、
    前記格子欠陥層を形成するためのイオン照射の量は、前記ダイオードセルの動作時における順電圧−損失特性に基づいて、前記ドリフト領域に蓄積される総電荷量が予め規定された所定の量となるように決定され
    前記IGBTセルは間引き部(30)を有し、
    前記間引き部は、前記コレクタ領域との間で電流の経路となるエミッタ領域(13)を有さず、且つ、前記間引き部における前記第1主面の表層に形成されたベース領域(11)の不純物濃度が、前記間引き部を除く前記ベース領域の不純物濃度より低濃度とされ、
    前記ダイオードセルにおいて前記カソード領域との間で電流の経路となるアノード領域(21)のうち、前記IGBTセルに隣接する領域の不純物濃度が、前記間引き部における前記ベース領域の不純物濃度と同一とされることを特徴とする半導体装置。
  8. 前記IGBTセルは、前記第1主面の表層に形成されたベース領域(11)と、前記第1主面に直交して前記半導体基板の深さ方向に延びて形成されたトレンチゲート(12)と、隣り合う前記トレンチゲートの間であって前記第1主面から深さ方向に延びて形成されたトレンチコンタクト(19)と、を有し、
    前記IGBTセルにおいて、前記コレクタ領域との間で電流の経路となるエミッタ領域(13)が、前記トレンチゲートと前記トレンチコンタクトとの間に形成されることにより、前記ベース領域が前記第1主面に露出しないようにされた埋め込みコンタクト構造を成すことを特徴とする請求項7に記載の半導体装置。
  9. 前記ダイオードセルは、前記第1主面の表層に、前記カソード領域との間で電流の経路となるアノード領域(21)を有し、
    前記ダイオードセルのうち前記IGBTセルに隣接する一部の領域が前記埋め込みコンタクト構造を成すことにより、前記埋め込みコンタクト構造とされた前記アノード領域が前記第1主面に露出しないことを特徴とする請求項8に記載の半導体装置。
  10. 前記IGBTセルの前記ドリフト領域において、前記第2欠陥層よりも前記第1主面側に、第1導電型の電荷蓄積層(18)を備えることを特徴とする請求項6〜9のいずれか1項に記載の半導体装置。
  11. 前記電荷蓄積層は、前記ダイオードセルの一部の領域に張り出して形成されることを特徴とする請求項10に記載の半導体装置。
  12. 前記IGBTセルは前記第1主面の表層に形成されるベース領域(11)を有するとともに、前記ダイオードセルは前記第1主面の表層に形成されるアノード領域(21)を有し、
    前記ベース領域の不純物濃度は、予め規定された前記IGBTセルの動作にかかる閾値電圧に基づいて決定され、
    前記アノード領域の不純物濃度は、前記ベース領域の不純物濃度よりも高濃度とされることを特徴とする請求項5〜11のいずれか1項に記載の半導体装置。
  13. 前記アノード領域のうち、前記IGBTセルに隣接する領域の不純物濃度が、前記ベース領域の不純物濃度と同一とされることを特徴とする請求項12に記載の半導体装置。
JP2015163924A 2015-08-21 2015-08-21 半導体装置 Active JP6384425B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015163924A JP6384425B2 (ja) 2015-08-21 2015-08-21 半導体装置
PCT/JP2016/071515 WO2017033636A1 (ja) 2015-08-21 2016-07-22 半導体装置
US15/570,834 US10256234B2 (en) 2015-08-21 2016-07-22 Semiconductor device
CN201680038146.2A CN107710409B (zh) 2015-08-21 2016-07-22 半导体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015163924A JP6384425B2 (ja) 2015-08-21 2015-08-21 半導体装置

Publications (2)

Publication Number Publication Date
JP2017041601A JP2017041601A (ja) 2017-02-23
JP6384425B2 true JP6384425B2 (ja) 2018-09-05

Family

ID=58101097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015163924A Active JP6384425B2 (ja) 2015-08-21 2015-08-21 半導体装置

Country Status (4)

Country Link
US (1) US10256234B2 (ja)
JP (1) JP6384425B2 (ja)
CN (1) CN107710409B (ja)
WO (1) WO2017033636A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589817B2 (ja) * 2016-10-26 2019-10-16 株式会社デンソー 半導体装置
JP7013668B2 (ja) * 2017-04-06 2022-02-01 富士電機株式会社 半導体装置
WO2019013286A1 (ja) * 2017-07-14 2019-01-17 富士電機株式会社 半導体装置
CN110546767B (zh) * 2017-11-15 2022-07-29 富士电机株式会社 半导体装置
CN110785852B (zh) 2017-12-06 2023-10-24 富士电机株式会社 半导体装置
WO2019116696A1 (ja) 2017-12-14 2019-06-20 富士電機株式会社 半導体装置
JP7124339B2 (ja) * 2018-02-28 2022-08-24 富士電機株式会社 半導体装置
WO2020036015A1 (ja) * 2018-08-14 2020-02-20 富士電機株式会社 半導体装置および製造方法
CN109686787B (zh) * 2018-11-20 2020-12-29 电子科技大学 一种利用二极管钳位的具有载流子存储层的igbt器件
JP7364027B2 (ja) * 2020-02-12 2023-10-18 富士電機株式会社 半導体装置およびその製造方法
US20220367187A1 (en) * 2021-05-13 2022-11-17 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor Device and Method of Manufacture

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4167313B2 (ja) * 1997-03-18 2008-10-15 株式会社東芝 高耐圧電力用半導体装置
JP4791704B2 (ja) 2004-04-28 2011-10-12 三菱電機株式会社 逆導通型半導体素子とその製造方法
JP2008192737A (ja) 2007-02-02 2008-08-21 Denso Corp 半導体装置
JP5320679B2 (ja) 2007-02-28 2013-10-23 富士電機株式会社 半導体装置およびその製造方法
JP4840482B2 (ja) * 2008-10-14 2011-12-21 株式会社デンソー 半導体装置
JP2010147381A (ja) * 2008-12-22 2010-07-01 Denso Corp 半導体装置の製造方法
JP5190485B2 (ja) * 2010-04-02 2013-04-24 株式会社豊田中央研究所 半導体装置
JP5605073B2 (ja) * 2010-08-17 2014-10-15 株式会社デンソー 半導体装置
CN102044543B (zh) * 2010-11-22 2013-04-24 株洲南车时代电气股份有限公司 一种单片集成igbt和frd的半导体器件
JP5937413B2 (ja) * 2011-06-15 2016-06-22 株式会社デンソー 半導体装置
JP5811861B2 (ja) 2012-01-23 2015-11-11 株式会社デンソー 半導体装置の製造方法
JP2013197122A (ja) 2012-03-15 2013-09-30 Toshiba Corp 半導体装置
JP6078961B2 (ja) 2012-03-19 2017-02-15 富士電機株式会社 半導体装置の製造方法
JP2013201360A (ja) * 2012-03-26 2013-10-03 Toshiba Corp 半導体装置
JP6277814B2 (ja) 2014-03-25 2018-02-14 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
WO2017033636A1 (ja) 2017-03-02
CN107710409B (zh) 2021-04-20
US20180151557A1 (en) 2018-05-31
US10256234B2 (en) 2019-04-09
JP2017041601A (ja) 2017-02-23
CN107710409A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
JP6384425B2 (ja) 半導体装置
JP6181597B2 (ja) 半導体装置及び半導体装置の製造方法
US10062760B2 (en) Semiconductor device
CN107431091B (zh) 碳化硅半导体装置及其制造方法
TWI528552B (zh) 絕緣閘雙極電晶體元件及其製備方法
JP5103830B2 (ja) 絶縁ゲート型半導体装置
JP5034315B2 (ja) 半導体装置及びその製造方法
CN102867846B (zh) 半导体器件
KR101256377B1 (ko) 전력용 반도체장치
JP6641983B2 (ja) 半導体装置
WO2017217198A1 (ja) 半導体装置
TWI575736B (zh) 雙溝槽閘極絕緣閘雙極電晶體結構
JP2009076642A (ja) 半導体装置
JP5920383B2 (ja) 半導体装置を製造する方法及び半導体装置
US20140061719A1 (en) Mos type semiconductor device
JP2015090917A (ja) 半導体装置及び半導体装置の製造方法
JP2017195224A (ja) スイッチング素子
CN111886680A (zh) 碳化硅半导体装置及其制造方法
JP2020177973A (ja) 半導体装置
TWI536559B (zh) 電荷庫igbt頂端結構及製備方法
JP5838176B2 (ja) 半導体装置
JP6763727B2 (ja) スイッチング装置とその製造方法
JP5473398B2 (ja) 半導体装置およびその製造方法
JP6869791B2 (ja) 半導体スイッチング素子及びその製造方法
JP2007012786A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R151 Written notification of patent or utility model registration

Ref document number: 6384425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250