CN109686787B - 一种利用二极管钳位的具有载流子存储层的igbt器件 - Google Patents

一种利用二极管钳位的具有载流子存储层的igbt器件 Download PDF

Info

Publication number
CN109686787B
CN109686787B CN201811383176.4A CN201811383176A CN109686787B CN 109686787 B CN109686787 B CN 109686787B CN 201811383176 A CN201811383176 A CN 201811383176A CN 109686787 B CN109686787 B CN 109686787B
Authority
CN
China
Prior art keywords
type
region
heavily doped
igbt
carrier storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811383176.4A
Other languages
English (en)
Other versions
CN109686787A (zh
Inventor
易波
李平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201811383176.4A priority Critical patent/CN109686787B/zh
Publication of CN109686787A publication Critical patent/CN109686787A/zh
Application granted granted Critical
Publication of CN109686787B publication Critical patent/CN109686787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7398Vertical transistors, e.g. vertical IGBT with both emitter and collector contacts in the same substrate side

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明涉及功率半导体领域,提供一种利用二极管钳位的具有载流子存储层的IGBT器件,用以克服现有的具有载流子存储层(CSL)的槽栅IGBT饱和电压高、短路安全工作区较小以及CSL浓度受限的问题;本发明IGBT在槽栅IGBT工艺上直接在硅片表面集成一个或多个串联二极管用于钳位P区电场屏蔽层的电位,在现有槽栅IGBT工艺的基础上突破了CSL的浓度限制,极大地提高了IGBT发射极的注入效率,从而极大地提高了IGBT的导通压降和关断损耗的折中关系;同时,由于二极管的钳位作用,使得IGBT的nMOS沟道附近的漏极在高压大电流下被钳位在较低的电压,从而使得新型IGBT的饱和电流很大程度地降低,从而提高了IGBT的短路安全工作区。

Description

一种利用二极管钳位的具有载流子存储层的IGBT器件
技术领域
本发明涉及功率半导体领域,提供一种利用二极管钳位的具有载流子存储层的IGBT器件,具体为一种具有超低导通压降、低饱和电流密度和快速关断特性的IGBT器件。
背景技术
IGBT折中了BJT的低导通压降和MOSFET快速开关的特点,因而被广泛应用于电力电子系统。
IGBT最为关键的特性在于导通压降和关断损耗的折中关系以及安全工作区,由于IGBT导通时集电极注入大量非平衡载流子来形成电导调制效应以降低导通压降,其关断时,耐压区的少数载流子需要一段时间才能消失,从而使得IGBT关断速度较慢,关断损耗较高。为了进一步优化IGBT导通压降和关断损耗的折中关系,具有载流子存储层(CarrierStored La yer:CSL)的IGBT被提出,如文献《H.Takahashi,et al.“Carrier storedtrench-gate bipola r transistor(CSTBT)-a novel power device for high voltageapplication”,in Proc.ISPSD,pp.349-352,1996》,其结构如图1所示,该IGBT采用载流子存储层来提高IGBT发射极的注入效率,从而可以降低集电极的注入效率来获得相同的导通压降;这样,IGBT在关断时,由于集电极注入较低,关断时间被大大降低。对于图1所示的具有载流子存储层的IGBT,随着CSL的浓度的提高,器件将获得更优的性能;但是,当CSL浓度超过一定值时,IGBT的耐压就会急剧下降;同时,该具有载流子存储层的IGBT的槽栅结构沟道密度很大,这将极大地增大IGBT的栅驱动电荷,并且导致IGBT饱和电流很高,使得IGBT的短路安全工作区极大地降低。为了提高对CSL的电场屏蔽作用,具有浮空P区电场屏蔽层的槽栅IGBT被提出,如文献《R.Y.Ma,et al.“Carrier stored trench-gate bipolartransistor with p-floating layer",Journal of Semiconductors,31.2(2010):024004》,其结构如图2所示,该结构可以使得CSL的浓度进一步提高,有助于优化器件性能;但是该器件的栅驱动电荷和短路安全工作区并没有得到明显改善,并且CSL的浓度仍然不能过高,不然IGBT的击穿电压将急剧降低。又如文献《P.Li,M.F.Kong,X.B.Chen,“A noveldiode-clamped CSTBT with ultra-low on-state voltage and saturation current”,in Proc.ISPSD,pp.307-310,2016》中提出了一种在氧化层上制作多晶硅二极管来钳位P区电场屏蔽层的电位,从而突破了CSL浓度的限制,但是该结构与常规IGBT制作工艺不兼容,并且多晶硅的性质具有不确定性,通常还需要特殊的退火技术来提高其可靠性。
发明内容
本发明的目的在于针对现有的具有载流子存储层的槽栅IGBT饱和电压高、短路安全工作区较小以及CSL浓度受限的问题,提出一种新型的具有载流子存储层的栅IGBT;该新型IGBT在槽栅IGBT工艺上直接在硅片表面集成一个或多个串联二极管用于钳位P区电场屏蔽层的电位,在现有槽栅IGBT工艺的基础上突破了CSL的浓度限制,极大地提高了IGBT发射极的注入效率,从而极大地提高了IGBT的导通压降和关断损耗的折中关系;同时,由于二极管的钳位作用,使得IGBT的nMOS沟道附件的漏极在高压大电流下被钳位在较低的电压,从而使得新型IGBT的饱和电流很大程度地降低,从而提高了IGBT的短路安全工作区。
为实现上述目的,本发明采用的技术方案为:
一种利用二极管钳位的具有载流子存储层的IGBT器件,其特征在于,元胞包括:
耐压区1,设置在耐压区1底部的N型缓冲层2,设置在N型缓冲层2下表面的P型集电极半导体区3,以及设置在P型集电极半导体区3下表面的集电极金属13;
设置在耐压区1上表面部分区域的P型电场屏蔽层11,覆盖于耐压区1及P型电场屏蔽层11上表面的N型载流子存储层4,以及覆盖于N型载流子存储层4上表面的P型基区5;
元胞表面设置有一个深入P型电场屏蔽层11的第一深槽,所述第一深槽内填充有多晶硅栅8,多晶硅栅8与深槽之间设置有栅介质7,多晶硅栅8的上表面覆盖有栅极金属9;所述第一深槽将其两侧N型载流子存储层4、P型基区5完全分隔;
位于所述第一个深槽一侧的N型载流子存储层4与耐压区1相接触,并且,位于同侧的P型基区5上设置有与栅介质7相接触的作为N沟道MOSFET的N型重掺杂源极区20、及与N型重掺杂源极区20邻接的P型重掺杂基区欧姆接触区21,N型重掺杂源极区20与P型重掺杂基区欧姆接触区21上表面覆盖有发射极金属10;
所述第一个深槽的另一侧设置有n个二极管、n≥1:
当n=1时,位于所述第一个深槽另一侧的P型基区5内设置有一个N型重掺杂半导体区6与一个P型重掺杂半导体区22,共同形成一个PN结二极管,其中、N型重掺杂半导体区6作为PN结二极管的阴极、P型子区作为PN结二极管的阳极、P型重掺杂半导体区22作为PN结二极管的阳极欧姆接触区;并且,同侧的N型载流子存储层4、P型电场屏蔽层11、P型基区5以及P型重掺杂半导体区22直接通过金属短路;所述第1个PN结二极管的第1个N型重掺杂半导体区6上表面覆盖有发射极金属10、且与栅介质7不接触;
当n≥2时,位于所述第一个深槽另一侧的P型基区5内设置有n-1个隔离区,所述隔离区下表面与N型载流子存储层4相接触、且与P型电场屏蔽层11不接触;所述n-1个隔离区将此侧的P型基区分隔成n个P型子区,并根据与所述第一深槽的距离由近至远依次称为第i个P型子区、i=1,2,...,n;所述第i个P型子区内设置有第i个N型重掺杂半导体区6与第i个P型重掺杂半导体区22,共同形成第i个PN结二极管,其中、第i个N型重掺杂半导体区6作为第i个PN结二极管的阴极、第i个P型子区作为第i个PN结二极管的阳极、第i个P型重掺杂半导体区22作为第i个PN结二极管的阳极欧姆接触区;n个P型子区内共形成n个PN结二极管,所述n个PN结二极管通过金属串联;所述第1个PN结二极管的第1个N型重掺杂半导体区6上表面覆盖有发射极金属10、且与栅介质7不接触;所述第n个P型子区5、第n个P型子区5内的第n个P型重掺杂半导体区22、P型子区下的N型载流子存储层4及P型电场屏蔽层11通过金属12短路。
进一步的,所述隔离区为N型半导体隔离区或者深槽隔离区,当采用深槽隔离区时,所述深槽隔离区由槽壁隔离介质层26和槽内填充物23构成,所述槽内填充物为介质或者导体。
进一步的,当所述P型电场屏蔽层11掺杂浓度低于1×1018cm-3时,所述第一深槽正下方还设置有一个P型重掺杂隔离区24,用于防止栅压开启时所述第一深槽底部形成电子沟道,从而实现深槽左右两侧载流子存储层4的电隔离。
进一步,所述金属短路的一种方式为:通过第二深槽填充金属12,所述金属12与N型载流子存储层4、所述第n、n≥1个P型子区5以及第n个P型重掺杂半导体区22直接接触;并且,金属12与P型电场屏蔽层11在体内直接接触、或者通过一个P型重掺杂体内欧姆接触区25形成欧姆接触相连。
所述金属短路的另一种方式为:将载流子存储层4通过一个N型半导体区28连接到半导体表面,所述N型半导体区28表面设置有第n+1个N型重掺杂半导体区6;所述电场屏蔽层11通过一个深扩散P型半导体区27连接到半导体表面,所述深扩散P型半导体区27、第n+1个N型重掺杂半导体区6以及第n个P型重掺杂半导体区22表面覆盖金属12短路;所述深扩散P型半导体区27和金属12直接相连、或者通过第n+1个P型重掺杂区22形成欧姆接触相连。
本发明的有益效果在于:
上述IGBT元胞的特征在于,通过浮空金属12将第一个深槽另一侧的N型载流子存储层4和P型电场屏蔽层11短路,从而完全抑制了该发明寄生的PNPN晶闸管的开启,保证了本发明作为IGBT正常工作的前提。并且,利用所述的短路结构,将传统槽栅IGBT浮空的P型电场屏蔽层11通过集成于IGBT表面的一个或多个PN结二极管的导通压降钳位在一个固定的电压,从而屏蔽了第一个深槽一侧的N型载流子存储层的电位,防止其随集电极电压上升而使得所述第一个深槽一侧的N型载流子存储层和P型基区构成的反偏PN结击穿。
其具体原理为:当传统IGBT处于阻断状态时,随着集电极电位从零开始升高,耐压区产生的空穴电流流过由N型载流子存储层4和P型基区5构成的反偏PN结,从而导致所述PN结反偏电压升高直至击穿,如果载流子存储层掺杂较重,所述PN结的击穿电压将很低;而对于本发明的IGBT元胞,随着集电极电位从零开始升高,P型电场屏蔽层11电位随之升高,当电场屏蔽层11的电位升高来使得一个或者多个串联的二极管处于微弱的正偏状态时,耐压区1产生的空穴电流大部分不再流经由所述第一个深槽一侧的N型载流子存储层4和P型基区5构成的反偏PN结,这些空穴电流将通过微弱正偏的二极管流入第1个重掺杂的N型区6上的发射极金属10。由于二极管正向电压电流呈指数关系,所以微弱的正偏可以流过绝大部分的耐压区泄露电流,从而P型电场屏蔽层11的电位被钳位在1个(0.7V)或者n个二极管的导通压降(0.7n V)附近。此时,由于绝大部分的空穴电流不再流经上述反偏P N结,所以该PN结的反偏电压不再升高,即此PN结不会随着集电极电位的升高而发生击穿。集电极继续增加的电压将由P型电场屏蔽层11和耐压区1构成的反偏PN结来承受。所以,所述N型载流子存储层的掺杂浓度可以被极大地提高。这样,IGBT发射极注入效率被极大地提高,获得更低的导通压降。从而,在保证低导通压降的同时,集电极的注入效率得以降低,从而获得更快的关断速度。
同样的道理,当本发明的IGBT处于导通状态时,电场屏蔽层的电位也被钳位在一个或n个二极管导通压降附近,集电极继续增加的电压将由P型电场屏蔽层11和耐压区1构成的反偏PN结来承受。从而,IGBT的nMOS沟道的漏极电位被电场屏蔽层钳位在很低的电压,所以本发明的IGBT在栅开启,集电极高压情况下将有很低的饱和电流,有利于提高IGBT的安全工作区。本发明的IGBT将具有极低的饱和电流密度、高的安全工作区以及更优的导通压降和关断损耗的折中关系。
附图说明
图1为现有一种具有载流子存储层的槽栅IGBT结构示意图。
图2为现有一种具有浮空P区的载流子存储层的槽栅IGBT元胞结构示意图。
图3为本发明实施例1中一种利用二极管钳位的具有载流子存储层的IGBT器件元胞结构示意图。
图4为本发明实施例2中一种利用二极管钳位的具有载流子存储层的IGBT器件元胞结构示意图。
图5为本发明实施例3中一种利用二极管钳位的具有载流子存储层的IGBT器件元胞结构示意图。
图6为本发明实施例4中一种利用二极管钳位的具有载流子存储层的IGBT器件元胞结构示意图。
图7为本发明实施例5中一种利用二极管钳位的具有载流子存储层的IGBT器件元胞结构示意图。
图8为本发明实施例6中一种利用二极管钳位的具有载流子存储层的IGBT器件元胞结构示意图。
图9为本发明实施例3中具有两个串联二极管钳位的IGBT和传统槽栅IGBT输出特性对比。
图10为本发明实施例3中具有两个串联二极管钳位的IGBT的导通压降和关断损耗折中关系和现有技术的对比。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
实施例1
本实施例提供一种利用二极管钳位的具有载流子存储层的IGBT器件,其元胞结构如图3所示,包括:
耐压区1,设置在耐压区1底部的N型缓冲层2,设置在N型缓冲层2下表面的P型集电极半导体区3,以及设置在P型集电极半导体区3下表面的集电极金属13;
设置在耐压区1上表面部分区域的P型电场屏蔽层11,覆盖于耐压区1及P型电场屏蔽层11上表面的N型载流子存储层4,以及覆盖于N型载流子存储层4上表面的P型基区5;
元胞表面设置有一个深入P型电场屏蔽层11的第一个深槽,所述第一个深槽内填充有多晶硅栅8,多晶硅栅8与深槽之间设置有栅介质7,多晶硅栅8的上表面覆盖有栅极金属9;所述第一个深槽将其两侧N型载流子存储层4、P型基区5完全分隔,所述第一个深槽正下方还设置有一个P型重掺杂隔离区24用于防止栅压开启时所述第一个深槽底部形成电子沟道,从而实现深槽左右两侧载流子存储层4的电隔离;
位于所述第一个深槽一侧的N型载流子存储层4与耐压区1相接触,并且,位于同侧的P型基区5上设置有与栅介质7相接触的作为N沟道MOSFET的N型重掺杂源极区20、及与N型重掺杂源极区20邻接的P型重掺杂基区欧姆接触区21,N型重掺杂源极区20与P型重掺杂基区欧姆接触区21上表面覆盖有发射极金属10;
所述深槽的另一侧设置有1个二极管,所述二极管特征在于:
位于所述第一个深槽另一侧的P型基区5内设置有第1个N型重掺杂区6,所述第1个N型重掺杂区6与该侧P型基区5形成一个第1个PN结二极管;所述第1个N型重掺杂区6作为所述第1个二极管的阴极;所述该侧P型基区5以及其内设置的第1个P型重掺杂半导体区22作为所述第1个二极管的阳极区和阳极欧姆接触区;并且,同侧的N型载流子存储层4、P型电场屏蔽层11、所述第1个二极管的阳极P型基区5以及第1个P型重掺杂阳极欧姆接触区22直接通过金属短路;所述第1个N型重掺杂区6不与所述栅介质层7接触,且其上表面覆盖有发射极金属10。
所述金属短路方式为:通过第二个深槽填充金属12,所述金属12与第一个深槽另一侧的N型载流子存储层4、所述第1个二极管的P型阳极区5以及第1个二极管的P型重掺杂阳极欧姆接触区22直接接触,并且金属12通过一个P型重掺杂体内欧姆接触区25形成欧姆接触相连。
进一步,所述P型重掺杂隔离区24根据栅介质7厚度以及P型电场屏蔽层11掺杂的情况可以选择设置或者不设置;具体地:当栅介质7的厚度以及P型电场屏蔽层11的浓度使得IGBT栅氧开启后槽栅底部形成了电子反型层,则需要设置P型重掺杂隔离区24,否则可以不必设置;
进一步,所述P型重掺杂体内欧姆接触区25可以不必设置,而使金属12和电场屏蔽层11形成肖特基接触;本实施例给出的是通过P型重掺杂体内欧姆接触区25和金属12形成欧姆接触相连;
所述第一个PN结二极管在IGBT耐压时将所述P型电场屏蔽层11的电位钳位在0.7V左右,从而载流子存储层的电位也被钳位在较低的电压,从而保证图3第一个深槽左侧的N型载流子存储层4和P型基区5形成的反偏PN结不会由于N型载流子存储层4重掺杂而击穿。当本发明IGBT开启时,所述钳位结构流过绝大部分的空穴电流,仍然将电场屏蔽层钳位在0.7V附近,从而发射极的MOSFET的漏极电位,即图中第一个深槽左侧的载流子存储层4的电位被钳位的很低,从而极大地降低了IGBT的饱和电流密度,提高了其短路安全工作区。
实施例2
本实施例提供一种基于二极管钳位的具有载流子存储层的IGBT器件,其元胞结构如图4所示,其元胞结构与实施例1的不同在于:所述短路方式与实施例1不同;本实施例中,所述第一个深槽另一侧的P型电场屏蔽层11、N型载流子存储层4分别通过一个深扩散P型半导体区27、N型半导体区28连接到半导体表面,再于深扩散P型半导体区27、N型半导体区28及该侧P型基区5内的第一个P型重掺杂半导体区22表面覆盖金属12;所述N型半导体区28与金属12通过一个第2个N型重掺杂区6形成欧姆接触相连;所述深扩散P型半导体区27和金属12直接相连、或者通过一个第2个P型重掺杂半导体区22形成欧姆接触相连,本实施例给出的是通过一个第2个P型重掺杂半导体区22形成欧姆接触相连。其原理和效果同实施例1类似;
实施例3
本实施例提供一种利用二极管钳位的具有载流子存储层的IGBT器件,其元胞结构如图5所示,其元胞结构与实施例1的不同在于:位于第一个深槽另一侧的P型基区5内设置有n-1个N型半导体隔离区19,n≥2,其下表面与N型载流子存储层4相接触,所述N型半导体隔离区19将此侧P型基区分隔成n个P型子区,每个P型子区内设置一个N型重掺杂半导体区6、所述N型重掺杂半导体区6与各自所在的P型子区形成一个PN结二极管,每个PN结二极管的P型子区内还设置有一个P型重掺杂半导体区22作为该二极管的阳极欧姆接触区,n个PN结二极管通过金属(金属15、16、17、18)串联;按照与所述第一个深槽的距离由近及远依次将n个PN结二极管标记为第i个PN结二极管(1≤i≤n,且由1至n排序),其中,所述第1个PN结二极管的第1个N型重掺杂半导体区6上表面覆盖有发射极金属10、且与栅介质7不接触,所述第n个PN结二极管的P型子区、P型子区内的第n个P型重掺杂半导体区22、P型子区下的N型载流子存储层4及P型电场屏蔽层11通过金属12短路;
所述短路方式与实施例1相同;14区表示重复的N型半导体隔离区19和二极管串联单元。
所述PN结二极管串联在一起,在IGBT耐压时将所述P型电场屏蔽层11的电位钳位在不同的电压值(钳位的电压约为0.7n V),从而图中第一个深槽左侧的N型载流子存储层4的电位也被钳位在较低的电压,从而保证第一个深槽左侧的N型载流子存储层4和P型基区5形成的反偏PN结不会由于N型载流子存储层4重掺杂而击穿。当本发明IGBT开启时,所述钳位结构流过绝大部分的空穴电流,仍然将电场屏蔽层钳位在0.7n V附近,从而发射极的MOSFET的漏极电位,即图中第一个深槽左侧的载流子存储层4的电位被钳位的很低,从而极大地降低了IGBT的饱和电流密度,提高了其短路安全工作区。
图9示出了本发明的IGBT和传统槽栅IGBT输出电流的对比。本发明的IGBT除了载流子存储层和集电极之外均和传统槽栅IGBT具有相同的各区掺杂。衬底1区浓度为1×1014cm-3,厚度约90um,N型缓冲层2区峰值浓度3×1017cm-3,栅氧7区厚度为100nm。传统槽栅IGBT的集电极掺杂浓度为2.8×1018cm-3,载流子存储层厚度为2um,浓度设置为1×1016cm-3以达到1237V的耐压。而本发明的IGBT的集电极掺杂浓度为1.2×1018cm-3,载流子存储层厚度为2um,串联了两个PN结二极管,即使载流子存储层浓度设置为1×1019cm-3,耐压也可以达到1313V。可以看出,由于本发明的二极管钳位电场屏蔽层的作用,使得其在极高的载流子存储层浓度下的击穿电压下仍然高于传统结构。即使降低集电极的掺杂浓度,本发明的IGBT在电流密度为100A/cm-2下的导通压降也和传统IGBT的导通压降相同,在此情况下对比了二者的输出特性。从图9的输出特性可以看出,本发明的IGBT的饱和电流密度比传统槽栅IGBT降低了约45%,这将极大地提高本发明IGBT的短路安全工作区。同时,由于集电极掺杂浓度的降低,本发明IGBT将具有更好的导通压降和关断损耗的折中关系,如图10所示(对比参考文献[4].《M.M.Huang,B.Gao,Z.Yang,et al.,“A Carrier-Storage-EnhancedSuperjunction IGBT With Ultralow Loss and On-State Voltage,”IEEE ElectronDevice Letters,vol.39,no.2,pp.264-267,2018.》)。
实施例4
本实施例提供一种利用二极管钳位的具有载流子存储层的IGBT器件,其元胞结构如图6所示,其元胞结构与实施例3的不同在于:所述短路方式与实施例3不同,与实施例2相同。其原理和效果同实施例3类似;
实施例5
本实施例提供一种利用二极管钳位的具有载流子存储层的IGBT器件,其元胞结构如图7所示,其元胞结构与实施例3的不同在于:其n-1个隔离区与实施例3不同,所述n-1个隔离区由槽壁隔离介质层26和槽内填充物24构成;所述槽内填充物可以是介质,或者也可以是导体。其原理和效果同实施例3类似;
实施例6
本实施例提供一种利用二极管钳位的具有载流子存储层的IGBT器件,其元胞结构如图8所示,其元胞结构与实施例4的不同在于:其n-1个隔离区与实施例4不同,所述n-1个隔离区由槽壁隔离介质层26和槽内填充物24构成;所述槽内填充物可以是介质,或者也可以是导体。其原理和效果同实施例3类似;
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (5)

1.一种利用二极管钳位的具有载流子存储层的IGBT器件,其特征在于,元胞包括:
耐压区(1),设置在耐压区底部的N型缓冲层(2),设置在N型缓冲层下表面的P型集电极半导体区(3),以及设置在P型集电极半导体区下表面的集电极金属(13);
设置在耐压区(1)上表面部分区域的P型电场屏蔽层(11),覆盖于耐压区及P型电场屏蔽层上表面的N型载流子存储层(4),以及覆盖于N型载流子存储层上表面的P型基区(5);
元胞表面设置有一个深入P型电场屏蔽层(11)的第一深槽,所述第一深槽内填充有多晶硅栅(8),多晶硅栅与第一深槽之间设置有栅介质(7),多晶硅栅的上表面覆盖有栅极金属(9);所述第一深槽将其两侧N型载流子存储层(4)、P型基区(5)完全分隔;
位于所述第一深槽一侧的N型载流子存储层(4)与耐压区(1)相接触,并且,位于同侧的P型基区(5)上设置有与栅介质(7)相接触的作为N沟道MOSFET的N型重掺杂源极区(20)、及与N型重掺杂源极区邻接的P型重掺杂基区欧姆接触区(21),N型重掺杂源极区与P型重掺杂基区欧姆接触区上表面覆盖有发射极金属(10);
所述第一深槽的另一侧设置有n个二极管、n≥1:
当n=1时,位于所述第一深槽另一侧的P型基区内设置有一个N型重掺杂半导体区(6)与一个P型重掺杂半导体区(22),共同形成第1个PN结二极管,其中、N型重掺杂半导体区作为PN结二极管的阴极、P型基区作为PN结二极管的阳极、P型重掺杂半导体区作为PN结二极管的阳极欧姆接触区;并且,同侧的N型载流子存储层(4)、P型电场屏蔽层(11)、P型基区(5)以及P型重掺杂半导体区(22)通过短路金属短路;所述N型重掺杂半导体区(6)上表面覆盖有发射极金属(10)、且与栅介质(7)不接触;
当n≥2时,位于所述第一深槽另一侧的P型基区(5)内设置有n-1个隔离区,所述隔离区下表面与N型载流子存储层(4)相接触、且与P型电场屏蔽层(11)不接触;所述隔离区将所述第一深槽另一侧的P型基区分隔成n个P型子区,并根据与所述第一深槽的距离由近至远依次称为第i个P型子区、i=1,2,...,n;所述第i个P型子区内设置有第i个N型重掺杂半导体区(6)与第i个P型重掺杂半导体区(22),共同形成第i个PN结二极管,其中、第i个N型重掺杂半导体区作为第i个PN结二极管的阴极、第i个P型子区作为第i个PN结二极管的阳极、第i个P型重掺杂半导体区作为第i个PN结二极管的阳极欧姆接触区;n个P型子区内共形成n个PN结二极管,所述n个PN结二极管通过金属串联;第1个PN结二极管的第1个N型重掺杂半导体区上表面覆盖有发射极金属(10)、且与栅介质(7)不接触;第n个P型子区、第n个P型子区内的第n个P型重掺杂半导体区(22)、P型子区下的N型载流子存储层(4)及P型电场屏蔽层(11)通过短路金属(12)短路。
2.按权利要求1所述的利用二极管钳位的具有载流子存储层的IGBT器件,其特征在于,所述隔离区为深槽隔离区,所述深槽隔离区由槽壁隔离介质层(26)和槽内填充物(23)构成,所述槽内填充物为介质或者导体。
3.按权利要求1所述的利用二极管钳位的具有载流子存储层的IGBT器件,其特征在于,当所述P型电场屏蔽层(11)掺杂浓度低于1×1018 cm-3时,所述第一深槽正下方还设置有一个P型重掺杂隔离区(24),用于防止栅压开启时所述第一深槽底部形成电子沟道,从而实现深槽左右两侧载流子存储层(4)的电隔离。
4.按权利要求1所述的利用二极管钳位的具有载流子存储层的IGBT器件,其特征在于,所述短路金属短路的方式为:通过第二深槽填充短路金属(12),所述短路金属与N型载流子存储层、当n≥2时所述第n个P型子区以及当n=1时所述第一深槽另一侧的P型基区、以及第n个P型重掺杂半导体区直接接触;并且,短路金属与P型电场屏蔽层在体内直接接触、或者通过一个P型重掺杂体内欧姆接触区(25)形成欧姆接触相连。
5.按权利要求1所述的利用二极管钳位的具有载流子存储层的IGBT器件,其特征在于,所述短路金属短路的方式为:将载流子存储层(4)通过一个N型半导体区(28)连接到半导体表面,所述N型半导体区表面设置有第n+1个N型重掺杂半导体区(6);所述电场屏蔽层(11)通过一个深扩散P型半导体区(27)连接到半导体表面,所述深扩散P型半导体区、第n+1个N型重掺杂半导体区以及第n个P型重掺杂半导体区表面覆盖金属短路;所述深扩散P型半导体区和金属直接相连、或者通过第n+1个P型重掺杂半导体区形成欧姆接触相连。
CN201811383176.4A 2018-11-20 2018-11-20 一种利用二极管钳位的具有载流子存储层的igbt器件 Active CN109686787B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811383176.4A CN109686787B (zh) 2018-11-20 2018-11-20 一种利用二极管钳位的具有载流子存储层的igbt器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811383176.4A CN109686787B (zh) 2018-11-20 2018-11-20 一种利用二极管钳位的具有载流子存储层的igbt器件

Publications (2)

Publication Number Publication Date
CN109686787A CN109686787A (zh) 2019-04-26
CN109686787B true CN109686787B (zh) 2020-12-29

Family

ID=66185376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811383176.4A Active CN109686787B (zh) 2018-11-20 2018-11-20 一种利用二极管钳位的具有载流子存储层的igbt器件

Country Status (1)

Country Link
CN (1) CN109686787B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111722072B (zh) * 2020-05-14 2022-02-25 上海交通大学 高耐压的功率半导体器件导通压降在线测量电路及系统
CN113193043B (zh) * 2021-04-19 2023-03-28 电子科技大学 一种具有二极管钳位载流子存储层的槽栅igbt器件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240904A (ja) * 2006-03-09 2007-09-20 Hitachi Ltd プラズマディスプレイ装置
US8847307B2 (en) * 2010-04-13 2014-09-30 Maxpower Semiconductor, Inc. Power semiconductor devices, methods, and structures with embedded dielectric layers containing permanent charges
JP6003961B2 (ja) * 2014-11-04 2016-10-05 トヨタ自動車株式会社 半導体装置
JP6524666B2 (ja) * 2015-01-15 2019-06-05 富士電機株式会社 半導体装置
JP6384425B2 (ja) * 2015-08-21 2018-09-05 株式会社デンソー 半導体装置
CN107134488B (zh) * 2017-06-01 2019-10-01 四川大学 一种载流子存储增强的绝缘栅双极型晶体管
CN107799582B (zh) * 2017-10-20 2021-03-16 电子科技大学 一种沟槽栅电荷储存型绝缘栅双极型晶体管及其制造方法

Also Published As

Publication number Publication date
CN109686787A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
US7400017B2 (en) Reverse conducting semiconductor device and a fabrication method thereof
CN110767753B (zh) 一种SiC功率器件
CN110190113B (zh) 一种消除负阻效应的阳极短路型横向绝缘栅双极型晶体管
CN109427869B (zh) 一种半导体器件
CN111048594B (zh) 一种集成快恢复二极管的SiC功率器件
US9299818B2 (en) Insulating gate-type bipolar transistor
CN109728084B (zh) 一种具有深槽电场屏蔽结构的平面栅igbt器件
CN109888007B (zh) 具有二极管钳位载流子存储层的soi ligbt器件
CN112928156B (zh) 一种浮空p柱的逆导型槽栅超结IGBT
CN109686788B (zh) 一种具有载流子存储层的槽栅igbt器件
CN111834449B (zh) 一种具有背面双mos结构的快速关断rc-igbt器件
CN110137250B (zh) 一种具有超低导通压降的高速igbt器件
CN109686787B (zh) 一种利用二极管钳位的具有载流子存储层的igbt器件
CN110504305B (zh) 一种具有自偏置pmos钳位载流子存储层的SOI-LIGBT器件
CN116013970A (zh) 半导体器件及其制造方法、导通电压回跳的优化方法
US9461116B2 (en) Method of formation of a TI-IGBT
US11984473B2 (en) Semiconductor device
JP3695249B2 (ja) 半導体装置及びそれを用いた電力変換装置
CN113054012B (zh) 绝缘栅双极晶体管及其制造方法
KR20230088149A (ko) 분리 버퍼 구조를 갖는 초접합 igbt
CN110265477B (zh) 具有pnp穿通三极管的igbt器件
US9209287B2 (en) Power semiconductor device
CN112736134A (zh) 碳化硅pnpn晶闸管注入型igbt器件
Chen et al. A novel shielded IGBT (SIGBT) with integrated diodes
CN216054718U (zh) 半导体结构及绝缘栅双极型晶体管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant