CN110797405A - 一种沟槽栅igbt半导体器件及其制备方法 - Google Patents

一种沟槽栅igbt半导体器件及其制备方法 Download PDF

Info

Publication number
CN110797405A
CN110797405A CN201911005590.6A CN201911005590A CN110797405A CN 110797405 A CN110797405 A CN 110797405A CN 201911005590 A CN201911005590 A CN 201911005590A CN 110797405 A CN110797405 A CN 110797405A
Authority
CN
China
Prior art keywords
trench gate
doped region
region
type
type doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911005590.6A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Ruiqu Microelectronics Technology Co Ltd
Original Assignee
Shanghai Ruiqu Microelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Ruiqu Microelectronics Technology Co Ltd filed Critical Shanghai Ruiqu Microelectronics Technology Co Ltd
Priority to CN201911005590.6A priority Critical patent/CN110797405A/zh
Publication of CN110797405A publication Critical patent/CN110797405A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供了一种沟槽栅IGBT半导体器件及其制作方法,半导体器件包括半导体衬底和位于半导体衬底表面内的沟槽栅结构和虚设沟槽栅结构;其中,虚设沟槽栅结构位于两个沟槽栅结构之间,沟槽栅结构包括覆盖在沟槽内表面上和上表面的氧化层及填充在沟槽中的多晶硅;虚设沟槽栅之间为埋入的P型基区,虚设沟槽栅结构包括掺杂区,掺杂区位于P型基区表面并且直接连接到发射极电极;在P型掺杂区下表面形成n型空穴阻挡层。本发明通过n型空穴阻挡层位于虚设沟槽栅的P基区下方,以避免空穴流向发射极;这种结构将空穴存储在虚拟沟槽栅单元下,在不牺牲任何IGBT性能的情况下,寄生电容会显著降低,进而缩短逆变器的死区时间。

Description

一种沟槽栅IGBT半导体器件及其制备方法
技术领域
本发明属于电力半导体技术领域,具体涉及一种沟槽栅IGBT半导体器件,本发明还涉及该种半导体器件的制备方法。
背景技术
IGBT是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。通过提供晶体管基极电流使IGBT导通;反之,若提供反向门极电压则可消除沟道、使IGBT因流过反向门极电流而关断。IGBT集GTR通态压降小、载流密度大、耐压高和功率MOSFET驱动功率小、开关速度快、输入阻抗高、热稳定性好的优点于一身,因此备受人们青睐。它的研制成功为提高电力电子装置的性能,特别是为逆变器的小型化、高效化、低噪化提供了有利条件,使其能够用于机车列车、电动汽车列车和混合动力电动汽车。太阳能和风能等可再生能源领域的增长导致了对大功率IGBT的需求。
IGBT作为电能变换装置如逆变器等,影响其使用的一个重要参数就是死区时间,死区时间设置过小会造成桥路直通,导致器件发生短路而失效;死区时间设置过大会造成信号波形失真,输出效率严重降低,对感应电机的稳定性也会带来不利影响。
以两电平半桥逆变单元为例,如图1(a)所示,同一桥臂上下两管控制信号为一对互补信号,实际工作中,由于IGBT关断时间的存在,使得T1管从栅极关断到集电极电流关断存在一定延时,在这段延时内,由于T2管开始导通,容易造成桥路直通,导致较大的回路电流尖峰,进而通过回路杂散电感LS在IGBT两端产生较大电压尖峰,一旦超过其额定阻断电压,将使IGBT发生雪崩击穿而失效,引发整个装置的故障。因此,必须对逆变器等电能变换装置中同一桥臂的开关互补控制信号之间加入一定的延时,称之为死区时间
tdead,使得在该时间内同一桥臂上的一管完全关断而另一管还未开通。这样就避免了桥路直通的发生。
因此,尽可能缩短逆变器的死区时间,而不发生桥路击穿,保证系统安全稳定和较高转换效率是非常有必要的。
发明内容
本发明所要解决的技术问题是在保证系统安全稳定和转换效率的前提下,如何尽可能缩短逆变器的死区时间,而不发生桥路击穿,提供一种沟槽栅IGBT半导体器件及其制备方法。
一方面,本发明提供一种沟槽栅IGBT半导体器件,其特征在于,包括:半导体衬底和位于半导体衬底表面内的沟槽栅结构和虚设沟槽栅结构;其中,虚设沟槽栅结构位于两个沟槽栅结构之间,沟槽栅结构包括覆盖在沟槽内表面上和上表面的氧化层及填充在沟槽中的多晶硅;所述半导体衬底包括n型掺杂区和位于底层之上的P型掺杂区;所述P型掺杂区被沟槽栅结构和虚设沟槽栅结构分成多个间隔区域,
所述虚设沟槽栅之间的P型掺杂区形成P型基区,所述虚设沟槽栅结构包括掺杂区,所述掺杂区位于P型基区表面并且直接连接到发射极电极;在所述P型掺杂区下表面形成n型空穴阻挡层。
进一步地,所述半导体衬底包括n型掺杂区和位于底层之上的P型掺杂区,所述n型掺杂区通过对半导体衬底进行n型掺杂,所述P型掺杂区通过向半导体衬底表面注入p型杂质形成。
进一步地,所述P型掺杂区被沟槽栅结构和虚设沟槽栅结构分成多个间隔区域,在所述沟槽栅结构和虚设沟槽栅结构之间的P型掺杂区间隔区域,包括n+型掺杂区,P+型掺杂区,所述P+型掺杂区与所述n+型掺杂区并排设置且所述n+型掺杂区设置在P+型掺杂区的两侧;n+型掺杂区设置在所述间隔区域的表面部分中,所述n+型掺杂区及p型基区的侧壁均与沟槽侧壁外表面相接触,所述n+型掺杂区与发射极电极电耦合。
进一步地,所述沟槽栅结构和虚设沟槽栅结构均有多个,且间隔设置。
进一步地,所述虚设沟槽栅包括覆盖在虚设沟槽内表面的氧化层和填充在沟槽中的多晶硅。进一步地,所述虚设沟槽栅多晶硅与发射极电极连接。
进一步地,所述虚设沟槽栅之间的栅极短接。
有益技术效果:
本发明通过n型空穴阻挡层位于虚设沟槽栅的P基区下方,以避免空穴流向发射极;这种结构将空穴存储在虚设沟槽栅单元下,在不牺牲任何IGBT性能的情况下,寄生电容会显著降低,进而缩短逆变器的死区时间;
将虚设沟槽栅的多晶硅栅极与发射极电极短路,寄生氧化物电容将显著减小;但在这种情况下,P集电极空穴可以很容易地流到发射极电极。
附图说明
图1是两电平半桥逆变单元示意图,其中1(a)为两电平半桥逆变单元电路图,1(b)为IGBT控制信号波形;
图2是传统沟槽栅IGBT的横截面结构示意图;
图3是传统沟槽栅IGBT寄生电容分量;
图4是本发明具体实施例提供的沟槽栅IGBT半导体器件结构示意图;
图5是本发明具体实施例提供的沟槽栅IGBT半导体器件的制作方法示意图;
图中标记:1:发射极金属;2:SiO2层;3:P型掺杂区;4:沟槽栅结构;5:氧化层;6:n+型掺杂区;7:P+型掺杂区;8:n型漂移层;9:n型缓冲层;10:P集电极;11:集电极金属;12:虚设沟槽;13:P型掺杂区;14:n型空穴阻挡层;16:发射极短路区;17-虚设沟槽栅;202:掺杂区。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
以两电平半桥逆变单元为例,如图1(a)所示,同一桥臂上下两管控制信号为一对互补信号,实际工作中,由于IGBT关断时间的存在,使得T1管从栅极关断到集电极电流关断存在一定延时,在这段延时内,由于T2管开始导通,容易造成桥路直通,导致较大的回路电流尖峰,进而通过回路杂散电感LS在IGBT两端产生较大电压尖峰,一旦超过其额定阻断电压,将使IGBT发生雪崩击穿而失效,引发整个装置的故障。因此,必须对逆变器等电能变换装置中同一桥臂的开关互补控制信号之间加入一定的延时,称之为死区时间tdead,使得在该时间内同一桥臂上的一管完全关断而另一管还未开通。这样就避免了桥路直通的发生。图1(b)为加入一定延时后的该逆变单元开关控制波形示意图,其中上图为T1管关断时的VGE1和IC1波形,下图为T2管开通时的VGE2和IC2波形。T1管关断时间toff分为两部分:关断延迟时间td(off),即从栅压下降到最大值的90%开始,到集电极电流下降到最大值的90%的时间;集电极电流下降时间tf,即集电极电流从最大值的90%下降到最大值的10%的时间。td(on)为T2管的开通延迟时间,定义为从栅压为0上升到集电极电流为最大值的10%的时间。由图1(b)可知,在不考虑驱动延时的情况下,若两管开关脉冲的延迟时间满足小于toff与td(on)之差,则可以避免两管直通的发生。若加入驱动延迟的影响,两管控制信号的最小延迟时间或死区时间为
tdead=(toff-td(on)+tPDD-Max-tPDD-Min)r,(1)
其中:toff和td(on)如上所述,tPDD-Max和tPDD-Min分别为IGBT驱动电路的最大和最小输出延时,r为考虑工艺分散性等影响因素而引入的安全系数,一般取1.2~1.5,但是这并不能准确反映死区时间受器件工作条件的影响规律。由式(1)可知,死区时间的计算与IGBT的开通、关断过程有着密切的联系。因此,合理设置死区时间首先需要对IGBT的开关机理进行分析,找到影响IGBT开关时间的主要因素,进而得到这些因素对死区时间设置的影响。
图2为传统沟槽栅IGBT的横截面结构示意图;为了避免桥路击穿,保证系统稳定有效,必须减少igbt的开关时间,开关时间主要以td(off)和td(on)为主,延迟时间由寄生电容、cge、cgc和cce引起,如图3所示。图3显示了图2中虚线框部分的寄生电容构成分量,从图3的栅极电荷特性来看,减小qge和qgc是必要的,这意味着应主要减小寄生电容cgc和cge。图3显示了传统IGBT结构和寄生电容的组成,cies、coes和crs。
因此本发明主要考虑降低寄生电容,具体实施例如图4所示。下面将结合附图对本发明作进一步说明。
实施方式1
图4是本发明具体实施例提供的沟槽栅IGBT半导体器件结构示意图;如图4所示,本实施例提供了一种沟槽栅IGBT半导体器件,包括:半导体衬底和位于半导体衬底表面内的沟槽栅结构4和虚设沟槽栅结构17;其中,虚设沟槽栅结构17位于两个沟槽栅4结构之间,沟槽栅结构17包括覆盖在沟槽内表面上和上表面的氧化层及填充在沟槽中的多晶硅;所述半导体衬底包括n型掺杂区和位于底层之上的P型掺杂区13;所述P型掺杂区13被沟槽栅结构4和虚设沟槽栅结构17分成多个间隔区域,所述虚设沟槽栅17之间为的P型掺杂区13形成P型基区12,所述虚设沟槽栅结构包括掺杂区202,所述掺杂区202位于P型基区12表面并且直接连接到发射极金属1,形成发射极短路区16;在所述P型掺杂区13下表面形成n型空穴阻挡层14。n型空穴阻挡层14位于虚设沟槽栅17的P型掺杂区13(形成P基区)下方,以避免空穴流向发射极;这种结构将空穴存储在虚拟沟槽栅单元下,在不牺牲任何IGBT性能的情况下,寄生电容会显著降低。
其中半导体衬底表面内的表述为本领域的公知常识,指由半导体衬底表面向下延伸一定深度的区域。半导体衬底的选择为本领域公知常识,这里不赘述。
本发明中发射极金属1接触区不限于传统的沟槽之间,还与虚设沟槽栅接触,增大了发射极金属1接触区,显著降低了沟槽栅IGBT的导通压降。
所述半导体衬底包括n型掺杂区和位于底层之上的P型掺杂区,所述n型掺杂区通过对半导体衬底进行n型掺杂,所述P型掺杂区通过向半导体衬底表面注入p型杂质形成。
如图4所示,从底层往上层依次是金属集电极11、P集电极区10、n型缓冲层9、n型漂移层8;n型漂移层8位于n型缓冲层9上方。覆盖在沟槽内表面的氧化层5可为二氧化硅或者氮氧化硅,氧化层起隔离作用,可有效地将沟槽内填充的多晶硅4与沟槽外的物质隔离开。
所述P型掺杂区被沟槽栅结构和虚设沟槽栅结构分成多个间隔区域,在所述沟槽栅结构和虚设沟槽栅结构之间的P型掺杂区间隔区域,包括n+型掺杂区6和P+型掺杂区7,所述P+型掺杂区7与所述n+型掺杂区6并排设置且所述n+型掺杂区6设置在P+型掺杂区7的两侧;n+型掺杂区6设置在所述间隔区域的表面部分中,所述n+型掺杂区6及p型基区7的侧壁均与沟槽侧壁外表面相接触,所述n+型掺杂区6与发射极电极电耦合。
所述沟槽栅结构和虚设沟槽栅结构均有多个,且间隔设置。所述虚设沟槽栅包括覆盖在虚设沟槽内表面的氧化层和填充在沟槽中的多晶硅;所述虚设沟槽栅多晶硅与发射极电极连接,如图4所示的。栅极氧化物的虚设沟槽测应具有较厚的栅极氧化物,沟道区栅氧化层厚度约为800~1000A。
虚设沟槽栅为沟槽栅IGBT元胞中不起控制作用的栅极,通常浮空或者接地,所述虚设沟槽栅之间的栅极可短接在一起。
图5所示的是一种制作以上实施例提供的沟槽栅IGBT半导体器件的制备方法,如图5所示,包括如下步骤:
图5中a)显示了形成P基、沟槽干蚀刻、栅极氧化物形成和掺杂多晶硅栅极沉积的一般工艺。在图5中b)中,使用RIE(反应离子刻蚀)形成额外的沟槽,其宽度和深度分别为2500~3500A和5μm左右,随后使用c)中的HDP(高密度等离子体)在沟槽中完全沉积氧化物。然后,进行化学机械抛光(CMP),利用离子注入形成n+发射区,并在图5中d)中沉积绝缘膜bpsg。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (8)

1.一种沟槽栅IGBT半导体器件,其特征在于,包括:半导体衬底和位于半导体衬底表面内的沟槽栅结构和虚设沟槽栅结构;其中,虚设沟槽栅结构位于两个沟槽栅结构之间,沟槽栅结构包括覆盖在沟槽内表面上和上表面的氧化层及填充在沟槽中的多晶硅;所述半导体衬底包括n型掺杂区和位于底层之上的P型掺杂区;所述P型掺杂区被沟槽栅结构和虚设沟槽栅结构分成多个间隔区域,所述虚设沟槽栅之间的P型掺杂区形成P型基区,所述虚设沟槽栅结构包括掺杂区,所述掺杂区位于P型基区表面并且直接连接到发射极电极;在所述P型掺杂区下表面形成n型空穴阻挡层。
2.根据权利要求1所述的一种沟槽栅IGBT半导体器件,其特征在于,所述n型掺杂区通过对半导体衬底进行n型掺杂,所述P型掺杂区通过向半导体衬底表面注入p型杂质形成。
3.根据权利要求2所述的一种沟槽栅IGBT半导体器件,其特征在于,在所述沟槽栅结构和虚设沟槽栅结构之间的P型掺杂区间隔区域,包括n+型掺杂区,P+型掺杂区,所述P+型掺杂区与所述n+型掺杂区并排设置且所述n+型掺杂区设置在P+型掺杂区的两侧;n+型掺杂区设置在所述间隔区域的表面部分中,所述n+型掺杂区及p型基区的侧壁均与沟槽侧壁外表面相接触,所述n+型掺杂区与发射极电极电耦合。
4.根据权利要求1所述的一种沟槽栅IGBT半导体器件,其特征在于,所述沟槽栅结构和虚设沟槽栅结构均有多个,且间隔设置。
5.根据权利要求1所述的一种沟槽栅IGBT半导体器件,其特征在于,所述虚设沟槽栅包括覆盖在虚设沟槽内表面的氧化层和填充在沟槽中的多晶硅。
6.根据权利要求1所述的一种沟槽栅IGBT半导体器件,其特征在于,所述虚设沟槽栅多晶硅与发射极电极连接。
7.根据权利要求1所述的一种沟槽栅IGBT半导体器件,其特征在于,所述虚设沟槽栅之间的栅极短接。
8.一种沟槽栅IGBT半导体器件的制备方法,其特征在于:制备权利要求1~7所述的沟槽栅IGBT半导体器件,包括如下步骤:
形成P基、沟槽干蚀刻、栅极氧化物形成和掺杂多晶硅栅极沉积;使用反应离子刻蚀RIE形成额外的沟槽,其宽度和深度分别为2500~3500A和5μm左右,随后使用高密度等离子体HDP在沟槽中完全沉积氧化物;然后,进行化学机械抛光,利用离子注入形成n+发射区,并沉积绝缘膜。
CN201911005590.6A 2019-10-22 2019-10-22 一种沟槽栅igbt半导体器件及其制备方法 Pending CN110797405A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911005590.6A CN110797405A (zh) 2019-10-22 2019-10-22 一种沟槽栅igbt半导体器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911005590.6A CN110797405A (zh) 2019-10-22 2019-10-22 一种沟槽栅igbt半导体器件及其制备方法

Publications (1)

Publication Number Publication Date
CN110797405A true CN110797405A (zh) 2020-02-14

Family

ID=69440551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911005590.6A Pending CN110797405A (zh) 2019-10-22 2019-10-22 一种沟槽栅igbt半导体器件及其制备方法

Country Status (1)

Country Link
CN (1) CN110797405A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933702A (zh) * 2020-09-22 2020-11-13 中芯集成电路制造(绍兴)有限公司 绝缘栅双极型晶体管及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090020852A1 (en) * 2007-07-17 2009-01-22 Mitsubishi Electric Corporation Semiconductor device
CN106062964A (zh) * 2014-04-21 2016-10-26 三菱电机株式会社 功率用半导体装置
CN107851584A (zh) * 2016-02-23 2018-03-27 富士电机株式会社 半导体装置
CN107949916A (zh) * 2015-08-26 2018-04-20 三菱电机株式会社 半导体元件
CN109979935A (zh) * 2017-12-28 2019-07-05 富士电机株式会社 半导体装置及半导体装置的制造方法
CN110047918A (zh) * 2018-01-17 2019-07-23 富士电机株式会社 半导体装置
US20190312105A1 (en) * 2018-04-04 2019-10-10 Fuji Electric Co., Ltd. Semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090020852A1 (en) * 2007-07-17 2009-01-22 Mitsubishi Electric Corporation Semiconductor device
CN106062964A (zh) * 2014-04-21 2016-10-26 三菱电机株式会社 功率用半导体装置
CN107949916A (zh) * 2015-08-26 2018-04-20 三菱电机株式会社 半导体元件
CN107851584A (zh) * 2016-02-23 2018-03-27 富士电机株式会社 半导体装置
CN109979935A (zh) * 2017-12-28 2019-07-05 富士电机株式会社 半导体装置及半导体装置的制造方法
CN110047918A (zh) * 2018-01-17 2019-07-23 富士电机株式会社 半导体装置
US20190312105A1 (en) * 2018-04-04 2019-10-10 Fuji Electric Co., Ltd. Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933702A (zh) * 2020-09-22 2020-11-13 中芯集成电路制造(绍兴)有限公司 绝缘栅双极型晶体管及其制造方法
CN111933702B (zh) * 2020-09-22 2021-01-29 中芯集成电路制造(绍兴)有限公司 绝缘栅双极型晶体管及其制造方法

Similar Documents

Publication Publication Date Title
US8809903B2 (en) Semiconductor device and power conversion apparatus using the same
US10872959B2 (en) Semiconductor device and power converter
US9543389B2 (en) Semiconductor device with recombination region
US8653588B2 (en) Semiconductor device and electric power conversion system using the same
JPH10178176A (ja) トレンチ・ゲート構造を有するトレンチ・ゲート形絶縁ゲート・バイポーラ・トランジスタ
WO2023071237A1 (zh) 一种绝缘栅双极晶体管及其制造方法、电子设备
CN110400840B (zh) 一种抑制电压回折现象的rc-ligbt器件
CN108231878B (zh) 一种双向沟槽栅电荷存储型igbt及其制作方法
US20230246096A1 (en) Semiconductor cell structure, igbt cell structure, semiconductor structure, and method for manufacturing igbt cell structure
CN110690278B (zh) 一种绝缘栅双极型晶体管及其制备方法
CN111180521A (zh) 一种降低开关损耗的半导体结构及制造方法
CN102254942A (zh) 新型阶梯栅结构igbt及其制造方法
CN107768435A (zh) 一种双向igbt及其制造方法
CN110797405A (zh) 一种沟槽栅igbt半导体器件及其制备方法
CN108321192B (zh) 一种双向沟槽栅电荷存储型igbt及其制作方法
CN103117309A (zh) 一种横向功率器件结构及其制备方法
CN114975612A (zh) 具有低电磁干扰噪声的SiC沟槽栅IGBT器件及制备方法
CN211350661U (zh) 功率器件
CN111293168B (zh) Igbt器件及其制造方法
CN113314587A (zh) 一种增强型沟槽栅igbt及其形成方法
CN108461536B (zh) 一种双向沟槽栅电荷存储型igbt及其制作方法
CN208819888U (zh) 一种半封闭式屏蔽栅iegt器件结构
CN104701362A (zh) 一种沟槽隔离横向绝缘栅双极型晶体管
CN211507642U (zh) 一种降低开关损耗的半导体结构
CN112786695B (zh) 一种分裂栅沟槽功率半导体器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination