WO2017090726A1 - スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ - Google Patents

スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ Download PDF

Info

Publication number
WO2017090726A1
WO2017090726A1 PCT/JP2016/084968 JP2016084968W WO2017090726A1 WO 2017090726 A1 WO2017090726 A1 WO 2017090726A1 JP 2016084968 W JP2016084968 W JP 2016084968W WO 2017090726 A1 WO2017090726 A1 WO 2017090726A1
Authority
WO
WIPO (PCT)
Prior art keywords
spin
current
metal layer
ferromagnetic metal
orbit torque
Prior art date
Application number
PCT/JP2016/084968
Other languages
English (en)
French (fr)
Inventor
智生 佐々木
亨 及川
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US15/777,884 priority Critical patent/US10490731B2/en
Priority to JP2017552725A priority patent/JP6777649B2/ja
Priority to CN201680068794.2A priority patent/CN108292705B/zh
Publication of WO2017090726A1 publication Critical patent/WO2017090726A1/ja
Priority to US16/574,221 priority patent/US10892401B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1697Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/18Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B15/00Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B15/00Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects
    • H03B15/006Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects using spin transfer effects or giant magnetoresistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy

Definitions

  • the present invention relates to a spin current magnetization reversal element, a magnetoresistive effect element, and a magnetic memory.
  • This application is filed on November 27, 2015, Japanese Patent Application No. 2015-232334 filed in Japan, March 16, 2016, Japanese Patent Application No. 2016-53072 filed in Japan, March 18, 2016 Japanese Patent Application No. 2016-56058 filed in Japan, Japanese Patent Application No. 2016-210531 filed in Japan on Oct. 27, 2016, Japanese Patent Application No. 2016- filed in Japan on Oct. 27, 2016 Claim priority based on 210533, the contents of which are incorporated herein.
  • a giant magnetoresistive (GMR) element composed of a multilayer film of a ferromagnetic layer and a nonmagnetic layer and a tunnel magnetoresistive (TMR) element using an insulating layer (tunnel barrier layer, barrier layer) as a nonmagnetic layer are known.
  • TMR tunnel magnetoresistive
  • the TMR element has a higher element resistance than the GMR element
  • the magnetoresistance (MR) ratio of the TMR element is larger than the MR ratio of the GMR element. Therefore, TMR elements are attracting attention as elements for magnetic sensors, high-frequency components, magnetic heads, and nonvolatile random access memories (MRAM).
  • writing magnetization reversal
  • writing is performed using a magnetic field generated by current
  • writing is performed using spin transfer torque (STT) generated by flowing a current in the stacking direction of the magnetoresistive element.
  • STT spin transfer torque
  • the magnetization reversal of the TMR element using STT is efficient from the viewpoint of energy efficiency, but the reversal current density for reversing the magnetization is high. From the viewpoint of the long life of the TMR element, it is desirable that this reversal current density is low. This also applies to the GMR element. Therefore, it is desired to reduce the current density flowing in the magnetoresistive effect element in any of the magnetoresistive effect elements of the TMR element and the GMR element.
  • Non-Patent Document 1 A pure spin current interacting with a spin orbit induces spin orbit torque (SOT) and can cause magnetization reversal depending on the magnitude of SOT.
  • SOT spin orbit torque
  • a pure spin current is produced by the same number of upward spin electrons and downward spin electrons flowing in opposite directions, and the charge flow is canceled out, so the current is zero. If the magnetization can be reversed only by this pure spin current, since the current flowing through the magnetoresistive element is zero, the lifetime of the magnetoresistive element can be extended.
  • the current used for STT can be reduced by using SOT by pure spin current. It is thought that the life can be extended. Even when both STT and SOT are used, it is considered that the higher the ratio of using SOT, the longer the life of the magnetoresistive effect element.
  • spin current generating member a member made of a material that generates a pure spin current in a ferromagnetic metal layer (free layer) whose magnetization direction is variable.
  • spin current generating member a member made of a material that generates a pure spin current in a ferromagnetic metal layer (free layer) whose magnetization direction is variable.
  • spin current generating member a pure spin current is generated by passing a current through this member, and the pure spin current is diffused (injected) into the ferromagnetic metal layer from the junction with the ferromagnetic metal layer. It is caused by.
  • the present invention has been conceived by examining a configuration for reducing the amount of spin current that flows backward in this way.
  • the present invention has been made in view of the above problems, and uses a magnetic reversal using pure spin current in a state where the backflow of the pure spin current from the ferromagnetic metal layer (free layer) to the spin orbit torque wiring is reduced.
  • An object is to provide a resistance effect element and a magnetic memory.
  • the present invention provides the following means in order to solve the above problems.
  • a spin current magnetization reversal element extends in a direction intersecting the perpendicular direction of the second ferromagnetic metal layer, the second ferromagnetic metal layer having a variable magnetization direction, and the second ferromagnetic metal layer.
  • a spin orbit torque wiring that is bonded to the second ferromagnetic metal layer, and a spin resistance of a bonding portion of the spin orbit torque wiring layer that is bonded to the second ferromagnetic metal layer is the second strong metal. It is larger than the spin resistance of the magnetic metal layer.
  • the spin orbit torque wiring layer includes a spin current generation unit and a conductive unit made of a material that generates a spin current. Some may constitute the joining portion.
  • the electrical resistivity of the conductive portion may be equal to or lower than the electrical resistivity of the spin current generating portion.
  • the spin current generation unit includes at least one of tungsten, molybdenum, niobium, and these metals. It may consist of a material selected from the group consisting of containing alloys.
  • the spin orbit torque wiring is a side wall junction that is in contact with a part of the side wall of the second ferromagnetic metal layer. You may have.
  • a magnetoresistive effect element includes a spin current magnetization reversal element according to any one of (1) to (5) above, and a second strong magnetic field whose magnetization direction is fixed.
  • the second ferromagnetic metal layer is positioned below the first ferromagnetic metal layer in the stacking direction. Also good.
  • a magnetic memory according to an aspect of the present invention includes a plurality of magnetoresistive elements according to any one of (1) to (6).
  • the magnetization reversal method is a magnetization reversal method in the magnetoresistive effect element according to any of (6) and (7) above, wherein the current density flowing in the spin orbit torque wiring is less than 1 ⁇ 10 7 A / cm 2. It can be.
  • magnetization reversal is performed using the pure spin current in a state where the backflow of the pure spin current from the ferromagnetic metal layer (free layer) to the spin orbit torque wiring is reduced. Can do.
  • FIG. 1 is a perspective view schematically showing a spin current magnetization switching element according to an embodiment of the present invention. It is a schematic diagram for demonstrating a spin Hall effect. It is a perspective view for demonstrating nonlocal measurement using an in-plane spin valve structure. It is a perspective view for demonstrating the measurement of the electrical resistivity by a four terminal method. It is the perspective view which showed typically the magnetoresistive effect element which concerns on one Embodiment of this invention. It is a schematic diagram for demonstrating one Embodiment of a spin orbit torque wiring, (a) is sectional drawing, (b) is a top view. It is a schematic diagram for demonstrating other embodiment of a spin orbit torque wiring, (a) is sectional drawing, (b) is a top view.
  • FIG. 1 shows a schematic diagram of an example of a spin current magnetization switching element according to an embodiment of the present invention.
  • 1A is a plan view
  • FIG. 1B is a cross-sectional view taken along line XX, which is the center line in the width direction of the spin orbit torque wiring 2 of FIG. 1A.
  • the spin current magnetization reversal element 101 according to one embodiment of the present invention is different from the spin current magnetization reversal element 101 shown in FIG. 1 in that the surface of the second ferromagnetic metal layer 1 and the second ferromagnetic metal layer 1 whose magnetization direction is variable.
  • a spin orbit torque wiring 2 extending in a second direction (x direction) intersecting the first direction (z direction) which is a straight direction and joining to the first surface 1a of the second ferromagnetic metal layer 1;
  • the spin resistance of the spin orbit torque wiring 2 is at least larger than the spin resistance of the second ferromagnetic metal layer 1 at the junction portion that is bonded to the second ferromagnetic metal layer 1.
  • the spin-orbit torque wiring 2 and the second ferromagnetic metal layer 1 may be joined “directly” or “via another layer” such as a cap layer as described later.
  • the junction (connection or coupling) between the spin orbit torque wiring and the first ferromagnetic metal layer is possible. There is no limit to how.
  • a ferromagnetic material particularly a soft magnetic material
  • a metal selected from the group consisting of Cr, Mn, Co, Fe, and Ni, an alloy containing one or more of these metals, these metals and at least one element of B, C, and N are included. Alloys that can be used can be used. Specific examples include Co—Fe, Co—Fe—B, and Ni—Fe.
  • the thickness of the second ferromagnetic metal layer is preferably 2.5 nm or less.
  • perpendicular magnetic anisotropy can be added to the second ferromagnetic metal layer 1 at the interface between the second ferromagnetic metal layer 1 and the nonmagnetic layer 22 (see FIG. 5). Further, since the effect of perpendicular magnetic anisotropy is attenuated by increasing the thickness of the second ferromagnetic metal layer 1, it is preferable that the thickness of the second ferromagnetic metal layer 1 is small.
  • the spin orbit torque wiring extends in a direction intersecting with the perpendicular direction of the second ferromagnetic metal layer.
  • the spin orbit torque wiring is electrically connected to a power source that allows current to flow in a direction perpendicular to the direction perpendicular to the plane of the second ferromagnetic metal layer (an extending direction of the spin orbit torque wiring). Together with the power supply, it functions as a spin injection means for injecting a pure spin current into the second ferromagnetic metal layer.
  • the spin orbit torque wiring is made of a material that generates a pure spin current by a spin Hall effect when a current flows.
  • a material that generates a pure spin current in the spin orbit torque wiring is sufficient. Therefore, the material is not limited to a material composed of a single element, and may be a material composed of a portion made of a material that generates a pure spin current and a portion made of a material that does not generate a pure spin current.
  • the spin Hall effect is a phenomenon in which a pure spin current is induced in a direction orthogonal to the direction of the current based on the spin-orbit interaction when a current is passed through the material.
  • FIG. 2 is a schematic diagram for explaining the spin Hall effect. A mechanism by which a pure spin current is generated by the spin Hall effect will be described with reference to FIG.
  • the upward spin S + (S1) and the downward spin S ⁇ (S2) are bent in directions orthogonal to the current, respectively.
  • the normal Hall effect and the spin Hall effect are common in that the moving (moving) charge (electrons) can bend in the moving (moving) direction, but the normal Hall effect is that the charged particles moving in the magnetic field exert Lorentz force.
  • the direction of motion is bent, but the spin Hall effect is greatly different in that the direction of movement is bent only by the movement of electrons (only the current flows) even though there is no magnetic field.
  • the material of the spin orbit torque wiring does not include a material made only of a ferromagnetic material.
  • the electron flow of the upward spin S + is defined as J ⁇
  • the electron flow of the downward spin S ⁇ as J ⁇
  • the spin current as J S
  • J S J ⁇ ⁇ J ⁇
  • JS flows upward in the figure as a pure spin current.
  • J S is an electron flow having a polarizability of 100%.
  • a current is passed through the spin orbit torque wiring to generate a pure spin current, and the pure spin current is diffused to the second ferromagnetic metal layer in contact with the spin orbit torque wiring.
  • the spin orbit torque (SOT) effect caused by the pure spin current contributes to the magnetization reversal of the second ferromagnetic metal layer that is the free layer.
  • the magnetoresistive effect element of the present invention which will be described later, that is, a magnetoresistive effect element that performs magnetization reversal of a ferromagnetic metal layer by the SOT effect by pure spin current, assists the magnetization reversal using the conventional STT by the SOT effect by pure spin current.
  • a method for assisting magnetization reversal a method of applying an external magnetic field, a method of applying a voltage, a method of applying heat, and a method of using strain of a substance are known.
  • the method of applying an external magnetic field the method of applying a voltage, and the method of applying heat, it is necessary to newly provide a wiring, a heat source, etc. outside, and the element configuration becomes complicated.
  • the spin resistance of the spin orbit torque wiring layer at least the junction portion that is joined to the second ferromagnetic metal layer is larger than the spin resistance of the second ferromagnetic metal layer.
  • Non-Patent Document 2 discloses theoretical handling of spin resistance. Reflection (return) of spin current occurs at the interface of materials having different spin resistances. That is, only a part of the spin current is injected from a material having a low spin resistance to a material having a high spin resistance.
  • the spin resistance Rs is defined by the following formula (see Non-Patent Document 3).
  • is the spin diffusion length of the material
  • is the electrical resistivity of the material
  • A is the cross-sectional area of the material.
  • the magnitude of the spin resistance is determined by the value of ⁇ that is the spin resistivity in the formula (1). Therefore, in the magnetoresistive effect element of the present invention, if the spin orbit torque wiring has the same size, the use of a material having a high spin resistivity has a greater effect of reducing the backflow of the spin current.
  • the second ferromagnetic metal layer is made of, for example, iron (Fe) or an iron-based alloy
  • at least the second ferromagnetic metal layer of the spin orbit torque wiring layer is larger than the spin resistance of iron (Fe) or an iron-based alloy.
  • the spin current magnetization reversal element of the present invention from the viewpoint of reducing the effect of the reverse flow of the spin current from the second ferromagnetic metal layer to the spin orbit torque wiring, it is bonded to at least the second ferromagnetic metal layer of the spin orbit torque wiring layer. It is preferable that the spin resistivity of the material constituting the joining portion to be large is larger.
  • the material having a large effect of reducing the effect of the reverse flow of the spin current from the second ferromagnetic metal layer to the spin orbit torque wiring is determined not by the spin diffusion length but by the product of the electrical resistivity. It should be noted.
  • Table 1 shows the electrical resistivity and spin diffusion length of a plurality of nonmagnetic materials known as pure spin current generation materials and iron (Fe) as a ferromagnetic material, and the spin resistivity obtained by their product.
  • Fe is a typical ferromagnetic material used as a material of the ferromagnetic metal layer of the magnetoresistive effect element.
  • the electrical resistivity and spin diffusion length of the non-magnetic material are calculated by the method described later, and each parameter of Fe is a value based on Non-Patent Document 4.
  • the spin orbit torque wiring layer is preferable as a material constituting the bonding portion to be bonded to at least the second ferromagnetic metal layer.
  • the spin current decays exponentially according to exp ( ⁇ d / ⁇ ) depending on the ratio between the distance d and the spin diffusion length ⁇ .
  • the spin diffusion length ⁇ is a material-specific constant and is a distance at which the magnitude of the spin current becomes 1 / e.
  • the spin diffusion length of a material can be estimated by various methods. For example, a non-local method, a method using the spin pumping effect, a method using the Hanle effect, and the like are known.
  • the spin diffusion length of the nonmagnetic material shown in Table 1 was obtained by performing nonlocal spin valve measurement at room temperature. Details will be described below.
  • the magnitude of the spin output (nonlocal spin valve signal) by solving the diffusion equation in nonlocal measurement using an in-plane spin valve structure (when the interface between the ferromagnetic material and the nonmagnetic material is not a tunnel junction) ⁇ V is expressed as the following formula (2) (Non-patent Document 3).
  • Q R SF / RSN
  • ⁇ N and ⁇ F are the spin diffusion lengths of the non-magnetic material and the ferromagnetic material, respectively.
  • a N and A F are the cross-sectional areas of the regions where the spin currents of the non-magnetic material and the ferromagnetic material flow, respectively.
  • ⁇ N and ⁇ F are the electrical conductivities of the non-magnetic material and the ferromagnetic material, respectively.
  • ⁇ F is the spin polarization of the ferromagnet, d is the distance between two ferromagnetic fine wires.
  • the in-plane spin valve structure has a structure in which one nonmagnetic thin wire 14 is bridged to two ferromagnetic fine wires 12 and 13 that are spaced apart from each other.
  • a direct current is applied between one ferromagnetic fine wire 12 and the reference electrode 15, and a voltage between another ferromagnetic fine wire 13 and the reference electrode 16 is measured.
  • a magnetic field is applied to reverse the magnetizations of the two ferromagnetic thin wires. Since the shape (size) of the elements is different and the reversal magnetic field is different due to the effect of shape anisotropy, the direction of magnetization of the ferromagnetic fine wire can be made parallel and antiparallel depending on the magnetic field region.
  • the spin output resistance can be obtained from the difference in voltage between parallel and antiparallel.
  • the distance d between the ferromagnetic fine wires was measured with at least five types between 7 nm and 1 ⁇ m.
  • the measurement is performed at the tail part of the exponential function.
  • the number of measurement points that is, the distance between the ferromagnetic thin wires d is increased, the measurement accuracy increases.
  • the spin output ⁇ V was plotted on the vertical axis with the distance between the ferromagnetic fine wires as the horizontal axis, and the spin diffusion length of each nonmagnetic material was determined by fitting according to the equation (2).
  • the distance d between the ferromagnetic fine wires was increased from 25 nm to 5 nm to 5 points.
  • Nb increased the distance d between the ferromagnetic thin wires from 7 nm to 1 nm to 20 points.
  • Pd was 40 points by increasing the distance d between the ferromagnetic fine wires from 7 nm to 1 nm.
  • Pt was set to 100 points by increasing the distance d between the ferromagnetic fine wires from 7 nm to 1 nm. Note that a resolution of 7 nm or more cannot be obtained due to restrictions of the manufacturing apparatus.
  • the change in the distance d between the ferromagnetic fine wires described above is a design value. However, the error between the design value and the actual value was statistically complemented by measuring a sufficient number of measurement points.
  • a material having a short spin diffusion length such as Pt or Pd is usually obtained by a method using a spin pumping effect or a method using a Hanle effect.
  • the tunnel insulating film is not provided at the interface between the ferromagnetic material and the non-magnetic material.
  • the tunnel insulating film may be provided.
  • a tunnel insulating film made of MgO when used, a larger output ⁇ V can be obtained by a coherent tunnel.
  • the measurement by the general four probe method was performed. A direct current was applied between the reference electrodes, and the voltage drop between the ferromagnetic thin wires was measured.
  • the electrical resistivity of the non-magnetic thin wires was obtained from a plurality of results of the elements having different distances between the ferromagnetic thin wires. Specifically, the horizontal axis represents the distance between the ferromagnetic thin wires, the electrical resistance was plotted on the vertical axis, and the electrical resistivity was determined from the slope. For Mo and W in Table 1, the distance d between the ferromagnetic fine wires was 5 points.
  • the distance d between the ferromagnetic fine wires was 20 points.
  • Pd has a distance d between ferromagnetic fine wires of 40 points.
  • Pt set the distance d between ferromagnetic fine wires to 100 points.
  • the spin orbit torque wiring is configured on the assumption that the spin resistance of at least the junction portion of the spin orbit torque wiring layer that is bonded to the second ferromagnetic metal layer is larger than the spin resistance of the second ferromagnetic metal layer. Possible materials will be described.
  • the spin orbit torque wiring may include a nonmagnetic heavy metal.
  • the heavy metal is used to mean a metal having a specific gravity equal to or higher than yttrium.
  • the spin orbit torque wiring may be made of only nonmagnetic heavy metal.
  • the nonmagnetic heavy metal is preferably a nonmagnetic metal having an atomic number of 39 or more having d electrons or f electrons in the outermost shell. This is because such a nonmagnetic metal has a large spin-orbit interaction that causes a spin Hall effect.
  • the spin orbit torque wiring 2 may be made of only a nonmagnetic metal having an atomic number of 39 or more having d electrons or f electrons in the outermost shell.
  • the spin orbit torque wiring may include a magnetic metal.
  • the magnetic metal refers to a ferromagnetic metal or an antiferromagnetic metal. This is because if a non-magnetic metal contains a small amount of magnetic metal, the spin-orbit interaction is enhanced, and the spin current generation efficiency for the current flowing through the spin-orbit torque wiring can be increased.
  • the spin orbit torque wiring may be made of only an antiferromagnetic metal. Since the spin-orbit interaction is caused by the intrinsic internal field of the material of the spin-orbit torque wiring material, a pure spin current is generated even in a nonmagnetic material. When a small amount of magnetic metal is added to the spin orbit torque wiring material, the spin current generation efficiency is improved because the electron spin that flows through the magnetic metal itself is scattered.
  • the molar ratio of the magnetic metal added is sufficiently smaller than the molar ratio of the main component of the pure spin generation part in the spin orbit torque wiring.
  • the molar ratio of the magnetic metal added is preferably 3% or less.
  • the spin orbit torque wiring may include a topological insulator.
  • the spin orbit torque wiring may consist only of a topological insulator.
  • a topological insulator is a substance in which the inside of the substance is an insulator or a high-resistance substance, but a spin-polarized metal state is generated on the surface thereof. Substances have something like an internal magnetic field called spin-orbit interaction. Therefore, even without an external magnetic field, a new topological phase appears due to the effect of spin-orbit interaction. This is a topological insulator, and a pure spin current can be generated with high efficiency by strong spin-orbit interaction and breaking inversion symmetry at the edge.
  • topological insulator for example, SnTe, Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 , TlBiSe 2 , Bi 2 Te 3 , (Bi 1-x Sb x ) 2 Te 3 are preferable. These topological insulators can generate a spin current with high efficiency.
  • the spin current magnetization reversal element of the present invention a case where it is mainly applied to a magnetoresistive effect element will be described as an example.
  • the use is not limited to the magnetoresistive effect element, and can be applied to other uses.
  • Other applications include, for example, a spatial light modulator that spatially modulates incident light using a magneto-optic effect by arranging a spin current magnetization reversal element in each pixel, In order to avoid the effect of hysteresis due to the coercive force of the magnet in the sensor, the magnetic field applied to the easy axis of the magnet may be replaced with a spin current magnetization reversal element.
  • FIG. 5 is a perspective view schematically showing a magnetoresistive effect element according to an embodiment of the present invention, which is an application example of the spin current magnetization reversal element of the invention.
  • a magnetoresistive effect element 100 according to an embodiment of the present invention extends in a direction intersecting the magnetoresistive effect element unit 20 and the stacking direction of the magnetoresistive effect element unit 20, and the magnetoresistive effect element unit 20.
  • a spin orbit torque wiring 40 bonded to the (second ferromagnetic metal layer 23), and the spin resistance of at least a bonding portion of the spin orbit torque wiring layer bonded to the second ferromagnetic metal layer is the second resistance. It is larger than the spin resistance of the ferromagnetic metal layer.
  • a magnetoresistive effect element 100 includes a spin current magnetization switching element 101 of the present invention, a first ferromagnetic metal layer 21 having a fixed magnetization direction, and a nonmagnetic layer 22. It can also be said that.
  • FIG. 5 shows a wiring 30 for flowing a current in the stacking direction of the magnetoresistive effect element portion 20, a substrate 10 on which the wiring 30 is formed, and a cap layer 24.
  • the stacking direction of the magnetoresistive effect element portion 20 is the z direction
  • the direction perpendicular to the z direction and parallel to the spin orbit torque wiring 40 is the x direction
  • the direction orthogonal to the x direction and the z direction is the y direction.
  • the spin orbit torque wiring layer 40 is formed on the second ferromagnetic metal layer 23, but may be formed in the reverse order.
  • the magnetoresistive effect element unit 20 includes a first ferromagnetic metal layer 21 whose magnetization direction is fixed, a second ferromagnetic metal layer 23 whose magnetization direction is variable, a first ferromagnetic metal layer 21 and a second strong metal layer 21. And a nonmagnetic layer 22 sandwiched between magnetic metal layers 23.
  • the magnetization of the first ferromagnetic metal layer 21 is fixed in one direction, and the magnetization direction of the second ferromagnetic metal layer 23 changes relatively, thereby functioning as the magnetoresistive effect element portion 20.
  • the magnetoresistive element portion 20 is a tunneling magnetoresistance (TMR) element when the nonmagnetic layer 22 is made of an insulator, and a giant magnetoresistance (GMR) when the nonmagnetic layer 22 is made of metal. : Giant Magnetoresistance) element.
  • TMR tunneling magnetoresistance
  • GMR giant magnetoresistance
  • each layer may be composed of a plurality of layers, or may be provided with other layers such as an antiferromagnetic layer for fixing the magnetization direction of the first ferromagnetic metal layer.
  • the first ferromagnetic metal layer 21 is called a fixed layer or a reference layer
  • the second ferromagnetic metal layer 23 is called a free layer or a memory layer.
  • the first ferromagnetic metal layer 21 and the second ferromagnetic metal layer 23 may be an in-plane magnetization film whose magnetization direction is an in-plane direction parallel to the layer, or a perpendicular magnetization film whose magnetization direction is perpendicular to the layer. Either is acceptable.
  • the material of the first ferromagnetic metal layer 21 a known material can be used.
  • a metal selected from the group consisting of Cr, Mn, Co, Fe, and Ni and an alloy that includes one or more of these metals and exhibits ferromagnetism can be used.
  • An alloy containing these metals and at least one element of B, C, and N can also be used. Specific examples include Co—Fe and Co—Fe—B.
  • Heusler alloy such as Co 2 FeSi.
  • the Heusler alloy includes an intermetallic compound having a chemical composition of X 2 YZ, where X is a transition metal element or noble metal element of Co, Fe, Ni, or Cu group on the periodic table, and Y is Mn, V It is a transition metal of Cr, Ti or Ti, and can take the elemental species of X, and Z is a typical element of Group III to Group V. Examples thereof include Co 2 FeSi, Co 2 MnSi, and Co 2 Mn 1-a Fe a Al b Si 1-b .
  • an antiferromagnetic material such as IrMn or PtMn is used as a material in contact with the first ferromagnetic metal layer 21. Also good. Furthermore, in order to prevent the leakage magnetic field of the first ferromagnetic metal layer 21 from affecting the second ferromagnetic metal layer 23, a synthetic ferromagnetic coupling structure may be used.
  • the first ferromagnetic metal layer 21 has [Co (0.24 nm) / Pt (0.16 nm)] 6 / Ru (0.9 nm) / [Pt (0.16 nm) / Co (0.16 nm). )] 4 / Ta (0.2 nm) / FeB (1.0 nm).
  • a known material can be used for the nonmagnetic layer 22.
  • the nonmagnetic layer 22 is made of an insulator (when it is a tunnel barrier layer), as the material, Al 2 O 3 , SiO 2 , Mg, MgAl 2 O 4 O, or the like can be used.
  • materials in which a part of Al, Si, Mg is substituted with Zn, Be, or the like can also be used.
  • MgO and MgAl 2 O 4 are materials that can realize a coherent tunnel, spin can be injected efficiently.
  • the nonmagnetic layer 22 is made of metal, Cu, Au, Ag, or the like can be used as the material.
  • a cap layer 24 is preferably formed on the surface of the second ferromagnetic metal layer 23 opposite to the nonmagnetic layer 22 as shown in FIG.
  • the cap layer 24 can suppress element diffusion from the second ferromagnetic metal layer 23.
  • the cap layer 24 also contributes to the crystal orientation of each layer of the magnetoresistive element portion 20.
  • cap layer 24 It is preferable to use a material having high conductivity for the cap layer 24.
  • a material having high conductivity for example, Ru, Ta, Cu, Ag, Au, etc. can be used.
  • the crystal structure of the cap layer 24 is preferably set as appropriate from an fcc structure, an hcp structure, or a bcc structure in accordance with the crystal structure of the adjacent ferromagnetic metal layer.
  • any one selected from the group consisting of silver, copper, magnesium, and aluminum for the cap layer 24.
  • the cap layer 24 does not dissipate the spin propagating from the spin orbit torque wiring 40. It is known that silver, copper, magnesium, aluminum, and the like have a long spin diffusion length of 100 nm or more and are difficult to dissipate spin.
  • the thickness of the cap layer 24 is preferably equal to or less than the spin diffusion length of the substance constituting the cap layer 24. If the thickness of the cap layer 24 is equal to or less than the spin diffusion length, the spin propagating from the spin orbit torque wiring 40 can be sufficiently transmitted to the magnetoresistive effect element portion 20.
  • the substrate 10 is preferably excellent in flatness.
  • Si, AlTiC, or the like can be used as a material.
  • An underlayer (not shown) may be formed on the surface of the substrate 10 on the side of the magnetoresistive effect element portion 20.
  • crystallinity such as crystal orientation and crystal grain size of each layer including the second ferromagnetic metal layer 21 laminated on the substrate 10 can be controlled.
  • the underlayer preferably has an insulating property. This is to prevent current flowing in the wiring 30 and the like from being dissipated.
  • Various layers can be used for the underlayer.
  • the underlayer has a (001) -oriented NaCl structure and is at least one selected from the group consisting of Ti, Zr, Nb, V, Hf, Ta, Mo, W, B, Al, and Ce.
  • a nitride layer containing two elements can be used.
  • a (002) -oriented perovskite conductive oxide layer represented by a composition formula of XYO 3 can be used for the underlayer.
  • the site X includes at least one element selected from the group of Sr, Ce, Dy, La, K, Ca, Na, Pb, and Ba
  • the site Y includes Ti, V, Cr, Mn, Fe, and Co. , Ni, Ga, Nb, Mo, Ru, Ir, Ta, Ce, and Pb.
  • an oxide layer having a (001) -oriented NaCl structure and containing at least one element selected from the group consisting of Mg, Al, and Ce can be used for the base layer.
  • the base layer has a (001) -oriented tetragonal structure or cubic structure, and Al, Cr, Fe, Co, Rh, Pd, Ag, Ir, Pt, Au, Mo, W A layer containing at least one element selected from the group can be used.
  • the underlayer is not limited to a single layer, and a plurality of layers in the above example may be stacked.
  • the crystallinity of each layer of the magnetoresistive element portion 20 can be increased, and the magnetic characteristics can be improved.
  • the wiring 30 is electrically connected to the second ferromagnetic metal layer 21 of the magnetoresistive effect element portion 20, and in FIG. 5, the wiring 30, the spin orbit torque wiring 40, and a power source (not shown) constitute a closed circuit. Then, a current flows in the stacking direction of the magnetoresistive effect element portion 20.
  • the wiring 30 is not particularly limited as long as it is a highly conductive material.
  • aluminum, silver, copper, gold, or the like can be used.
  • FIGS. 6 to 9 are schematic views for explaining an embodiment of the spin orbit torque wiring, wherein (a) is a cross-sectional view and (b) is a plan view, respectively.
  • the conventional STT is used even in a configuration in which the magnetization reversal of the magnetoresistive effect element is performed only by SOT by a pure spin current (hereinafter also referred to as “SOT only” configuration)
  • SOT only a pure spin current
  • the current flowing through the spin orbit torque wiring is a normal current accompanied by the flow of charge. Therefore, Joule heat is generated when current is passed.
  • the embodiment of the spin orbit torque wiring shown in FIGS. 6 to 9 is an example of a configuration in which Joule heat due to a current flowing through the spin orbit torque wiring is reduced by a configuration other than the above-described materials.
  • the current that flows for the magnetization reversal of the magnetoresistive effect element portion of the present invention is the current that flows directly to the magnetoresistive effect element portion in order to use the STT effect (hereinafter referred to as “STT inversion”).
  • STT inversion the current that flows directly to the magnetoresistive effect element portion in order to use the STT effect
  • SOT reversal current a current that flows through the spin orbit torque wiring in order to use the SOT effect. Since both currents are normal currents accompanied by the flow of electric charge, Joule heat is generated when the current is passed.
  • the STT reversal current is reduced as compared with the configuration in which the magnetization reversal is performed only by the STT effect, but the energy of the SOT reversal current is reduced. Will consume.
  • the spin orbit torque wiring has a portion with a small electric resistivity rather than only a material that can generate a pure spin current. That is, from this viewpoint, it is preferable that the spin orbit torque wiring includes a portion made of a material that generates a pure spin current (spin current generation portion) and a conductive portion having a low electrical resistivity.
  • the conductive portion is preferably made of a material having a lower electrical resistivity than the spin current generating portion.
  • the spin current generation unit only needs to be made of a material that can generate a pure spin current, and may be configured of, for example, a plurality of types of material portions.
  • a material used as a normal wiring can be used for the conductive portion.
  • aluminum, silver, copper, gold, or the like can be used.
  • the conductive portion only needs to be made of a material having an electric resistivity lower than that of the spin current generating portion, and may be configured by a plurality of types of material portions, for example. Note that a pure spin current may be generated in the conductive portion.
  • the spin current generating portion and the conductive portion can be distinguished from each other as a portion made of materials described as spin current generating portions and conductive portions in this specification is a spin current generating portion or a conductive portion. Further, a portion other than the main portion that generates the pure spin current and having a lower electrical resistivity than the main portion can be distinguished from the spin current generating portion as a conductive portion.
  • the spin current generator may include a nonmagnetic heavy metal. In this case, it is only necessary to contain a finite amount of heavy metal that can generate a pure spin current. Further, in this case, the spin current generator has a concentration region in which a heavy metal capable of generating a pure spin current is sufficiently less than a main component of the spin current generator, or a heavy metal capable of generating a pure spin current is a main component, for example, 90% or more is preferable.
  • the heavy metal in this case is preferably a 100% nonmagnetic metal having an atomic number of 39 or more having a d-electron or f-electron in the outermost shell.
  • the concentration region in which the amount of heavy metal capable of generating a pure spin current is sufficiently smaller than the main component of the spin current generation unit is, for example, a concentration of heavy metal in a molar ratio of 10 in the spin current generation unit mainly composed of copper. % Or less.
  • the concentration of the heavy metal contained in the spin current generating part is preferably 50% or less, more preferably 10% or less in terms of molar ratio. .
  • concentration regions are regions where the effect of electron spin scattering can be effectively obtained.
  • the concentration of heavy metal is low, a light metal having an atomic number smaller than that of the heavy metal is the main component.
  • the heavy metal does not form an alloy with the light metal, but the atoms of the heavy metal are randomly distributed in the light metal. Since the spin-orbit interaction is weak in light metals, a pure spin current is hardly generated by the spin Hall effect. However, when electrons pass through the heavy metal in the light metal, spin is scattered at the interface between the light metal and the heavy metal, so that a pure spin current can be efficiently generated even in a region where the concentration of heavy metal is low. If the concentration of heavy metal exceeds 50%, the proportion of the spin Hall effect in the heavy metal increases, but the effect at the interface between the light metal and heavy metal decreases, so the overall effect decreases. Therefore, the concentration of heavy metal is preferable so that a sufficient interface effect can be expected.
  • the spin current generating portion in the spin orbit torque wiring can be made of an antiferromagnetic metal.
  • the antiferromagnetic metal can obtain the same effect as the case of 100% nonmagnetic metal having an atomic number of 39 or more whose heavy metal has d electrons or f electrons in the outermost shell.
  • the antiferromagnetic metal is preferably, for example, IrMn or PtMn, and more preferably IrMn that is stable against heat.
  • the spin current generation portion in the spin orbit torque wiring can be formed of a topological insulator.
  • topological insulator for example, SnTe, Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 , TlBiSe 2 , Bi 2 Te 3 , (Bi 1-x Sb x ) 2 Te 3 are preferable. These topological insulators can generate a spin current with high efficiency.
  • the pure spin current generated by the spin orbit torque wiring it is necessary that at least a part of the spin current generation portion is joined to the second ferromagnetic metal layer. is there.
  • the cap layer it is necessary that at least a part of the spin current generator is bonded to the cap layer.
  • the spin orbit torque wiring layer always has a junction portion that is joined to the second ferromagnetic metal layer, but the junction portion that is joined to the second ferromagnetic metal layer is at least a spin current generating portion. It may be a part. All of the embodiments of the spin orbit torque wiring shown in FIGS. 6 to 9 have a configuration in which at least a part of the spin current generator is joined to the second ferromagnetic metal layer.
  • the spin orbit torque wiring 40 includes a spin current generation part 41 on the entire joint surface 40 ′ with the second ferromagnetic metal layer 23, and the spin current generation part 41 serves as the conductive parts 42 ⁇ / b> A and 42 ⁇ / b> B. It is a sandwiched configuration.
  • the joint portion 40B of the spin orbit torque wiring 40 that is joined to the second ferromagnetic metal layer 23 is a portion indicated by a two-dot chain line in FIG. 6A. It refers to a portion (including a portion in the thickness direction) that overlaps the second ferromagnetic metal layer in plan view. That is, in FIG. 6B, a portion obtained by projecting the second ferromagnetic metal layer 23 indicated by a two-dot chain line on a plan view is changed from one surface 40a (see FIG. 6A) to the other surface 40b (FIG. 6B). The portion surrounded by the shift in the thickness direction up to 6 (a)) is the joint portion of the spin orbit torque wiring.
  • All the joint portions 40B of the spin orbit torque wiring 40 shown in FIG. 6 that are joined to the second ferromagnetic metal layer 23 are formed of the spin current generating portion 41. That is, the junction 40B is a part of the spin current generator 41.
  • the spin orbit torque wiring and the second ferromagnetic metal layer may be joined “directly” or “via another layer” such as a cap layer as described later.
  • the method of joining (connecting or coupling) the spin orbit torque wiring and the second ferromagnetic metal layer is not limited. .
  • the current flowing through the spin orbit torque wiring is divided into the ratio of the inverse ratio of the resistance of the spin current generating unit and the conductive unit. Will flow through each part. From the standpoint of pure spin current generation efficiency with respect to the SOT reversal current, in order for all the current flowing through the spin orbit torque wiring to flow through the spin current generator, the spin current generator and the conductive part are electrically arranged in parallel. There is no part to be used, and all are arranged electrically in series.
  • the spin orbit torque wiring 40 shown in FIG. 6 is superposed so that the spin current generation portion 41 includes the junction portion 23 ′ of the second ferromagnetic metal layer 23 in plan view from the stacking direction of the magnetoresistive effect element portion 20. And the thickness direction consists only of the spin current generator 41, and the conductive parts 42A and 42B are arranged so as to sandwich the spin current generator 41 in the direction of current flow.
  • the spin current generator is superimposed so as to overlap the junction of the second ferromagnetic metal layer in plan view from the stacking direction of the magnetoresistive effect element, There is the same configuration as the spin orbit torque wiring shown in FIG.
  • the spin current generating portion 41 is superimposed on a part of the junction 23 ′ of the second ferromagnetic metal layer 23 in a plan view from the stacking direction of the magnetoresistive effect element portion 20.
  • the thickness direction consists only of the spin current generator 41, and the conductive parts 42A and 42B are arranged so as to sandwich the spin current generator 41 in the direction of current flow.
  • the joint portion 40BB of the spin orbit torque wiring 40 that joins the second ferromagnetic metal layer 23 is a portion indicated by a two-dot chain line in FIG. 7A. It refers to a portion (including a portion in the thickness direction) that overlaps the second ferromagnetic metal layer in plan view.
  • the joint portion 40BB of the spin orbit torque wiring 40 shown in FIG. 7 that joins the second ferromagnetic metal layer 23 is composed of all of the spin current generation portion 41 and a portion of the conductive portions 42A and 42B.
  • the spin orbit torque wiring 40 shown in FIG. 8 is overlapped so that the spin current generating portion 41 includes the junction portion 23 ′ of the second ferromagnetic metal layer 23 in plan view from the stacking direction of the magnetoresistive effect element portion 20.
  • the spin current generating portion 41 and the conductive portion 42C are sequentially stacked from the second ferromagnetic metal layer side in the thickness direction, and the conductive portions 42A and 42B are stacked in the current flowing direction in the direction of the current flow. It is the structure arrange
  • the spin current generator is superimposed so as to overlap the junction of the second ferromagnetic metal layer in plan view from the stacking direction of the magnetoresistive effect element, There is the same configuration as the spin orbit torque wiring shown in FIG.
  • the joint portion 40BBB of the spin orbit torque wiring 40 that is joined to the second ferromagnetic metal layer 23 is a portion indicated by a two-dot chain line in FIG. 8A. It refers to a portion (including a portion in the thickness direction) that overlaps the second ferromagnetic metal layer in plan view. All the joint portions 40BBB of the spin orbit torque wiring 40 shown in FIG. 8 that are joined to the second ferromagnetic metal layer 23 are formed of the spin current generating portion 41. That is, the junction 40BBB is a part of the spin current generator 41.
  • the spin current generator 41 is formed on the entire surface of the second ferromagnetic metal layer, and the first spin current generator 41A is laminated on the first spin current generator.
  • the second ferromagnetic metal layer 23 is superposed so as to include the junction portion 23 ′, and the thickness direction thereof includes only the spin current generating portion.
  • the configuration includes a two-spin current generation unit 41B and conductive units 42A and 42B arranged so as to sandwich the second spin current generation unit 41B in the direction of current flow.
  • the second spin current generator is superposed so as to overlap the junction of the second ferromagnetic metal layer in plan view from the stacking direction of the magnetoresistive effect element.
  • the configuration is the same as that of the spin orbit torque wiring shown in FIG.
  • the nonmagnetic metal having a large atomic number constituting the spin current generating unit 41 and the metal configuring the conductive unit 42 are in close contact with each other. High nature.
  • junction part 40BBBB joined to the 2nd ferromagnetic metal layer 23 of the spin orbit torque wiring 40 is a part shown with the dashed-two dotted line of Fig.9 (a), and it is from a lamination direction among spin orbit torque wiring. It refers to a portion (including a portion in the thickness direction) that overlaps the second ferromagnetic metal layer in plan view. All the joint portions 40BBBB that join the second ferromagnetic metal layer 23 of the spin orbit torque wiring 40 shown in FIG. That is, the junction portion 40BBBB is a part of the spin current generation unit 41.
  • the magnetoresistive effect element of the present invention can be manufactured using a known method. A method for manufacturing the magnetoresistive element shown in FIGS. 6 to 9 will be described below.
  • the magnetoresistive effect element portion 20 can be formed using, for example, a magnetron sputtering apparatus.
  • the tunnel barrier layer is initially formed of aluminum having a thickness of about 0.4 to 2.0 nm on the first ferromagnetic metal layer, and a divalent positive electrode of a plurality of nonmagnetic elements. It is formed by sputtering a metal thin film that becomes ions, performing natural oxidation by plasma oxidation or oxygen introduction, and subsequent heat treatment.
  • a thin film forming method in addition to a magnetron sputtering method, a thin film forming method such as a vapor deposition method, a laser ablation method, or an MBE method can be used.
  • a thin film forming method such as a vapor deposition method, a laser ablation method, or an MBE method.
  • the periphery of the processed magnetoresistive effect element portion 20 is filled with a resist or the like to form a surface including the upper surface of the magnetoresistive effect element portion 20. .
  • the material of the spin current generator 41 is formed on the planarized upper surface of the magnetoresistive element 20. For film formation, sputtering or the like can be used.
  • a resist or a protective film is provided on a portion where the spin current generating portion 41 is to be manufactured, and unnecessary portions are removed by using an ion milling method or a reactive ion etching (RIE) method.
  • RIE reactive ion etching
  • the material constituting the conductive portion 42 is formed by sputtering or the like, and the resist or the like is peeled off, whereby the spin orbit torque wiring 40 is manufactured.
  • the formation of the resist or the protective film and the film formation of the spin current generator 41 may be divided into a plurality of times.
  • the spin orbit torque wiring layer may have a constricted portion at least at a part joined to the second ferromagnetic metal layer.
  • the narrowed portion is a portion whose cross-sectional area cut by a cross section orthogonal to the extending direction (longitudinal direction) of the spin orbit torque wiring layer is smaller than the cross-sectional area of the portion other than the narrowed portion.
  • the current flowing through the spin-orbit torque wiring layer has a high current density at the constricted portion, and a high-density pure spin current flows into the second ferromagnetic metal layer.
  • FIG. 10 is a schematic cross-sectional view of a magnetoresistive effect element according to an embodiment of the present invention cut along a yz plane. Based on FIG. 10, the operation when the magnetoresistive effect element 100 has the “combination of STT and SOT” configuration will be described.
  • the magnetoresistive effect element 100 has two types of current.
  • One is a current I 1 (STT reversal current) that flows in the stacking direction of the magnetoresistive effect element 20 and flows in the spin orbit torque wiring 40 and the wiring 30.
  • the current I 1 flows in the order of the spin orbit torque wiring 40, the magnetoresistive effect element 20, and the wiring 30. In this case, electrons flow in the order of the wiring 30, the magnetoresistive effect element 20, and the spin orbit torque wiring 40.
  • the other is a current I 2 (SOT inversion current) flowing in the extending direction of the spin orbit torque wiring 40.
  • the current I 1 and the current I 2 cross each other (orthogonal), and a portion where the magnetoresistive effect element 20 and the spin orbit torque wiring 40 are joined (reference numeral 24 ′ is the magnetoresistive effect element 20 (cap layer 24)).
  • the current flowing in the magnetoresistive effect element 20 and the current flowing in the spin orbit torque wiring 40 are merged or distributed.
  • the current I 2 corresponds to the current I shown in FIG.
  • the upward spin S + and the downward spin S ⁇ are bent toward the end of the spin orbit torque wiring 40 to generate a pure spin current J s .
  • the pure spin current J s is induced in a direction perpendicular to the direction in which the current I 2 flows. That is, a pure spin current Js is generated in the z-axis direction and the x-axis direction in the figure. In Figure 10, it is shown only the pure spin current J s contributing z-axis direction to the direction of magnetization of the first ferromagnetic metal layer 23.
  • the magnetization M 23 of the first ferromagnetic metal layer 23 is affected. That is, in FIG. 10, the torque that attempts to cause the magnetization reversal of the magnetization M 23 of the first ferromagnetic metal layer 23 directed in the + x direction by the spin directed to the ⁇ x direction flowing into the first ferromagnetic metal layer 23. (SOT) is added.
  • the STT effect caused by the pure spin current J s generated by the current flowing through the second current path I 2 is added to the STT effect generated by the current flowing through the first current path I 1 , and the first ferromagnetic metal layer 23. the magnetization M 23 to the magnetization reversal of.
  • a voltage higher than a predetermined voltage needs to be applied to the magnetoresistive effect element 20.
  • a general drive voltage of a TMR element is relatively small, such as several volts or less, but the nonmagnetic layer 22 is a very thin film of about several nm, and dielectric breakdown may occur.
  • a weak portion of the nonmagnetic layer is destroyed.
  • the magnetoresistive effect element in the case of the “combination of STT and SOT” configuration of the present invention utilizes the SOT effect in addition to the STT effect.
  • the voltage applied to the magnetoresistive effect element can be reduced, and the current density of the current flowing through the spin orbit torque wiring can also be reduced.
  • the life of the element can be extended.
  • by reducing the current density of the current flowing through the spin orbit torque wiring it is possible to avoid a significant decrease in energy efficiency.
  • the current density of the current flowing through the spin orbit torque wiring is preferably less than 1 ⁇ 10 7 A / cm 2 . If the current density of the current flowing through the spin orbit torque wiring is too large, heat is generated by the current flowing through the spin orbit torque wiring. When heat is applied to the first ferromagnetic metal layer, the magnetization stability of the first ferromagnetic metal layer is lost, and unexpected magnetization reversal may occur. When such unexpected magnetization reversal occurs, there arises a problem that recorded information is rewritten. That is, in order to avoid unexpected magnetization reversal, it is preferable that the current density of the current flowing through the spin orbit torque wiring is not excessively increased. If the current density of the current flowing through the spin orbit torque wiring is less than 1 ⁇ 10 7 A / cm 2 , it is possible to avoid at least magnetization reversal caused by generated heat.
  • FIG. 11 shows an example of a magnetoresistive effect element having another “STT and SOT combination” configuration according to the present invention.
  • the spin orbit torque wiring 50 has a first strong strength in addition to the upper surface joint portion 51 (corresponding to the spin orbit torque wiring 40 described above) provided in the stacking direction of the magnetoresistive effect element 20.
  • Side wall joints 52 that join the side walls of the magnetic metal layer 23 are provided.
  • FIG. 12 shows a magnetoresistive element according to another embodiment of the present invention.
  • the magnetoresistive effect element 300 shown in FIG. 12 has a spin orbit torque wiring 40 on the substrate 10 side.
  • the stacking order of the first ferromagnetic metal layer 23 that is a fixed layer and the second ferromagnetic metal layer 24 that is a free layer is opposite to that of the magnetoresistive element 100 shown in FIG.
  • the substrate 10 the spin orbit torque wiring 40, the first ferromagnetic metal layer 23, the nonmagnetic layer 22, the second ferromagnetic metal layer 21, the cap layer 24, and the wiring 30 in this order.
  • the first ferromagnetic metal layer 23 is laminated before the third ferromagnetic metal layer 21, the first ferromagnetic metal layer 23 is less likely to be affected by lattice distortion or the like than the magnetoresistive effect element 100.
  • the perpendicular magnetic anisotropy of the first ferromagnetic metal layer 23 is increased.
  • the MR ratio of the magnetoresistive element can be increased.
  • FIG. 13 shows a first power supply 110 for supplying current in the stacking direction of the magnetoresistive effect element 20 and a second power supply 120 for supplying current to the spin orbit torque wiring 40 in the magnetoresistive effect element 100 shown in FIG. It is a thing.
  • the second ferromagnetic metal layer 23 to be disposed later on the side far from the substrate 10 is used as a magnetization free layer, and the substrate 10 is first laminated.
  • a so-called bottom pin structure in which the second ferromagnetic metal layer 21 arranged on the side close to is a magnetization fixed layer (pinned layer)
  • the structure of the magnetoresistive effect element 100 is not particularly limited.
  • a so-called top pin structure may be used.
  • the first power supply 110 is connected to the wiring 30 and the spin orbit torque wiring 40.
  • the first power source 110 can control the current flowing in the stacking direction of the magnetoresistive effect element 100.
  • the second power source 120 is connected to both ends of the spin orbit torque wiring 40.
  • the second power supply 120 can control the current flowing in the spin orbit torque wiring 40 that is a current flowing in a direction orthogonal to the stacking direction of the magnetoresistive effect element 20.
  • the current flowing in the stacking direction of the magnetoresistive effect element 20 induces STT.
  • the current flowing through the spin orbit torque wiring 40 induces SOT. Both STT and SOT contribute to the magnetization reversal of the first ferromagnetic metal layer 23.
  • the contribution ratio of SOT and STT contributing to the magnetization reversal is free. Can be controlled.
  • the amount of current flowing from the first power source 110 can be increased, and the amount of current flowing from the second power source 120 can be reduced.
  • the amount of current flowing from the first power source 110 can be reduced, the amount of current flowing from the second power source 120 can be increased, and the contribution rate of SOT can be increased.
  • a well-known thing can be used for the 1st power supply 110 and the 2nd power supply 120.
  • the contribution ratio of STT and SOT can be freely set by the amount of current supplied from the first power source and the second power source. Can be controlled. Therefore, the contribution ratio of STT and SOT can be freely controlled according to the performance required for the device, and it can function as a more versatile magnetoresistive element.
  • Magnetic memory The magnetic memory (MRAM) of the present invention includes a plurality of magnetoresistive elements of the present invention.
  • the magnetization reversal method is such that the current density flowing through the spin orbit torque wiring is less than 1 ⁇ 10 7 A / cm 2 in the magnetoresistive effect element of the present invention. If the current density of the current flowing through the spin orbit torque wiring is too large, heat is generated by the current flowing through the spin orbit torque wiring. When heat is applied to the first ferromagnetic metal layer, the magnetization stability of the first ferromagnetic metal layer is lost, and unexpected magnetization reversal may occur. When such unexpected magnetization reversal occurs, there arises a problem that recorded information is rewritten.
  • the current density of the current flowing through the spin orbit torque wiring is not excessively increased. If the current density of the current flowing through the spin orbit torque wiring is less than 1 ⁇ 10 7 A / cm 2 , it is possible to avoid at least magnetization reversal caused by generated heat.
  • the magnetoresistive effect element in the case of the “STT and SOT combined use” configuration, even if a current is applied to the power source of the spin-orbit torque wiring after the current is applied to the power source of the magnetoresistive effect element, Good.
  • the SOT magnetization reversal process and the STT magnetization reversal process may be performed at the same time, or may be performed after the SOT magnetization reversal process is performed in advance and the STT magnetization reversal process. That is, in the magnetoresistive effect element 100 shown in FIG. 13, the current may be supplied simultaneously from the first power supply 110 and the second power supply 120, or after the current is supplied from the second current 120, the first power supply 110 is added.
  • the current is supplied to the power source of the magnetoresistive effect element. It is preferable to apply. That is, it is preferable to supply current from the first power source 110 after supplying current from the second current 120.
  • Magnetic resistance effect element 101 ... spin current magnetization reversal element, I ... current, S + ... up spin, S - ... down spin, M 21, M 23 ... magnetization, I 1 ... first current path, I 2 ... second current path, 110 ... first 1 power source, 120 ... second power source

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

このスピン流磁化反転素子では、磁化の向きが可変な第2強磁性金属層1と、前記第2強磁性金属層1の面直方向に対して交差する方向に延在し、前記第2強磁性金属層1に接合するスピン軌道トルク配線2と、を備え、前記スピン軌道トルク配線層2の、前記第2強磁性金属層1に接合する接合部分のスピン抵抗は、前記第2強磁性金属層1のスピン抵抗よりも大きい。

Description

スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ
本発明は、スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリに関する。
 本願は、2015年11月27日に、日本に出願された特願2015-232334号、2016年3月16日に、日本に出願された特願2016-53072号、2016年3月18日に、日本に出願された特願2016-56058号、2016年10月27日に、日本に出願された特願2016-210531号、2016年10月27日に、日本に出願された特願2016-210533号に基づき優先権を主張し、その内容をここに援用する。
 強磁性層と非磁性層の多層膜からなる巨大磁気抵抗(GMR)素子及び非磁性層として絶縁層(トンネルバリア層、バリア層)を用いたトンネル磁気抵抗(TMR)素子が知られている。一般に、TMR素子はGMR素子と比較して素子抵抗が高いものの、TMR素子の磁気抵抗(MR)比はGMR素子のMR比より大きい。そのため、磁気センサ、高周波部品、磁気ヘッド及び不揮発性ランダムアクセスメモリ(MRAM)用の素子として、TMR素子に注目が集まっている。
 MRAMの書き込み方式としては、電流が作る磁場を利用して書き込み(磁化反転)を行う方式や磁気抵抗素子の積層方向に電流を流して生ずるスピントランスファートルク(STT)を利用して書き込み(磁化反転)を行う方式が知られている。
磁場を利用する方式では、素子サイズが小さくなると、細い配線に流すことができる電流では書き込みができなくなるという問題がある。
 これに対して、スピントランスファートルク(STT)を利用する方式では、一方の強磁性層(固定層、参照層)が電流をスピン分極させ、その電流のスピンがもう一方の強磁性層(自由層、記録層)の磁化に移行され、その際に生じるトルク(STT)によって書き込み(磁化反転)が行われるが、素子サイズが小さくなるほど書き込みに必要な電流が小さくて済むという利点がある。
I.M.Miron,K.Garello,G.Gaudin,P.-J.Zermatten,M.V.Costache,S.Auffret,S.Bandiera,B.Rodmacq,A.Schuhl,and P.Gambardella,Nature,476,189(2011). T.Kimura,J.Hamrle,Y.Otani,Phys. Rev. B72(1)、014461(2005). S.Takahashi and S.Maekawa,Phys. Rev. B67(5)、052409(2003). J.Bass and W.P.Pratt Jr.,J. Phys. Cond. Matt. 19, 183201(2007).
 STTを用いたTMR素子の磁化反転はエネルギーの効率の視点から考えると効率的ではあるが、磁化反転をさせるための反転電流密度が高い。
 TMR素子の長寿命の観点からはこの反転電流密度は低いことが望ましい。この点は、GMR素子についても同様である。
従って、TMR素子及びGMR素子のいずれの磁気抵抗効果素子においても、この磁気抵抗効果素子に流れる電流密度を低減することが望まれる。
 近年、スピン軌道相互作用して生成された純スピン流を利用した磁化反転も応用上可能であると提唱されている(例えば、非特許文献1)。スピン軌道相互作用した純スピン流は、スピン軌道トルク(SOT)を誘起し、SOTの大きさにより磁化反転を起こすことができる。純スピン流は上向きスピンの電子と下向きスピン電子が同数で互いに逆向きに流れることで生み出されるものであり、電荷の流れは相殺されているため電流としてはゼロである。この純スピン流だけで磁化反転させることができれば、磁気抵抗効果素子を流れる電流はゼロなので磁気抵抗効果素子の長寿命化を図ることができる。あるいは、磁化反転にSTTも利用し、かつ、純スピン流によるSOTを利用することができれば、純スピン流によるSOTを利用する分、STTに使う電流を低減することができ、磁気抵抗効果素子の長寿命化を図ることができると考えられる。STT及びSOTを両方利用する場合も、SOTを利用する割合が高いほど、磁気抵抗効果素子の長寿命化を図ることができると考えられる。
 SOTを利用する研究は緒に就いたばかりであり、具体的な応用に際しては様々な課題があると考えられるが、まだどのような課題があるか、十分には認識されていないのが現状である。
 SOTを利用する磁化反転は、磁化の向きが可変な強磁性金属層(自由層)に、純スピン流を発生する材料からなる部材(例えば、層あるいは膜。以下、「スピン流発生部材」ということがある)を接合した構造において、この部材に電流を流すことで純スピン流を発生させ、その純スピン流が強磁性金属層との接合部分から強磁性金属層中に拡散(注入)されることにより、生ずる。この際に、スピン流発生部材と強磁性金属層のスピン抵抗の大きさの違い(ミスマッチ)により、注入したスピン流が強磁性金属層からスピン流発生部材に戻ってくる影響が懸念される。このように逆流したスピン流は、強磁性金属層中の磁化の反転に寄与しない。従って、このように逆流するスピン流の量を低減する構成を検討して、本発明に想到した。
 本発明は上記問題に鑑みてなされたものであり、強磁性金属層(自由層)からスピン軌道トルク配線への純スピン流の逆流が低減された状態で純スピン流による磁化反転を利用する磁気抵抗効果素子及び磁気メモリを提供することを目的とする。
 本発明は、上記課題を解決するため、以下の手段を提供する。
(1)本発明の一態様に係るスピン流磁化反転素子は、磁化方向が可変な第2強磁性金属層と、前記第2強磁性金属層の面直方向に対して交差する方向に延在し、前記第2強磁性金属層に接合するスピン軌道トルク配線と、を備え、前記スピン軌道トルク配線層の、前記第2強磁性金属層に接合する接合部分のスピン抵抗は、前記第2強磁性金属層のスピン抵抗よりも大きい。
(2)上記(1)に記載のスピン流磁化反転素子において、前記スピン軌道トルク配線層は、スピン流を発生する材料からなるスピン流発生部と導電部とを有し、スピン流発生部の一部は前記接合部分を構成していてもよい。
(3)上記(1)または(2)のいずれかに記載のスピン流磁化反転素子において、前記導電部の電気抵抗率は、前記スピン流発生部の電気抵抗率以下であってもよい。
(4)上記(1)~(3)のいずれか一つに記載のスピン流磁化反転素子において、前前記スピン流発生部は、タングステン、モリブデン、ニオブ、及び、これらの金属を少なくとも1つ以上含む合金からなる群から選択された材料からなってもよい。
(5)上記(1)~(4)のいずれか一つに記載のスピン流磁化反転素子において、前記スピン軌道トルク配線は、前記第2強磁性金属層の側壁の一部に接する側壁接合部を有してもよい。
(6)本発明の一態様に係る磁気抵抗効果素子は、上記(1)~(5)のいずれか一つに記載のスピン流磁化反転素子と、磁化の向きが固定されている第2強磁性金属層と、前記第1強磁性金属層と前記第2強磁性金属層に挟持された非磁性層とを備える。
(7)上記(1)~(6)のいずれか一つに記載の磁気抵抗効果素子において、前記第2強磁性金属層が前記第一強磁性金属層よりも積層方向において下方に位置してもよい。
(8)本発明の一態様に係る磁気メモリは、上記(1)~(6)のいずれか一つに記載の磁気抵抗効果素子を複数備える。
磁化反転方法は、上記(6)又は(7)のいずれかに記載の磁気抵抗効果素子における磁化反転方法であって、前記スピン軌道トルク配線に流れる電流密度を1×10A/cm未満とすることができる。
本発明のスピン流磁化反転素子によれば、強磁性金属層(自由層)からスピン軌道トルク配線への純スピン流の逆流が低減された状態で純スピン流を利用して磁化反転を行うことができる。
本発明の一実施形態に係るスピン流磁化反転素子を模式的に示した斜視図である。 スピンホール効果について説明するための模式図である。 面内スピンバルブ構造を用いた非局所的測定を説明するための斜視図である。 四端子法による電気抵抗率の測定を説明するための斜視図である。 本発明の一実施形態に係る磁気抵抗効果素子を模式的に示した斜視図である。 スピン軌道トルク配線の一実施形態を説明するための模式図であり、(a)は断面図であり、(b)は平面図である。 スピン軌道トルク配線の他の実施形態を説明するための模式図であり、(a)は断面図であり、(b)は平面図である。 スピン軌道トルク配線の他の実施形態を説明するための模式図であり、(a)は断面図であり、(b)は平面図である。 スピン軌道トルク配線の他の実施形態を説明するための模式図であり、(a)は断面図であり、(b)は平面図である。 本発明の一実施形態に係る磁気抵抗効果素子をyz平面で切断した断面模式図である。 本発明の他の実施形態に係る磁気抵抗効果素子をyz平面で切断した断面模式図である。 本発明の他の実施形態に係る磁気抵抗効果素子をyz平面で切断した断面模式図である。 本発明の一実施形態に係る磁気抵抗効果素子を模式的に示した斜視図である。
 以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。本発明の素子において、本発明の効果を奏する範囲で他の層を備えてもよい。
(スピン流磁化反転素子)
 図1に、本発明の一実施形態に係るスピン流磁化反転素子の一例の模式図を示す。図1(a)は平面図であり、図1(b)は図1(a)のスピン軌道トルク配線2の幅方向の中心線であるX-X線で切った断面図である。
 本発明の一態様に係るスピン流磁化反転素子は、図1に示すスピン流磁化反転素子101は、磁化の向きが可変な第2強磁性金属層1と、第2強磁性金属層1の面直方向である第1方向(z方向)に対して交差する第2方向(x方向)に延在し、第2強磁性金属層1の第1面1aに接合するスピン軌道トルク配線2と、を備え、スピン軌道トルク配線2の、少なくとも第2強磁性金属層1に接合する接合部分のスピン抵抗は、第2強磁性金属層1のスピン抵抗よりも大きい。
 ここで、スピン軌道トルク配線2と第2強磁性金属層1との接合は、「直接」接合してもよいし、後述するようにキャップ層のような「他の層を介して」接合してもよく、スピン軌道トルク配線2で発生した純スピン流が第2強磁性金属層1に流れ込む構成であれば、スピン軌道トルク配線と第1強磁性金属層との接合(接続あるいは結合)の仕方に限定はない。
 第2強磁性金属層1の材料として、強磁性材料、特に軟磁性材料を適用できる。例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、これらの金属を1種以上含む合金、これらの金属とB、C、及びNの少なくとも1種以上の元素とが含まれる合金等を用いることができる。具体的には、Co-Fe、Co-Fe-B、Ni-Feが挙げられる。
第2強磁性金属層1の磁化の向きを積層面に対して垂直にする場合には、第2強磁性金属層の厚みを2.5nm以下とすることが好ましい。後述する磁気抵抗効果素子において第2強磁性金属層1と非磁性層層22(図5参照)の界面で、第2強磁性金属層1に垂直磁気異方性を付加することができる。また、垂直磁気異方性は第2強磁性金属層1の膜厚を厚くすることによって効果が減衰するため、第2強磁性金属層1の膜厚は薄い方が好ましい。
<スピン軌道トルク配線>
スピン軌道トルク配線は、第2強磁性金属層の面直方向に対して交差する方向に延在する。スピン軌道トルク配線は、該スピン軌道トルク配線に第2強磁性金属層の面直方向に対して直交する方向(スピン軌道トルク配線の延在方向)に電流を流す電源に電気的に接続され、その電源と共に、第2強磁性金属層に純スピン流を注入するスピン注入手段として機能する。
スピン軌道トルク配線は、電流が流れるとスピンホール効果によって純スピン流が生成される材料からなる。かかる材料としては、スピン軌道トルク配線中に純スピン流が生成される構成のものであれば足りる。従って、単体の元素からなる材料に限らないし、純スピン流が生成される材料で構成される部分と純スピン流が生成されない材料で構成される部分とからなるもの等であってもよい。
スピンホール効果とは、材料に電流を流した場合にスピン軌道相互作用に基づき、電流の向きに直交する方向に純スピン流が誘起される現象である。
図2は、スピンホール効果について説明するための模式図である。図2に基づいてスピンホール効果により純スピン流が生み出されるメカニズムを説明する。
図2に示すように、スピン軌道トルク配線2の延在方向に電流Iを流すと、上向きスピンS(S1)と下向きスピンS(S2)はそれぞれ電流と直交する方向に曲げられる。通常のホール効果とスピンホール効果とは運動(移動)する電荷(電子)が運動(移動)方向を曲げられる点で共通するが、通常のホール効果は磁場中で運動する荷電粒子がローレンツ力を受けて運動方向を曲げられるのに対して、スピンホール効果では磁場が存在しないのに電子が移動するだけ(電流が流れるだけ)で移動方向が曲げられる点で大きく異なる。
非磁性体(強磁性体ではない材料)では上向きスピンSの電子数と下向きスピンSの電子数とが等しいので、図中で上方向に向かう上向きスピンSの電子数と下方向に向かう下向きスピンSの電子数が等しい。そのため、電荷の正味の流れとしての電流はゼロである。この電流を伴わないスピン流は特に純スピン流と呼ばれる。
これに対して、強磁性体中に電流を流した場合にも上向きスピン電子と下向きスピン電子が互いに反対方向に曲げられる点は同じであるが、強磁性体中では上向きスピン電子と下向きスピン電子のいずれかが多い状態であるため、結果として電荷の正味の流れが生じてしまう(電圧が発生してしまう)点で異なる。従って、スピン軌道トルク配線の材料としては、強磁性体だけからなる材料は含まれない。
ここで、上向きスピンSの電子の流れをJ、下向きスピンSの電子の流れをJ、スピン流をJと表すと、J=J-Jで定義される。図2においては、純スピン流としてJが図中の上方向に流れる。ここで、Jは分極率が100%の電子の流れである。
図2において、スピン軌道トルク配線2の上面に強磁性体を接触させると、純スピン流は強磁性体中に拡散して流れ込むことになる。
本発明では、このようにスピン軌道トルク配線に電流を流して純スピン流を生成し、その純スピン流がスピン軌道トルク配線に接する第2強磁性金属層に拡散する構成とすることで、その純スピン流によるスピン軌道トルク(SOT)効果で自由層である第2強磁性金属層の磁化反転に寄与するものである。
後述する本発明の磁気抵抗効果素子すなわち、純スピン流によるSOT効果で強磁性金属層の磁化反転を行う磁気抵抗効果素子は、従来のSTTを利用する磁化反転を純スピン流によるSOT効果でアシストする素子として、あるいは純スピン流によるSOT効果による磁化反転が主力で従来のSTTを利用する磁化反転でアシストする素子として、あるいは純スピン流によるSOTのみで強磁性金属層の磁化反転を行う新規の磁気抵抗効果素子としても用いることもできる。
 なお、磁化反転をアシストする方法としては、外部磁場を印加する方法、電圧を加える方法、熱を加える方法及び物質の歪みを利用する方法が知られている。しかしながら、外部磁場を印加する方法、電圧を加える方法及び熱を加える方法の場合、外部に新たに配線、発熱源等を設ける必要があり、素子構成が複雑化する。また、物質の歪みを利用する方法の場合、一旦生じた歪みを使用態様中に制御することが難しく、制御性よく磁化反転を行うことができない。
本発明のスピン流磁化反転素子において、スピン軌道トルク配線層の、少なくとも第2強磁性金属層に接合する接合部分のスピン抵抗は、第2強磁性金属層のスピン抵抗よりも大きい。この構成により、スピン軌道トルク配線層から第2強磁性金属層へ拡散して注入される際の、第2強磁性金属層からスピン軌道トルク配線へのスピン流の戻りを低減される。
(スピン抵抗、スピン抵抗率)
 スピン抵抗は、スピン流の流れやすさ(スピン緩和のし難さ)を定量的に示す量である。非特許文献2には、スピン抵抗の理論的な取り扱いが開示されている。スピン抵抗が異なる物質の界面では、スピン流の反射(戻り)が生じる。すなわちスピン抵抗の小さい材料からスピン抵抗の大きい材料へはスピン流の一部しか注入されない。
  スピン抵抗Rsは次の式で定義される(非特許文献3参照)。
Figure JPOXMLDOC01-appb-M000001
 ここで、λは材料のスピン拡散長、ρは材料の電気抵抗率、Aは材料の断面積である。
 非磁性体では、断面積Aが等しい場合、式(1)のうち、スピン抵抗率であるρλの値によってスピン抵抗の大きさが決まる。
 従って、本発明の磁気抵抗効果素子において、同じサイズのスピン軌道トルク配線であれば、スピン抵抗率が大きい材料を用いる方がスピン流の逆流を低減する効果が大きい。
 本発明のスピン流磁化反転素子においては、第2強磁性体金属層が例えば、鉄(Fe)あるいは鉄系の合金からなる場合には、スピン軌道トルク配線層の、少なくとも第2強磁性金属層に接合する接合部分のスピン抵抗は、鉄(Fe)あるいは鉄系の合金のスピン抵抗よりも大きい。この構成によって、第2強磁性金属層からスピン軌道トルク配線へスピン流が逆流する効果を低減することができる。
本発明のスピン流磁化反転素子において、第2強磁性金属層からスピン軌道トルク配線へスピン流が逆流する効果を低減する観点で、スピン軌道トルク配線層の、少なくとも第2強磁性金属層に接合する接合部分を構成する材料のスピン抵抗率は大きい方が好ましい。
ここで、第2強磁性金属層からスピン軌道トルク配線へスピン流が逆流する効果を低減する効果が大きい材料は、スピン拡散長だけで決まるのではなく、電気抵抗率との積で決まる点に留意すべきである。
 表1に、純スピン流発生材料として知られている複数の非磁性体、及び、強磁性体である鉄(Fe)の電気抵抗率およびスピン拡散長と、それらの積によって得たスピン抵抗率を示す。Feは、磁気抵抗効果素子の強磁性金属層の材料として用いられる典型的な強磁性材料である。
非磁性体の電気抵抗率およびスピン拡散長は後述する方法により算出したものであり、Feの各パラメータは非特許文献4に基づいた値である。
Figure JPOXMLDOC01-appb-T000002
 表1に示した非磁性体のうち、特に、タングステン(W)、モリブデン(Mo)、ニオブ(Ni)、及び、MoとFeの合金はFeのスピン抵抗率よりも大きく、第2強磁性金属層からスピン軌道トルク配線へスピン流が逆流する効果を低減する観点で、スピン軌道トルク配線層の、少なくとも第2強磁性金属層に接合する接合部分を構成する材料として好ましいことがわかる。
(スピン拡散長)
スピン流は、距離dとスピン拡散長λの比に依存して、exp(-d/λ)に従って指数関数的に減衰する。スピン拡散長λは物質固有の定数であり、スピン流の大きさが1/eになる距離である。
材料のスピン拡散長は様々な手法によって見積もることができる。例えば、非局所的方法、スピンポンピング効果を利用する方法、ハンル効果を利用する方法などが知られている。
 表1で示した非磁性体のスピン拡散長は、室温で非局所スピンバルブ測定を行うことによって得た。以下にその詳細を説明する。
 面内スピンバルブ構造(強磁性体と非磁性体との界面がトンネル接合ではない場合)を用いた非局所測定において、拡散方程式を解くことにより、スピン出力(非局所スピンバルブ信号)の大きさΔVは以下の式(2)のように表される(非特許文献3)。
Figure JPOXMLDOC01-appb-M000003
 ここで、
Q=RSF/RSNで定義され、RSN、RSFはそれぞれ、RSN=λ/(Aσ)、RSF=λ/{(1-σ )(Aσ)}で定義される非磁性体、強磁性体のスピン抵抗であり、
λ、λはそれぞれ、非磁性体、強磁性体のスピン拡散長であり、
、Aはそれぞれ、非磁性体、強磁性体のスピン流が流れる領域の断面積であり、
σ、σはそれぞれ、非磁性体、強磁性体の電気伝導率であり、
αは、強磁性体のスピン偏極率であり、
 dは、2本の強磁性体細線間の距離である。
面内スピンバルブ構造は、図3に示すように、離間して配置した2本の強磁性体細線12、13に1本の非磁性体細線14が架橋した構造を有する。
一方の強磁性体細線12と参照電極15との間に直流電流を印加し、別の強磁性体細線13と参照電極16との間の電圧を測定する。このとき、磁場を印加して2つの強磁性体細線の磁化を反転させる。素子の形状(サイズ)が異なっているため形状異方性の効果で反転磁場が異なるため、磁場領域によって強磁性体細線の磁化の向きが平行と反平行が形成できる。平行時と反平行時の電圧の差からスピン出力の抵抗を求めることができる。
強磁性体細線間距離dを、7nm~1μmの間の少なくとも5種類以上で測定した。精度を上げるためには、スピン拡散長の大きさにより強磁性体細線間距離dの数を決める必要がある。非局所測定では強磁性体細線間距離dを小さくし過ぎるとノイズが大きくなるので小さくできない。そのため、スピン拡散長が小さいときは、指数関数の裾の部分で測定を行うことになるが、測定の点すなわち、強磁性体細線間距離dの数を増やせば、測定精度は上がる。
強磁性体細線間距離を横軸とし、縦軸にスピン出力ΔVをプロットし、式(2)によるフィッティングによって、各非磁性体のスピン拡散長を求めた。
表1中のMo、WおよびMoFe合金は、強磁性体細線間距離dを25nmから5nmづつ大きくして5点とった。また、Nbは、強磁性体細線間距離dを7nmから1nmづつ大きくして20点とった。また、Pdは、強磁性体細線間距離dを7nmから1nmづつ大きくして40点とった。また、Ptは、強磁性体細線間距離dを7nmから1nmづつ大きくして100点とった。なお、製造装置の制約上、7nm以上の解像度が得ることをできていない。前述の強磁性体細線間距離dの変化は、設計上の値である。但し、十分な数の測定点数を計測することで、設計値と実際の値の誤差を統計的に補完した。
PtやPdのようにスピン拡散長が短いものについては通常、スピンポンピング効果を利用する方法、ハンル効果を利用する方法で求める。
 上述の測定では、強磁性体と非磁性体との界面にトンネル絶縁膜を有さない構成で行ったが、トンネル絶縁膜を有する構成で行ってもよい。例えば、トンネル絶縁膜としてMgOからなるものを用いることにより、コヒーレントトンネルによってより大きな出力ΔVを得られる。
 (電気抵抗率)
図4に示すように、一般的な四端子法による測定を行った。参照電極間に直流電流を印加し、強磁性体細線間の電圧降下を測定した。また、素子のばらつきや誤差を避けるため、強磁性体細線間の距離の異なる素子の複数の結果から非磁性体細線の電気抵抗率を求めた。具体的には、強磁性体細線間の距離を横軸とし、縦軸に電気抵抗をプロットし、その傾きから電気抵抗率を求めた。
表1中のMoおよびWは、強磁性体細線間距離dを5点とった。また、Nbは、強磁性体細線間距離dを20点とった。また、Pdは、強磁性体細線間距離dを40点とった。また、Ptは、強磁性体細線間距離dを100点とった。
以下では、スピン軌道トルク配線層の、少なくとも第2強磁性金属層に接合する接合部分のスピン抵抗は、第2強磁性金属層のスピン抵抗よりも大きいことを前提に、スピン軌道トルク配線を構成し得る材料について説明する。
スピン軌道トルク配線は、非磁性の重金属を含んでもよい。ここで、重金属とは、イットリウム以上の比重を有する金属の意味で用いている。スピン軌道トルク配線は、非磁性の重金属だけからなってもよい。
この場合、非磁性の重金属は最外殻にd電子又はf電子を有する原子番号39以上の原子番号が大きい非磁性金属であることが好ましい。かかる非磁性金属は、スピンホール効果を生じさせるスピン軌道相互作用が大きいからである。スピン軌道トルク配線2は、最外殻にd電子又はf電子を有する原子番号39以上の原子番号が大きい非磁性金属だけからなってもよい。
通常、金属に電流を流すとすべての電子はそのスピンの向きに関わりなく、電流とは逆向きに動くのに対して、最外殻にd電子又はf電子を有する原子番号が大きい非磁性金属はスピン軌道相互作用が大きいためにスピンホール効果によって電子の動く方向が電子のスピンの向きに依存し、純スピン流Jが発生しやすい。
また、スピン軌道トルク配線は、磁性金属を含んでもよい。磁性金属とは、強磁性金属、あるいは、反強磁性金属を指す。非磁性金属に微量な磁性金属が含まれるとスピン軌道相互作用が増強され、スピン軌道トルク配線に流す電流に対するスピン流生成効率を高くできるからである。スピン軌道トルク配線は、反強磁性金属だけからなってもよい。
スピン軌道相互作用はスピン軌道トルク配線材料の物質の固有の内場によって生じるため、非磁性材料でも純スピン流が生じる。スピン軌道トルク配線材料に微量の磁性金属を添加すると、磁性金属自体が流れる電子スピンを散乱するためにスピン流生成効率が向上する。ただし、磁性金属の添加量が増大し過ぎると、発生した純スピン流が添加された磁性金属によって散乱されるため、結果としてスピン流が減少する作用が強くなる。したがって、添加される磁性金属のモル比はスピン軌道トルク配線における純スピン生成部の主成分のモル比よりも十分小さい方が好ましい。目安で言えば、添加される磁性金属のモル比は3%以下であることが好ましい。
また、スピン軌道トルク配線は、トポロジカル絶縁体を含んでもよい。スピン軌道トルク配線は、トポロジカル絶縁体だけからなってもよい。トポロジカル絶縁体とは、物質内部が絶縁体、あるいは、高抵抗体であるが、その表面にスピン偏極した金属状態が生じている物質である。物質にはスピン軌道相互作用という内部磁場のようなものがある。そこで外部磁場が無くてもスピン軌道相互作用の効果で新たなトポロジカル相が発現する。これがトポロジカル絶縁体であり、強いスピン軌道相互作用とエッジにおける反転対称性の破れにより純スピン流を高効率で生成することができる。
トポロジカル絶縁体としては例えば、SnTe,Bi1.5Sb0.5Te1.7Se1.3,TlBiSe,BiTe,(Bi1-xSbTeなどが好ましい。これらのトポロジカル絶縁体は、高効率でスピン流を生成することが可能である。
 以下では、本発明のスピン流磁化反転素子の適用例として、主に磁気抵抗効果素子に適用した場合を例に挙げて説明する。用途としては磁気抵抗効果素子に限られず、他の用途にも適用できる。他の用途としては、例えば、スピン流磁化反転素子を各画素に配設して、磁気光学効果を利用して入射光を空間的に変調する空間光変調器においても用いることができるし、磁気センサにおいて磁石の保磁力によるヒステリシスの効果を避けるために磁石の磁化容易軸に印可する磁場をスピン流磁化反転素子に置き換えてもよい。
(磁気抵抗効果素子)
 図5は、発明のスピン流磁化反転素子の応用例であり、また、本発明の一実施形態に係る磁気抵抗効果素子を模式的に示した斜視図である。
本発明の一実施形態に係る磁気抵抗効果素子100は、磁気抵抗効果素子部20と、該磁気抵抗効果素子部20の積層方向に対して交差する方向に延在し、磁気抵抗効果素子部20(第2強磁性金属層23)に接合するスピン軌道トルク配線40とを備え、前記スピン軌道トルク配線層の、少なくとも前記第2強磁性金属層に接合する接合部分のスピン抵抗は、前記第2強磁性金属層のスピン抵抗よりも大きい。本発明の一実施形態に係る磁気抵抗効果素子100は、本発明のスピン流磁化反転素子101と、磁化の向きが固定された第1強磁性金属層21と、非磁性層22とを有する構成であると言うこともできる。
図5を含めて以下では、スピン軌道トルク配線が磁気抵抗効果素子部の積層方向に対して交差する方向に延在する構成の例として、直交する方向に延在する構成の場合について説明する。
図5においては、磁気抵抗効果素子部20の積層方向に電流を流すための配線30と、その配線30を形成する基板10と、キャップ層24も示している。
以下、磁気抵抗効果素子部20の積層方向をz方向、z方向と垂直でスピン軌道トルク配線40と平行な方向をx方向、x方向及びz方向と直交する方向をy方向とする。
 図5に示した例では、第2強磁性金属層23の上にスピン軌道トルク配線層40が形成されているが、逆の順番で形成されていても構わない。
<磁気抵抗効果素子部>
 磁気抵抗効果素子部20は、磁化の向きが固定された第1強磁性金属層21と、磁化の向きが可変な第2強磁性金属層23と、第1強磁性金属層21及び第2強磁性金属層23に挟持された非磁性層22とを有する。
第1強磁性金属層21の磁化が一方向に固定され、第2強磁性金属層23の磁化の向きが相対的に変化することで、磁気抵抗効果素子部20として機能する。保磁力差型(擬似スピンバルブ型;Pseudo spin valve 型)のMRAMに適用する場合には、第1強磁性金属層の保持力は第2強磁性金属層の保磁力よりも大きいものであり、また、交換バイアス型(スピンバルブ;spin valve型)のMRAMに適用する場合には、第1強磁性金属層では反強磁性層との交換結合によって磁化の向きが固定される。
 また、磁気抵抗効果素子部20は、非磁性層22が絶縁体からなる場合は、トンネル磁気抵抗(TMR:Tunneling Magnetoresistance)素子であり、非磁性層22が金属からなる場合は巨大磁気抵抗(GMR:Giant Magnetoresistance)素子である。
 本発明が備える磁気抵抗効果素子部としては、公知の磁気抵抗効果素子部の構成を用いることができる。例えば、各層は複数の層からなるものでもよいし、第1強磁性金属層の磁化の向きを固定するための反強磁性層等の他の層を備えてもよい。
第1強磁性金属層21は固定層や参照層、第2強磁性金属層23は自由層や記憶層などと呼ばれる。
 第1強磁性金属層21及び第2強磁性金属層23は、磁化方向が層に平行な面内方向である面内磁化膜でも、磁化方向が層に対して垂直方向である垂直磁化膜でもいずれでもよい。
 第1強磁性金属層21の材料には、公知のものを用いることができる。例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属及びこれらの金属を1種以上含み強磁性を示す合金を用いることができる。またこれらの金属と、B、C、及びNの少なくとも1種以上の元素とを含む合金を用いることもできる。具体的には、Co-FeやCo-Fe-Bが挙げられる。
また、より高い出力を得るためにはCoFeSiなどのホイスラー合金を用いることが好ましい。ホイスラー合金は、XYZの化学組成をもつ金属間化合物を含み、Xは、周期表上でCo、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素であり、Yは、Mn、V、CrあるいはTi族の遷移金属でありXの元素種をとることもでき、Zは、III族からV族の典型元素である。例えば、CoFeSi、CoMnSiやCoMn1-aFeAlSi1-bなどが挙げられる。
また、第1強磁性金属層21の第2強磁性金属層23に対する保磁力をより大きくするために、第1強磁性金属層21と接する材料としてIrMn,PtMnなどの反強磁性材料を用いてもよい。さらに、第1強磁性金属層21の漏れ磁場を第2強磁性金属層23に影響させないようにするため、シンセティック強磁性結合の構造としてもよい。
さらに第1強磁性金属層21の磁化の向きを積層面に対して垂直にする場合には、CoとPtの積層膜を用いることが好ましい。具体的には、第1強磁性金属層21は[Co(0.24nm)/Pt(0.16nm)]/Ru(0.9nm)/[Pt(0.16nm)/Co(0.16nm)]/Ta(0.2nm)/FeB(1.0nm)とすることができる。
非磁性層22には、公知の材料を用いることができる。
例えば、非磁性層22が絶縁体からなる場合(トンネルバリア層である場合)、その材料としては、Al、SiO、Mg、及び、MgAlO等を用いることができる。またこれらの他にも、Al,Si,Mgの一部が、Zn、Be等に置換された材料等も用いることができる。これらの中でも、MgOやMgAlはコヒーレントトンネルが実現できる材料であるため、スピンを効率よく注入できる。
また、非磁性層22が金属からなる場合、その材料としては、Cu、Au、Ag等を用いることができる。
また、第2強磁性金属層23の非磁性層22と反対側の面には、図5に示すようにキャップ層24が形成されていることが好ましい。キャップ層24は、第2強磁性金属層23からの元素の拡散を抑制することができる。またキャップ層24は、磁気抵抗効果素子部20の各層の結晶配向性にも寄与する。その結果、キャップ層24を設けることで、磁気抵抗効果素子部20の第1強磁性金属層21及び第2強磁性金属層23の磁性を安定化し、磁気抵抗効果素子部20を低抵抗化することができる。
キャップ層24には、導電性が高い材料を用いることが好ましい。例えば、Ru、Ta、Cu、Ag、Au等を用いることができる。キャップ層24の結晶構造は、隣接する強磁性金属層の結晶構造に合せて、fcc構造、hcp構造またはbcc構造から適宜設定することが好ましい。
また、キャップ層24には、銀、銅、マグネシウム、及び、アルミニウムからなる群から選択されるいずれかを用いることが好ましい。詳細は後述するが、キャップ層24を介してスピン軌道トルク配線40と磁気抵抗効果素子部20が接続される場合、キャップ層24はスピン軌道トルク配線40から伝播するスピンを散逸しないことが好ましい。銀、銅、マグネシウム、及び、アルミニウム等は、スピン拡散長が100nm以上と長く、スピンが散逸しにくいことが知られている。
キャップ層24の厚みは、キャップ層24を構成する物質のスピン拡散長以下であることが好ましい。キャップ層24の厚みがスピン拡散長以下であれば、スピン軌道トルク配線40から伝播するスピンを磁気抵抗効果素子部20に十分伝えることができる。
<基板>
 基板10は、平坦性に優れることが好ましい。平坦性に優れた表面を得るために、材料として例えば、Si、AlTiC等を用いることができる。
 基板10の磁気抵抗効果素子部20側の面には、下地層(図示略)が形成されていてもよい。下地層を設けると、基板10上に積層される第2強磁性金属層21を含む各層の結晶配向性、結晶粒径等の結晶性を制御することができる。
 下地層は、絶縁性を有していることが好ましい。配線30等に流れる電流が散逸しないようにするためである。下地層には、種々のものを用いることができる。
例えば1つの例として、下地層には(001)配向したNaCl構造を有し、Ti,Zr,Nb,V,Hf,Ta,Mo,W,B,Al,Ceの群から選択される少なくとも1つの元素を含む窒化物の層を用いることができる。
他の例として、下地層にはXYOの組成式で表される(002)配向したペロブスカイト系導電性酸化物の層を用いることができる。ここで、サイトXはSr、Ce、Dy、La、K、Ca、Na、Pb、Baの群から選択された少なくとも1つの元素を含み、サイトYはTi、V、Cr、Mn、Fe、Co、Ni、Ga、Nb、Mo、Ru、Ir、Ta、Ce、Pbの群から選択された少なくとも1つの元素を含む。
他の例として、下地層には(001)配向したNaCl構造を有し、かつMg、Al、Ceの群から選択される少なくとも1つの元素を含む酸化物の層を用いることができる。
他の例として、下地層には(001)配向した正方晶構造または立方晶構造を有し、かつAl、Cr、Fe、Co、Rh、Pd、Ag、Ir、Pt、Au、Mo、Wの群から選択される少なくとも1つの元素を含む層を用いることができる。
また、下地層は一層に限られず、上述の例の層を複数層積層してもよい。下地層の構成を工夫することにより磁気抵抗効果素子部20の各層の結晶性を高め、磁気特性の改善が可能となる。
<配線>
配線30は、磁気抵抗効果素子部20の第2強磁性金属層21に電気的に接続され、図5においては、配線30とスピン軌道トルク配線40と電源(図示略)とで閉回路を構成し、磁気抵抗効果素子部20の積層方向に電流が流される。
配線30は、導電性の高い材料であれば特に問わない。例えば、アルミニウム、銀、銅、金等を用いることができる。
以下では図6~図9を参照して、スピン軌道トルク配線層の、少なくとも第2強磁性金属層に接合する接合部分のスピン抵抗は、第2強磁性金属層のスピン抵抗よりも大きいことを前提に、スピン軌道トルク配線がとり得る構成について説明する。
図6~図9は、スピン軌道トルク配線の実施形態を説明するための模式図であり、それぞれ、(a)は断面図であり、(b)は平面図である。
 本発明の磁気抵抗効果素子において、純スピン流によるSOTのみで磁気抵抗効果素子の磁化反転を行う構成(以下、「SOTのみ」構成ということがある)であっても、従来のSTTを利用する磁気抵抗効果素子において純スピン流によるSOTを併用する構成(以下、「STT及びSOT併用」構成ということがある)であっても、スピン軌道トルク配線に流す電流は電荷の流れを伴う通常の電流であるため、電流を流すとジュール熱が発生する。
 図6~図9に示すスピン軌道トルク配線の実施形態は、上述の材料以外の構成によって、スピン軌道トルク配線に流す電流によるジュール熱を低減する構成の例である。
 「STT及びSOT併用」構成において、本発明の磁気抵抗効果素子部の磁化反転のために流す電流としては、STT効果を利用するために磁気抵抗効果素子部に直接流す電流(以下、「STT反転電流」ということがある。)の他に、SOT効果を利用するためにスピン軌道トルク配線に流す電流(以下、「SOT反転電流」ということがある。)がある。いずれの電流も電荷の流れを伴う通常の電流であるため、電流を流すとジュール熱が発生する。
 この構成においては、STT効果による磁化反転とSOT効果による磁化反転を併用するため、STT効果だけで磁化反転を行う構成に比べてSTT反転電流は低減されるが、SOT反転電流の分のエネルギーを消費することになる。
 純スピン流を生成しやすい材料である重金属は、通常の配線として用いられる金属に比べて電気抵抗率が高い。
そのため、SOT反転電流によるジュール熱を低減する観点では、スピン軌道トルク配線はすべてが純スピン流を生成しうる材料だけからなるよりも、電気抵抗率が小さい部分を有することが好ましい。すなわち、この観点では、スピン軌道トルク配線は純スピン流を生成する材料からなる部分(スピン流発生部)と、電気抵抗率が小さい導電部とからなるのが好ましい。導電部は、このスピン流発生部よりも電気抵抗率が小さい材料からなるのが好ましい。
スピン流発生部は、純スピン流を生成しえる材料からなっていればよく、例えば、複数種類の材料部分からなる構成等であってもよい。
導電部は、通常の配線として用いられる材料を用いることができる。例えば、アルミニウム、銀、銅、金等を用いることができる。導電部は、スピン流発生部よりも電気抵抗率が小さい材料からなっていればよく、例えば、複数種類の材料部分からなる構成等であってもよい。
なお、導電部において純スピン流が生成されても構わない。この場合、スピン流発生部と導電部との区別は、本明細書中にスピン流発生部及び導電部の材料として記載したものからなる部分はスピン流発生部または導電部であるとして区別できる。また、純スピン流を生成する主要部以外の部分であって、その主要部より電気抵抗率が小さい部分は導電部として、スピン流発生部と区別できる。
スピン流発生部は、非磁性の重金属を含んでもよい。この場合、純スピン流を生成しうる重金属を有限に含んでいればよい。さらにこの場合、スピン流発生部は、スピン流発生部の主成分よりも純スピン流を生成しうる重金属が十分少ない濃度領域であるか、または、純スピン流を生成しうる重金属が主成分例えば、90%以上であることが好ましい。この場合の重金属は、純スピン流を生成しうる重金属が最外殻にd電子又はf電子を有する原子番号39以上の非磁性金属100%であることが好ましい。
 ここで、スピン流発生部の主成分よりも純スピン流を生成しうる重金属が十分少ない濃度領域とは、例えば、銅を主成分とするスピン流発生部において、モル比で重金属の濃度が10%以下を指す。スピン流発生部を構成する主成分が上述の重金属以外からなる場合、スピン流発生部に含まれる重金属の濃度はモル比で50%以下であることが好ましく、10%以下であることがさらに好ましい。これらの濃度領域は、電子のスピン散乱の効果が有効に得られる領域である。重金属の濃度が低い場合、重金属よりも原子番号が小さい軽金属が主成分となる。なお、この場合、重金属は軽金属との合金を形成しているのではなく、軽金属中に重金属の原子が無秩序に分散していることを想定している。軽金属中ではスピン軌道相互作用が弱いため、スピンホール効果によって純スピン流は生成しにくい。しかしながら、電子が軽金属中の重金属を通過する際に、軽金属と重金属の界面でもスピンが散乱される効果があるため重金属の濃度が低い領域でも純スピン流が効率よく発生させることが可能である。重金属の濃度が50%を超えると、重金属中のスピンホール効果の割合は大きくなるが、軽金属と重金属の界面の効果が低下するため総合的な効果が減少する。したがって、十分な界面の効果が期待できる程度の重金属の濃度が好ましい。
また、上述のスピン軌道トルク配線が磁性金属を含む場合、スピン軌道トルク配線におけるスピン流発生部を反強磁性金属をからなるものとすることができる。反強磁性金属は重金属が最外殻にd電子又はf電子を有する原子番号39以上の非磁性金属100%の場合と同等の効果を得ることができる。反強磁性金属は、例えば、IrMnやPtMnが好ましく、熱に対して安定なIrMnがより好ましい。
また、上述のスピン軌道トルク配線がトポロジカル絶縁体を含む場合、スピン軌道トルク配線におけるスピン流発生部をトポロジカル絶縁体からなるものとすることができる。トポロジカル絶縁体としては例えば、SnTe,Bi1.5Sb0.5Te1.7Se1.3,TlBiSe,BiTe,(Bi1-xSbTeなどが好ましい。これらのトポロジカル絶縁体は高効率でスピン流を生成することが可能である。
スピン軌道トルク配線で生成された純スピン流が実効的に磁気抵抗効果素子部に拡散していくためにはスピン流発生部の少なくとも一部が第2強磁性金属層に接合している必要がある。キャップ層を備える場合には、スピン流発生部の少なくとも一部がキャップ層に接合している必要がある。
 本発明の磁気抵抗効果素子において、スピン軌道トルク配線層は必ず、第2強磁性金属層に接合する接合部分を有するが、第2強磁性金属層に接合する接合部分はスピン流発生部の少なくとも一部であってもよい。
図6~図9に示すスピン軌道トルク配線の実施形態はすべて、スピン流発生部の少なくとも一部が第2強磁性金属層に接合した構成である。
 図6に示す実施形態では、スピン軌道トルク配線40は、第2強磁性金属層23との接合面40’がすべてスピン流発生部41からなり、スピン流発生部41が導電部42A、42Bに挟まれた構成である。
なお、スピン軌道トルク配線40の、第2強磁性金属層23に接合する接合部分40Bとは、図6(a)の二点鎖線で示す部分であり、スピン軌道トルク配線のうち、積層方向から平面視して第2強磁性金属層に重なる部分(厚さ方向の部分も含む)を指す。すなわち、図6(b)において、二点鎖線で示した第2強磁性金属層23を平面図に投影した部分を、一方の表面40a(図6(a)参照)から他方の表面40b(図6(a)参照)まで厚さ方向にずらしていったときに囲まれる部分がスピン軌道トルク配線の接合部分である。図6に示すスピン軌道トルク配線40の、第2強磁性金属層23に接合する接合部分40Bはすべて、スピン流発生部41からなる。すなわち、接合部分40Bは、スピン流発生部41の一部である。
ここで、スピン軌道トルク配線と第2強磁性金属層との接合は、「直接」接合してもよいし、後述するようにキャップ層のような「他の層を介して」接合してもよく、スピン軌道トルク配線で発生した純スピン流が第2強磁性金属層に流れ込む構成であれば、スピン軌道トルク配線と第2強磁性金属層との接合(接続あるいは結合)の仕方は限定されない。
 ここで、スピン流発生部と導電部とが電気的に並列に配置する場合には、スピン軌道トルク配線に流れる電流はスピン流発生部及び導電部の抵抗の大きさの逆比の割合に分かれてそれぞれの部分を流れることになる。
SOT反転電流に対する純スピン流生成効率の観点で、スピン軌道トルク配線に流れる電流がすべてスピン流発生部を流れるようにするためには、スピン流発生部と導電部とが電気的に並列に配置する部分がなく、すべて電気的に直列に配置するようにする。
 図6~図9に示すスピン軌道トルク配線は、磁気抵抗効果素子部の積層方向からの平面視で、スピン流発生部と導電部とが電気的に並列に配置する部分がない構成であり、(a)で示す断面を有する構成の中で、SOT反転電流に対する純スピン流生成効率が最も高い構成の場合である。
 図6に示すスピン軌道トルク配線40は、そのスピン流発生部41が磁気抵抗効果素子部20の積層方向から平面視して第2強磁性金属層23の接合部23’を含むように重畳し、かつ、その厚さ方向はスピン流発生部41だけからなり、電流の流れる方向に導電部42A、42Bがスピン流発生部41を挟むように配置する構成である。図6に示すスピン軌道トルク配線の変形例として、スピン流発生部が磁気抵抗効果素子部の積層方向から平面視して第2強磁性金属層の接合部に重なるように重畳し、それ以外は図6に示すスピン軌道トルク配線と同じ構成がある。
図7に示すスピン軌道トルク配線40は、そのスピン流発生部41が磁気抵抗効果素子部20の積層方向から平面視して第2強磁性金属層23の接合部23’の一部に重畳し、かつ、その厚さ方向はスピン流発生部41だけからなり、電流の流れる方向に導電部42A、42Bがスピン流発生部41を挟むように配置する構成である。
なお、スピン軌道トルク配線40の、第2強磁性金属層23に接合する接合部分40BBとは、図7(a)の二点鎖線で示す部分であり、スピン軌道トルク配線のうち、積層方向から平面視して第2強磁性金属層に重なる部分(厚さ方向の部分も含む)を指す。図7に示すスピン軌道トルク配線40の、第2強磁性金属層23に接合する接合部分40BBは、スピン流発生部41のすべてと導電部42A、42Bの一部とからなる。
図8に示すスピン軌道トルク配線40は、そのスピン流発生部41が磁気抵抗効果素子部20の積層方向から平面視して第2強磁性金属層23の接合部23’を含むように重畳し、かつ、その厚さ方向には第2強磁性金属層側からスピン流発生部41と導電部42Cが順に積層し、電流の流れる方向に導電部42A、42Bがスピン流発生部41及び導電部42Cが積層する部分を挟むように配置する構成である。図8に示すスピン軌道トルク配線の変形例として、スピン流発生部が磁気抵抗効果素子部の積層方向から平面視して第2強磁性金属層の接合部に重なるように重畳し、それ以外は図8に示すスピン軌道トルク配線と同じ構成がある。
なお、スピン軌道トルク配線40の、第2強磁性金属層23に接合する接合部分40BBBとは、図8(a)の二点鎖線で示す部分であり、スピン軌道トルク配線のうち、積層方向から平面視して第2強磁性金属層に重なる部分(厚さ方向の部分も含む)を指す。図8に示すスピン軌道トルク配線40の、第2強磁性金属層23に接合する接合部分40BBBはすべて、スピン流発生部41からなる。すなわち、接合部分40BBBは、スピン流発生部41の一部である。
図9に示すスピン軌道トルク配線40は、スピン流発生部41が第2強磁性金属層側の一面全体に形成された第1スピン流発生部41Aと、第1スピン流発生部の上に積層され、磁気抵抗効果素子部20の積層方向から平面視して第2強磁性金属層23の接合部23’を含むように重畳し、かつ、その厚さ方向はスピン流発生部だけからなる第2スピン流発生部41Bと、電流の流れる方向に第2スピン流発生部41Bを挟むように配置する導電部42A、42Bとからなる構成である。図9に示すスピン軌道トルク配線の変形例として、第2スピン流発生部が磁気抵抗効果素子部の積層方向から平面視して第2強磁性金属層の接合部を重なるように重畳し、それ以外は図9に示すスピン軌道トルク配線と同じ構成がある。
図9に示す構成では、スピン流発生部41と導電部42とが接する面積が広いため、スピン流発生部41を構成する原子番号の大きい非磁性金属と導電部42を構成する金属との密着性が高い。
なお、スピン軌道トルク配線40の、第2強磁性金属層23に接合する接合部分40BBBBとは、図9(a)の二点鎖線で示す部分であり、スピン軌道トルク配線のうち、積層方向から平面視して第2強磁性金属層に重なる部分(厚さ方向の部分も含む)を指す。図9に示すスピン軌道トルク配線40の、第2強磁性金属層23に接合する接合部分40BBBBはすべて、スピン流発生部41からなる。すなわち、接合部分40BBBBは、スピン流発生部41の一部である。
 本発明の磁気抵抗効果素子は公知の方法を用いて製造することができる。以下、図6~図9に図示した磁気抵抗効果素子の製造方法について説明する。
 まず、磁気抵抗効果素子部20例えば、マグネトロンスパッタ装置を用いて形成することができる。磁気抵抗効果素子部20がTMR素子の場合、例えば、トンネルバリア層は第1強磁性金属層上に最初に0.4~2.0nm程度のアルミニウム、及び複数の非磁性元素の二価の陽イオンとなる金属薄膜をスパッタし、プラズマ酸化あるいは酸素導入による自然酸化を行い、その後の熱処理によって形成される。成膜法としてはマグネトロンスパッタ法のほか、蒸着法、レーザアブレーション法、MBE法等の薄膜作成法を用いることができる。
磁気抵抗効果素子部20の成膜及び形状の形成を行った後、スピン流発生部41を最初に形成することが好ましい。これはスピン流発生部41から磁気抵抗効果素子部20に純スピン流の散乱をできるだけ抑制できる構造にすることが高効率化に繋がるからである。
磁気抵抗効果素子部20の成膜及び形状の形成を行った後、加工後の磁気抵抗効果素子部20の周囲をレジスト等で埋めて、磁気抵抗効果素子部20の上面を含む面を形成する。この際、磁気抵抗効果素子部20の上面を平坦化することが好ましい。平坦化することで、スピン流発生部41と磁気抵抗効果素子部20の界面におけるスピン散乱を抑制することができる。
次に、平坦化した磁気抵抗効果素子部20の上面にスピン流発生部41の材料を成膜する。成膜はスパッタ等を用いることができる。
次に、スピン流発生部41を作製したい部分にレジストまたは保護膜を設置し、イオンミリング法または反応性イオンエッチング(RIE)法を用いて不要部を除去する。
次に、導電部42を構成する材料をスパッタ等で成膜し、レジスト等を剥離することで、スピン軌道トルク配線40が作製される。スピン流発生部41の形状が複雑な場合は、レジストまたは保護膜の形成と、スピン流発生部41の成膜を複数回に分けて形成してもよい。
 スピン軌道トルク配線層は第2強磁性金属層に接合する部分の少なくとも一部に狭窄部を有してもよい。狭窄部は、スピン軌道トルク配線層の延在方向(長手方向)に直交する断面で切った断面積が狭窄部以外の部分の断面積より小さい部分である。スピン軌道トルク配線層に流れる電流はこの狭窄部で電流密度が高くなり、高密度の純スピン流が第2強磁性金属層に流れ込むことになる。
 図10は、本発明の一実施形態に係る磁気抵抗効果素子をyz平面で切断した断面模式図である。
図10に基づいて、磁気抵抗効果素子100が「STT及びSOT併用」構成である場合の作用について説明する。
図10に示すように磁気抵抗効果素子100には2種類の電流がある。一つは、磁気抵抗効果素子20をその積層方向に流れ、スピン軌道トルク配線40及び配線30に流れる電流I(STT反転電流)である。図10においては、電流Iはスピン軌道トルク配線40、磁気抵抗効果素子20、配線30の順に流れるものとする。この場合、電子は配線30、磁気抵抗効果素子20、スピン軌道トルク配線40の順に流れる。
もう一つは、スピン軌道トルク配線40の延在方向に流れる電流I(SOT反転電流)である。
電流Iと電流Iとは互いに交差(直交)するものであり、磁気抵抗効果素子20とスピン軌道トルク配線40とが接合する部分(符号24’は磁気抵抗効果素子20(キャップ層24)側の接合部を示し、符号40’はスピン軌道トルク配線40側の接合部を示す)において、磁気抵抗効果素子20に流れる電流とスピン軌道トルク配線40に流れる電流が合流し、または、分配される。
電流Iを流すことより、第2強磁性金属層(固定層)21の磁化と同じ方向を向いたスピンを有する電子が第2強磁性金属層(固定層)21からスピンの向きを維持したまま、非磁性層22を通過し、この電子は、第1強磁性金属層(自由層)23の磁化M23の向きを第2強磁性金属層(固定層)21の磁化M21の向きに対して反転して平行にするようにトルク(STT)を作用する。
一方、電流Iは図2に示す電流Iに対応する。すなわち、電流Iを流すと、上向きスピンSと下向きスピンSがそれぞれスピン軌道トルク配線40の端部に向かって曲げられ純スピン流Jが生じる。純スピン流Jは、電流Iの流れる方向と垂直な方向に誘起される。すなわち、図におけるz軸方向やx軸方向に純スピン流Jが生じる。図10では、第1強磁性金属層23の磁化の向きに寄与するz軸方向の純スピン流Jのみを図示している。
スピン軌道トルク配線40に図の手前側に電流Iを流すことにより生じた純スピン流Jは、キャップ層24を介して第1強磁性金属層23に拡散して流れ込み、流れ込んだスピンは第1強磁性金属層23の磁化M23に影響を及ぼす。すなわち、図10では、-x方向に向いたスピンが第1強磁性金属層23に流れ込むことで+x方向に向いた第1強磁性金属層23の磁化M23の磁化反転を起こそうとするトルク(SOT)が加わる。
以上の通り、第1電流経路Iに流れる電流によって生じるSTT効果に、第2電流経路Iに流れる電流によって生じた純スピン流JによるSOT効果が加わって、第1強磁性金属層23の磁化M23を磁化反転させる。
 STT効果のみで第1強磁性金属層23の磁化を反転させようとする(すなわち、電流Iのみに電流が流れる)と、磁気抵抗効果素子20には所定の電圧以上の電圧を印加する必要がある。TMR素子の一般的な駆動電圧は数V以下と比較的小さいが、非磁性層22は数nm程度の非常に薄い膜であり、絶縁破壊が生じることがある。非磁性層22に通電を続けることで、確率的に非磁性層の弱い部分(膜質が悪い、膜厚が薄い等)が破壊される。
本発明の「STT及びSOT併用」構成の場合の磁気抵抗効果素子は、STT効果の他に、SOT効果を利用する。これにより、磁気抵抗効果素子に印加する電圧を小さくすることができ、かつスピン軌道トルク配線に流す電流の電流密度も小さくすることができる。磁気抵抗効果素子に印加する電圧を小さくすることで、素子の長寿命化を図ることができる。またスピン軌道トルク配線に流す電流の電流密度を小さくすることで、エネルギー効率が著しく低下することを避けることができる。
スピン軌道トルク配線に流す電流の電流密度は1×10A/cm未満であることが好ましい。スピン軌道トルク配線に流す電流の電流密度が大きすぎると、スピン軌道トルク配線に流れる電流によって熱が生じる。熱が第1強磁性金属層に加わると、第1強磁性金属層の磁化の安定性が失われ、想定外の磁化反転等が生じる場合がある。このような想定外の磁化反転が生じると、記録した情報が書き換わるという問題が生じる。すなわち、想定外の磁化反転を避けるためには、スピン軌道トルク配線に流す電流の電流密度が大きくなりすぎないようにすることが好ましい。スピン軌道トルク配線に流す電流の電流密度は1×10A/cm未満であれば、少なくとも発生する熱により磁化反転が生じることを避けることができる。
 図11は、本発明の他の「STT及びSOT併用」構成の磁気抵抗効果素子の例を示すものである。
図11に示す磁気抵抗効果素子200において、スピン軌道トルク配線50は磁気抵抗効果素子20の積層方向に備えた上面接合部51(上述のスピン軌道トルク配線40に相当)の他に、第1強磁性金属層23の側壁に接合する側壁接合部52を有する。
スピン軌道トルク配線50に電流を流すと、上面接合部51で生成される純スピン流Jに加えて、側壁接合部52で純スピン流J’が生成される。
従って、純スピン流Jが磁気抵抗効果素子20の上面からキャップ層24を介して第1強磁性金属層23に流れ込むだけでなく、純スピン流J’が第1強磁性金属層23の側壁から流れ込むので、SOT効果が増強される。
 図12は、本発明の他の実施形態に係る磁気抵抗効果素子を示すものである。
 図12に示す磁気抵抗効果素子300では、基板10側にスピン軌道トルク配線40を有する。この場合、固定層である第1強磁性金属層23と自由層である第2強磁性金属層24の積層順が図1に示す磁気抵抗効果素子100とは逆になる。
 図12に示す磁気抵抗効果素子300では、基板10、スピン軌道トルク配線40、第1強磁性金属層23、非磁性層22、第2強磁性金属層21、キャップ層24、配線30の順で積層される。第1強磁性金属層23は、第3強磁性金属層21よりも先に積層されるため、格子歪等の影響を受ける可能性が磁気抵抗効果素子100より低い。その結果、磁気抵抗効果素子300では、第1強磁性金属層23の垂直磁気異方性を高められている。第21強磁性金属層23の垂直磁気異方性が高まると、磁気抵抗効果素子のMR比を高めることができる。
 図13は、図1に示した磁気抵抗効果素子100において、磁気抵抗効果素子20の積層方向に電流を流す第1電源110と、スピン軌道トルク配線40に電流を流す第2電源120とを示したものである。
 図5や図13に示す本実施形態の磁気抵抗効果素子100において、積層が後で基板10から遠い側に配置する第2強磁性金属層23が磁化自由層とされ、積層が先で基板10に近い側に配置する第2強磁性金属層21が磁化固定層(ピン層)とされている、いわゆるボトムピン構造の例を挙げたが、磁気抵抗効果素子100の構造は特に限定されるものではなく、いわゆるトップピン構造であってもよい。
 第1電源110は、配線30とスピン軌道トルク配線40とに接続される。第1電源110は磁気抵抗効果素子100の積層方向に流れる電流を制御することができる。
第2電源120は、スピン軌道トルク配線40の両端に接続されている。第2電源120は、磁気抵抗効果素子20の積層方向に対して直交する方向に流れる電流である、スピン軌道トルク配線40に流れる電流を制御することができる。
上述のように、磁気抵抗効果素子20の積層方向に流れる電流はSTTを誘起する。これに対して、スピン軌道トルク配線40に流れる電流はSOTを誘起する。STT及びSOTはいずれも第1強磁性金属層23の磁化反転に寄与する。
 このように、磁気抵抗効果素子20の積層方向と、この積層方向に直行する方向に流れる電流量を2つの電源によって制御することで、SOTとSTTが磁化反転に対して寄与する寄与率を自由に制御することができる。
 例えば、デバイスに大電流を流すことができない場合は磁化反転に対するエネルギー効率の高いSTTが主となるように制御することができる。すなわち、第1電源110から流れる電流量を増やし、第2電源120から流れる電流量を少なくすることができる。
 また、例えば薄いデバイスを作製する必要があり、非磁性層22の厚みを薄くせざる得ない場合は、非磁性層22に流れる電流を少なくことが求められる。この場合は、第1電源110から流れる電流量を少なくし、第2電源120から流れる電流量を多くし、SOTの寄与率を高めることができる。
 第1電源110及び第2電源120は公知のものを用いることができる。
 上述のように、本発明の「STT及びSOT併用」構成の場合の磁気抵抗効果素子によれば、STT及びSOTの寄与率を、第1電源及び第2電源から供給される電流量により自由に制御することができる。そのため、デバイスに要求される性能に応じて、STTとSOTの寄与率を自由に制御することができ、より汎用性の高い磁気抵抗効果素子として機能することができる。
(磁気メモリ)
 本発明の磁気メモリ(MRAM)は、本発明の磁気抵抗効果素子を複数備える。
(磁化反転方法)
磁化反転方法は、本発明の磁気抵抗効果素子において、スピン軌道トルク配線に流れる電流密度が1×10A/cm未満とするものである。
スピン軌道トルク配線に流す電流の電流密度が大きすぎると、スピン軌道トルク配線に流れる電流によって熱が生じる。熱が第1強磁性金属層に加わると、第1強磁性金属層の磁化の安定性が失われ、想定外の磁化反転等が生じる場合がある。このような想定外の磁化反転が生じると、記録した情報が書き換わるという問題が生じる。すなわち、想定外の磁化反転を避けるためには、スピン軌道トルク配線に流す電流の電流密度が大きくなりすぎないようにすることが好ましい。スピン軌道トルク配線に流す電流の電流密度は1×10A/cm未満であれば、少なくとも発生する熱により磁化反転が生じることを避けることができる。
磁化反転方法は、本発明の磁気抵抗効果素子において、「STT及びSOT併用」構成の場合、スピン軌道トルク配線の電源に電流を印加した後に、磁気抵抗効果素子の電源に電流を印加してもよい。
SOT磁化反転工程とSTT磁化反転工程は、同時に行ってもよいし、SOT磁化反転工程を事前に行った後にSTT磁化反転工程を加えて行ってもよい。すなわち、図13に示す磁気抵抗効果素子100においては、第1電源110と第2電源120から電流を同時に供給してもよいし、第2電流120から電流を供給後に、加えて第1電源110から電流を供給してもよいが、SOTを利用した磁化反転のアシスト効果をより確実に得るためには、スピン軌道トルク配線の電源に電流が印加した後に、磁気抵抗効果素子の電源に電流を印加することが好ましい。すなわち、第2電流120から電流を供給後に、加えて第1電源110から電流を供給することが好ましい。
1…第2強磁性金属層、2…スピン軌道トルク配線、10…基板、20…磁気抵抗効果素子、21…第1強磁性金属層、22…非磁性層、23…第2強磁性金属層、23’…接合部(第2強磁性金属層側)、24…キャップ層、24’…接合部(キャップ層側)、30…配線、40、50、51、52…スピン軌道トルク配線、40B…接合部分、40’…接合部(スピン軌道トルク配線側)、41、41A、41B…スピン流発生部、42A、42B、42C…低抵抗部、100,200,300…磁気抵抗効果素子、101…スピン流磁化反転素子、I…電流、S…上向きスピン、S…下向きスピン、M21,M23…磁化、I…第1電流経路、I…第2電流経路、110…第1電源、120…第2電源

Claims (8)

  1.  磁化の向きが可変な第2強磁性金属層と、
     前記第2強磁性金属層の面直方向に対して交差する方向に延在し、前記第2強磁性金属層に接合するスピン軌道トルク配線と、を備え、
    前記スピン軌道トルク配線層の、前記第2強磁性金属層に接合する接合部分のスピン抵抗は、前記第2強磁性金属層のスピン抵抗よりも大きいスピン流磁化反転素子。
  2. 前記スピン軌道トルク配線層は、スピン流を発生する材料からなるスピン流発生部と導電部とを有し、
    スピン流発生部の一部は前記接合部分を構成している請求項1に記載のスピン流磁化反転素子。
  3.  前記導電部の電気抵抗率は、前記スピン流発生部の電気抵抗率以下であることを特徴とする請求項1または2のいずれかに記載のスピン流磁化反転素子。
  4.  前記スピン流発生部は、タングステン、モリブデン、ニオブ、及び、これらの金属を少なくとも1つ以上含む合金からなる群から選択された材料からなる請求項1~3のいずれか一項に記載のスピン流磁化反転素子。
  5.  前記スピン軌道トルク配線は、前記第2強磁性金属層の側壁の一部に接する側壁接合部を有する請求項1~4のいずれか一項に記載のスピン流磁化反転素子。
  6.  請求項1~5のいずれか一項に記載のスピン流磁化反転素子と、磁化の向きが固定されている第2強磁性金属層と、前記第1強磁性金属層と前記第2強磁性金属層に挟持された非磁性層とを備える磁気抵抗効果素子。
  7. 前記第2強磁性金属層が前記第一強磁性金属層よりも積層方向において下方に位置する請求項6に記載の磁気抵抗効果素子。
  8.  請求項7に記載の磁気抵抗効果素子を複数備えた磁気メモリ。
PCT/JP2016/084968 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ WO2017090726A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/777,884 US10490731B2 (en) 2015-11-27 2016-11-25 Spin current magnetization rotational element, magnetoresistance effect element and magnetic memory
JP2017552725A JP6777649B2 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ
CN201680068794.2A CN108292705B (zh) 2015-11-27 2016-11-25 自旋流磁化反转元件、磁阻效应元件及磁存储器
US16/574,221 US10892401B2 (en) 2015-11-27 2019-09-18 Spin current magnetization rotational element, magnetoresistance effect element and magnetic memory

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2015232334 2015-11-27
JP2015-232334 2015-11-27
JP2016-053072 2016-03-16
JP2016053072 2016-03-16
JP2016056058 2016-03-18
JP2016-056058 2016-03-18
JP2016210533 2016-10-27
JP2016-210531 2016-10-27
JP2016210531 2016-10-27
JP2016-210533 2016-10-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/777,884 A-371-Of-International US10490731B2 (en) 2015-11-27 2016-11-25 Spin current magnetization rotational element, magnetoresistance effect element and magnetic memory
US16/574,221 Division US10892401B2 (en) 2015-11-27 2019-09-18 Spin current magnetization rotational element, magnetoresistance effect element and magnetic memory

Publications (1)

Publication Number Publication Date
WO2017090726A1 true WO2017090726A1 (ja) 2017-06-01

Family

ID=58763271

Family Applications (6)

Application Number Title Priority Date Filing Date
PCT/JP2016/084974 WO2017090728A1 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ
PCT/JP2016/084976 WO2017090730A1 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ
PCT/JP2016/084995 WO2017090736A1 (ja) 2015-11-27 2016-11-25 スピン流磁化反転型磁気抵抗効果素子及びスピン流磁化反転型磁気抵抗効果素子の製造方法
PCT/JP2016/084979 WO2017090733A1 (ja) 2015-11-27 2016-11-25 磁気抵抗効果素子、磁気メモリ、磁化反転方法、及び、スピン流磁化反転素子
PCT/JP2016/084968 WO2017090726A1 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ
PCT/JP2016/085001 WO2017090739A1 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子および磁気メモリ

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/JP2016/084974 WO2017090728A1 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ
PCT/JP2016/084976 WO2017090730A1 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ
PCT/JP2016/084995 WO2017090736A1 (ja) 2015-11-27 2016-11-25 スピン流磁化反転型磁気抵抗効果素子及びスピン流磁化反転型磁気抵抗効果素子の製造方法
PCT/JP2016/084979 WO2017090733A1 (ja) 2015-11-27 2016-11-25 磁気抵抗効果素子、磁気メモリ、磁化反転方法、及び、スピン流磁化反転素子

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085001 WO2017090739A1 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子および磁気メモリ

Country Status (5)

Country Link
US (12) US10586916B2 (ja)
EP (2) EP3382768B1 (ja)
JP (10) JP6777649B2 (ja)
CN (5) CN108292702B (ja)
WO (6) WO2017090728A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033185A (ja) * 2017-08-08 2019-02-28 株式会社東芝 磁気記憶素子及び磁気記憶装置
JP2019054079A (ja) * 2017-09-14 2019-04-04 株式会社東芝 磁気記憶装置
JP2019161175A (ja) * 2018-03-16 2019-09-19 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
CN110392931A (zh) * 2018-02-19 2019-10-29 Tdk株式会社 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件及磁存储器
CN110392932A (zh) * 2018-02-22 2019-10-29 Tdk株式会社 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件及磁存储器
CN111095530A (zh) * 2017-09-15 2020-05-01 国立大学法人东京工业大学 磁性体与BiSb的层叠构造的制造方法、磁阻存储器、纯自旋注入源
US11031541B2 (en) 2018-02-19 2021-06-08 Tdk Corporation Spin-orbit torque type magnetization rotating element, spin-orbit torque type magnetoresistance effect element, and magnetic memory

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292702B (zh) * 2015-11-27 2022-01-28 Tdk株式会社 磁阻效应元件、磁存储器、磁化反转方法及自旋流磁化反转元件
CN108701721B (zh) * 2016-12-02 2022-06-14 Tdk株式会社 自旋流磁化反转元件及其制造方法、磁阻效应元件、磁存储器
JP6792841B2 (ja) * 2017-04-07 2020-12-02 日本電信電話株式会社 スピン軌道相互作用の増大方法
JP6686990B2 (ja) * 2017-09-04 2020-04-22 Tdk株式会社 スピン軌道トルク型磁化反転素子及び磁気メモリ
JP7139701B2 (ja) * 2017-09-05 2022-09-21 Tdk株式会社 スピン流磁化反転素子、スピン軌道トルク型磁気抵抗効果素子、磁気メモリ及び高周波磁気素子
JP7098914B2 (ja) * 2017-11-14 2022-07-12 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
WO2019111765A1 (ja) * 2017-12-04 2019-06-13 株式会社村田製作所 磁気センサ
WO2019139025A1 (ja) * 2018-01-10 2019-07-18 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP6533356B1 (ja) * 2018-02-22 2019-06-19 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP7052448B2 (ja) * 2018-03-16 2022-04-12 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子、磁気メモリ及び発振器
US11610614B2 (en) * 2018-04-18 2023-03-21 Tohoku University Magnetoresistive element, magnetic memory device, and writing and reading method for magnetic memory device
CN111480240B (zh) * 2018-05-31 2024-03-22 Tdk株式会社 自旋轨道转矩型磁阻效应元件和磁存储器
US11211552B2 (en) * 2018-05-31 2021-12-28 Tdk Corporation Spin-orbit torque magnetoresistance effect element and magnetic memory
WO2019230341A1 (ja) * 2018-05-31 2019-12-05 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
US11374164B2 (en) * 2018-06-29 2022-06-28 Intel Corporation Multi-layer spin orbit torque electrodes for perpendicular magnetic random access memory
CN109285577B (zh) * 2018-08-31 2021-07-30 北京大学(天津滨海)新一代信息技术研究院 一种基于分子自旋态的超低功耗存储器件及数据存储方法
CN110890115A (zh) * 2018-09-07 2020-03-17 上海磁宇信息科技有限公司 一种自旋轨道矩磁存储器
WO2020053988A1 (ja) * 2018-09-12 2020-03-19 Tdk株式会社 リザボア素子及びニューロモルフィック素子
CN109301063B (zh) * 2018-09-27 2022-05-13 中国科学院微电子研究所 自旋轨道转矩驱动器件
US11165012B2 (en) * 2018-10-29 2021-11-02 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic device and magnetic random access memory
JP7219285B2 (ja) 2018-10-30 2023-02-07 田中貴金属工業株式会社 面内磁化膜、面内磁化膜多層構造、ハードバイアス層、磁気抵抗効果素子、およびスパッタリングターゲット
US11069853B2 (en) 2018-11-19 2021-07-20 Applied Materials, Inc. Methods for forming structures for MRAM applications
US10756259B2 (en) * 2018-11-20 2020-08-25 Applied Materials, Inc. Spin orbit torque MRAM and manufacture thereof
JP6970655B2 (ja) * 2018-12-04 2021-11-24 株式会社東芝 磁気記憶装置及びその製造方法
CN109638151B (zh) * 2018-12-04 2020-07-31 中国科学院上海微系统与信息技术研究所 存储单元、低温存储器及其读写方法
KR102604743B1 (ko) * 2018-12-11 2023-11-22 삼성전자주식회사 자기 메모리 장치
US10930843B2 (en) 2018-12-17 2021-02-23 Spin Memory, Inc. Process for manufacturing scalable spin-orbit torque (SOT) magnetic memory
US10600465B1 (en) 2018-12-17 2020-03-24 Spin Memory, Inc. Spin-orbit torque (SOT) magnetic memory with voltage or current assisted switching
US10658021B1 (en) 2018-12-17 2020-05-19 Spin Memory, Inc. Scalable spin-orbit torque (SOT) magnetic memory
US11276730B2 (en) * 2019-01-11 2022-03-15 Intel Corporation Spin orbit torque memory devices and methods of fabrication
CN109888089A (zh) * 2019-01-28 2019-06-14 北京航空航天大学 一种制备sot-mram底电极的方法
WO2020161814A1 (ja) * 2019-02-06 2020-08-13 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP7192611B2 (ja) * 2019-03-28 2022-12-20 Tdk株式会社 記憶素子、半導体装置、磁気記録アレイ及び記憶素子の製造方法
CN112753099B (zh) * 2019-03-28 2024-04-16 Tdk株式会社 存储元件、半导体装置、磁记录阵列和存储元件的制造方法
US20210351341A1 (en) * 2019-04-08 2021-11-11 Tdk Corporation Magnetic element, magnetic memory, reservoir element, recognizer, and method for manufacturing magnetic element
JP2021034480A (ja) * 2019-08-21 2021-03-01 国立大学法人東京工業大学 磁気記録デバイス
JP2021057357A (ja) * 2019-09-26 2021-04-08 国立大学法人東京工業大学 磁気抵抗メモリ
CN110752288B (zh) * 2019-09-29 2022-05-20 华中科技大学 一种基于非易失器件阵列构造可重构强puf的方法
US11895928B2 (en) * 2019-10-03 2024-02-06 Headway Technologies, Inc. Integration scheme for three terminal spin-orbit-torque (SOT) switching devices
US11328757B2 (en) * 2019-10-24 2022-05-10 Regents Of The University Of Minnesota Topological material for trapping charge and switching a ferromagnet
US11437059B2 (en) * 2019-11-07 2022-09-06 Kabushiki Kaisha Toshiba Magnetic head and magnetic recording device with stacked body material configurations
CN111235423B (zh) * 2020-01-15 2021-10-26 电子科技大学 室温高自旋霍尔角铂-稀土薄膜材料及其制备方法和应用
KR102608134B1 (ko) 2020-02-19 2023-12-01 양쯔 메모리 테크놀로지스 씨오., 엘티디. 자기 메모리 구조 및 디바이스
WO2021166155A1 (ja) * 2020-02-20 2021-08-26 Tdk株式会社 磁化回転素子、磁気抵抗効果素子および磁気メモリ
JP7168123B2 (ja) * 2020-03-13 2022-11-09 Tdk株式会社 磁化回転素子、磁気抵抗効果素子、磁気記録アレイ、高周波デバイスおよび磁化回転素子の製造方法
DE102020204391B4 (de) * 2020-04-03 2021-12-02 Infineon Technologies Ag Vorrichtung und verfahren zum detektieren eines magnetfelds unter ausnutzung des spin-bahn-drehmoment-effekts
US11489108B2 (en) 2020-04-28 2022-11-01 Western Digital Technologies, Inc. BiSb topological insulator with seed layer or interlayer to prevent sb diffusion and promote BiSb (012) orientation
US11844287B2 (en) * 2020-05-20 2023-12-12 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic tunneling junction with synthetic free layer for SOT-MRAM
US11495741B2 (en) 2020-06-30 2022-11-08 Western Digital Technologies, Inc. Bismuth antimony alloys for use as topological insulators
US11100946B1 (en) 2020-07-01 2021-08-24 Western Digital Technologies, Inc. SOT differential reader and method of making same
US11222656B1 (en) 2020-07-09 2022-01-11 Western Digital Technologies, Inc. Method to reduce baseline shift for a SOT differential reader
US11094338B1 (en) 2020-07-09 2021-08-17 Western Digital Technologies, Inc. SOT film stack for differential reader
JP2022043545A (ja) * 2020-09-04 2022-03-16 Tdk株式会社 磁気抵抗効果素子および磁気メモリ
US11282538B1 (en) 2021-01-11 2022-03-22 Seagate Technology Llc Non-local spin valve sensor for high linear density
US11805706B2 (en) 2021-03-04 2023-10-31 Tdk Corporation Magnetoresistance effect element and magnetic memory
US11961544B2 (en) 2021-05-27 2024-04-16 International Business Machines Corporation Spin-orbit torque (SOT) magnetoresistive random-access memory (MRAM) with low resistivity spin hall effect (SHE) write line
KR102550681B1 (ko) * 2021-07-21 2023-06-30 한양대학교 산학협력단 자화 씨드층과 자화 자유층 접합 계면의 비대칭 구조를 이용하는 스핀 소자
US11763973B2 (en) 2021-08-13 2023-09-19 Western Digital Technologies, Inc. Buffer layers and interlayers that promote BiSbx (012) alloy orientation for SOT and MRAM devices
US11532323B1 (en) 2021-08-18 2022-12-20 Western Digital Technologies, Inc. BiSbX (012) layers having increased operating temperatures for SOT and MRAM devices
US20230066358A1 (en) * 2021-08-30 2023-03-02 Infineon Technologies Ag Strayfield insensitive magnetic sensing device and method using spin orbit torque effect
CN113571632B (zh) * 2021-09-23 2021-12-10 南开大学 一种反常霍尔元件及其制备方法
US11875827B2 (en) 2022-03-25 2024-01-16 Western Digital Technologies, Inc. SOT reader using BiSb topological insulator
US11783853B1 (en) 2022-05-31 2023-10-10 Western Digital Technologies, Inc. Topological insulator based spin torque oscillator reader

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158554A (ja) * 2007-12-25 2009-07-16 Hitachi Ltd スピンホール効果素子を用いた磁気センサ、磁気ヘッド及び磁気メモリ
WO2013025994A2 (en) * 2011-08-18 2013-02-21 Cornell University Spin hall effect magnetic apparatus, method and applications
JP2014179618A (ja) * 2013-03-14 2014-09-25 Samsung Electronics Co Ltd スピン軌道相互作用基礎のスイッチングを利用する磁気トンネル接合を含む磁気メモリ構造
US20150036415A1 (en) * 2013-07-30 2015-02-05 Commissariat à l'Energie Atomique et aux Energies Alternatives Non-volatile memory cell
US20150213869A1 (en) * 2014-01-28 2015-07-30 Qualcomm Incorporated Single-phase gshe-mtj non-volatile flip-flop

Family Cites Families (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785241A (en) 1985-08-08 1988-11-15 Canon Denshi Kabushiki Kaisha Encoder unit using magnetoresistance effect element
JPH05217996A (ja) * 1992-02-05 1993-08-27 Mitsuba Electric Mfg Co Ltd メサ型半導体素子の形成方法
JP2000285413A (ja) * 1999-03-26 2000-10-13 Fujitsu Ltd スピンバルブ磁気抵抗効果型素子とその製造法、及びこの素子を用いた磁気ヘッド
US6937446B2 (en) * 2000-10-20 2005-08-30 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
US6761982B2 (en) 2000-12-28 2004-07-13 Showa Denko Kabushiki Kaisha Magnetic recording medium, production process and apparatus thereof, and magnetic recording and reproducing apparatus
JP2002208682A (ja) * 2001-01-12 2002-07-26 Hitachi Ltd 磁気半導体記憶装置及びその製造方法
JP2004179483A (ja) 2002-11-28 2004-06-24 Hitachi Ltd 不揮発性磁気メモリ
JP2004235512A (ja) * 2003-01-31 2004-08-19 Sony Corp 磁気記憶装置およびその製造方法
JP2006080379A (ja) * 2004-09-10 2006-03-23 Sharp Corp 異種結晶多層構造体ならびに異種結晶多層構造体を含む金属ベーストランジスタ、面発光レーザ、磁気抵抗膜および共鳴トンネルダイオード
JP2006100424A (ja) * 2004-09-28 2006-04-13 Tdk Corp 磁気記憶装置
JP2006156608A (ja) 2004-11-29 2006-06-15 Hitachi Ltd 磁気メモリおよびその製造方法
US7430135B2 (en) 2005-12-23 2008-09-30 Grandis Inc. Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density
JP2007266498A (ja) * 2006-03-29 2007-10-11 Toshiba Corp 磁気記録素子及び磁気メモリ
JP2007299931A (ja) * 2006-04-28 2007-11-15 Toshiba Corp 磁気抵抗効果素子および磁気メモリ
KR100709395B1 (ko) * 2006-06-23 2007-04-20 한국과학기술연구원 강자성체를 이용한 스핀 트랜지스터
WO2008099626A1 (ja) 2007-02-13 2008-08-21 Nec Corporation 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
JP2008311373A (ja) 2007-06-13 2008-12-25 Toshiba Corp 磁性多層膜通電素子
KR100855105B1 (ko) * 2007-06-14 2008-08-29 한국과학기술연구원 수직자화를 이용한 스핀 트랜지스터
US7978439B2 (en) 2007-06-19 2011-07-12 Headway Technologies, Inc. TMR or CPP structure with improved exchange properties
JP4820783B2 (ja) * 2007-07-11 2011-11-24 昭和電工株式会社 磁気記録媒体の製造方法および製造装置
JP2009094104A (ja) 2007-10-03 2009-04-30 Toshiba Corp 磁気抵抗素子
KR100938254B1 (ko) * 2007-12-13 2010-01-22 한국과학기술연구원 에피택셜 성장 강자성체-반도체 접합을 이용한 스핀트랜지스터
JP2009158877A (ja) 2007-12-28 2009-07-16 Hitachi Ltd 磁気メモリセル及びランダムアクセスメモリ
JP5036585B2 (ja) 2008-02-13 2012-09-26 株式会社東芝 磁性発振素子、この磁性発振素子を有する磁気ヘッド、および磁気記録再生装置
JP2009239135A (ja) 2008-03-28 2009-10-15 Tokyo Metropolitan Univ 磁気メモリセル及びそれを用いた磁気記憶装置、磁気記憶方法
JP5472820B2 (ja) * 2008-10-20 2014-04-16 日本電気株式会社 磁気抵抗素子、mram及び磁気抵抗素子の初期化方法
US20100148167A1 (en) 2008-12-12 2010-06-17 Everspin Technologies, Inc. Magnetic tunnel junction stack
WO2010080542A1 (en) * 2008-12-17 2010-07-15 Yadav Technology, Inc. Spin-transfer torque magnetic random access memory having magnetic tunnel junction with perpendicular magnetic anisotropy
US9368716B2 (en) * 2009-02-02 2016-06-14 Qualcomm Incorporated Magnetic tunnel junction (MTJ) storage element and spin transfer torque magnetoresistive random access memory (STT-MRAM) cells having an MTJ
US8072800B2 (en) * 2009-09-15 2011-12-06 Grandis Inc. Magnetic element having perpendicular anisotropy with enhanced efficiency
US8513749B2 (en) 2010-01-14 2013-08-20 Qualcomm Incorporated Composite hardmask architecture and method of creating non-uniform current path for spin torque driven magnetic tunnel junction
JP5725735B2 (ja) * 2010-06-04 2015-05-27 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
FR2963153B1 (fr) 2010-07-26 2013-04-26 Centre Nat Rech Scient Element magnetique inscriptible
FR2963152B1 (fr) * 2010-07-26 2013-03-29 Centre Nat Rech Scient Element de memoire magnetique
JP5565238B2 (ja) * 2010-09-24 2014-08-06 Tdk株式会社 磁気センサ及び磁気ヘッド
EP2674982B1 (en) * 2011-02-09 2020-08-19 Nec Corporation Thermoelectric conversion element, method for producing thermoelectric conversion element, and thermoelectric conversion method
US9006704B2 (en) * 2011-02-11 2015-04-14 Headway Technologies, Inc. Magnetic element with improved out-of-plane anisotropy for spintronic applications
US9196332B2 (en) * 2011-02-16 2015-11-24 Avalanche Technology, Inc. Perpendicular magnetic tunnel junction (pMTJ) with in-plane magneto-static switching-enhancing layer
JP5655646B2 (ja) * 2011-03-11 2015-01-21 Tdk株式会社 スピン素子及びこれを用いた磁気センサ及びスピンfet
CN103460374B (zh) * 2011-03-22 2016-02-10 瑞萨电子株式会社 磁存储器
JP5644620B2 (ja) * 2011-03-23 2014-12-24 Tdk株式会社 スピン伝導素子及び磁気ヘッド
US20120250189A1 (en) 2011-03-29 2012-10-04 Tdk Corporation Magnetic head including side shield layers on both sides of a mr element
SG185922A1 (en) * 2011-06-02 2012-12-28 Agency Science Tech & Res Magnetoresistive device
US8693241B2 (en) * 2011-07-13 2014-04-08 SK Hynix Inc. Semiconductor intergrated circuit device, method of manufacturing the same, and method of driving the same
US9293694B2 (en) 2011-11-03 2016-03-22 Ge Yi Magnetoresistive random access memory cell with independently operating read and write components
JPWO2013122024A1 (ja) * 2012-02-14 2015-05-11 Tdk株式会社 スピン注入電極構造及びそれを用いたスピン伝導素子
JP5935444B2 (ja) * 2012-03-29 2016-06-15 Tdk株式会社 スピン伝導素子、及びスピン伝導を用いた磁気センサ及び磁気ヘッド
CN104704564B (zh) 2012-08-06 2017-05-31 康奈尔大学 磁性纳米结构中基于自旋霍尔扭矩效应的电栅控式三端子电路及装置
US9076537B2 (en) * 2012-08-26 2015-07-07 Samsung Electronics Co., Ltd. Method and system for providing a magnetic tunneling junction using spin-orbit interaction based switching and memories utilizing the magnetic tunneling junction
US9105830B2 (en) * 2012-08-26 2015-08-11 Samsung Electronics Co., Ltd. Method and system for providing dual magnetic tunneling junctions using spin-orbit interaction-based switching and memories utilizing the dual magnetic tunneling junctions
WO2014036510A1 (en) 2012-09-01 2014-03-06 Purdue Research Foundation Non-volatile spin switch
US9099641B2 (en) * 2012-11-06 2015-08-04 The Regents Of The University Of California Systems and methods for implementing magnetoelectric junctions having improved read-write characteristics
US8981505B2 (en) * 2013-01-11 2015-03-17 Headway Technologies, Inc. Mg discontinuous insertion layer for improving MTJ shunt
KR102023626B1 (ko) 2013-01-25 2019-09-20 삼성전자 주식회사 스핀 홀 효과를 이용한 메모리 소자와 그 제조 및 동작방법
US9007837B2 (en) * 2013-02-11 2015-04-14 Sony Corporation Non-volatile memory system with reset control mechanism and method of operation thereof
US20140252439A1 (en) * 2013-03-08 2014-09-11 T3Memory, Inc. Mram having spin hall effect writing and method of making the same
US9130155B2 (en) * 2013-03-15 2015-09-08 Samsung Electronics Co., Ltd. Magnetic junctions having insertion layers and magnetic memories using the magnetic junctions
US8963222B2 (en) * 2013-04-17 2015-02-24 Yimin Guo Spin hall effect magnetic-RAM
WO2014204492A1 (en) * 2013-06-21 2014-12-24 Intel Corporation Mtj spin hall mram bit-cell and array
US9147833B2 (en) 2013-07-05 2015-09-29 Headway Technologies, Inc. Hybridized oxide capping layer for perpendicular magnetic anisotropy
US20150028440A1 (en) * 2013-07-26 2015-01-29 Agency For Science, Technology And Research Magnetoresistive device and method of forming the same
JP6413428B2 (ja) * 2013-08-02 2018-10-31 Tdk株式会社 磁気センサ、磁気ヘッド及び生体磁気センサ
US9076954B2 (en) * 2013-08-08 2015-07-07 Samsung Electronics Co., Ltd. Method and system for providing magnetic memories switchable using spin accumulation and selectable using magnetoelectric devices
US9461242B2 (en) * 2013-09-13 2016-10-04 Micron Technology, Inc. Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems
EP2851903B1 (en) * 2013-09-19 2017-03-01 Crocus Technology S.A. Self-referenced memory device and method for operating the memory device
US9741414B2 (en) * 2013-09-24 2017-08-22 National University Of Singapore Spin orbit and spin transfer torque-based spintronics devices
KR20150036987A (ko) * 2013-09-30 2015-04-08 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
US9460397B2 (en) 2013-10-04 2016-10-04 Samsung Electronics Co., Ltd. Quantum computing device spin transfer torque magnetic memory
US9691458B2 (en) 2013-10-18 2017-06-27 Cornell University Circuits and devices based on spin hall effect to apply a spin transfer torque with a component perpendicular to the plane of magnetic layers
US9343658B2 (en) * 2013-10-30 2016-05-17 The Regents Of The University Of California Magnetic memory bits with perpendicular magnetization switched by current-induced spin-orbit torques
WO2015068509A1 (ja) 2013-11-06 2015-05-14 日本電気株式会社 磁気抵抗効果素子、磁気メモリ、及び磁気記憶方法
US9099115B2 (en) * 2013-11-12 2015-08-04 HGST Netherlands B.V. Magnetic sensor with doped ferromagnetic cap and/or underlayer
US9384812B2 (en) * 2014-01-28 2016-07-05 Qualcomm Incorporated Three-phase GSHE-MTJ non-volatile flip-flop
US20150213867A1 (en) * 2014-01-28 2015-07-30 Qualcomm Incorporated Multi-level cell designs for high density low power gshe-stt mram
US9864950B2 (en) 2014-01-29 2018-01-09 Purdue Research Foundation Compact implementation of neuron and synapse with spin switches
US9824711B1 (en) 2014-02-14 2017-11-21 WD Media, LLC Soft underlayer for heat assisted magnetic recording media
SG10201501339QA (en) * 2014-03-05 2015-10-29 Agency Science Tech & Res Magnetoelectric Device, Method For Forming A Magnetoelectric Device, And Writing Method For A Magnetoelectric Device
JP6135018B2 (ja) 2014-03-13 2017-05-31 株式会社東芝 磁気抵抗素子および磁気メモリ
US10460804B2 (en) * 2014-03-14 2019-10-29 Massachusetts Institute Of Technology Voltage-controlled resistive devices
US10008248B2 (en) 2014-07-17 2018-06-26 Cornell University Circuits and devices based on enhanced spin hall effect for efficient spin transfer torque
US9941468B2 (en) 2014-08-08 2018-04-10 Tohoku University Magnetoresistance effect element and magnetic memory device
WO2016047254A1 (ja) * 2014-09-22 2016-03-31 ソニー株式会社 メモリセルユニットアレイ
US9218864B1 (en) * 2014-10-04 2015-12-22 Ge Yi Magnetoresistive random access memory cell and 3D memory cell array
CN104393169B (zh) * 2014-10-10 2017-01-25 北京航空航天大学 一种无需外部磁场的自旋轨道动量矩磁存储器
US10103317B2 (en) * 2015-01-05 2018-10-16 Inston, Inc. Systems and methods for implementing efficient magnetoelectric junctions
US9589619B2 (en) 2015-02-09 2017-03-07 Qualcomm Incorporated Spin-orbit-torque magnetoresistive random access memory with voltage-controlled anisotropy
WO2016159017A1 (ja) 2015-03-31 2016-10-06 国立大学法人東北大学 磁気抵抗効果素子、磁気メモリ装置、製造方法、動作方法、及び集積回路
US20160300999A1 (en) 2015-04-07 2016-10-13 Ge Yi Magnetoresistive Random Access Memory Cell
KR101683440B1 (ko) 2015-05-13 2016-12-07 고려대학교 산학협력단 자기 메모리 소자
KR102466032B1 (ko) * 2015-06-24 2022-11-11 타호 리서치 리미티드 로직 및 메모리 디바이스들을 위한 금속 스핀 초격자
US9768229B2 (en) 2015-10-22 2017-09-19 Western Digital Technologies, Inc. Bottom pinned SOT-MRAM bit structure and method of fabrication
US9830966B2 (en) 2015-10-29 2017-11-28 Western Digital Technologies, Inc. Three terminal SOT memory cell with anomalous Hall effect
US9608039B1 (en) * 2015-11-16 2017-03-28 Samsung Electronics Co., Ltd. Magnetic junctions programmable using spin-orbit interaction torque in the absence of an external magnetic field
CN108292702B (zh) 2015-11-27 2022-01-28 Tdk株式会社 磁阻效应元件、磁存储器、磁化反转方法及自旋流磁化反转元件
US10490735B2 (en) 2016-03-14 2019-11-26 Tdk Corporation Magnetic memory
JP2017199443A (ja) * 2016-04-27 2017-11-02 ソニー株式会社 半導体記憶装置、駆動方法、および電子機器
US10497417B2 (en) 2016-06-01 2019-12-03 Tdk Corporation Spin current assisted magnetoresistance effect device
US9734850B1 (en) 2016-06-28 2017-08-15 Western Digital Technologies, Inc. Magnetic tunnel junction (MTJ) free layer damping reduction
US9979401B2 (en) 2016-07-19 2018-05-22 Georgia Tech Research Corporation Magnetoelectric computational devices
WO2018063159A1 (en) * 2016-09-27 2018-04-05 Intel Corporation Spin transfer torque memory devices having heusler magnetic tunnel junctions
KR101998268B1 (ko) 2016-10-21 2019-07-11 한국과학기술원 반도체 소자
KR101825318B1 (ko) 2017-01-03 2018-02-05 고려대학교 산학협력단 스핀필터 구조체를 포함하는 자기 터널 접합 소자
US10211393B2 (en) 2017-02-23 2019-02-19 Sandisk Technologies Llc Spin accumulation torque MRAM
WO2018155562A1 (ja) 2017-02-24 2018-08-30 Tdk株式会社 磁化反転素子、磁気抵抗効果素子及びメモリデバイス
US11250897B2 (en) 2017-02-27 2022-02-15 Tdk Corporation Spin current magnetization rotational element, magnetoresistance effect element, and magnetic memory
JP6290487B1 (ja) 2017-03-17 2018-03-07 株式会社東芝 磁気メモリ
JP6316474B1 (ja) 2017-03-21 2018-04-25 株式会社東芝 磁気メモリ
US9953692B1 (en) 2017-04-11 2018-04-24 Sandisk Technologies Llc Spin orbit torque MRAM memory cell with enhanced thermal stability
JP6733822B2 (ja) * 2017-08-07 2020-08-05 Tdk株式会社 スピン流磁気抵抗効果素子及び磁気メモリ
US10374151B2 (en) * 2017-08-22 2019-08-06 Tdk Corporation Spin current magnetoresistance effect element and magnetic memory
US10134457B1 (en) * 2017-08-31 2018-11-20 Sandisk Technologies Llc Cross-point spin accumulation torque MRAM
JP2019047119A (ja) 2017-09-04 2019-03-22 Tdk株式会社 磁気抵抗効果素子、磁気メモリ、および磁気デバイス
US10229723B1 (en) 2017-09-12 2019-03-12 Sandisk Technologies Llc Spin orbit torque magnetoresistive random access memory containing composite spin hall effect layer including beta phase tungsten
JP6542319B2 (ja) 2017-09-20 2019-07-10 株式会社東芝 磁気メモリ
JP7098914B2 (ja) 2017-11-14 2022-07-12 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
US10361359B1 (en) * 2017-12-30 2019-07-23 Spin Memory, Inc. Magnetic random access memory with reduced internal operating temperature range
US10381548B1 (en) * 2018-02-08 2019-08-13 Sandisk Technologies Llc Multi-resistance MRAM
JP6610847B1 (ja) 2018-02-28 2019-11-27 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
US11502188B2 (en) 2018-06-14 2022-11-15 Intel Corporation Apparatus and method for boosting signal in magnetoelectric spin orbit logic
US10553783B2 (en) 2018-06-29 2020-02-04 Sandisk Technologies Llc Spin orbit torque magnetoresistive random access memory containing shielding element and method of making thereof
US10726893B2 (en) 2018-08-02 2020-07-28 Sandisk Technologies Llc Perpendicular SOT-MRAM memory cell using spin swapping induced spin current
JP2020035971A (ja) 2018-08-31 2020-03-05 Tdk株式会社 スピン流磁化回転型磁気素子、スピン流磁化回転型磁気抵抗効果素子及び磁気メモリ
US11264558B2 (en) 2018-09-11 2022-03-01 Intel Corporation Nano-rod spin orbit coupling based magnetic random access memory with shape induced perpendicular magnetic anisotropy
US11411047B2 (en) 2018-09-11 2022-08-09 Intel Corporation Stacked transistor bit-cell for magnetic random access memory
US11594270B2 (en) 2018-09-25 2023-02-28 Intel Corporation Perpendicular spin injection via spatial modulation of spin orbit coupling
US11605670B2 (en) 2018-10-30 2023-03-14 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic tunnel junction structures and related methods
US10726892B2 (en) 2018-12-06 2020-07-28 Sandisk Technologies Llc Metallic magnetic memory devices for cryogenic operation and methods of operating the same
US11127896B2 (en) 2019-01-18 2021-09-21 Everspin Technologies, Inc. Shared spin-orbit-torque write line in a spin-orbit-torque MRAM
KR102650546B1 (ko) 2019-01-28 2024-03-27 삼성전자주식회사 자기 기억 소자
JP7441483B2 (ja) 2019-08-23 2024-03-01 国立大学法人東北大学 磁気メモリ素子及びその製造方法、並びに磁気メモリ
US11177431B2 (en) 2019-12-02 2021-11-16 HeFeChip Corporation Limited Magnetic memory device and method for manufacturing the same
US11217744B2 (en) 2019-12-10 2022-01-04 HeFeChip Corporation Limited Magnetic memory device with multiple sidewall spacers covering sidewall of MTJ element and method for manufacturing the same
US11387406B2 (en) 2020-01-17 2022-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetic of forming magnetic tunnel junction device using protective mask
US11139340B2 (en) 2020-02-12 2021-10-05 Tdk Corporation Spin element and reservoir element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158554A (ja) * 2007-12-25 2009-07-16 Hitachi Ltd スピンホール効果素子を用いた磁気センサ、磁気ヘッド及び磁気メモリ
WO2013025994A2 (en) * 2011-08-18 2013-02-21 Cornell University Spin hall effect magnetic apparatus, method and applications
JP2014179618A (ja) * 2013-03-14 2014-09-25 Samsung Electronics Co Ltd スピン軌道相互作用基礎のスイッチングを利用する磁気トンネル接合を含む磁気メモリ構造
US20150036415A1 (en) * 2013-07-30 2015-02-05 Commissariat à l'Energie Atomique et aux Energies Alternatives Non-volatile memory cell
US20150213869A1 (en) * 2014-01-28 2015-07-30 Qualcomm Incorporated Single-phase gshe-mtj non-volatile flip-flop

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033185A (ja) * 2017-08-08 2019-02-28 株式会社東芝 磁気記憶素子及び磁気記憶装置
JP2019054079A (ja) * 2017-09-14 2019-04-04 株式会社東芝 磁気記憶装置
CN111095530A (zh) * 2017-09-15 2020-05-01 国立大学法人东京工业大学 磁性体与BiSb的层叠构造的制造方法、磁阻存储器、纯自旋注入源
CN111095530B (zh) * 2017-09-15 2023-11-14 国立大学法人东京工业大学 磁性体与BiSb的层叠构造的制造方法、磁阻存储器、纯自旋注入源
US11637234B2 (en) 2017-09-15 2023-04-25 Tokyo Institute Of Technology Manufacturing method for multilayer structure of magnetic body and BiSb layer, magnetoresistive memory, and pure spin injection source
CN110392931A (zh) * 2018-02-19 2019-10-29 Tdk株式会社 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件及磁存储器
US11031541B2 (en) 2018-02-19 2021-06-08 Tdk Corporation Spin-orbit torque type magnetization rotating element, spin-orbit torque type magnetoresistance effect element, and magnetic memory
CN110392931B (zh) * 2018-02-19 2022-05-03 Tdk株式会社 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件及磁存储器
US11538984B2 (en) 2018-02-19 2022-12-27 Tdk Corporation Spin element and magnetic memory
US11903327B2 (en) 2018-02-19 2024-02-13 Tdk Corporation Spin element and magnetic memory
CN110392932A (zh) * 2018-02-22 2019-10-29 Tdk株式会社 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件及磁存储器
CN110392932B (zh) * 2018-02-22 2023-09-26 Tdk株式会社 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件及磁存储器
JP2019161175A (ja) * 2018-03-16 2019-09-19 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ

Also Published As

Publication number Publication date
WO2017090733A1 (ja) 2017-06-01
JPWO2017090733A1 (ja) 2018-09-13
US10522742B2 (en) 2019-12-31
EP3382768B1 (en) 2020-12-30
US20180351082A1 (en) 2018-12-06
US20200035911A1 (en) 2020-01-30
CN108292705B (zh) 2022-01-18
CN108292702A (zh) 2018-07-17
US11637237B2 (en) 2023-04-25
JP6777094B2 (ja) 2020-10-28
JPWO2017090730A1 (ja) 2018-09-13
US20220231221A1 (en) 2022-07-21
JP6777649B2 (ja) 2020-10-28
WO2017090739A1 (ja) 2017-06-01
WO2017090730A1 (ja) 2017-06-01
US20220223786A1 (en) 2022-07-14
JPWO2017090726A1 (ja) 2018-09-13
EP3382768A1 (en) 2018-10-03
EP3382767A4 (en) 2019-07-17
US10490731B2 (en) 2019-11-26
JP2021082841A (ja) 2021-05-27
JP7168922B2 (ja) 2022-11-10
US10892401B2 (en) 2021-01-12
EP3382767B1 (en) 2020-12-30
JPWO2017090728A1 (ja) 2018-09-13
JPWO2017090736A1 (ja) 2018-09-13
CN114361329A (zh) 2022-04-15
JP6621839B2 (ja) 2019-12-18
US10586916B2 (en) 2020-03-10
JPWO2017090739A1 (ja) 2018-09-13
US20180337326A1 (en) 2018-11-22
US20180351085A1 (en) 2018-12-06
CN108292704B (zh) 2021-09-07
EP3382768A4 (en) 2019-07-24
WO2017090728A1 (ja) 2017-06-01
US11374166B2 (en) 2022-06-28
US20180351084A1 (en) 2018-12-06
US20230210017A1 (en) 2023-06-29
JP2020031234A (ja) 2020-02-27
JP2022185126A (ja) 2022-12-13
CN108292703B (zh) 2022-03-29
CN108292704A (zh) 2018-07-17
US20180350417A1 (en) 2018-12-06
US20210184106A1 (en) 2021-06-17
JP2021002694A (ja) 2021-01-07
CN108292703A (zh) 2018-07-17
US20180351083A1 (en) 2018-12-06
CN108292705A (zh) 2018-07-17
JP7495463B2 (ja) 2024-06-04
CN108292702B (zh) 2022-01-28
US10964885B2 (en) 2021-03-30
JP7035147B2 (ja) 2022-03-14
US10510948B2 (en) 2019-12-17
WO2017090736A1 (ja) 2017-06-01
EP3382767A1 (en) 2018-10-03
JP6845300B2 (ja) 2021-03-17
US11355698B2 (en) 2022-06-07
US20200083439A1 (en) 2020-03-12
JP6777093B2 (ja) 2020-10-28

Similar Documents

Publication Publication Date Title
JP7035147B2 (ja) スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ
JP6642680B2 (ja) スピン流磁化回転素子、磁気抵抗効果素子及び磁気メモリ
JP6733822B2 (ja) スピン流磁気抵抗効果素子及び磁気メモリ
JP2019047120A (ja) スピン流磁化反転素子、スピン軌道トルク型磁気抵抗効果素子、磁気メモリ及び高周波磁気素子
JP2018093059A (ja) スピン流磁化反転素子、磁気抵抗効果素子および磁気メモリ
JP2019041098A (ja) スピン流磁気抵抗効果素子及び磁気メモリ
WO2018101028A1 (ja) スピン流磁化反転素子とその製造方法、磁気抵抗効果素子、磁気メモリ
JP2018074139A (ja) 電流磁場アシスト型スピン流磁化反転素子、磁気抵抗効果素子、磁気メモリおよび高周波フィルタ
JP7124788B2 (ja) スピン流磁化回転型磁気抵抗効果素子、及び磁気メモリ
US20240130247A1 (en) Magnetization rotational element and magnetoresistive effect element
JP2020188138A (ja) 記憶素子、半導体装置及び磁気記録アレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552725

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868669

Country of ref document: EP

Kind code of ref document: A1