JP6777093B2 - スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ - Google Patents

スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ Download PDF

Info

Publication number
JP6777093B2
JP6777093B2 JP2017552728A JP2017552728A JP6777093B2 JP 6777093 B2 JP6777093 B2 JP 6777093B2 JP 2017552728 A JP2017552728 A JP 2017552728A JP 2017552728 A JP2017552728 A JP 2017552728A JP 6777093 B2 JP6777093 B2 JP 6777093B2
Authority
JP
Japan
Prior art keywords
spin
metal layer
ferromagnetic metal
group
torque wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017552728A
Other languages
English (en)
Other versions
JPWO2017090730A1 (ja
Inventor
陽平 塩川
陽平 塩川
智生 佐々木
智生 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of JPWO2017090730A1 publication Critical patent/JPWO2017090730A1/ja
Application granted granted Critical
Publication of JP6777093B2 publication Critical patent/JP6777093B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1697Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/18Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B15/00Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B15/00Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects
    • H03B15/006Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects using spin transfer effects or giant magnetoresistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Description

本発明は、スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリに関する。
本願は、2015年11月27日に、日本に出願された特願2015−232334号、2016年3月16日に、日本に出願された特願2016−53072号、2016年3月18日に、日本に出願された特願2016−56058号、2016年10月27日に、日本に出願された特願2016−210531号、2016年10月27日に、日本に出願された特願2016−210533号に基づき優先権を主張し、その内容をここに援用する。
強磁性層と非磁性層の多層膜からなる巨大磁気抵抗(GMR)素子及び非磁性層として絶縁層(トンネルバリア層、バリア層)を用いたトンネル磁気抵抗(TMR)素子が知られている。一般に、TMR素子はGMR素子と比較して素子抵抗が高いものの、磁気抵抗(MR)比はGMR素子のMR比より大きい。そのため、磁気センサ、高周波部品、磁気ヘッド及び不揮発性ランダムアクセスメモリ(MRAM)用の素子として、TMR素子に注目が集まっている。
MRAMは、絶縁層を挟む二つの強磁性層の互いの磁化の向きが変化するとTMR素子の素子抵抗が変化するという特性を利用してデータを読み書きする。MRAMの書き込み方式としては、電流が作る磁場を利用して書き込み(磁化反転)を行う方式や磁気抵抗素子の積層方向に電流を流して生ずるスピントランスファートルク(STT)を利用して書き込み(磁化反転)を行う方式が知られている。STTを用いたTMR素子の磁化反転はエネルギーの効率の視点から考えると効率的ではあるが、磁化反転をさせるための反転電流密度が高い。TMR素子の長寿命の観点から、この反転電流密度は低いことが望ましい。この点は、GMR素子についても同様である。
近年、STTとは異なるメカニズムで反転電流を低減する手段としてスピンホール効果により生成された純スピン流を利用した磁化反転に注目が集まっている(例えば、非特許文献1)。スピンホール効果によって生じた純スピン流は、スピン軌道トルク(SOT)を誘起し、SOTにより磁化反転を起こす。あるいは、異種材料の界面におけるラシュバ効果によって生じた純スピン流でも同様のSOTにより磁化反転を起こす。純スピン流は上向きスピンの電子と下向きスピン電子が同数で互いに逆向きに流れることで生み出されるものであり、電荷の流れは相殺されている。そのため磁気抵抗効果素子に流れる電流はゼロであり、反転電流密度の小さな磁気抵抗効果素子の実現が期待されている。
スピンホール効果は、スピン軌道相互作用の大きさに依存する。非特許文献2では、スピン軌道トルク配線にスピン軌道相互作用を生じるd電子を有した重金属であるTaを用いている。また、半導体であるGaAsでは空間的な反転対称性の崩れから生じる結晶内部の電場によってスピン軌道相互作用が生じることが知られている。
I.M.Miron, K.Garello, G.Gaudin, P.-J.Zermatten, M.V.Costache, S.Auffret, S.Bandiera, B.Rodmacq, A.Schuhl, and P.Gambardella, Nature, 476, 189 (2011). S.Fukami, T.Anekawa, C.Zhang,and H.Ohno, Nature Nanotechnology, DOI:10.1038/NNANO.2016.29.
非特許文献2では、SOTによる反転電流密度(以下、「SOT反転電流密度」ということがある。)はSTTによる反転電流密度と同程度と報告されている。SOTによる反転電流密度のさらなる低減のためには、高いスピンホール効果を生じる材料すなわち、純スピン流の発生効率が高い材料を使用する必要がある。
本発明は上記問題に鑑みてなされたものであり、従来よりも低い反転電流密度で純スピン流による磁化反転が可能なスピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリを提供することを目的とする。
SOTの発現原因はまだ十分明確になっていないが、大きく分けて内的要因と、外的要因があると考えられている。
内的要因は、スピン軌道トルク配線を構成する材料そのものに起因するものである。例えば、スピン軌道トルク配線に用いられる材料種に起因するもの、スピン軌道トルク配線の結晶構造に起因するものがある。
一方、外的要因は外部から加えられた作用に起因し、内的要因以外のものである。例えば、スピン軌道トルク配線が含む不純物等の散乱因子に起因するもの、スピン軌道トルク配線とその他の層の界面に起因するものがある。
本発明者らは、種々の発現原因の中で、スピン軌道トルク配線の結晶構造に起因するものに着目した。従来、スピン軌道トルク配線の材料としては単体の重金属が用いられてきた。これは、SOTという物理現象を解明するためにはシンプルな材料の方が適しているからである。これに対して本発明者らは、反転対称性の崩れた結晶構造を有する合金を中心に広汎な組み合わせでSOTの効果を検討した。かかる材料では、その結晶構造の対称性の崩れから生じる内場によって大きなSOTの効果が期待できるからである。そして、従来の単体のSOT反転電流密度に比べて2桁程度低いSOT反転電流密度を示す所定の材料を見出し、本発明を完成させたのである。
本発明は、上記課題を解決するため、以下の手段を提供する。
(1)本発明の一態様に係るスピン流磁化反転素子は、磁化の向きが可変な第1強磁性金属層と、前記第1強磁性金属層の面直方向である第1方向に対して交差する第2方向に延在し、第1強磁性金属層に接合するスピン軌道トルク配線と、を備え、前記スピン軌道トルク配線の材料が式A1−xで表される二元合金、金属炭化物、又は金属窒化物であり、前記AがAl、Ti、及び、Ptからなる群から選択された元素であって、前記BがAl、Cr、Mn、Fe、Co、Ni、Y、Ru、Rh、及び、Irからなる群から選択された元素であり、かつ、空間群Pm−3m、又は、Fd−3mの対称性を有する立方晶構造であるか、又は、前記AがAl、Si、Ti、Y、及び、Taからなる群から選択された元素であって、前記BがC、N、Co、Pt、Au及びBiからなる群から選択された元素であり、かつ、空間群Fm−3mの対称性を有する立方晶構造である。
(2)上記(1)に記載のスピン流磁化反転素子において、前記材料が、CsCl構造であるAlFe1−x、AlCo1−x、AlNi1−x、AlRu1−x、AlRh1−x、AlIr1−x、TiFe1−x、TiCo1−x、及び、TiNi1−xからなる群から選択されたものであってもよい。
(3)上記(1)に記載のスピン流磁化反転素子において、前記材料が、TiNi構造であるTiFe1−x、TiCo1−x、及び、TiNi1−xからなる群から選択されたものであってもよい。
(4)上記(1)に記載のスピン流磁化反転素子において、前記材料が、CuAu構造であるPtAl1−x、PtCr1−x、PtMn1−x、PtFe1−x、及び、Pt1−xからなる群から選択されたものであってもよい。
(5)上記(1)に記載のスピン流磁化反転素子において、前記材料が、NaCl構造であるAl1−x、Ti1−x、Ti1−x、YBi1−x、及び、Ta1−xからなる群から選択されたものであってもよい。
(6)上記(1)に記載のスピン流磁化反転素子において、前記材料が、BiF構造であるAlFe1−x、SiMn1−x、及び、SiFe1−xからなる群から選択されたものであってもよい。
(7)上記(1)に記載のスピン流磁化反転素子において、前記材料が、CaF構造であるAlPt1−x、AlAu1−x、及び、AlCo1−xからなる群から選択されたものであってもよい。
(8)本発明の一態様に係る磁気抵抗効果素子は、上記(1)〜(7)のいずれか一つに記載のスピン流磁化反転素子と、磁化方向が固定されている第2強磁性金属層と、前記第1強磁性金属層と前記第2強磁性金属層に挟持された非磁性層とを備える。
(9)本発明の一態様に係る磁気メモリは、上記(8)に記載の磁気抵抗効果素子を複数備える。
本発明のスピン流磁化反転素子によれば、従来よりも低い反転電流密度で純スピン流による磁化反転が可能なスピン流磁化反転素子を提供することができる。
本発明のスピン流磁化反転素子の一実施形態を説明するための模式図であり、(a)は平面図であり、(b)は断面図である。 スピンホール効果について説明するための模式図である。 本発明の一実施形態に係る磁気抵抗効果素子の一実施形態を説明するための模式図であり、(a)は平面図であり、(b)は断面図である。
以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。本発明の素子において、本発明の効果を奏する範囲で他の層を備えてもよい。
(スピン流磁化反転素子)
図1に、本発明の一実施形態に係るスピン流磁化反転素子の一例の模式図を示す。図1(a)は平面図であり、図1(b)は図1(a)のスピン軌道トルク配線2の幅方向の中心線であるX−X線で切った断面図である。
図1に示すスピン流磁化反転素子10は、磁化の向きが可変な第1強磁性金属層1と、第1強磁性金属層1の面直方向である第1方向(z方向)に対して交差する第2方向(x方向)に延在し、第1強磁性金属層1の第1面1aに接合するスピン軌道トルク配線2と、を備える。スピン軌道トルク配線2の材料は、式A1−xで表される二元合金、金属炭化物、又は金属窒化物であり、前記AがAl、Ti、及び、Ptからなる群から選択された元素であって、前記BがAl、Cr、Mn、Fe、Co、Ni、Y、Ru、Rh、及び、Irからなる群から選択された元素であり、かつ、空間群Pm−3m、又は、Fd−3mの対称性を有する立方晶構造であるか、又は、前記AがAl、Si、Ti、Y、及び、Taからなる群から選択された元素であり、前記BがC、N、Co、Pt、Au及びBiからなる群から選択された元素であり、かつ、空間群Fm−3mの対称性を有する立方晶構造である。
本発明者らは、立方晶の回転対称性が良い重金属をホスト金属に、非対称性を生じる異種の置換金属として軽元素を混ぜて回転対称性を崩すこと、及び、高い磁気抵抗効果を得るため、第1強磁性金属層の材料として主に用いられているFeとの格子整合性がよいこと、をスピン軌道トルク配線の二元合金を中心とする材料の探索方針とした。スピン軌道トルク配線の材料において、ホスト材料に混ぜる置換材料は不純物ではなく結晶を構成する材料である点に留意されたい。但し、スピン軌道トルク配線の材料は、原料もしくは製造工程において不可避的に混入する不可避不純物を含有していてもよい。
なお、AがAlでかつBがAlである場合は二元合金、金属炭化物、又は金属窒化物のいずれでもないから、この場合は、本発明には含まれない。
以下、第1強磁性金属層1の面直方向もしくは第1強磁性金属層1とスピン軌道トルク配線2とが積層する方向(第1方向)をz方向、z方向と垂直でスピン軌道トルク配線2と平行な方向(第2方向)をx方向、x方向及びz方向と直交する方向(第3方向)をy方向とする。
図1を含めて以下では、スピン軌道トルク配線が第1強磁性金属層の面直方向である第1方向に対して交差する方向に延在する構成の例として、第1方向に対して直交する方向に延在する構成の場合について説明する。
スピン軌道相互作用は空間反転対称性が低い材料でより強く発生する。そのため、本発明のPm−3m、Fd−3m、又は、Fm−3mの空間群に属する立方晶構造で、かつ所定の二元合金、金属炭化物、又は金属窒化物である場合、結晶は対称性が良好であっても2種類の材料の差異から反転対称性が崩れ、高いスピン軌道相互作用を生じさせることができる。
<スピン軌道トルク配線>
スピン軌道トルク配線2は、スピン軌道トルク(SOT)を利用して磁化反転を行うために備えたものであって、電流が流れるとその内部にスピンホール効果によって純スピン流が生成する。
スピンホール効果とは、材料に電流を流した場合にスピン軌道相互作用に基づき、電流の向きに直交する方向に純スピン流が誘起される現象である。
図2は、スピンホール効果について説明するための模式図である。図2は、図1に示すスピン軌道トルク配線2をx方向に沿って切断した断面図である。図2に基づいてスピンホール効果により純スピン流が生み出されるメカニズムを説明する。
図2に示すように、スピン軌道トルク配線2の延在方向に電流Iを流すと、紙面手前側に配向した第1スピンS1と紙面奥側に配向した第2スピンS2はそれぞれ電流と直交する方向に曲げられる。通常のホール効果とスピンホール効果とは運動(移動)する電荷(電子)が運動(移動)方向を曲げられる点で共通するが、通常のホール効果は磁場中で運動する荷電粒子がローレンツ力を受けて運動方向を曲げられるのに対して、スピンホール効果では磁場が存在しないのに電子が移動するだけ(電流が流れるだけ)で移動方向が曲げられる点で大きく異なる。
非磁性体(強磁性体ではない材料)では第1スピンS1の電子数と第2スピンS2の電子数とが等しいので、図中で上方向に向かう第1スピンS1の電子数と下方向に向かう第2スピンS2の電子数が等しい。そのため、電荷の正味の流れとしての電流はゼロである。この電流を伴わないスピン流は特に純スピン流と呼ばれる。
強磁性体中に電流を流した場合は、第1スピンS1と第2スピンS2が互いに反対方向に曲げられる点は同じである。一方で、強磁性体中では第1スピンS1と第2スピンS2のいずれかが多い状態であり、結果として電荷の正味の流れが生じてしまう(電圧が発生してしまう)点が異なる。従って、スピン軌道トルク配線2の材料としては、強磁性体だけからなる材料は含まれない。
ここで、第1スピンS1の電子の流れをJ、第2スピンS2の電子の流れをJ、スピン流をJと表すと、J=J−Jで定義される。図2においては、純スピン流としてJが図中の上方向に流れる。ここで、Jは分極率が100%の電子の流れである。
図1において、スピン軌道トルク配線2の上面に強磁性体を接触させると、純スピン流は強磁性体中に拡散して流れ込む。すなわち、第1強磁性金属層1にスピンが注入される。ここで、スピン軌道トルク配線2と第1強磁性金属層1との接合は、「直接」接合してもよいし、「他の層を介して」接合してもよく、スピン軌道トルク配線で発生した純スピン流が第1強磁性金属層に流れ込む構成であれば、スピン軌道トルク配線と第1強磁性金属層との接合(接続あるいは結合)の仕方は限定されない。
スピン軌道トルク配線2を構成する材料としては、CsCl構造であるAlFe1−x、AlCo1−x、AlNi1−x、AlRu1−x、AlRh1−x、AlIr1−x、TiFe1−x、TiCo1−x、及び、TiNi1−xからなる群から選択されたものを用いることができる。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2を構成する材料としては、TiNi構造であるTiFe1−x、TiCo1−x、及び、TiNi1−xからなる群から選択されたものを用いることができる。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2を構成する材料としては、CuAu構造であるPtAl1−x、PtCr1−x、PtMn1−x、PtFe1−x、及び、Pt1−xからなる群から選択されたものを用いることができる。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2を構成する材料としては、NaCl構造であるAl1−x、Ti1−x、Ti1−x、YBi1−x、及び、Ta1−xからなる群から選択されたものを用いることができる。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2を構成する材料としては、BiF構造であるAlFe1−x、SiMn1−x、及び、SiFe1−xからなる群から選択されたものを用いることができる。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2を構成する材料としては、CaF構造であるAlPt1−x、AlAu1−x、及び、AlCo1−xからなる群から選択されたものを用いることができる。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
<第1強磁性金属層>
図1に示すスピン流磁化反転素子においては、第1強磁性金属層は磁化方向が層に平行な面内方向である面内磁化膜でも、磁化方向が層に対して垂直方向である垂直磁化膜でもいずれでもよい。
図1に示すスピン流磁化反転素子において、第1強磁性金属層は平面視して、スピン軌道トルク配線の延在方向である第2方向を長軸とする形状異方性を有する。
このように第1強磁性金属層が細長状であることにより、この方向に磁化が反転しやすくなるので、その分、反転電流密度が小さくて済む。
図1に示すスピン流磁化反転素子においては、第1強磁性金属層はz方向から平面視して矩形(より正確には、長方形)であったが、楕円状であってもよいし、さらに他の形状であってもよい。
第1強磁性金属層については後でまた詳述する。
以下に、上記のスピン流磁化反転素子を用いた磁気抵抗効果素子について説明するが、上記のスピン流磁化反転素子の用途としては磁気抵抗効果素子に限られない。他の用途としては、例えば、上記のスピン流磁化反転素子を各画素に配設して、磁気光学効果を利用して入射光を空間的に変調する空間光変調器においても用いることができるし、磁気センサにおいて磁石の保磁力によるヒステリシスの効果を避けるために磁石の磁化容易軸に印加する磁場をSOTに置き換えてもよい。
(磁気抵抗効果素子)
本発明の一実施形態に係る磁気抵抗効果素子は、本発明のスピン流磁化反転素子と、磁化方向が固定されている第2強磁性金属層と、第1強磁性金属層と第2強磁性金属層に挟持された非磁性層とを備えるものである。
図3は、本発明のスピン流磁化反転素子の応用例であり、また、本発明の一実施形態に係る磁気抵抗効果素子でもある磁気抵抗効果素子の一例の模式図を示す。図3(a)は平面図であり、図3(b)は図3(a)のスピン軌道トルク配線2の幅方向の中心線であるX−X線で切った断面図である。
図3に示す磁気抵抗効果素子100は、本発明のスピン流磁化反転素子(第1強磁性金属層101とスピン軌道トルク配線120)と、磁化方向が固定された第2強磁性金属層103と、第1強磁性金属層101及び第2強磁性金属層103に挟持された非磁性層102とを有する。また、図3に示す磁気抵抗効果素子100は、磁気抵抗効果素子部105とスピン軌道トルク配線120とを有するということもできる。
図3においては、磁気抵抗効果素子100を作製する基板110も図示した。
本発明の一実施形態に係る磁気抵抗効果素子は、スピン軌道トルク配線120を備えることで、純スピン流によるSOTのみで磁気抵抗効果素子の磁化反転を行う構成(以下、「SOTのみ」構成ということがある)とすることもできるし、従来のSTTを利用する磁気抵抗効果素子において純スピン流によるSOTを併用する構成(以下、「STT及びSOT併用」構成ということがある)とすることもできる。なお、STTを利用する場合には、磁気抵抗効果素子100の積層方向に電流を流すための配線が必要となる。
図3を含めて以下では、スピン軌道トルク配線が磁気抵抗効果素子部の積層方向に対して交差する方向に延在する構成の例として、直交する方向に延在する構成の場合について説明する。
<磁気抵抗効果素子部>
磁気抵抗効果素子部105は、磁化方向が固定された第2強磁性金属層103と、磁化の向きが可変な第1強磁性金属層101と、第2強磁性金属層103及び第1強磁性金属層101に挟持された非磁性層102とを有する。
第2強磁性金属層103の磁化が一方向に固定され、第1強磁性金属層101の磁化の向きが相対的に変化することで、磁気抵抗効果素子部105として機能する。保磁力差型(擬似スピンバルブ型;Pseudo spin valve 型)のMRAMに適用する場合には、第2強磁性金属層の保持力は第1強磁性金属層の保磁力よりも大きいものであり、また、交換バイアス型(スピンバルブ;spin valve型)のMRAMに適用する場合には、第2強磁性金属層では反強磁性層との交換結合によって磁化方向が固定される。
また、磁気抵抗効果素子部105は、非磁性層102が絶縁体からなる場合は、トンネル磁気抵抗(TMR:Tunneling Magnetoresistance)素子であり、非磁性層102が金属からなる場合は巨大磁気抵抗(GMR:Giant Magnetoresistance)素子である。
本発明が備える磁気抵抗効果素子部としては、公知の磁気抵抗効果素子部の構成を用いることができる。例えば、各層は複数の層からなるものでもよいし、第2強磁性金属層の磁化方向を固定するための反強磁性層等の他の層を備えてもよい。
第2強磁性金属層103は磁化固定層や参照層、第1強磁性金属層101は磁化自由層や記憶層などと呼ばれる。
第2強磁性金属層103及び第1強磁性金属層101は、磁化方向が層に平行な面内方向である面内磁化膜でも、磁化方向が層に対して垂直方向である垂直磁化膜でもいずれでもよい。
第2強磁性金属層103の材料には、公知のものを用いることができる。例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属及びこれらの金属を1種以上含み強磁性を示す合金を用いることができる。またこれらの金属と、B、C、及びNの少なくとも1種以上の元素とを含む合金を用いることもできる。具体的には、Co−FeやCo−Fe−Bが挙げられる。
また、より高い出力を得るためにはCoFeSiなどのホイスラー合金を用いることが好ましい。ホイスラー合金は、XYZの化学組成をもつ金属間化合物を含み、Xは、周期表上でCo、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素であり、Yは、Mn、V、CrあるいはTi族の遷移金属でありXの元素種をとることもでき、Zは、III族からV族の典型元素である。例えば、CoFeSi、CoMnSiやCoMn1−aFeAlSi1−bなどが挙げられる。
また、第2強磁性金属層103の第1強磁性金属層101に対する保磁力をより大きくするために、第2強磁性金属層103と接する材料としてIrMn、PtMnなどの反強磁性材料を用いてもよい。さらに、第2強磁性金属層103の漏れ磁場を第1強磁性金属層101に影響させないようにするため、シンセティック強磁性結合の構造としてもよい。
さらに第2強磁性金属層103の磁化の向きを積層面に対して垂直にする場合には、CoとPtの積層膜を用いることが好ましい。具体的には、第2強磁性金属層103は[Co(0.24nm)/Pt(0.16nm)]/Ru(0.9nm)/[Pt(0.16nm)/Co(0.16nm)]/Ta(0.2nm)/FeB(1.0nm)とすることができる。
第1強磁性金属層101の材料として、強磁性材料、特に軟磁性材料を適用できる。例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、これらの金属を1種以上含む合金、これらの金属とB、C、及びNの少なくとも1種以上の元素とが含まれる合金等を用いることができる。具体的には、Co−Fe、Co−Fe−B、Ni−Feが挙げられる。
第1強磁性金属層101の磁化の向きを積層面に対して垂直にする場合には、第1強磁性金属層の厚みを2.5nm以下とすることが好ましい。第1強磁性金属層101と非磁性層102の界面で、第1強磁性金属層101に垂直磁気異方性を付加することができる。また、垂直磁気異方性は第1強磁性金属層101の膜厚を厚くすることによって効果が減衰するため、第1強磁性金属層101の膜厚は薄い方が好ましい。
非磁性層102には、公知の材料を用いることができる。
例えば、非磁性層102が絶縁体からなる場合(トンネルバリア層である場合)、その材料としては、Al、SiO、MgO、及び、MgAl等を用いることができる。またこれらの他にも、Al、Si、Mgの一部が、Zn、Be等に置換された材料等も用いることができる。これらの中でも、MgOやMgAlはコヒーレントトンネルが実現できる材料であるため、スピンを効率よく注入できる。
また、非磁性層102が金属からなる場合、その材料としては、Cu、Au、Ag等を用いることができる。
また、第1強磁性金属層101の非磁性層102と反対側の面には、図3に示すようにキャップ層104が形成されていることが好ましい。キャップ層104は、第1強磁性金属層101からの元素の拡散を抑制することができる。またキャップ層104は、磁気抵抗効果素子部105の各層の結晶配向性にも寄与する。その結果、キャップ層104を設けることで、磁気抵抗効果素子部105の第2強磁性金属層103及び第1強磁性金属層101の磁性を安定化し、磁気抵抗効果素子部105を低抵抗化することができる。
キャップ層104には、導電性が高い材料を用いることが好ましい。例えば、Ru、Ta、Cu、Ag、Au等を用いることができる。キャップ層104の結晶構造は、隣接する強磁性金属層の結晶構造に合せて、fcc構造、hcp構造またはbcc構造から適宜設定することが好ましい。
また、キャップ層104には、銀、銅、マグネシウム、及び、アルミニウムからなる群から選択されるいずれかを用いることが好ましい。詳細は後述するが、キャップ層104を介してスピン軌道トルク配線120と磁気抵抗効果素子部105が接続される場合、キャップ層104はスピン軌道トルク配線120から伝播するスピンを散逸しないことが好ましい。銀、銅、マグネシウム、及び、アルミニウム等は、スピン拡散長が100nm以上と長く、スピンが散逸しにくいことが知られている。
キャップ層104の厚みは、キャップ層104を構成する物質のスピン拡散長以下であることが好ましい。キャップ層104の厚みがスピン拡散長以下であれば、スピン軌道トルク配線120から伝播するスピンを磁気抵抗効果素子部105に十分伝えることができる。
<基板>
基板110は、平坦性に優れることが好ましい。平坦性に優れた表面を得るために、材料として例えば、Si、AlTiC等を用いることができる。
基板110のスピン軌道トルク配線120側の面には、下地層(図示略)が形成されていてもよい。下地層を設けると、基板110上に積層されるスピン軌道トルク配線120を含む各層の結晶配向性、結晶粒径等の結晶性を制御することができる。
下地層は、絶縁性を有していることが好ましい。スピン軌道トルク配線120等に流れる電流が散逸しないようにするためである。下地層には、種々のものを用いることができる。
例えば1つの例として、下地層には(001)配向したNaCl構造を有し、Ti、Zr、Nb、V、Hf、Ta、Mo、W、B、Al、Ceの群から選択される少なくとも1つの元素を含む窒化物の層を用いることができる。
他の例として、下地層にはXYOの組成式で表される(002)配向したペロブスカイト系導電性酸化物の層を用いることができる。ここで、サイトXはSr、Ce、Dy、La、K、Ca、Na、Pb、Baの群から選択された少なくとも1つの元素を含み、サイトYはTi、V、Cr、Mn、Fe、Co、Ni、Ga、Nb、Mo、Ru、Ir、Ta、Ce、Pbの群から選択された少なくとも1つの元素を含む。
他の例として、下地層には(001)配向したNaCl構造を有し、かつMg、Al、Ceの群から選択される少なくとも1つの元素を含む酸化物の層を用いることができる。
他の例として、下地層には(001)配向した正方晶構造または立方晶構造を有し、かつAl、Cr、Fe、Co、Rh、Pd、Ag、Ir、Pt、Au、Mo、Wの群から選択される少なくとも1つの元素を含む層を用いることができる。
また、下地層は一層に限られず、上述の例の層を複数層積層してもよい。下地層の構成を工夫することにより磁気抵抗効果素子部105の各層の結晶性を高め、磁気特性の改善が可能となる。
<上側配線>
第2強磁性金属層103の非磁性層102側と反対側の面(図3では上面)には、上側配線(図示略)を設けてもよい。
上側配線は、磁気抵抗効果素子部105の第2強磁性金属層103に電気的に接続され、この上側配線とスピン軌道トルク配線120と電源(図示略)とで閉回路を構成し、磁気抵抗効果素子部105の積層方向に電流が流される。
上側配線の材料は、導電性の高い材料であれば特に問わない。例えば、アルミニウム、銀、銅、金等を用いることができる。
「STT及びSOT併用」構成の場合は、第1電源と第2電源の二つの電源を用いてもよい。
第1電源は、上側配線とスピン軌道トルク配線120とに接続される。第1電源は磁気抵抗効果素子部105の積層方向に流れる電流を制御することができる。
第2電源150は、スピン軌道トルク配線120の両端に接続される。第2電源150は、磁気抵抗効果素子部105の積層方向に対して直交する方向に流れる電流である、スピン軌道トルク配線120に流れる電流を制御することができる。
上述のように、磁気抵抗効果素子部105の積層方向に流れる電流はSTTを誘起する。これに対して、スピン軌道トルク配線120に流れる電流はSOTを誘起する。STT及びSOTはいずれも第1強磁性金属層101の磁化反転に寄与する。
このように、磁気抵抗効果素子部105の積層方向と、この積層方向に直行する方向に流れる電流量を2つの電源によって制御することで、SOTとSTTが磁化反転に対して寄与する寄与率を自由に制御することができる。
例えば、デバイスに大電流を流すことができない場合は磁化反転に対するエネルギー効率の高いSTTが主となるように制御することができる。すなわち、第1電源から流れる電流量を増やし、第2電源から流れる電流量を少なくすることができる。
また、例えば薄いデバイスを作製する必要があり、非磁性層102の厚みを薄くせざる得ない場合は、非磁性層102に流れる電流を少なくことが求められる。この場合は、第1電源から流れる電流量を少なくし、第2電源から流れる電流量を多くし、SOTの寄与率を高めることができる。
第1電源及び第2電源は公知のものを用いることができる。
上述のように、本発明の「STT及びSOT併用」構成の場合の磁気抵抗効果素子によれば、STT及びSOTの寄与率を、第1電源及び第2電源から供給される電流量により自由に制御することができる。そのため、デバイスに要求される性能に応じて、STTとSOTの寄与率を自由に制御することができ、より汎用性の高い磁気抵抗効果素子として機能することができる。
(磁化反転方法)
磁化反転方法は、本発明の磁気抵抗効果素子において、スピン軌道トルク配線に流れる電流密度が1×10A/cm未満とすることができる。
スピン軌道トルク配線に流す電流の電流密度が大きすぎると、スピン軌道トルク配線に流れる電流によって熱が生じる。熱が第2強磁性金属層に加わると、第2強磁性金属層の磁化の安定性が失われ、想定外の磁化反転等が生じる場合がある。このような想定外の磁化反転が生じると、記録した情報が書き換わるという問題が生じる。すなわち、想定外の磁化反転を避けるためには、スピン軌道トルク配線に流す電流の電流密度が大きくなりすぎないようにすることが好ましい。スピン軌道トルク配線に流す電流の電流密度は1×10A/cm未満であれば、少なくとも発生する熱により磁化反転が生じることを避けることができる。
磁化反転方法は、本発明の磁気抵抗効果素子において、「STT及びSOT併用」構成の場合、スピン軌道トルク配線の電源に電流を印加した後に、磁気抵抗効果素子の電源に電流を印加してもよい。
SOT磁化反転工程とSTT磁化反転工程は、同時に行ってもよいし、SOT磁化反転工程を事前に行った後にSTT磁化反転工程を加えて行ってもよい。第1電源と第2電源から電流を同時に供給してもよいし、第2電源から電流を供給後に、加えて第1電源から電流を供給してもよいが、SOTを利用した磁化反転のアシスト効果をより確実に得るためには、スピン軌道トルク配線の電源に電流が印加した後に、磁気抵抗効果素子の電源に電流を印加することが好ましい。すなわち、第2電源から電流を供給後に、加えて第1電源から電流を供給することが好ましい。
(磁気メモリ)
本発明の磁気メモリ(MRAM)は、本発明の磁気抵抗効果素子を複数備える。
(製造方法)
スピン流磁化反転素子は、スパッタリング法等の成膜技術と、フォトリソグラフィー及びArイオンミリング等の形状加工技術を用いて得ることができる。以下では、スピン流磁化反転素子を適用した磁気抵抗効果素子の製造方法について説明することでスピン流磁化反転素子の製造方法の説明も兼ねる。
まず支持体となる基板上にスピン軌道トルク配線を作製する。スピン軌道トルク配線を構成する金属を、2元同時スパッタ法を用いて成膜する。組成比の調整は、印加DC電圧を変え各々のスパッタリングレートを調整することで種々の組成比を実現することができる。次いで、フォトリソグラフィー等の技術を用いて、スピン軌道トルク配線を所定の形状に加工する。
そして、スピン軌道トルク配線以外の部分は、酸化膜等の絶縁膜で覆う。スピン軌道トルク配線及び絶縁膜の露出面は、化学機械研磨(CMP)により研磨することが好ましい。
次いで、磁気抵抗効果素子を作製する。磁気抵抗効果素子はスパッタリング等の公知の成膜手段を用いて作製できる。磁気抵抗効果素子がTMR素子の場合、例えば、トンネルバリア層は第1強磁性金属層上に最初に0.4〜2.0nm程度のマグネシウム、アルミニウム、及び複数の非磁性元素の二価の陽イオンとなる金属薄膜をスパッタリングし、プラズマ酸化あるいは酸素導入による自然酸化を行い、その後の熱処理によって形成される。成膜法としてはスパッタリング法のほか、蒸着法、レーザアブレーション法、MBE法等が挙げられる。
得られた積層膜は、アニール処理することが好ましい。反応性スパッタで形成した層は、アモルファスであり結晶化する必要がある。例えば、強磁性金属層としてCo−Fe−Bを用いる場合は、Bの一部がアニール処理により抜けて結晶化する。
アニール処理して製造した磁気抵抗効果素子は、アニール処理しないで製造した磁気抵抗効果素子と比較して、MR比が向上する。アニール処理によって、非磁性層のトンネルバリア層の結晶サイズの均一性および配向性が向上するためであると考えられる。
アニール処理としては、Arなどの不活性雰囲気中で、300℃以上500℃以下の温度で、5分以上100分以下の時間加熱した後、2kOe以上10kOe以下の磁場を印加した状態で、100℃以上500℃以下の温度で、1時間以上10時間以下の時間加熱することが好ましい。
磁気抵抗効果素子を所定の形状にする方法としては、フォトリソグラフィー等の加工手段を利用できる。まず磁気抵抗効果素子を積層した後、磁気抵抗効果素子のスピン軌道トルク配線と反対側の面に、レジストを塗工する。そして、所定の部分のレジストを硬化し、不要部のレジストを除去する。レジストが硬化した部分は、磁気抵抗効果素子の保護膜となる。レジストが硬化した部分は、最終的に得られる磁気抵抗効果素子の形状と一致する。
そして、保護膜が形成された面に、イオンミリング、反応性イオンエッチング(RIE)等の処理を施す。保護膜が形成されていない部分は除去され、所定の形状の磁気抵抗効果素子が得られる。
本発明は、上記実施形態にかかるスピン流磁化反転素子の構成及び製造方法に必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上述した本実施形態では、磁気抵抗効果素子において、積層が後になり基板から近い側に配置する第1強磁性金属層が磁化自由層とされ、積層が先であり基板に遠い側に配置する第2強磁性金属層が磁化固定層(ピン層)とされている、いわゆるトップピン構造の例を挙げたが、磁気抵抗効果素子の構造は特に限定されるものではなく、いわゆるボトムピン構造であってもよい。
(反転電流密度の測定方法)
スピン軌道トルク配線の両端に直流電源と直流電圧計を設置する。また、磁気抵抗効果素子の素子抵抗の測定は、上部電極、及びスピン軌道トルク配線を下部電極とし、直流電源、直流電圧計を用いた4端子法にて測定を行うことができる。
スピン軌道トルク配線にパルス電流を印加し、印加後、磁気抵抗を測定する。用いるパルス幅は例えば、0.5秒とする。
また、外部磁場をスピン軌道トルク配線の延伸方向に印加する。外部磁場の大きさは例えば、1000Oe(100mT)とする。
後述する実施例では、反転電流密度は平行状態から反平行状態への反転電流密度と反平行状態から平行状態への反転電流密度の絶対値の平均として定義した。
(結晶構造の決定方法)
薄膜X線回折(XRD)を用いて結晶構造を決定することができる。XRDは、面直測定(out−of−plane XRD)と面内測定(in−plane XRD)を行った。
また併せて、透過型電子顕微鏡(TEM)を用いて原子配列を直接確認してもよい。
(スピン軌道トルク配線材料の組成比の同定方法)
蛍光X線分析(XRF)を用いて、スピン軌道トルク配線材料の組成比の同定を行うことができる。
(結晶構造の決定)
実施例1〜11について、スピン軌道トルク配線の構成材料の結晶構造は以下のようにして決定した。
結晶構造決定用のサンプルの膜構成は熱酸化Si基板/Ta(5nm)/スピン軌道トルク配線材料(20nm)/Ta(10nm)であり、以下のようにして作製した。
熱酸化Si基板上に下地層としてTa膜を5nm成膜し、次いでTa膜上に2元同時スパッタが可能なDC・RFマグネトロンスパッタ装置を用いて、スピン軌道トルク配線材料膜を20nm成膜した。組成比の調整は、印加DC電圧を変え各々のスパッタリングレートを調整することによって行った。実施例9〜11の窒化物膜はArガスに加え、Arガスラインとは異なるガスラインとマスフローコントローラーを用意し、純窒素ガスをスパッタチャンバー内に流すことによって成膜した。次いで、スピン軌道トルク配線材料膜上にTa膜を10nm成膜してサンプルを作製した。
次いで、得られた各サンプルについて、薄膜X線回折(out−of−plane XRD、及び、in−plane XRD)を用いて結晶構造を決定した。その結果は表1及び表2に示した。
(スピン軌道トルク配線材料の組成比の同定)
実施例1〜11について、スピン軌道トルク配線の構成材料の組成比は蛍光X線分析(XRF)を用いて同定した。
スピン軌道トルク配線材料の組成比同定用のサンプルの膜構成は熱酸化Si基板/スピン軌道トルク配線材料(100nm)であり、以下のようにして作製した。
熱酸化Si基板上に2元同時スパッタが可能なDC・RFマグネトロンスパッタ装置を用いて、スピン軌道トルク配線材料膜を100nm成膜した。組成比の調整は、印加DC電圧を変え各々のスパッタリングレートを調整することによって行った。その結果は表1及び表2に示した。
(反転電流密度の測定)
実施例1〜11及び比較例1〜8の磁気抵抗効果素子について、外部磁場1000Oe(100mT)をスピン軌道トルク配線の延在方向に印加しながら、反転電流密度を測定した。反転電流密度は、磁気抵抗効果素子の抵抗値が変化した際の電流を、スピン軌道トルク配線を長手方向に直交する断面の断面積で割ることにより得られる。表1及び表2に示した反転電流密度は、磁化が平行状態から反平行状態に変わる際の値と、反平行状態から平行状態に変わる際の値の絶対値の平均である。
反転電流はスピン軌道トルク配線の両端に直流電流源を接続して流した。電流はパルス幅が0.5秒のパルス電流とした。電流量はスピン軌道トルク配線の両端に接続した直流電流計によって測定した。磁気抵抗効果素子の抵抗値変化は、磁気抵抗効果素子に対してスピン軌道トルク配線を下部電極とし、スピン軌道トルク配線と反対側に上部電極を設け、4端子法にて測定した。上部電極と下部電極間には直流電流源と直流電圧計とを接続した。
反転電流測定用の磁気抵抗効果素子サンプル(実施例1〜11)の膜構成は熱酸化Si基板/Ta(5nm)/スピン軌道トルク配線材料(10nm)/Fe(0.9nm)/MgO(1.6nm)/CoFeB(1.6nm)/Ru(3nm)/Ta(5nm)であり、以下のようにして作製した。
熱酸化Si基板上に下地層としてTa膜を5nm成膜し、次いでTa膜上に2元同時スパッタが可能なDC・RFマグネトロンスパッタ装置を用いて、スピン軌道トルク配線材料膜を10nm成膜した。組成比の調整は、印加DC電圧を変え各々のスパッタリングレートを調整することによって行った。実施例9〜11の窒化物膜はArガスに加え、Arガスラインとは異なるガスラインとマスフローコントローラーを用意し、純窒素ガスをスパッタチャンバー内に流すことによって成膜した。次いで、フォトリソグラフィーを用いて成膜した膜を幅200nm、長さ1000nmの平面視して長方形状に加工し、スピン軌道トルク配線を形成した。フォトリソグラフィーで削除した部分には絶縁膜としてSiO膜を形成し、スピン軌道トルク配線及び絶縁膜をCMP研磨して平坦面を作製した。
次いで、このスピン軌道トルク配線上に、第1強磁性金属層(磁化自由層)としてFe膜を0.9nm、トンネルバリア層としてMgO膜を1.6nm、第2強磁性金属層(磁化固定層)としてCoFeB膜を1.3nm、キャップ層として3nm厚のRu膜及び5nm厚のTa膜とを順に成膜した。その後、フォトリソグラフィーとArイオンミリングを用いて、直径100nmの円柱状の磁気抵抗効果素子を作製した。なお、Arイオンミリングは第1強磁性金属層であるFe膜まで削った。強磁性金属層(Fe膜及びCoFeB膜)の膜厚は垂直磁化となる膜厚である。
また、反転電流測定用の磁気抵抗効果素子サンプル(比較例1〜8)は、スピン軌道トルク配線の材料が合金、金属炭化物、金属窒化物のいずれでもなく、単体金属である点が異なるだけで、それ以外は実施例1〜11と同様の手順で作製した。
以上のようにして得られた実施例1〜11及び比較例1〜8の磁気抵抗効果素子について反転電流密度の測定結果を表1及び表2に示す。
Figure 0006777093
Figure 0006777093
表1及び表2に示すように、空間群Pm−3m、Fd−3m又はFm−3mの対称性を有する立方晶構造である所定の組成の材料からなるスピン軌道トルク配線を備えた磁気抵抗効果素子である実施例1〜11はいずれも、単体の金属からなるスピン軌道トルク配線を備えた磁気抵抗効果素子である比較例1〜8よりも反転電流密度が小さかった。すなわち、反転電流密度は、比較例1〜8では10A/cmのオーダーであったのに対して、実施例1〜11では10A/cmのオーダーであった。このとおり、いずれもスピン軌道トルク配線を所定の材料かなるものとすることによって、第1強磁性金属層の磁化が反転しやすくなっていた。
なお、表1及び表2に示した結晶構造を有する合金の濃度範囲は以下の通りである。
AlNi1−x(実施例1):0.42 ≦ X ≦ 0.54
AlRu1−x(実施例2):0.48 ≦ X ≦ 0.51
AlRh1−x(実施例3):0.48 ≦ X ≦ 0.58
TiNi1−x(実施例4):0.47 ≦ X ≦ 0.50
PtAl1−x(実施例5):0.72 ≦ X ≦ 0.80
TiNi1−x(実施例6):0.50 ≦ X ≦ 0.67
AlAu1−x(実施例7):0.50 ≦ X ≦ 0.67
SiMn1−x(実施例8):0.22 ≦ X ≦ 0.25
1 第1強磁性金属層
2 スピン軌道トルク配線
100 磁気抵抗効果素子
101 第1強磁性金属層
102 非磁性層
103 第2強磁性金属層
105 磁気抵抗効果素子部

Claims (7)

  1. 磁化の向きが可変な第1強磁性金属層と、
    前記第1強磁性金属層の面直方向である第1方向に対して交差する第2方向に延在し、第1強磁性金属層に接合するスピン軌道トルク配線と、を備え、
    前記スピン軌道トルク配線の材料が式A1−xで表される二元合金、金属炭化物、又は金属窒化物であり、
    前記AがAl、Ti、及び、Ptからなる群から選択された元素であって、前記BがAl、Cr、Mn、Fe、Co、Ni、Y、Ru、Rh、及び、Irからなる群から選択された元素であり、かつ、空間群Pm−3m、又は、Fd−3mの対称性を有する立方晶構造であるか、又は、前記AがAl、Si、Ti、Y、及び、Taからなる群から選択された元素であって、前記BがC、N、Co、Pt、Au及びBiからなる群から選択された元素であり、かつ、空間群Fm−3mの対称性を有する立方晶構造であ
    前記材料が、CsCl構造であるAl Fe 1−x 、Al Co 1−x 、Al Ni 1−x 、Al Ru 1−x 、Al Rh 1−x 、Al Ir 1−x 、Ti Fe 1−x 、Ti Co 1−x 、及び、Ti Ni 1−x からなる群から選択されたものであることを特徴とする、スピン流磁化反転素子。
  2. 磁化の向きが可変な第1強磁性金属層と、
    前記第1強磁性金属層の面直方向である第1方向に対して交差する第2方向に延在し、第1強磁性金属層に接合するスピン軌道トルク配線と、を備え、
    前記スピン軌道トルク配線の材料が式A1−xで表される二元合金、金属炭化物、又は金属窒化物であり、
    前記AがAl、Ti、及び、Ptからなる群から選択された元素であって、前記BがAl、Cr、Mn、Fe、Co、Ni、Y、Ru、Rh、及び、Irからなる群から選択された元素であり、かつ、空間群Pm−3m、又は、Fd−3mの対称性を有する立方晶構造であるか、又は、前記AがAl、Si、Ti、Y、及び、Taからなる群から選択された元素であって、前記BがC、N、Co、Pt、Au及びBiからなる群から選択された元素であり、かつ、空間群Fm−3mの対称性を有する立方晶構造であ
    前記材料が、Ti Ni構造であるTi Fe 1−x 、Ti Co 1−x 、及び、Ti Ni 1−x からなる群から選択されたものであることを特徴とする、スピン流磁化反転素子。
  3. 磁化の向きが可変な第1強磁性金属層と、
    前記第1強磁性金属層の面直方向である第1方向に対して交差する第2方向に延在し、第1強磁性金属層に接合するスピン軌道トルク配線と、を備え、
    前記スピン軌道トルク配線の材料が式A1−xで表される二元合金、金属炭化物、又は金属窒化物であり、
    前記AがAl、Ti、及び、Ptからなる群から選択された元素であって、前記BがAl、Cr、Mn、Fe、Co、Ni、Y、Ru、Rh、及び、Irからなる群から選択された元素であり、かつ、空間群Pm−3m、又は、Fd−3mの対称性を有する立方晶構造であるか、又は、前記AがAl、Si、Ti、Y、及び、Taからなる群から選択された元素であって、前記BがC、N、Co、Pt、Au及びBiからなる群から選択された元素であり、かつ、空間群Fm−3mの対称性を有する立方晶構造であ
    前記材料が、Cu Au構造であるPt Al 1−x 、Pt Cr 1−x 、Pt Mn 1−x 、Pt Fe 1−x 、及び、Pt 1−x からなる群から選択されたものであることを特徴とする、スピン流磁化反転素子。
  4. 磁化の向きが可変な第1強磁性金属層と、
    前記第1強磁性金属層の面直方向である第1方向に対して交差する第2方向に延在し、第1強磁性金属層に接合するスピン軌道トルク配線と、を備え、
    前記スピン軌道トルク配線の材料が式A1−xで表される二元合金、金属炭化物、又は金属窒化物であり、
    前記AがAl、Ti、及び、Ptからなる群から選択された元素であって、前記BがAl、Cr、Mn、Fe、Co、Ni、Y、Ru、Rh、及び、Irからなる群から選択された元素であり、かつ、空間群Pm−3m、又は、Fd−3mの対称性を有する立方晶構造であるか、又は、前記AがAl、Si、Ti、Y、及び、Taからなる群から選択された元素であって、前記BがC、N、Co、Pt、Au及びBiからなる群から選択された元素であり、かつ、空間群Fm−3mの対称性を有する立方晶構造であ
    前記材料が、BiF 構造であるAl Fe 1−x 、Si Mn 1−x 、及び、Si Fe 1−x からなる群から選択されたものであることを特徴とする、スピン流磁化反転素子。
  5. 磁化の向きが可変な第1強磁性金属層と、
    前記第1強磁性金属層の面直方向である第1方向に対して交差する第2方向に延在し、第1強磁性金属層に接合するスピン軌道トルク配線と、を備え、
    前記スピン軌道トルク配線の材料が式A1−xで表される二元合金、金属炭化物、又は金属窒化物であり、
    前記AがAl、Ti、及び、Ptからなる群から選択された元素であって、前記BがAl、Cr、Mn、Fe、Co、Ni、Y、Ru、Rh、及び、Irからなる群から選択された元素であり、かつ、空間群Pm−3m、又は、Fd−3mの対称性を有する立方晶構造であるか、又は、前記AがAl、Si、Ti、Y、及び、Taからなる群から選択された元素であって、前記BがC、N、Co、Pt、Au及びBiからなる群から選択された元素であり、かつ、空間群Fm−3mの対称性を有する立方晶構造であ
    前記材料が、CaF 構造であるAl Pt 1−x 、Al Au 1−x 、及び、Al Co 1−x からなる群から選択されたものであることを特徴とする、スピン流磁化反転素子。
  6. 請求項1〜のいずれか一項に記載のスピン流磁化反転素子と、磁化方向が固定されている第2強磁性金属層と、第1強磁性金属層と第2強磁性金属層に挟持された非磁性層とを備える磁気抵抗効果素子。
  7. 請求項に記載の磁気抵抗効果素子を複数備える磁気メモリ。
JP2017552728A 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ Active JP6777093B2 (ja)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2015232334 2015-11-27
JP2015232334 2015-11-27
JP2016053072 2016-03-16
JP2016053072 2016-03-16
JP2016056058 2016-03-18
JP2016056058 2016-03-18
JP2016210533 2016-10-27
JP2016210531 2016-10-27
JP2016210531 2016-10-27
JP2016210533 2016-10-27
PCT/JP2016/084976 WO2017090730A1 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ

Publications (2)

Publication Number Publication Date
JPWO2017090730A1 JPWO2017090730A1 (ja) 2018-09-13
JP6777093B2 true JP6777093B2 (ja) 2020-10-28

Family

ID=58763271

Family Applications (9)

Application Number Title Priority Date Filing Date
JP2017552733A Pending JPWO2017090736A1 (ja) 2015-11-27 2016-11-25 スピン流磁化反転型磁気抵抗効果素子及びスピン流磁化反転型磁気抵抗効果素子の製造方法
JP2017552735A Active JP6777094B2 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子および磁気メモリ
JP2017552731A Active JP6621839B2 (ja) 2015-11-27 2016-11-25 磁気抵抗効果素子、磁気メモリ、磁化反転方法、及び、スピン流磁化反転素子
JP2017552727A Pending JPWO2017090728A1 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ
JP2017552728A Active JP6777093B2 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ
JP2017552725A Active JP6777649B2 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ
JP2019209055A Active JP6845300B2 (ja) 2015-11-27 2019-11-19 スピン流磁化反転素子
JP2020170783A Active JP7035147B2 (ja) 2015-11-27 2020-10-08 スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ
JP2021028881A Active JP7168922B2 (ja) 2015-11-27 2021-02-25 スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2017552733A Pending JPWO2017090736A1 (ja) 2015-11-27 2016-11-25 スピン流磁化反転型磁気抵抗効果素子及びスピン流磁化反転型磁気抵抗効果素子の製造方法
JP2017552735A Active JP6777094B2 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子および磁気メモリ
JP2017552731A Active JP6621839B2 (ja) 2015-11-27 2016-11-25 磁気抵抗効果素子、磁気メモリ、磁化反転方法、及び、スピン流磁化反転素子
JP2017552727A Pending JPWO2017090728A1 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2017552725A Active JP6777649B2 (ja) 2015-11-27 2016-11-25 スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ
JP2019209055A Active JP6845300B2 (ja) 2015-11-27 2019-11-19 スピン流磁化反転素子
JP2020170783A Active JP7035147B2 (ja) 2015-11-27 2020-10-08 スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ
JP2021028881A Active JP7168922B2 (ja) 2015-11-27 2021-02-25 スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ

Country Status (5)

Country Link
US (12) US10510948B2 (ja)
EP (2) EP3382768B1 (ja)
JP (9) JPWO2017090736A1 (ja)
CN (5) CN108292705B (ja)
WO (6) WO2017090733A1 (ja)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017090736A1 (ja) 2015-11-27 2018-09-13 Tdk株式会社 スピン流磁化反転型磁気抵抗効果素子及びスピン流磁化反転型磁気抵抗効果素子の製造方法
WO2018101028A1 (ja) * 2016-12-02 2018-06-07 Tdk株式会社 スピン流磁化反転素子とその製造方法、磁気抵抗効果素子、磁気メモリ
JP6792841B2 (ja) * 2017-04-07 2020-12-02 日本電信電話株式会社 スピン軌道相互作用の増大方法
JP6509971B2 (ja) * 2017-08-08 2019-05-08 株式会社東芝 磁気記憶素子及び磁気記憶装置
JP6686990B2 (ja) * 2017-09-04 2020-04-22 Tdk株式会社 スピン軌道トルク型磁化反転素子及び磁気メモリ
JP7139701B2 (ja) * 2017-09-05 2022-09-21 Tdk株式会社 スピン流磁化反転素子、スピン軌道トルク型磁気抵抗効果素子、磁気メモリ及び高周波磁気素子
JP6479120B1 (ja) * 2017-09-14 2019-03-06 株式会社東芝 磁気記憶装置
JP7227614B2 (ja) * 2017-09-15 2023-02-22 国立大学法人東京工業大学 磁性体とBiSbの積層構造の製造方法、磁気抵抗メモリ、純スピン注入源
JP7098914B2 (ja) * 2017-11-14 2022-07-12 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
CN111448470B (zh) * 2017-12-04 2022-07-22 株式会社村田制作所 磁传感器
CN110914974B (zh) * 2018-01-10 2023-07-18 Tdk株式会社 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件和磁存储器
US11031541B2 (en) 2018-02-19 2021-06-08 Tdk Corporation Spin-orbit torque type magnetization rotating element, spin-orbit torque type magnetoresistance effect element, and magnetic memory
CN110392931B (zh) * 2018-02-19 2022-05-03 Tdk株式会社 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件及磁存储器
CN117174759A (zh) * 2018-02-22 2023-12-05 Tdk株式会社 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件及磁存储器
WO2019163203A1 (ja) * 2018-02-22 2019-08-29 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP7052448B2 (ja) * 2018-03-16 2022-04-12 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子、磁気メモリ及び発振器
JP6919608B2 (ja) * 2018-03-16 2021-08-18 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
US11610614B2 (en) * 2018-04-18 2023-03-21 Tohoku University Magnetoresistive element, magnetic memory device, and writing and reading method for magnetic memory device
JP6690805B1 (ja) * 2018-05-31 2020-04-28 Tdk株式会社 スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
US11391794B2 (en) * 2018-05-31 2022-07-19 Tdk Corporation Spin-orbit-torque magnetization rotational element, spin-orbit-torque type magnetoresistance effect element, and magnetic memory
CN111480240B (zh) * 2018-05-31 2024-03-22 Tdk株式会社 自旋轨道转矩型磁阻效应元件和磁存储器
US11374164B2 (en) * 2018-06-29 2022-06-28 Intel Corporation Multi-layer spin orbit torque electrodes for perpendicular magnetic random access memory
CN109285577B (zh) * 2018-08-31 2021-07-30 北京大学(天津滨海)新一代信息技术研究院 一种基于分子自旋态的超低功耗存储器件及数据存储方法
CN110890115A (zh) * 2018-09-07 2020-03-17 上海磁宇信息科技有限公司 一种自旋轨道矩磁存储器
WO2020053988A1 (ja) * 2018-09-12 2020-03-19 Tdk株式会社 リザボア素子及びニューロモルフィック素子
CN109301063B (zh) * 2018-09-27 2022-05-13 中国科学院微电子研究所 自旋轨道转矩驱动器件
US11165012B2 (en) 2018-10-29 2021-11-02 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic device and magnetic random access memory
CN113228208B (zh) 2018-10-30 2023-06-02 田中贵金属工业株式会社 面内磁化膜、面内磁化膜多层结构、硬偏置层、磁阻效应元件和溅射靶
US11069853B2 (en) 2018-11-19 2021-07-20 Applied Materials, Inc. Methods for forming structures for MRAM applications
US10756259B2 (en) * 2018-11-20 2020-08-25 Applied Materials, Inc. Spin orbit torque MRAM and manufacture thereof
JP6970655B2 (ja) * 2018-12-04 2021-11-24 株式会社東芝 磁気記憶装置及びその製造方法
CN109638151B (zh) * 2018-12-04 2020-07-31 中国科学院上海微系统与信息技术研究所 存储单元、低温存储器及其读写方法
KR102604743B1 (ko) * 2018-12-11 2023-11-22 삼성전자주식회사 자기 메모리 장치
US10658021B1 (en) 2018-12-17 2020-05-19 Spin Memory, Inc. Scalable spin-orbit torque (SOT) magnetic memory
US10600465B1 (en) 2018-12-17 2020-03-24 Spin Memory, Inc. Spin-orbit torque (SOT) magnetic memory with voltage or current assisted switching
US10930843B2 (en) 2018-12-17 2021-02-23 Spin Memory, Inc. Process for manufacturing scalable spin-orbit torque (SOT) magnetic memory
US11276730B2 (en) * 2019-01-11 2022-03-15 Intel Corporation Spin orbit torque memory devices and methods of fabrication
CN109888089A (zh) * 2019-01-28 2019-06-14 北京航空航天大学 一种制备sot-mram底电极的方法
WO2020157912A1 (ja) * 2019-01-31 2020-08-06 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子、磁気メモリ及びリザボア素子
US11756600B2 (en) * 2019-02-06 2023-09-12 Tdk Corporation Spin-orbit torque magnetization rotational element, spin-orbit torque magnetoresistive effect element, and magnetic memory
JP7192611B2 (ja) * 2019-03-28 2022-12-20 Tdk株式会社 記憶素子、半導体装置、磁気記録アレイ及び記憶素子の製造方法
WO2020194660A1 (ja) * 2019-03-28 2020-10-01 Tdk株式会社 記憶素子、半導体装置、磁気記録アレイ及び記憶素子の製造方法
WO2020208674A1 (ja) * 2019-04-08 2020-10-15 Tdk株式会社 磁性素子、磁気メモリ、リザボア素子、認識機及び磁性素子の製造方法
JP2021034480A (ja) * 2019-08-21 2021-03-01 国立大学法人東京工業大学 磁気記録デバイス
JP2021057357A (ja) * 2019-09-26 2021-04-08 国立大学法人東京工業大学 磁気抵抗メモリ
CN110752288B (zh) * 2019-09-29 2022-05-20 华中科技大学 一种基于非易失器件阵列构造可重构强puf的方法
US11895928B2 (en) * 2019-10-03 2024-02-06 Headway Technologies, Inc. Integration scheme for three terminal spin-orbit-torque (SOT) switching devices
US11328757B2 (en) * 2019-10-24 2022-05-10 Regents Of The University Of Minnesota Topological material for trapping charge and switching a ferromagnet
US11437059B2 (en) * 2019-11-07 2022-09-06 Kabushiki Kaisha Toshiba Magnetic head and magnetic recording device with stacked body material configurations
CN111235423B (zh) * 2020-01-15 2021-10-26 电子科技大学 室温高自旋霍尔角铂-稀土薄膜材料及其制备方法和应用
KR102608134B1 (ko) * 2020-02-19 2023-12-01 양쯔 메모리 테크놀로지스 씨오., 엘티디. 자기 메모리 구조 및 디바이스
WO2021166155A1 (ja) * 2020-02-20 2021-08-26 Tdk株式会社 磁化回転素子、磁気抵抗効果素子および磁気メモリ
CN115039235A (zh) * 2020-03-13 2022-09-09 Tdk株式会社 磁化旋转元件、磁阻效应元件、磁记录阵列、高频器件及磁化旋转元件的制造方法
DE102020204391B4 (de) * 2020-04-03 2021-12-02 Infineon Technologies Ag Vorrichtung und verfahren zum detektieren eines magnetfelds unter ausnutzung des spin-bahn-drehmoment-effekts
US11489108B2 (en) 2020-04-28 2022-11-01 Western Digital Technologies, Inc. BiSb topological insulator with seed layer or interlayer to prevent sb diffusion and promote BiSb (012) orientation
US11844287B2 (en) * 2020-05-20 2023-12-12 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic tunneling junction with synthetic free layer for SOT-MRAM
US11495741B2 (en) 2020-06-30 2022-11-08 Western Digital Technologies, Inc. Bismuth antimony alloys for use as topological insulators
US11100946B1 (en) 2020-07-01 2021-08-24 Western Digital Technologies, Inc. SOT differential reader and method of making same
US11222656B1 (en) 2020-07-09 2022-01-11 Western Digital Technologies, Inc. Method to reduce baseline shift for a SOT differential reader
US11094338B1 (en) 2020-07-09 2021-08-17 Western Digital Technologies, Inc. SOT film stack for differential reader
JP2022043545A (ja) * 2020-09-04 2022-03-16 Tdk株式会社 磁気抵抗効果素子および磁気メモリ
US11282538B1 (en) 2021-01-11 2022-03-22 Seagate Technology Llc Non-local spin valve sensor for high linear density
US11805706B2 (en) 2021-03-04 2023-10-31 Tdk Corporation Magnetoresistance effect element and magnetic memory
US11961544B2 (en) 2021-05-27 2024-04-16 International Business Machines Corporation Spin-orbit torque (SOT) magnetoresistive random-access memory (MRAM) with low resistivity spin hall effect (SHE) write line
KR102550681B1 (ko) * 2021-07-21 2023-06-30 한양대학교 산학협력단 자화 씨드층과 자화 자유층 접합 계면의 비대칭 구조를 이용하는 스핀 소자
US11763973B2 (en) 2021-08-13 2023-09-19 Western Digital Technologies, Inc. Buffer layers and interlayers that promote BiSbx (012) alloy orientation for SOT and MRAM devices
US11532323B1 (en) 2021-08-18 2022-12-20 Western Digital Technologies, Inc. BiSbX (012) layers having increased operating temperatures for SOT and MRAM devices
US20230066358A1 (en) * 2021-08-30 2023-03-02 Infineon Technologies Ag Strayfield insensitive magnetic sensing device and method using spin orbit torque effect
CN113571632B (zh) * 2021-09-23 2021-12-10 南开大学 一种反常霍尔元件及其制备方法
US11875827B2 (en) 2022-03-25 2024-01-16 Western Digital Technologies, Inc. SOT reader using BiSb topological insulator
US11783853B1 (en) 2022-05-31 2023-10-10 Western Digital Technologies, Inc. Topological insulator based spin torque oscillator reader

Family Cites Families (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785241A (en) * 1985-08-08 1988-11-15 Canon Denshi Kabushiki Kaisha Encoder unit using magnetoresistance effect element
JPH05217996A (ja) * 1992-02-05 1993-08-27 Mitsuba Electric Mfg Co Ltd メサ型半導体素子の形成方法
JP2000285413A (ja) * 1999-03-26 2000-10-13 Fujitsu Ltd スピンバルブ磁気抵抗効果型素子とその製造法、及びこの素子を用いた磁気ヘッド
US6937446B2 (en) * 2000-10-20 2005-08-30 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
US6761982B2 (en) 2000-12-28 2004-07-13 Showa Denko Kabushiki Kaisha Magnetic recording medium, production process and apparatus thereof, and magnetic recording and reproducing apparatus
JP2002208682A (ja) * 2001-01-12 2002-07-26 Hitachi Ltd 磁気半導体記憶装置及びその製造方法
JP2004179483A (ja) 2002-11-28 2004-06-24 Hitachi Ltd 不揮発性磁気メモリ
JP2004235512A (ja) * 2003-01-31 2004-08-19 Sony Corp 磁気記憶装置およびその製造方法
JP2006080379A (ja) * 2004-09-10 2006-03-23 Sharp Corp 異種結晶多層構造体ならびに異種結晶多層構造体を含む金属ベーストランジスタ、面発光レーザ、磁気抵抗膜および共鳴トンネルダイオード
JP2006100424A (ja) * 2004-09-28 2006-04-13 Tdk Corp 磁気記憶装置
JP2006156608A (ja) 2004-11-29 2006-06-15 Hitachi Ltd 磁気メモリおよびその製造方法
US7430135B2 (en) 2005-12-23 2008-09-30 Grandis Inc. Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density
JP2007266498A (ja) * 2006-03-29 2007-10-11 Toshiba Corp 磁気記録素子及び磁気メモリ
JP2007299931A (ja) * 2006-04-28 2007-11-15 Toshiba Corp 磁気抵抗効果素子および磁気メモリ
KR100709395B1 (ko) * 2006-06-23 2007-04-20 한국과학기술연구원 강자성체를 이용한 스핀 트랜지스터
WO2008099626A1 (ja) 2007-02-13 2008-08-21 Nec Corporation 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
JP2008311373A (ja) 2007-06-13 2008-12-25 Toshiba Corp 磁性多層膜通電素子
KR100855105B1 (ko) * 2007-06-14 2008-08-29 한국과학기술연구원 수직자화를 이용한 스핀 트랜지스터
US7978439B2 (en) 2007-06-19 2011-07-12 Headway Technologies, Inc. TMR or CPP structure with improved exchange properties
JP4820783B2 (ja) * 2007-07-11 2011-11-24 昭和電工株式会社 磁気記録媒体の製造方法および製造装置
JP2009094104A (ja) 2007-10-03 2009-04-30 Toshiba Corp 磁気抵抗素子
KR100938254B1 (ko) * 2007-12-13 2010-01-22 한국과학기술연구원 에피택셜 성장 강자성체-반도체 접합을 이용한 스핀트랜지스터
JP4934582B2 (ja) * 2007-12-25 2012-05-16 株式会社日立製作所 スピンホール効果素子を用いた磁気センサ、磁気ヘッド及び磁気メモリ
JP2009158877A (ja) 2007-12-28 2009-07-16 Hitachi Ltd 磁気メモリセル及びランダムアクセスメモリ
JP5036585B2 (ja) 2008-02-13 2012-09-26 株式会社東芝 磁性発振素子、この磁性発振素子を有する磁気ヘッド、および磁気記録再生装置
JP2009239135A (ja) 2008-03-28 2009-10-15 Tokyo Metropolitan Univ 磁気メモリセル及びそれを用いた磁気記憶装置、磁気記憶方法
JP5472820B2 (ja) * 2008-10-20 2014-04-16 日本電気株式会社 磁気抵抗素子、mram及び磁気抵抗素子の初期化方法
US20100148167A1 (en) 2008-12-12 2010-06-17 Everspin Technologies, Inc. Magnetic tunnel junction stack
WO2010080542A1 (en) * 2008-12-17 2010-07-15 Yadav Technology, Inc. Spin-transfer torque magnetic random access memory having magnetic tunnel junction with perpendicular magnetic anisotropy
US9368716B2 (en) 2009-02-02 2016-06-14 Qualcomm Incorporated Magnetic tunnel junction (MTJ) storage element and spin transfer torque magnetoresistive random access memory (STT-MRAM) cells having an MTJ
US8072800B2 (en) * 2009-09-15 2011-12-06 Grandis Inc. Magnetic element having perpendicular anisotropy with enhanced efficiency
US8513749B2 (en) * 2010-01-14 2013-08-20 Qualcomm Incorporated Composite hardmask architecture and method of creating non-uniform current path for spin torque driven magnetic tunnel junction
JP5725735B2 (ja) * 2010-06-04 2015-05-27 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
FR2963153B1 (fr) 2010-07-26 2013-04-26 Centre Nat Rech Scient Element magnetique inscriptible
FR2963152B1 (fr) * 2010-07-26 2013-03-29 Centre Nat Rech Scient Element de memoire magnetique
JP5565238B2 (ja) * 2010-09-24 2014-08-06 Tdk株式会社 磁気センサ及び磁気ヘッド
JP5991589B2 (ja) * 2011-02-09 2016-09-14 日本電気株式会社 熱電変換素子、熱電変換素子の製造方法および熱電変換方法
US9006704B2 (en) * 2011-02-11 2015-04-14 Headway Technologies, Inc. Magnetic element with improved out-of-plane anisotropy for spintronic applications
US9196332B2 (en) * 2011-02-16 2015-11-24 Avalanche Technology, Inc. Perpendicular magnetic tunnel junction (pMTJ) with in-plane magneto-static switching-enhancing layer
JP5655646B2 (ja) * 2011-03-11 2015-01-21 Tdk株式会社 スピン素子及びこれを用いた磁気センサ及びスピンfet
US9082497B2 (en) 2011-03-22 2015-07-14 Renesas Electronics Corporation Magnetic memory using spin orbit interaction
JP5644620B2 (ja) * 2011-03-23 2014-12-24 Tdk株式会社 スピン伝導素子及び磁気ヘッド
US20120250189A1 (en) 2011-03-29 2012-10-04 Tdk Corporation Magnetic head including side shield layers on both sides of a mr element
SG185922A1 (en) * 2011-06-02 2012-12-28 Agency Science Tech & Res Magnetoresistive device
US8693241B2 (en) * 2011-07-13 2014-04-08 SK Hynix Inc. Semiconductor intergrated circuit device, method of manufacturing the same, and method of driving the same
KR101457511B1 (ko) * 2011-08-18 2014-11-04 코넬 유니버시티 스핀 홀 효과 자기 장치, 방법, 및 적용
US9293694B2 (en) 2011-11-03 2016-03-22 Ge Yi Magnetoresistive random access memory cell with independently operating read and write components
WO2013122024A1 (ja) * 2012-02-14 2013-08-22 Tdk株式会社 スピン注入電極構造及びそれを用いたスピン伝導素子
JP5935444B2 (ja) * 2012-03-29 2016-06-15 Tdk株式会社 スピン伝導素子、及びスピン伝導を用いた磁気センサ及び磁気ヘッド
US9230626B2 (en) * 2012-08-06 2016-01-05 Cornell University Electrically gated three-terminal circuits and devices based on spin hall torque effects in magnetic nanostructures apparatus, methods and applications
US9105830B2 (en) * 2012-08-26 2015-08-11 Samsung Electronics Co., Ltd. Method and system for providing dual magnetic tunneling junctions using spin-orbit interaction-based switching and memories utilizing the dual magnetic tunneling junctions
US9076537B2 (en) * 2012-08-26 2015-07-07 Samsung Electronics Co., Ltd. Method and system for providing a magnetic tunneling junction using spin-orbit interaction based switching and memories utilizing the magnetic tunneling junction
US9379313B2 (en) * 2012-09-01 2016-06-28 Purdue Research Foundation Non-volatile spin switch
US9099641B2 (en) * 2012-11-06 2015-08-04 The Regents Of The University Of California Systems and methods for implementing magnetoelectric junctions having improved read-write characteristics
US8981505B2 (en) * 2013-01-11 2015-03-17 Headway Technologies, Inc. Mg discontinuous insertion layer for improving MTJ shunt
KR102023626B1 (ko) 2013-01-25 2019-09-20 삼성전자 주식회사 스핀 홀 효과를 이용한 메모리 소자와 그 제조 및 동작방법
US9007837B2 (en) * 2013-02-11 2015-04-14 Sony Corporation Non-volatile memory system with reset control mechanism and method of operation thereof
US20140252439A1 (en) * 2013-03-08 2014-09-11 T3Memory, Inc. Mram having spin hall effect writing and method of making the same
US9076541B2 (en) * 2013-03-14 2015-07-07 Samsung Electronics Co., Ltd. Architecture for magnetic memories including magnetic tunneling junctions using spin-orbit interaction based switching
US9130155B2 (en) * 2013-03-15 2015-09-08 Samsung Electronics Co., Ltd. Magnetic junctions having insertion layers and magnetic memories using the magnetic junctions
US8963222B2 (en) * 2013-04-17 2015-02-24 Yimin Guo Spin hall effect magnetic-RAM
WO2014204492A1 (en) * 2013-06-21 2014-12-24 Intel Corporation Mtj spin hall mram bit-cell and array
US9147833B2 (en) 2013-07-05 2015-09-29 Headway Technologies, Inc. Hybridized oxide capping layer for perpendicular magnetic anisotropy
US20150028440A1 (en) * 2013-07-26 2015-01-29 Agency For Science, Technology And Research Magnetoresistive device and method of forming the same
FR3009421B1 (fr) * 2013-07-30 2017-02-24 Commissariat Energie Atomique Cellule memoire non volatile
JP6413428B2 (ja) * 2013-08-02 2018-10-31 Tdk株式会社 磁気センサ、磁気ヘッド及び生体磁気センサ
US9076954B2 (en) * 2013-08-08 2015-07-07 Samsung Electronics Co., Ltd. Method and system for providing magnetic memories switchable using spin accumulation and selectable using magnetoelectric devices
US9461242B2 (en) 2013-09-13 2016-10-04 Micron Technology, Inc. Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems
EP2851903B1 (en) * 2013-09-19 2017-03-01 Crocus Technology S.A. Self-referenced memory device and method for operating the memory device
WO2015047194A1 (en) * 2013-09-24 2015-04-02 National University Of Singapore Spin orbit and spin transfer torque-based spintronics devices
KR20150036987A (ko) * 2013-09-30 2015-04-08 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
US9460397B2 (en) 2013-10-04 2016-10-04 Samsung Electronics Co., Ltd. Quantum computing device spin transfer torque magnetic memory
US9691458B2 (en) 2013-10-18 2017-06-27 Cornell University Circuits and devices based on spin hall effect to apply a spin transfer torque with a component perpendicular to the plane of magnetic layers
US9343658B2 (en) * 2013-10-30 2016-05-17 The Regents Of The University Of California Magnetic memory bits with perpendicular magnetization switched by current-induced spin-orbit torques
JP6414754B2 (ja) 2013-11-06 2018-10-31 日本電気株式会社 磁気抵抗効果素子および磁気メモリ
US9099115B2 (en) * 2013-11-12 2015-08-04 HGST Netherlands B.V. Magnetic sensor with doped ferromagnetic cap and/or underlayer
US9384812B2 (en) * 2014-01-28 2016-07-05 Qualcomm Incorporated Three-phase GSHE-MTJ non-volatile flip-flop
US20150213867A1 (en) 2014-01-28 2015-07-30 Qualcomm Incorporated Multi-level cell designs for high density low power gshe-stt mram
US9251883B2 (en) * 2014-01-28 2016-02-02 Qualcomm Incorporated Single phase GSHE-MTJ non-volatile flip-flop
US9864950B2 (en) 2014-01-29 2018-01-09 Purdue Research Foundation Compact implementation of neuron and synapse with spin switches
US9824711B1 (en) 2014-02-14 2017-11-21 WD Media, LLC Soft underlayer for heat assisted magnetic recording media
SG10201501339QA (en) * 2014-03-05 2015-10-29 Agency Science Tech & Res Magnetoelectric Device, Method For Forming A Magnetoelectric Device, And Writing Method For A Magnetoelectric Device
JP6135018B2 (ja) 2014-03-13 2017-05-31 株式会社東芝 磁気抵抗素子および磁気メモリ
US10460804B2 (en) 2014-03-14 2019-10-29 Massachusetts Institute Of Technology Voltage-controlled resistive devices
WO2016011435A1 (en) 2014-07-17 2016-01-21 Cornell University Circuits and devices based on enhanced spin hall effect for efficient spin transfer torque
WO2016021468A1 (ja) 2014-08-08 2016-02-11 国立大学法人東北大学 磁気抵抗効果素子、及び磁気メモリ装置
KR20170057254A (ko) * 2014-09-22 2017-05-24 소니 세미컨덕터 솔루션즈 가부시키가이샤 메모리 셀 유닛 어레이
US9218864B1 (en) * 2014-10-04 2015-12-22 Ge Yi Magnetoresistive random access memory cell and 3D memory cell array
CN104393169B (zh) * 2014-10-10 2017-01-25 北京航空航天大学 一种无需外部磁场的自旋轨道动量矩磁存储器
US10103317B2 (en) * 2015-01-05 2018-10-16 Inston, Inc. Systems and methods for implementing efficient magnetoelectric junctions
US9589619B2 (en) 2015-02-09 2017-03-07 Qualcomm Incorporated Spin-orbit-torque magnetoresistive random access memory with voltage-controlled anisotropy
JP6778866B2 (ja) 2015-03-31 2020-11-04 国立大学法人東北大学 磁気抵抗効果素子、磁気メモリ装置、製造方法、動作方法、及び集積回路
US20160300999A1 (en) 2015-04-07 2016-10-13 Ge Yi Magnetoresistive Random Access Memory Cell
KR101683440B1 (ko) 2015-05-13 2016-12-07 고려대학교 산학협력단 자기 메모리 소자
EP3314671A4 (en) * 2015-06-24 2019-03-20 INTEL Corporation SUPER METAL SPIN NETWORK FOR LOGIC AND MEMORY DEVICES
US9768229B2 (en) 2015-10-22 2017-09-19 Western Digital Technologies, Inc. Bottom pinned SOT-MRAM bit structure and method of fabrication
US9830966B2 (en) 2015-10-29 2017-11-28 Western Digital Technologies, Inc. Three terminal SOT memory cell with anomalous Hall effect
US9608039B1 (en) * 2015-11-16 2017-03-28 Samsung Electronics Co., Ltd. Magnetic junctions programmable using spin-orbit interaction torque in the absence of an external magnetic field
JPWO2017090736A1 (ja) 2015-11-27 2018-09-13 Tdk株式会社 スピン流磁化反転型磁気抵抗効果素子及びスピン流磁化反転型磁気抵抗効果素子の製造方法
WO2017159432A1 (ja) 2016-03-14 2017-09-21 Tdk株式会社 磁気メモリ
JP2017199443A (ja) * 2016-04-27 2017-11-02 ソニー株式会社 半導体記憶装置、駆動方法、および電子機器
US10497417B2 (en) 2016-06-01 2019-12-03 Tdk Corporation Spin current assisted magnetoresistance effect device
US9734850B1 (en) 2016-06-28 2017-08-15 Western Digital Technologies, Inc. Magnetic tunnel junction (MTJ) free layer damping reduction
US9979401B2 (en) * 2016-07-19 2018-05-22 Georgia Tech Research Corporation Magnetoelectric computational devices
US10964886B2 (en) * 2016-09-27 2021-03-30 Intel Corporation Spin transfer torque memory devices having heusler magnetic tunnel junctions
KR101998268B1 (ko) 2016-10-21 2019-07-11 한국과학기술원 반도체 소자
KR101825318B1 (ko) 2017-01-03 2018-02-05 고려대학교 산학협력단 스핀필터 구조체를 포함하는 자기 터널 접합 소자
US10211393B2 (en) 2017-02-23 2019-02-19 Sandisk Technologies Llc Spin accumulation torque MRAM
CN108738371B (zh) 2017-02-24 2022-01-25 Tdk株式会社 磁化反转元件、磁阻效应元件和存储设备
US11250897B2 (en) 2017-02-27 2022-02-15 Tdk Corporation Spin current magnetization rotational element, magnetoresistance effect element, and magnetic memory
JP6290487B1 (ja) 2017-03-17 2018-03-07 株式会社東芝 磁気メモリ
JP6316474B1 (ja) * 2017-03-21 2018-04-25 株式会社東芝 磁気メモリ
US9953692B1 (en) 2017-04-11 2018-04-24 Sandisk Technologies Llc Spin orbit torque MRAM memory cell with enhanced thermal stability
JP6733822B2 (ja) * 2017-08-07 2020-08-05 Tdk株式会社 スピン流磁気抵抗効果素子及び磁気メモリ
US10374151B2 (en) * 2017-08-22 2019-08-06 Tdk Corporation Spin current magnetoresistance effect element and magnetic memory
US10134457B1 (en) * 2017-08-31 2018-11-20 Sandisk Technologies Llc Cross-point spin accumulation torque MRAM
JP2019047119A (ja) 2017-09-04 2019-03-22 Tdk株式会社 磁気抵抗効果素子、磁気メモリ、および磁気デバイス
US10229723B1 (en) 2017-09-12 2019-03-12 Sandisk Technologies Llc Spin orbit torque magnetoresistive random access memory containing composite spin hall effect layer including beta phase tungsten
JP6542319B2 (ja) 2017-09-20 2019-07-10 株式会社東芝 磁気メモリ
JP7098914B2 (ja) 2017-11-14 2022-07-12 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
US10361359B1 (en) * 2017-12-30 2019-07-23 Spin Memory, Inc. Magnetic random access memory with reduced internal operating temperature range
US10381548B1 (en) * 2018-02-08 2019-08-13 Sandisk Technologies Llc Multi-resistance MRAM
US11211547B2 (en) 2018-02-28 2021-12-28 Tdk Corporation Spin-orbit-torque type magnetization rotating element, spin-orbit-torque type magnetoresistance effect element, and magnetic memory
US11502188B2 (en) 2018-06-14 2022-11-15 Intel Corporation Apparatus and method for boosting signal in magnetoelectric spin orbit logic
US10553783B2 (en) 2018-06-29 2020-02-04 Sandisk Technologies Llc Spin orbit torque magnetoresistive random access memory containing shielding element and method of making thereof
US10726893B2 (en) 2018-08-02 2020-07-28 Sandisk Technologies Llc Perpendicular SOT-MRAM memory cell using spin swapping induced spin current
JP2020035971A (ja) 2018-08-31 2020-03-05 Tdk株式会社 スピン流磁化回転型磁気素子、スピン流磁化回転型磁気抵抗効果素子及び磁気メモリ
US11411047B2 (en) 2018-09-11 2022-08-09 Intel Corporation Stacked transistor bit-cell for magnetic random access memory
US11264558B2 (en) 2018-09-11 2022-03-01 Intel Corporation Nano-rod spin orbit coupling based magnetic random access memory with shape induced perpendicular magnetic anisotropy
US11594270B2 (en) 2018-09-25 2023-02-28 Intel Corporation Perpendicular spin injection via spatial modulation of spin orbit coupling
US11605670B2 (en) 2018-10-30 2023-03-14 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic tunnel junction structures and related methods
US10726892B2 (en) 2018-12-06 2020-07-28 Sandisk Technologies Llc Metallic magnetic memory devices for cryogenic operation and methods of operating the same
US11127896B2 (en) 2019-01-18 2021-09-21 Everspin Technologies, Inc. Shared spin-orbit-torque write line in a spin-orbit-torque MRAM
KR102650546B1 (ko) 2019-01-28 2024-03-27 삼성전자주식회사 자기 기억 소자
JP7441483B2 (ja) 2019-08-23 2024-03-01 国立大学法人東北大学 磁気メモリ素子及びその製造方法、並びに磁気メモリ
US11177431B2 (en) 2019-12-02 2021-11-16 HeFeChip Corporation Limited Magnetic memory device and method for manufacturing the same
US11217744B2 (en) 2019-12-10 2022-01-04 HeFeChip Corporation Limited Magnetic memory device with multiple sidewall spacers covering sidewall of MTJ element and method for manufacturing the same
US11387406B2 (en) 2020-01-17 2022-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetic of forming magnetic tunnel junction device using protective mask
US11139340B2 (en) 2020-02-12 2021-10-05 Tdk Corporation Spin element and reservoir element

Also Published As

Publication number Publication date
US11374166B2 (en) 2022-06-28
JP2021082841A (ja) 2021-05-27
JP2022185126A (ja) 2022-12-13
US11355698B2 (en) 2022-06-07
US20210184106A1 (en) 2021-06-17
WO2017090733A1 (ja) 2017-06-01
CN108292704B (zh) 2021-09-07
CN108292705A (zh) 2018-07-17
JPWO2017090730A1 (ja) 2018-09-13
JP2021002694A (ja) 2021-01-07
US20220223786A1 (en) 2022-07-14
JP7168922B2 (ja) 2022-11-10
JPWO2017090739A1 (ja) 2018-09-13
EP3382768A1 (en) 2018-10-03
EP3382767A4 (en) 2019-07-17
US10892401B2 (en) 2021-01-12
US10510948B2 (en) 2019-12-17
JP6845300B2 (ja) 2021-03-17
US11637237B2 (en) 2023-04-25
JP6777649B2 (ja) 2020-10-28
JPWO2017090733A1 (ja) 2018-09-13
US20230210017A1 (en) 2023-06-29
US10586916B2 (en) 2020-03-10
CN108292705B (zh) 2022-01-18
WO2017090736A1 (ja) 2017-06-01
CN108292703B (zh) 2022-03-29
JP2020031234A (ja) 2020-02-27
US20180351082A1 (en) 2018-12-06
US10490731B2 (en) 2019-11-26
US20180351084A1 (en) 2018-12-06
EP3382768A4 (en) 2019-07-24
EP3382767B1 (en) 2020-12-30
JPWO2017090736A1 (ja) 2018-09-13
CN108292703A (zh) 2018-07-17
CN108292704A (zh) 2018-07-17
US20200083439A1 (en) 2020-03-12
CN108292702B (zh) 2022-01-28
WO2017090739A1 (ja) 2017-06-01
JP7035147B2 (ja) 2022-03-14
WO2017090728A1 (ja) 2017-06-01
JP6777094B2 (ja) 2020-10-28
JPWO2017090728A1 (ja) 2018-09-13
EP3382767A1 (en) 2018-10-03
CN114361329A (zh) 2022-04-15
US20220231221A1 (en) 2022-07-21
US10522742B2 (en) 2019-12-31
WO2017090730A1 (ja) 2017-06-01
US20180351083A1 (en) 2018-12-06
US20180350417A1 (en) 2018-12-06
JPWO2017090726A1 (ja) 2018-09-13
JP6621839B2 (ja) 2019-12-18
EP3382768B1 (en) 2020-12-30
US10964885B2 (en) 2021-03-30
WO2017090726A1 (ja) 2017-06-01
US20200035911A1 (en) 2020-01-30
CN108292702A (zh) 2018-07-17
US20180337326A1 (en) 2018-11-22
US20180351085A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP6777093B2 (ja) スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ
US10193061B2 (en) Spin-orbit torque magnetization rotational element
US10396276B2 (en) Electric-current-generated magnetic field assist type spin-current-induced magnetization reversal element, magnetoresistance effect element, magnetic memory and high-frequency filter
JP5586028B2 (ja) 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス
JP5988019B2 (ja) 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子及びスピントロニクスデバイス
JP7024204B2 (ja) スピン流磁化回転素子、磁気抵抗効果素子及び磁気メモリ
JP6972542B2 (ja) スピン流磁化反転素子、磁気抵抗効果素子および磁気メモリ
JP6733757B2 (ja) 記憶素子及び磁気メモリ
CN107408626B (zh) 磁阻效应元件
JP5527669B2 (ja) 強磁性トンネル接合体およびそれを用いた磁気抵抗効果素子
JP2019046976A (ja) スピン流磁化反転素子、磁気メモリ
JP2019057626A (ja) スピン流磁化反転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
EP3786658A2 (en) Magnetoresistance effect element and heusler alloy
CN112349831A (zh) 磁阻效应元件以及惠斯勒合金
CN107887506A (zh) 磁阻效应元件
WO2018101028A1 (ja) スピン流磁化反転素子とその製造方法、磁気抵抗効果素子、磁気メモリ
CN112349832B (zh) 磁阻效应元件以及惠斯勒合金
CN111512456B (zh) 铁磁性层叠膜、自旋流磁化旋转元件、磁阻效应元件和磁存储器
JP2020155606A (ja) スピン流磁化反転素子及び磁気メモリ
Jin Novel Half-Metallic and Spin-Gapless Heusler Compounds
JP6586872B2 (ja) 磁気抵抗効果素子及び磁気抵抗効果素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R150 Certificate of patent or registration of utility model

Ref document number: 6777093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150