WO2020194660A1 - 記憶素子、半導体装置、磁気記録アレイ及び記憶素子の製造方法 - Google Patents

記憶素子、半導体装置、磁気記録アレイ及び記憶素子の製造方法 Download PDF

Info

Publication number
WO2020194660A1
WO2020194660A1 PCT/JP2019/013592 JP2019013592W WO2020194660A1 WO 2020194660 A1 WO2020194660 A1 WO 2020194660A1 JP 2019013592 W JP2019013592 W JP 2019013592W WO 2020194660 A1 WO2020194660 A1 WO 2020194660A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ferromagnetic layer
wiring
storage element
electrode
Prior art date
Application number
PCT/JP2019/013592
Other languages
English (en)
French (fr)
Inventor
淳史 積田
陽平 塩川
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to JP2019540461A priority Critical patent/JP6624356B1/ja
Priority to PCT/JP2019/013592 priority patent/WO2020194660A1/ja
Priority to CN201980062719.9A priority patent/CN112753099B/zh
Priority to US17/288,612 priority patent/US11974507B2/en
Publication of WO2020194660A1 publication Critical patent/WO2020194660A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/80Constructional details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/01Manufacture or treatment
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a storage element, a semiconductor device, a magnetic recording array, and a method for manufacturing a storage element.
  • a giant magnetoresistive (GMR) element composed of a multilayer film of a ferromagnetic layer and a non-magnetic layer and a tunnel magnetoresistive (TMR) element using an insulating layer (tunnel barrier layer, barrier layer) as the non-magnetic layer are magnetic resistance. It is known as an effect element.
  • Magnetoresistive elements can be applied to magnetic sensors, radio frequency components, magnetic heads and non-volatile random access memory (MRAM).
  • MRAM is a storage element in which a magnetoresistive element is integrated.
  • the MRAM reads and writes data by utilizing the characteristic that the resistance of the magnetoresistive sensor changes when the directions of magnetization of the two ferromagnetic layers sandwiching the non-magnetic layer in the magnetoresistive element change.
  • the direction of magnetization of the ferromagnetic layer is controlled by using, for example, the magnetic field generated by the electric current. Further, for example, the direction of magnetization of the ferromagnetic layer is controlled by utilizing the spin transfer torque (STT) generated by passing a current in the stacking direction of the magnetoresistive sensor.
  • STT spin transfer torque
  • SOT spin-orbit torque
  • Patent Document 1 a writing method using spin-orbit torque (SOT) (for example, Patent Document 1).
  • SOT is induced by the spin current generated by spin-orbit interaction or the Rashba effect at the interface of dissimilar materials.
  • the current for inducing SOT in the magnetoresistive element flows in the direction intersecting the stacking direction of the magnetoresistive element. That is, it is not necessary to pass a current in the stacking direction of the magnetoresistive element, and it is expected that the life of the magnetoresistive element will be extended.
  • the resistance value in the stacking direction changes depending on the difference in the relative angle of the magnetization orientation direction of the two ferromagnetic layers sandwiching the non-magnetic layer.
  • the storage element stores the difference in the resistance value of the magnetoresistive element as data.
  • the data is read by passing a read current in the stacking direction of the magnetoresistive element.
  • Magnetoresistive elements are often integrated and used as a magnetic memory. As the amount of read current applied to each magnetoresistive element increases, the power consumption of the magnetic memory increases.
  • the present invention has been made in view of the above circumstances, and provides a storage element, a semiconductor device, and a magnetic recording array that secure a current read path and can operate with low power consumption.
  • the present invention provides the following means for solving the above problems.
  • the storage element according to the first aspect is not sandwiched between the first ferromagnetic layer, the second ferromagnetic layer, and the first ferromagnetic layer and the second ferromagnetic layer in the first direction.
  • the non-magnetic layer and an electrode sandwiching at least a part thereof, and the electrode is in contact with at least a part of the side surface of the second ferromagnetic layer.
  • the electrodes cover the first portion of the second ferromagnetic layer opposite to the non-magnetic layer and the first portion, and cover the first portion in the second direction. It has a second portion that extends, the second portion may be in contact with at least a portion of the side surface of the second ferromagnetic layer, and the second portion may have lower resistance than the first portion.
  • the electrode may have a third portion in contact with the second portion, and may have a compound layer between the second portion and the third portion. ..
  • the storage element according to the above aspect may have a portion in which the distance between the first wiring and the electrode in the first direction is different.
  • the storage element according to the above aspect further includes a first conductive portion and a second conductive portion connected to the first wiring at positions sandwiching the first ferromagnetic layer in the second direction.
  • the first wiring and the first wiring at the midpoint in the second direction between the first end of the first conductive layer on the first conductive portion side and the second end of the first conductive portion on the first conductive layer side.
  • the first distance to the electrode may be closer than the second distance between the first wiring and the electrode at a position away from the first ferromagnetic layer from the midpoint.
  • the storage element according to the above aspect further includes a first conductive portion and a second conductive portion connected to the first wiring at a position sandwiching the first ferromagnetic layer in the second direction.
  • the first distance to the electrode may be closer than the third distance between the first wiring and the electrode at the intersection of the electrode and the second ferromagnetic layer or the non-magnetic layer.
  • the surface of the electrode on the first wiring side has an inclined surface inclined with respect to a first plane orthogonal to the first direction, and the first of the inclined surfaces.
  • the inclination of the tangent plane at the point with respect to the first plane may be larger than the inclination of the tangent plane with respect to the first plane at the second point located closer to the second ferromagnetic layer than the first point.
  • the first wiring is a metal, alloy, intermetallic compound, metal boride, metal carbide, metal having a function of generating a spin current by the spin Hall effect when a current flows. It may contain either a silicate or a metal phosphate.
  • the semiconductor device includes the storage element according to the above aspect and a plurality of switching elements electrically connected to the storage element.
  • the magnetic recording array according to the third aspect has a plurality of storage elements according to the above aspect.
  • the method for manufacturing a storage element includes a step of laminating a conductive layer, a first magnetic layer, a non-magnetic layer, and a second magnetic layer in order, and a first magnetic layer, a non-magnetic layer, and a second.
  • the step includes a step of coating with an insulating layer so that the side surface of the ferromagnetic layer is exposed, and a step of coating the magnetic resistance effect element and one surface of the insulating layer with a conductive layer.
  • the storage element, the semiconductor device, and the magnetic recording array according to the present embodiment secure a current read path and can operate with low power consumption.
  • the + x direction, the ⁇ x direction, the + y direction, and the ⁇ y direction are directions substantially parallel to one surface of the substrate Sub (see FIG. 2) described later.
  • the + x direction is one direction in which the first wiring 20 described later extends, and is a direction from the first switching element 110 described later toward the second switching element 120.
  • the ⁇ x direction is the opposite direction to the + x direction.
  • the x direction is an example of the second direction.
  • the + y direction is one direction orthogonal to the x direction.
  • the ⁇ y direction is opposite to the + y direction.
  • the + z direction is the direction in which each layer of the magnetoresistive element 10 described later is laminated.
  • the ⁇ z direction is opposite to the + z direction.
  • the z direction is an example of the first direction.
  • the + z direction may be expressed as “up” and the ⁇ z direction may be expressed as “down”. The top and bottom do not always coincide with the direction in which gravity is applied.
  • extending in the x direction means, for example, that the dimension in the x direction is larger than the smallest dimension among the dimensions in the x direction, the y direction, and the z direction. The same applies when extending in the other direction.
  • connection is not limited to the case of being physically connected, but also includes the case of being electrically connected.
  • facing is not limited to the case where two members are in contact with each other, but also includes the case where another member exists between the two members.
  • FIG. 1 is a block diagram of the magnetic recording array 300 according to the first embodiment.
  • the magnetic recording array 300 includes a plurality of storage elements 100, a plurality of write wirings Wp1 to Wpn, a plurality of common wirings Cm1 to Cmn, a plurality of read wirings Rp1 to Rpn, a plurality of first switching elements 110, and a plurality of pieces.
  • the second switching element 120 and a plurality of third switching elements 130 are provided.
  • the magnetic recording array 300 can be used for, for example, a magnetic memory.
  • the write wirings Wp1 to Wpn electrically connect the power supply and one or more storage elements 100.
  • Common wirings Cm1 to Cmn are wirings used both when writing data and when reading data.
  • the common wirings Cm1 to Cmn electrically connect the reference potential and one or more storage elements 100.
  • the reference potential is, for example, ground.
  • the common wirings Cm1 to Cmn may be provided in each of the plurality of storage elements 100, or may be provided over the plurality of storage elements 100.
  • the read wirings Rp1 to Rpn electrically connect the power supply and one or more storage elements 100.
  • the power supply is connected to the magnetic recording array 300 during use.
  • the first switching element 110, the second switching element 120, and the third switching element 130 shown in FIG. 1 are connected to each of the plurality of storage elements 100.
  • the first switching element 110 is connected between each of the storage elements 100 and the write wirings Wp1 to Wpn.
  • the second switching element 120 is connected between each of the storage elements 100 and the common wirings Cm1 to Cmn.
  • the third switching element 130 is connected between each of the storage elements 100 and the read wirings Rp1 to Rpn.
  • a write current flows between the write wirings Wp1 to Wpn connected to the predetermined storage element 100 and the common wirings Cm1 to Cmn.
  • a read current flows between the common wirings Cm1 to Cmn connected to the predetermined storage element 100 and the read wirings Rp1 to Rpn.
  • the first switching element 110, the second switching element 120, and the third switching element 130 are elements that control the flow of current.
  • the first switching element 110, the second switching element 120, and the third switching element 130 are, for example, a transistor, an element utilizing a phase change of a crystal layer such as an Ovonic Threshold Switch (OTS), and a metal insulator transition.
  • An element such as a (MIT) switch that utilizes a change in band structure, an element that utilizes a breakdown voltage such as a Zener diode and an avalanche diode, and an element whose conductivity changes as the atomic position changes.
  • any one of the first switching element 110, the second switching element 120, and the third switching element 130 may be shared by the storage element 100 connected to the same wiring.
  • one first switching element 110 is provided upstream of the write wirings Wp1 to Wpn.
  • one second switching element 120 is provided upstream of the common wirings Cm1 to Cmn.
  • one third switching element 130 is provided upstream of the read wirings Rp1 to Rpn.
  • FIG. 2 is a cross-sectional view of the semiconductor device 200 constituting the magnetic recording array 300 according to the first embodiment.
  • FIG. 2 is a cross section of the storage element 100 cut along an xz plane passing through the center of the width of the first wiring 20 described later in the y direction.
  • the semiconductor device 200 has a storage element 100 and a plurality of switching elements (first switching element 110, second switching element 120, third switching element 130) connected to the storage element 100.
  • the third switching element 130 does not exist on the cross section shown in FIG. 2, and is located, for example, in the paper surface depth direction ( ⁇ y direction).
  • the first switching element 110 and the second switching element 120 shown in FIG. 2 are transistors Tr.
  • the transistor Tr has a gate electrode G, a gate insulating film GI, and a source region S and a drain region D formed on the substrate Sub.
  • the substrate Sub is, for example, a semiconductor substrate.
  • Each of the transistors Tr, the storage element 100, the write wiring Wp, and the read wiring Rp are electrically connected via the conductive portion Cw.
  • the conductive portion Cw is sometimes referred to as, for example, connection wiring or via wiring.
  • the conductive portion Cw contains a material having conductivity.
  • the conductive portion Cw extends in the z direction.
  • the storage element 100 and the transistor Tr are electrically separated by an insulating layer 50 except for the conductive portion Cw.
  • the insulating layer 50 is an insulating layer that insulates between the wirings of the multilayer wiring and between the elements.
  • the insulating layer 50 includes, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), silicon carbide (SiC), chromium nitride, silicon carbide (SiCN), silicon oxynitride (SiON), and aluminum oxide (Al 2 O). 3 ), zirconium oxide (ZrO x ) and the like.
  • FIG. 3 to 5 are cross-sectional views of a storage element 100 constituting the magnetic recording array 300 according to the first embodiment.
  • FIG. 6 is a plan view of the storage element 100 constituting the magnetic recording array 300 according to the first embodiment.
  • FIG. 3 is a cross section cut along an xz plane (a plane along the line AA in FIG. 6) passing through the center of the width of the first wiring 20 in the y direction.
  • FIG. 4 is a cross section of the magnetoresistive element 10 cut along a yz plane (a plane along the line BB in FIG. 6) passing through the center of the width in the x direction.
  • FIG. 5 is a cross section cut along the yz plane (plane along the line CC in FIG. 6) passing through the center position Pc (see FIG. 7) of the compound portion 40 described later.
  • the memory element 100 has a magnetoresistive element 10, a first wiring 20, an electrode 30, a compound portion 40, a first conductive portion Cw1, and a second conductive portion Cw2.
  • the insulating layers 51, 52, and 53 in FIGS. 3 to 5 are a part of the insulating layer 50 in FIG.
  • the storage element 100 is an element that performs magnetization rotation using spin orbit torque (SOT), and is called a spin orbit torque type magnetization rotation element, a spin orbit torque type magnetization reversal element, and a spin orbit torque type magnetoresistive element. In some cases.
  • SOT spin orbit torque
  • the magnetoresistive element 10 is sandwiched between the first wiring 20 and the electrode 30.
  • the magnetoresistive element 10 is, for example, a columnar body having a circular plan view from the z direction.
  • the shape of the magnetoresistive element 10 in a plan view from the z direction is not limited to a circle, and may be, for example, an ellipse or a rectangle.
  • the outer peripheral length or diameter of the magnetoresistive element 10 increases, for example, as the distance from the electrode 30 increases.
  • the side surface 10s of the magnetoresistive element 10 is inclined at an inclination angle ⁇ with respect to the xy plane, for example.
  • the side surface 10s of the magnetoresistive sensor 10 includes a side surface 1s of the first ferromagnetic layer 1, a side surface 2s of the second ferromagnetic layer 2, and a side surface 3s of the non-magnetic layer 3.
  • the magnetoresistive sensor 10 has a first ferromagnetic layer 1, a second ferromagnetic layer 2, and a non-magnetic layer 3.
  • the first ferromagnetic layer 1 faces the first wiring 20.
  • the second ferromagnetic layer 2 faces the electrode 30.
  • the non-magnetic layer 3 is sandwiched between the first ferromagnetic layer 1 and the second ferromagnetic layer 2.
  • the first ferromagnetic layer 1 and the second ferromagnetic layer 2 each have magnetization.
  • the magnetization of the second ferromagnetic layer 2 is less likely to change in the orientation direction than the magnetization of the first ferromagnetic layer 1 when a predetermined external force is applied.
  • the first ferromagnetic layer 1 is called a magnetization free layer
  • the second ferromagnetic layer 2 is sometimes called a magnetization fixed layer or a magnetization reference layer.
  • the resistance value of the magnetoresistive effect element 10 changes according to the difference in the relative angles of magnetization between the first ferromagnetic layer 1 and the second ferromagnetic layer 2 sandwiching the non-magnetic layer 3.
  • the magnetization of the first ferromagnetic layer 1 and the second ferromagnetic layer 2 is oriented in either the z direction or the xy plane, for example.
  • the first ferromagnetic layer 1 and the second ferromagnetic layer 2 include a ferromagnetic material.
  • the ferromagnetic material is, for example, a metal selected from the group consisting of Cr, Mn, Co, Fe and Ni, an alloy containing at least one of these metals, and at least one of these metals and B, C, and N. It is an alloy containing the above elements.
  • the ferromagnet is, for example, Co—Fe, Co—Fe—B, Ni—Fe, Co—Ho alloy, Sm—Fe alloy, Fe—Pt alloy, Co—Pt alloy, CoCrPt alloy.
  • the first ferromagnetic layer 1 and the second ferromagnetic layer 2 may contain a Whistler alloy.
  • Heusler alloy contains an intermetallic compound with XYZ or X 2 YZ chemical composition.
  • X is a transition metal element or noble metal element of Group Co, Fe, Ni, or Cu on the periodic table
  • Y is a transition metal of Group Mn, V, Cr or Ti, or an elemental species of X
  • Z is a group III. It is a typical element of Group V.
  • the Whisler alloy is, for example, Co 2 FeSi, Co 2 FeGe, Co 2 FeGa, Co 2 MnSi, Co 2 Mn 1-a Fe a Al b Si 1-b , Co 2 FeGe 1-c Ga c and the like. Whisler alloys have a high spin polarizability.
  • the magnetoresistive sensor 10 may have an antiferromagnetic layer on the surface of the second ferromagnetic layer 2 opposite to the non-magnetic layer 3 via a spacer layer.
  • the second ferromagnetic layer 2, the spacer layer, and the antiferromagnetic layer have a synthetic antiferromagnetic structure (SAF structure).
  • the synthetic antiferromagnetic structure consists of two magnetic layers sandwiching a non-magnetic layer.
  • the antiferromagnetic coupling between the second ferromagnetic layer 2 and the antiferromagnetic layer increases the coercive force of the second ferromagnetic layer 2 as compared with the case without the antiferromagnetic layer.
  • the antiferromagnetic layer is, for example, IrMn, PtMn, or the like.
  • the spacer layer contains, for example, at least one selected from the group consisting of Ru, Ir, Rh.
  • the magnetoresistive sensor 10 may have a layer other than the first ferromagnetic layer 1, the second ferromagnetic layer 2, and the non-magnetic layer 3.
  • a base layer may be provided between the first wiring 20 and the magnetoresistive element 10.
  • a cap layer may be provided between the electrode 30 and the magnetoresistive element 10. The base layer and the cap layer enhance the crystallinity of each layer constituting the magnetoresistive element 10.
  • the first wiring 20 extends in the x direction.
  • the length of the first wiring 20 in the x direction when viewed from the z direction is longer than that in the y direction, for example.
  • the first wiring 20 faces the first ferromagnetic layer 1 of the magnetoresistive element 10. At least a part of the first wiring 20 sandwiches the first ferromagnetic layer 1 together with the non-magnetic layer 3 in the z direction.
  • the first wiring 20 is made of any one of a metal, an alloy, an intermetal compound, a metal boride, a metal carbide, a metal silice, and a metal phosphate having a function of generating a spin flow by the spin Hall effect when the current I flows. Including.
  • the first wiring 20 may be referred to as a spin-orbit torque wiring.
  • the spin Hall effect is a phenomenon in which a spin current is induced in a direction orthogonal to the direction in which a current flows, based on the spin-orbit interaction when a current is passed.
  • the spin Hall effect is common to the normal Hall effect in that moving (moving) charges (electrons) can bend in the moving (moving) direction.
  • moving (moving) charges electrosprays
  • the direction of motion of charged particles moving in a magnetic field is bent by Lorentz force.
  • the spin Hall effect even if there is no magnetic field, the direction of spin movement is bent only by the movement of electrons (only the flow of current).
  • the first wiring 20 generates a spin current due to the spin Hall effect when the current I flows.
  • the first spin S1 oriented in one direction and the second spin S2 oriented in the direction opposite to the first spin S1 are oriented in directions orthogonal to the direction in which the current I flows. It is bent by the spin hole effect.
  • the first spin S1 oriented in the + y direction is bent in the + z direction
  • the second spin S2 oriented in the ⁇ y direction is bent in the ⁇ z direction.
  • the number of electrons in the first spin S1 and the number of electrons in the second spin S2 generated by the spin Hall effect are equal. That is, the number of electrons in the first spin S1 in the + z direction and the number of electrons in the second spin S2 in the ⁇ z direction are equal.
  • the first spin S1 and the second spin S2 flow in the direction of eliminating the uneven distribution of spins. In the movement of the first spin S1 and the second spin S2 in the z direction, the electric charges cancel each other out, so that the amount of current becomes zero.
  • a spin current without an electric current is particularly called a pure spin current.
  • the spin current JS occurs in the z direction.
  • the first spin S1 is injected into the first ferromagnetic layer 1 facing the first wiring 20.
  • the first wiring 20 provides, for example, an SOT capable of reversing the magnetization of the first ferromagnetic layer 1 to the magnetization of the first ferromagnetic layer 1.
  • the main component of the first wiring 20 is preferably a non-magnetic heavy metal.
  • the heavy metal means a metal having a specific gravity of yttrium (Y) or more.
  • the non-magnetic heavy metal is preferably a non-magnetic metal having an outermost shell with d-electrons or f-electrons and having an atomic number of 39 or more and a large atomic number.
  • the first wiring 20 is, for example, Hf, Ta, W.
  • Non-magnetic heavy metals have stronger spin-orbit interaction than other metals. The spin Hall effect is generated by the spin-orbit interaction, and spins are likely to be unevenly distributed in the first wiring 20, and spin current JS is likely to occur.
  • the first wiring 20 may contain a magnetic metal.
  • the magnetic metal is a ferromagnetic metal or an antiferromagnetic metal.
  • a small amount of magnetic metal contained in the non-magnetic material becomes a spin scattering factor.
  • the trace amount is, for example, 3% or less of the total molar ratio of the elements constituting the first wiring 20.
  • the first wiring 20 may include a topological insulator.
  • a topological insulator is a substance in which the inside of the substance is an insulator or a high resistance substance, but a metallic state in which spin polarization occurs on the surface thereof.
  • an internal magnetic field is generated by spin-orbit interaction.
  • Topological insulators develop a new topological phase due to the effect of spin-orbit interaction even in the absence of an external magnetic field.
  • Topological insulators can generate pure spin currents with high efficiency due to strong spin-orbit interaction and breaking of inversion symmetry at the edges.
  • Topological insulators include, for example, SnTe, Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 , TlBiSe 2 , Bi 2 Te 3 , Bi 1-x Sb x , (Bi 1-x Sb x ) 2 For example, Te 3 .
  • Topological insulators can generate spin currents with high efficiency.
  • the electrode 30 faces the second ferromagnetic layer 2 of the magnetoresistive element 10.
  • the electrode 30 is in contact with, for example, the first surface 2a and the side surface 2s of the second ferromagnetic layer 2.
  • the first surface 2a is a surface of the second ferromagnetic layer 2 opposite to the non-magnetic layer 3.
  • the electrode 30 may be in contact with the side surface 3s of the non-magnetic layer 3, but is not in contact with the side surface 1s of the first ferromagnetic layer 1.
  • the readout current cannot be appropriately applied in the z direction of the magnetoresistive element 10.
  • At least a part of the electrode 30 sandwiches the second ferromagnetic layer 2 with the non-magnetic layer 3.
  • the electrode 30 has, for example, a first portion 31, a second portion 32, and a third portion 33.
  • FIG. 7 is a cross-sectional view of the storage element 100 constituting the magnetic recording array 300 according to the first embodiment.
  • FIG. 7 is an enlarged view of the vicinity of the magnetoresistive element 10 of FIG.
  • the first portion 31 is located at a position overlapping the second ferromagnetic layer 2 in the z direction and covers the first surface 2a of the second ferromagnetic layer 2.
  • the second portion 32 covers the first portion 31, extends in the x direction, and comes into contact with the side surface 2s of the second ferromagnetic layer 2.
  • the third portion 33 is in contact with the second portion 32.
  • the first portion 31 and the second portion 32 are, for example, a part of a hard mask used in the manufacturing process of the storage element 100.
  • the first portion 31 and the second portion 32 are harder than, for example, the third portion 33.
  • the first portion 31 is, for example, a part of a first hard mask used when the magnetoresistive element 10 is processed into a predetermined shape.
  • the second portion 32 is, for example, a part of a second hard mask used when the first wiring 20 is processed into a predetermined shape.
  • the first portion 31 and the second portion 32 may include a plurality of layers.
  • the first portion 31 and the second portion 32 include, for example, Al, Cu, Ta, Ti, Zr, NiCr, nitrides (eg TiN, TaN, SiN), oxides (eg SiO 2 ).
  • the first portion 31 and the second portion 32 are, for example, a laminate of NiCr and Ta, respectively.
  • the first surface 31a on the side far from the magnetoresistive element 10 is curved.
  • the first surface 31a is curved, for example, in the manufacturing process described later.
  • the adhesion between the first portion 31 and the second portion 32 is improved.
  • the first surface 31a has, for example, an arc shape.
  • the read current is concentrated and flows from the second portion 32 to the first portion 31. Since the first surface 31a is substantially orthogonal to the direction in which the read current flows, local electric field concentration can be suppressed.
  • the second part 32 extends in the x direction.
  • the length L1 of the second portion 32 in the x direction is longer than, for example, the width w1 of the second portion 32 in the y direction.
  • the length L1 of the second portion 32 in the x direction is substantially the same as the length of the first wiring 20 in the x direction.
  • the length w1 of the second portion 32 in the y direction is substantially the same as the width of the first wiring 20 in the y direction. Approximately the same means that the difference in length or width between the first wiring 20 and the second portion 32 is within 10% of the length in the x direction or the width in the y direction of the first wiring 20.
  • the second portion 32 is formed along the insulating layer 52 and the first portion 31.
  • the first surface 32a and the second surface 32b of the second portion 32 are curved.
  • the first surface 32a is the surface of the second portion 32 far from the first wiring 20, and the second surface 32b is the surface opposite to the first surface 32a.
  • the second surface 32b coincides with the second surface 30b of the electrode 30.
  • the first surface 32a forms a recess 32a1 that is recessed toward the first wiring 20 with respect to the boundary surface along the boundary between the second portion 32 and the third portion 33.
  • the recess 32a1 is formed at a position where the magnetoresistive element 10 is sandwiched in the x-direction and the y-direction, for example.
  • the length L2 of the recess 32a1 in the x direction is shorter than the length L1 of the second portion 32 in the x direction, and the width w2 of the recess 32a1 in the y direction is longer than the width w1 of the second portion 32 in the y direction. Further, the width w2 of the recess 32a1 in the y direction is longer than the width w3 of the first wiring 20 in the y direction.
  • the second surface 32b of the second portion 32 has an inclined surface 32b1 in part.
  • the inclined surface 32b1 is inclined with respect to the xy plane.
  • the inclination angle ⁇ 1 of the tangent plane at the first point p1 of the inclined surface 32b1 with respect to the xy plane is larger than, for example, the inclination angle ⁇ 2 of the tangent plane with respect to the xy plane at the second point p2.
  • the second point p2 is closer to the second ferromagnetic layer 2 than the first point p1.
  • the second portion 32 has a lower resistance than, for example, the first portion 31.
  • the area A1 of the first portion 31 when the electrode 30 is cut by the cutting surface CS parallel to the xy plane is smaller than the area A2 of the second portion 32.
  • the second portion 32 has a lower resistance than the first portion 31. This is because the wider the area where the read current can flow, the lower the area resistivity. The read current is more likely to flow from the first portion 31 to the second portion 32.
  • the third portion 33 is formed on the second portion 32 and the compound portion 40 described later.
  • the third portion 33 is located, for example, at a position overlapping the magnetoresistive element 10 in the z direction.
  • the third portion 33 is more conductive than the first portion 31 and the second portion 32.
  • the third portion 33 extends in the y direction, for example.
  • the third portion 33 is, for example, a wiring that connects the second portion 32 and the conductive portion Cw connected to the third switching element 130.
  • the third portion 33 is, for example, Cu, Al, Au, or the like.
  • the length L3 of the third portion 33 in the x direction is, for example, larger than the distance L2 between the outermost portions of the recess 32a1 in the x direction and shorter than the length L1 of the second portion 32 in the x direction.
  • the third portion 33 is different from, for example, the film thickness h1 of the first position P1 overlapping the recess 32a1 in the z direction and the film thickness h2 of the second position P2 not overlapping the recess 32a1 in the z direction.
  • the film thickness h2 of the second position P2 is thicker than the film thickness h1 of the first position P1.
  • the third portion 33 has, for example, a thick portion and a thin portion alternately.
  • the first surface 33a of the third portion 33 is curved in a wavy shape, for example. Since the first surface 33a is curved in a wavy shape, the adhesion to other layers is improved.
  • the read current tends to flow to a portion having a thick film thickness rather than a portion having a thin film thickness.
  • the film thickness of the third portion 33 is thick, and the flow of the read current becomes smooth.
  • the distance between the first wiring 20 and the electrode 30 in the z direction differs depending on, for example, the position in the x direction.
  • the distance between the first wiring 20 and the electrode 30 in the z direction is the length of a perpendicular line drawn from the second surface 30b of the electrode 30 toward the first wiring 20, and is equal to the thickness of the insulating layer 52.
  • the end of the first conductive layer 1 on the first conductive portion Cw1 side is referred to as the first end portion e1, and the end of the first conductive portion Cw1 on the first conductive layer 1 side is referred to as the second end portion e2.
  • a point equidistant from the first end e1 and the second end e2 in the x direction is referred to as a midpoint c1.
  • the distances between the first wiring 20 and the electrode 30 at the midpoint c1, the second end e2, and the first end e1 at positions in the x direction are referred to as the first distance h3, the second distance h4, and the third distance h5, respectively. ..
  • the first distance h3 is, for example, shorter than the second distance h4 and longer than the third distance h5.
  • the first wiring 20 generates heat when a write current is applied.
  • the generated heat is dissipated through the first conductive portion Cw1, the second conductive portion Cw2, or the electrode 30.
  • the midpoint c1 is far from any of the first conductive portion Cw1 or the second conductive portion Cw2 and the magnetoresistive element 10, and heat is easily stored.
  • the first distance h3 shorter than the second distance h4
  • the heat stored in the vicinity of the midpoint c1 can be released to the electrode 30 side.
  • the distance between the first wiring 20 and the electrode 30 in the z direction becomes shorter in the order of the second distance h4, the first distance h3, and the third distance h5, so that the flow of the read current in the second portion 32 is reduced. It can converge toward the magnetoresistive element 10.
  • the compound part 40 is located inside the electrode 30.
  • the compound portion 40 is located, for example, between the second portion 32 and the third portion 33.
  • the compound portion 40 is formed in, for example, the recess 32a1.
  • the compound part 40 has a lower thermal conductivity than the electrode.
  • the compound part 40 is, for example, an oxide, a carbide, a nitride, a sulfurized product, or a boride.
  • the compound part 40 is, for example, SiO 2 , SiN, MgO, AlN, BN.
  • the compound part 40 surrounds the magnetoresistive element 10 and surrounds the first ferromagnetic layer 1 when viewed from the z direction, for example (see FIG. 6).
  • the compound portion 40 is, for example, an annulus centered on the magnetoresistive element 10 when viewed from the z direction.
  • the compound portion 40 sandwiches the first ferromagnetic layer 1 in the x-direction and the y-direction, for example, when viewed from the z-direction.
  • the shape of the cut surface of the compound portion 40 cut in the yz plane differs depending on the position in the x direction.
  • the x-direction position confirms the compound portion 40 as two separate portions (see FIG. 4), and another position confirms the compound portion 40 as one continuous portion (see FIG. 5).
  • the width of the compound portion 40 in the y direction is wider than, for example, the width of the second portion 32 in the y direction.
  • the compound portion 40 has, for example, a superposed portion 40A that overlaps with the first ferromagnetic layer 1 and a non-superimposed portion 40B that does not overlap when viewed from the z direction.
  • the area of the superimposing portion 40A becomes large, heat tends to be accumulated in the first ferromagnetic layer 1.
  • at least a part of the second ferromagnetic layer 2 does not overlap with the compound portion 40 in the z direction. That is, for example, the compound portion 40 is not formed in at least a part directly above the second ferromagnetic layer 2. Current does not easily flow through the compound portion 40 as compared with the electrode 30. Since the compound portion 40 is not directly above the second ferromagnetic layer 2, the read current path can be secured.
  • the thickness of the compound portion 40 differs in the z direction depending on the position in the x direction or the y direction, for example.
  • the thickness h6 in the z direction at the third position P3 is thicker than the thickness h7 in the z direction at the fourth position P4.
  • the fourth position P4 is located farther from the first ferromagnetic layer 1 than the third position P3.
  • the thickness of the compound portion 40 is maximized, for example, at the third position P3.
  • the third position P3 having the maximum thickness is, for example, a position closer to the first ferromagnetic layer 1 than the radial center position Pc with reference to the first ferromagnetic layer 1 of the compound portion 40.
  • the thickness h6 in the z direction at the third position P3 is thicker than, for example, the thickness h8 in the z direction at the center position Pc.
  • the first surface 40a on the first wiring 20 side of the compound portion 40 is curved, for example. Since the first surface 40a is curved, the local concentration of the read current can be suppressed.
  • the conductive layer 90, the magnetic layer 91, the non-magnetic layer 93, and the magnetic layer 92 are laminated in this order on the base layer UL.
  • the base layer UL corresponds to a portion located below the first wiring 20 in FIG. 2, and includes, for example, an insulating layer 50 and a conductive portion Cw. In FIGS. 8 to 12, for convenience, they are collectively shown as the base layer UL.
  • the conductive layer 90, the magnetic layer 91, the non-magnetic layer 93, and the magnetic layer 92 are laminated by using, for example, a sputtering method, a chemical vapor deposition (CVD) method, a vapor deposition method, or the like.
  • a layer to be the first hard mask is laminated on the upper surface of the magnetic layer 92.
  • the layer to be the first hard mask is processed into a predetermined shape to become the first hard mask HM1.
  • the layer serving as the first hard mask has, for example, a first layer Ly1, a second layer Ly2, and a third layer Ly3 from the side closer to the magnetic layer 92.
  • the third layer Ly3 is processed into a predetermined shape by, for example, milling through a resist.
  • the second layer Ly2 is processed into a predetermined shape by reactive ion etching (RIE) via the third layer Ly3.
  • RIE reactive ion etching
  • the magnetic layer 91, the non-magnetic layer 93, and the magnetic layer 92 are processed into a predetermined shape (for example, a columnar shape).
  • a portion covered with the second layer Ly2 remains, and other portions are removed.
  • the vicinity of the surface of the conductive layer 90 may be removed together during processing.
  • the first layer Ly1 may be processed at the same time, and the third layer Ly3 may be removed.
  • the magnetic layer 91, the non-magnetic layer 93, and the magnetic layer 92 are processed into a first ferromagnetic layer 1, a non-magnetic layer 3, and a second ferromagnetic layer 2, and a magnetoresistive sensor 10 is formed.
  • the processing is performed by, for example, ion milling or the like.
  • the width of the magnetoresistive element 10 in the x-direction and the y-direction can be narrowed by the first hard mask HM1.
  • the surface of the first hard mask HM1 is curved by processing, and the first hard mask HM1 becomes the first portion 31.
  • an insulating layer is formed so as to cover the conductive layer 90 and the magnetoresistive element 10.
  • the insulating layer is first formed on one surface of the conductive layer 90 and the magnetoresistive element 10.
  • the insulating layer is formed so that the portion overlapping with the magnetoresistive element 10 rises.
  • the insulating layer is formed of, for example, two layers made of different materials (for example, SiO 2 and Al 2 O 3 from the side closer to the conductive layer 90).
  • the raised portion of the insulating layer with respect to the other areas is flattened, for example, by chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • a part of the insulating layer around the magnetoresistive element 10 is removed until the first portion 31 is exposed.
  • the insulating layer is removed, for example, by milling. By removing a part of the insulating layer, as shown in FIG. 10, the insulating layer 52 is recessed around the magnetoresistive element 10 from the other parts.
  • a second hard mask HM2 is formed on the upper surfaces of the insulating layer 52 and the magnetoresistive element 10.
  • a layer serving as a second hard mask is laminated on the upper surfaces of the insulating layer 52 and the magnetoresistive element 10.
  • the layer to be the second hard mask is processed into a predetermined shape to become the second hard mask HM2.
  • the layer serving as the second hard mask has, for example, a fourth layer Ly4, a fifth layer Ly5, and a sixth layer Ly6 from the side closer to the magnetic layer 93.
  • the sixth layer Ly6 is processed into a predetermined shape by, for example, milling through a resist.
  • the fifth layer Ly5 is processed into a predetermined shape by RIE via the sixth layer Ly6.
  • the fourth layer Ly4 functions as a stopper layer for the RIE.
  • the conductive layer 90 is patterned into a predetermined shape.
  • a portion covered with the fifth layer Ly5 remains, and the other portion is removed.
  • the conductive layer 90 is patterned in the x-direction and the y-direction to form the first wiring 20.
  • the fourth layer Ly4 may be patterned together with the conductive layer 90, and the sixth layer Ly6 may be removed.
  • the second hard mask HM2 becomes the second portion 32.
  • an insulating layer is formed so as to cover the second portion 32 and the portion removed by patterning.
  • the portion of the insulating layer that overlaps with the second portion 32 rises in the z direction.
  • the insulating layer is formed of, for example, two layers made of different materials (for example, SiO 2 and Al 2 O 3 from the side closer to the conductive layer 90).
  • the raised portion of the insulating layer with respect to the other areas is flattened, for example, by chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • the first layer becomes a stopper film for CMP.
  • a part of the insulating layer is removed until the second portion 32 is exposed.
  • the insulating layer is removed, for example, by milling. As shown in FIG. 12, a part of the insulating layer remains in the recess 32a1 to form the compound portion 40. Further, as shown in FIG. 12, a part of the insulating layer becomes the insulating layer 53.
  • the third portion 33 is formed on the upper surfaces of the compound portion 40 and the second portion 32, and the storage element 100 shown in FIG. 3 is formed.
  • the manufacturing process shown here is an example, and other steps may be inserted between the steps.
  • the electrode 30 is in contact with the side surface 2s of the second ferromagnetic layer 2.
  • the concentration of the read current By widening the contact area between the electrode 30 and the second ferromagnetic layer 2 by the amount of the side surface 2s, it is possible to suppress the concentration of the read current on the first surface 2a of the second ferromagnetic layer 2. Concentration of read current produces heat generation and is one of the causes of current loss.
  • the configuration in which the electrode 30 and the side surface 2s of the second ferromagnetic layer 2 are in contact with each other is a configuration useful for a storage element using spin-orbit torque (SOT).
  • SOT spin-orbit torque
  • a current flows in the z direction of the magnetoresistive element not only at the time of reading but also at the time of writing.
  • the write current has a larger current amount than the read current.
  • peeling of the interface due to electromigration may occur.
  • the writing current is concentrated on the side surface 2s of the second ferromagnetic layer 2, the possibility that the side surface 2s and the electrode 30 are separated increases.
  • a read current flows in the z direction of the magnetoresistive element 10, but a write current does not flow. Since the read current is smaller than the write current, it is unlikely to cause peeling of the interface due to electromigration.
  • the magnetoresistive sensor 10 has a resistance value in the z direction due to the difference in the relative angles of the magnetization orientation directions of the two ferromagnetic layers (first ferromagnetic layer 1 and second ferromagnetic layer 2) sandwiching the non-magnetic layer 3. Changes.
  • the storage element 100 stores the difference in the resistance value of the magnetoresistive element 10 in the z direction as data.
  • the resistance value of the magnetoresistive element 10 in the z direction is the sum of the variable resistance that changes due to the magnetoresistive effect and the inherent specified resistance such as contact resistance and parasitic resistance. As the ratio of the variable resistance to the resistance value of the magnetoresistive element 10 increases, the MR ratio of the magnetoresistive element 10 improves.
  • the high resistance first portion 31 is a parasitic resistance and is an example of a defined resistance. By avoiding the first portion 31 and flowing the read current, the MR ratio of the magnetoresistive element 10 is improved, and the reliability of the data of the storage element 100 is improved.
  • FIG. 13 is a cross-sectional view of the storage element 101 according to the first modification.
  • FIG. 13 is an enlarged view of the vicinity of the magnetoresistive element 10.
  • the shape of the second portion 32 of the storage element 101 according to the first modification is different from that of the storage element 100 according to the first embodiment.
  • Other configurations are the same as those of the storage element 100, and the same reference numerals are given to the same configurations, and the description thereof will be omitted.
  • the first distance h3 at the midpoint c1 is closer than the distance h9 between the first wiring 20 and the electrode 30 at the intersection CP between the electrode 30 and the second ferromagnetic layer 2.
  • the first distance h3 at the midpoint c1 is closer than the distance between the first wiring 20 and the electrode 30 at the intersection of the electrode 30 and the non-magnetic layer 3. That is, the second surface 30b of the electrode 30 at the same position in the x direction as the midpoint c1 is located closer to the first wiring 20 than the intersection CP.
  • the second surface 30b of the electrode 30 is closest to the first wiring 20 at the same position in the x direction as the midpoint c1, for example.
  • the first wiring 20 generates heat when a write current is applied.
  • the midpoint c1 is a portion where the generated heat is difficult to escape.
  • the heat stored in the vicinity of the midpoint c1 can be efficiently released to the electrode 30 side.
  • the read current can be efficiently flowed from the electrode 30 to the magnetoresistive effect element 10, and the power consumption of the storage element 100 is suppressed. it can.
  • FIG. 14 is a plan view of the storage element 102 according to the second modification.
  • FIG. 15 is a cross-sectional view of the storage element 102 according to the second modification.
  • FIG. 15 is a cross section cut along a yz plane (a plane along the line BB in FIG. 14) passing through the center of the width of the first wiring 20 in the x direction.
  • the storage element 102 according to the second modification is different from the storage element 100 in that the width w2 in the y direction of the recess 32a1 and the compound portion 40 is narrower than the width w1 of the second portion 32 and the width w3 of the first wiring 20.
  • Other configurations are the same as those of the storage element 100, and the same reference numerals are given to the same configurations, and the description thereof will be omitted.
  • FIG. 16 is a cross-sectional view of the storage element 103 according to the third modification.
  • FIG. 16 is a cross section cut along the yz plane passing through the center of the width of the first wiring 20 in the x direction.
  • the length of the second portion 32 in the x direction of the storage element 103 according to the third modification is different from that of the storage element 100.
  • Other configurations are the same as those of the storage element 100, and the same reference numerals are given to the same configurations, and the description thereof will be omitted.
  • the length L4 of the second portion 32 in the x direction is different from the length L1 of the first wiring 20 in the x direction. Further, the length L4 of the second portion 32 in the x direction is shorter than the length L3 of the third portion 33 in the x direction.
  • the second portion 32 is in contact with the side surface 2s of the second ferromagnetic layer 2. Therefore, the read current can be efficiently flowed from the second portion 32 to the magnetoresistive element 10, and the power consumption of the storage element 103 can be suppressed.
  • the second portion 32 which has a lower resistance than the first portion 31, comes into contact with the side surface 2s of the second ferromagnetic layer 2, so that the MR ratio of the magnetoresistive element 10 is improved and the reliability of the data of the storage element 103 is improved. be able to.
  • FIG. 17 is a cross-sectional view of the storage element 104 according to the fourth modification.
  • FIG. 17 is a cross section cut along the yz plane passing through the center of the width of the first wiring 20 in the x direction.
  • the length of the third portion 33 in the x direction is different from that of the storage element 100.
  • Other configurations are the same as those of the storage element 100, and the same reference numerals are given to the same configurations, and the description thereof will be omitted.
  • the length L3 of the third portion 33 in the x direction is shorter than the distance L2 between the outermost portions of the recess 32a1 in the x direction.
  • the second portion 32 and the third portion 33 are connected in one place.
  • the second portion 32 is in contact with the side surface 2s of the second ferromagnetic layer 2. Therefore, the read current can be efficiently flowed from the second portion 32 to the magnetoresistive element 10, and the power consumption of the storage element 103 can be suppressed.
  • the second portion 32 which has a lower resistance than the first portion 31, comes into contact with the side surface 2s of the second ferromagnetic layer 2, so that the MR ratio of the magnetoresistive element 10 is improved and the reliability of the data of the storage element 103 is improved. be able to.
  • FIG. 18 is a cross-sectional view of the storage element 105 according to the fifth modification.
  • FIG. 18 is a cross section of the storage element 105 cut along the xz plane passing through the center of the width of the first wiring 20 in the y direction.
  • the storage element 105 according to the fifth modification has a different electrode 35 configuration from the storage element 100.
  • Other configurations are the same as those of the storage element 100, and the same reference numerals are given to the same configurations, and the description thereof will be omitted.
  • the electrode 35 has a first portion 36 and a second portion 37.
  • the first portion 36 is located at a position overlapping the second ferromagnetic layer 2 in the z direction and covers the first surface 2a of the second ferromagnetic layer 2.
  • the second portion 37 covers the first portion 31 and is in contact with the side surface 2s of the second ferromagnetic layer 2.
  • the second portion 37 has a lower resistance than, for example, the first portion 36.
  • the electrode 35 is in contact with the side surface 2s of the second ferromagnetic layer 2. Therefore, the read current can be efficiently flowed from the electrode 35 to the magnetoresistive element 10, and the power consumption of the storage element 105 can be suppressed.
  • the second portion 37 which has a lower resistance than the first portion 36, comes into contact with the side surface 2s of the second ferromagnetic layer 2, the MR ratio of the magnetoresistive element 10 is improved, and the reliability of the data of the storage element 105 is improved. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

この記憶素子は、第1強磁性層と、第2強磁性層と、第1方向において前記第1強磁性層と前記第2強磁性層とに挟まれた非磁性層と、前記第1方向と異なる第2方向に延び、前記第1方向において前記第1強磁性層を前記非磁性層と挟む第1配線と、前記第1方向において前記第2強磁性層を前記非磁性層と少なくとも一部で挟む電極と、を有し、前記電極は、前記第2強磁性層の側面の少なくとも一部と接している。

Description

記憶素子、半導体装置、磁気記録アレイ及び記憶素子の製造方法
 本発明は、記憶素子、半導体装置、磁気記録アレイ及び記憶素子の製造方法に関する。
 強磁性層と非磁性層の多層膜からなる巨大磁気抵抗(GMR)素子、及び、非磁性層に絶縁層(トンネルバリア層、バリア層)を用いたトンネル磁気抵抗(TMR)素子は、磁気抵抗効果素子として知られている。磁気抵抗効果素子は、磁気センサ、高周波部品、磁気ヘッド及び不揮発性ランダムアクセスメモリ(MRAM)への応用が可能である。
 MRAMは、磁気抵抗効果素子が集積された記憶素子である。MRAMは、磁気抵抗効果素子における非磁性層を挟む二つの強磁性層の互いの磁化の向きが変化すると、磁気抵抗効果素子の抵抗が変化するという特性を利用してデータを読み書きする。強磁性層の磁化の向きは、例えば、電流が生み出す磁場を利用して制御する。また例えば、強磁性層の磁化の向きは、磁気抵抗効果素子の積層方向に電流を流すことで生ずるスピントランスファートルク(STT)を利用して制御する。
 STTを利用して強磁性層の磁化の向きを書き換える場合、磁気抵抗効果素子の積層方向に電流を流す。書き込み電流は、磁気抵抗効果素子の特性劣化の原因となる。
 近年、書き込み時に磁気抵抗効果素子の積層方向に電流を流さなくてもよい方法に注目が集まっている。その一つの方法が、スピン軌道トルク(SOT)を利用した書込み方法である(例えば、特許文献1)。SOTは、スピン軌道相互作用によって生じたスピン流又は異種材料の界面におけるラシュバ効果により誘起される。磁気抵抗効果素子内にSOTを誘起するための電流は、磁気抵抗効果素子の積層方向と交差する方向に流れる。すなわち、磁気抵抗効果素子の積層方向に電流を流す必要がなく、磁気抵抗効果素子の長寿命化が期待されている。
特開2017-216286号公報
 磁気抵抗効果素子は、非磁性層を挟む2つの強磁性層の磁化の配向方向の相対角の違いで、積層方向の抵抗値が変化する。記憶素子は、磁気抵抗効果素子の抵抗値の違いをデータとして記憶する。データは、磁気抵抗効果素子の積層方向に読み出し電流を流すことで読み出される。磁気抵抗効果素子は集積され磁気メモリとして用いられる場合が多い。それぞれの磁気抵抗効果素子に印加する読み出し電流量が増加すると、磁気メモリの消費電力が増加する。
 本発明は上記事情に鑑みてなされたものであり、電流の読み出し経路を確保し、少ない消費電力で動作可能な記憶素子、半導体装置及び磁気記録アレイを提供する。
 本発明は、上記課題を解決するため、以下の手段を提供する。
(1)第1の態様に係る記憶素子は、第1強磁性層と、第2強磁性層と、第1方向において前記第1強磁性層と前記第2強磁性層とに挟まれた非磁性層と、前記第1方向と異なる第2方向に延び、前記第1方向において前記第1強磁性層を前記非磁性層と挟む第1配線と、前記第1方向において前記第2強磁性層を前記非磁性層と少なくとも一部で挟む電極と、を有し、前記電極は、前記第2強磁性層の側面の少なくとも一部と接している。
(2)上記態様に係る記憶素子において、前記電極は、前記第2強磁性層の前記非磁性層と反対側の第1面を覆う第1部分と、前記第1部分を覆い第2方向に延びる第2部分と、を有し、前記第2部分は、前記第2強磁性層の側面の少なくとも一部と接し、前記第2部分は、前記第1部分より低抵抗であってもよい。
(3)上記態様に係る記憶素子において、前記電極は、前記第2部分と接する第3部分を有し、前記第2部分と前記第3部分との間に、化合物層を有してもよい。
(4)上記態様に係る記憶素子において、前記第1配線と前記電極との前記第1方向における距離が異なる部分を有してもよい。
(5)上記態様に係る記憶素子において、前記第2方向に前記第1強磁性層を挟む位置において前記第1配線に接続された第1導電部と第2導電部とをさらに有し、前記第1強磁性層の前記第1導電部側の第1端と前記第1導電部の前記第1強磁性層側の第2端との前記第2方向における中点における前記第1配線と前記電極との第1距離は、前記中点より前記第1強磁性層から離れた位置における前記第1配線と前記電極との第2距離より近くてもよい。
(6)上記態様に係る記憶素子において、前記第2方向に前記第1強磁性層を挟む位置において前記第1配線に接続された第1導電部と第2導電部とをさらに有し、前記第1強磁性層の前記第1導電部側の第1端と前記第1導電部の前記第1強磁性層側の第2端との前記第2方向における中点における前記第1配線と前記電極との第1距離は、前記電極と前記第2強磁性層又は前記非磁性層との交点における前記第1配線と前記電極との第3距離より近くてもよい。
(7)上記態様に係る記憶素子において、前記電極の前記第1配線側の面は、前記第1方向と直交する第1平面に対して傾斜する傾斜面を有し、前記傾斜面の第1点における接平面の前記第1平面に対する傾きは、前記第1点より前記第2強磁性層側に位置する第2点における接平面の前記第1平面に対する傾きより大きくてもよい。
(8)上記態様に係る記憶素子において、前記第1配線は、電流が流れる際のスピンホール効果によってスピン流を発生させる機能を有する金属、合金、金属間化合物、金属硼化物、金属炭化物、金属珪化物、金属燐化物のいずれかを含んでもよい。
(9)第2の態様に係る半導体装置は、上記態様に係る記憶素子と、前記記憶素子と電気的に接続された複数のスイッチング素子と、を備える。
(10)第3の態様に係る磁気記録アレイは、上記態様に係る記憶素子を複数有する。
(11)第4の態様に係る記憶素子の製造方法は、導電層、第1磁性層、非磁性層、第2磁性層を順に積層する工程と、第1磁性層、非磁性層、第2磁性層を所定の形状に加工し、第1強磁性層、非磁性層、第2強磁性層の順に積層された磁気抵抗効果素子を形成する工程と、前記磁気抵抗効果素子の周囲を前記第2強磁性層の側面が露出するように絶縁層で被覆する工程と、前記磁気抵抗効果素子及び前記絶縁層の一面に導電層を被覆する工程と、を備える。
 本実施形態にかかる記憶素子、半導体装置及び磁気記録アレイは、電流の読み出し経路を確保し、少ない消費電力で動作可能である。
第1実施形態にかかる磁気記録アレイの模式図である。 第1実施形態にかかる磁気記録アレイを構成する半導体装置の断面図である。 第1実施形態にかかる磁気記録アレイを構成する記憶素子の断面図である。 第1実施形態にかかる磁気記録アレイを構成する記憶素子の断面図である。 第1実施形態にかかる磁気記録アレイを構成する記憶素子の断面図である。 第1実施形態にかかる磁気記録アレイを構成する記憶素子の平面図である。 第1実施形態にかかる磁気記録アレイを構成する記憶素子の要部の断面図である。 第1実施形態にかかる磁気記録アレイを構成する記憶素子の製造方法を説明するための断面図である。 第1実施形態にかかる磁気記録アレイを構成する記憶素子の製造方法を説明するための断面図である。 第1実施形態にかかる磁気記録アレイを構成する記憶素子の製造方法を説明するための断面図である。 第1実施形態にかかる磁気記録アレイを構成する記憶素子の製造方法を説明するための断面図である。 第1実施形態にかかる磁気記録アレイを構成する記憶素子の製造方法を説明するための断面図である。 第1変形例にかかる記憶素子の平面図である。 第2変形例にかかる記憶素子の平面図である。 第2変形例にかかる記憶素子の断面図である。 第3変形例にかかる記憶素子の断面図である。 第4変形例にかかる記憶素子の断面図である。 第5変形例にかかる記憶素子の断面図である。
 以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。
 まず方向について定義する。+x方向、-x方向、+y方向及び-y方向は、後述する基板Sub(図2参照)の一面と略平行な方向である。+x方向は、後述する第1配線20が延びる一方向であり、後述する第1スイッチング素子110から第2スイッチング素子120に向かう方向である。-x方向は、+x方向と反対の方向である。+x方向と-x方向を区別しない場合は、単に「x方向」と称する。x方向は、第2方向の一例である。+y方向は、x方向と直交する一方向である。-y方向は、+y方向と反対の方向である。+y方向と-y方向を区別しない場合は、単に「y方向」と称する。+z方向は、後述する磁気抵抗効果素子10の各層が積層されている方向である。-z方向は、+z方向と反対の方向である。+z方向と-z方向を区別しない場合は、単に「z方向」と称する。z方向は、第1方向の一例である。以下、+z方向を「上」、-z方向を「下」と表現する場合がある。上下は、必ずしも重力が加わる方向とは一致しない。
 本明細書で「x方向に延びる」とは、例えば、x方向、y方向、及びz方向の各寸法のうち最小の寸法よりもx方向の寸法が大きいことを意味する。他の方向に延びる場合も同様である。本明細書で「接続」とは、物理的に接続される場合に限定されず、電気的に接続される場合も含む。本明細書で「面する」とは、2つの部材が互いに接する場合に限定されず、2つの部材の間に別の部材が存在する場合も含む。
[第1実施形態]
 図1は、第1実施形態にかかる磁気記録アレイ300の構成図である。磁気記録アレイ300は、複数の記憶素子100と、複数の書き込み配線Wp1~Wpnと、複数の共通配線Cm1~Cmnと、複数の読み出し配線Rp1~Rpnと、複数の第1スイッチング素子110と、複数の第2スイッチング素子120と、複数の第3スイッチング素子130とを備える。磁気記録アレイ300は、例えば、磁気メモリ等に利用できる。
 書き込み配線Wp1~Wpnは、電源と1つ以上の記憶素子100とを電気的に接続する。共通配線Cm1~Cmnは、データの書き込み時及び読み出し時の両方で用いられる配線である。共通配線Cm1~Cmnは、基準電位と1つ以上の記憶素子100とを電気的に接続する。基準電位は、例えば、グラウンドである。共通配線Cm1~Cmnは、複数の記憶素子100のそれぞれに設けられてもよいし、複数の記憶素子100に亘って設けられてもよい。読み出し配線Rp1~Rpnは、電源と1つ以上の記憶素子100とを電気的に接続する。電源は、使用時に磁気記録アレイ300に接続される。
 図1に示す第1スイッチング素子110、第2スイッチング素子120、第3スイッチング素子130は、複数の記憶素子100のそれぞれに接続されている。第1スイッチング素子110は、記憶素子100のそれぞれと書き込み配線Wp1~Wpnとの間に接続されている。第2スイッチング素子120は、記憶素子100のそれぞれと共通配線Cm1~Cmnとの間に接続されている。第3スイッチング素子130は、記憶素子100のそれぞれと読み出し配線Rp1~Rpnとの間に接続されている。
 第1スイッチング素子110及び第2スイッチング素子120をONにすると、所定の記憶素子100に接続された書き込み配線Wp1~Wpnと共通配線Cm1~Cmnとの間に書き込み電流が流れる。第2スイッチング素子120及び第3スイッチング素子130をONにすると、所定の記憶素子100に接続された共通配線Cm1~Cmnと読み出し配線Rp1~Rpnとの間に読み出し電流が流れる。
 第1スイッチング素子110、第2スイッチング素子120及び第3スイッチング素子130は、電流の流れを制御する素子である。第1スイッチング素子110、第2スイッチング素子120及び第3スイッチング素子130は、例えば、トランジスタ、オボニック閾値スイッチ(OTS:Ovonic Threshold Switch)のように結晶層の相変化を利用した素子、金属絶縁体転移(MIT)スイッチのようにバンド構造の変化を利用した素子、ツェナーダイオード及びアバランシェダイオードのように降伏電圧を利用した素子、原子位置の変化に伴い伝導性が変化する素子である。
 第1スイッチング素子110、第2スイッチング素子120、第3スイッチング素子130のいずれかは、同じ配線に接続された記憶素子100で、共用してもよい。例えば、第1スイッチング素子110を共有する場合は、書き込み配線Wp1~Wpnの上流に一つの第1スイッチング素子110を設ける。例えば、第2スイッチング素子120を共有する場合は、共通配線Cm1~Cmnの上流に一つの第2スイッチング素子120を設ける。例えば、第3スイッチング素子130を共有する場合は、読み出し配線Rp1~Rpnの上流に一つの第3スイッチング素子130を設ける。
 図2は、第1実施形態に係る磁気記録アレイ300を構成する半導体装置200の断面図である。図2は、記憶素子100を後述する第1配線20のy方向の幅の中心を通るxz平面で切断した断面である。半導体装置200は、記憶素子100と、記憶素子100に接続された複数のスイッチング素子(第1スイッチング素子110、第2スイッチング素子120、第3スイッチング素子130)とを有する。第3スイッチング素子130は、図2に示す断面上には存在せず、例えば紙面奥行き方向(-y方向)に位置する。
 図2に示す第1スイッチング素子110及び第2スイッチング素子120は、トランジスタTrである。トランジスタTrは、ゲート電極Gと、ゲート絶縁膜GIと、基板Subに形成されたソース領域S及びドレイン領域Dと、を有する。基板Subは、例えば、半導体基板である。
 トランジスタTrのそれぞれと記憶素子100、書き込み配線Wp及び読み出し配線Rpとは、導電部Cwを介して、電気的に接続されている。導電部Cwは、例えば、接続配線、ビア配線と言われることがある。導電部Cwは、導電性を有する材料を含む。導電部Cwは、z方向に延びる。
 記憶素子100とトランジスタTrとは、導電部Cwを除いて、絶縁層50によって電気的に分離されている。絶縁層50は、多層配線の配線間や素子間を絶縁する絶縁層である。絶縁層50は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、炭化シリコン(SiC)、窒化クロム、炭窒化シリコン(SiCN)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)等である。
 図3から図5は、第1実施形態に係る磁気記録アレイ300を構成する記憶素子100の断面図である。図6は、第1実施形態に係る磁気記録アレイ300を構成する記憶素子100の平面図である。図3は、第1配線20のy方向の幅の中心を通るxz平面(図6におけるA-A線に沿った面)で切断した断面である。図4は、磁気抵抗効果素子10のx方向の幅の中心を通るyz平面(図6におけるB-B線に沿った面)で切断した断面である。図5は、後述する化合物部40の中心位置Pc(図7参照)を通るyz平面(図6におけるC-C線に沿った面)で切断した断面である。
 記憶素子100は、磁気抵抗効果素子10と第1配線20と電極30と化合物部40と第1導電部Cw1と第2導電部Cw2とを有する。図3から図5における絶縁層51,52,53は、図2における絶縁層50の一部である。記憶素子100は、スピン軌道トルク(SOT)を利用して磁化回転を行う素子であり、スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁化反転素子、スピン軌道トルク型磁気抵抗効果素子と言われる場合がある。
 磁気抵抗効果素子10は、第1配線20と電極30とに挟まれる。磁気抵抗効果素子10は、例えば、z方向からの平面視が円形の柱状体である。磁気抵抗効果素子10のz方向からの平面視形状は円形に問わず、例えば楕円形、矩形等でもよい。磁気抵抗効果素子10の外周長又は直径は、例えば、電極30から離れるに従い大きくなる。磁気抵抗効果素子10の側面10sは、例えば、xy平面に対して傾斜角θで傾斜する。磁気抵抗効果素子10の側面10sは、第1強磁性層1の側面1sと、第2強磁性層2の側面2sと、非磁性層3の側面3sとを含む。
 磁気抵抗効果素子10は、第1強磁性層1と第2強磁性層2と非磁性層3とを有する。第1強磁性層1は、第1配線20に面する。第2強磁性層2は、電極30に面する。非磁性層3は、第1強磁性層1と第2強磁性層2とに挟まれる。
 第1強磁性層1及び第2強磁性層2は、それぞれ磁化を有する。第2強磁性層2の磁化は、所定の外力が印加された際に第1強磁性層1の磁化よりも配向方向が変化しにくい。第1強磁性層1は磁化自由層と言われ、第2強磁性層2は磁化固定層、磁化参照層と言われることがある。磁気抵抗効果素子10は、非磁性層3を挟む第1強磁性層1と第2強磁性層2との磁化の相対角の違いに応じて抵抗値が変化する。第1強磁性層1及び第2強磁性層2の磁化は、例えば、z方向又はxy面内のいずれかの方向に配向する。
 第1強磁性層1及び第2強磁性層2は、強磁性体を含む。強磁性体は、例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、これらの金属を1種以上含む合金、これらの金属とB、C、及びNの少なくとも1種以上の元素とが含まれる合金等である。強磁性体は、例えば、Co-Fe、Co-Fe-B、Ni-Fe、Co-Ho合金、Sm-Fe合金、Fe-Pt合金、Co-Pt合金、CoCrPt合金である。
 第1強磁性層1及び第2強磁性層2は、ホイスラー合金を含んでもよい。ホイスラー合金は、XYZまたはXYZの化学組成をもつ金属間化合物を含む。Xは周期表上でCo、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素であり、YはMn、V、CrあるいはTi族の遷移金属又はXの元素種であり、ZはIII族からV族の典型元素である。ホイスラー合金は、例えば、CoFeSi、CoFeGe、CoFeGa、CoMnSi、CoMn1-aFeAlSi1-b、CoFeGe1-cGa等である。ホイスラー合金は高いスピン分極率を有する。
 磁気抵抗効果素子10は、第2強磁性層2の非磁性層3と反対側の面に、スペーサ層を介して反強磁性層を有してもよい。第2強磁性層2、スペーサ層、反強磁性層は、シンセティック反強磁性構造(SAF構造)となる。シンセティック反強磁性構造は、非磁性層を挟む二つの磁性層からなる。第2強磁性層2と反強磁性層とが反強磁性カップリングすることで、反強磁性層を有さない場合より第2強磁性層2の保磁力が大きくなる。反強磁性層は、例えば、IrMn,PtMn等である。スペーサ層は、例えば、Ru、Ir、Rhからなる群から選択される少なくとも一つを含む。
 磁気抵抗効果素子10は、第1強磁性層1、第2強磁性層2及び非磁性層3以外の層を有してもよい。例えば、第1配線20と磁気抵抗効果素子10との間に下地層を有してもよい。また例えば、電極30と磁気抵抗効果素子10との間にキャップ層を有してもよい。下地層及びキャップ層は、磁気抵抗効果素子10を構成する各層の結晶性を高める。
 第1配線20は、x方向に延びる。第1配線20は、例えば、z方向から見てx方向の長さがy方向より長い。第1配線20は、磁気抵抗効果素子10の第1強磁性層1に面する。第1配線20の少なくとも一部は、z方向において、非磁性層3と共に第1強磁性層1を挟む。
 第1配線20は、電流Iが流れる際のスピンホール効果によってスピン流を発生させる機能を有する金属、合金、金属間化合物、金属硼化物、金属炭化物、金属珪化物、金属燐化物のいずれかを含む。第1配線20は、スピン軌道トルク配線と言われる場合がある。
 スピンホール効果は、電流を流した場合にスピン軌道相互作用に基づき、電流の流れる方向と直交する方向にスピン流が誘起される現象である。スピンホール効果は、運動(移動)する電荷(電子)が運動(移動)方向を曲げられる点で、通常のホール効果と共通する。通常のホール効果は、磁場中で運動する荷電粒子の運動方向がローレンツ力によって曲げられる。これに対し、スピンホール効果は磁場が存在しなくても、電子が移動するだけ(電流が流れるだけ)でスピンの移動方向が曲げられる。
 第1配線20は、電流Iが流れる際のスピンホール効果によってスピン流を発生させる。第1配線20に電流Iが流れると、一方向に配向した第1スピンS1と、第1スピンS1と反対方向に配向した第2スピンS2とが、それぞれ電流Iの流れる方向と直交する方向にスピンホール効果によって曲げられる。例えば、+y方向に配向した第1スピンS1が+z方向に曲げられ、-y方向に配向した第2スピンS2が-z方向に曲げられる。
 非磁性体(強磁性体ではない材料)は、スピンホール効果により生じる第1スピンS1の電子数と第2スピンS2の電子数とが等しい。すなわち、+z方向に向かう第1スピンS1の電子数と-z方向に向かう第2スピンS2の電子数とは等しい。第1スピンS1と第2スピンS2は、スピンの偏在を解消する方向に流れる。第1スピンS1及び第2スピンS2のz方向への移動において、電荷の流れは互いに相殺されるため、電流量はゼロとなる。電流を伴わないスピン流は特に純スピン流と呼ばれる。
 第1スピンS1の電子の流れをJ、第2スピンS2の電子の流れをJ、スピン流をJと表すと、J=J-Jで定義される。スピン流Jは、z方向に生じる。第1スピンS1は、第1配線20に面する第1強磁性層1に注入される。第1配線20は、例えば、第1強磁性層1の磁化を反転できるだけのSOTを第1強磁性層1の磁化に与える。
 第1配線20の主成分は、非磁性の重金属であることが好ましい。重金属は、イットリウム(Y)以上の比重を有する金属を意味する。非磁性の重金属は、最外殻にd電子又はf電子を有する原子番号39以上の原子番号が大きい非磁性金属であることが好ましい。第1配線20は、例えば、Hf、Ta、Wである。非磁性の重金属は、その他の金属よりスピン軌道相互作用が強く生じる。スピンホール効果はスピン軌道相互作用により生じ、第1配線20内にスピンが偏在しやすく、スピン流Jが発生しやすくなる。
 第1配線20は、磁性金属を含んでもよい。磁性金属は、強磁性金属又は反強磁性金属である。非磁性体に含まれる微量な磁性金属は、スピンの散乱因子となる。微量とは、例えば、第1配線20を構成する元素の総モル比の3%以下である。スピンが磁性金属により散乱するとスピン軌道相互作用が増強され、電流に対するスピン流の生成効率が高くなる。
 第1配線20は、トポロジカル絶縁体を含んでもよい。トポロジカル絶縁体は、物質内部が絶縁体又は高抵抗体であるが、その表面にスピン偏極した金属状態が生じている物質である。トポロジカル絶縁体は、スピン軌道相互作用により内部磁場が生じる。トポロジカル絶縁体は、外部磁場が無くてもスピン軌道相互作用の効果で新たなトポロジカル相が発現する。トポロジカル絶縁体は、強いスピン軌道相互作用とエッジにおける反転対称性の破れにより純スピン流を高効率に生成できる。
 トポロジカル絶縁体は、例えば、SnTe、Bi1.5Sb0.5Te1.7Se1.3、TlBiSe、BiTe、Bi1-xSb、(Bi1-xSbTeなどである。トポロジカル絶縁体は、高効率にスピン流を生成することが可能である。
 電極30は、磁気抵抗効果素子10の第2強磁性層2に面する。電極30は、例えば、第2強磁性層2の第1面2a及び側面2sと接する。第1面2aは、第2強磁性層2の非磁性層3と反対側の面である。電極30は、非磁性層3の側面3sと接してもよいが、第1強磁性層1の側面1sとは接さない。第1強磁性層1の側面1sと電極30とが接すると、磁気抵抗効果素子10のz方向に読み出し電流を適切に印加できなくなる。電極30の少なくとも一部は、第2強磁性層2を非磁性層3と挟む。
 電極30は、例えば、第1部分31と第2部分32と第3部分33とを有する。図7は、第1実施形態に係る磁気記録アレイ300を構成する記憶素子100の断面図である。図7は図3の磁気抵抗効果素子10の近傍を拡大した図である。第1部分31は、第2強磁性層2とz方向に重なる位置にあり、第2強磁性層2の第1面2aを被覆する。第2部分32は、第1部分31を覆い、x方向に延び、第2強磁性層2の側面2sと接する。第3部分33は、第2部分32と接する。
 第1部分31、第2部分32は、例えば、記憶素子100の製造過程に用いられるハードマスクの一部である。第1部分31及び第2部分32は、例えば、第3部分33より硬い。第1部分31は、例えば、磁気抵抗効果素子10を所定の形状に加工する際に用いられる第1ハードマスクの一部である。第2部分32は、例えば、第1配線20を所定の形状に加工する際に用いられる第2ハードマスクの一部である。第1部分31及び第2部分32は、複数の層を含んでもよい。第1部分31及び第2部分32は、例えば、Al、Cu、Ta、Ti、Zr、NiCr、窒化物(例えばTiN、TaN、SiN)、酸化物(例えばSiO)を含む。第1部分31及び第2部分32はそれぞれ、例えば、NiCrとTaとの積層体である。
 第1部分31は、例えば、磁気抵抗効果素子10から遠い側の第1面31aが湾曲している。第1面31aは、例えば、後述する製造過程で湾曲する。第1面31aが湾曲すると、第1部分31と第2部分32との密着性が向上する。第1面31aは、例えば、円弧状である。読み出し電流は、第2部分32から第1部分31に向って集中して流れる。第1面31aが読み出し電流の流れる方向に対して略直交することで、局所的な電界集中を抑制できる。
 第2部分32は、x方向に延びる。第2部分32のx方向の長さL1は、例えば、第2部分32のy方向の幅w1より長い。第2部分32のx方向の長さL1は、第1配線20のx方向の長さと略同一である。第2部分32のy方向の長さw1は、第1配線20のy方向の幅と略同一である。略同一とは、第1配線20と第2部分32との長さ又は幅の差が、第1配線20のx方向の長さ又はy方向の幅の10%以内であることを意味する。
 第2部分32は、絶縁層52及び第1部分31に沿って形成される。第2部分32の第1面32a及び第2面32bは、湾曲する。第1面32aは第2部分32の第1配線20から遠い側の面であり、第2面32bは第1面32aと反対側の面である。第2面32bは、電極30の第2面30bと一致する。第1面32aは、第2部分32と第3部分33との境界に沿う境界面に対して第1配線20に向って窪む凹部32a1を形成する。凹部32a1は、例えば、x方向及びy方向に磁気抵抗効果素子10を挟む位置に形成されている。凹部32a1のx方向の長さL2は第2部分32のx方向の長さL1より短く、凹部32a1のy方向の幅w2は第2部分32のy方向の幅w1より長い。また凹部32a1のy方向の幅w2は第1配線20のy方向の幅w3より長い。
 第2部分32の第2面32bは、一部に傾斜面32b1を有する。傾斜面32b1は、xy平面に対して傾斜する。傾斜面32b1の第1点p1における接平面のxy平面に対する傾き角φ1は、例えば、第2点p2における接平面のxy平面に対する傾き角φ2より大きい。第2点p2は、第1点p1より第2強磁性層2に近い位置にある。傾斜面32b1のxy平面に対する傾き角が第2強磁性層2へ向かうにつれて徐々に小さくなると、第2強磁性層2へ向かう読み出し電流の流れがスムーズになる。
 第2部分32は、例えば、第1部分31より低抵抗である。第1部分31と第2部分32とが同じ材料からなる場合、電極30をxy平面に平行な切断面CSで切断した際の第1部分31の面積A1が第2部分32の面積A2より小さいと、第2部分32は第1部分31より低抵抗となる。読み出し電流流れることができる領域が広いほど、面積抵抗率が下がるためである。読み出し電流は、第1部分31より第2部分32に流れやすい。
 第3部分33は、第2部分32及び後述する化合物部40上に形成されている。第3部分33は、例えば、z方向において磁気抵抗効果素子10と重なる位置にある。第3部分33は、第1部分31及び第2部分32より導電性が高い。第3部分33は、例えば、y方向に延びる。第3部分33は、例えば、第2部分32と第3スイッチング素子130に接続される導電部Cwとを接続する配線である。第3部分33は、例えば、Cu、Al、Au等である。
 第3部分33のx方向の長さL3は、例えば、凹部32a1のx方向の最外部間の距離L2より大きく、第2部分32のx方向の長さL1より短い。第3部分33と第2部分32との接続箇所が3か所になると、読み出し電流は3つの接続箇所を介して流れる。読み出し電流を3つに分流することで、各接続箇所における電流密度が小さくなり、局所的な電界集中を抑制できる。また読み出し電流の経路を複数確保しておくことで、歪等によりいずれかの接続箇所が剥離した場合でも、読み出し電流が流れなくなることを防ぐことができる。
 第3部分33は、例えば、凹部32a1とz方向に重なる第1位置P1の膜厚h1と、凹部32a1とz方向に重ならない第2位置P2の膜厚h2と、が異なる。第2位置P2の膜厚h2は、第1位置P1の膜厚h1より厚い。第3部分33は、例えば、膜厚の厚い部分と薄い部分とを交互に有する。第3部分33の第1面33aは、例えば、波状に湾曲している。第1面33aが波状に湾曲することで、他の層との密着性が向上する。また読み出し電流は、膜厚が薄い部分より膜厚が厚い部分に流れやすい。第3部分33と第2部分32との接続箇所は、第3部分33の膜厚が厚く、読み出し電流の流れがスムーズになる。
 第1配線20と電極30とのz方向の距離は、例えば、x方向の位置によって異なる。第1配線20と電極30とのz方向の距離は、電極30の第2面30bから第1配線20へ向かって下した垂線の長さであり、絶縁層52の膜厚と等しい。
 第1強磁性層1の第1導電部Cw1側の端部を第1端部e1、第1導電部Cw1の第1強磁性層1側の端部を第2端部e2と称する。x方向において、第1端部e1と第2端部e2とから等距離の点を中点c1と称する。x方向の位置が中点c1、第2端部e2、第1端部e1における第1配線20と電極30との距離をそれぞれ、第1距離h3、第2距離h4、第3距離h5と称する。第1距離h3は、例えば、第2距離h4より短く、第3距離h5より長い。
 第1配線20は、書き込み電流を印加した際に発熱する。生じた熱は、第1導電部Cw1、第2導電部Cw2又は電極30を介して放熱する。中点c1は、第1導電部Cw1又は第2導電部Cw2及び磁気抵抗効果素子10のいずれからも遠く、熱が蓄熱しやすい。第1距離h3を第2距離h4より短くすることで、中点c1近傍に蓄熱された熱を電極30側に逃がすことができる。また第1配線20と電極30とのz方向の距離が、第2距離h4、第1距離h3、第3距離h5の順で距離が短くなることで、第2部分32における読み出し電流の流れを磁気抵抗効果素子10に向って収束できる。
 化合物部40は、電極30の内部に位置する。化合物部40は、例えば、第2部分32と第3部分33との間に位置する。化合物部40は、例えば、凹部32a1内に形成されている。
 化合物部40は、電極より熱伝導率が低い。化合物部40は、例えば、酸化物、炭化物、窒化物、硫黄化物、ホウ化物である。化合物部40は、例えば、SiO、SiN、MgO、AlN、BNである。
 化合物部40は、例えば、z方向から見て、磁気抵抗効果素子10を囲み、第1強磁性層1を囲む(図6参照)。化合物部40は、例えば、z方向から見て、磁気抵抗効果素子10を中心とする円環である。化合物部40は、例えば、z方向から見て、x方向及びy方向に第1強磁性層1を挟む。化合物部40は、例えば、x方向の位置によってyz平面で切断した切断面の形状が異なる。例えば、x方向位置によって、化合物部40は離間した2つの部分として確認され(図4参照)、別の位置によって、化合物部40は連続する1つの部分として確認される(図5参照)。化合物部40のy方向の幅は、例えば第2部分32のy方向の幅より広い。
 化合物部40は、例えば、z方向から見て、第1強磁性層1と重なる重畳部40Aと重ならない非重畳部40Bとを有する。重畳部40Aの面積が大きくなると、第1強磁性層1に熱が溜まりやすくなる。また例えば、第2強磁性層2の少なくとも一部は、化合物部40とz方向において重ならない。すなわち、例えば、第2強磁性層2の直上の少なくとも一部には、化合物部40は形成されていない。化合物部40は、電極30より電流が流れにくい。第2強磁性層2の直上に化合物部40が無いことで、読み出し電流の経路を確保できる。
 化合物部40は、例えば、x方向又はy方向の位置によってz方向の厚みが異なる。化合物部40は、第3位置P3におけるz方向の厚みh6が、第4位置P4におけるz方向の厚みh7より厚い。第4位置P4は、第3位置P3より第1強磁性層1から離れた位置にある。化合物部40の厚みは、例えば、第3位置P3において最大となる。厚みが最大となる第3位置P3は、例えば、化合物部40の第1強磁性層1を基準とする径方向の中心位置Pcより第1強磁性層1に近い位置にある。第3位置P3におけるz方向の厚みh6は、例えば、中心位置Pcにおけるz方向の厚みh8より厚い。
 化合物部40の第1配線20側の第1面40aは、例えば、湾曲している。第1面40aが湾曲することで、読み出し電流の局所的な集中を抑制できる。
 次いで、記憶素子100の製造方法について説明する。まず図8に示すように、下地層UL上に、導電層90、磁性層91、非磁性層93、磁性層92を順に積層する。下地層ULは、図2において第1配線20より下方に位置する部分に相当し、例えば、絶縁層50と導電部Cwとを含む。図8~図12では便宜上、下地層ULとしてまとめて図示する。導電層90、磁性層91、非磁性層93及び磁性層92は、例えば、スパッタリング法、化学気相成長(CVD)法、蒸着法等を用いて積層される。
 次いで、磁性層92の上面に第1ハードマスクとなる層を積層する。第1ハードマスクとなる層は、所定の形状に加工され、第1ハードマスクHM1となる。第1ハードマスクとなる層は、例えば、磁性層92に近い側から第1層Ly1、第2層Ly2、第3層Ly3とを有する。第3層Ly3は、例えば、レジストを介したミリングで、所定の形状に加工される。第2層Ly2は、第3層Ly3を介した反応性イオンエッチング(RIE)で、所定の形状に加工される。第1層Ly1はRIEのストッパ層として機能する。
 次いで図9に示すように、磁性層91、非磁性層93及び磁性層92を所定の形状(例えば、円柱状)に加工する。磁性層91、非磁性層93及び磁性層92は、第2層Ly2で被覆された部分が残り、その他の部分が除去される。加工時に導電層90の表面近傍が一緒に除去されてもよい。また加工時に、第1層Ly1は同時に加工され、第3層Ly3は除去される場合がある。磁性層91、非磁性層93及び磁性層92は、加工により第1強磁性層1、非磁性層3、第2強磁性層2となり、磁気抵抗効果素子10が形成される。加工は、例えば、イオンミリング等で行う。第1ハードマスクHM1により磁気抵抗効果素子10のx方向及びy方向の幅を狭くできる。第1ハードマスクHM1の表面は加工により湾曲し、第1ハードマスクHM1は第1部分31となる。
 次いで、導電層90、磁気抵抗効果素子10を覆うように絶縁層を形成する。絶縁層は、まず導電層90及び磁気抵抗効果素子10の一面に形成する。絶縁層は、磁気抵抗効果素子10と重なる部分が盛り上がるように形成される。絶縁層は、例えば材料の異なる2層(例えば、導電層90に近い側からSiO、Al)で形成する。絶縁層のその他の領域に対して盛り上がった部分は、例えば、化学機械研磨(CMP)で平坦化される。絶縁層を2層にすると、1層目がCMPのストッパ膜となる。その後、図10に示すように、第1部分31が露出するまで磁気抵抗効果素子10の周囲の絶縁層の一部を除去する。絶縁層は、例えばミリングで除去する。絶縁層の一部が除去されることで、図10に示すように、絶縁層52は、磁気抵抗効果素子10の周囲がその他の部分より窪む。
 次いで、図11に示すように、絶縁層52及び磁気抵抗効果素子10の上面に第2ハードマスクHM2を形成する。まず、絶縁層52及び磁気抵抗効果素子10の上面に第2ハードマスクとなる層を積層する。第2ハードマスクとなる層は、所定の形状に加工され、第2ハードマスクHM2となる。第2ハードマスクとなる層は、例えば、磁性層93に近い側から第4層Ly4、第5層Ly5、第6層Ly6とを有する。第6層Ly6は、例えば、レジストを介したミリングで、所定の形状に加工される。第5層Ly5は、第6層Ly6を介したRIEで、所定の形状に加工される。第4層Ly4はRIEのストッパ層として機能する。
 次いで、導電層90を所定の形状にパターニングする。導電層90は、第5層Ly5で被覆された部分が残り、その他の部分が除去される。導電層90は、x方向及びy方向にパターニングされ、第1配線20となる。第4層Ly4は導電層90と共にパターニングされ、第6層Ly6は除去される場合がある。第2ハードマスクHM2は、第2部分32となる。
 次いで、第2部分32及びパターニングにより除去された部分を覆うように絶縁層を形成する。絶縁層の第2部分32と重なる部分は、z方向に盛り上がる。絶縁層は、例えば材料の異なる2層(例えば、導電層90に近い側からSiO、Al)で形成する。絶縁層のその他の領域に対して盛り上がった部分は、例えば、化学機械研磨(CMP)で平坦化される。絶縁層を2層にすると、1層目がCMPのストッパ膜となる。その後、第2部分32が露出するまで絶縁層の一部を除去する。絶縁層は、例えばミリングで除去する。図12に示すように、凹部32a1に絶縁層の一部が残ることで化合物部40となる。また図12に示すように、絶縁層の一部が絶縁層53となる。
 最後に、化合物部40及び第2部分32の上面に第3部分33が形成され、図3に示す記憶素子100が形成される。ここで示した製造工程は一例であり、各工程の間にその他の工程を挿入してもよい。
 本実施形態に係る磁気記録アレイ300の記憶素子100は、電極30が第2強磁性層2の側面2sに接する。電極30と第2強磁性層2との接触面積が側面2s分だけ広くなることで、第2強磁性層2の第1面2aに読み出し電流が集中することを抑制できる。読み出し電流の集中は、発熱等を生み出し電流ロスの原因の一つとなる。電極30から磁気抵抗効果素子10へ読み出し電流を効率的に流すことで、読み出し電流量の増加を抑制し、記憶素子100の消費電力を抑制できる。
 また電極30と第2強磁性層2の側面2sとが接する構成は、スピン軌道トルク(SOT)を利用した記憶素子で有用な構成である。例えば、スピントランスファートルク(STT)型の磁気抵抗効果素子は、読み出し時だけでなく、書き込み時にも磁気抵抗効果素子のz方向に電流(書き込み電流)が流れる。書き込み電流は、読み出し電流より電流量が大きい。磁気抵抗効果素子のz方向に書き込み電流が流れると、エレクトロマイグレーションによる界面の剥離等が生じる場合がある。第2強磁性層2の側面2sに書き込み電流が集中すると、側面2sと電極30とが剥離する可能性が高まる。これに対し、SOTを利用した記憶素子100は、磁気抵抗効果素子10のz方向に、読み出し電流は流れるが、書き込み電流は流れない。読み出し電流は、書き込み電流と比較して小さいため、エレクトロマイグレーションによる界面の剥離の原因とはなりにくい。
 また第1部分31より低抵抗な第2部分32が第2強磁性層2の側面2sと接することで、読み出し電流は高抵抗な第1部分31を避けて流れる。磁気抵抗効果素子10は、非磁性層3を挟む2つの強磁性層(第1強磁性層1及び第2強磁性層2)の磁化の配向方向の相対角の違いで、z方向の抵抗値が変化する。記憶素子100は、磁気抵抗効果素子10のz方向の抵抗値の違いをデータとして記憶する。磁気抵抗効果素子10のz方向の抵抗値は、磁気抵抗効果により変化する可変抵抗と、接触抵抗、寄生抵抗等の固有の規定抵抗との足し合わせである。磁気抵抗効果素子10の抵抗値における可変抵抗の割合が大きくなると、磁気抵抗効果素子10のMR比は向上する。高抵抗な第1部分31は、寄生抵抗であり、規定抵抗の一例である。読み出し電流が第1部分31を避けて流れることで、磁気抵抗効果素子10のMR比が向上し、記憶素子100のデータの信頼性が向上する。
 以上、第1実施形態の一例について詳述したが、この例に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 (第1変形例)
 図13は、第1変形例にかかる記憶素子101の断面図である。図13は磁気抵抗効果素子10の近傍を拡大した図である。第1変形例にかかる記憶素子101は、第2部分32の形状が第1実施形態にかかる記憶素子100と異なる。その他の構成は、記憶素子100と同様であり、同様の構成には同一の符号を付し、説明を省く。
 中点c1における第1距離h3は、電極30と第2強磁性層2との交点CPにおける第1配線20と電極30との距離h9より近い。電極30が非磁性層3まで至る場合は、中点c1における第1距離h3は、電極30と非磁性層3との交点における第1配線20と電極30との距離より近い。すなわち、中点c1と同じx方向の位置における電極30の第2面30bは、交点CPより第1配線20の近くに位置する。電極30の第2面30bは、例えば、中点c1と同じx方向の位置において第1配線20に最も近づく。
 第1配線20は、書き込み電流を印加した際に発熱する。中点c1は、生じた熱が逃げにくい部分である。中点c1における第1距離h3を近づけることで、中点c1近傍に蓄熱された熱を効率的に電極30側に逃がすことができる。
 また記憶素子101は、電極30が第2強磁性層2の側面2sと接するため、電極30から磁気抵抗効果素子10へ読み出し電流を効率的に流すことができ、記憶素子100の消費電力を抑制できる。
 (第2変形例)
 図14は、第2変形例にかかる記憶素子102の平面図である。図15は、第2変形例にかかる記憶素子102の断面図である。図15は、第1配線20のx方向の幅の中心を通るyz平面(図14におけるB-B線に沿った面)で切断した断面である。第2変形例にかかる記憶素子102は、凹部32a1及び化合物部40はy方向の幅w2が第2部分32の幅w1及び第1配線20の幅w3より狭い点が、記憶素子100と異なる。その他の構成は、記憶素子100と同様であり、同様の構成には同一の符号を付し、説明を省く。
 第2部分32の幅w1が凹部32a1又は化合物部40の幅w2より広いと、y方向においても第2部分32と第3部分33との接続箇所が3か所になる。第3部分33と第2部分32との接続箇所が増えることで、読み出し電流の局所的な集中を抑制できる。また読み出し電流の経路を複数確保しておくことで、歪等によりいずれかの接続箇所が剥離した場合でも、読み出し電流が流れなくなることを防ぐことができる。
 (第3変形例)
 図16は、第3変形例にかかる記憶素子103の断面図である。図16は、第1配線20のx方向の幅の中心を通るyz平面で切断した断面である。第3変形例にかかる記憶素子103は、第2部分32のx方向の長さが、記憶素子100と異なる。その他の構成は、記憶素子100と同様であり、同様の構成には同一の符号を付し、説明を省く。
 第2部分32のx方向の長さL4は、第1配線20のx方向の長さL1と異なる。また第2部分32のx方向の長さL4は、第3部分33のx方向の長さL3より短い。
 第3変形例にかかる記憶素子103においても、第2部分32が第2強磁性層2の側面2sに接する。したがって、第2部分32から磁気抵抗効果素子10へ読み出し電流を効率的に流すことができ、記憶素子103の消費電力を抑制できる。
 また第1部分31より低抵抗な第2部分32が第2強磁性層2の側面2sと接することで、磁気抵抗効果素子10のMR比が向上し、記憶素子103のデータの信頼性を高めることができる。
 (第4変形例)
 図17は、第4変形例にかかる記憶素子104の断面図である。図17は、第1配線20のx方向の幅の中心を通るyz平面で切断した断面である。第4変形例にかかる記憶素子104は、第3部分33のx方向の長さが、記憶素子100と異なる。その他の構成は、記憶素子100と同様であり、同様の構成には同一の符号を付し、説明を省く。
 第3部分33のx方向の長さL3は、凹部32a1のx方向の最外部間の距離L2より短い。第2部分32と第3部分33とは一か所で接続されている。
 第4変形例にかかる記憶素子104においても、第2部分32が第2強磁性層2の側面2sに接する。したがって、第2部分32から磁気抵抗効果素子10へ読み出し電流を効率的に流すことができ、記憶素子103の消費電力を抑制できる。
 また第1部分31より低抵抗な第2部分32が第2強磁性層2の側面2sと接することで、磁気抵抗効果素子10のMR比が向上し、記憶素子103のデータの信頼性を高めることができる。
 (第5変形例)
 図18は、第5変形例にかかる記憶素子105の断面図である。図18は、記憶素子105を第1配線20のy方向の幅の中心を通るxz平面で切断した断面である。第5変形例にかかる記憶素子105は、電極35の構成が、記憶素子100と異なる。その他の構成は、記憶素子100と同様であり、同様の構成には同一の符号を付し、説明を省く。
 電極35は、第1部分36と第2部分37とを有する。第1部分36は、第2強磁性層2とz方向に重なる位置にあり、第2強磁性層2の第1面2aを被覆する。第2部分37は、第1部分31を覆い、第2強磁性層2の側面2sと接する。第2部分37は、例えば、第1部分36より低抵抗である。
 第5変形例にかかる記憶素子105においても、電極35が第2強磁性層2の側面2sに接する。したがって、電極35から磁気抵抗効果素子10へ読み出し電流を効率的に流すことができ、記憶素子105の消費電力を抑制できる。
 また第1部分36より低抵抗な第2部分37が第2強磁性層2の側面2sと接することで、磁気抵抗効果素子10のMR比が向上し、記憶素子105のデータの信頼性を高めることができる。
 以上、本発明は上記の実施形態及び変形例に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
1 第1強磁性層
2 第2強磁性層
3 非磁性層
10 磁気抵抗効果素子
1s、2s、3s、10s 側面
20 第1配線
30、35 電極
31、36 第1部分
32、37 第2部分
32a1 凹部
32b1 傾斜面
33 第3部分
40 化合物部
50、51、52、53 絶縁層
90 導電層
91、92 磁性層
93 非磁性層
100、101、102、103、104、105 記憶素子
110 第1スイッチング素子
120 第2スイッチング素子
130 第3スイッチング素子
200 半導体装置
300 磁気記録アレイ
e1 第1端部
e2 第2端部
c1 中点
CP 交点
Cw1 第1導電部
Cw2 第2導電部
 

Claims (11)

  1.  第1強磁性層と、
     第2強磁性層と、
     第1方向において前記第1強磁性層と前記第2強磁性層とに挟まれた非磁性層と、
     前記第1方向と異なる第2方向に延び、前記第1方向において前記第1強磁性層を前記非磁性層と挟む第1配線と、
     前記第1方向において前記第2強磁性層を前記非磁性層と少なくとも一部で挟む電極と、を有し、
     前記電極は、前記第2強磁性層の側面の少なくとも一部と接している、記憶素子。
  2.  前記電極は、前記第2強磁性層の前記非磁性層と反対側の第1面を覆う第1部分と、前記第1部分を覆い第2方向に延びる第2部分と、を有し、
     前記第2部分は、前記第2強磁性層の側面の少なくとも一部と接し、
     前記第2部分は、前記第1部分より低抵抗である、請求項1に記載の記憶素子。
  3.  前記電極は、前記第2部分と接する第3部分を有し、
     前記第2部分と前記第3部分との間に、化合物層を有する、請求項2に記載の記憶素子。
  4.  前記第1配線と前記電極との前記第1方向における距離が異なる部分を有する、請求項1又は2に記載の記憶素子。
  5.  前記第2方向に前記第1強磁性層を挟む位置において前記第1配線に接続された第1導電部と第2導電部とをさらに有し、
     前記第1強磁性層の前記第1導電部側の第1端と前記第1導電部の前記第1強磁性層側の第2端との前記第2方向における中点における前記第1配線と前記電極との第1距離は、前記中点より前記第1強磁性層から離れた位置における前記第1配線と前記電極との第2距離より近い、請求項1~4のいずれか一項に記載の記憶素子。
  6.  前記第2方向に前記第1強磁性層を挟む位置において前記第1配線に接続された第1導電部と第2導電部とをさらに有し、
     前記第1強磁性層の前記第1導電部側の第1端と前記第1導電部の前記第1強磁性層側の第2端との前記第2方向における中点における前記第1配線と前記電極との第1距離は、前記電極と前記第2強磁性層又は前記非磁性層との交点における前記第1配線と前記電極との第3距離より近い、請求項1~5のいずれか一項に記載の記憶素子。
  7.  前記電極の前記第1配線側の面は、前記第1方向と直交する第1平面に対して傾斜する傾斜面を有し、
     前記傾斜面の第1点における接平面の前記第1平面に対する傾きは、前記第1点より前記第2強磁性層側に位置する第2点における接平面の前記第1平面に対する傾きより大きい、請求項1~6のいずれか一項に記載の記憶素子。
  8.  前記第1配線は、電流が流れる際のスピンホール効果によってスピン流を発生させる機能を有する金属、合金、金属間化合物、金属硼化物、金属炭化物、金属珪化物、金属燐化物のいずれかを含む、請求項1~7のいずれか一項に記載の記憶素子。
  9.  請求項1~8のいずれか一項に記載の記憶素子と、
     前記記憶素子と電気的に接続された複数のスイッチング素子と、を備える半導体装置。
  10.  請求項1~8のいずれか一項に記載の記憶素子を複数有する、磁気記録アレイ。
  11.  導電層、第1磁性層、非磁性層、第2磁性層を順に積層する工程と、
     第1磁性層、非磁性層、第2磁性層を所定の形状に加工し、第1強磁性層、非磁性層、第2強磁性層の順に積層された磁気抵抗効果素子を形成する工程と、
     前記磁気抵抗効果素子の周囲を前記第2強磁性層の側面が露出するように絶縁層で被覆する工程と、
     前記磁気抵抗効果素子及び前記絶縁層の一面に電極を形成する工程と、を備える、記憶素子の製造方法。
PCT/JP2019/013592 2019-03-28 2019-03-28 記憶素子、半導体装置、磁気記録アレイ及び記憶素子の製造方法 WO2020194660A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019540461A JP6624356B1 (ja) 2019-03-28 2019-03-28 記憶素子、半導体装置、磁気記録アレイ及び記憶素子の製造方法
PCT/JP2019/013592 WO2020194660A1 (ja) 2019-03-28 2019-03-28 記憶素子、半導体装置、磁気記録アレイ及び記憶素子の製造方法
CN201980062719.9A CN112753099B (zh) 2019-03-28 2019-03-28 存储元件、半导体装置、磁记录阵列和存储元件的制造方法
US17/288,612 US11974507B2 (en) 2019-03-28 2019-03-28 Storage element, semiconductor device, magnetic recording array, and method of manufacturing storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013592 WO2020194660A1 (ja) 2019-03-28 2019-03-28 記憶素子、半導体装置、磁気記録アレイ及び記憶素子の製造方法

Publications (1)

Publication Number Publication Date
WO2020194660A1 true WO2020194660A1 (ja) 2020-10-01

Family

ID=69100920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013592 WO2020194660A1 (ja) 2019-03-28 2019-03-28 記憶素子、半導体装置、磁気記録アレイ及び記憶素子の製造方法

Country Status (4)

Country Link
US (1) US11974507B2 (ja)
JP (1) JP6624356B1 (ja)
CN (1) CN112753099B (ja)
WO (1) WO2020194660A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670403B (zh) * 2019-10-16 2024-04-30 联华电子股份有限公司 半导体结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016384A (ja) * 2008-07-03 2010-01-21 Hynix Semiconductor Inc 磁気トンネル接合装置、これを備えるメモリセル、およびその製造方法
JP2012142418A (ja) * 2010-12-28 2012-07-26 Fujitsu Semiconductor Ltd 磁気デバイスおよびその製造方法
WO2019049591A1 (ja) * 2017-09-07 2019-03-14 Tdk株式会社 スピン流磁化反転素子及びスピン軌道トルク型磁気抵抗効果素子

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3990751B2 (ja) * 1995-07-25 2007-10-17 株式会社日立グローバルストレージテクノロジーズ 磁気抵抗効果型磁気ヘッド及び磁気記録再生装置
JPH11112052A (ja) * 1997-09-30 1999-04-23 Hitachi Ltd 磁気抵抗センサ及びこれを用いた磁気記録再生装置
JP2001256620A (ja) * 2000-03-13 2001-09-21 Hitachi Ltd 磁気抵抗センサおよびこれを搭載した磁気記録再生装置
US6767655B2 (en) * 2000-08-21 2004-07-27 Matsushita Electric Industrial Co., Ltd. Magneto-resistive element
JP4088641B2 (ja) * 2005-07-22 2008-05-21 Tdk株式会社 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリ、磁気ディスク装置、磁気メモリセルおよび電流センサ
JP4343940B2 (ja) * 2006-10-31 2009-10-14 Tdk株式会社 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ハードディスク装置および磁気抵抗効果素子の製造方法
FR2963153B1 (fr) 2010-07-26 2013-04-26 Centre Nat Rech Scient Element magnetique inscriptible
JP2012160681A (ja) * 2011-02-03 2012-08-23 Sony Corp 記憶素子、メモリ装置
US8928100B2 (en) * 2011-06-24 2015-01-06 International Business Machines Corporation Spin transfer torque cell for magnetic random access memory
US9105832B2 (en) 2011-08-18 2015-08-11 Cornell University Spin hall effect magnetic apparatus, method and applications
WO2016021468A1 (ja) 2014-08-08 2016-02-11 国立大学法人東北大学 磁気抵抗効果素子、及び磁気メモリ装置
WO2017090733A1 (ja) * 2015-11-27 2017-06-01 Tdk株式会社 磁気抵抗効果素子、磁気メモリ、磁化反転方法、及び、スピン流磁化反転素子
JP2017216286A (ja) 2016-05-30 2017-12-07 学校法人慶應義塾 スピントロニクスデバイス及びこれを用いた記憶装置
JP6907696B2 (ja) * 2016-07-29 2021-07-21 Tdk株式会社 スピン流磁化反転素子、素子集合体及びスピン流磁化反転素子の製造方法
US10439130B2 (en) * 2016-10-27 2019-10-08 Tdk Corporation Spin-orbit torque type magnetoresistance effect element, and method for producing spin-orbit torque type magnetoresistance effect element
EP3608971B1 (en) * 2017-03-29 2023-08-23 TDK Corporation Spin-current magnetization reversal element, magnetoresistive element, and magnetic memory
JP7095434B2 (ja) * 2017-08-22 2022-07-05 Tdk株式会社 スピン流磁気抵抗効果素子及び磁気メモリ
US10355198B2 (en) * 2017-11-13 2019-07-16 Taiwan Semiconductor Manufacturing Co., Ltd. Memory device and fabrication method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016384A (ja) * 2008-07-03 2010-01-21 Hynix Semiconductor Inc 磁気トンネル接合装置、これを備えるメモリセル、およびその製造方法
JP2012142418A (ja) * 2010-12-28 2012-07-26 Fujitsu Semiconductor Ltd 磁気デバイスおよびその製造方法
WO2019049591A1 (ja) * 2017-09-07 2019-03-14 Tdk株式会社 スピン流磁化反転素子及びスピン軌道トルク型磁気抵抗効果素子

Also Published As

Publication number Publication date
US11974507B2 (en) 2024-04-30
CN112753099B (zh) 2024-04-16
JP6624356B1 (ja) 2019-12-25
US20210399211A1 (en) 2021-12-23
CN112753099A (zh) 2021-05-04
JPWO2020194660A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
CN109427965B (zh) 自旋流磁化旋转元件、自旋轨道转矩型磁阻效应元件
JP7211252B2 (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
US11832531B2 (en) Spin-orbit torque magnetization rotational element, spin-orbit torque magnetoresistance effect element, magnetic memory, and reservoir element
JP2021090041A (ja) 磁化回転素子、磁気抵抗効果素子、半導体素子、磁気記録アレイ及び磁気抵抗効果素子の製造方法
JP6777271B1 (ja) 磁気抵抗効果素子及び磁気記録アレイ
JP7192611B2 (ja) 記憶素子、半導体装置、磁気記録アレイ及び記憶素子の製造方法
WO2020194660A1 (ja) 記憶素子、半導体装置、磁気記録アレイ及び記憶素子の製造方法
US11676751B2 (en) Magnetic device
JP7168123B2 (ja) 磁化回転素子、磁気抵抗効果素子、磁気記録アレイ、高周波デバイスおよび磁化回転素子の製造方法
JP6750769B1 (ja) スピン素子及びリザボア素子
US20210351341A1 (en) Magnetic element, magnetic memory, reservoir element, recognizer, and method for manufacturing magnetic element
JP7384068B2 (ja) 磁化回転素子、磁気抵抗効果素子および磁気メモリ
US11805706B2 (en) Magnetoresistance effect element and magnetic memory
WO2022190346A1 (ja) 磁気抵抗効果素子及び磁気メモリ
WO2024004125A1 (ja) 磁化回転素子、磁気抵抗効果素子及び磁気メモリ
WO2023089766A1 (ja) 磁化回転素子、磁気抵抗効果素子及び磁気メモリ
JP6750770B1 (ja) スピン素子及びリザボア素子
US11778925B2 (en) Magnetic device
WO2021166155A1 (ja) 磁化回転素子、磁気抵抗効果素子および磁気メモリ
WO2022070378A1 (ja) 磁壁移動素子および磁気アレイ
WO2023095186A1 (ja) 磁化回転素子、磁気抵抗効果素子及び磁気メモリ
JP2023025398A (ja) 磁気抵抗効果素子、磁気アレイ及び磁化回転素子
TW202414403A (zh) 磁化旋轉元件、磁性阻抗效果元件及磁性記憶體
JP2022043545A (ja) 磁気抵抗効果素子および磁気メモリ
JP2020188138A (ja) 記憶素子、半導体装置及び磁気記録アレイ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019540461

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921621

Country of ref document: EP

Kind code of ref document: A1