WO2019111765A1 - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
WO2019111765A1
WO2019111765A1 PCT/JP2018/043607 JP2018043607W WO2019111765A1 WO 2019111765 A1 WO2019111765 A1 WO 2019111765A1 JP 2018043607 W JP2018043607 W JP 2018043607W WO 2019111765 A1 WO2019111765 A1 WO 2019111765A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
insulating layer
magnetic sensor
magnetic member
magnetoresistance
Prior art date
Application number
PCT/JP2018/043607
Other languages
English (en)
French (fr)
Inventor
栃下 光
雅 坪川
弘毅 堤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201880078092.1A priority Critical patent/CN111448470B/zh
Publication of WO2019111765A1 publication Critical patent/WO2019111765A1/ja
Priority to US16/891,243 priority patent/US11333723B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/007Environmental aspects, e.g. temperature variations, radiation, stray fields
    • G01R33/0076Protection, e.g. with housings against stray fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/007Environmental aspects, e.g. temperature variations, radiation, stray fields
    • G01R33/0082Compensation, e.g. compensating for temperature changes

Definitions

  • the present invention relates to a magnetic sensor, and more particularly to a magnetic sensor including a magnetoresistive element.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-44641
  • Patent Document 2 International Publication No. 2015/182365
  • Patent Document 3 International Publication No. 2016/013345
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2017-166925
  • the magnetic sensors described in Patent Document 1 are connected to each other to form a bridge circuit, and each of a first magnetoresistive element, a second magnetoresistive element, a third magnetoresistive element, and a fourth magnetic element formed in a meander shape.
  • a resistive element is provided.
  • the surfaces of the first magnetoresistive element, the second magnetoresistive element, the third magnetoresistive element, and the fourth magnetoresistive element are covered with an insulating film.
  • a magnetic flux collecting film made of a magnetic material is formed on the surfaces of the third magnetoresistive element and the fourth magnetoresistive element, which are so-called fixed resistors, with an insulating film interposed therebetween.
  • the magnetic sensor described in Patent Document 2 and Patent Document 3 includes a first magnetoresistive element and a second magnetoresistive element having a smaller rate of change in resistance than the first magnetoresistive element.
  • the first magnetoresistance element which is a so-called magnetosensitive element, includes a pattern arranged concentrically.
  • the magnetic sensor described in Patent Document 4 includes a semiconductor substrate provided with a plurality of Hall elements, and a magnetic body having a magnetic amplification function provided on the semiconductor substrate.
  • An underlayer serving as an underlayer of a magnetic substance is provided on a semiconductor substrate.
  • the underlayer has a coefficient of thermal expansion different from that of the plurality of Hall elements.
  • the underlayer has an area that at least partially covers the areas of the plurality of Hall elements.
  • the magnetic body has an area larger than the area of the underlayer.
  • the magnetic sensor described in Patent Document 5 includes a semiconductor substrate provided with a plurality of Hall elements, and a magnetic body having a magnetic focusing function provided on the semiconductor substrate.
  • the outer peripheral portion defining the outer cross-sectional shape of the magnetic body on the semiconductor substrate has a portion having a curved shape in at least a part of the outer peripheral portion and a portion substantially parallel to the semiconductor substrate. At least a portion of the nonmagnetic substance is embedded inside the magnetic body.
  • each of the first magnetoresistance element and the second magnetoresistance element which are so-called magnetosensitive elements, includes a meander-like pattern, and therefore, the isotropy of detection of the horizontal magnetic field Is low.
  • the first magnetoresistive element since the first magnetoresistive element includes a pattern in which the first magnetoresistive elements are arranged concentrically, the isotropic property of detection of the horizontal magnetic field is high, but the weak vertical It can not detect the magnetic field.
  • the magnetic sensors described in Patent Document 4 and Patent Document 5 are magnetic sensors provided with a Hall element, and it is not considered to detect a horizontal magnetic field and a vertical magnetic field using a magnetoresistive element.
  • the present invention has been made in view of the above problems, and a magnetoresistance element is used to achieve high isotropy of detection of a horizontal magnetic field and to detect a weak vertical magnetic field, and a magnetoresistance element. It is an object of the present invention to provide a magnetic sensor capable of suppressing a decrease in output accuracy due to a stress acting on a magnetoresistive element from a structure provided above.
  • a magnetic sensor includes a magnetosensitive element, an insulating layer covering the magnetosensitive element, a first conductor portion located on the insulating layer, and an insulating layer located on the first conductor portion
  • a first magnetic member covering the first conductor, and a part of the first conductor, which is provided along a portion perpendicular to the layer, and made of a material different from the first conductor.
  • the first conductor portion includes a first base portion, and a first narrow portion whose outer surface area viewed in a direction orthogonal to the insulating layer is smaller than the outer surface area of the first base portion.
  • the first base and the first narrow portion are provided side by side in the direction orthogonal to the insulating layer.
  • the member made of a material different from that of the first conductor portion is provided in a region surrounded by the outer shape of the first narrow portion and the outer shape of the first base when viewed from the direction orthogonal to the insulating layer. .
  • the first narrow portion of the first conductor portion is located at the end portion on the insulating layer side of the first conductor portion in the direction orthogonal to the insulating layer.
  • the member made of a material different from that of the first conductor portion is located between the first base and the insulating layer.
  • the first narrow portion of the first conductor portion is located at the end portion on the first magnetic member side of the first conductor portion in the direction orthogonal to the insulating layer.
  • the said member comprised with the material different from a 1st conductor part is pinchedly positioned by the 1st base and the 1st magnetic body member.
  • the first base portion of the first conductor portion is an end portion of the first conductor portion on the insulating layer side and an end portion of the first magnetic member member in the direction orthogonal to the insulating layer. Located in each. The first narrow portion of the first conductor portion is positioned between the first bases of the first conductor portion in the direction orthogonal to the insulating layer.
  • the said member comprised with the material different from a 1st conductor part is pinchedly positioned between 1st base parts.
  • the member made of a material different from the first conductor portion is a stress relaxation portion.
  • the first magnetoresistance element is provided as the magnetosensitive element.
  • the magnetic sensor further includes a second magnetoresistive element electrically connected to the first magnetoresistive element to form a bridge circuit.
  • the second magnetoresistive element is covered by the insulating layer.
  • the magnetic sensing element has an outer peripheral edge.
  • the first magnetic member is located in an area inside the outer peripheral edge of the magnetosensitive element when viewed in the direction orthogonal to the insulating layer.
  • the first magnetoresistive element further has an inner peripheral edge.
  • the second magnetoresistive element is covered with the first magnetic member at a region inside the inner peripheral edge of the first magnetoresistive element when viewed in the direction orthogonal to the insulating layer.
  • the magnetic sensor is located on the insulating layer, and the second conductive portion different from the first conductive portion when viewed from the direction orthogonal to the insulating layer, and the second conductive portion And a second magnetic member different from the first magnetic member and covering the second conductor when viewed in the direction orthogonal to the insulating layer.
  • the second magnetoresistive element is located in a region outside the outer peripheral edge of the first magnetoresistive element and is covered with the second magnetic member.
  • the second conductor portion includes a second base portion, and a second narrow portion whose outer surface area viewed from the direction orthogonal to the insulating layer is smaller than the outer surface area of the second base portion.
  • the second base and the second narrow portion are provided side by side in the direction orthogonal to the insulating layer.
  • the second narrow portion of the second conductor portion is located at the end portion on the insulating layer side of the second conductor portion in the direction orthogonal to the insulating layer.
  • the second narrow portion of the second conductor portion is located at the end portion on the second magnetic member side of the second conductor portion in the direction orthogonal to the insulating layer.
  • the second base portion of the second conductor portion is an end portion on the insulating layer side of the second conductor portion and an end portion on the second magnetic member side in the direction orthogonal to the insulating layer. Located in each. The second narrow portion of the second conductor portion is positioned between the second bases of the second conductor portion in the direction orthogonal to the insulating layer.
  • a magnetic sensor includes a magnetosensitive element, an insulating layer covering the magnetosensitive element, a first magnetic member positioned on the insulating layer, and a portion of the first magnetic member. And a stress relieving portion formed of a material different from that of the first magnetic member.
  • the magnetosensitive element has an outer peripheral edge.
  • the first magnetic member is located in an area inside the outer peripheral edge of the magnetosensitive element when viewed in the direction orthogonal to the insulating layer.
  • the first magnetic member includes a first base, and a first narrow portion whose outer surface area viewed from the direction orthogonal to the insulating layer is smaller than the outer surface area of the first base.
  • the first base and the first narrow portion are provided side by side in the direction orthogonal to the insulating layer.
  • the first narrow portion of the first magnetic member is located at the end on the insulating layer side of the first magnetic member in the direction orthogonal to the insulating layer.
  • the stress relaxation portion is provided in a region surrounded by the outer shape of the first narrow portion and the outer shape of the first base when viewed in the direction orthogonal to the insulating layer, and is interposed between the first base and the insulating layer positioned.
  • the first magnetoresistance element is provided as the magnetosensitive element.
  • the magnetic sensor further includes a second magnetoresistive element electrically connected to the first magnetoresistive element to form a bridge circuit.
  • the second magnetoresistive element is covered by the insulating layer.
  • the first magnetoresistive element further has an inner peripheral edge.
  • the second magnetoresistive element is covered with the first magnetic member at a region inside the inner peripheral edge of the first magnetoresistive element when viewed in the direction orthogonal to the insulating layer.
  • the magnetic sensor further includes a second magnetic member different from the first magnetic member and located on the insulating layer.
  • the second magnetoresistive element is located in a region outside the outer peripheral edge of the first magnetoresistive element and is covered with the second magnetic member.
  • the thickness of the first magnetic member is x ⁇ m
  • the first magnetic member is located concentrically with the outer peripheral edge of the first magnetoresistive element as viewed in the direction orthogonal to the insulating layer.
  • the second magnetoresistive element is covered with the first magnetic member and located in a region inside the inner peripheral edge of the first magnetoresistive element when viewed in the direction orthogonal to the insulating layer.
  • the first magnetic member is located in a region including the region on the inner peripheral edge of the first magnetoresistance element and the region inside the inner peripheral edge as viewed in the direction orthogonal to the insulating layer.
  • the second magnetoresistive element is covered with the first magnetic member and located in a region inside the inner peripheral edge of the first magnetoresistive element when viewed in the direction orthogonal to the insulating layer.
  • the first magnetic member covers only the second magnetoresistive element of the first magnetoresistive element and the second magnetoresistive element as viewed in the direction perpendicular to the insulating layer.
  • the second magnetoresistive element is located at a position 7 ⁇ m away from the center of the first magnetic member from the outer peripheral edge of the first magnetic member as viewed in the direction orthogonal to the insulating layer. Is located in the area.
  • the second magnetoresistive element is covered with the second magnetic member and located in a region outside the outer peripheral edge of the first magnetoresistive element when viewed in the direction orthogonal to the insulating layer.
  • the first magnetic member covers only a part of the first magnetoresistance element of the first and second magnetoresistance elements when viewed in the direction perpendicular to the insulating layer.
  • the second magnetic member covers only the second magnetoresistive element of the first magnetoresistive element and the second magnetoresistive element as viewed from the direction perpendicular to the insulating layer.
  • the second magnetoresistive element is located at a position 7 ⁇ m away from the center of the second magnetic member from the outer peripheral edge of the second magnetic member as viewed in the direction orthogonal to the insulating layer. Is located in the area.
  • the first magnetoresistive element includes a plurality of first unit patterns concentrically arranged and connected to each other when viewed in the direction orthogonal to the insulating layer.
  • a magnetoresistive element it is possible to use a magnetoresistive element to achieve high isotropy of detection of a horizontal magnetic field and also to detect a weak vertical magnetic field, and to provide magnetoresistive resistance from a structure provided above the magnetoresistive element. It can suppress that the output accuracy of a magnetic sensor falls by the stress which acts on an element.
  • FIG. 3 is a cross-sectional view of the magnetic sensor of FIG. 2 as viewed in the direction of arrows of III-III line. It is the top view which looked at the magnetic sensor of FIG. 1 from the arrow IV direction.
  • FIG. 7 is a flux diagram showing a magnetic flux density distribution when a perpendicular magnetic field is applied to the magnetic sensor according to Experimental Example 1.
  • FIG. 6 is a flux diagram showing a magnetic flux density distribution when a horizontal magnetic field is applied to the magnetic sensor according to Experimental Example 1.
  • the thickness of the first magnetic member given to the relationship between the distance in the horizontal direction from the outer peripheral edge of the first magnetic member and the magnetic field strength in the horizontal direction when the vertical magnetic field is applied to the magnetic sensor according to Experimental Example 2 Is a graph showing the effect of It is a graph which shows the relationship between the distance of the horizontal direction from the outer periphery of the 1st magnetic member to which the magnetic field intensity of the horizontal direction becomes 1/3 of a peak value to the outside, and the thickness of the 1st magnetic member. It is sectional drawing which shows the structure of the magnetic sensor which concerns on Embodiment 2 of this invention. It is a front view which shows the structure of the magnetic sensor which concerns on Embodiment 3 of this invention.
  • FIG. 20 is a cross-sectional view of the magnetic sensor of FIG. 19 as viewed in the direction of arrows XX-XX.
  • FIG. 21 is a cross-sectional view of the magnetic sensor of FIG. 20 as viewed in the direction of the arrows along line XXI-XXI.
  • FIG. 1 is a perspective view showing the configuration of a magnetic sensor according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the magnetic sensor of FIG. 1 as viewed in the direction of arrows II-II.
  • FIG. 3 is a cross-sectional view of the magnetic sensor of FIG. 2 as viewed in the direction of arrows of III-III line.
  • FIG. 4 is a plan view of the magnetic sensor of FIG. 1 as viewed in the direction of arrow IV.
  • FIG. 5 is an equivalent circuit diagram of the magnetic sensor according to the first embodiment of the present invention.
  • the width direction of the circuit board 100 described later is shown as the X-axis direction, the length direction of the circuit board 100 as the Y-axis direction, and the thickness direction of the circuit board 100 as the Z-axis direction.
  • the outer edge of the first magnetic member to be described later is indicated by a dotted line.
  • illustration of a differential amplifier, a temperature compensation circuit, and the like, which will be described later, is omitted.
  • the magnetic sensor 1 includes a circuit board 100 and two first magnetic members 40 provided above the circuit board 100.
  • the first stress relieving portion is formed on the circuit board 100 along the two first conductor portions 60 and a portion of the corresponding first conductor portion 60. 80 are provided.
  • the insulating layer 30 is provided on the surface layer of the circuit board 100, and each of the two first conductor portions 60 and the first stress relieving portion 80 is located on the insulating layer 30.
  • Circuit board 100 includes a semiconductor substrate 110.
  • the first conductor portion 60 includes a first base 61 and a first narrow portion 62.
  • the outer area of the first narrow portion 62 viewed from the Z-axis direction which is a direction orthogonal to the insulating layer 30 is smaller than the outer area of the first base 61.
  • the first base portion 61 and the first narrow portion 62 are provided side by side in the Z-axis direction which is a direction orthogonal to the insulating layer 30.
  • the first narrow portion 62 of the first conductor portion 60 is positioned at an end portion of the first conductor portion 60 on the insulating layer 30 side in the Z-axis direction which is a direction orthogonal to the insulating layer 30. doing. That is, the first narrow portion 62 of the first conductor portion 60 is in contact with the insulating layer 30 of the circuit board 100.
  • each of the first base 61 and the first narrow portion 62 has a circular outer shape.
  • the outer diameter of the first narrow portion 62 is smaller than the outer diameter of the first base 61.
  • the first base 61 and the first narrow portion 62 are disposed substantially coaxially.
  • the shape of the first base 61 is not limited to the above, and may be an oval or a polygon as viewed from the direction orthogonal to the insulating layer 30.
  • the shape of the first narrow portion 62 is not limited to the above, and it may be a shape whose outer surface area as viewed in the Z-axis direction which is a direction orthogonal to the insulating layer 30 is smaller than the outer surface area of the first base 61.
  • a gap is partially provided between the first base 61 and the insulating layer 30.
  • a gap between the first base 61 and the insulating layer 30 is provided over the entire circumference of the outer peripheral portion of the first conductor portion 60.
  • the first stress relieving portion 80 is disposed in the gap.
  • the two first magnetic members 40 are located on the two first conductors 60 in a one-to-one correspondence.
  • the first magnetic member 40 covers the corresponding first conductor portion 60 as viewed in the Z-axis direction which is a direction orthogonal to the insulating layer 30.
  • the thickness in the Z-axis direction of the first conductor portion 60 is combined.
  • the thickness in the Z-axis direction is preferably 2.0 ⁇ m or less.
  • the function of the first magnetic member 40 described later as a magnetic shield can be secured.
  • patterning using a resist can be used as a method of forming the first conductor portion 60.
  • the first conductor portion 60 includes gold (Au) located on the insulating layer 30 and located on the layer containing titanium (Ti) and the layer containing titanium (Ti) It is composed of layers.
  • the layer containing titanium (Ti) is an adhesive layer.
  • a layer containing gold (Au) functions as an electrode reaction layer, that is, a seed layer.
  • the configuration of the first conductor portion 60 is not limited to the above, and iron (Fe), molybdenum (Mo), tantalum (Ta), platinum (Pt) and copper (Cu), which are materials functioning as a seed layer for plating. And a layer comprising at least one of Moreover, when the 1st magnetic body member 40 is formed by methods other than plating, such as vapor deposition, you may be comprised with the other conductor containing at least one of a metal and resin.
  • the first stress relieving portion 80 is provided in a region T1 surrounded by the outer shape of the first narrow portion 62 and the outer shape of the first base portion 61 when viewed from the Z-axis direction which is a direction orthogonal to the insulating layer 30. .
  • the first stress relieving portion 80 is located between the first base 61 and the insulating layer 30.
  • the first stress relieving portion 80 is located immediately below the outer peripheral portion of the first base 61.
  • the first stress relieving portion 80 When viewed from the Z-axis direction which is a direction orthogonal to the insulating layer 30, the first stress relieving portion 80 has an annular shape.
  • the shape of the first stress relieving portion 80 is not limited to the above, and may be an elliptical ring or an annular shape whose outer cross section is a polygon.
  • patterning using a resist can be used as a method of forming the first stress relieving portion 80.
  • the first stress relieving portion 80 is a member made of a material different from that of the first conductor portion 60.
  • a material constituting the first stress relieving portion 80 at least at least of a material having low adhesion, a material having a low elastic modulus, and a material having a low tensile strength as compared with the material constituting the first conductor portion 60 Materials containing any one can be used.
  • the adhesion is the adhesion between the first stress relieving portion 80 and a member adjacent thereto, and the adhesion is the adhesion between the first stress relieving portion 80 and the insulating layer 30 in the present embodiment.
  • the first stress relieving portion 80 includes a material having low adhesion
  • a layer made of a material having low adhesion is disposed to be in contact with the insulating layer 30.
  • the material which is the material of the first stress relieving portion 80 and whose adhesion is lower than the material of the first conductor portion 60 is gold (Au), polyimide or the like.
  • the first conductor portion 60 is composed of a layer containing titanium (Ti) located on the insulating layer 30 and a layer containing gold (Au) located on the layer containing titanium (Ti)
  • the first stress relieving portion 80 is formed only of a layer containing gold (Au).
  • the material forming the first stress relieving portion 80 and having a lower elastic modulus than the material forming the first conductor portion 60 is a resin such as polyimide.
  • the material constituting the first stress relieving portion 80 and having a lower tensile strength than the material constituting the first conductor portion 60 is SiO 2 or a resin having a low density.
  • SOG Spin-on Glass
  • the four magnetic resistances electrically connected to each other by wires to form a Wheatstone bridge type bridge circuit on the circuit board 100 of the magnetic sensor 1 according to the first embodiment of the present invention.
  • An element is provided.
  • the four magnetoresistance elements consist of two sets of first magnetoresistance elements and second magnetoresistance elements.
  • the magnetic sensor 1 includes a first magnetoresistance element 120a and a second magnetoresistance element 130a, and a first magnetoresistance element 120b and a second magnetoresistance element 130b.
  • the first magnetoresistance element 120a and the second magnetoresistance element 130a constitute one set.
  • the first magnetoresistance element 120 b and the second magnetoresistance element 130 b constitute one set.
  • the magnetic sensor 1 includes the two sets of the first and second magnetoresistance elements, but the invention is not limited thereto, and at least one set of the first and second magnetoresistance elements. It is sufficient if the element is included.
  • the circuit board 100 is configured with a half bridge circuit.
  • Each of the first magnetoresistive elements 120a and 120b and the second magnetoresistive elements 130a and 130b is an AMR (Anisotropic Magneto Resistance) element. Note that each of the first magnetoresistance elements 120a and 120b and the second magnetoresistance elements 130a and 130b is replaced with an AMR element, and a GMR (Giant Magneto Resistance) element, a TMR (Tunnel Magneto Resistance) element, a BMR (Ballistic Magneto Resistance) Or a magnetoresistive element such as a CMR (Colossal Magneto Resistance) element.
  • AMR Analog Magnetotropic Magneto Resistance
  • the first magnetoresistance element 120 a is a so-called magnetosensitive resistance whose electric resistance value changes when an external magnetic field is applied. That is, the first magnetoresistance element 120a functions as a magnetosensitive element, and the second magnetoresistance element 130a does not function as a magnetosensitive element.
  • the rate of change in resistance of the second magnetoresistance element 130a to the external magnetic field is preferably lower than the rate of change in resistance of the first magnetic resistance element 120a to the external magnetic field.
  • the magnetic field in the Z-axis direction (vertical magnetic field) and the magnetic field in the X-axis and Y-axis directions (horizontal It is a so-called fixed resistance that hardly detects the magnetic field.
  • the first magnetoresistance element 120 b is a so-called magnetosensitive resistance whose electric resistance value changes when an external magnetic field is applied. That is, the first magnetoresistance element 120b functions as a magnetosensitive element, and the second magnetoresistance element 130b does not function as a magnetosensitive element.
  • the rate of change in resistance of the second magnetoresistance element 130b to the external magnetic field is preferably lower than the rate of change in resistance of the first magnetic resistance element 120b to the external magnetic field.
  • the first magnetoresistive elements 120 a and 120 b and the second magnetoresistive elements 130 a and 130 b are electrically connected to each other by a wiring provided on the semiconductor substrate 110. Specifically, the first magnetoresistive element 120 a and the second magnetoresistive element 130 a are connected in series by the wire 146. The first magnetoresistance element 120 b and the second magnetoresistance element 130 b are connected in series by the wiring 150.
  • a middle point 140 On the semiconductor substrate 110 of the circuit board 100, a middle point 140, a middle point 141, a power supply terminal (Vcc) 142, a ground terminal (Gnd) 143 and an output terminal (Out) 144 are further provided.
  • Vcc power supply terminal
  • Gnd ground terminal
  • Out output terminal
  • Each of the first magnetoresistance element 120 a and the second magnetoresistance element 130 b is connected to the middle point 140. Specifically, the first magnetoresistive element 120 a and the midpoint 140 are connected by the wire 145, and the second magnetoresistive element 130 b and the midpoint 140 are connected by the wire 152.
  • Each of the first magnetoresistance element 120 b and the second magnetoresistance element 130 a is connected to the middle point 141. Specifically, the first magnetoresistive element 120 b and the midpoint 141 are connected by the wire 149, and the second magnetoresistive element 130 a and the midpoint 141 are connected by the wire 148.
  • the wiring 146 is connected to a power supply terminal (Vcc) 142 to which current is input.
  • the wiring 150 is connected to the ground terminal (Gnd) 143.
  • the magnetic sensor 1 further includes a differential amplifier 160, a temperature compensation circuit 161, a latch and switch circuit 162, and a complementary metal oxide semiconductor (CMOS) driver 163.
  • CMOS complementary metal oxide semiconductor
  • the differential amplifier 160 has an input end connected to each of the midpoints 140 and 141 and an output end connected to the temperature compensation circuit 161. Also, the differential amplifier 160 is connected to each of the power supply terminal (Vcc) 142 and the ground terminal (Gnd) 143.
  • the output terminal of the temperature compensation circuit 161 is connected to the latch and switch circuit 162. Also, the temperature compensation circuit 161 is connected to each of the power supply terminal (Vcc) 142 and the ground terminal (Gnd) 143.
  • An output end of the latch and switch circuit 162 is connected to the CMOS driver 163.
  • the latch and switch circuit 162 is connected to each of the power supply terminal (Vcc) 142 and the ground terminal (Gnd) 143.
  • the output terminal of the CMOS driver 163 is connected to the output terminal (Out) 144.
  • the CMOS driver 163 is connected to each of the power supply terminal (Vcc) 142 and the ground terminal (Gnd) 143.
  • the magnetic sensor 1 By having the above-described circuit configuration, the magnetic sensor 1 generates a potential difference depending on the strength of the external magnetic field between the midpoint 140 and the midpoint 141. When this potential difference exceeds a preset detection level, a signal is output from the output terminal (Out) 144.
  • FIG. 6 is a cross-sectional view showing the laminated structure of the connection portion between the magnetoresistive element and the wiring on the circuit board of the magnetic sensor according to Embodiment 1 of the present invention. In FIG. 6, only the connection between the region R functioning as a magnetoresistive element and the region L functioning as a wire is shown.
  • each of the first magnetoresistance elements 120a and 120b and the second magnetoresistance elements 130a and 130b is a semiconductor made of Si or the like on the surface of which a SiO 2 layer or a Si 3 N 4 layer is provided. It is provided on the substrate 110.
  • the magnetic material layer 10 formed of an alloy containing Ni and Fe provided on the semiconductor substrate 110 is patterned by ion milling. It is formed by being done. The thickness of the magnetic layer 10 is, for example, 0.04 ⁇ m.
  • the wirings 145, 146, 148, 149, 150, and 152 are formed by patterning the conductive layer 20 provided on the semiconductor substrate 110 and made of Au or Al by wet etching.
  • the conductive layer 20 is located immediately above the magnetic layer 10 in the region L functioning as a wire, and is not provided in the region R functioning as a magnetoresistive element. Therefore, as shown in FIG. 6, the end of the conductive layer 20 is located immediately above the magnetic layer 10 in the connection portion between the region R functioning as a magnetoresistive element and the region L functioning as a wire. .
  • Each of middle point 140, middle point 141, power supply terminal (Vcc) 142, ground terminal (Gnd) 143 and output terminal (Out) 144 is formed of conductive layer 20 located directly above semiconductor substrate 110. That is, each of middle point 140, middle point 141, power supply terminal (Vcc) 142, ground terminal (Gnd) 143 and output terminal (Out) 144 is a pad provided on semiconductor substrate 110.
  • a Ti layer not shown is provided immediately above the conductive layer 20.
  • An insulating layer 30 made of SiO 2 or the like is provided to cover the magnetic layer 10 and the conductive layer 20. That is, the insulating layer 30 covers the first magnetoresistive elements 120a and 120b and the second magnetoresistive elements 130a and 130b.
  • FIG. 7 is a plan view showing a pattern of the first magnetoresistive element of the magnetic sensor according to Embodiment 1 of the present invention.
  • the first magneto resistive element 120a, the pattern 120 and 120b when viewed from a direction perpendicular to the insulating layer 30, the diameter of the virtual circle C 1 along the circumference of the virtual circle C 1 It includes four first unit patterns arranged in a direction and connected to each other.
  • the direction orthogonal to the insulating layer 30 is the Z-axis direction, which is parallel to the direction orthogonal to the top surface of the semiconductor substrate 110.
  • Each of the four first unit pattern is located along a virtual C-shaped C 11 a portion where the wiring 146,148,150,152 are located at the circumference of the virtual circle C 1 is opened.
  • Each of the four first unit pattern is a C-shaped pattern 121 disposed concentrically so as to be arranged in a radial direction of the virtual circle C 1 along a virtual C-shaped C 11.
  • C-shaped pattern 121 are connected to each other alternately from the center of the virtual circle C 1 and the one end and the other end in order.
  • the C-shaped patterns 121 whose one ends are connected to each other are connected to each other by a semi-circular pattern 122.
  • the C-shaped patterns 121 whose other ends are connected to each other are connected to each other by a semi-circular pattern 123.
  • the pattern 120 of the first magnetoresistance elements 120a and 120b includes two semicircular arc patterns 122 and one semicircular arc pattern 123. Thus, four C-shaped patterns 121 are connected in series.
  • the semi-arc shaped patterns 122 and 123 do not include linear extending portions, and are formed only of curved portions.
  • An end portion of the C-shaped pattern located on the outermost side from the center of the virtual circle C 1 among the four C-shaped patterns 121, the end portion not connected to the semi-circular pattern 122 is a wiring made of the conductive layer 20 It is connected to 145 or the wiring 149.
  • the electric resistance value of the first magnetoresistance elements 120 a and 120 b can be adjusted by changing the formation position of the conductive layer 20 which is the connection position with the end of the C-shaped pattern 121.
  • the conductive layer 20 is extended to the region R functioning as a magnetoresistive element.
  • the electric resistance value of each of the first magnetoresistance elements 120a and 120b can be reduced by enlarging the region L functioning as the wiring.
  • the conductive layer 20 is shortened to the region L functioning as a wire, thereby reducing the region L functioning as a wire.
  • the electric resistance value of each of the first magnetoresistance elements 120a and 120b can be increased.
  • the adjustment of the electric resistance value of the first magnetoresistance elements 120a and 120b is performed by removing or additionally forming a part of the conductive layer 20. Therefore, the adjustment is preferably performed before the insulating layer 30 is provided.
  • the inner peripheral edge of the C-shaped pattern 121 located at the innermost side from the center of the virtual circle C 1 among the four C-shaped patterns 121 is the inner peripheral edge of the first magnetoresistance elements 120 a and 120 b.
  • the first magnetoresistance element 120 a and the first magnetoresistance element 120 b have different circumferential directions such that the virtual C-shape C 11 has a different orientation. That is, the first magnetoresistance element 120 a and the first magnetoresistance element 120 b have different circumferential directions of the pattern 120 such that the C-shaped patterns 121 have different directions.
  • the first magnetoresistive element 120 a and the first magnetoresistive element 120 b have the circumferential direction of the pattern 120 different by 90 ° such that the C-shaped patterns 121 are different from each other by 90 °. .
  • FIG. 8 is a plan view showing a pattern of a second magnetoresistive element of the magnetic sensor according to Embodiment 1 of the present invention.
  • the second magnetoresistance element 130a is seen from a direction perpendicular to the insulating layer 30, situated in the center of the virtual circle C 1, it is surrounded by a first magnetoresistive element 120a
  • the second magnetoresistive element 130 b is located on the center side of the imaginary circle C 1 when viewed in the direction orthogonal to the insulating layer 30 and is surrounded by the first magnetoresistive element 120 b.
  • the second magnetoresistive element 130 a is located inside the inner peripheral edge of the first magnetoresistive element 120 a when viewed in the direction orthogonal to the insulating layer 30, and the second magnetoresistive element 130 b is located on the insulating layer 30. It is located inside the inner peripheral edge of the 1st magnetoresistive element 120b seeing from the orthogonal direction.
  • Second magnetoresistance element 130a is connected to the wiring 146, 148 made of a conductive layer 20 provided from the central side of the imaginary circle C 1 to the outside of the virtual circle C 1.
  • Second magnetoresistance element 130b is connected to the wiring 150, 152 made of a conductive layer 20 provided from the central side of the imaginary circle C 1 to the outside of the virtual circle C 1.
  • the second magnetoresistance elements 130 a and 130 b have a double spiral pattern 130 when viewed in the direction orthogonal to the insulating layer 30.
  • the double spiral pattern 130 has one spiral pattern 131 which is one of two second unit patterns, the other spiral pattern 132 which is the other one of two second unit patterns, And an inverted S-shaped pattern 133 connecting one spiral pattern 131 and the other spiral pattern 132 at the center of the double spiral pattern 130.
  • the reverse S-shaped pattern 133 does not include a linear extending portion, and is formed only of a curved portion.
  • the double spiral pattern 130 is formed to have the same thickness as the pattern 120. Therefore, each of the one spiral pattern 131 and the other spiral pattern 132 has the same thickness as each of the four C-shaped patterns 121.
  • a double spiral pattern 130 has a shape substantially point-symmetrical with respect to the center of the virtual circle C 1. That is, the double spiral pattern 130 has a substantially 180 ° rotationally symmetrical shape with respect to the center of the virtual circle C 1.
  • the second magnetoresistive element 130 a and the second magnetoresistive element 130 b have different circumferential directions of the double spiral pattern 130 such that the directions of the inverted S-shaped patterns 133 are different from each other. ing.
  • the second magnetoresistive element 130 a and the second magnetoresistive element 130 b have a circumferential direction of the double spiral pattern 130 such that the directions of the inverted S-shaped patterns 133 are different from each other by 90 °. 90 ° different.
  • the first magnetoresistance elements 120 a and 120 b have a C-shaped pattern 121.
  • the C-shaped pattern 121 is configured by an arc.
  • the C-shaped patterns 121 adjacent to each other are connected to each other by a semi-circular pattern 122 or a semi-circular pattern 123.
  • the anisotropy of the magnetic field detection is reduced.
  • the direction of the C-shaped pattern 121 of the first magnetoresistive element 120 a and the direction of the C-shaped pattern 121 of the first magnetoresistive element 120 b are different from each other.
  • the different orientations of the circumferential direction 120 increase the isotropy of magnetic field detection.
  • the second magnetoresistance elements 130 a and 130 b have a double spiral pattern 130.
  • the double spiral pattern 130 is mainly configured by winding a substantially arc-shaped curved portion. Since the arc is an approximation when the number of polygon corners increases to infinity, the direction of the current flowing through the double spiral pattern 130 extends in substantially all directions (360 °) in the horizontal direction. There is.
  • the horizontal direction is a direction parallel to the top surface of the semiconductor substrate 110.
  • the double spiral pattern 130 is configured by an inverted S-shaped pattern 133 in which the central portion is formed of only a curved portion.
  • the second magnetoresistance elements 130a and 130b do not include the linearly extending portions, the anisotropy of the magnetoresistance effect is reduced.
  • the circumferential direction of the double spiral pattern 130 is such that the directions of the reverse S-shaped patterns 133 of the second magnetoresistance element 130a and the second magnetoresistance element 130b are different from each other. Due to the different orientations, the isotropy of the magnetoresistance effect is enhanced.
  • the double spiral pattern 130 has a substantially 180 ° rotationally symmetrical shape with respect to the center of the virtual circle C 1. Therefore, each of the second magnetoresistance element 130a and the second magnetoresistance element 130b has a slight anisotropy of magnetoresistance effect.
  • the magnetic direction of the double spiral pattern 130 of the second magnetoresistance element 130a is different from the direction of the circumferential direction of the double spiral pattern 130 of the second magnetoresistance element 130b.
  • the anisotropy of the resistance effect can be reduced to one another.
  • the direction in which the second magnetoresistance element 130a is the highest sensitivity matches the direction in which the second magnetoresistance element 130b is the lowest sensitivity, and the direction in which the second magnetoresistance element 130a is the lowest sensitivity. And the direction in which the second magnetoresistance element 130 b has the highest sensitivity coincide with each other. Therefore, the potential difference generated between the midpoint 140 and the midpoint 141 when the external magnetic field is applied to the magnetic sensor 1 can be suppressed from fluctuating depending on the direction in which the external magnetic field is applied to the magnetic sensor 1.
  • the double spiral pattern 130 has a high density per unit area.
  • the second magnetoresistance elements 130a and 130b having the double spiral pattern 130 make the pattern disposed in the imaginary circle C 1 longer to make the second magnetoresistance elements 130a and 130b have high resistance. it can.
  • the current consumption of the magnetic sensor 1 can be reduced as the electric resistance value of the second magnetoresistance elements 130a and 130b is higher.
  • the direction of the current flowing through the double spiral pattern 130 is dispersed in the horizontal direction to reduce the anisotropy of the magnetoresistance effect of each of the second magnetoresistance element 130a and the second magnetoresistance element 130b.
  • the output of the magnetic sensor 1 when the external magnetic field is zero can be suppressed from being dispersed due to the influence of the residual magnetization.
  • the double spiral pattern 130 may be wound in the opposite direction, and in this case, the central portion of the double spiral pattern 130 is an S-shaped pattern formed of only a curved portion. That is, one spiral pattern and the other spiral pattern are connected by the S-shaped pattern.
  • the magnetic sensor 1 since the second magnetoresistance elements 130a and 130b are disposed inside the first magnetoresistance elements 120a and 120b, the magnetic sensor 1 can be miniaturized. Further, in the magnetic sensor 1, the circuit board 100 is manufactured by a simple manufacturing process because it is not necessary to three-dimensionally draw the wiring connecting the first magnetoresistance elements 120a and 120b and the second magnetoresistance elements 130a and 130b. It is possible.
  • first magnetic members 40 are provided above the insulating layer 30, and the two first magnetic members 40 are arranged side by side in the Y-axis direction.
  • the thickness x of the first magnetic member 40 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more and 150 ⁇ m or less.
  • the first magnetic resistance elements 120 a and 120 b detect a perpendicular magnetic field deflected in a substantially horizontal direction by the first magnetic member 40 as described later. it can.
  • the perpendicular magnetic field can be effectively deflected by the first magnetic member 40 in the substantially horizontal direction, so that the first magnetoresistive elements 120a and 120b are weaker Vertical magnetic field can be detected.
  • the thickness x of the first magnetic member 40 is 150 ⁇ m or less, it is possible to maintain the mass productivity of the magnetic sensor 1 by suppressing an increase in the formation time of the first magnetic member 40.
  • the first magnetic member 40 has a circular outer shape when viewed in the direction orthogonal to the insulating layer 30 and is a region inside the outer peripheral edge of the first magnetoresistance elements 120 a and 120 b. It is located in Note that, with respect to the region inside the outer peripheral edge of the first magnetoresistance elements 120a and 120b, both ends of the outer peripheral edge of the first magnetoresistance elements 120a and 120b are connected by imaginary straight lines when viewed from the direction orthogonal to the insulating layer 30.
  • first magnetic member 40 It is an area surrounded by It is preferable that a region inside the outer peripheral edge of the first magnetoresistance elements 120a and 120b and a half or more of the first magnetic member 40 overlap with each other when viewed from the direction orthogonal to the insulating layer 30, and the first magnetic member More preferably, 2/3 or more of 40 overlap.
  • the first magnetic member 40 is located in a region inside the inner peripheral edge of the first magnetoresistive elements 120 a and 120 b when viewed from the direction orthogonal to the insulating layer 30. Note that with the region inside the inner peripheral edge of the first magnetoresistance elements 120a and 120b, both ends of the inner peripheral edge of the first magnetoresistance elements 120a and 120b are connected by imaginary straight lines when viewed from the direction orthogonal to the insulating layer 30. It is an area surrounded by The first magnetic member 40 may be located in a region including the region on the inner peripheral edge of the first magnetoresistance elements 120 a and 120 b and the region inside the inner peripheral edge as viewed from the direction orthogonal to the insulating layer 30.
  • a region inside the inner peripheral edge of the first magnetoresistance elements 120a and 120b and a half or more of the first magnetic member 40 overlap with each other when viewed from the direction orthogonal to the insulating layer 30, and the first magnetic member More preferably, 2/3 or more of 40 overlap.
  • the first magnetic member 40 is concentric with the outer peripheral edge of the first magnetoresistance elements 120 a and 120 b when viewed from the direction orthogonal to the insulating layer 30.
  • the first magnetic member 40 is a second magnetoresistive element of the first magnetoresistive elements 120 a and 120 b and the second magnetoresistive elements 130 a and 130 b when viewed from the direction orthogonal to the insulating layer 30. It covers only 130a and 130b. Therefore, when viewed from the direction orthogonal to the insulating layer 30, the first magnetic member 40 is surrounded by the first magnetoresistive elements 120a and 120b.
  • the first magnetic member 40 is made of a magnetic material having high magnetic permeability and high saturation magnetic flux density, such as electromagnetic steel, mild steel, silicon steel, permalloy, supermalloy, nickel alloy, iron alloy or ferrite. In addition, these magnetic materials preferably have low coercivity.
  • the magnetic permeability increases at high temperatures and decreases at low temperatures.
  • the resistance of the first magnetoresistance elements 120a and 120b The temperature dependency of the rate of change can be reduced.
  • the first magnetic member 40 is formed, for example, by plating. Another thin layer may be provided between the insulating layer 30 and the first magnetic member 40.
  • the outer shape of the first magnetic member 40 was a cylindrical shape having a diameter of 140 ⁇ m and a thickness x of 100 ⁇ m.
  • the first magnetic member 40 was made of permalloy.
  • the second magnetoresistance elements 130a and 130b above the second magnetoresistance elements 130a and 130b, only the second magnetoresistance elements 130a and 130b of the first magnetoresistance elements 120a and 120b and the second magnetoresistance elements 130a and 130b.
  • the first magnetic member 40 is disposed such that the inner peripheral edge of the first magnetoresistance elements 120 a and 120 b is adjacent to the outer peripheral edge of the first magnetic member 40 when viewed in the direction orthogonal to the insulating layer 30. .
  • the strength of the applied vertical magnetic field or horizontal magnetic field was 30 mT.
  • FIG. 9 is a flux diagram showing a magnetic flux density distribution when a perpendicular magnetic field is applied to the magnetic sensor according to Experimental Example 1.
  • FIG. 10 is a magnetic flux diagram showing a magnetic flux density distribution when a horizontal magnetic field is applied to the magnetic sensor according to Experimental Example 1.
  • FIG. 11 shows the relationship between the distance in the horizontal direction from the outer peripheral edge of the first magnetic member and the magnetic field strength in the horizontal direction when a vertical magnetic field or a horizontal magnetic field is applied to the magnetic sensor according to Experimental Example 1. It is a graph. 9 and 10, only the first magnetic member 40, the first magnetoresistive elements 120a and 120b, and the second magnetoresistive elements 130a and 130b are illustrated when the magnetic sensor 1 is viewed from the horizontal direction.
  • the vertical axis indicates the magnetic field strength (mT) in the horizontal direction
  • the horizontal axis indicates the horizontal distance ( ⁇ m) from the outer peripheral edge of the first magnetic member.
  • the distance in the horizontal direction from the outer peripheral edge of the first magnetic member is a positive distance from the outer peripheral edge of the first magnetic member 40, and the distance from the outer peripheral edge of the first magnetic member 40 to the inner side The distance is indicated by a negative value.
  • the distribution of the magnetic field intensity in the horizontal direction when the perpendicular magnetic field is applied is indicated by a solid line V
  • the distribution of the magnetic field intensity in the horizontal direction when a horizontal magnetic field is applied is indicated by a solid line H.
  • the magnetic flux is applied to the first magnetic member 40 having high permeability on the upper surface side of the first magnetic member 40. Were attracted and collected. The magnetic flux that has entered the first magnetic member 40 passes through the first magnetic member 40 in the vertical direction, and then is diffused and emitted from the lower surface side of the first magnetic member 40.
  • a magnetic field was applied to the second magnetoresistance elements 130 a and 130 b positioned directly below the first magnetic member 40 in a substantially perpendicular direction. Therefore, the second magnetoresistance elements 130a and 130b hardly detect the perpendicular magnetic field.
  • the first magnetoresistance elements 120a and 120b located below the outer peripheral edge of the first magnetic member 40 a magnetic field deflected in a substantially horizontal direction was applied as shown by the arrows in FIG. Therefore, the first magnetoresistance elements 120a and 120b could detect the vertical magnetic field as a magnetic field deflected in the substantially horizontal direction.
  • the magnetic field in the horizontal direction was hardly applied to the second magnetoresistance elements 130a and 130b located immediately below the first magnetic member 40. Therefore, the second magnetoresistance elements 130a and 130b hardly detect the horizontal magnetic field.
  • a magnetic field in the horizontal direction was applied to the first magnetoresistance elements 120 a and 120 b located below the outer peripheral edge of the first magnetic member 40. Therefore, the first magnetoresistance elements 120a and 120b could detect the horizontal magnetic field.
  • a perpendicular magnetic field a position about 10 ⁇ m away from the outer peripheral edge of the first magnetic member 40 from a position about 2 ⁇ m away inwardly from the outer periphery of the first magnetic member 40 Up to the horizontal magnetic field strength was higher than 30 mT, which is the strength of the applied vertical magnetic field.
  • the magnetic field strength in the horizontal direction is higher than 30 mT which is the strength of the applied horizontal magnetic field at the position outside the outer peripheral edge of the first magnetic member 40.
  • the magnetic field strength in the horizontal direction is 1/3 of 30 mT, which is the strength of the applied vertical magnetic field or horizontal magnetic field, at a position spaced about 7 ⁇ m or more inward from the outer peripheral edge of the first magnetic member 40. It was below. Therefore, it is preferable that the second magnetoresistance elements 130a and 130b be provided at a position spaced apart by about 7 ⁇ m or more from the outer peripheral edge of the first magnetic member 40.
  • the horizontal direction The magnetic field strength of the magnetic field is higher than 30 mT, which is the strength of the applied vertical magnetic field or horizontal magnetic field. Therefore, it is preferable that at least a part of the first magnetoresistance elements 120a and 120b be provided in at least a part of this region. More than half of the entire outer circumference of the first magnetic member 40 is surrounded by the first magnetoresistance elements 120a and 120b provided in the above region, as viewed in the direction orthogonal to the insulating layer 30. More preferably, 2/3 or more of the entire outer circumference of the first magnetic member 40 is surrounded.
  • the first magnetic member 40 is positioned concentrically with the outer peripheral edge of the first magnetoresistive elements 120a and 120b when viewed from the direction orthogonal to the insulating layer 30, and the first magnetoresistive elements 120a and 120b.
  • the magnetic field in the horizontal direction emitted outward from the outer peripheral edge of the first magnetic member 40 can be applied approximately equally in the circumferential direction to the first magnetoresistance elements 120a and 120b.
  • the perpendicular magnetic field of the first magnetoresistance elements 120a and 120b is suppressed while suppressing the resistance change of the second magnetoresistance elements 130a and 130b due to the perpendicular magnetic field. It has been confirmed that the detection sensitivity of can be enhanced. That is, the first magnetoresistance elements 120a and 120b can detect a weak vertical magnetic field. Further, the magnetic sensor 1 according to the first embodiment of the present invention improves the detection sensitivity of the horizontal magnetic field of the first magnetic resistance elements 120a and 120b while suppressing the resistance change of the second magnetic resistance elements 130a and 130b due to the horizontal magnetic field. I was able to confirm that I could do it. That is, the first magnetoresistance elements 120a and 120b can detect a weak horizontal magnetic field.
  • FIG. 12 shows the relationship between the distance in the horizontal direction from the outer peripheral edge of the first magnetic member and the magnetic field strength in the horizontal direction when a vertical magnetic field is applied to the magnetic sensor according to Experimental Example 2 It is a graph which shows the influence of the thickness of a body member.
  • the vertical axis indicates the magnetic field strength (mT) in the horizontal direction
  • the horizontal axis indicates the horizontal distance ( ⁇ m) from the outer peripheral edge of the first magnetic member.
  • FIG. 13 is a graph showing the relationship between the thickness of the first magnetic member and the horizontal distance from the outer peripheral edge of the first magnetic member to the outside at which the magnetic field strength in the horizontal direction is 1/3 of the peak value. is there. 12 and 13, the horizontal distance from the outer peripheral edge of the first magnetic member is a positive distance from the outer peripheral edge of the first magnetic member 40 to the first magnetic member 40. The distance away from the outer edge of the inward is indicated by a negative value.
  • the outer shape of the first magnetic member 40 was a cylindrical shape having a diameter of 140 ⁇ m.
  • the thickness x of the first magnetic member 40 was five types of 10 ⁇ m, 20 ⁇ m, 50 ⁇ m, 100 ⁇ m and 150 ⁇ m.
  • the first magnetic member 40 was made of permalloy.
  • the arrangement of the first magnetic member 40 was the same as that of Example 1.
  • the strength of the applied perpendicular magnetic field was 30 mT.
  • the peak value of the magnetic field strength in the horizontal direction increases.
  • the dependency on the permeability of the first magnetic member 40 is small, and the permeability of the first magnetic member 40 is There is almost no change when
  • a horizontal magnetic field of 1/3 or more of the peak value of the magnetic field strength in the horizontal direction is applied to the first magnetoresistance elements 120a and 120b, And it is preferable that the intensity of the magnetic field in the horizontal direction applied to the second magnetoresistance elements 130a and 130b is 1/10 or less of the peak value of the magnetic field intensity in the horizontal direction.
  • the magnetic field strength in the horizontal direction is 1/1 of the peak value. It was 3 or more.
  • the horizontal distance y from the outer peripheral edge of the first magnetic member 40 to the outer side where the magnetic field strength in the horizontal direction is 1/3 of the peak value is the thickness of the first magnetic member 40. It became long as x became thick.
  • the magnetic field strength in the horizontal direction becomes 1/3 or more of the peak value. Therefore, when viewed from the direction orthogonal to the insulating layer 30, the above-mentioned formula (I) is shown outside from the outer peripheral edge of the first magnetic member 40 from a position spaced 2 ⁇ m inward from the outer peripheral edge of the first magnetic member 40 In the region up to a position separated by y ⁇ m, the magnetic field strength in the horizontal direction becomes 1/3 or more of the peak value.
  • the magnetic field strength in the horizontal direction is 1/1 of the peak value. It was less than ten. That is, in the region from the center of the first magnetic member 40 to the position 7 ⁇ m away from the outer peripheral edge of the first magnetic member 40 in the direction perpendicular to the insulating layer 30, the magnetic field strength in the horizontal direction was less than 1/10 of the peak value.
  • the first magnetic member It is preferable to be located in at least one part of an area
  • the center of the first magnetic member 40 to a position 7 ⁇ m away from the outer peripheral edge of the first magnetic member 40 when the second magnetoresistive elements 130 a and 130 b are viewed in the direction orthogonal to the insulating layer 30.
  • it is located in the area of
  • the magnetic sensor 1 according to Embodiment 1 of the present invention can detect the vertical magnetic field and the horizontal magnetic field with high sensitivity. Further, the magnetic sensor 1 according to the first embodiment of the present invention includes a plurality of first unit patterns in which the first magnetoresistance elements 120a and 120b are arranged concentrically, so that the isotropy of detection of the horizontal magnetic field is obtained. high.
  • the double spiral pattern 130 of the second magnetoresistance elements 130a and 130b is formed to have the same thickness as the pattern 120 of the first magnetoresistance elements 120a and 120b.
  • the double spiral pattern 130 may be formed in a pattern thinner than the pattern 120.
  • the magnetoresistance effect of the second magnetoresistance elements 130a and 130b is smaller than that of the first magnetoresistance elements 120a and 120b.
  • the magnetoresistance effect of the second magnetoresistance elements 130a and 130b is suppressed, and the rate of change in resistance of the second magnetoresistance elements 130a and 130b is significantly reduced.
  • the detection sensitivity of the magnetic sensor 1 can be increased by increasing the potential difference generated between the midpoint 140 and the midpoint 141 when the external magnetic field is applied to the magnetic sensor 1. Further, since the electric resistance value of the second magnetoresistance elements 130a and 130b is high, a reduction in the potential difference generated between the middle point 140 and the middle point 141 when an external magnetic field of high magnetic field strength is applied to the magnetic sensor 1 Is relatively small, and the output characteristics of the magnetic sensor 1 can be stabilized.
  • the second magnetoresistive elements 130a and 130b are magnetically shielded by the first magnetic member 40 and hardly detect the vertical magnetic field and the horizontal magnetic field, the second magnetoresistive elements 130a and 130b are not necessarily detected.
  • the rate of change in resistance does not have to be smaller than the rate of change in resistance of the first magnetoresistance elements 120a and 120b.
  • the first conductor portion 60 and the first stress relieving portion 80 are provided between the first magnetic member 40 and the circuit board 100, and
  • the conductor portion 60 includes a first base portion 61 and a first narrow portion 62, and the first narrow portion 62 of the first conductor portion 60 is in contact with the circuit board 100.
  • the first narrow portion 62 is in contact with the insulating layer 30 located on the surface layer of the circuit board 100.
  • the first stress relieving portion 80 is disposed in the gap between the first base portion 61 and the insulating layer 30.
  • the first stress relieving portion 80 is a member made of a material different from that of the first conductor portion 60.
  • the first stress relieving portion 80 is at least one of a material having low adhesion, a material having a low elastic modulus, and a material having a low tensile strength as compared to the material forming the first conductor portion 60. Is made of a material containing
  • the contact area between the first conductor portion 60 and the circuit board 100 can be reduced, and the first magnetic resistance elements 120a and 120b and the second magnetism from the first magnetic member 40 through the first conductor portion 60 can be obtained.
  • the stress acting on the resistance elements 130a and 130b can be reduced.
  • the first stress relieving portion 80 is provided immediately below the outer peripheral portion of the first base portion 61, stress due to strain generated in the outer peripheral portion of the first magnetic member 40 acts on the circuit board 100. (1) It can be inhibited by the stress relaxation section 80.
  • the first stress relieving portion 80 is made of a material having a lower adhesion than the material forming the first conductor portion 60, the outer peripheral portion of the first magnetic member 40 When stress due to strain generated in the first stress relieving portion 80 acts on the first stress relieving portion 80, the first stress relieving portion 80 peels from the member adjacent to the first stress relieving portion 80. Thereby, it is possible to suppress transmission of stress due to strain generated in the outer peripheral portion of the first magnetic member 40 to the member adjacent to the first stress relieving portion 80 through the first stress relieving portion 80.
  • the first stress relieving portion 80 When the first stress relieving portion 80 is formed of a material having a lower elastic modulus than the material forming the first conductor portion 60, stress due to strain generated in the outer peripheral portion of the first magnetic member 40 When the stress acts on the first stress relieving portion 80, the first stress relieving portion 80 elastically deforms to absorb stress. Thereby, it is possible to suppress transmission of stress due to strain generated in the outer peripheral portion of the first magnetic member 40 to the member adjacent to the first stress relieving portion 80 through the first stress relieving portion 80.
  • the first stress relieving portion 80 When the first stress relieving portion 80 is formed of a material having a lower tensile strength than the material forming the first conductor portion 60, the strain caused by the outer peripheral portion of the first magnetic member 40 When stress acts on the first stress relieving portion 80, a crack is generated in the first stress relieving portion 80, and a portion between the first stress relieving portion 80 and a member adjacent to the first stress relieving portion 80 is divided. Thereby, it is possible to suppress transmission of stress due to strain generated in the outer peripheral portion of the first magnetic member 40 to the member adjacent to the first stress relieving portion 80 through the first stress relieving portion 80.
  • a gap between the first base portion 61 and the insulating layer 30 is provided over the entire periphery of the outer peripheral portion of the first conductor portion 60, and the first stress relaxation portion is provided in the entire gap. Since 80 is arranged, it is possible to effectively suppress the stress due to the strain generated in the outer peripheral portion of the first magnetic member 40 from acting on the circuit board 100 through the first conductor portion 60.
  • the magnetic sensor 1 has high isotropy of detection of the horizontal magnetic field and can detect weak vertical magnetic fields by using the magnetoresistance element, and can also detect magnetic resistance. It is possible to suppress a decrease in output accuracy due to a stress acting on a magnetoresistive element from a structure provided above the element.
  • thickness x of the 1st magnetic material member 40 into the thickness of the part located on the 1st conductor part 60 in the 1st magnetic material member 40, the verification result based on Experimental example 1 and Experimental example 2 It is possible to use
  • the magnetic sensor according to the second embodiment of the present invention differs from the magnetic sensor 1 according to the first embodiment of the present invention mainly in the shape of the first conductor portion and the arrangement of the stress relieving portion, so that the embodiment of the present invention is implemented.
  • the description of the same configuration as that of the magnetic sensor 1 according to the first embodiment will not be repeated.
  • FIG. 14 is a cross-sectional view showing a configuration of a magnetic sensor according to Embodiment 2 of the present invention.
  • the magnetic sensor is illustrated as viewed from the same direction as FIG. 14
  • the first conductor portion 60 a is provided on the circuit board 100.
  • the first conductor portion 60 a includes a first base 61 and a first narrow portion 62.
  • the first base portion 61 and the first narrow portion 62 are provided side by side in the direction orthogonal to the insulating layer 30.
  • the first narrow portion 62 of the first conductor portion 60 a is located at the end portion of the first conductor portion 60 a on the first magnetic member 40 side in the direction orthogonal to the insulating layer 30. There is. That is, the first narrow portion 62 of the first conductor portion 60 a is in contact with the first magnetic member 40.
  • a gap is partially provided between the first base 61 and the first magnetic member 40.
  • a gap between the first base 61 and the first magnetic member 40 is provided over the entire periphery of the outer peripheral portion of the first conductor portion 60 a.
  • the first stress relieving portion 80 is disposed in the gap.
  • the first stress relieving portion 80 is provided in a region surrounded by the outer shape of the first narrow portion 62 and the outer shape of the first base portion 61 when viewed in the direction orthogonal to the insulating layer 30.
  • the first stress relieving portion 80 is positioned between the first base 61 and the first magnetic member 40.
  • the first stress relieving portion 80 is located immediately below the outer peripheral portion of the first magnetic member 40.
  • the first stress relieving portion 80 has an annular shape.
  • the first conductor portion 60a and the first stress relieving portion 80 are provided between the first magnetic member 40 and the circuit board 100.
  • the conductor portion 60 a includes a first base portion 61 and a first narrow portion 62, and the first narrow portion 62 of the first conductor portion 60 a is in contact with the first magnetic member 40.
  • the first stress relieving portion 80 is disposed in a gap between the first base portion 61 and the first magnetic member 40.
  • the first stress relieving portion 80 is a member made of a material different from that of the first conductor portion 60a.
  • the first stress relieving portion 80 is at least one of a material having low adhesion, a material having a low elastic modulus, and a material having a low tensile strength as compared with the material constituting the first conductor portion 60a. Is made of a material containing
  • the contact area between the first conductor portion 60a and the first magnetic member 40 can be reduced, and the first magnetoresistance elements 120a and 120b and the first magnetic portion 40 through the first conductor portion 60a can be used.
  • the stress acting on the second magnetoresistance elements 130a and 130b can be reduced.
  • the first stress relieving portion 80 is provided immediately below the outer peripheral portion of the first magnetic member 40, the stress caused by the strain generated in the outer peripheral portion of the first magnetic member 40 acts on the circuit board 100. , And can be inhibited by the first stress relieving portion 80.
  • a gap between the first base 61 and the first magnetic member 40 is provided over the entire periphery of the outer peripheral portion of the first conductor portion 60a. Since the stress relieving portion 80 is disposed, it is possible to effectively suppress the stress due to the strain generated in the outer peripheral portion of the first magnetic member 40 from acting on the circuit board 100 through the first conductor portion 60a.
  • Embodiment 3 a magnetic sensor according to Embodiment 3 of the present invention will be described with reference to the drawings.
  • the magnetic sensor according to the third embodiment of the present invention is different from the magnetic sensor 1 according to the first embodiment of the present invention mainly in the shape of the first conductor portion and the arrangement of the stress relieving portion, so that the embodiment of the present invention is implemented.
  • the description of the same configuration as that of the magnetic sensor 1 according to the first embodiment will not be repeated.
  • FIG. 15 is a front view showing the configuration of the magnetic sensor according to Embodiment 3 of the present invention.
  • the magnetic sensor is shown in the same direction as FIG.
  • the first conductor portion 60 b is provided on the circuit board 100.
  • the first conductor portion 60 b includes a first base 61 and a first narrow portion 62.
  • the first base 61 and the first narrow portion 62 are provided side by side in the direction orthogonal to the insulating layer 30.
  • the first base portion 61 of the first conductor portion 60b is the end portion of the first conductor portion 60b on the insulating layer 30 side and the first magnetic member 40 side in the direction orthogonal to the insulating layer 30.
  • Located at each of the ends of the The first narrow portion 62 of the first conductor portion 60 b is located between the first bases 61 of the first conductor portion 60 b in the direction perpendicular to the insulating layer 30.
  • a gap is partially provided between the first bases 61.
  • a gap between the first base portions 61 is provided over the entire circumference of the outer peripheral portion of the first conductor portion 60 b.
  • the first stress relieving portion 80 is disposed in the gap.
  • the first stress relieving portion 80 is provided in a region surrounded by the outer shape of the first narrow portion 62 and the outer shape of the first base portion 61 when viewed in the direction orthogonal to the insulating layer 30.
  • the first stress relieving portion 80 is positioned between the first base portions 61.
  • the first stress relieving portion 80 is located immediately below the outer peripheral portion of the first base 61 located at the end on the first magnetic member 40 side. As viewed in the direction orthogonal to the insulating layer 30, the first stress relieving portion 80 has an annular shape.
  • the first conductor portion 60b and the first stress relieving portion 80 are provided between the first magnetic member 40 and the circuit board 100.
  • the conductor portion 60 b has a first narrow portion 62 between the first bases 61.
  • the first stress relieving portion 80 is disposed in the gap between the first base portions 61.
  • the first stress relieving portion 80 is a member made of a material different from that of the first conductor portion 60 b.
  • the first stress relieving portion 80 is at least one of a material having low adhesion, a material having a low elastic modulus, and a material having a low tensile strength as compared with the material constituting the first conductor portion 60b. Is made of a material containing
  • the stress in the first conductor portion 60b can be relieved in the first stress relieving portion 80, and the first magnetoresistance elements 120a and 120b and the first magnetic body member 40 through the first conductor portion 60b can be used.
  • the stress acting on the second magnetoresistance elements 130a and 130b can be reduced.
  • the first stress relieving portion 80 is provided immediately below the outer peripheral portion of the first base 61 located at the end portion on the first magnetic member 40 side, distortion generated in the outer peripheral portion of the first magnetic member 40
  • the first stress relieving portion 80 can inhibit the stress from acting on the circuit board 100.
  • a gap between the first bases 61 is provided over the entire periphery of the outer peripheral portion of the first conductor portion 60b, and the first stress relieving portion 80 is disposed in the entire gap. Therefore, it is possible to effectively suppress the stress due to the strain generated in the outer peripheral portion of the first magnetic member 40 from acting on the circuit board 100 through the first conductor portion 60b.
  • Embodiment 4 a magnetic sensor according to Embodiment 4 of the present invention will be described with reference to the drawings.
  • the magnetic sensor according to the fourth embodiment of the present invention is different from the magnetic sensor 1 according to the first embodiment of the present invention mainly in that the shape of the first magnetic member and the first conductive portion are not provided. Description is not repeated about the same composition as magnetic sensor 1 concerning Embodiment 1 of the present invention.
  • FIG. 16 is a cross-sectional view showing a configuration of a magnetic sensor according to Embodiment 4 of the present invention.
  • the magnetic sensor is shown as viewed from the same direction as FIG.
  • the first magnetic member 40 a is provided on the circuit board 100.
  • the first magnetic member 40 a includes a first base 41 and a first narrow portion 42 whose outer area as viewed in the direction orthogonal to the insulating layer 30 is smaller than the outer area of the first base 41.
  • the first base 41 and the first narrow portion 42 are provided side by side in the direction orthogonal to the insulating layer 30.
  • the first narrow portion 42 of the first magnetic member 40 a is located at the end of the first magnetic member 40 a on the insulating layer 30 side in the direction perpendicular to the insulating layer 30. That is, the first narrow portion 42 of the first magnetic member 40 a is in contact with the circuit board 100.
  • each of the first base 41 and the first narrow portion 42 has a circular outer shape.
  • the outer diameter of the first narrow portion 42 is smaller than the outer diameter of the first base 41.
  • the first base portion 41 and the first narrow portion 42 are disposed substantially coaxially.
  • the shape of the 1st base 41 is not restricted above, An ellipse, a polygon, etc. may be sufficient.
  • the shape of the first narrow portion 42 is not limited to the above, and it may be a shape in which the outer area as viewed in the direction orthogonal to the insulating layer 30 is smaller than the outer area of the first base 41.
  • a gap is partially provided between the first base 41 and the circuit board 100.
  • a gap between the first base 41 and the circuit board 100 is provided over the entire circumference of the outer peripheral portion of the first magnetic member 40a.
  • the first stress relieving portion 80 is disposed in the gap.
  • the thickness of the first narrow portion 42 in the Z-axis direction is preferably 2.0 ⁇ m or less.
  • the function of the first magnetic member 40a as a magnetic shield can be secured as the distance between the first base 41 of the first magnetic member 40a and the circuit board 100 is shorter.
  • the first narrow portion 42 As a method of forming the first narrow portion 42, patterning using a resist, or sacrificial layer etching can be used.
  • the first stress relieving portion 80 is provided in a region surrounded by the outer shape of the first narrow portion 42 and the outer shape of the first base portion 41 when viewed in the direction orthogonal to the insulating layer 30.
  • the first stress relieving portion 80 is located between the first base portion 41 and the insulating layer 30.
  • the first stress relieving portion 80 is located immediately below the outer peripheral portion of the first base portion 41. As viewed in the direction orthogonal to the insulating layer 30, the first stress relieving portion 80 has an annular shape.
  • the first stress relieving portion 80 is made of a material different from that of the first magnetic member 40a.
  • the material constituting the first stress relieving portion 80 is at least at least of a material having low adhesion, a material having a low elastic modulus, and a material having a low tensile strength as compared to the material constituting the first magnetic member 40a. Materials containing any one can be used.
  • the first narrow portion 42 of the first magnetic member 40 a is in contact with the circuit board 100.
  • the contact area between the first magnetic member 40a and the circuit board 100 can be reduced, and the first magnetic member 40a acts on the first magnetoresistance elements 120a and 120b and the second magnetoresistance elements 130a and 130b. Stress can be reduced.
  • the first stress relieving portion 80 is provided immediately below the outer peripheral portion of the first base portion 41, stress due to strain generated in the outer peripheral portion of the first magnetic member 40 acts on the circuit board 100. (1) It can be inhibited by the stress relaxation section 80.
  • the stress due to the strain generated in the outer peripheral portion of the first magnetic member 40 acts on the first magnetoresistance elements 120a and 120b and the second magnetoresistance elements 130a and 130b from the first magnetic body member 40.
  • the stress can be inhibited by the stress relaxation unit 80, it is possible to suppress the decrease in output accuracy of the magnetic sensor 1c.
  • generation of a crack in the insulating layer 30 due to the stress acting on the insulating layer 30 from the first magnetic member 40 a can be suppressed. Thereby, it can suppress that the reliability of the magnetic sensor 1c falls.
  • a gap between the first base 41 of the first magnetic member 40 a and the circuit board 100 is provided over the entire periphery of the outer peripheral portion of the first magnetic member 40 a, and this gap is Since the first stress relieving portion 80 is disposed on the whole, it is possible to effectively suppress the stress due to the strain generated in the outer peripheral portion of the first magnetic member 40a from acting on the circuit board 100.
  • the thickness x of the first magnetic member 40a is set to the thickness of the first base 41, it is possible to use the verification result based on Experimental Example 1 and Experimental Example 2.
  • Embodiment 5 a magnetic sensor according to Embodiment 5 of the present invention will be described with reference to the drawings.
  • the magnetic sensor according to the fifth embodiment of the present invention is different from the magnetic sensor 1 according to the first embodiment of the present invention mainly in the pattern of the second magnetoresistive element, so the magnetic sensor according to the first embodiment of the present invention Description will not be repeated for configurations that are similar to 1.
  • FIG. 17 is a plan view of a magnetic sensor according to Embodiment 5 of the present invention.
  • FIG. 18 is a plan view showing the pattern of the second magnetoresistance element of the magnetic sensor according to Embodiment 5 of the present invention.
  • the magnetic sensor 2 according to Embodiment 5 of the present invention includes a circuit board 200 and two first magnetic members 40 provided above the circuit board 200.
  • the first stress relieving portion is provided on the circuit board 200 along the two first conductor portions and a part of the corresponding first conductor portion. ing.
  • the first magnetic member 40 covers the corresponding first conductive portion as viewed in the direction orthogonal to the insulating layer 30.
  • the first magneto resistive element 120a of the magnetic sensor 2 according to a fifth embodiment of the present invention, 120b of the pattern is viewed from the direction perpendicular to the insulating layer 30, the imaginary circle C 2 including three first unit patterns connected to each other are arranged side by side in the radial direction of the virtual circle C 2 along the circumference.
  • Each of the three first unit pattern is located along a virtual C-shape C 21 a portion where the wiring 146,148,150,152 are located at the circumference of the virtual circle C 2 is opened.
  • Each of the three first unit pattern is a C-shaped pattern which are arranged side by side in the radial direction of the virtual circle C 2 along a virtual C-shape C 21.
  • the first magnetoresistance element 120a and the first magnetoresistance element 120b differ in the circumferential direction of the pattern by 90 ° so that the directions of the C-shaped patterns are different from each other by 90 °.
  • the second magnetoresistance element 230a is seen from a direction perpendicular to the insulating layer 30, situated in the center of the imaginary circle C 2, it is surrounded by a first magnetoresistive element 120a cage, second magnetoresistance element 230b, when viewed from a direction perpendicular to the insulating layer 30, situated in the center of the imaginary circle C 2, and is surrounded by a first magnetoresistive element 120b. That is, the second magnetoresistive element 230 a is located inside the inner peripheral edge of the first magnetoresistive element 120 a when viewed in the direction orthogonal to the insulating layer 30, and the second magnetoresistive element 230 b is located on the insulating layer 30. It is located inside the inner peripheral edge of the 1st magnetoresistive element 120b seeing from the orthogonal direction.
  • Second magnetoresistance element 230a, 230b is fourteen semicircular pattern is a second unit pattern arranged symmetrically so as to align in the radial direction of the virtual circle C 2 along the circumference of the virtual circle C 2
  • a pattern 230 including 231 is included.
  • the pattern 230 is formed to have the same thickness as the pattern 120 of the first magnetoresistance elements 120a and 120b. However, the thickness of the pattern 230 may be thinner than the thickness of the pattern 120.
  • the fourteen semi-circular patterns 231 are alternately connected to each other at one end and the other in order from the inside.
  • the semicircular arc-shaped patterns 231 whose ends are connected to each other are connected to each other by a semicircular arc-shaped pattern 232.
  • the semicircular arc patterns 231 whose other ends are connected to each other are connected to each other by a semicircular arc pattern 233.
  • the semicircular arc-shaped patterns 231 located at the innermost and symmetrical with each other are connected to each other at their one ends by the linear extending portions 234.
  • the length of the linear extension 234 is less than 10 ⁇ m.
  • the pattern 230 of the second magnetoresistive elements 230a and 230b includes six semicircular arc patterns 232, six semicircular arc patterns 233, and a linear extension 234. As a result, fourteen semi-circular patterns 231 are connected in series.
  • the semi-arc shaped patterns 232 and 233 do not include linear extending parts, and are formed only of curved parts.
  • the second magnetoresistance elements 230 a and 230 b have a semicircular arc-shaped pattern 231.
  • the semicircular arc-shaped pattern 231 is configured by an arc.
  • Two semi-arc shaped patterns 231 adjacent to each other are connected to each other by semi-arc shaped patterns 232 and 233. Since the second magnetoresistive elements 230a and 230b include only the linear extending portion 234 whose length is shorter than 10 ⁇ m, the anisotropy of the magnetic field detection is reduced.
  • the second magnetoresistance element 230 a and the second magnetoresistance element 230 b are different in the circumferential direction of the pattern 230.
  • the second magnetoresistance element 230 a and the second magnetoresistance element 230 b differ in the circumferential direction of the pattern 230 by 90 °.
  • the magnetic sensor 2 since the second magnetoresistance elements 230a and 230b are disposed inside the first magnetoresistance elements 120a and 120b, the magnetic sensor 2 can be miniaturized. Further, in the magnetic sensor 2 as well, it is not necessary to three-dimensionally extend the wiring connecting the first magnetoresistance elements 120a and 120b and the second magnetoresistance elements 230a and 230b, so the circuit board 200 is manufactured by a simple manufacturing process. It is possible.
  • the first magnetic member 40 when viewed from the direction orthogonal to the insulating layer 30, the first magnetic member 40 is the second magnetic resistance of the first magnetic resistance elements 120 a and 120 b and the second magnetic resistance elements 230 a and 230 b. Only the elements 230a and 230b are covered.
  • the vertical magnetic field and the horizontal magnetic field can be detected with high sensitivity.
  • the magnetic sensor 2 according to Embodiment 5 of the present invention includes a plurality of first unit patterns in which the first magnetoresistance elements 120a and 120b are arranged concentrically, so that the isotropy of detection of the horizontal magnetic field is obtained. high.
  • the second magnetoresistance elements 230a and 230b are magnetically shielded by the first magnetic member 40 and hardly detect the vertical magnetic field and the horizontal magnetic field, the second magnetoresistance elements 230a and 230b are not necessarily detected.
  • the rate of change in resistance does not have to be smaller than the rate of change in resistance of the first magnetoresistance elements 120a and 120b.
  • the isotropy of detection of the horizontal magnetic field is high, and a weak vertical magnetic field can be detected, and above the magnetoresistive element It is possible to suppress the decrease in output accuracy due to the stress acting on the magnetoresistive element from the provided structure.
  • Embodiment 6 a magnetic sensor according to Embodiment 6 of the present invention will be described with reference to the drawings.
  • the pattern of each of the first and second magnetoresistance elements, the arrangement of the second magnetoresistance element, and the point of including the second conductor portion The configuration is the same as that of the magnetic sensor 1 according to the first embodiment of the present invention, and therefore, the description will not be repeated because it is mainly different from the magnetic sensor 1 according to the first embodiment of the present invention.
  • FIG. 19 is a perspective view showing a configuration of a magnetic sensor according to Embodiment 6 of the present invention.
  • FIG. 20 is a cross-sectional view of the magnetic sensor of FIG. 19 as viewed in the direction of arrows XX-XX.
  • FIG. 21 is a cross-sectional view of the magnetic sensor of FIG. 20 as viewed in the direction of the arrows along line XXI-XXI.
  • FIG. 22 is a plan view of the magnetic sensor of FIG. 19 as viewed in the direction of arrow XXII.
  • the magnetic sensor 3 includes a circuit board 300, two first magnetic members 40 and two first magnetic members 40 provided above the circuit board 300. And 2 a magnetic member 50.
  • the two first conductor portions 60, the two second conductor portions 70, and a portion of the corresponding first conductor portion 60 are provided on the circuit board 300.
  • a second stress relieving portion 90 is provided along a portion of the first stress relieving portion 80 and the corresponding second conductor portion 70.
  • the insulating layer 30 is provided on the surface layer of the circuit board 300, and each of the two first conductor parts 60, the two second conductor parts 70, the first stress relieving part 80 and the second stress relieving part 90. Are located on the insulating layer 30.
  • the second conductor portion 70 includes a second base 71 and a second narrow portion 72.
  • the outer area of the second narrow portion 72 as viewed in the Z-axis direction which is a direction orthogonal to the insulating layer 30 is smaller than the outer area of the second base 71.
  • the second base portion 71 and the second narrow portion 72 are provided side by side in the Z-axis direction which is a direction orthogonal to the insulating layer 30.
  • the second narrow portion 72 of the second conductor portion 70 is located at an end portion of the second conductor portion 70 on the insulating layer 30 side in the Z-axis direction which is a direction orthogonal to the insulating layer 30. doing. That is, the second narrow portion 72 of the second conductor portion 70 is in contact with the insulating layer 30 of the circuit board 300.
  • each of the second base portion 71 and the second narrow portion 72 has a bent rectangular outer shape.
  • the width of the outline of the second narrow portion 72 is smaller than the width of the outline of the second base 71.
  • the second base portion 71 and the second narrow portion 72 are disposed substantially coaxially.
  • the shape of the second base 71 is not limited to the above, and may be circular or polygonal.
  • the shape of the second narrow portion 72 is not limited to the above, and it may be a shape whose external area as viewed in the Z-axis direction which is a direction orthogonal to the insulating layer 30 is smaller than the external area of the second base 71.
  • a gap is partially provided between the second base portion 71 and the insulating layer 30.
  • a gap between the second base 71 and the insulating layer 30 is provided along the entire periphery of the outer peripheral portion of the second conductor portion 70.
  • the second stress relieving portion 90 is disposed in the gap.
  • the two second magnetic members 50 are located on the two second conductor portions 70 in a one-to-one correspondence.
  • the second magnetic member 50 covers the corresponding second conductor portion 70 as viewed in the Z-axis direction which is a direction orthogonal to the insulating layer 30.
  • the thickness in the Z-axis direction of the second conductor portion 70 that is, the second base 71 and the second narrow portion 72 are combined.
  • the thickness in the Z-axis direction is preferably 2.0 ⁇ m or less.
  • the function of the second magnetic member 50 as a magnetic shield can be secured as the distance between the second magnetic member 50 and the circuit board 100 is shorter.
  • patterning using a resist can be used as a method of forming the second conductor portion 70.
  • the second conductor portion 70 is located on the insulating layer 30 and is a layer containing titanium (Ti) and a layer containing gold (Au) located on the layer containing titanium (Ti) And consists of The layer containing titanium (Ti) is an adhesive layer.
  • a layer containing gold (Au) functions as an electrode reaction layer, that is, a seed layer.
  • the configuration of the second conductor portion 70 is not limited to the above, and iron (Fe), molybdenum (Mo), tantalum (Ta), platinum (Pt) and copper (Cu), which are materials functioning as a seed layer for plating. And a layer comprising at least one of Moreover, when the 2nd magnetic body member 50 is formed by methods other than plating, such as vapor deposition, you may be comprised with the other conductor containing at least one of a metal and resin.
  • the second stress relieving portion 90 is provided in a region T2 surrounded by the outer shape of the second narrow portion 72 and the outer shape of the second base portion 71 when viewed from the Z-axis direction which is a direction orthogonal to the insulating layer 30. .
  • the second stress relieving portion 90 is located between the second base portion 71 and the insulating layer 30.
  • the second stress relieving portion 90 is located immediately below the outer peripheral portion of the second base portion 71.
  • the second stress relieving portion 90 has an annular shape in which the outer shape of the cross section is a polygon.
  • the shape of the 2nd stress relaxation part 90 is not restricted above.
  • patterning using a resist can be used as a method of forming the second stress relieving portion 90.
  • the second stress relieving portion 90 is a member made of a material different from that of the second conductor portion 70.
  • a material constituting the second stress relieving portion 90 at least at least of a material having low adhesion, a material having a low elastic modulus, and a material having a low tensile strength as compared with the material constituting the second conductor portion 70 Materials containing any one can be used.
  • the second stress relieving portion 90 includes a material with low adhesion
  • a layer made of a material with low adhesion is arranged to be in contact with the insulating layer 30.
  • the material which is the material of the second stress relieving portion 90 and whose adhesion is lower than the material of the second conductor portion 70 is gold (Au), polyimide or the like.
  • the second conductor portion 70 is composed of a layer containing titanium (Ti) located on the insulating layer 30 and a layer containing gold (Au) located on the layer containing titanium (Ti).
  • the second stress relieving portion 90 is composed only of a layer containing gold (Au).
  • the material constituting the second stress relieving portion 90 and having a lower elastic modulus than the material constituting the second conductor portion 70 is a resin such as polyimide.
  • the material constituting the second stress relieving portion 90 and having a lower tensile strength than the material constituting the second conductor portion 70 is SiO 2 or a resin having a low density.
  • SOG Spin-on Glass
  • the circuit board 300 of the magnetic sensor 3 is provided with four magnetoresistive elements electrically connected to each other by wires to form a Wheatstone bridge type bridge circuit. It is done.
  • the four magnetoresistance elements consist of two sets of first magnetoresistance elements and second magnetoresistance elements.
  • the magnetic sensor 3 includes a first magnetoresistive element 320a and a second magnetoresistive element 330a, and a first magnetoresistive element 320b and a second magnetoresistive element 330b.
  • the first magnetoresistance element 320a and the second magnetoresistance element 330a constitute one set.
  • the first magnetoresistance element 320 b and the second magnetoresistance element 330 b constitute one set.
  • FIG. 23 is a plan view showing a pattern of the first magnetoresistive element of the magnetic sensor according to Embodiment 6 of the present invention.
  • the first magnetoresistance elements 320 a and 320 b have a double spiral pattern 320 as viewed from the direction orthogonal to the insulating layer 30.
  • the two double spiral patterns 320 are concentrically arranged in the radial direction of the imaginary circle along the circumference of the imaginary circle and viewed from the direction orthogonal to the insulating layer 30 and connected to each other. Includes unit patterns.
  • the double spiral pattern 320 includes one spiral pattern 321 which is a first unit pattern, the other spiral pattern 322 which is a first unit pattern, and one spiral pattern 321 and the other spiral pattern 322. Are connected at the central portion of the double spiral pattern 320.
  • the S-shaped pattern 323 does not include a linear extending portion, and is formed only of a curved portion.
  • the double spiral pattern 320 has redundant portions 324 and 325 for adjusting the length of the double spiral pattern 320 at the end of each spiral pattern 321 and the other spiral pattern 322.
  • the length adjustment redundant portions 324 and 325 are configured by bending and folding the end portions of one spiral pattern 321 and the other spiral pattern 322, respectively.
  • the length adjustment redundant portion 324 provided in one spiral pattern 321 and the length adjustment redundant portion 325 provided in the other spiral pattern 322 are mutually different in the radial direction of the double spiral pattern 320. It is located on the opposite side.
  • Each of the length adjustment redundant portions 324 and 325 does not include a linear extending portion, and is configured only by a curved portion.
  • the double spiral pattern 320 is connected to the conductive layer 20 forming the wiring in the length adjustment redundant portions 324 and 325.
  • the electric resistance value of the first magnetoresistance elements 320a and 320b can be adjusted.
  • the conductive layer 20 is extended to the region R functioning as a magnetoresistive element.
  • the electric resistance value of each of the first magnetoresistance elements 320a and 320b can be reduced by enlarging the region L functioning as the wiring.
  • the conductive layer 20 is shortened to the region L functioning as a wire, thereby reducing the region L functioning as a wire.
  • the electric resistance value of each of the first magnetoresistance elements 320a and 320b can be increased.
  • the adjustment of the electric resistance value of the first magnetoresistance elements 320a and 320b is performed by removing or additionally forming a part of the conductive layer 20. Therefore, the adjustment is preferably performed before the insulating layer 30 is provided.
  • the double spiral pattern 320 has a substantially point-symmetrical shape with respect to the center point of the double spiral pattern 320. That is, the double spiral pattern 320 has a shape that is approximately 180 ° rotationally symmetric with respect to the center point of the double spiral pattern 320.
  • the circumferential direction of the double spiral pattern 320 is different so that the directions of the S-shaped patterns 323 are different from each other. There is.
  • the circumferential direction of the double spiral pattern 320 is 90 so that the orientations of the S-shaped patterns 323 are different from each other by 90 °. ° is different.
  • the double spiral pattern 320 may be wound in the reverse direction, and in this case, the central portion of the double spiral pattern 320 is formed of an inverted S-shaped pattern including only a curved portion. That is, one spiral pattern 321 and the other spiral pattern 322 are connected by the reverse S-shaped pattern.
  • FIG. 24 is a plan view showing a pattern of the second magnetoresistance element of the magnetic sensor according to Embodiment 6 of the present invention.
  • FIG. 25 is a plan view showing a second unit pattern included in the pattern of the second magnetoresistance element of the magnetic sensor according to Embodiment 6 of the present invention.
  • FIG. 24 only one of three patterns 330 of the same shape which the second magnetoresistance elements 330a and 330b have is illustrated.
  • the second magnetoresistance elements 330a and 330b are located outside the outer peripheral edge of the first magnetoresistance elements 320a and 320b when viewed from the direction orthogonal to the insulating layer 30.
  • the second magnetoresistance elements 330a and 330b three patterns 330 of the same shape including eight second unit patterns 370 folded back having a plurality of curved portions are connected in series.
  • the second magnetoresistance element 330 a three patterns 330 of the same shape are connected to each other by the wiring 147.
  • the second magnetoresistance element 330 b three patterns 330 having the same shape are connected to each other by the wiring 151.
  • the pattern 330 is formed in a thinner pattern than the double spiral pattern 320. Thereby, in the second magnetoresistance elements 330a and 330b, necessary electric resistance values are secured.
  • the current consumption of the magnetic sensor 3 can be reduced as the electric resistance value of the second magnetoresistance elements 330a and 330b is higher.
  • the second unit pattern 370 includes 14 curved portions B 1 to B 14 and 15 linear extension portions L 1 to L 15 between the start end portion 370 a and the end portion 370 b. Have a fold. That is, the second unit pattern 370 has a bag-like shape with the start end 370a and the end end 370b as the mouth.
  • the second unit pattern 370 is bent at a right angle in each of the 14 curved portions B 1 to B 14 .
  • the second unit pattern 370 does not include a linear extension of 10 ⁇ m or more. That is, the length of each of the fifteen linear extensions L 1 to L 15 is shorter than 10 ⁇ m.
  • the pattern of the second magnetoresistance elements 330a and 330b is not limited to the above, and includes at least one second unit having a plurality of curved portions and folded without including a linear extending portion having a length of 10 ⁇ m or more. It should just contain the pattern.
  • the magnetoresistance effect of the second magnetoresistance elements 330a and 330b is suppressed, and the rate of change in resistance is significantly reduced.
  • the rate of change in resistance of the second magnetoresistance elements 330a and 330b is lower than the rate of change in resistance of the first magnetoresistance elements 320a and 320b.
  • the first magnetoresistance elements 320 a and 320 b have a double spiral pattern 320.
  • the double spiral pattern 320 is mainly configured by winding a substantially arc-shaped curved portion. Since the arc is an approximation when the number of polygon corners increases to infinity, the direction of the current flowing through the double spiral pattern 320 extends in substantially all directions (360 °) in the horizontal direction. There is. Therefore, the first magnetoresistance elements 320a and 320b can detect an external magnetic field over substantially all directions (360 °) in the horizontal direction.
  • the double spiral pattern 320 is formed of an S-shaped pattern 323 in which the central portion is formed of only the curved portion, and for the length adjustment of which the outer peripheral portion is formed of only the curved portion. It comprises the redundant parts 324 and 325. As described above, since each of the first magnetoresistance elements 320a and 320b does not include a linear extension, the anisotropy of magnetic field detection is reduced.
  • the circumferential direction of the double spiral pattern 320 is different such that the directions of the S-shaped patterns 323 of the first magnetoresistance elements 320a and 320b are different from each other. As a result, the isotropy of magnetic field detection is enhanced.
  • each of the second magnetoresistance elements 330a and 330b does not include a linear extending portion having a length of 10 ⁇ m or more, and each of the 14 curved portions B 1 to B 14 , And includes a second unit pattern 370 having a bag-like shape with the start end 370a and the end 370b as a mouth.
  • the direction of the current flowing through the second unit pattern 370 can be dispersed in the horizontal direction, and the anisotropy of the magnetoresistance effect of the second magnetoresistance elements 330a and 330b can be reduced.
  • the direction of the current flowing through the pattern 330 are dispersed in the horizontal direction, the second magneto resistive element 330a, the magnetoresistance effect of 330b Anisotropy can be reduced.
  • the circuit board can be manufactured by a simple manufacturing process. 300 can be manufactured.
  • the pattern 330 is formed thinner than the double spiral pattern 320, the magnetoresistance effect of the second magnetoresistance elements 330a and 330b is suppressed, and the rate of change in resistance of the second magnetoresistance elements 330a and 330b is extremely small. Become.
  • the detection sensitivity of the magnetic sensor 3 can be increased by increasing the potential difference generated between the midpoint 140 and the midpoint 141 when an external magnetic field is applied to the magnetic sensor 3. Further, since the electric resistance value of the second magnetoresistance elements 330a and 330b is high, a reduction in the potential difference generated between the midpoint 140 and the midpoint 141 when an external magnetic field of high magnetic field strength is applied to the magnetic sensor 3 Is relatively small, and the output characteristics of the magnetic sensor 3 can be stabilized.
  • first magnetic members 40 and two second magnetic members 50 are disposed on the insulating layer 30.
  • the thickness of each of the first magnetic member 40 and the second magnetic member 50 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more and 150 ⁇ m or less. The thicknesses may be different from each other, but in the case where the thicknesses are the same, the two first magnetic members 40 and the two second magnetic members 50 are processed in the same step. The two first magnetic members 40 and the two second magnetic members 50 can be easily formed.
  • the first magnetic member 40 has a circular outer shape when viewed in the direction orthogonal to the insulating layer 30, and is a region inside the outer peripheral edge of the first magnetoresistance elements 320a and 320b. It is located in In the present embodiment, the first magnetic member 40 is located concentrically with the outer peripheral edge of the first magnetoresistive elements 320 a and 320 b when viewed from the direction orthogonal to the insulating layer 30.
  • the first magnetic member 40 when viewed from the direction perpendicular to the insulating layer 30, the first magnetic member 40 is the first magnetoresistive element of the first magnetoresistive elements 320a and 320b and the second magnetoresistive elements 330a and 330b. It covers only the central part of 320a and 320b. Therefore, as viewed in the direction orthogonal to the insulating layer 30, the first magnetic member 40 is surrounded by the outer peripheral portions of the first magnetoresistance elements 320a and 320b.
  • the second magnetic member 50 covers only the second magnetoresistance elements 330a and 330b of the first magnetoresistance elements 320a and 320b and the second magnetoresistance elements 330a and 330b, as viewed from the direction orthogonal to the insulating layer 30. ing.
  • the second magnetoresistive elements 330 a and 330 b are each positioned 7 ⁇ m away from the center of the second magnetic member 50 from the outer peripheral edge of the second magnetic member 50 as viewed in the direction orthogonal to the insulating layer 30. It is preferable to be located in the area.
  • the second magnetic member 50 is made of a magnetic material having high magnetic permeability and high saturation magnetic flux density, such as electromagnetic steel, mild steel, silicon steel, permalloy, supermalloy, nickel alloy, iron alloy or ferrite. In addition, these magnetic materials preferably have low coercivity.
  • the magnetic sensor 3 suppresses the resistance change of the second magnetoresistance elements 330a and 330b due to the perpendicular magnetic field, and the perpendicular magnetic field of the first magnetoresistance elements 320a and 320b by the first magnetic member 40. Detection sensitivity can be increased.
  • the first magnetic body member 40 performs the first magnetic body member 40 while suppressing the resistance change of the second magnetoresistive elements 330 a and 330 b due to the horizontal magnetic field.
  • the detection sensitivity of the horizontal magnetic field of the magnetoresistive elements 320a and 320b can be enhanced.
  • the reason why the detection sensitivity of the horizontal magnetic field of the first magnetoresistance elements 320a and 320b can be enhanced by the first magnetic body member 40 is that the first magnetoresistance elements 320a and 320b are covered by the first magnetic body member 40.
  • the strength of the horizontal magnetic field applied to the central portion of the first magnetic resistance element 320a, 320b is longer than the central portions of the first magnetic resistance elements 320a, 320b, the ratio of the resistance value in the entire pattern is large. Since the horizontal magnetic field emitted from the first magnetic member 40 at a high magnetic field strength is applied to the outer peripheral portion of the first magnetic member 40, the first magnetic resistance members 320a and 320b The intensity of the horizontal magnetic field applied to the
  • the vertical magnetic field and the horizontal magnetic field can be detected with high sensitivity.
  • the magnetic sensor 3 according to the sixth embodiment of the present invention by including the plurality of first unit patterns in which the first magnetoresistance elements 320a and 320b are arranged concentrically, the isotropy of detection of the horizontal magnetic field is obtained. high.
  • the second magnetoresistance elements 330a and 330b are magnetically shielded by the second magnetic member 50 and hardly detect the vertical magnetic field and the horizontal magnetic field, the second magnetoresistance elements 330a and 330b are not necessarily detected.
  • the rate of change in resistance may not be smaller than the rate of change in resistance of the first magnetoresistance elements 320a and 320b.
  • the second conductor portion 70 and the second stress relieving portion 90 are provided between the second magnetic member 50 and the circuit board 300, and the second The conductor portion 70 includes a second base portion 71 and a second narrow portion 72, and the second narrow portion 72 of the second conductor portion 70 is in contact with the circuit board 300.
  • the second stress relieving portion 90 is disposed in the gap between the second base portion 71 and the insulating layer 30.
  • the second stress relieving portion 90 is a member made of a material different from that of the second conductor portion 70.
  • the second stress relieving portion 90 is at least one of a material having low adhesion, a material having a low elastic modulus, and a material having a low tensile strength as compared with the material constituting the second conductor portion 70. Is made of a material containing
  • the contact area between the second conductor portion 70 and the circuit board 300 can be reduced, and the stress acting on the second magnetoresistance elements 330 a and 330 b from the second magnetic member 50 through the second conductor portion 70. Can be reduced.
  • the second stress relieving portion 90 is provided immediately below the outer peripheral portion of the second base portion 71, stress due to strain generated in the outer peripheral portion of the second magnetic member 50 acts on the circuit board 300. (2) It can be inhibited by the stress relaxation portion 90.
  • the second stress relieving portion 90 is formed of a material having a lower adhesion than the material forming the second conductor portion 70, the outer peripheral portion of the second magnetic member 50
  • the second stress relieving portion 90 peels off from the member adjacent to the second stress relieving portion 90. Thereby, it is possible to suppress that the stress due to the strain generated in the outer peripheral portion of the second magnetic member 50 is transmitted to the member adjacent to the second stress relieving portion 90 through the second stress relieving portion 90.
  • the second stress relieving portion 90 When the second stress relieving portion 90 is formed of a material having a lower elastic modulus than the material forming the second conductor portion 70, stress due to strain generated in the outer peripheral portion of the second magnetic member 50 When the second stress relieving portion 90 acts, the second stress relieving portion 90 elastically deforms to absorb stress. Thereby, it is possible to suppress that the stress due to the strain generated in the outer peripheral portion of the second magnetic member 50 is transmitted to the member adjacent to the second stress relieving portion 90 through the second stress relieving portion 90.
  • the second stress relieving portion 90 is formed of a material having a lower tensile strength than the material forming the second conductor portion 70, the distortion caused by the outer peripheral portion of the second magnetic member 50 When stress acts on the second stress relieving portion 90, a crack is generated in the second stress relieving portion 90, and a portion between the second stress relieving portion 90 and a member adjacent to the second stress relieving portion 90 is divided. Thereby, it is possible to suppress that the stress due to the strain generated in the outer peripheral portion of the second magnetic member 50 is transmitted to the member adjacent to the second stress relieving portion 90 through the second stress relieving portion 90.
  • the stress due to the strain generated in the outer peripheral portion of the second magnetic member 50 acts on the second magnetoresistance elements 130 a and 130 b from the second magnetic member 50 through the second conductor portion 70 as a second stress. Since it can be inhibited by the relaxation unit 90, it is possible to suppress the decrease in the output accuracy of the magnetic sensor 3. In addition, generation of a crack in the insulating layer 30 due to the stress acting on the insulating layer 30 from the second magnetic member 50 through the second conductor portion 70 can be suppressed. Thereby, it can suppress that the reliability of the magnetic sensor 3 falls.
  • the gap between the second base 71 and the insulating layer 30 is provided along the entire periphery of the outer peripheral portion of the second conductor portion 70, the outer periphery of the second magnetic member 50 is provided. It is possible to effectively suppress the stress due to the strain generated in the portion from acting on the circuit board 300 through the second conductor portion 70.
  • the isotropy of detection of the horizontal magnetic field is high, and a weak vertical magnetic field can be detected, and above the magnetoresistive element It is possible to suppress the decrease in output accuracy due to the stress acting on the magnetoresistive element from the provided structure.
  • the configuration of the first conductor portion 60a according to the second embodiment may be applied to the second conductor portion 70.
  • the second narrow portion of the second conductor portion is located at the end portion of the second conductor portion on the second magnetic member 50 side in the direction orthogonal to the insulating layer 30.
  • the second stress relieving portion 90 is provided in a region surrounded by the outer shape of the second narrow portion 72 of the second conductor portion and the outer shape of the second base portion 71 when viewed from the direction orthogonal to the insulating layer 30. .
  • the second stress relieving portion 90 is located between the second base 71 and the second magnetic member 50.
  • the second stress relieving portion 90 is located immediately below the outer peripheral portion of the second magnetic member 50.
  • the configuration of the first conductor portion 60 b according to the third embodiment may be applied to the second conductor portion 70.
  • the second base portion 71 of the second conductor portion is an end portion of the second conductor portion on the insulating layer 30 side and an end portion of the second magnetic member 50 on the direction orthogonal to the insulating layer 30. It is located in The second narrow portion 72 of the second conductor portion is located between the second bases 71 of the second conductor portion in the direction orthogonal to the insulating layer 30.
  • the second stress relieving portion 90 is provided in a region surrounded by the outer shape of the second narrow portion 72 of the second conductor portion and the outer shape of the second base portion 71 when viewed from the direction orthogonal to the insulating layer 30. .
  • the second stress relieving portion 90 is positioned between the second bases 71.
  • the second stress relieving portion 90 is located immediately below the outer peripheral portion of the second base 71 located at the end on the second magnetic member 50 side.
  • the configuration of the first magnetic member 40 a according to the fourth embodiment may be applied to the second magnetic member 50.
  • the magnetic sensor 3 does not include the second conductor portion 70.
  • the second magnetic member includes a second base, and a second narrow portion whose outer surface area viewed from the direction orthogonal to the insulating layer 30 is smaller than the outer surface area of the second base.
  • the second base and the second narrow portion are provided side by side in the direction orthogonal to the insulating layer 30.
  • the second narrow portion of the second magnetic member is located at the end of the second magnetic member on the insulating layer 30 side in the direction perpendicular to the insulating layer 30.
  • the second stress relieving portion 90 is provided in a region surrounded by the outer shape of the second narrow portion of the second magnetic member and the outer shape of the second base when viewed in the direction orthogonal to the insulating layer 30.
  • the second stress relieving portion 90 is located between the second base of the second magnetic member and the insulating layer 30.
  • the second stress relieving portion 90 is located immediately below the outer peripheral portion of the second base of the second magnetic member.
  • the second stress relieving portion 90 is made of a material different from that of the second magnetic member.
  • the magnetic sensor according to the seventh embodiment of the present invention is different from the magnetic sensor 3 according to the sixth embodiment of the present invention mainly in the pattern of each of the first and second magnetoresistance elements. The description of the same configuration as that of the magnetic sensor 3 according to the sixth embodiment will not be repeated.
  • FIG. 26 is a perspective view showing the configuration of a magnetic sensor according to Embodiment 7 of the present invention.
  • FIG. 27 is a plan view of the magnetic sensor of FIG. 26 as viewed in the direction of arrow XXVII.
  • the magnetic sensor 4 according to Embodiment 7 of the present invention includes a circuit board 400, two first magnetic members 40 and two first magnetic members 40 provided above the circuit board 400. And 2 a magnetic member 50.
  • the two first conductor portions 60, the two second conductor portions 70, and a part of the corresponding first conductor portion 60 are provided on the circuit board 400.
  • a second stress relieving portion 90 is provided along a portion of the first stress relieving portion 80 and the corresponding second conductor portion 70.
  • the insulating layer 30 is provided on the surface layer of the circuit board 400, and each of the two first conductor parts 60, the two second conductor parts 70, the first stress relieving part 80, and the second stress relieving part 90. Are located on the insulating layer 30.
  • the first magnetic member 40 covers the corresponding first conductor portion 60 as viewed in the Z-axis direction which is a direction orthogonal to the insulating layer 30.
  • the second magnetic member 50 covers the corresponding second conductor portion 70 as viewed in the Z-axis direction which is a direction orthogonal to the insulating layer 30.
  • the circuit board 400 of the magnetic sensor 4 according to the seventh embodiment of the present invention is provided with four magnetoresistive elements which are electrically connected to each other by wires to form a Wheatstone bridge type bridge circuit.
  • the four magnetoresistance elements consist of two sets of first magnetoresistance elements and second magnetoresistance elements.
  • the magnetic sensor 4 includes a first magnetoresistance element 420a and a second magnetoresistance element 430a, and a first magnetoresistance element 420b and a second magnetoresistance element 430b.
  • the first magnetoresistance elements 420 a and 420 b have a double spiral pattern as viewed from the direction orthogonal to the insulating layer 30.
  • the two double spiral patterns are arranged concentrically so as to be arranged in the radial direction of the imaginary circle along the circumference of the imaginary circle when viewed in the direction orthogonal to the insulating layer 30, and connected to each other. Including patterns.
  • the double spiral pattern is a double spiral of one spiral pattern which is a first unit pattern, the other spiral pattern which is a first unit pattern, and one spiral pattern and the other spiral pattern. It includes an S-shaped pattern connected at the center of the pattern.
  • the S-shaped pattern does not include a linear extension, and is formed only of a curved portion.
  • the first magnetoresistance element 420a and the first magnetoresistance element 420b have different directions in the circumferential direction of the double spiral pattern so that the directions of the S-shaped patterns are different from each other.
  • the first magnetoresistive element 420a and the first magnetoresistive element 420b have a 90 ° difference in the circumferential direction of the double spiral pattern such that the S-shaped pattern has a 90 ° difference in direction. ing.
  • the double spiral pattern may be wound in the opposite direction, and in this case, the central portion of the double spiral pattern is formed of an inverted S-shaped pattern including only a curved portion. That is, one spiral pattern and the other spiral pattern are connected by the reverse S-shaped pattern.
  • the second magnetoresistance elements 430a and 430b are located outside the outer peripheral edge of the first magnetoresistance elements 420a and 420b when viewed from the direction orthogonal to the insulating layer 30.
  • the second magnetoresistance elements 430 a and 430 b have a meandering pattern as viewed from the direction orthogonal to the insulating layer 30.
  • the meandering pattern of the second magnetoresistance elements 430a and 430b is formed to have the same thickness as the double spiral pattern of the first magnetoresistance elements 420a and 420b. However, the thickness of the meandering pattern of the second magnetoresistance elements 430a and 430b may be thinner than the thickness of the double spiral pattern of the first magnetoresistance elements 420a and 420b.
  • the first magnetic member 40 has a circular outer shape when viewed in the direction orthogonal to the insulating layer 30, and is a region inside the outer peripheral edge of the first magnetoresistance elements 420a and 420b. It is located in In the present embodiment, the first magnetic member 40 is concentric with the outer peripheral edge of the first magnetoresistance elements 420 a and 420 b when viewed from the direction orthogonal to the insulating layer 30.
  • the first magnetic member 40 when viewed from the direction perpendicular to the insulating layer 30, the first magnetic member 40 is the first magnetoresistive element of the first magnetoresistive elements 420a and 420b and the second magnetoresistive elements 430a and 430b. It covers only the central part of 420a and 420b. Therefore, when viewed in the direction orthogonal to the insulating layer 30, the first magnetic member 40 is surrounded by the outer peripheral portions of the first magnetoresistance elements 420a and 420b.
  • the second magnetic member 50 covers only the second magnetoresistance elements 430a and 430b of the first magnetoresistance elements 420a and 420b and the second magnetoresistance elements 430a and 430b, as viewed from the direction orthogonal to the insulating layer 30. ing.
  • the magnetic sensor 4 according to the seventh embodiment of the present invention suppresses the resistance change of the second magnetoresistance elements 430a and 430b due to the perpendicular magnetic field, and the perpendicular magnetic field of the first magnetoresistance elements 420a and 420b by the first magnetic member 40. Detection sensitivity can be increased.
  • the first magnetic body member 40 performs the first magnetic body member 40 while suppressing the resistance change of the second magnetoresistive elements 430 a and 430 b due to the horizontal magnetic field.
  • the detection sensitivity of the horizontal magnetic field of the magnetoresistive elements 420a and 420b can be enhanced.
  • the vertical magnetic field and the horizontal magnetic field can be detected with high sensitivity.
  • the magnetic sensor 4 according to Embodiment 7 of the present invention includes a plurality of first unit patterns in which the first magnetoresistance elements 420a and 420b are arranged concentrically, so that the isotropy of detection of the horizontal magnetic field is obtained. high.
  • the second magnetoresistance elements 430a and 430b are magnetically shielded by the second magnetic member 50 and hardly detect the vertical magnetic field and the horizontal magnetic field, the second magnetoresistance elements 430a and 430b are not necessarily detected.
  • the rate of change in resistance does not have to be smaller than the rate of change in resistance of the first magnetoresistance elements 420a and 420b.
  • the isotropy of detection of the horizontal magnetic field is high, and a weak vertical magnetic field can be detected, and above the magnetoresistive element It is possible to suppress the decrease in output accuracy due to the stress acting on the magnetoresistive element from the provided structure.
  • Embodiment 8 a magnetic sensor according to Embodiment 8 of the present invention will be described with reference to the drawings.
  • the patterns of the first and second magnetic resistance elements and the shape of the first magnetic member mainly refer to the magnetic sensor according to the first embodiment of the present invention.
  • the configuration is the same as that of the magnetic sensor 1 according to the first embodiment of the present invention, and therefore the description will not be repeated.
  • FIG. 28 is a plan view showing the configuration of the magnetic sensor according to Embodiment 8 of the present invention.
  • FIG. 29 is a plan view showing the pattern of the first magnetoresistance element of the magnetic sensor according to Embodiment 8 of the present invention.
  • FIG. 30 is a plan view showing the pattern of the second magnetoresistance element of the magnetic sensor according to Embodiment 8 of the present invention.
  • the magnetic sensor 5 according to Embodiment 8 of the present invention includes a circuit board 500 and two first magnetic members 45 provided on the circuit board 500.
  • the first stress relieving portion is provided on the circuit board 500 along the two first conductor portions and a part of the corresponding first conductor portion 60. It is done.
  • the first magnetic member 45 covers the corresponding first conductive portion as viewed in the direction orthogonal to the insulating layer 30.
  • the pattern of 520b when viewed from a direction perpendicular to the insulating layer 30, the imaginary circle C 5 includes four first unit patterns connected to each other are arranged side by side in the radial direction of the virtual circle C 5 along the circumference.
  • Each of the four first unit pattern is located along a virtual C-shape C 51 which portion positioned wiring 146,148,150,152 in the circumference of the virtual circle C 5 is opened.
  • Each of the four first unit pattern is a C-shaped pattern 521 which is arranged concentrically so as to be arranged in a radial direction of the virtual circle C 5 along the virtual C-shape C 51.
  • the four C-shaped patterns 521 are alternately connected to each other at one end and the other end sequentially from the inside.
  • C-shaped pattern 521 which one ends are connected are connected to each other by linear pattern 522 extending in the radial direction of the virtual circle C 5.
  • C-shaped pattern 521 and the other end are connected to each other are connected to each other by a linear pattern 523 extending in the radial direction of the virtual circle C 5.
  • the pattern 520 of the first magnetoresistance elements 520 a and 520 b includes two linear patterns 522 and one linear pattern 523. Thus, four C-shaped patterns 521 are connected in series.
  • the outer peripheral edge of the outermost C-shaped pattern 521 is the outer peripheral edge of the first magnetoresistance elements 520a and 520b.
  • the inner peripheral edge of the C-shaped pattern 521 located at the innermost side becomes the inner peripheral edge of the first magnetoresistance elements 520a and 520b.
  • the first magnetoresistance element 520 a and the first magnetoresistance element 520 b have different circumferential directions such that the virtual C-shape C 51 has a different orientation. That is, the first magnetoresistance element 520a and the first magnetoresistance element 520b have different circumferential directions of the pattern 520 such that the C-shaped patterns 521 have different directions.
  • the first magnetoresistance element 520 a and the first magnetoresistance element 520 b have the circumferential direction of the pattern 520 different by 90 ° such that the C-shaped patterns 521 are different from each other by 90 °. .
  • the second magnetoresistance element 530a, 530b when viewed from a direction perpendicular to the insulating layer 30, situated in the center of the virtual circle C 5, first magnetoresistive element 520a, 520b It is surrounded by That is, the second magnetoresistive elements 530 a and 530 b are located inside the inner peripheral edge of the first magnetoresistive elements 520 a and 520 b when viewed in the direction orthogonal to the insulating layer 30.
  • Second magnetoresistance element 530a is connected to the wiring 146, 148 led from the center of the virtual circle C 5 to the outside of the virtual circle C 5.
  • Second magnetoresistance element 530b is connected to the wiring 150, 152 led from the center of the virtual circle C 5 to the outside of the virtual circle C 5.
  • the second magnetoresistance elements 530 a and 530 b have a double spiral pattern 530 as viewed from the direction orthogonal to the insulating layer 30.
  • the double spiral pattern 530 has one spiral pattern 531 which is one of the two second unit patterns, the other spiral pattern 532 which is the other one of the two second unit patterns, And an inverted S-shaped pattern 533 connecting one spiral pattern 531 and the other spiral pattern 532 at the center of the double spiral pattern 530.
  • the reverse S-shaped pattern 533 is composed of a plurality of linear extension portions whose length is shorter than 10 ⁇ m.
  • the double spiral pattern 530 is formed to have the same thickness as the pattern 520. Therefore, each of the one spiral pattern 531 and the other spiral pattern 532 has the same thickness as that of each of the four C-shaped patterns 521. However, the thickness of the double spiral pattern 530 may be thinner than the thickness of the pattern 520.
  • the double spiral pattern 530 has a shape substantially point-symmetrical with respect to the center of the virtual circle C 5. That is, the double spiral pattern 530 has a substantially 180 ° rotationally symmetrical shape with respect to the center of the virtual circle C 5.
  • the second magnetoresistance element 530 a and the second magnetoresistance element 530 b have different circumferential directions of the double spiral pattern 530 such that the directions of the inverted S-shaped patterns 533 are different from each other. ing.
  • the second magnetoresistive element 530 a and the second magnetoresistive element 530 b have a circumferential direction of the double spiral pattern 530 such that the directions of the inverted S-shaped patterns 533 differ from each other by 90 °. 90 ° different.
  • the first magnetoresistance elements 520 a and 520 b have a C-shaped pattern 521.
  • the C-shaped pattern 521 is constituted by approximately seven sides out of eight sides constituting an approximately regular octagon. As described above, since the first magnetoresistance elements 520a and 520b are constituted by most of the sides constituting the polygon, the anisotropy of the magnetic field detection is reduced.
  • the circumferential direction of the pattern 520 is different so that the directions of the C-shaped patterns 521 of the first magnetoresistance element 520a and the first magnetoresistance element 520b are different from each other. Because of this, the isotropy of magnetic field detection is high.
  • the second magnetoresistance elements 530 a and 530 b have a double spiral pattern 530.
  • the double spiral pattern 530 is mainly configured by winding the sides forming a substantially regular octagon.
  • the circumferential direction of the double spiral pattern 530 is such that the directions of the reverse S-shaped patterns 533 of the second magnetoresistance element 530a and the second magnetoresistance element 530b are different from each other. Is different, the isotropy of the magnetoresistance effect is high.
  • the magnetic sensor 5 since the second magnetoresistance elements 530a and 530b are disposed inside the first magnetoresistance elements 520a and 520b, the magnetic sensor 5 can be miniaturized. Further, in the magnetic sensor 5 as well, it is not necessary to three-dimensionally extend the wiring connecting the first magnetoresistance elements 520a and 520b and the second magnetoresistance elements 530a and 530b, so the circuit board 500 is manufactured by a simple manufacturing process. It is possible.
  • the first magnetic member 45 has a regular octagonal outer shape when viewed in the direction orthogonal to the insulating layer 30, and is inside the outer peripheral edge of the first magnetoresistance elements 520a and 520b. Located in the area of Here, the region inside the outer peripheral edge of the first magnetoresistance elements 520a and 520b is connected with the outer peripheral edge of the first magnetoresistance elements 520a and 520b by a virtual straight line when viewed from the direction orthogonal to the insulating layer 30.
  • the first magnetic member 45 is located in a region inside the inner peripheral edge of the first magnetoresistive elements 520 a and 520 b when viewed in the direction orthogonal to the insulating layer 30.
  • the first magnetic member 45 may be located in a region including the region on the inner peripheral edge of the first magnetoresistive elements 520 a and 520 b and the region inside the inner peripheral edge as viewed from the direction orthogonal to the insulating layer 30.
  • the inner peripheral edge of the first magnetoresistance elements 520a and 520b is connected by a virtual straight line as viewed from the direction orthogonal to the insulating layer 30 with the region inside the inner peripheral edges of the first magnetoresistance elements 520a and 520b.
  • the first magnetic member 45 is concentric with the outer peripheral edge of the first magnetoresistance elements 520 a and 520 b when viewed from the direction orthogonal to the insulating layer 30.
  • the first magnetic member 45 is a second magnetoresistive element of the first magnetoresistive elements 520 a and 520 b and the second magnetoresistive elements 530 a and 530 b when viewed from the direction orthogonal to the insulating layer 30. It covers only 530a and 530b. Therefore, when viewed from the direction orthogonal to the insulating layer 30, a half or more of the entire periphery of the first magnetic member 40 is surrounded by the first magnetoresistance elements 120a and 120b.
  • the vertical magnetic field and the horizontal magnetic field can be detected with high sensitivity.
  • the isotropy of detection of the horizontal magnetic field is obtained by including the plurality of first unit patterns in which the first magnetoresistance elements 520a and 520b are arranged in a polygonal shape. high.
  • each of the first magnetoresistance elements 520a and 520b, the second magnetoresistance elements 530a and 530b, and the first magnetic member 45 has a shape along a concentric regular octagon.
  • these shapes are not limited to the above, and may be shapes along concentric polygons. As the number of corners of this polygon is increased, the isotropy of detection of the horizontal magnetic field of the first magnetoresistance elements 520a and 520b can be made higher.
  • the second magnetoresistive elements 530a and 530b are magnetically shielded by the first magnetic member 45 and hardly detect the vertical magnetic field and the horizontal magnetic field, the second magnetoresistive elements 530a and 530b are not necessarily detected.
  • the rate of change in resistance may not be smaller than the rate of change in resistance of the first magnetoresistance elements 520a and 520b.
  • the isotropy of detection of a horizontal magnetic field is high using a magnetoresistance element, and a weak vertical magnetic field can also be detected, and above the magnetoresistance element. It is possible to suppress the decrease in output accuracy due to the stress acting on the magnetoresistive element from the provided structure.
  • Embodiment 9 a magnetic sensor according to Embodiment 9 of the present invention will be described with reference to the drawings.
  • the magnetic sensor according to the ninth embodiment of the present invention is different from the magnetic sensor 1c according to the fourth embodiment of the present invention mainly in the pattern of each of the first and second magnetoresistance elements. The description of the same configuration as that of the magnetic sensor 1c according to the fourth embodiment will not be repeated.
  • FIG. 31 is a plan view of a magnetic sensor according to Embodiment 9 of the present invention.
  • FIG. 32 is a plan view showing the patterns of the first magnetoresistive element and the second magnetoresistive element of the magnetic sensor according to Embodiment 9 of the present invention.
  • the outer edge and the inner edge of the first magnetic member are indicated by dotted lines.
  • the magnetic sensor 6 according to Embodiment 9 of the present invention includes a circuit board 600 and two first magnetic members 40 a provided above the circuit board 600.
  • the first stress relieving portion is disposed in the entire gap.
  • the pattern 620 of the first magnetoresistive elements 620a and 620b of the magnetic sensor 6 according to Embodiment 9 of the present invention has a virtual circle C 6 when viewed from the direction orthogonal to the insulating layer 30.
  • the first unit pattern which is a C-shaped pattern 621 disposed along the virtual C-shape C 61 which is open at the portions where the wirings 146, 148, 150, 152 are located on the circumference of .
  • the first magnetic resistance elements 620a and 620b and the first magnetic member 40a are secured to such an extent that they do not overlap.
  • the first magnetoresistance element 620a and the first magnetoresistance element 620b have different circumferential directions such that the virtual C-shape C 61 has a different orientation. That is, the first magnetoresistance element 620a and the first magnetoresistance element 620b have different circumferential directions of the pattern 620 such that the C-shaped patterns 621 have different directions.
  • the first magnetoresistive element 620a and the first magnetoresistive element 620b have the circumferential direction of the pattern 620 different by 135 ° so that the directions of the C-shaped patterns 621 are different from each other by 135 °. .
  • the second magnetoresistance element 630a is seen from a direction perpendicular to the insulating layer 30, situated in the center of the virtual circle C 6, is surrounded by a first magnetoresistive element 620a, the The 2 magnetoresistive element 630 b is located on the center side of the imaginary circle C 6 when viewed in the direction orthogonal to the insulating layer 30, and is surrounded by the first magnetoresistive element 620 b. That is, the second magnetoresistive element 630 a is located inside the inner peripheral edge of the first magnetoresistive element 620 a when viewed in the direction orthogonal to the insulating layer 30, and the second magnetoresistive element 630 b is located on the insulating layer 30. It is located inside the inner peripheral edge of the 1st magnetoresistive element 620b seeing from the orthogonal direction.
  • Second magnetoresistance element 630a, 630b is a second unit pattern arranged symmetrically so as to align in the radial direction of the virtual circle C 6 along the circumference of the virtual circle C 6 2 pieces of arc-shaped pattern 631 And a pattern 630 including The two arc-shaped patterns 631 are connected to each other at one end by a semi-arc-shaped pattern 632 and the other ends are connected to each other by a semi-arc-shaped pattern 633.
  • the arc-shaped pattern 631 located on the outermost side from the center of the imaginary circle C 6 is connected to the wires 146 and 148 through the linear extending portion 634 whose length is shorter than 10 ⁇ m. It is done.
  • the arc-shaped pattern 631 located on the outermost side from the center of the imaginary circle C 6 is connected to the wires 150 and 152 via the linear extending portion 634 whose length is shorter than 10 ⁇ m. It is done.
  • the distance between the inner peripheral edge of the arc-shaped pattern 631 positioned on the center side of the imaginary circle C 6 and the outer peripheral edge of the first narrow portion 42 of the first magnetic member 40 a is the first Even when the formation position varies when forming the magnetic member 40a by plating, the second magnetoresistive elements 630a, 630b and the first narrow portion 42 of the first magnetic member 40a are secured to such an extent that they do not overlap. There is.
  • the pattern 630 of the second magnetoresistance elements 630a and 630b is formed to have the same thickness as the pattern 620 of the first magnetoresistance elements 620a and 620b. However, the thickness of the pattern 630 of the second magnetoresistance elements 630a and 630b may be thinner than the thickness of the pattern 620 of the first magnetoresistance elements 620a and 620b.
  • the second magnetoresistance elements 630 a and 630 b have arc-shaped patterns 631.
  • the arc-shaped pattern 631 is configured by an arc.
  • Two arc-shaped patterns 631 adjacent to each other are connected to each other by semi-arc-shaped patterns 632, 633. Since the second magnetoresistive elements 630 a and 630 b include only the linear extending portion 634 whose length is shorter than 10 ⁇ m, the anisotropy of the magnetic field detection is reduced.
  • the second magnetoresistance element 630 a and the second magnetoresistance element 630 b are different in the circumferential direction of the pattern 630.
  • the direction of the circumferential direction of the pattern 630 differs by 135 ° between the second magnetoresistance element 630 a and the second magnetoresistance element 630 b.
  • the magnetic sensor 6 since the second magnetoresistance elements 630a and 630b are disposed inside the first magnetoresistance elements 620a and 620b, the magnetic sensor 6 can be miniaturized. Further, also in the magnetic sensor 6, since it is not necessary to three-dimensionally extend the wiring connecting the first magnetoresistance elements 620a and 620b and the second magnetoresistance elements 630a and 630b, the circuit board 600 is manufactured by a simple manufacturing process. It is possible.
  • the first magnetic member 40 when viewed from the direction perpendicular to the insulating layer 30, the first magnetic member 40 is the second magnetic resistance of the first magnetic resistance elements 620a and 620b and the second magnetic resistance elements 630a and 630b. It covers only the elements 630a and 630b.
  • the vertical magnetic field and the horizontal magnetic field can be detected with high sensitivity.
  • the magnetic sensor 6 according to Embodiment 9 of the present invention includes the first unit pattern in which the first magnetoresistance elements 620a and 620b are arranged along the circumference, so that the isotropy of detection of the horizontal magnetic field is obtained. high.
  • the second magnetoresistive elements 630a and 630b are magnetically shielded by the first magnetic member 40a and hardly detect the vertical magnetic field and the horizontal magnetic field, the second magnetoresistive elements 630a and 630b are not necessarily detected.
  • the rate of change in resistance does not have to be smaller than the rate of change in resistance of the first magnetoresistance elements 620a and 620b.
  • the isotropic property of detection of the horizontal magnetic field is high, and a weak vertical magnetic field can be detected, and above the magnetoresistive element. It is possible to suppress the decrease in output accuracy due to the stress acting on the magnetoresistive element from the provided structure.
  • the distance between the inner peripheral edge of the first magnetoresistance elements 620a and 620b and the outer peripheral edge of the first base 41 of the first magnetic member 40a is plating the first magnetic member 40a. Even if the formation positions vary in forming the first magnetic material member 40a, the first magnetic material member 40a and the first magnetic material member 40a are secured to such an extent that they do not overlap. Stress can be suppressed from acting on the first magnetoresistance elements 620a and 620b through the portion.
  • the distance between the inner and outer peripheral edge of the first narrow portion 42 of the first magnetic member 40a of the arc-shaped pattern 631 is positioned on the center side of the imaginary circle C 6 is
  • the second magnetoresistive elements 630a and 630b and the first narrow portion 42 of the first magnetic member 40a do not overlap even when the formation positions vary. Since it is ensured, it can suppress that stress acts on the 2nd magnetoresistive element 630a, 630b from the 1st narrow part 42 of the 1st magnetic body member 40a.
  • Embodiment 10 a magnetic sensor according to Embodiment 10 of the present invention will be described with reference to the drawings.
  • the magnetic sensor according to the tenth embodiment of the present invention is different from the magnetic sensor 6 according to the ninth embodiment of the present invention mainly in the pattern of the first magnetoresistive element and the shape of the first magnetic member. The description of the same configuration as that of the magnetic sensor 6 according to the ninth embodiment will not be repeated.
  • FIG. 33 is a plan view of a magnetic sensor according to Embodiment 10 of the present invention.
  • FIG. 34 is a plan view showing the patterns of the first magnetoresistive element and the second magnetoresistive element of the magnetic sensor according to Embodiment 10 of the present invention.
  • the outer edge and the inner edge of the first magnetic member are indicated by dotted lines.
  • the magnetic sensor 7 according to Embodiment 10 of the present invention includes a circuit board 700 and two first magnetic members 40 b provided above the circuit board 700.
  • the first magnetic member 40b includes a first base 41b, and a first narrow portion 42 whose outer area as viewed in the direction orthogonal to the insulating layer 30 is smaller than the outer area of the first base 41b.
  • the first base 41b has an octagonal outer shape.
  • the gap between the first base 41 b of the first magnetic member 40 b and the circuit board 700 along the entire circumference of the outer peripheral portion of the first magnetic member 40 b.
  • the first stress relieving portion is disposed in the entire gap.
  • the pattern 720 of the first magnetoresistance elements 720a and 720b of the magnetic sensor 7 according to Embodiment 10 of the present invention has a virtual circle C 6 when viewed from the direction orthogonal to the insulating layer 30.
  • the first unit pattern which is a C-shaped pattern 721 disposed along the virtual C-shape C 61 opened at the portions where the wires 146, 148, 150, 152 are positioned on the circumference of .
  • the first magnetic resistance elements 720a and 720b and the first magnetic member 40b are secured to such an extent that they do not overlap.
  • the first magnetoresistance element 720a and the first magnetoresistance element 720b have different circumferential directions such that the virtual C-shape C 61 has a different orientation. That is, the first magnetoresistance element 720a and the first magnetoresistance element 720b have different circumferential directions of the pattern 720 such that the C-shaped patterns 721 have different directions.
  • the first magnetoresistive element 720a and the first magnetoresistive element 720b have the circumferential direction of the pattern 720 different by 135 ° so that the directions of the C-shaped patterns 721 are different from each other by 135 °. .
  • the pattern 630 of the second magnetoresistance elements 630a and 630b is formed to have the same thickness as the pattern 720 of the first magnetoresistance elements 720a and 720b. However, the thickness of the pattern 630 of the second magnetoresistance elements 630a and 630b may be thinner than the thickness of the pattern 720 of the first magnetoresistance elements 720a and 720b.
  • the magnetic sensor 7 since the second magnetoresistance elements 630a and 630b are disposed inside the first magnetoresistance elements 720a and 720b, the magnetic sensor 7 can be miniaturized. Further, in the magnetic sensor 7 as well, there is no need to three-dimensionally extend the wiring connecting the first magnetoresistance elements 720a and 720b and the second magnetoresistance elements 630a and 630b, so the circuit board 700 is manufactured by a simple manufacturing process. It is possible.
  • the first magnetic member 40b when viewed from the direction perpendicular to the insulating layer 30, the first magnetic member 40b is the second of the first magnetoresistance elements 720a and 720b and the second magnetoresistance elements 630a and 630b. It covers only the elements 630a and 630b.
  • the vertical magnetic field and the horizontal magnetic field can be detected with high sensitivity.
  • the magnetic sensor 7 according to Embodiment 10 of the present invention has the isotropy of detection of the horizontal magnetic field by including the first unit pattern in which the first magnetoresistance elements 720a and 720b are arranged along the circumference. high.
  • the second magnetoresistive elements 630a and 630b are magnetically shielded by the first magnetic member 40b and hardly detect the vertical magnetic field and the horizontal magnetic field, the second magnetoresistive elements 630a and 630b are not necessarily detected.
  • the rate of change in resistance does not have to be smaller than the rate of change in resistance of the first magnetoresistance elements 720a and 720b.
  • the isotropic property of detection of the horizontal magnetic field is high, and a weak vertical magnetic field can be detected, and above the magnetoresistive element. It is possible to suppress the decrease in output accuracy due to the stress acting on the magnetoresistive element from the provided structure.
  • the space between the inner peripheral edge of the first magnetoresistance elements 720a and 720b and the outer peripheral edge of the first base portion 41b of the first magnetic member 40b is plated with the first magnetic member 40b. Even if the formation positions vary in forming the first magnetic material member 40b, the first magnetic material members 40b and the first magnetic material member 40b are secured to such an extent that they do not overlap. It is possible to suppress the stress from acting on the first magnetoresistance elements 720a and 720b through the part.
  • Embodiment 11 a magnetic sensor according to Embodiment 11 of the present invention will be described with reference to the drawings.
  • the magnetic sensor according to the eleventh embodiment of the present invention is different from the magnetic sensor 6 according to the ninth embodiment of the present invention mainly in the pattern of the second magnetoresistive element and the shape of the first magnetic member. The description of the same configuration as that of the magnetic sensor 6 according to the ninth embodiment will not be repeated.
  • FIG. 35 is a plan view of a magnetic sensor according to Embodiment 11 of the present invention.
  • FIG. 36 is a plan view showing patterns of first and second magnetoresistance elements of a magnetic sensor according to Embodiment 11 of the present invention.
  • the outer edge and the inner edge of the first magnetic member are indicated by dotted lines.
  • the magnetic sensor 8 includes a circuit board 800 and two first magnetic members 40 c provided above the circuit board 800.
  • the first magnetic member 40 c includes a first base 41 and a first narrow portion 42 c whose outer area as viewed in the direction orthogonal to the insulating layer 30 is smaller than the outer area of the first base 41.
  • each of the first base 41 and the first narrow portion 42c has a circular outer shape.
  • the center of the first narrow portion 42 c is eccentric to the center of the first base 41 when viewed in the direction perpendicular to the insulating layer 30.
  • the gap between the first base 41 of the first magnetic member 40c and the circuit board 800 is provided over the entire circumference of the outer peripheral portion of the first magnetic member 40c.
  • the first stress relieving portion is disposed in the entire gap.
  • the second magnetoresistance element 830a is seen from a direction perpendicular to the insulating layer 30, situated in the center of the virtual circle C 6, is surrounded by a first magnetoresistive element 620a, the The 2 magnetoresistive element 830 b is located on the center side of the imaginary circle C 6 when viewed in the direction orthogonal to the insulating layer 30 and is surrounded by the first magnetoresistive element 620 b. That is, the second magnetoresistive element 830 a is located inside the inner peripheral edge of the first magnetoresistive element 620 a when viewed in the direction orthogonal to the insulating layer 30, and the second magnetoresistive element 830 b is located on the insulating layer 30. It is located inside the inner peripheral edge of the 1st magnetoresistive element 620b seeing from the orthogonal direction.
  • Second magnetoresistance element 830a, 830b is a second unit pattern arranged symmetrically so as to align in the radial direction of the virtual circle C 6 along the circumference of the virtual circle C 6 2 pieces of arc-shaped pattern 831 And a pattern 830 including The two arc-shaped patterns 831 are connected to each other at one end by a semi-arc-shaped pattern 832, and the other ends are connected to each other by a semi-arc-shaped pattern 833.
  • an arc-shaped pattern 831 which is located outermost from the center of the virtual circle C 6 is via a shorter 10 ⁇ m linear extending portion 834 length, connected to the wiring 146, 148 It is done.
  • arcuate pattern 831 which is located outermost from the center of the virtual circle C 6 is via a short straight extension portion 834 than 10 ⁇ m in length, connected to the wiring 150, 152 It is done.
  • the second magnetoresistive element 830a spacing between the outer edge of the inner peripheral edge and the first narrow portion 42c of the first magnetic member 40c of the arc-shaped pattern 831 is positioned on the center side of the imaginary circle C 6 is first Even when the forming position is dispersed when forming the magnetic member 40c by plating, the second magnetoresistive elements 830a and 830b and the first narrow portion 42c of the first magnetic member 40c are secured to such an extent that they do not overlap. There is.
  • the pattern 830 of the second magnetoresistance elements 830a and 830b is formed to have the same thickness as the pattern 620 of the first magnetoresistance elements 620a and 620b. However, the thickness of the pattern 830 of the second magnetoresistance elements 830a and 830b may be thinner than the thickness of the pattern 620 of the first magnetoresistance elements 620a and 620b.
  • the second magnetoresistance elements 830 a and 830 b have arc-shaped patterns 831.
  • the arc-shaped pattern 831 is configured by an arc.
  • Two arc-shaped patterns 831 adjacent to each other are connected to each other by semi-arc-shaped patterns 832 and 833. Since the second magnetoresistive elements 830a and 830b include only the linear extending portion 834 whose length is shorter than 10 ⁇ m, the anisotropy of the magnetic field detection is reduced.
  • the second magnetoresistive element 830 a and the second magnetoresistive element 830 b have different circumferential directions of the pattern 830.
  • the second magnetoresistance element 830a and the second magnetoresistance element 830b differ in the circumferential direction of the pattern 830 by 135 °. Thereby, the anisotropy of the magnetoresistance effect of each of the second magnetoresistance element 830a and the second magnetoresistance element 830b can be reduced to each other.
  • the magnetic sensor 8 since the second magnetoresistance elements 830a and 830b are disposed inside the first magnetoresistance elements 620a and 620b, the magnetic sensor 8 can be miniaturized. Further, in the magnetic sensor 8 as well, it is not necessary to three-dimensionally extend the wiring connecting the first magnetoresistance elements 620a and 620b and the second magnetoresistance elements 830a and 830b, so the circuit board 800 is manufactured by a simple manufacturing process. It is possible.
  • the first magnetic member 40c when viewed from the direction orthogonal to the insulating layer 30, the first magnetic member 40c is the second magnetic resistance of the first magnetic resistance elements 620a and 620b and the second magnetic resistance elements 830a and 830b. Only the elements 830a and 830b are covered.
  • the second magnetoresistive elements 830a and 830b are magnetically shielded by the first magnetic member 40c and hardly detect the vertical magnetic field and the horizontal magnetic field, the second magnetoresistive elements 830a and 830b are not necessarily detected.
  • the rate of change in resistance does not have to be smaller than the rate of change in resistance of the first magnetoresistance elements 620a and 620b.
  • the isotropic property of detection of the horizontal magnetic field is high, and a weak vertical magnetic field can be detected, and above the magnetoresistive element. It is possible to suppress the decrease in output accuracy due to the stress acting on the magnetoresistive element from the provided structure.
  • the distance between the outer periphery of the inner peripheral edge and the first narrow portion 42c of the first magnetic member 40c of the arc-shaped pattern 831 is positioned on the center side of the imaginary circle C 6 is
  • the second magnetoresistive elements 830a and 830b and the first narrow portion 42c of the first magnetic member 40c do not overlap even when the formation positions vary. Since it is ensured, it can suppress that stress acts on the 2nd magnetoresistive element 830a, 830b from the 1st narrow part 42c of the 1st magnetic body member 40c.
  • the center of the first narrow portion 42 c is eccentric to the center of the first base 41 when viewed in the direction orthogonal to the insulating layer 30. Therefore, when viewed from the direction orthogonal to the insulating layer 30, the shortest distance between the center of the first narrow portion 42c and the second magnetoresistive elements 830a and 830b is the center of the first base 41 and the second magnetoresistive elements 830a and 830b. Longer than the shortest distance. Thereby, the first narrow portion 42c of the first magnetic member 40c further suppresses the stress from acting on the second magnetoresistance elements 830a and 830b, and the first base of the first magnetic member 40c having a high shielding effect.
  • the second magnetoresistance elements 830a and 830b can be disposed immediately below the vicinity of the center of the reference numeral 41.

Abstract

第1導電体部(60)は、第1基部(61)と、絶縁層に直交する方向から見た外形面積が第1基部(61)の外形面積より小さい第1狭小部(62)とを含む。第1基部(61)と第1狭小部(62)とが、絶縁層に直交する方向に並んで設けられている。第1導電体部(60)とは異なる材料で構成された部材(80)は、絶縁層に直交する方向から見て、第1狭小部(62)の外形と第1基部(61)の外形とに囲まれた領域に設けられている。

Description

磁気センサ
 本発明は、磁気センサに関し、特に、磁気抵抗素子を含む磁気センサに関する。
 磁気センサの構成を開示した先行文献として、特開2013-44641号公報(特許文献1)、国際公開第2015/182365号(特許文献2)、国際公開第2016/013345号(特許文献3)、国際公開第2007/119569号(特許文献4)、および、特開2017-166925号公報(特許文献5)がある。
 特許文献1に記載された磁気センサは、互いに接続されてブリッジ回路を構成し、ミアンダ状に各々形成された、第1磁気抵抗素子、第2磁気抵抗素子、第3磁気抵抗素子および第4磁気抵抗素子を備える。第1磁気抵抗素子、第2磁気抵抗素子、第3磁気抵抗素子および第4磁気抵抗素子の表面は、絶縁膜によって覆われている。いわゆる固定抵抗である第3磁気抵抗素子および第4磁気抵抗素子の表面には、絶縁膜を挟んで磁性材料からなる磁束集磁膜が形成されている。
 特許文献2および特許文献3に記載された磁気センサは、第1磁気抵抗素子、および、第1磁気抵抗素子より抵抗変化率が小さい第2磁気抵抗素子を備える。いわゆる感磁素子である第1磁気抵抗素子は、同心円状に配置されたパターンを含んでいる。
 特許文献4に記載された磁気センサは、複数のホール素子が設けられた半導体基板と、半導体基板上に設けられた磁気増幅機能を有する磁性体とを備える。半導体基板上に磁性体の下地となる下地層が設けられている。下地層は、複数のホール素子と異なる熱膨張率を有している。下地層は、複数のホール素子の領域を少なくとも部分的に覆う面積を有している。磁性体は、下地層の面積より大きい面積を有している。
 特許文献5に記載された磁気センサは、複数のホール素子が設けられた半導体基板と、半導体基板上に設けられた磁気収束機能を有する磁性体とを備える。半導体基板上の磁性体の縦断面外形形状を規定する外周部において、外周部の少なくとも一部に曲線形状を有する部分と、半導体基板と略平行な部分とを有している。磁性体内部に非磁性物質からなる構造体の少なくとも一部が埋め込まれている。
特開2013-44641号公報 国際公開第2015/182365号 国際公開第2016/013345号 国際公開第2007/119569号 特開2017-166925号公報
 特許文献1に記載された磁気センサにおいては、いわゆる感磁素子である第1磁気抵抗素子および第2磁気抵抗素子の各々がミアンダ状のパターンを含んでいるため、水平磁界の検出の等方性が低い。
 特許文献2および特許文献3に記載された磁気センサにおいては、第1磁気抵抗素子が同心円状に配置されたパターンを含んでいるため、水平磁界の検出の等方性は高いが、微弱な垂直磁界を検出することができない。
 特許文献4および特許文献5に記載された磁気センサにおいては、ホール素子を備える磁気センサであり、磁気抵抗素子を用いて水平磁界および垂直磁界を検出することは考慮されていない。
 本発明は上記の問題点に鑑みてなされたものであって、磁気抵抗素子を用いて、水平磁界の検出の等方性が高く、微弱な垂直磁界も検出することができるとともに、磁気抵抗素子の上方に設けられた構造体から磁気抵抗素子に作用する応力によって出力精度が低下することを抑制できる、磁気センサを提供することを目的とする。
 本発明の第1局面に基づく磁気センサは、感磁素子と、感磁素子を覆う絶縁層と、絶縁層上に位置する第1導電体部と、第1導電体部上に位置し、絶縁層に直交する方向から見て、第1導電体部を覆う第1磁性体部材と、第1導電体部の一部に沿って設けられ、第1導電体部とは異なる材料で構成された部材とを備える。第1導電体部は、第1基部と、絶縁層に直交する方向から見た外形面積が第1基部の外形面積より小さい第1狭小部とを含む。第1基部と第1狭小部とが、絶縁層に直交する方向に並んで設けられている。第1導電体部とは異なる材料で構成された上記部材は、絶縁層に直交する方向から見て、第1狭小部の外形と第1基部の外形とに囲まれた領域に設けられている。
 本発明の一形態においては、第1導電体部の第1狭小部は、絶縁層に直交する方向において、第1導電体部の絶縁層側の端部に位置している。第1導電体部とは異なる材料で構成された上記部材は、第1基部と絶縁層とに挟まれて位置している。
 本発明の一形態においては、第1導電体部の第1狭小部は、絶縁層に直交する方向において、第1導電体部の第1磁性体部材側の端部に位置している。第1導電体部とは異なる材料で構成された上記部材は、第1基部と第1磁性体部材とに挟まれて位置している。
 本発明の一形態においては、第1導電体部の第1基部は、絶縁層に直交する方向において、第1導電体部の絶縁層側の端部および第1磁性体部材側の端部の各々に位置している。第1導電体部の第1狭小部は、絶縁層に直交する方向において、第1導電体部の第1基部同士に挟まれて位置している。第1導電体部とは異なる材料で構成された上記部材は、第1基部同士に挟まれて位置している。
 本発明の一形態においては、第1導電体部とは異なる材料で構成された上記部材は、応力緩和部である。
 本発明の一形態においては、感磁素子として、第1磁気抵抗素子を有する。磁気センサは、第1磁気抵抗素子と電気的に接続されてブリッジ回路を構成する第2磁気抵抗素子をさらに備える。第2磁気抵抗素子は、絶縁層に覆われている。
 本発明の一形態においては、感磁素子は、外周縁を有する。第1磁性体部材は、絶縁層に直交する方向から見て、感磁素子の外周縁より内側の領域に位置している。
 本発明の一形態においては、第1磁気抵抗素子は、内周縁をさらに有する。第2磁気抵抗素子は、絶縁層に直交する方向から見て、第1磁気抵抗素子の内周縁より内側の領域に位置して第1磁性体部材で覆われている。
 本発明の一形態においては、磁気センサは、絶縁層上に位置し、絶縁層に直交する方向から見て、第1導電体部とは異なる第2導電体部と、第2導電体部上に位置し、絶縁層に直交する方向から見て、第2導電体部を覆う、第1磁性体部材とは異なる第2磁性体部材とをさらに備える。第2磁気抵抗素子は、第1磁気抵抗素子の外周縁より外側の領域に位置して第2磁性体部材で覆われている。
 本発明の一形態においては、第2導電体部は、第2基部と、絶縁層に直交する方向から見た外形面積が第2基部の外形面積より小さい第2狭小部とを含む。第2導電体部においては、第2基部と第2狭小部とが、絶縁層に直交する方向に並んで設けられている。
 本発明の一形態においては、第2導電体部の第2狭小部は、絶縁層に直交する方向において、第2導電体部の絶縁層側の端部に位置している。
 本発明の一形態においては、第2導電体部の第2狭小部は、絶縁層に直交する方向において、第2導電体部の第2磁性体部材側の端部に位置している。
 本発明の一形態においては、第2導電体部の第2基部は、絶縁層に直交する方向において、第2導電体部の絶縁層側の端部および第2磁性体部材側の端部の各々に位置している。第2導電体部の第2狭小部は、絶縁層に直交する方向において、第2導電体部の第2基部同士に挟まれて位置している。
 本発明の第2局面に基づく磁気センサは、感磁素子と、感磁素子を覆う絶縁層と、絶縁層上に位置する第1磁性体部材と、第1磁性体部材の一部に沿って設けられ、第1磁性体部材とは異なる材料で構成された応力緩和部とを備える。感磁素子は、外周縁を有する。第1磁性体部材は、絶縁層に直交する方向から見て、感磁素子の外周縁より内側の領域に位置している。第1磁性体部材は、第1基部と、絶縁層に直交する方向から見た外形面積が第1基部の外形面積より小さい第1狭小部とを含む。第1磁性体部材においては、第1基部と第1狭小部とが、絶縁層に直交する方向に並んで設けられている。第1磁性体部材の第1狭小部は、絶縁層に直交する方向において、第1磁性体部材の絶縁層側の端部に位置している。応力緩和部は、絶縁層に直交する方向から見て、第1狭小部の外形と第1基部の外形とに囲まれた領域に設けられており、第1基部と絶縁層とに挟まれて位置している。
 本発明の一形態においては、感磁素子として、第1磁気抵抗素子を有する。磁気センサは、第1磁気抵抗素子と電気的に接続されてブリッジ回路を構成する第2磁気抵抗素子をさらに備える。第2磁気抵抗素子は、絶縁層に覆われている。
 本発明の一形態においては、第1磁気抵抗素子は、内周縁をさらに有する。第2磁気抵抗素子は、絶縁層に直交する方向から見て、第1磁気抵抗素子の内周縁より内側の領域に位置して第1磁性体部材で覆われている。
 本発明の一形態においては、磁気センサは、絶縁層上に位置する、第1磁性体部材とは異なる第2磁性体部材をさらに備える。第2磁気抵抗素子は、第1磁気抵抗素子の外周縁より外側の領域に位置して第2磁性体部材で覆われている。
 本発明の一形態においては、第1磁性体部材の厚さをxμmとすると、第1磁気抵抗素子の少なくとも一部は、絶縁層に直交する方向から見て、第1磁性体部材の外周縁から内側に2μm離れた位置から、第1磁性体部材の外周縁から外側に下記式(I)で示すyμm離れた位置までの、領域の少なくとも一部に位置している。
 y=-0.0008x+0.2495x+6.6506 (I)
 本発明の一形態においては、第1磁性体部材は、絶縁層に直交する方向から見て、第1磁気抵抗素子の外周縁と同心状に位置している。
 本発明の一形態においては、第2磁気抵抗素子は、絶縁層に直交する方向から見て、第1磁気抵抗素子の内周縁より内側の領域に位置して第1磁性体部材で覆われている。第1磁性体部材は、絶縁層に直交する方向から見て、第1磁気抵抗素子の内周縁上および内周縁より内側の領域を含む領域に位置している。
 本発明の一形態においては、第2磁気抵抗素子は、絶縁層に直交する方向から見て、第1磁気抵抗素子の内周縁より内側の領域に位置して第1磁性体部材で覆われている。第1磁性体部材は、絶縁層に直交する方向から見て、第1磁気抵抗素子および第2磁気抵抗素子のうちの第2磁気抵抗素子のみを覆っている。
 本発明の一形態においては、第2磁気抵抗素子は、絶縁層に直交する方向から見て、第1磁性体部材の中心から、第1磁性体部材の外周縁から内側に7μm離れた位置までの、領域に位置している。
 本発明の一形態においては、第2磁気抵抗素子は、絶縁層に直交する方向から見て、第1磁気抵抗素子の外周縁より外側の領域に位置して第2磁性体部材で覆われている。第1磁性体部材は、絶縁層に直交する方向から見て、第1磁気抵抗素子および第2磁気抵抗素子のうちの第1磁気抵抗素子の一部のみを覆っている。
 本発明の一形態においては、第2磁性体部材は、絶縁層に直交する方向から見て、第1磁気抵抗素子および第2磁気抵抗素子のうちの第2磁気抵抗素子のみを覆っている。
 本発明の一形態においては、第2磁気抵抗素子は、絶縁層に直交する方向から見て、第2磁性体部材の中心から、第2磁性体部材の外周縁から内側に7μm離れた位置までの、領域に位置している。
 本発明の一形態においては、第1磁気抵抗素子は、絶縁層に直交する方向から見て、同心状に配置されて互いに接続された複数の第1単位パターンを含む。
 本発明によれば、磁気抵抗素子を用いて、水平磁界の検出の等方性が高く、微弱な垂直磁界も検出することができるとともに、磁気抵抗素子の上方に設けられた構造体から磁気抵抗素子に作用する応力によって磁気センサの出力精度が低下することを抑制できる。
本発明の実施形態1に係る磁気センサの構成を示す斜視図である。 図1の磁気センサをII-II線矢印方向から見た断面図である。 図2の磁気センサをIII-III線矢印方向から見た断面図である。 図1の磁気センサを矢印IV方向から見た平面図である。 本発明の実施形態1に係る磁気センサの等価回路図である。 本発明の実施形態1に係る磁気センサの回路基板における磁気抵抗素子と配線との接続部の積層構造を示す断面図である。 本発明の実施形態1に係る磁気センサの第1磁気抵抗素子のパターンを示す平面図である。 本発明の実施形態1に係る磁気センサの第2磁気抵抗素子のパターンを示す平面図である。 実験例1に係る磁気センサに垂直磁界が印加された際の磁束密度分布を示す磁束線図である。 実験例1に係る磁気センサに水平磁界が印加された際の磁束密度分布を示す磁束線図である。 実験例1に係る磁気センサに垂直磁界または水平磁界が印加された際の、第1磁性体部材の外周縁からの水平方向の距離と、水平方向の磁界強度との関係を示すグラフである。 実験例2に係る磁気センサに垂直磁界が印加された際の、第1磁性体部材の外周縁からの水平方向の距離と水平方向の磁界強度との関係に与える、第1磁性体部材の厚さの影響を示すグラフである。 水平方向の磁界強度がピーク値の1/3となる第1磁性体部材の外周縁から外側への水平方向の距離と、第1磁性体部材の厚さとの関係を示すグラフである。 本発明の実施形態2に係る磁気センサの構成を示す断面図である。 本発明の実施形態3に係る磁気センサの構成を示す正面図である。 本発明の実施形態4に係る磁気センサの構成を示す断面図である。 本発明の実施形態5に係る磁気センサの平面図である。 本発明の実施形態5に係る磁気センサの第2磁気抵抗素子のパターンを示す平面図である。 本発明の実施形態6に係る磁気センサの構成を示す斜視図である。 図19の磁気センサをXX-XX線矢印方向から見た断面図である。 図20の磁気センサをXXI-XXI線矢印方向から見た断面図である。 図19の磁気センサを矢印XXII方向から見た平面図である。 本発明の実施形態6に係る磁気センサの第1磁気抵抗素子のパターンを示す平面図である。 本発明の実施形態6に係る磁気センサの第2磁気抵抗素子のパターンを示す平面図である。 本発明の実施形態6に係る磁気センサの第2磁気抵抗素子のパターンに含まれる第2単位パターンを示す平面図である。 本発明の実施形態7に係る磁気センサの構成を示す斜視図である。 図26の磁気センサを矢印XXVII方向から見た平面図である。 本発明の実施形態8に係る磁気センサの構成を示す平面図である。 本発明の実施形態8に係る磁気センサの第1磁気抵抗素子のパターンを示す平面図である。 本発明の実施形態8に係る磁気センサの第2磁気抵抗素子のパターンを示す平面図である。 本発明の実施形態9に係る磁気センサの平面図である。 本発明の実施形態9に係る磁気センサの第1磁気抵抗素子および第2磁気抵抗素子のパターンを示す平面図である。 本発明の実施形態10に係る磁気センサの平面図である。 本発明の実施形態10に係る磁気センサの第1磁気抵抗素子および第2磁気抵抗素子のパターンを示す平面図である。 本発明の実施形態11に係る磁気センサの平面図である。 本発明の実施形態11に係る磁気センサの第1磁気抵抗素子および第2磁気抵抗素子のパターンを示す平面図である。
 以下、本発明の各実施形態に係る磁気センサについて図を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 (実施形態1)
 図1は、本発明の実施形態1に係る磁気センサの構成を示す斜視図である。図2は、図1の磁気センサをII-II線矢印方向から見た断面図である。図3は、図2の磁気センサをIII-III線矢印方向から見た断面図である。図4は、図1の磁気センサを矢印IV方向から見た平面図である。図5は、本発明の実施形態1に係る磁気センサの等価回路図である。
 図1においては、後述する回路基板100の幅方向をX軸方向、回路基板100の長さ方向をY軸方向、回路基板100の厚さ方向をZ軸方向として示している。図4においては、後述する第1磁性体部材の外縁を点線で記載している。なお、図4においては、後述する差動増幅器および温度補償回路などの図示を省略している。
 図1~図4に示すように、本発明の実施形態1に係る磁気センサ1は、回路基板100と、回路基板100の上方に設けられた2つの第1磁性体部材40とを備える。本発明の実施形態1に係る磁気センサ1においては、回路基板100上に、2つの第1導電体部60、および、対応する第1導電体部60の一部に沿って第1応力緩和部80が設けられている。後述するように、回路基板100の表層には、絶縁層30が設けられており、2つの第1導電体部60および第1応力緩和部80の各々は、絶縁層30上に位置している。回路基板100は、半導体基板110を含む。
 第1導電体部60は、第1基部61と、第1狭小部62とを含む。絶縁層30に直交する方向であるZ軸方向から見た第1狭小部62の外形面積は、第1基部61の外形面積より小さい。第1導電体部60においては、第1基部61と第1狭小部62とが、絶縁層30に直交する方向であるZ軸方向に並んで設けられている。本実施形態においては、第1導電体部60の第1狭小部62は、絶縁層30に直交する方向であるZ軸方向において、第1導電体部60の絶縁層30側の端部に位置している。すなわち、第1導電体部60の第1狭小部62が回路基板100の絶縁層30と接触している。
 絶縁層30に直交する方向であるZ軸方向から見て、第1基部61および第1狭小部62の各々は、円形の外形を有している。第1狭小部62の外形の直径は、第1基部61の外形の直径より小さい。第1基部61と第1狭小部62とは、略同軸状に配置されている。なお、第1基部61の形状は、上記に限られず、絶縁層30に直交する方向から見て、楕円形または多角形などでもよい。第1狭小部62の形状は、上記に限られず、絶縁層30に直交する方向であるZ軸方向から見た外形面積が第1基部61の外形面積より小さい形状であればよい。
 第1導電体部60に第1狭小部62が設けられていることにより、第1基部61と絶縁層30との間に、部分的に隙間が設けられている。本実施形態においては、第1導電体部60の外周部の全周に亘って、第1基部61と絶縁層30との間の隙間が設けられている。この隙間に、第1応力緩和部80が配置されている。
 2つの第1磁性体部材40は、1対1で対応するように2つの第1導電体部60上に位置している。第1磁性体部材40は、絶縁層30に直交する方向であるZ軸方向から見て、対応する第1導電体部60を覆っている。
 第1磁性体部材40と回路基板100との間の距離を短くする観点から、第1導電体部60のZ軸方向の厚さ、すなわち、第1基部61および第1狭小部62を合わせたZ軸方向の厚さは、2.0μm以下であることが好ましい。第1磁性体部材40と回路基板100との間の距離が短いほど、後述する第1磁性体部材40の磁気シールドとしての機能を確保することができる。第1導電体部60の形成方法としては、レジストを用いたパターニングなどを用いることができる。
 本実施形態においては、第1導電体部60は、絶縁層30上に位置し、チタン(Ti)を含む層と、チタン(Ti)を含む層の上に位置する、金(Au)を含む層とから構成されている。チタン(Ti)を含む層は密着層である。第1磁性体部材40を電解めっきで形成する場合、金(Au)を含む層は電極反応層、すなわちシード層として機能する。第1導電体部60の構成は、上記に限られず、めっきのシード層として機能する材料である、鉄(Fe)、モリブデン(Mo)、タンタル(Ta)、白金(Pt)および銅(Cu)の少なくとも一つからなる層を含むものであってもよい。また、第1磁性体部材40が蒸着などのめっき以外の方法で形成される場合には、金属および樹脂の少なくとも一方を含む他の導電体で構成されていてもよい。
 第1応力緩和部80は、絶縁層30に直交する方向であるZ軸方向から見て、第1狭小部62の外形と第1基部61の外形とに囲まれた領域T1に設けられている。本実施形態においては、第1応力緩和部80は、第1基部61と絶縁層30とに挟まれて位置している。第1応力緩和部80は、第1基部61の外周部の直下に位置している。絶縁層30に直交する方向であるZ軸方向から見て、第1応力緩和部80は、円環状の形状を有している。なお、第1応力緩和部80の形状は、上記に限られず、楕円環状、または、横断面の外形が多角形である環状などでもよい。第1応力緩和部80の形成方法としては、レジストを用いたパターニングなどを用いることができる。
 第1応力緩和部80は、第1導電体部60とは異なる材料で構成されている部材である。第1応力緩和部80を構成する材料として、第1導電体部60を構成する材料に比較して、密着性が低い材料、弾性率が低い材料、および、引張強さが低い材料の、少なくともいずれか1つを含む材料を用いることができる。密着性とは、第1応力緩和部80と隣接している部材との密着性であり、本実施形態においては、密着性とは、絶縁層30との密着性である。
 第1応力緩和部80が、密着性が低い材料を含む場合には、密着性が低い材料からなる層が、絶縁層30と接触するように配置される。第1応力緩和部80を構成する材料であって、第1導電体部60を構成する材料に比較して密着性が低い材料は、金(Au)またはポリイミドなどである。たとえば、第1導電体部60が、絶縁層30上に位置してチタン(Ti)を含む層と、チタン(Ti)を含む層上に位置する金(Au)を含む層とから構成されており、第1応力緩和部80が、金(Au)を含む層のみから構成されている。
 第1応力緩和部80を構成する材料であって、第1導電体部60を構成する材料に比較して弾性率が低い材料は、ポリイミドなどの樹脂である。第1応力緩和部80を構成する材料であって、第1導電体部60を構成する材料に比較して引張強さが低い材料は、SiO2または低密度の樹脂などである。SiO2を含む第1応力緩和部80を形成する方法として、SOG(Spin-on Glass)を絶縁層30上に塗布する方法がある。
 図4および図5に示すように、本発明の実施形態1に係る磁気センサ1の回路基板100には、互いに配線によって電気的に接続されてホイートストンブリッジ型のブリッジ回路を構成する4つの磁気抵抗素子が設けられている。4つの磁気抵抗素子は、2組の第1磁気抵抗素子および第2磁気抵抗素子からなる。具体的には、磁気センサ1は、第1磁気抵抗素子120aおよび第2磁気抵抗素子130aと、第1磁気抵抗素子120bおよび第2磁気抵抗素子130bとを含んでいる。第1磁気抵抗素子120aおよび第2磁気抵抗素子130aは1つの組を構成している。第1磁気抵抗素子120bおよび第2磁気抵抗素子130bは1つの組を構成している。
 本実施形態においては、磁気センサ1は、2組の第1磁気抵抗素子および第2磁気抵抗素子を含んでいるが、これに限られず、少なくとも1組の第1磁気抵抗素子および第2磁気抵抗素子を含んでいればよい。磁気センサ1が、1組の第1磁気抵抗素子および第2磁気抵抗素子のみを含む場合には、回路基板100にはハーフブリッジ回路が構成されている。
 第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bの各々は、AMR(Anisotropic Magneto Resistance)素子である。なお、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bの各々が、AMR素子に代えて、GMR(Giant Magneto Resistance)素子、TMR(Tunnel Magneto Resistance)素子、BMR(Ballistic Magneto Resistance)素子、CMR(Colossal Magneto Resistance)素子などの磁気抵抗素子であってもよい。
 第2磁気抵抗素子130aは、後述するように、第1磁性体部材40によって磁気シールドされているためZ軸方向の磁界(垂直磁界)とX軸方向およびY軸方向の磁界(水平磁界)をほとんど検出しない、いわゆる固定抵抗となる。第1磁気抵抗素子120aは、外部磁界が印加されることによって電気抵抗値が変化するいわゆる感磁抵抗である。すなわち、第1磁気抵抗素子120aは感磁素子として機能し、第2磁気抵抗素子130aは感磁素子として機能しない。第2磁気抵抗素子130aの外部磁界に対する抵抗変化率は、第1磁気抵抗素子120aの外部磁界に対する抵抗変化率より低いことが好ましい。
 同様に、第2磁気抵抗素子130bは、後述するように、第1磁性体部材40によって磁気シールドされているためZ軸方向の磁界(垂直磁界)とX軸方向およびY軸方向の磁界(水平磁界)をほとんど検出しない、いわゆる固定抵抗となる。第1磁気抵抗素子120bは、外部磁界が印加されることによって電気抵抗値が変化するいわゆる感磁抵抗である。すなわち、第1磁気抵抗素子120bは感磁素子として機能し、第2磁気抵抗素子130bは感磁素子として機能しない。第2磁気抵抗素子130bの外部磁界に対する抵抗変化率は、第1磁気抵抗素子120bの外部磁界に対する抵抗変化率より低いことが好ましい。
 第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bは、半導体基板110上に設けられた配線によって互いに電気的に接続されている。具体的には、第1磁気抵抗素子120aと第2磁気抵抗素子130aとが配線146によって直列に接続されている。第1磁気抵抗素子120bと第2磁気抵抗素子130bとが配線150によって直列に接続されている。
 回路基板100の半導体基板110上には、中点140、中点141、電源端子(Vcc)142、接地端子(Gnd)143および出力端子(Out)144がさらに設けられている。
 第1磁気抵抗素子120aおよび第2磁気抵抗素子130bの各々は、中点140に接続されている。具体的には、第1磁気抵抗素子120aと中点140とが配線145によって接続され、第2磁気抵抗素子130bと中点140とが配線152によって接続されている。
 第1磁気抵抗素子120bおよび第2磁気抵抗素子130aの各々は、中点141に接続されている。具体的には、第1磁気抵抗素子120bと中点141とが配線149によって接続され、第2磁気抵抗素子130aと中点141とが配線148によって接続されている。
 配線146は、電流が入力される電源端子(Vcc)142に接続されている。配線150は、接地端子(Gnd)143に接続されている。
 図5に示すように、磁気センサ1は、差動増幅器160、温度補償回路161、ラッチおよびスイッチ回路162、並びに、CMOS(Complementary Metal Oxide Semiconductor)ドライバ163をさらに備える。差動増幅器160、温度補償回路161、ラッチおよびスイッチ回路162、並びに、CMOSドライバ163の各々は、半導体基板110に設けられている。
 差動増幅器160は、入力端が中点140および中点141の各々に接続され、出力端が温度補償回路161に接続されている。また、差動増幅器160は、電源端子(Vcc)142および接地端子(Gnd)143の各々に接続されている。
 温度補償回路161は、出力端がラッチおよびスイッチ回路162に接続されている。また、温度補償回路161は、電源端子(Vcc)142および接地端子(Gnd)143の各々に接続されている。
 ラッチおよびスイッチ回路162は、出力端がCMOSドライバ163に接続されている。また、ラッチおよびスイッチ回路162は、電源端子(Vcc)142および接地端子(Gnd)143の各々に接続されている。
 CMOSドライバ163は、出力端が出力端子(Out)144に接続されている。また、CMOSドライバ163は、電源端子(Vcc)142および接地端子(Gnd)143の各々に接続されている。
 磁気センサ1が上記の回路構成を有することにより、中点140と中点141との間に、外部磁界の強さに依存する電位差が発生する。この電位差があらかじめ設定された検出レベルを超えると、出力端子(Out)144から信号が出力される。
 図6は、本発明の実施形態1に係る磁気センサの回路基板における磁気抵抗素子と配線との接続部の積層構造を示す断面図である。図6においては、磁気抵抗素子として機能する領域Rと、配線として機能する領域Lとの接続部のみ図示している。
 図6に示すように、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bの各々は、SiO2層またはSi34層などが表面に設けられた、Siなどからなる半導体基板110上に設けられている。第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bの各々は、半導体基板110上に設けられた、NiとFeとを含む合金からなる磁性体層10が、イオンミリング法によりパターニングされることにより形成されている。磁性体層10の厚さは、たとえば、0.04μmである。
 配線145,146,148,149,150,152は、半導体基板110上に設けられた、AuまたはAlなどからなる導電層20が、ウエットエッチングによりパターニングされることにより形成されている。導電層20は、配線として機能する領域Lにおいては磁性体層10の真上に位置し、磁気抵抗素子として機能する領域Rには設けられていない。よって、図6に示すように、磁気抵抗素子として機能する領域Rと、配線として機能する領域Lとの接続部においては、導電層20の端部が磁性体層10の直上に位置している。
 中点140、中点141、電源端子(Vcc)142、接地端子(Gnd)143および出力端子(Out)144の各々は、半導体基板110の直上に位置する導電層20によって構成されている。すなわち、中点140、中点141、電源端子(Vcc)142、接地端子(Gnd)143および出力端子(Out)144の各々は、半導体基板110上に設けられたパッドである。
 導電層20の直上には、図示しないTi層が設けられている。磁性体層10および導電層20を覆うように、SiO2などからなる絶縁層30が設けられている。すなわち、絶縁層30は、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bを覆っている。
 図7は、本発明の実施形態1に係る磁気センサの第1磁気抵抗素子のパターンを示す平面図である。図4および図7に示すように、第1磁気抵抗素子120a,120bのパターン120は、絶縁層30に直交する方向から見て、仮想円C1の円周に沿って仮想円C1の径方向に並ぶように配置されて互いに接続された4つの第1単位パターンを含む。なお、絶縁層30に直交する方向はZ軸方向であり、半導体基板110の上面に直交する方向と平行である。
 4つの第1単位パターンの各々は、仮想円C1の円周において配線146,148,150,152が位置する部分が開放した仮想C字形状C11に沿って位置している。4つの第1単位パターンの各々は、仮想C字形状C11に沿って仮想円C1の径方向に並ぶように同心円状に配置されたC字状パターン121である。
 4つのC字状パターン121は、仮想円C1の中心側から順に一端と他端とで交互に互いに接続されている。一端同士が接続されているC字状パターン121は、半円弧状パターン122によって互いに接続されている。他端同士が接続されているC字状パターン121は、半円弧状パターン123によって互いに接続されている。
 第1磁気抵抗素子120a,120bのパターン120は、2つの半円弧状パターン122および1つの半円弧状パターン123を含む。これにより、4つのC字状パターン121が直列に接続されている。半円弧状パターン122,123は、直線状延在部を含まず、湾曲部のみから構成されている。
 4つのC字状パターン121のうちの仮想円C1の中心から最も外側に位置するC字状パターンの、半円弧状パターン122と接続されていない側の端部は、導電層20からなる配線145または配線149と接続されている。同様に、4つのC字状パターン121のうちの仮想円C1の中心から最も内側に位置するC字状パターンの、半円弧状パターン122と接続されていない側の端部は、導電層20からなる配線146または配線150と接続されている。ここで、C字状パターン121の端部との接続位置となる導電層20の形成位置を変更することにより、第1磁気抵抗素子120a,120bの電気抵抗値を調整することができる。
 具体的には、図6に示す、磁気抵抗素子として機能する領域Rと、配線として機能する領域Lとの接続部において、導電層20を磁気抵抗素子として機能する領域R側に延長することにより、配線として機能する領域Lを拡大して、第1磁気抵抗素子120a,120bの各々の電気抵抗値を低下させることができる。または、磁気抵抗素子として機能する領域Rと、配線として機能する領域Lとの接続部において、導電層20を配線として機能する領域L側に短縮することにより、配線として機能する領域Lを縮小して、第1磁気抵抗素子120a,120bの各々の電気抵抗値を増加させることができる。
 上記の第1磁気抵抗素子120a,120bの電気抵抗値の調整は、導電層20の一部を除去または追加形成することにより行なわれるため、絶縁層30を設ける前に行なわれることが好ましい。
 4つのC字状パターン121のうちの仮想円C1の中心から最も外側に位置するC字状パターン121の外周縁が、第1磁気抵抗素子120a,120bの外周縁となる。4つのC字状パターン121のうちの仮想円C1の中心から最も内側に位置するC字状パターン121の内周縁が、第1磁気抵抗素子120a,120bの内周縁となる。
 図4に示すように、第1磁気抵抗素子120aと第1磁気抵抗素子120bとは、仮想C字形状C11の向きが互いに異なるように周方向の向きが異なっている。すなわち、第1磁気抵抗素子120aと第1磁気抵抗素子120bとは、C字状パターン121の向きが互いに異なるように、パターン120の周方向の向きが異なっている。
 本実施形態においては、第1磁気抵抗素子120aと第1磁気抵抗素子120bとは、C字状パターン121の向きが互いに90°異なるように、パターン120の周方向の向きが90°異なっている。
 図8は、本発明の実施形態1に係る磁気センサの第2磁気抵抗素子のパターンを示す平面図である。図4および図8に示すように、第2磁気抵抗素子130aは、絶縁層30に直交する方向から見て、仮想円C1の中心側に位置し、第1磁気抵抗素子120aにより囲まれており、第2磁気抵抗素子130bは、絶縁層30に直交する方向から見て、仮想円C1の中心側に位置し、第1磁気抵抗素子120bにより囲まれている。すなわち、第2磁気抵抗素子130aは、絶縁層30に直交する方向から見て、第1磁気抵抗素子120aの内周縁より内側に位置しており、第2磁気抵抗素子130bは、絶縁層30に直交する方向から見て、第1磁気抵抗素子120bの内周縁より内側に位置している。
 第2磁気抵抗素子130aは、仮想円C1の中心側から仮想円C1の外側まで設けられた導電層20からなる配線146,148と接続されている。第2磁気抵抗素子130bは、仮想円C1の中心側から仮想円C1の外側まで設けられた導電層20からなる配線150,152と接続されている。
 第2磁気抵抗素子130a,130bは、絶縁層30に直交する方向から見て、2重渦巻き状パターン130を有している。2重渦巻き状パターン130は、2つの第2単位パターンのうちの1つである一方の渦巻き状パターン131、2つの第2単位パターンのうちの他の1つである他方の渦巻き状パターン132、および、一方の渦巻き状パターン131と他方の渦巻き状パターン132とを2重渦巻き状パターン130の中央部にて接続する逆S字状パターン133を含む。逆S字状パターン133は、直線状延在部を含まず、湾曲部のみから構成されている。
 2重渦巻き状パターン130は、パターン120と同じ太さで形成されている。従って、一方の渦巻き状パターン131および他方の渦巻き状パターン132の各々は、4つのC字状パターン121の各々と同じ太さである。
 図8に示すように、2重渦巻き状パターン130は、仮想円C1の中心に関して略点対称の形状を有している。すなわち、2重渦巻き状パターン130は、仮想円C1の中心に関して略180°回転対称な形状を有している。
 図4に示すように、第2磁気抵抗素子130aと第2磁気抵抗素子130bとは、逆S字状パターン133の向きが互いに異なるように、2重渦巻き状パターン130の周方向の向きが異なっている。
 本実施形態においては、第2磁気抵抗素子130aと第2磁気抵抗素子130bとは、逆S字状パターン133の向きが互いに90°異なるように、2重渦巻き状パターン130の周方向の向きが90°異なっている。
 本実施形態に係る磁気センサ1においては、第1磁気抵抗素子120a,120bがC字状パターン121を有している。C字状パターン121は、円弧で構成されている。互いに隣接したC字状パターン121同士は、半円弧状パターン122または半円弧状パターン123によって互いに接続されている。このように、第1磁気抵抗素子120a,120bは、直線状延在部を含んでいないため、磁界検出の異方性が低減されている。
 さらに、本実施形態に係る磁気センサ1においては、第1磁気抵抗素子120aのC字状パターン121の向きと第1磁気抵抗素子120bのC字状パターン121の向きとが互いに異なるように、パターン120の周方向の向きが異なっていることにより、磁界検出の等方性が高くなっている。
 本実施形態に係る磁気センサ1においては、第2磁気抵抗素子130a,130bが2重渦巻き状パターン130を有している。2重渦巻き状パターン130は、主に略円弧状の湾曲部が巻き回されて構成されている。円弧は、多角形の角の数が無限大に大きくなった際の近似形であるため、2重渦巻き状パターン130を流れる電流の向きは、水平方向の略全方位(360°)に亘っている。なお、水平方向は、半導体基板110の上面と平行な方向である。
 また、本実施形態に係る磁気センサ1においては、2重渦巻き状パターン130は、中央部が湾曲部のみからなる逆S字状パターン133で構成されている。このように、第2磁気抵抗素子130a,130bは、直線状延在部を含んでいないため、磁気抵抗効果の異方性が低減されている。
 さらに、本実施形態に係る磁気センサ1においては、第2磁気抵抗素子130aおよび第2磁気抵抗素子130bの逆S字状パターン133の向きが互いに異なるように、2重渦巻き状パターン130の周方向の向きが異なっていることにより、磁気抵抗効果の等方性が高くなっている。
 その理由は以下の通りである。上記のように、2重渦巻き状パターン130は、仮想円C1の中心に関して略180°回転対称な形状を有している。そのため、第2磁気抵抗素子130aおよび第2磁気抵抗素子130bの各々は、僅かに磁気抵抗効果の異方性を有する。
 そこで、第2磁気抵抗素子130aの2重渦巻き状パターン130の周方向の向きと、第2磁気抵抗素子130bの2重渦巻き状パターン130の周方向の向きとを異ならせることにより、それぞれの磁気抵抗効果の異方性を互いに低減することができる。
 第2磁気抵抗素子130aの2重渦巻き状パターン130の周方向の向きと、第2磁気抵抗素子130bの2重渦巻き状パターン130の周方向の向きとを90°異ならせた場合には、それぞれの磁気抵抗効果の異方性を最も低減することができる。
 この場合は、第2磁気抵抗素子130aが最も高感度である方向と、第2磁気抵抗素子130bが最も低感度である方向とが一致し、第2磁気抵抗素子130aが最も低感度である方向と、第2磁気抵抗素子130bが最も高感度である方向とが一致する。そのため、磁気センサ1に外部磁界が印加された際に中点140と中点141との間に発生する電位差が、磁気センサ1に外部磁界が印加された方向によって変動することを抑制できる。
 2重渦巻き状パターン130は、単位面積当たりの密度が高い形状である。第2磁気抵抗素子130a,130bが2重渦巻き状パターン130を有することにより、仮想円C1内に配置されるパターンを長くして、第2磁気抵抗素子130a,130bを高抵抗にすることができる。第2磁気抵抗素子130a,130bの電気抵抗値が高いほど、磁気センサ1の消費電流を低減できる。
 上記のように、2重渦巻き状パターン130を流れる電流の向きを水平方向において分散させて、第2磁気抵抗素子130aおよび第2磁気抵抗素子130bの各々の磁気抵抗効果の異方性を低減することにより、外部磁界が0である時の磁気センサ1の出力が、残留磁化の影響によってばらつくことを抑制することができる。
 なお、2重渦巻き状パターン130は逆方向に巻いていてもよく、この場合、2重渦巻き状パターン130の中央部が湾曲部のみからなるS字状パターンで構成される。すなわち、一方の渦巻き状パターンと他方の渦巻き状パターンとが、S字状パターンによって接続される。
 本実施形態に係る磁気センサ1においては、第1磁気抵抗素子120a,120bの内側に第2磁気抵抗素子130a,130bを配置しているため、磁気センサ1を小形にできる。また、磁気センサ1においては、第1磁気抵抗素子120a,120bと第2磁気抵抗素子130a,130bとを接続する配線を立体的に引き回す必要がないため、簡易な製造プロセスで回路基板100を製造可能である。
 本実施形態に係る磁気センサ1においては、絶縁層30の上方に2つの第1磁性体部材40が設けられており、2つの第1磁性体部材40はY軸方向に並んで配置されている。第1磁性体部材40の厚さxは、たとえば、10μm以上、好ましくは、20μm以上150μm以下である。第1磁性体部材40の厚さxが10μm以上の場合、後述するように、第1磁性体部材40によって略水平方向に偏向された垂直磁界を、第1磁気抵抗素子120a,120bにて検出できる。第1磁性体部材40の厚さxが20μm以上の場合、第1磁性体部材40によって垂直磁界を略水平方向により効果的に偏向できるため、第1磁気抵抗素子120a,120bにて、より微弱な垂直磁界を検出できる。第1磁性体部材40の厚さxが150μm以下の場合、第1磁性体部材40の形成時間が長くなることを抑制して、磁気センサ1の量産性を維持できる。
 図4に示すように、第1磁性体部材40は、絶縁層30に直交する方向から見て、円形の外形を有し、かつ、第1磁気抵抗素子120a,120bの外周縁より内側の領域に位置している。なお、第1磁気抵抗素子120a,120bの外周縁より内側の領域とは、絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの外周縁の両端を仮想直線で結んだ際に囲まれる領域である。絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの外周縁より内側の領域と、第1磁性体部材40の半分以上が重なっていることが好ましく、第1磁性体部材40の2/3以上が重なっていることがより好ましい。
 本実施形態においては、第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの内周縁より内側の領域に位置している。なお、第1磁気抵抗素子120a,120bの内周縁より内側の領域とは、絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの内周縁の両端を仮想直線で結んだ際に囲まれる領域である。第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの内周縁上および内周縁より内側の領域を含む領域に位置していてもよい。絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの内周縁より内側の領域と、第1磁性体部材40の半分以上が重なっていることが好ましく、第1磁性体部材40の2/3以上が重なっていることがより好ましい。
 本実施形態においては、第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの外周縁と同心状に位置している。
 本実施形態においては、第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bのうちの第2磁気抵抗素子130a,130bのみを覆っている。よって、絶縁層30に直交する方向から見て、第1磁性体部材40は、第1磁気抵抗素子120a,120bに囲まれている。第1磁性体部材40は、電磁鋼、軟鉄鋼、ケイ素鋼、パーマロイ、スーパーマロイ、ニッケル合金、鉄合金またはフェライトなどの、透磁率および飽和磁束密度の高い磁性体材料で構成されている。また、これらの磁性体材料は、保磁力が低いことが好ましい。
 第1磁性体部材40を構成する磁性体材料として、透磁率が、高温で大きくなり、低温で小さくなる、たとえば、Fe-78Ni合金などを用いた場合、第1磁気抵抗素子120a,120bの抵抗変化率の温度依存性を低減することができる。
 第1磁性体部材40は、たとえば、めっきにより形成される。なお、絶縁層30と第1磁性体部材40との間に、他の薄層が設けられていてもよい。
 ここで、第1磁性体部材40が垂直磁界および水平磁界の分布に及ぼす影響をシミュレーションにより検証した実験例1について説明する。実験例1においては、第1磁性体部材40の外形を、直径が140μm、厚さxが100μmの円柱状とした。第1磁性体部材40は、パーマロイで構成した。第1磁性体部材40を、第2磁気抵抗素子130a,130bの上方にて、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bのうちの第2磁気抵抗素子130a,130bのみを覆うように配置した。絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの内周縁が、第1磁性体部材40の外周縁の外側に隣接するように、第1磁性体部材40を配置した。印加する垂直磁界または水平磁界の強度は、30mTとした。
 図9は、実験例1に係る磁気センサに垂直磁界が印加された際の磁束密度分布を示す磁束線図である。図10は、実験例1に係る磁気センサに水平磁界が印加された際の磁束密度分布を示す磁束線図である。図11は、実験例1に係る磁気センサに垂直磁界または水平磁界が印加された際の、第1磁性体部材の外周縁からの水平方向の距離と、水平方向の磁界強度との関係を示すグラフである。図9および図10においては、磁気センサ1を水平方向から見て、第1磁性体部材40、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bのみを図示している。
 図11においては、縦軸に水平方向の磁界強度(mT)、横軸に第1磁性体部材の外周縁からの水平方向の距離(μm)を示している。第1磁性体部材の外周縁からの水平方向の距離は、第1磁性体部材40の外周縁から外側に離れた距離を正の値、第1磁性体部材40の外周縁から内側に離れた距離を負の値で示している。垂直磁界が印加された際の水平方向の磁界強度の分布を実線Vで、水平磁界が印加された際の水平方向の磁界強度の分布を実線Hで示している。
 図9に示すように、実験例1に係る磁気センサに上方から下方に向かう垂直磁界を印加した場合、第1磁性体部材40の上面側において、透磁率の高い第1磁性体部材40に磁束が引き寄せられて集められた。第1磁性体部材40に進入した磁束は、第1磁性体部材40を垂直方向に通過した後、第1磁性体部材40の下面側から、拡散しつつ放出された。
 このとき、第1磁性体部材40の直下に位置する第2磁気抵抗素子130a,130bには、磁界が略垂直方向に印加された。そのため、第2磁気抵抗素子130a,130bは、垂直磁界をほとんど検出しなかった。一方、第1磁性体部材40の外周縁の下方に位置する第1磁気抵抗素子120a,120bには、図9中の矢印で示すように略水平方向に偏向された磁界が印加された。そのため、第1磁気抵抗素子120a,120bは、垂直磁界を略水平方向に偏向された磁界として検出することができた。
 図10に示すように、実験例1に係る磁気センサに左側から右側に向かう水平磁界を印加した場合、第1磁性体部材40の左側面側において、第1磁性体部材40に磁束が引き寄せられて集められた。第1磁性体部材40に進入した磁束は、第1磁性体部材40を水平方向に通過した後、第1磁性体部材40の右側面側から、拡散しつつ放出された。
 このとき、図10中の矢印で示すように、第1磁性体部材40の直下に位置する第2磁気抵抗素子130a,130bには、水平方向の磁界がほとんど印加されなかった。そのため、第2磁気抵抗素子130a,130bは、水平磁界をほとんど検出しなかった。一方、第1磁性体部材40の外周縁の下方に位置する第1磁気抵抗素子120a,120bには、水平方向の磁界が印加された。そのため、第1磁気抵抗素子120a,120bは、水平磁界を検出することができた。
 図11に示すように、第1磁性体部材40の外周縁の外側の位置における水平方向の磁界強度が、印加した垂直磁界または水平磁界の強度である30mTより高い領域が生じていた。具体的には、垂直磁界を印加した場合においては、第1磁性体部材40の外周縁から内側に約2μm離れた位置から、第1磁性体部材40の外周縁から外側に約10μm離れた位置まで、水平方向の磁界強度が、印加した垂直磁界の強度である30mTより高くなっていた。また、水平磁界を印加した場合においても、第1磁性体部材40の外周縁の外側の位置では、水平方向の磁界強度が、印加した水平磁界の強度である30mTより高くなっていた。これらは、第1磁性体部材40に引き寄せられて集められた磁界が、高い磁界強度で第1磁性体部材40から水平方向に放出されたためである。この高い磁界強度の水平方向の磁界が、第1磁気抵抗素子120a,120bに印加された。
 図11に示すように、第1磁性体部材40の外周縁から内側に約7μm以上離れた位置では、水平方向の磁界強度が、印加した垂直磁界または水平磁界の強度である30mTの1/3以下となっていた。よって、第1磁性体部材40の外周縁から内側に約7μm以上離れた位置に、第2磁気抵抗素子130a,130bが設けられていることが好ましい。
 上記のように、第1磁性体部材40の外周縁から内側に約2μm離れた位置から、第1磁性体部材40の外周縁から外側に約10μm離れた位置までの、領域においては、水平方向の磁界強度が、印加した垂直磁界または水平磁界の強度である30mTより高くなっていた。よって、この領域の少なくとも一部に、第1磁気抵抗素子120a,120bの少なくとも一部が設けられていることが好ましい。絶縁層30に直交する方向から見て、上記の領域に設けられた第1磁気抵抗素子120a,120bによって、第1磁性体部材40の外周全周の1/2以上が取り囲まれていることが好ましく、第1磁性体部材40の外周全周の2/3以上が取り囲まれていることがさらに好ましい。
 また、第1磁性体部材40が、絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの外周縁と同心状に位置し、かつ、第1磁気抵抗素子120a,120bに囲まれていることにより、第1磁性体部材40の外周縁から外側に放出された水平方向の磁界を第1磁気抵抗素子120a,120bに周方向において略均等に印加させることができた。
 実験例1の結果から、本発明の実施形態1に係る磁気センサ1は、垂直磁界による第2磁気抵抗素子130a,130bの抵抗変化を抑制しつつ、第1磁気抵抗素子120a,120bの垂直磁界の検出感度を高めることができることを確認できた。すなわち、第1磁気抵抗素子120a,120bは、微弱な垂直磁界を検出することができる。また、本発明の実施形態1に係る磁気センサ1は、水平磁界による第2磁気抵抗素子130a,130bの抵抗変化を抑制しつつ、第1磁気抵抗素子120a,120bの水平磁界の検出感度を高めることができることを確認できた。すなわち、第1磁気抵抗素子120a,120bは、微弱な水平磁界を検出することができる。
 ここで、磁気センサに垂直磁界が印加された際の第1磁性体部材の外周縁からの水平方向の距離と水平方向の磁界強度との関係に与える、第1磁性体部材の厚さの影響をシミュレーションにより検証した実験例2について説明する。
 図12は、実験例2に係る磁気センサに垂直磁界が印加された際の、第1磁性体部材の外周縁からの水平方向の距離と水平方向の磁界強度との関係に与える、第1磁性体部材の厚さの影響を示すグラフである。図12においては、縦軸に水平方向の磁界強度(mT)、横軸に第1磁性体部材の外周縁からの水平方向の距離(μm)を示している。図13は、水平方向の磁界強度がピーク値の1/3となる第1磁性体部材の外周縁から外側への水平方向の距離と、第1磁性体部材の厚さとの関係を示すグラフである。図12および図13においては、第1磁性体部材の外周縁からの水平方向の距離は、第1磁性体部材40の外周縁から外側に離れた距離を正の値、第1磁性体部材40の外周縁から内側に離れた距離を負の値で示している。
 実験例2においては、第1磁性体部材40の外形を、直径が140μmの円柱状とした。第1磁性体部材40の厚さxを、10μm、20μm、50μm、100μmおよび150μmの5種類とした。第1磁性体部材40は、パーマロイで構成した。第1磁性体部材40の配置は、実験例1と同様にした。印加する垂直磁界の強度は、30mTとした。
 図12に示すように、第1磁性体部材40の厚さxが厚くなるにしたがって、水平方向の磁界強度のピーク値が大きくなった。なお、図12に示すグラフは、パーマロイが取り得る透磁率の10000以上100000以下の範囲においては、第1磁性体部材40の透磁率への依存性が小さく、第1磁性体部材40の透磁率が変わった場合にもほとんど変化しない。
 磁気センサ1のブリッジ回路から安定した出力を得るためには、第1磁気抵抗素子120a,120bに、水平方向の磁界強度のピーク値の1/3以上の強度の水平方向の磁界が印加され、かつ、第2磁気抵抗素子130a,130bに印加される水平方向の磁界の強度が、水平方向の磁界強度のピーク値の1/10以下であることが好ましい。
 図12に示すように、第1磁性体部材40の厚さxによらず、第1磁性体部材40の外周縁から内側に2μm以内の領域では、水平方向の磁界強度がピーク値の1/3以上となっていた。
 図13に示すように、水平方向の磁界強度がピーク値の1/3となる第1磁性体部材40の外周縁から外側への水平方向の距離yは、第1磁性体部材40の厚さxが厚くなるにしたがって長くなっていた。厚さxと距離yとの関係は、下記の近似式(I)で表される。
 y=-0.0008x+0.2495x+6.6506 (I)
 すなわち、第1磁性体部材40の外周縁から外側に上記yμm以内の領域では、水平方向の磁界強度がピーク値の1/3以上となる。よって、絶縁層30に直交する方向から見て、第1磁性体部材40の外周縁から内側に2μm離れた位置から、第1磁性体部材40の外周縁から外側に上記式(I)で示すyμm離れた位置までの、領域では、水平方向の磁界強度がピーク値の1/3以上となる。
 図12に示すように、第1磁性体部材40の厚さxによらず、第1磁性体部材40の外周縁から内側に7μm以上の領域では、水平方向の磁界強度がピーク値の1/10以下となっていた。すなわち、絶縁層30に直交する方向から見て、第1磁性体部材40の中心から、第1磁性体部材40の外周縁から内側に7μm離れた位置までの、領域では、水平方向の磁界強度がピーク値の1/10以下となっていた。
 よって、第1磁気抵抗素子120a,120bの少なくとも一部が、絶縁層30に直交する方向から見て、第1磁性体部材40の外周縁から内側に2μm離れた位置から、第1磁性体部材40の外周縁から外側に上記式(I)で示すyμm離れた位置までの、領域の少なくとも一部に位置していることが好ましい。
 また、第2磁気抵抗素子130a,130bが、絶縁層30に直交する方向から見て、第1磁性体部材40の中心から、第1磁性体部材40の外周縁から内側に7μm離れた位置までの、領域に位置していることが好ましい。
 上記のように、本発明の実施形態1に係る磁気センサ1は、垂直磁界および水平磁界を高感度に検出することができる。また、本発明の実施形態1に係る磁気センサ1は、第1磁気抵抗素子120a,120bが同心円状に配置された複数の第1単位パターンを含むことにより、水平磁界の検出の等方性が高い。
 本実施形態においては、第2磁気抵抗素子130a,130bの2重渦巻き状パターン130は、第1磁気抵抗素子120a,120bのパターン120と同じ太さで形成されている。これにより、第1磁気抵抗素子120a,120bと第2磁気抵抗素子130a,130bとを同一工程により形成した場合においても、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bの加工精度のばらつきは低減され、出力特性が安定した磁気センサ1を形成することができる。
 ただし、2重渦巻き状パターン130がパターン120より細いパターンで形成されていてもよい。この場合、第2磁気抵抗素子130a,130bの磁気抵抗効果は、第1磁気抵抗素子120a,120bの磁気抵抗効果よりさらに小さくなる。その結果、第2磁気抵抗素子130a,130bの磁気抵抗効果が抑制され、第2磁気抵抗素子130a,130bの抵抗変化率が著しく小さくなる。
 これにより、磁気センサ1に外部磁界が印加された際に中点140と中点141との間に発生する電位差を大きくして、磁気センサ1の検出感度を高くできる。また、第2磁気抵抗素子130a,130bの電気抵抗値が高いため、磁気センサ1に高い磁界強度の外部磁界が印加された際の中点140と中点141との間に発生する電位差の減少が比較的小さく、磁気センサ1の出力特性を安定させることができる。
 なお、本実施形態においては、第2磁気抵抗素子130a,130bは、第1磁性体部材40により磁気シールドされて、垂直磁界および水平磁界をほとんど検出しないため、必ずしも第2磁気抵抗素子130a,130bの抵抗変化率が、第1磁気抵抗素子120a,120bの抵抗変化率より小さくなくてもよい。
 本発明の実施形態1に係る磁気センサ1においては、第1磁性体部材40と回路基板100との間に、第1導電体部60および第1応力緩和部80が設けられており、第1導電体部60は、第1基部61と第1狭小部62とを含み、第1導電体部60の第1狭小部62が回路基板100と接触している。具体的には、第1狭小部62は、回路基板100の表層に位置している絶縁層30と接触している。第1基部61と絶縁層30との間の隙間に第1応力緩和部80が配置されている。第1応力緩和部80は、第1導電体部60とは異なる材料で構成されている部材である。第1応力緩和部80は、第1導電体部60を構成する材料に比較して、密着性が低い材料、弾性率が低い材料、および、引張強さが低い材料の、少なくともいずれか1つを含む材料で構成されている。
 これにより、第1導電体部60と回路基板100との接触面積を低減することができ、第1磁性体部材40から第1導電体部60を通じて第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bに作用する応力を低減することができる。また、第1基部61の外周部の直下に第1応力緩和部80が設けられているため、第1磁性体部材40の外周部に生ずる歪みによる応力が回路基板100に作用することを、第1応力緩和部80によって阻害することができる。
 具体的には、第1応力緩和部80が、第1導電体部60を構成する材料に比較して密着性が低い材料で構成されている場合には、第1磁性体部材40の外周部に生ずる歪みによる応力が第1応力緩和部80に作用した際、第1応力緩和部80が第1応力緩和部80と隣接している部材から剥離する。これにより、第1磁性体部材40の外周部に生ずる歪みによる応力が第1応力緩和部80を通じて第1応力緩和部80と隣接している部材に伝達されることを抑制できる。
 第1応力緩和部80が、第1導電体部60を構成する材料に比較して弾性率が低い材料で構成されている場合には、第1磁性体部材40の外周部に生ずる歪みによる応力が第1応力緩和部80に作用した際、第1応力緩和部80が弾性変形して応力を吸収する。これにより、第1磁性体部材40の外周部に生ずる歪みによる応力が第1応力緩和部80を通じて第1応力緩和部80と隣接している部材に伝達されることを抑制できる。
 第1応力緩和部80が、第1導電体部60を構成する材料に比較して引張強さが低い材料で構成されている場合には、第1磁性体部材40の外周部に生ずる歪みによる応力が第1応力緩和部80に作用した際、第1応力緩和部80に亀裂が発生して第1応力緩和部80に隣接している部材との間が分断される。これにより、第1磁性体部材40の外周部に生ずる歪みによる応力が第1応力緩和部80を通じて第1応力緩和部80と隣接している部材に伝達されることを抑制できる。
 よって、第1磁性体部材40の外周部に生ずる歪みによる応力が、第1磁性体部材40から第1導電体部60を通じて、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bに作用することを、第1応力緩和部80によって阻害することができるため、磁気センサ1の出力精度が低下することを抑制できる。また、第1磁性体部材40から第1導電体部60を通じて絶縁層30に作用する応力によって絶縁層30に亀裂が発生することを抑制できる。これにより、磁気センサ1の信頼性が低下することを抑制できる。
 本実施形態においては、第1導電体部60の外周部の全周に亘って、第1基部61と絶縁層30との間の隙間が設けられており、この隙間全体に第1応力緩和部80が配置されているため、第1磁性体部材40の外周部に生ずる歪みによる応力が第1導電体部60を通じて回路基板100に作用することを効果的に抑制することができる。
 上記のように、本発明の実施形態1に係る磁気センサ1は、磁気抵抗素子を用いて、水平磁界の検出の等方性が高く、微弱な垂直磁界も検出することができるとともに、磁気抵抗素子の上方に設けられた構造体から磁気抵抗素子に作用する応力によって出力精度が低下することを抑制できる。なお、第1磁性体部材40の厚さxを、第1磁性体部材40において第1導電体部60上に位置する部分の厚さとすることにより、実験例1および実験例2に基づく検証結果を援用することが可能である。
 (実施形態2)
 以下、本発明の実施形態2に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態2に係る磁気センサは、第1導電体部の形状および応力緩和部の配置が主に、本発明の実施形態1に係る磁気センサ1と異なるため、本発明の実施形態1に係る磁気センサ1と同様である構成については説明を繰り返さない。
 図14は、本発明の実施形態2に係る磁気センサの構成を示す断面図である。図14においては、磁気センサを図2と同一方向から見て図示している。
 図14に示すように、本発明の実施形態2に係る磁気センサ1aにおいては、回路基板100上に第1導電体部60aが設けられている。第1導電体部60aは、第1基部61と第1狭小部62とを含む。第1導電体部60aにおいては、第1基部61と第1狭小部62とが、絶縁層30に直交する方向に並んで設けられている。本実施形態においては、第1導電体部60aの第1狭小部62は、絶縁層30に直交する方向において、第1導電体部60aの第1磁性体部材40側の端部に位置している。すなわち、第1導電体部60aの第1狭小部62が第1磁性体部材40と接触している。
 第1導電体部60aに第1狭小部62が設けられていることにより、第1基部61と第1磁性体部材40との間に、部分的に隙間が設けられている。本実施形態においては、第1導電体部60aの外周部の全周に亘って、第1基部61と第1磁性体部材40との間の隙間が設けられている。この隙間に、第1応力緩和部80が配置されている。
 第1応力緩和部80は、絶縁層30に直交する方向から見て、第1狭小部62の外形と第1基部61の外形とに囲まれた領域に設けられている。本実施形態においては、第1応力緩和部80は、第1基部61と第1磁性体部材40とに挟まれて位置している。第1応力緩和部80は、第1磁性体部材40の外周部の直下に位置している。絶縁層30に直交する方向から見て、第1応力緩和部80は、円環状の形状を有している。
 本発明の実施形態2に係る磁気センサ1aにおいては、第1磁性体部材40と回路基板100との間に、第1導電体部60aおよび第1応力緩和部80が設けられており、第1導電体部60aは、第1基部61と第1狭小部62とを含み、第1導電体部60aの第1狭小部62が第1磁性体部材40と接触している。第1基部61と第1磁性体部材40との間の隙間に第1応力緩和部80が配置されている。第1応力緩和部80は、第1導電体部60aとは異なる材料で構成されている部材である。第1応力緩和部80は、第1導電体部60aを構成する材料に比較して、密着性が低い材料、弾性率が低い材料、および、引張強さが低い材料の、少なくともいずれか1つを含む材料で構成されている。
 これにより、第1導電体部60aと第1磁性体部材40との接触面積を低減することができ、第1磁性体部材40から第1導電体部60aを通じて第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bに作用する応力を低減することができる。また、第1磁性体部材40の外周部の直下に第1応力緩和部80が設けられているため、第1磁性体部材40の外周部に生ずる歪みによる応力が回路基板100に作用することを、第1応力緩和部80によって阻害することができる。
 よって、第1磁性体部材40の外周部に生ずる歪みによる応力が、第1磁性体部材40から第1導電体部60aを通じて、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bに作用することを、第1応力緩和部80によって阻害することができるため、磁気センサ1aの出力精度が低下することを抑制できる。また、第1磁性体部材40から第1導電体部60aを通じて絶縁層30に作用する応力によって絶縁層30に亀裂が発生することを抑制できる。これにより、磁気センサ1aの信頼性が低下することを抑制できる。
 本実施形態においては、第1導電体部60aの外周部の全周に亘って、第1基部61と第1磁性体部材40との間の隙間が設けられており、この隙間全体に第1応力緩和部80が配置されているため、第1磁性体部材40の外周部に生ずる歪みによる応力が第1導電体部60aを通じて回路基板100に作用することを効果的に抑制することができる。
 (実施形態3)
 以下、本発明の実施形態3に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態3に係る磁気センサは、第1導電体部の形状および応力緩和部の配置が主に、本発明の実施形態1に係る磁気センサ1と異なるため、本発明の実施形態1に係る磁気センサ1と同様である構成については説明を繰り返さない。
 図15は、本発明の実施形態3に係る磁気センサの構成を示す正面図である。図15においては、磁気センサを図2と同一方向から見て図示している。
 図15に示すように、本発明の実施形態3に係る磁気センサ1bにおいては、回路基板100上に第1導電体部60bが設けられている。第1導電体部60bは、第1基部61と第1狭小部62とを含む。第1導電体部60bにおいては、第1基部61と第1狭小部62とが、絶縁層30に直交する方向に並んで設けられている。本実施形態においては、第1導電体部60bの第1基部61は、絶縁層30に直交する方向において、第1導電体部60bの絶縁層30側の端部および第1磁性体部材40側の端部の各々に位置している。第1導電体部60bの第1狭小部62は、絶縁層30に直交する方向において、第1導電体部60bの第1基部61同士に挟まれて位置している。
 第1導電体部60bに第1狭小部62が設けられていることにより、第1基部61同士の間に、部分的に隙間が設けられている。本実施形態においては、第1導電体部60bの外周部の全周に亘って、第1基部61同士の間の隙間が設けられている。この隙間に、第1応力緩和部80が配置されている。
 第1応力緩和部80は、絶縁層30に直交する方向から見て、第1狭小部62の外形と第1基部61の外形とに囲まれた領域に設けられている。本実施形態においては、第1応力緩和部80は、第1基部61同士に挟まれて位置している。第1応力緩和部80は、第1磁性体部材40側の端部に位置する第1基部61の外周部の直下に位置している。絶縁層30に直交する方向から見て、第1応力緩和部80は、円環状の形状を有している。
 本発明の実施形態3に係る磁気センサ1bにおいては、第1磁性体部材40と回路基板100との間に、第1導電体部60bおよび第1応力緩和部80が設けられており、第1導電体部60bは、第1基部61同士の間に第1狭小部62を有する。第1基部61同士の間の隙間に第1応力緩和部80が配置されている。第1応力緩和部80は、第1導電体部60bとは異なる材料で構成されている部材である。第1応力緩和部80は、第1導電体部60bを構成する材料に比較して、密着性が低い材料、弾性率が低い材料、および、引張強さが低い材料の、少なくともいずれか1つを含む材料で構成されている。
 これにより、第1応力緩和部80にて第1導電体部60b内の応力を緩和することができ、第1磁性体部材40から第1導電体部60bを通じて第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bに作用する応力を低減することができる。また、第1磁性体部材40側の端部に位置する第1基部61の外周部の直下に第1応力緩和部80が設けられているため、第1磁性体部材40の外周部に生ずる歪みによる応力が回路基板100に作用することを、第1応力緩和部80によって阻害することができる。
 よって、第1磁性体部材40の外周部に生ずる歪みによる応力が、第1磁性体部材40から第1導電体部60bを通じて、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bに作用することを、第1応力緩和部80によって阻害することができるため、磁気センサ1bの出力精度が低下することを抑制できる。また、第1磁性体部材40から第1導電体部60bを通じて絶縁層30に作用する応力によって絶縁層30に亀裂が発生することを抑制できる。これにより、磁気センサ1bの信頼性が低下することを抑制できる。
 本実施形態においては、第1導電体部60bの外周部の全周に亘って、第1基部61同士の間の隙間が設けられており、この隙間全体に第1応力緩和部80が配置されているため、第1磁性体部材40の外周部に生ずる歪みによる応力が第1導電体部60bを通じて回路基板100に作用することを効果的に抑制することができる。
 (実施形態4)
 以下、本発明の実施形態4に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態4に係る磁気センサは、第1磁性体部材の形状および第1導電体部を備えない点が主に、本発明の実施形態1に係る磁気センサ1と異なるため、本発明の実施形態1に係る磁気センサ1と同様である構成については説明を繰り返さない。
 図16は、本発明の実施形態4に係る磁気センサの構成を示す断面図である。図16においては、磁気センサを図2と同一方向から見て図示している。
 図16に示すように、本発明の実施形態4に係る磁気センサ1cにおいては、回路基板100上に第1磁性体部材40aが設けられている。第1磁性体部材40aは、第1基部41と、絶縁層30に直交する方向から見た外形面積が第1基部41の外形面積より小さい第1狭小部42とを含む。第1磁性体部材40aにおいては、第1基部41と第1狭小部42とが、絶縁層30に直交する方向に並んで設けられている。本実施形態においては、第1磁性体部材40aの第1狭小部42は、絶縁層30に直交する方向において、第1磁性体部材40aの絶縁層30側の端部に位置している。すなわち、第1磁性体部材40aの第1狭小部42が回路基板100と接触している。
 絶縁層30に直交する方向から見て、第1基部41および第1狭小部42の各々は、円形の外形を有している。第1狭小部42の外形の直径は、第1基部41の外形の直径より小さい。第1基部41と第1狭小部42とは、略同軸状に配置されている。なお、第1基部41の形状は、上記に限られず、楕円形または多角形などでもよい。第1狭小部42の形状は、上記に限られず、絶縁層30に直交する方向から見た外形面積が第1基部41の外形面積より小さい形状であればよい。
 第1磁性体部材40aに第1狭小部42が設けられていることにより、第1基部41と回路基板100との間に、部分的に隙間が設けられている。本実施形態においては、第1磁性体部材40aの外周部の全周に亘って、第1基部41と回路基板100との間の隙間が設けられている。この隙間に、第1応力緩和部80が配置されている。
 第1磁性体部材40aと回路基板100との間の距離を短くする観点から、第1狭小部42のZ軸方向の厚さは、2.0μm以下であることが好ましい。第1磁性体部材40aの第1基部41と回路基板100との間の距離が短いほど、第1磁性体部材40aの磁気シールドとしての機能を確保することができる。
 第1狭小部42の形成方法としては、レジストを用いたパターニング、または、犠牲層エッチングなどを用いることができる。
 第1応力緩和部80は、絶縁層30に直交する方向から見て、第1狭小部42の外形と第1基部41の外形とに囲まれた領域に設けられている。本実施形態においては、第1応力緩和部80は、第1基部41と絶縁層30とに挟まれて位置している。第1応力緩和部80は、第1基部41の外周部の直下に位置している。絶縁層30に直交する方向から見て、第1応力緩和部80は、円環状の形状を有している。
 第1応力緩和部80は、第1磁性体部材40aとは異なる材料で構成されている。第1応力緩和部80を構成する材料として、第1磁性体部材40aを構成する材料に比較して、密着性が低い材料、弾性率が低い材料、および、引張強さが低い材料の、少なくともいずれか1つを含む材料を用いることができる。
 本発明の実施形態4に係る磁気センサ1cにおいては、第1磁性体部材40aの第1狭小部42が回路基板100と接触している。これにより、第1磁性体部材40aと回路基板100との接触面積を低減することができ、第1磁性体部材40aから第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bに作用する応力を低減することができる。また、第1基部41の外周部の直下に第1応力緩和部80が設けられているため、第1磁性体部材40の外周部に生ずる歪みによる応力が回路基板100に作用することを、第1応力緩和部80によって阻害することができる。
 よって、第1磁性体部材40の外周部に生ずる歪みによる応力が、第1磁性体部材40から、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bに作用することを、第1応力緩和部80によって阻害することができるため、磁気センサ1cの出力精度が低下することを抑制できる。また、第1磁性体部材40aから絶縁層30に作用する応力によって絶縁層30に亀裂が発生することを抑制できる。これにより、磁気センサ1cの信頼性が低下することを抑制できる。
 本実施形態においては、第1磁性体部材40aの外周部の全周に亘って、第1磁性体部材40aの第1基部41と回路基板100との間の隙間が設けられており、この隙間全体に第1応力緩和部80が配置されているため、第1磁性体部材40aの外周部に生ずる歪みによる応力が回路基板100に作用することを効果的に抑制することができる。なお、第1磁性体部材40aの厚さxを、第1基部41の厚さとすることにより、実験例1および実験例2に基づく検証結果を援用することが可能である。
 (実施形態5)
 以下、本発明の実施形態5に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態5に係る磁気センサは、第2磁気抵抗素子のパターンが主に、本発明の実施形態1に係る磁気センサ1と異なるため、本発明の実施形態1に係る磁気センサ1と同様である構成については説明を繰り返さない。
 図17は、本発明の実施形態5に係る磁気センサの平面図である。図18は、本発明の実施形態5に係る磁気センサの第2磁気抵抗素子のパターンを示す平面図である。図17に示すように、本発明の実施形態5に係る磁気センサ2は、回路基板200と、回路基板200の上方に設けられた2つの第1磁性体部材40とを備える。本発明の実施形態5に係る磁気センサ2においては、回路基板200上に2つの第1導電体部、および、対応する第1導電体部の一部に沿って第1応力緩和部が設けられている。第1磁性体部材40は、絶縁層30に直交する方向から見て、対応する第1導電体部を覆っている。
 図17および図18に示すように、本発明の実施形態5に係る磁気センサ2の第1磁気抵抗素子120a,120bのパターンは、絶縁層30に直交する方向から見て、仮想円C2の円周に沿って仮想円C2の径方向に並ぶように配置されて互いに接続された3つの第1単位パターンを含む。3つの第1単位パターンの各々は、仮想円C2の円周において配線146,148,150,152が位置する部分が開放した仮想C字形状C21に沿って位置している。3つの第1単位パターンの各々は、仮想C字形状C21に沿って仮想円C2の径方向に並ぶように配置されたC字状パターンである。
 図17に示すように、第1磁気抵抗素子120aと第1磁気抵抗素子120bとは、仮想C字形状C21の向きが互いに異なるように周方向の向きが異なっている。すなわち、第1磁気抵抗素子120aと第1磁気抵抗素子120bとは、C字状パターンの向きが互いに異なるように、パターンの周方向の向きが異なっている。
 本実施形態においては、第1磁気抵抗素子120aと第1磁気抵抗素子120bとは、C字状パターンの向きが互いに90°異なるように、パターンの周方向の向きが90°異なっている。
 図17および図18に示すように、第2磁気抵抗素子230aは、絶縁層30に直交する方向から見て、仮想円C2の中心側に位置し、第1磁気抵抗素子120aに囲まれており、第2磁気抵抗素子230bは、絶縁層30に直交する方向から見て、仮想円C2の中心側に位置し、第1磁気抵抗素子120bに囲まれている。すなわち、第2磁気抵抗素子230aは、絶縁層30に直交する方向から見て、第1磁気抵抗素子120aの内周縁より内側に位置しており、第2磁気抵抗素子230bは、絶縁層30に直交する方向から見て、第1磁気抵抗素子120bの内周縁より内側に位置している。
 第2磁気抵抗素子230a,230bは、仮想円C2の円周に沿って仮想円C2の径方向に並ぶように線対称に配置された第2単位パターンである14個の半円弧状パターン231を含むパターン230を有している。パターン230は、第1磁気抵抗素子120a,120bのパターン120と同じ太さで形成されている。ただし、パターン230の太さが、パターン120の太さより細くてもよい。
 14個の半円弧状パターン231は、内側から順に一端と他端とで交互に互いに接続されている。一端同士が接続されている半円弧状パターン231は、半円弧状パターン232によって互いに接続されている。他端同士が接続されている半円弧状パターン231は、半円弧状パターン233によって互いに接続されている。最も内側に位置して互いに線対称な半円弧状パターン231同士は、互いの一端同士を直線状延在部234によって接続されている。直線状延在部234の長さは、10μmより短い。
 第2磁気抵抗素子230a,230bのパターン230は、6つの半円弧状パターン232、6つの半円弧状パターン233および直線状延在部234を含む。これにより、14個の半円弧状パターン231が直列に接続されている。半円弧状パターン232,233は、直線状延在部を含まず、湾曲部のみから構成されている。
 本実施形態に係る磁気センサ2においては、第2磁気抵抗素子230a,230bが半円弧状パターン231を有している。半円弧状パターン231は、円弧で構成されている。互いに隣接した2つの半円弧状パターン231同士は、半円弧状パターン232,233によって互いに接続されている。第2磁気抵抗素子230a,230bは、長さが10μmより短い直線状延在部234のみを含んでいるため、磁界検出の異方性が低減されている。
 第2磁気抵抗素子230aと第2磁気抵抗素子230bとは、パターン230の周方向の向きが異なっている。本実施形態においては、第2磁気抵抗素子230aと第2磁気抵抗素子230bとは、パターン230の周方向の向きが90°異なっている。これにより、第2磁気抵抗素子230aおよび第2磁気抵抗素子230bの各々の磁気抵抗効果の異方性を互いに低減することができる。
 本実施形態に係る磁気センサ2においても、第1磁気抵抗素子120a,120bの内側に第2磁気抵抗素子230a,230bを配置しているため、磁気センサ2を小形にできる。また、磁気センサ2においても、第1磁気抵抗素子120a,120bと第2磁気抵抗素子230a,230bとを接続する配線を立体的に引き回す必要がないため、簡易な製造プロセスで回路基板200を製造可能である。
 図17に示すように、第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子230a,230bのうちの第2磁気抵抗素子230a,230bのみを覆っている。
 本実施形態に係る磁気センサ2においても、垂直磁界および水平磁界を高感度に検出することができる。また、本発明の実施形態5に係る磁気センサ2は、第1磁気抵抗素子120a,120bが同心円状に配置された複数の第1単位パターンを含むことにより、水平磁界の検出の等方性が高い。
 なお、本実施形態においては、第2磁気抵抗素子230a,230bは、第1磁性体部材40により磁気シールドされて、垂直磁界および水平磁界をほとんど検出しないため、必ずしも第2磁気抵抗素子230a,230bの抵抗変化率が、第1磁気抵抗素子120a,120bの抵抗変化率より小さくなくてもよい。
 本発明の実施形態5に係る磁気センサ2においても、磁気抵抗素子を用いて、水平磁界の検出の等方性が高く、微弱な垂直磁界も検出することができるとともに、磁気抵抗素子の上方に設けられた構造体から磁気抵抗素子に作用する応力によって出力精度が低下することを抑制できる。
 (実施形態6)
 以下、本発明の実施形態6に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態6に係る磁気センサは、第1磁気抵抗素子および第2磁気抵抗素子の各々のパターンと、第2磁気抵抗素子の配置と、第2導電体部を備える点とが主に、本発明の実施形態1に係る磁気センサ1と異なるため、本発明の実施形態1に係る磁気センサ1と同様である構成については説明を繰り返さない。
 図19は、本発明の実施形態6に係る磁気センサの構成を示す斜視図である。図20は、図19の磁気センサをXX-XX線矢印方向から見た断面図である。図21は、図20の磁気センサをXXI-XXI線矢印方向から見た断面図である。図22は、図19の磁気センサを矢印XXII方向から見た平面図である。
 図19~図22に示すように、本発明の実施形態6に係る磁気センサ3は、回路基板300と、回路基板300の上方に設けられた、2つの第1磁性体部材40および2つの第2磁性体部材50とを備える。本発明の実施形態6に係る磁気センサ3においては、回路基板300上に2つの第1導電体部60、2つの第2導電体部70、対応する第1導電体部60の一部に沿って第1応力緩和部80、および、対応する第2導電体部70の一部に沿って第2応力緩和部90が設けられている。回路基板300の表層には、絶縁層30が設けられており、2つの第1導電体部60、2つの第2導電体部70、第1応力緩和部80および第2応力緩和部90の各々は、絶縁層30上に位置している。
 第2導電体部70は、第2基部71と、第2狭小部72とを含む。絶縁層30に直交する方向であるZ軸方向から見た第2狭小部72の外形面積は、第2基部71の外形面積より小さい。第2導電体部70においては、第2基部71と第2狭小部72とが、絶縁層30に直交する方向であるZ軸方向に並んで設けられている。本実施形態においては、第2導電体部70の第2狭小部72は、絶縁層30に直交する方向であるZ軸方向において、第2導電体部70の絶縁層30側の端部に位置している。すなわち、第2導電体部70の第2狭小部72が回路基板300の絶縁層30と接触している。
 絶縁層30に直交する方向であるZ軸方向から見て、第2基部71および第2狭小部72の各々は、屈曲した矩形状の外形を有している。第2狭小部72の外形の幅は、第2基部71の外形の幅より小さい。第2基部71と第2狭小部72とは、略同軸状に配置されている。なお、第2基部71の形状は、上記に限られず、円形または多角形などでもよい。第2狭小部72の形状は、上記に限られず、絶縁層30に直交する方向であるZ軸方向から見た外形面積が第2基部71の外形面積より小さい形状であればよい。
 第2導電体部70に第2狭小部72が設けられていることにより、第2基部71と絶縁層30との間に、部分的に隙間が設けられている。本実施形態においては、第2導電体部70の外周部の全周に亘って、第2基部71と絶縁層30との間の隙間が設けられている。この隙間に、第2応力緩和部90が配置されている。
 2つの第2磁性体部材50は、1対1で対応するように2つの第2導電体部70上に位置している。第2磁性体部材50は、絶縁層30に直交する方向であるZ軸方向から見て、対応する第2導電体部70を覆っている。
 第2磁性体部材50と回路基板100との間の距離を短くする観点から、第2導電体部70のZ軸方向の厚さ、すなわち、第2基部71および第2狭小部72を合わせたZ軸方向の厚さは、2.0μm以下であることが好ましい。第2磁性体部材50と回路基板100との間の距離が短いほど、第2磁性体部材50の磁気シールドとしての機能を確保することができる。第2導電体部70の形成方法としては、レジストを用いたパターニングなどを用いることができる。
 本実施形態においては、第2導電体部70は、絶縁層30上に位置し、チタン(Ti)を含む層と、チタン(Ti)を含む層上に位置する、金(Au)を含む層とから構成されている。チタン(Ti)を含む層は密着層である。第2磁性体部材50を電解めっきで形成する場合、金(Au)を含む層は電極反応層、すなわちシード層として機能する。第2導電体部70の構成は、上記に限られず、めっきのシード層として機能する材料である、鉄(Fe)、モリブデン(Mo)、タンタル(Ta)、白金(Pt)および銅(Cu)の少なくとも一つからなる層を含むものであってもよい。また、第2磁性体部材50が蒸着などのめっき以外の方法で形成される場合には、金属および樹脂の少なくとも一方を含む他の導電体で構成されていてもよい。
 第2応力緩和部90は、絶縁層30に直交する方向であるZ軸方向から見て、第2狭小部72の外形と第2基部71の外形とに囲まれた領域T2に設けられている。本実施形態においては、第2応力緩和部90は、第2基部71と絶縁層30とに挟まれて位置している。第2応力緩和部90は、第2基部71の外周部の直下に位置している。絶縁層30に直交する方向であるZ軸方向から見て、第2応力緩和部90は、横断面の外形が多角形である環状の形状を有している。なお、第2応力緩和部90の形状は、上記に限られない。第2応力緩和部90の形成方法としては、レジストを用いたパターニングなどを用いることができる。
 第2応力緩和部90は、第2導電体部70とは異なる材料で構成されている部材である。第2応力緩和部90を構成する材料として、第2導電体部70を構成する材料に比較して、密着性が低い材料、弾性率が低い材料、および、引張強さが低い材料の、少なくともいずれか1つを含む材料を用いることができる。
 第2応力緩和部90が、密着性が低い材料を含む場合には、密着性が低い材料からなる層が、絶縁層30と接触するように配置される。第2応力緩和部90を構成する材料であって、第2導電体部70を構成する材料に比較して密着性が低い材料は、金(Au)またはポリイミドなどである。たとえば、第2導電体部70が、絶縁層30上に位置してチタン(Ti)を含む層と、チタン(Ti)を含む層上に位置して金(Au)を含む層とから構成されており、第2応力緩和部90が、金(Au)を含む層のみから構成されている。
 第2応力緩和部90を構成する材料であって、第2導電体部70を構成する材料に比較して弾性率が低い材料は、ポリイミドなどの樹脂である。第2応力緩和部90を構成する材料であって、第2導電体部70を構成する材料に比較して引張強さが低い材料は、SiO2または低密度の樹脂などである。SiO2を含む第2応力緩和部90を形成する方法として、SOG(Spin-on Glass)を絶縁層30上に塗布する方法がある。
 図22に示すように、本発明の実施形態6に係る磁気センサ3の回路基板300には、互いに配線によって電気的に接続されてホイートストンブリッジ型のブリッジ回路を構成する4つの磁気抵抗素子が設けられている。4つの磁気抵抗素子は、2組の第1磁気抵抗素子および第2磁気抵抗素子からなる。具体的には、磁気センサ3は、第1磁気抵抗素子320aおよび第2磁気抵抗素子330aと、第1磁気抵抗素子320bおよび第2磁気抵抗素子330bとを含んでいる。第1磁気抵抗素子320aおよび第2磁気抵抗素子330aは1つの組を構成している。第1磁気抵抗素子320bおよび第2磁気抵抗素子330bは1つの組を構成している。
 図23は、本発明の実施形態6に係る磁気センサの第1磁気抵抗素子のパターンを示す平面図である。図22および図23に示すように、第1磁気抵抗素子320a,320bは、絶縁層30に直交する方向から見て、2重渦巻き状パターン320を有している。2重渦巻き状パターン320は、絶縁層30に直交する方向から見て、仮想円の円周に沿って仮想円の径方向に並ぶように同心円状に配置されて互いに接続された2つの第1単位パターンを含む。
 2重渦巻き状パターン320は、第1単位パターンである一方の渦巻き状パターン321、第1単位パターンである他方の渦巻き状パターン322、および、一方の渦巻き状パターン321と他方の渦巻き状パターン322とを2重渦巻き状パターン320の中央部にて接続するS字状パターン323を含む。S字状パターン323は、直線状延在部を含まず、湾曲部のみから構成されている。
 2重渦巻き状パターン320は、一方の渦巻き状パターン321および他方の渦巻き状パターン322の各々の端部に、2重渦巻き状パターン320の長さ調整用冗長部324,325を有する。長さ調整用冗長部324,325は、一方の渦巻き状パターン321および他方の渦巻き状パターン322の各々の端部が湾曲しつつ折り返されて構成されている。一方の渦巻き状パターン321に設けられた長さ調整用冗長部324と、他方の渦巻き状パターン322に設けられた長さ調整用冗長部325とは、2重渦巻き状パターン320の径方向において互いに反対側に位置している。長さ調整用冗長部324,325の各々は、直線状延在部を含まず、湾曲部のみから構成されている。
 2重渦巻き状パターン320は、長さ調整用冗長部324,325において、配線を構成する導電層20と接続されている。長さ調整用冗長部324,325と導電層20との接続位置を変更することにより、第1磁気抵抗素子320a,320bの電気抵抗値を調整することができる。
 具体的には、図6に示す、磁気抵抗素子として機能する領域Rと、配線として機能する領域Lとの接続部において、導電層20を磁気抵抗素子として機能する領域R側に延長することにより、配線として機能する領域Lを拡大して、第1磁気抵抗素子320a,320bの各々の電気抵抗値を低下させることができる。または、磁気抵抗素子として機能する領域Rと、配線として機能する領域Lとの接続部において、導電層20を配線として機能する領域L側に短縮することにより、配線として機能する領域Lを縮小して、第1磁気抵抗素子320a,320bの各々の電気抵抗値を増加させることができる。
 上記の第1磁気抵抗素子320a,320bの電気抵抗値の調整は、導電層20の一部を除去または追加形成することにより行なわれるため、絶縁層30を設ける前に行なわれることが好ましい。
 図23に示すように、2重渦巻き状パターン320は、2重渦巻き状パターン320の中心点に関して略点対称の形状を有している。すなわち、2重渦巻き状パターン320は、2重渦巻き状パターン320の中心点に関して略180°回転対称な形状を有している。
 図22に示すように、第1磁気抵抗素子320aと第1磁気抵抗素子320bとは、S字状パターン323の向きが互いに異なるように、2重渦巻き状パターン320の周方向の向きが異なっている。
 本実施形態においては、第1磁気抵抗素子320aと第1磁気抵抗素子320bとは、S字状パターン323の向きが互いに90°異なるように、2重渦巻き状パターン320の周方向の向きが90°異なっている。
 なお、2重渦巻き状パターン320は逆方向に巻いていてもよく、この場合、2重渦巻き状パターン320の中央部が湾曲部のみからなる逆S字状パターンで構成される。すなわち、一方の渦巻き状パターン321と他方の渦巻き状パターン322とが、逆S字状パターンによって接続される。
 図24は、本発明の実施形態6に係る磁気センサの第2磁気抵抗素子のパターンを示す平面図である。図25は、本発明の実施形態6に係る磁気センサの第2磁気抵抗素子のパターンに含まれる第2単位パターンを示す平面図である。なお、図24においては、第2磁気抵抗素子330a,330bが有する同一形状の3つのパターン330のうちの1つのみを図示している。
 図22および図24に示すように、第2磁気抵抗素子330a,330bは、絶縁層30に直交する方向から見て、第1磁気抵抗素子320a,320bの外周縁より外側に位置している。
 第2磁気抵抗素子330a,330bにおいては、複数の曲部を有して折り返した8つの第2単位パターン370を含む同一形状の3つのパターン330が直列に接続されている。第2磁気抵抗素子330aにおいては、同一形状の3つのパターン330が配線147によって互いに接続されている。第2磁気抵抗素子330bにおいては、同一形状の3つのパターン330が配線151によって互いに接続されている。パターン330は、2重渦巻き状パターン320より細いパターンで形成されている。これにより、第2磁気抵抗素子330a,330bにおいて、必要な電気抵抗値を確保している。第2磁気抵抗素子330a,330bの電気抵抗値が高いほど、磁気センサ3の消費電流を低減できる。
 図24に示すように、8つの第2単位パターン370は、仮想円C3上に配置されて互いに接続されている。図25に示すように、第2単位パターン370は、始端部370aから終端部370bまでの間に、14個の曲部B1~B14および15個の直線状延在部L1~L15を有して、折り返している。すなわち、第2単位パターン370は、始端部370aおよび終端部370bを口部とした袋状の形状を有している。
 本実施形態においては、第2単位パターン370は、14個の曲部B1~B14の各々において直角に屈曲している。第2単位パターン370は、10μm以上の長さの直線状延在部を含まない。すなわち、15個の直線状延在部L1~L15の各々の長さは、10μmより短い。
 ただし、第2磁気抵抗素子330a,330bのパターンは、上記に限られず、10μm以上の長さの直線状延在部を含まずに複数の曲部を有して折り返した少なくとも1つの第2単位パターンを含んでいればよい。
 第2磁気抵抗素子330a,330bが上記のパターンを有することにより、第2磁気抵抗素子330a,330bの磁気抵抗効果が抑制されて抵抗変化率が著しく小さくなる。その結果、第2磁気抵抗素子330a,330bの抵抗変化率が、第1磁気抵抗素子320a,320bの抵抗変化率より低くなる。
 本実施形態に係る磁気センサ3においては、第1磁気抵抗素子320a,320bが2重渦巻き状パターン320を有している。2重渦巻き状パターン320は、主に略円弧状の湾曲部が巻き回されて構成されている。円弧は、多角形の角の数が無限大に大きくなった際の近似形であるため、2重渦巻き状パターン320を流れる電流の向きは、水平方向の略全方位(360°)に亘っている。よって、第1磁気抵抗素子320a,320bは、水平方向の略全方位(360°)に亘って、外部磁界を検出することができる。
 また、本実施形態に係る磁気センサ3においては、2重渦巻き状パターン320は、中央部が湾曲部のみからなるS字状パターン323で構成され、外周部が湾曲部のみからなる長さ調整用冗長部324,325で構成されている。このように、第1磁気抵抗素子320a,320bの各々は、直線状延在部を含んでいないため、磁界検出の異方性が低減されている。
 さらに、本実施形態に係る磁気センサ3においては、第1磁気抵抗素子320a,320bの各々のS字状パターン323の向きが互いに異なるように、2重渦巻き状パターン320の周方向の向きが異なっていることにより、磁界検出の等方性が高くなっている。
 本実施形態に係る磁気センサ3においては、第2磁気抵抗素子330a,330bの各々は、10μm以上の長さの直線状延在部を含まずに14個の曲部B1~B14の各々において直角に屈曲して、始端部370aおよび終端部370bを口部とした袋状の形状を有する第2単位パターン370を含んでいる。
 これにより、第2単位パターン370を流れる電流の向きを水平方向において分散させて、第2磁気抵抗素子330a,330bの磁気抵抗効果の異方性を低減することができる。また、外部磁界が0である時の磁気センサ3の出力が、残留磁化の影響によってばらつくことを抑制することができる。
 さらに、複数の第2単位パターン370が仮想円C3上に配置されていることによって、パターン330を流れる電流の向きを水平方向において分散させて、第2磁気抵抗素子330a,330bの磁気抵抗効果の異方性を低減することができる。
 本実施形態に係る磁気センサ3においても、第1磁気抵抗素子320a,320bと第2磁気抵抗素子330a,330bとを接続する配線を立体的に引き回す必要がないため、簡易な製造プロセスで回路基板300を製造可能である。
 パターン330が2重渦巻き状パターン320より細いパターンで形成されているため、第2磁気抵抗素子330a,330bの磁気抵抗効果が抑制され、第2磁気抵抗素子330a,330bの抵抗変化率が著しく小さくなる。
 これにより、磁気センサ3に外部磁界が印加された際に中点140と中点141との間に発生する電位差を大きくして、磁気センサ3の検出感度を高くできる。また、第2磁気抵抗素子330a,330bの電気抵抗値が高いため、磁気センサ3に高い磁界強度の外部磁界が印加された際の中点140と中点141との間に発生する電位差の減少が比較的小さく、磁気センサ3の出力特性を安定させることができる。
 本実施形態に係る磁気センサ3においては、絶縁層30上に2つの第1磁性体部材40と2つの第2磁性体部材50が配置されている。第1磁性体部材40および第2磁性体部材50の各々の厚さは、たとえば、10μm以上、好ましくは、20μm以上150μm以下である。なお、これらの厚さは互いに異なっていてもよいが、これらの厚さが互いに同一である場合には、2つの第1磁性体部材40と2つの第2磁性体部材50とを同一の工程において形成することができ、2つの第1磁性体部材40および2つの第2磁性体部材50を容易に形成できる。
 図22に示すように、第1磁性体部材40は、絶縁層30に直交する方向から見て、円形の外形を有し、かつ、第1磁気抵抗素子320a,320bの外周縁より内側の領域に位置している。本実施形態においては、第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子320a,320bの外周縁と同心状に位置している。
 本実施形態においては、第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子320a,320bおよび第2磁気抵抗素子330a,330bのうちの第1磁気抵抗素子320a,320bの中央部のみを覆っている。よって、絶縁層30に直交する方向から見て、第1磁性体部材40は、第1磁気抵抗素子320a,320bの外周部に囲まれている。
 第2磁性体部材50は、絶縁層30に直交する方向から見て、第1磁気抵抗素子320a,320bおよび第2磁気抵抗素子330a,330bのうちの第2磁気抵抗素子330a,330bのみを覆っている。第2磁気抵抗素子330a,330bは、絶縁層30に直交する方向から見て、第2磁性体部材50の中心から、第2磁性体部材50の外周縁から内側に7μm離れた位置までの、領域に位置していることが好ましい。第2磁性体部材50は、電磁鋼、軟鉄鋼、ケイ素鋼、パーマロイ、スーパーマロイ、ニッケル合金、鉄合金またはフェライトなどの、透磁率および飽和磁束密度の高い磁性体材料で構成されている。また、これらの磁性体材料は、保磁力が低いことが好ましい。
 本発明の実施形態6に係る磁気センサ3は、垂直磁界による第2磁気抵抗素子330a,330bの抵抗変化を抑制しつつ、第1磁性体部材40によって第1磁気抵抗素子320a,320bの垂直磁界の検出感度を高めることができる。
 また、本発明の実施形態6に係る磁気センサ3は、第2磁性体部材50によって水平磁界による第2磁気抵抗素子330a,330bの抵抗変化を抑制しつつ、第1磁性体部材40によって第1磁気抵抗素子320a,320bの水平磁界の検出感度を高めることができる。
 第1磁性体部材40によって第1磁気抵抗素子320a,320bの水平磁界の検出感度を高めることができる理由は、第1磁性体部材40に覆われていることにより第1磁気抵抗素子320a,320bの中央部に印加される水平磁界の強度は低くなるが、第1磁気抵抗素子320a,320bの中央部より円周が長くパターン全体に占める抵抗値の比率が大きい第1磁気抵抗素子320a,320bの外周部に、第1磁性体部材40から高い磁界強度で放出された水平方向の磁界が印加されるため、全体的に見ると、第1磁性体部材40によって第1磁気抵抗素子320a,320bに印加される水平磁界の強度が高くなるためである。
 本実施形態に係る磁気センサ3においても、垂直磁界および水平磁界を高感度に検出することができる。また、本発明の実施形態6に係る磁気センサ3は、第1磁気抵抗素子320a,320bが同心円状に配置された複数の第1単位パターンを含むことにより、水平磁界の検出の等方性が高い。
 なお、本実施形態においては、第2磁気抵抗素子330a,330bは、第2磁性体部材50により磁気シールドされて、垂直磁界および水平磁界をほとんど検出しないため、必ずしも第2磁気抵抗素子330a,330bの抵抗変化率が、第1磁気抵抗素子320a,320bの抵抗変化率より小さくなくてもよい。
 本発明の実施形態6に係る磁気センサ3においては、第2磁性体部材50と回路基板300との間に、第2導電体部70および第2応力緩和部90が設けられており、第2導電体部70は、第2基部71と第2狭小部72とを含み、第2導電体部70の第2狭小部72が回路基板300と接触している。第2基部71と絶縁層30との間の隙間に第2応力緩和部90が配置されている。第2応力緩和部90は、第2導電体部70とは異なる材料で構成されている部材である。第2応力緩和部90は、第2導電体部70を構成する材料に比較して、密着性が低い材料、弾性率が低い材料、および、引張強さが低い材料の、少なくともいずれか1つを含む材料で構成されている。
 これにより、第2導電体部70と回路基板300との接触面積を低減することができ、第2磁性体部材50から第2導電体部70を通じて第2磁気抵抗素子330a,330bに作用する応力を低減することができる。また、第2基部71の外周部の直下に第2応力緩和部90が設けられているため、第2磁性体部材50の外周部に生ずる歪みによる応力が回路基板300に作用することを、第2応力緩和部90によって阻害することができる。
 具体的には、第2応力緩和部90が、第2導電体部70を構成する材料に比較して密着性が低い材料で構成されている場合には、第2磁性体部材50の外周部に生ずる歪みによる応力が第2応力緩和部90に作用した際、第2応力緩和部90が第2応力緩和部90と隣接している部材から剥離する。これにより、第2磁性体部材50の外周部に生ずる歪みによる応力が第2応力緩和部90を通じて第2応力緩和部90と隣接している部材に伝達されることを抑制できる。
 第2応力緩和部90が、第2導電体部70を構成する材料に比較して弾性率が低い材料で構成されている場合には、第2磁性体部材50の外周部に生ずる歪みによる応力が第2応力緩和部90に作用した際、第2応力緩和部90が弾性変形して応力を吸収する。これにより、第2磁性体部材50の外周部に生ずる歪みによる応力が第2応力緩和部90を通じて第2応力緩和部90と隣接している部材に伝達されることを抑制できる。
 第2応力緩和部90が、第2導電体部70を構成する材料に比較して引張強さが低い材料で構成されている場合には、第2磁性体部材50の外周部に生ずる歪みによる応力が第2応力緩和部90に作用した際、第2応力緩和部90に亀裂が発生して第2応力緩和部90に隣接している部材との間が分断される。これにより、第2磁性体部材50の外周部に生ずる歪みによる応力が第2応力緩和部90を通じて第2応力緩和部90と隣接している部材に伝達されることを抑制できる。
 よって、第2磁性体部材50の外周部に生ずる歪みによる応力が、第2磁性体部材50から第2導電体部70を通じて、第2磁気抵抗素子130a,130bに作用することを、第2応力緩和部90によって阻害することができるため、磁気センサ3の出力精度が低下することを抑制できる。また、第2磁性体部材50から第2導電体部70を通じて絶縁層30に作用する応力によって絶縁層30に亀裂が発生することを抑制できる。これにより、磁気センサ3の信頼性が低下することを抑制できる。
 本実施形態においては、第2導電体部70の外周部の全周に亘って、第2基部71と絶縁層30との間の隙間が設けられているため、第2磁性体部材50の外周部に生ずる歪みによる応力が第2導電体部70を通じて回路基板300に作用することを効果的に抑制することができる。
 本発明の実施形態6に係る磁気センサ3においても、磁気抵抗素子を用いて、水平磁界の検出の等方性が高く、微弱な垂直磁界も検出することができるとともに、磁気抵抗素子の上方に設けられた構造体から磁気抵抗素子に作用する応力によって出力精度が低下することを抑制できる。
 なお、第2導電体部70に、実施形態2に係る第1導電体部60aの構成を適用してもよい。この場合、第2導電体部の第2狭小部は、絶縁層30に直交する方向において、第2導電体部の第2磁性体部材50側の端部に位置している。
 第2応力緩和部90は、絶縁層30に直交する方向から見て、第2導電体部の第2狭小部72の外形と第2基部71の外形とに囲まれた領域に設けられている。第2応力緩和部90は、第2基部71と第2磁性体部材50とに挟まれて位置している。第2応力緩和部90は、第2磁性体部材50の外周部の直下に位置している。
 若しくは、第2導電体部70に、実施形態3に係る第1導電体部60bの構成を適用してもよい。この場合、第2導電体部の第2基部71は、絶縁層30に直交する方向において、第2導電体部の絶縁層30側の端部および第2磁性体部材50側の端部の各々に位置している。第2導電体部の第2狭小部72は、絶縁層30に直交する方向において、第2導電体部の第2基部71同士に挟まれて位置している。
 第2応力緩和部90は、絶縁層30に直交する方向から見て、第2導電体部の第2狭小部72の外形と第2基部71の外形とに囲まれた領域に設けられている。第2応力緩和部90は、第2基部71同士に挟まれて位置している。第2応力緩和部90は、第2磁性体部材50側の端部に位置する第2基部71の外周部の直下に位置している。
 若しくは、第2磁性体部材50に、実施形態4に係る第1磁性体部材40aの構成を適用してもよい。この場合、磁気センサ3は、第2導電体部70を備えない。第2磁性体部材は、第2基部と、絶縁層30に直交する方向から見た外形面積が第2基部の外形面積より小さい第2狭小部とを含む。第2磁性体部材においては、第2基部と第2狭小部とが、絶縁層30に直交する方向に並んで設けられている。第2磁性体部材の第2狭小部は、絶縁層30に直交する方向において、第2磁性体部材の絶縁層30側の端部に位置している。
 第2応力緩和部90は、絶縁層30に直交する方向から見て、第2磁性体部材の第2狭小部の外形と第2基部の外形とに囲まれた領域に設けられている。第2応力緩和部90は、第2磁性体部材の第2基部と絶縁層30とに挟まれて位置している。第2応力緩和部90は、第2磁性体部材の第2基部の外周部の直下に位置している。第2応力緩和部90は、第2磁性体部材とは異なる材料で構成されている。第2応力緩和部90を構成する材料として、第2磁性体部材を構成する材料に比較して、密着性が低い材料、弾性率が低い材料、および、引張強さが低い材料の、少なくともいずれか1つを含む材料を用いることができる。
 (実施形態7)
 以下、本発明の実施形態7に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態7に係る磁気センサは、第1磁気抵抗素子および第2磁気抵抗素子の各々のパターンが主に、本発明の実施形態6に係る磁気センサ3と異なるため、本発明の実施形態6に係る磁気センサ3と同様である構成については説明を繰り返さない。
 図26は、本発明の実施形態7に係る磁気センサの構成を示す斜視図である。図27は、図26の磁気センサを矢印XXVII方向から見た平面図である。図26および図27に示すように、本発明の実施形態7に係る磁気センサ4は、回路基板400と、回路基板400の上方に設けられた、2つの第1磁性体部材40および2つの第2磁性体部材50とを備える。本発明の実施形態7に係る磁気センサ4においては、回路基板400上に2つの第1導電体部60、2つの第2導電体部70、対応する第1導電体部60の一部に沿って第1応力緩和部80、および、対応する第2導電体部70の一部に沿って第2応力緩和部90が設けられている。回路基板400の表層には、絶縁層30が設けられており、2つの第1導電体部60、2つの第2導電体部70、第1応力緩和部80、第2応力緩和部90の各々は、絶縁層30上に位置している。第1磁性体部材40は、絶縁層30に直交する方向であるZ軸方向から見て、対応する第1導電体部60を覆っている。第2磁性体部材50は、絶縁層30に直交する方向であるZ軸方向から見て、対応する第2導電体部70を覆っている。
 本発明の実施形態7に係る磁気センサ4の回路基板400には、互いに配線によって電気的に接続されてホイートストンブリッジ型のブリッジ回路を構成する4つの磁気抵抗素子が設けられている。4つの磁気抵抗素子は、2組の第1磁気抵抗素子および第2磁気抵抗素子からなる。具体的には、磁気センサ4は、第1磁気抵抗素子420aおよび第2磁気抵抗素子430aと、第1磁気抵抗素子420bおよび第2磁気抵抗素子430bとを含んでいる。
 第1磁気抵抗素子420a,420bは、絶縁層30に直交する方向から見て、2重渦巻き状パターンを有している。2重渦巻き状パターンは、絶縁層30に直交する方向から見て、仮想円の円周に沿って仮想円の径方向に並ぶように同心円状に配置されて互いに接続された2つの第1単位パターンを含む。
 2重渦巻き状パターンは、第1単位パターンである一方の渦巻き状パターン、第1単位パターンである他方の渦巻き状パターン、および、一方の渦巻き状パターンと他方の渦巻き状パターンとを2重渦巻き状パターンの中央部にて接続するS字状パターンを含む。S字状パターンは、直線状延在部を含まず、湾曲部のみから構成されている。
 第1磁気抵抗素子420aと第1磁気抵抗素子420bとは、S字状パターンの向きが互いに異なるように、2重渦巻き状パターンの周方向の向きが異なっている。
 本実施形態においては、第1磁気抵抗素子420aと第1磁気抵抗素子420bとは、S字状パターンの向きが互いに90°異なるように、2重渦巻き状パターンの周方向の向きが90°異なっている。
 なお、2重渦巻き状パターンは逆方向に巻いていてもよく、この場合、2重渦巻き状パターンの中央部が湾曲部のみからなる逆S字状パターンで構成される。すなわち、一方の渦巻き状パターンと他方の渦巻き状パターンとが、逆S字状パターンによって接続される。
 図27に示すように、第2磁気抵抗素子430a,430bは、絶縁層30に直交する方向から見て、第1磁気抵抗素子420a,420bの外周縁より外側に位置している。第2磁気抵抗素子430a,430bは、絶縁層30に直交する方向から見て、ミアンダ状パターンを有している。第2磁気抵抗素子430a,430bのミアンダ状パターンは、第1磁気抵抗素子420a,420bの2重渦巻き状パターンと同じ太さで形成されている。ただし、第2磁気抵抗素子430a,430bのミアンダ状パターンの太さが、第1磁気抵抗素子420a,420bの2重渦巻き状パターンの太さより細くてもよい。
 図27に示すように、第1磁性体部材40は、絶縁層30に直交する方向から見て、円形の外形を有し、かつ、第1磁気抵抗素子420a,420bの外周縁より内側の領域に位置している。本実施形態においては、第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子420a,420bの外周縁と同心状に位置している。
 本実施形態においては、第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子420a,420bおよび第2磁気抵抗素子430a,430bのうちの第1磁気抵抗素子420a,420bの中央部のみを覆っている。よって、絶縁層30に直交する方向から見て、第1磁性体部材40は、第1磁気抵抗素子420a,420bの外周部に囲まれている。
 第2磁性体部材50は、絶縁層30に直交する方向から見て、第1磁気抵抗素子420a,420bおよび第2磁気抵抗素子430a,430bのうちの第2磁気抵抗素子430a,430bのみを覆っている。
 本発明の実施形態7に係る磁気センサ4は、垂直磁界による第2磁気抵抗素子430a,430bの抵抗変化を抑制しつつ、第1磁性体部材40によって第1磁気抵抗素子420a,420bの垂直磁界の検出感度を高めることができる。
 また、本発明の実施形態7に係る磁気センサ4は、第2磁性体部材50によって水平磁界による第2磁気抵抗素子430a,430bの抵抗変化を抑制しつつ、第1磁性体部材40によって第1磁気抵抗素子420a,420bの水平磁界の検出感度を高めることができる。
 本実施形態に係る磁気センサ4においても、垂直磁界および水平磁界を高感度に検出することができる。また、本発明の実施形態7に係る磁気センサ4は、第1磁気抵抗素子420a,420bが同心円状に配置された複数の第1単位パターンを含むことにより、水平磁界の検出の等方性が高い。
 なお、本実施形態においては、第2磁気抵抗素子430a,430bは、第2磁性体部材50により磁気シールドされて、垂直磁界および水平磁界をほとんど検出しないため、必ずしも第2磁気抵抗素子430a,430bの抵抗変化率が、第1磁気抵抗素子420a,420bの抵抗変化率より小さくなくてもよい。
 本発明の実施形態7に係る磁気センサ4においても、磁気抵抗素子を用いて、水平磁界の検出の等方性が高く、微弱な垂直磁界も検出することができるとともに、磁気抵抗素子の上方に設けられた構造体から磁気抵抗素子に作用する応力によって出力精度が低下することを抑制できる。
 (実施形態8)
 以下、本発明の実施形態8に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態8に係る磁気センサは、第1磁気抵抗素子および第2磁気抵抗素子のパターン、並びに、第1磁性体部材の形状が主に、本発明の実施形態1に係る磁気センサ1と異なるため、本発明の実施形態1に係る磁気センサ1と同様である構成については説明を繰り返さない。
 図28は、本発明の実施形態8に係る磁気センサの構成を示す平面図である。図29は、本発明の実施形態8に係る磁気センサの第1磁気抵抗素子のパターンを示す平面図である。図30は、本発明の実施形態8に係る磁気センサの第2磁気抵抗素子のパターンを示す平面図である。
 図28に示すように、本発明の実施形態8に係る磁気センサ5は、回路基板500と、回路基板500上に設けられた2つの第1磁性体部材45とを備える。本発明の実施形態8に係る磁気センサ5においては、回路基板500上に2つの第1導電体部、および、対応する第1導電体部60の一部に沿って第1応力緩和部が設けられている。第1磁性体部材45は、絶縁層30に直交する方向から見て、対応する第1導電体部を覆っている。
 図28および図29に示すように、本発明の実施形態8に係る磁気センサ5の第1磁気抵抗素子520a,520bのパターンは、絶縁層30に直交する方向から見て、仮想円C5の円周に沿って仮想円C5の径方向に並ぶように配置されて互いに接続された4つの第1単位パターンを含む。4つの第1単位パターンの各々は、仮想円C5の円周において配線146,148,150,152が位置する部分が開放した仮想C字形状C51に沿って位置している。4つの第1単位パターンの各々は、仮想C字形状C51に沿って仮想円C5の径方向に並ぶように同心状に配置されたC字状パターン521である。
 4つのC字状パターン521は、内側から順に一端と他端とで交互に互いに接続されている。一端同士が接続されているC字状パターン521は、仮想円C5の径方向に延びる直線状パターン522によって互いに接続されている。他端同士が接続されているC字状パターン521は、仮想円C5の径方向に延びる直線状パターン523によって互いに接続されている。
 第1磁気抵抗素子520a,520bのパターン520は、2つの直線状パターン522および1つの直線状パターン523を含む。これにより、4つのC字状パターン521が直列に接続されている。
 最も外側に位置するC字状パターン521の外周縁が、第1磁気抵抗素子520a,520bの外周縁となる。最も内側に位置するC字状パターン521の内周縁が、第1磁気抵抗素子520a,520bの内周縁となる。
 図28に示すように、第1磁気抵抗素子520aと第1磁気抵抗素子520bとは、仮想C字形状C51の向きが互いに異なるように周方向の向きが異なっている。すなわち、第1磁気抵抗素子520aと第1磁気抵抗素子520bとは、C字状パターン521の向きが互いに異なるように、パターン520の周方向の向きが異なっている。
 本実施形態においては、第1磁気抵抗素子520aと第1磁気抵抗素子520bとは、C字状パターン521の向きが互いに90°異なるように、パターン520の周方向の向きが90°異なっている。
 図28および図30に示すように、第2磁気抵抗素子530a,530bは、絶縁層30に直交する方向から見て、仮想円C5の中心側に位置し、第1磁気抵抗素子520a,520bに囲まれている。すなわち、第2磁気抵抗素子530a,530bは、絶縁層30に直交する方向から見て、第1磁気抵抗素子520a,520bの内周縁より内側に位置している。
 第2磁気抵抗素子530aは、仮想円C5の中心側から仮想円C5の外側まで繋がった配線146,148と接続されている。第2磁気抵抗素子530bは、仮想円C5の中心側から仮想円C5の外側まで繋がった配線150,152と接続されている。
 第2磁気抵抗素子530a,530bは、絶縁層30に直交する方向から見て、2重渦巻き状パターン530を有している。2重渦巻き状パターン530は、2つの第2単位パターンのうちの1つである一方の渦巻き状パターン531、2つの第2単位パターンのうちの他の1つである他方の渦巻き状パターン532、および、一方の渦巻き状パターン531と他方の渦巻き状パターン532とを2重渦巻き状パターン530の中央部にて接続する逆S字状パターン533を含む。逆S字状パターン533は、長さが10μmより短い複数の直線状延在部で構成されている。
 2重渦巻き状パターン530は、パターン520と同じ太さで形成されている。従って、一方の渦巻き状パターン531および他方の渦巻き状パターン532の各々は、4つのC字状パターン521の各々と同じ太さである。ただし、2重渦巻き状パターン530の太さが、パターン520の太さより細くてもよい。
 図30に示すように、2重渦巻き状パターン530は、仮想円C5の中心に関して略点対称の形状を有している。すなわち、2重渦巻き状パターン530は、仮想円C5の中心に関して略180°回転対称な形状を有している。
 図28に示すように、第2磁気抵抗素子530aと第2磁気抵抗素子530bとは、逆S字状パターン533の向きが互いに異なるように、2重渦巻き状パターン530の周方向の向きが異なっている。
 本実施形態においては、第2磁気抵抗素子530aと第2磁気抵抗素子530bとは、逆S字状パターン533の向きが互いに90°異なるように、2重渦巻き状パターン530の周方向の向きが90°異なっている。
 本実施形態に係る磁気センサ5においては、第1磁気抵抗素子520a,520bがC字状パターン521を有している。C字状パターン521は、略正8角形を構成する8辺のうちの略7辺で構成されている。このように、第1磁気抵抗素子520a,520bは、多角形を構成する辺のうちの大部分の辺で構成されているため、磁界検出の異方性が低減されている。
 さらに、本実施形態に係る磁気センサ5においては、第1磁気抵抗素子520aおよび第1磁気抵抗素子520bのC字状パターン521の向きが互いに異なるように、パターン520の周方向の向きが異なっていることにより、磁界検出の等方性が高くなっている。
 本実施形態に係る磁気センサ5においては、第2磁気抵抗素子530a,530bが2重渦巻き状パターン530を有している。2重渦巻き状パターン530は、主に略正8角形を構成する辺が巻き回されて構成されている。
 本実施形態に係る磁気センサ5においては、第2磁気抵抗素子530aおよび第2磁気抵抗素子530bの逆S字状パターン533の向きが互いに異なるように、2重渦巻き状パターン530の周方向の向きが異なっていることにより、磁気抵抗効果の等方性が高くなっている。
 本実施形態に係る磁気センサ5においては、第1磁気抵抗素子520a,520bの内側に第2磁気抵抗素子530a,530bを配置しているため、磁気センサ5を小形にできる。また、磁気センサ5においても、第1磁気抵抗素子520a,520bと第2磁気抵抗素子530a,530bとを接続する配線を立体的に引き回す必要がないため、簡易な製造プロセスで回路基板500を製造可能である。
 本実施形態に係る磁気センサ5においては、絶縁層30上に2つの第1磁性体部材45が配置されている。図28に示すように、第1磁性体部材45は、絶縁層30に直交する方向から見て、正8角形の外形を有し、かつ、第1磁気抵抗素子520a,520bの外周縁より内側の領域に位置している。ここで、第1磁気抵抗素子520a,520bの外周縁より内側の領域とは、絶縁層30に直交する方向から見て、第1磁気抵抗素子520a,520bの外周縁端を仮想直線で結んだ際に囲まれる領域である。この第1磁気抵抗素子520a,520bの外周縁より内側の領域と、第1磁性体部材45の半分以上が重なっていることが好ましく、第1磁性体部材45の2/3以上が重なっていることがより好ましい。
 第1磁性体部材45は、絶縁層30に直交する方向から見て、第1磁気抵抗素子520a,520bの内周縁より内側の領域に位置している。第1磁性体部材45は、絶縁層30に直交する方向から見て、第1磁気抵抗素子520a,520bの内周縁上および内周縁より内側の領域を含む領域に位置していてもよい。ここで、第1磁気抵抗素子520a,520bの内周縁より内側の領域とは、絶縁層30に直交する方向から見て、第1磁気抵抗素子520a,520bの内周縁端を仮想直線で結んだ際に囲まれる領域である。この第1磁気抵抗素子520a,520bの内周縁より内側の領域と、第1磁性体部材45の半分以上が重なっていることが好ましく、第1磁性体部材45の2/3以上が重なっていることがより好ましい。
 本実施形態においては、第1磁性体部材45は、絶縁層30に直交する方向から見て、第1磁気抵抗素子520a,520bの外周縁と同心状に位置している。
 本実施形態においては、第1磁性体部材45は、絶縁層30に直交する方向から見て、第1磁気抵抗素子520a,520bおよび第2磁気抵抗素子530a,530bのうちの第2磁気抵抗素子530a,530bのみを覆っている。よって、絶縁層30に直交する方向から見て、第1磁性体部材40の外周は、その全周の1/2以上が第1磁気抵抗素子120a,120bに取り囲まれている。
 本実施形態に係る磁気センサ5においても、垂直磁界および水平磁界を高感度に検出することができる。また、本発明の実施形態8に係る磁気センサ5は、第1磁気抵抗素子520a,520bが多角形状に配置された複数の第1単位パターンを含むことにより、水平磁界の検出の等方性が高い。
 本実施形態においては、第1磁気抵抗素子520a,520b、第2磁気抵抗素子530a,530b、および、第1磁性体部材45の各々が、同心状の正8角形に沿う形状を有しているが、これらの形状は、上記に限られず、同心状の多角形に沿う形状であればよい。この多角形の角の数を多くするほど、第1磁気抵抗素子520a,520bの水平磁界の検出の等方性が高くすることができる。
 なお、本実施形態においては、第2磁気抵抗素子530a,530bは、第1磁性体部材45により磁気シールドされて、垂直磁界および水平磁界をほとんど検出しないため、必ずしも第2磁気抵抗素子530a,530bの抵抗変化率が、第1磁気抵抗素子520a,520bの抵抗変化率より小さくなくてもよい。
 本発明の実施形態8に係る磁気センサ5においても、磁気抵抗素子を用いて、水平磁界の検出の等方性が高く、微弱な垂直磁界も検出することができるとともに、磁気抵抗素子の上方に設けられた構造体から磁気抵抗素子に作用する応力によって出力精度が低下することを抑制できる。
 (実施形態9)
 以下、本発明の実施形態9に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態9に係る磁気センサは、第1磁気抵抗素子および第2磁気抵抗素子の各々のパターンが主に、本発明の実施形態4に係る磁気センサ1cと異なるため、本発明の実施形態4に係る磁気センサ1cと同様である構成については説明を繰り返さない。
 図31は、本発明の実施形態9に係る磁気センサの平面図である。図32は、本発明の実施形態9に係る磁気センサの第1磁気抵抗素子および第2磁気抵抗素子のパターンを示す平面図である。図31および図32においては、第1磁性体部材の外縁および内縁を点線で記載している。
 図31に示すように、本発明の実施形態9に係る磁気センサ6は、回路基板600と、回路基板600の上方に設けられた2つの第1磁性体部材40aとを備える。本発明の実施形態9に係る磁気センサ6においては、第1磁性体部材40aの外周部の全周に亘って、第1磁性体部材40aの第1基部41と回路基板600との間の隙間が設けられており、この隙間全体に第1応力緩和部が配置されている。
 図31および図32に示すように、本発明の実施形態9に係る磁気センサ6の第1磁気抵抗素子620a,620bのパターン620は、絶縁層30に直交する方向から見て、仮想円C6の円周において配線146,148,150,152が位置する部分が開放した仮想C字形状C61に沿って配置されたC字状パターン621である、1つの第1単位パターンで構成されている。第1磁気抵抗素子620a,620bの内周縁と第1磁性体部材40aの第1基部41の外周縁との間隔は、第1磁性体部材40aをめっきで形成する際に形成位置がばらついた場合にも、第1磁気抵抗素子620a,620bと第1磁性体部材40aとが重ならない程度に確保されている。
 図31に示すように、第1磁気抵抗素子620aと第1磁気抵抗素子620bとは、仮想C字形状C61の向きが互いに異なるように周方向の向きが異なっている。すなわち、第1磁気抵抗素子620aと第1磁気抵抗素子620bとは、C字状パターン621の向きが互いに異なるように、パターン620の周方向の向きが異なっている。
 本実施形態においては、第1磁気抵抗素子620aと第1磁気抵抗素子620bとは、C字状パターン621の向きが互いに135°異なるように、パターン620の周方向の向きが135°異なっている。
 図31に示すように、第2磁気抵抗素子630aは、絶縁層30に直交する方向から見て、仮想円C6の中心側に位置し、第1磁気抵抗素子620aに囲まれており、第2磁気抵抗素子630bは、絶縁層30に直交する方向から見て、仮想円C6の中心側に位置し、第1磁気抵抗素子620bに囲まれている。すなわち、第2磁気抵抗素子630aは、絶縁層30に直交する方向から見て、第1磁気抵抗素子620aの内周縁より内側に位置しており、第2磁気抵抗素子630bは、絶縁層30に直交する方向から見て、第1磁気抵抗素子620bの内周縁より内側に位置している。
 第2磁気抵抗素子630a,630bは、仮想円C6の円周に沿って仮想円C6の径方向に並ぶように線対称に配置された第2単位パターンである2個の円弧状パターン631を含むパターン630を有している。2個の円弧状パターン631は、一端を半円弧状パターン632によって互いに接続されており、他端を半円弧状パターン633によって互いに接続されている。第2磁気抵抗素子630aにおいて、仮想円C6の中心から最も外側に位置している円弧状パターン631は、長さが10μmより短い直線状延在部634を介して、配線146,148と接続されている。第2磁気抵抗素子630bにおいて、仮想円C6の中心から最も外側に位置している円弧状パターン631は、長さが10μmより短い直線状延在部634を介して、配線150,152と接続されている。
 第2磁気抵抗素子630aにおいて、仮想円C6の中心側に位置している円弧状パターン631の内周縁と第1磁性体部材40aの第1狭小部42の外周縁との間隔は、第1磁性体部材40aをめっきで形成する際に形成位置がばらついた場合にも、第2磁気抵抗素子630a,630bと第1磁性体部材40aの第1狭小部42とが重ならない程度に確保されている。
 第2磁気抵抗素子630a,630bのパターン630は、第1磁気抵抗素子620a,620bのパターン620と同じ太さで形成されている。ただし、第2磁気抵抗素子630a,630bのパターン630の太さが、第1磁気抵抗素子620a,620bのパターン620の太さより細くてもよい。
 本実施形態に係る磁気センサ6においては、第2磁気抵抗素子630a,630bが円弧状パターン631を有している。円弧状パターン631は、円弧で構成されている。互いに隣接した2つの円弧状パターン631同士は、半円弧状パターン632,633によって互いに接続されている。第2磁気抵抗素子630a,630bは、長さが10μmより短い直線状延在部634のみを含んでいるため、磁界検出の異方性が低減されている。
 第2磁気抵抗素子630aと第2磁気抵抗素子630bとは、パターン630の周方向の向きが異なっている。本実施形態においては、第2磁気抵抗素子630aと第2磁気抵抗素子630bとは、パターン630の周方向の向きが135°異なっている。これにより、第2磁気抵抗素子630aおよび第2磁気抵抗素子630bの各々の磁気抵抗効果の異方性を互いに低減することができる。
 本実施形態に係る磁気センサ6においても、第1磁気抵抗素子620a,620bの内側に第2磁気抵抗素子630a,630bを配置しているため、磁気センサ6を小形にできる。また、磁気センサ6においても、第1磁気抵抗素子620a,620bと第2磁気抵抗素子630a,630bとを接続する配線を立体的に引き回す必要がないため、簡易な製造プロセスで回路基板600を製造可能である。
 図31に示すように、第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子620a,620bおよび第2磁気抵抗素子630a,630bのうちの第2磁気抵抗素子630a,630bのみを覆っている。
 本実施形態に係る磁気センサ6においても、垂直磁界および水平磁界を高感度に検出することができる。また、本発明の実施形態9に係る磁気センサ6は、第1磁気抵抗素子620a,620bが円周に沿って配置された第1単位パターンを含むことにより、水平磁界の検出の等方性が高い。
 なお、本実施形態においては、第2磁気抵抗素子630a,630bは、第1磁性体部材40aにより磁気シールドされて、垂直磁界および水平磁界をほとんど検出しないため、必ずしも第2磁気抵抗素子630a,630bの抵抗変化率が、第1磁気抵抗素子620a,620bの抵抗変化率より小さくなくてもよい。
 本発明の実施形態9に係る磁気センサ6においても、磁気抵抗素子を用いて、水平磁界の検出の等方性が高く、微弱な垂直磁界も検出することができるとともに、磁気抵抗素子の上方に設けられた構造体から磁気抵抗素子に作用する応力によって出力精度が低下することを抑制できる。
 本実施形態に係る磁気センサ6においては、第1磁気抵抗素子620a,620bの内周縁と第1磁性体部材40aの第1基部41の外周縁との間隔は、第1磁性体部材40aをめっきで形成する際に形成位置がばらついた場合にも、第1磁気抵抗素子620a,620bと第1磁性体部材40aとが重ならない程度に確保されているため、第1磁性体部材40aから応力緩衝部を通じて第1磁気抵抗素子620a,620bに応力が作用することを抑制できる。
 本実施形態に係る磁気センサ6においては、仮想円C6の中心側に位置している円弧状パターン631の内周縁と第1磁性体部材40aの第1狭小部42の外周縁との間隔は、第1磁性体部材40aをめっきで形成する際に形成位置がばらついた場合にも、第2磁気抵抗素子630a,630bと第1磁性体部材40aの第1狭小部42とが重ならない程度に確保されているため、第1磁性体部材40aの第1狭小部42から第2磁気抵抗素子630a,630bに応力が作用することを抑制できる。
 (実施形態10)
 以下、本発明の実施形態10に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態10に係る磁気センサは、第1磁気抵抗素子のパターンおよび第1磁性体部材の形状が主に、本発明の実施形態9に係る磁気センサ6と異なるため、本発明の実施形態9に係る磁気センサ6と同様である構成については説明を繰り返さない。
 図33は、本発明の実施形態10に係る磁気センサの平面図である。図34は、本発明の実施形態10に係る磁気センサの第1磁気抵抗素子および第2磁気抵抗素子のパターンを示す平面図である。図33および図34においては、第1磁性体部材の外縁および内縁を点線で記載している。
 図33に示すように、本発明の実施形態10に係る磁気センサ7は、回路基板700と、回路基板700の上方に設けられた2つの第1磁性体部材40bとを備える。第1磁性体部材40bは、第1基部41bと、絶縁層30に直交する方向から見た外形面積が第1基部41bの外形面積より小さい第1狭小部42とを含む。絶縁層30に直交する方向から見て、第1基部41bは、八角形の外形を有している。本発明の実施形態10に係る磁気センサ7においては、第1磁性体部材40bの外周部の全周に亘って、第1磁性体部材40bの第1基部41bと回路基板700との間の隙間が設けられており、この隙間全体に第1応力緩和部が配置されている。
 図33および図34に示すように、本発明の実施形態10に係る磁気センサ7の第1磁気抵抗素子720a,720bのパターン720は、絶縁層30に直交する方向から見て、仮想円C6の円周において配線146,148,150,152が位置する部分が開放した仮想C字形状C61に沿って配置されたC字状パターン721である、1つの第1単位パターンで構成されている。第1磁気抵抗素子720a,720bの内周縁と第1磁性体部材40bの第1基部41bの外周縁との間隔は、第1磁性体部材40bをめっきで形成する際に形成位置がばらついた場合にも、第1磁気抵抗素子720a,720bと第1磁性体部材40bとが重ならない程度に確保されている。
 図33に示すように、第1磁気抵抗素子720aと第1磁気抵抗素子720bとは、仮想C字形状C61の向きが互いに異なるように周方向の向きが異なっている。すなわち、第1磁気抵抗素子720aと第1磁気抵抗素子720bとは、C字状パターン721の向きが互いに異なるように、パターン720の周方向の向きが異なっている。
 本実施形態においては、第1磁気抵抗素子720aと第1磁気抵抗素子720bとは、C字状パターン721の向きが互いに135°異なるように、パターン720の周方向の向きが135°異なっている。
 第2磁気抵抗素子630a,630bのパターン630は、第1磁気抵抗素子720a,720bのパターン720と同じ太さで形成されている。ただし、第2磁気抵抗素子630a,630bのパターン630の太さが、第1磁気抵抗素子720a,720bのパターン720の太さより細くてもよい。
 本実施形態に係る磁気センサ7においても、第1磁気抵抗素子720a,720bの内側に第2磁気抵抗素子630a,630bを配置しているため、磁気センサ7を小形にできる。また、磁気センサ7においても、第1磁気抵抗素子720a,720bと第2磁気抵抗素子630a,630bとを接続する配線を立体的に引き回す必要がないため、簡易な製造プロセスで回路基板700を製造可能である。
 図33に示すように、第1磁性体部材40bは、絶縁層30に直交する方向から見て、第1磁気抵抗素子720a,720bおよび第2磁気抵抗素子630a,630bのうちの第2磁気抵抗素子630a,630bのみを覆っている。
 本実施形態に係る磁気センサ7においても、垂直磁界および水平磁界を高感度に検出することができる。また、本発明の実施形態10に係る磁気センサ7は、第1磁気抵抗素子720a,720bが円周に沿って配置された第1単位パターンを含むことにより、水平磁界の検出の等方性が高い。
 なお、本実施形態においては、第2磁気抵抗素子630a,630bは、第1磁性体部材40bにより磁気シールドされて、垂直磁界および水平磁界をほとんど検出しないため、必ずしも第2磁気抵抗素子630a,630bの抵抗変化率が、第1磁気抵抗素子720a,720bの抵抗変化率より小さくなくてもよい。
 本発明の実施形態10に係る磁気センサ7においても、磁気抵抗素子を用いて、水平磁界の検出の等方性が高く、微弱な垂直磁界も検出することができるとともに、磁気抵抗素子の上方に設けられた構造体から磁気抵抗素子に作用する応力によって出力精度が低下することを抑制できる。
 本実施形態に係る磁気センサ7においては、第1磁気抵抗素子720a,720bの内周縁と第1磁性体部材40bの第1基部41bの外周縁との間隔は、第1磁性体部材40bをめっきで形成する際に形成位置がばらついた場合にも、第1磁気抵抗素子720a,720bと第1磁性体部材40bとが重ならない程度に確保されているため、第1磁性体部材40bから応力緩衝部を通じて第1磁気抵抗素子720a,720bに応力が作用することを抑制できる。
 (実施形態11)
 以下、本発明の実施形態11に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態11に係る磁気センサは、第2磁気抵抗素子のパターンおよび第1磁性体部材の形状が主に、本発明の実施形態9に係る磁気センサ6と異なるため、本発明の実施形態9に係る磁気センサ6と同様である構成については説明を繰り返さない。
 図35は、本発明の実施形態11に係る磁気センサの平面図である。図36は、本発明の実施形態11に係る磁気センサの第1磁気抵抗素子および第2磁気抵抗素子のパターンを示す平面図である。図35および図36においては、第1磁性体部材の外縁および内縁を点線で記載している。
 図35に示すように、本発明の実施形態11に係る磁気センサ8は、回路基板800と、回路基板800の上方に設けられた2つの第1磁性体部材40cとを備える。第1磁性体部材40cは、第1基部41と、絶縁層30に直交する方向から見た外形面積が第1基部41の外形面積より小さい第1狭小部42cとを含む。絶縁層30に直交する方向から見て、第1基部41および第1狭小部42cの各々は、円形の外形を有している。絶縁層30に直交する方向から見て、第1狭小部42cの中心は、第1基部41の中心に対して偏心している。本発明の実施形態11に係る磁気センサ8においては、第1磁性体部材40cの外周部の全周に亘って、第1磁性体部材40cの第1基部41と回路基板800との間の隙間が設けられており、この隙間全体に第1応力緩和部が配置されている。
 図36に示すように、第2磁気抵抗素子830aは、絶縁層30に直交する方向から見て、仮想円C6の中心側に位置し、第1磁気抵抗素子620aに囲まれており、第2磁気抵抗素子830bは、絶縁層30に直交する方向から見て、仮想円C6の中心側に位置し、第1磁気抵抗素子620bに囲まれている。すなわち、第2磁気抵抗素子830aは、絶縁層30に直交する方向から見て、第1磁気抵抗素子620aの内周縁より内側に位置しており、第2磁気抵抗素子830bは、絶縁層30に直交する方向から見て、第1磁気抵抗素子620bの内周縁より内側に位置している。
 第2磁気抵抗素子830a,830bは、仮想円C6の円周に沿って仮想円C6の径方向に並ぶように線対称に配置された第2単位パターンである2個の円弧状パターン831を含むパターン830を有している。2個の円弧状パターン831は、一端を半円弧状パターン832によって互いに接続されており、他端を半円弧状パターン833によって互いに接続されている。第2磁気抵抗素子830aにおいて、仮想円C6の中心から最も外側に位置している円弧状パターン831は、長さが10μmより短い直線状延在部834を介して、配線146,148と接続されている。第2磁気抵抗素子830bにおいて、仮想円C6の中心から最も外側に位置している円弧状パターン831は、長さが10μmより短い直線状延在部834を介して、配線150,152と接続されている。
 第2磁気抵抗素子830aにおいて、仮想円C6の中心側に位置している円弧状パターン831の内周縁と第1磁性体部材40cの第1狭小部42cの外周縁との間隔は、第1磁性体部材40cをめっきで形成する際に形成位置がばらついた場合にも、第2磁気抵抗素子830a,830bと第1磁性体部材40cの第1狭小部42cとが重ならない程度に確保されている。
 第2磁気抵抗素子830a,830bのパターン830は、第1磁気抵抗素子620a,620bのパターン620と同じ太さで形成されている。ただし、第2磁気抵抗素子830a,830bのパターン830の太さが、第1磁気抵抗素子620a,620bのパターン620の太さより細くてもよい。
 本実施形態に係る磁気センサ8においては、第2磁気抵抗素子830a,830bが円弧状パターン831を有している。円弧状パターン831は、円弧で構成されている。互いに隣接した2つの円弧状パターン831同士は、半円弧状パターン832,833によって互いに接続されている。第2磁気抵抗素子830a,830bは、長さが10μmより短い直線状延在部834のみを含んでいるため、磁界検出の異方性が低減されている。
 第2磁気抵抗素子830aと第2磁気抵抗素子830bとは、パターン830の周方向の向きが異なっている。本実施形態においては、第2磁気抵抗素子830aと第2磁気抵抗素子830bとは、パターン830の周方向の向きが135°異なっている。これにより、第2磁気抵抗素子830aおよび第2磁気抵抗素子830bの各々の磁気抵抗効果の異方性を互いに低減することができる。
 本実施形態に係る磁気センサ8においても、第1磁気抵抗素子620a,620bの内側に第2磁気抵抗素子830a,830bを配置しているため、磁気センサ8を小形にできる。また、磁気センサ8においても、第1磁気抵抗素子620a,620bと第2磁気抵抗素子830a,830bとを接続する配線を立体的に引き回す必要がないため、簡易な製造プロセスで回路基板800を製造可能である。
 図35に示すように、第1磁性体部材40cは、絶縁層30に直交する方向から見て、第1磁気抵抗素子620a,620bおよび第2磁気抵抗素子830a,830bのうちの第2磁気抵抗素子830a,830bのみを覆っている。
 なお、本実施形態においては、第2磁気抵抗素子830a,830bは、第1磁性体部材40cにより磁気シールドされて、垂直磁界および水平磁界をほとんど検出しないため、必ずしも第2磁気抵抗素子830a,830bの抵抗変化率が、第1磁気抵抗素子620a,620bの抵抗変化率より小さくなくてもよい。
 本発明の実施形態11に係る磁気センサ8においても、磁気抵抗素子を用いて、水平磁界の検出の等方性が高く、微弱な垂直磁界も検出することができるとともに、磁気抵抗素子の上方に設けられた構造体から磁気抵抗素子に作用する応力によって出力精度が低下することを抑制できる。
 本実施形態に係る磁気センサ8においては、仮想円C6の中心側に位置している円弧状パターン831の内周縁と第1磁性体部材40cの第1狭小部42cの外周縁との間隔は、第1磁性体部材40cをめっきで形成する際に形成位置がばらついた場合にも、第2磁気抵抗素子830a,830bと第1磁性体部材40cの第1狭小部42cとが重ならない程度に確保されているため、第1磁性体部材40cの第1狭小部42cから第2磁気抵抗素子830a,830bに応力が作用することを抑制できる。
 本実施形態に係る磁気センサ8においては、絶縁層30に直交する方向から見て、第1狭小部42cの中心は、第1基部41の中心に対して偏心している。そのため、絶縁層30に直交する方向から見て、第1狭小部42cの中心と第2磁気抵抗素子830a,830bと最短距離は、第1基部41の中心と第2磁気抵抗素子830a,830bと最短距離より長い。これにより、第1磁性体部材40cの第1狭小部42cから第2磁気抵抗素子830a,830bに応力が作用することをより抑制しつつ、シールド効果の高い第1磁性体部材40cの第1基部41の中心近傍の直下に、第2磁気抵抗素子830a,830bを配置することができる。
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1a,1b,1c,2,3,4,5,6,7,8 磁気センサ、10 磁性体層、20 導電層、30 絶縁層、40,40a,40b,40c,45 第1磁性体部材、41,41b,61 第1基部、42,42c,62 第1狭小部、50 第2磁性体部材、60,60a,60b 第1導電体部、70 第2導電体部、71 第2基部、72 第2狭小部、80 第1応力緩和部、90 第2応力緩和部、100,200,300,400,500,600,700,800 回路基板、110 半導体基板、120,230,330,520,620,630,720,830 パターン、120a,120b,320a,320b,420a,420b,520a,520b,620a,620b,720a,720b 第1磁気抵抗素子、121,133,323,521,533,621,721 C字状パターン、122,123,231,232,233,632,633,832,833 半円弧状パターン、130,320,530 2重渦巻き状パターン、130a,130b,230a,230b,330a,330b,430a,430b,530a,530b,630a,630b,830a,830b 第2磁気抵抗素子、131,132,321,322,531,532 渦巻き状パターン、140,141 中点、145,146,147,148,149,150,151,152 配線、160 差動増幅器、161 温度補償回路、162 スイッチ回路、163 ドライバ、234,634,834,L1~L15 直線状延在部、324,325 長さ調整用冗長部、370 第2単位パターン、370a 始端部、370b 終端部、522,523 直線状パターン、631,831 円弧状パターン、B1~B14 曲部、C1,C2,C3,C5 仮想円、C11,C21,C51 C字形状。

Claims (17)

  1.  感磁素子と、
     前記感磁素子を覆う絶縁層と、
     前記絶縁層上に位置する第1導電体部と、
     前記第1導電体部上に位置し、前記絶縁層に直交する方向から見て、前記第1導電体部を覆う第1磁性体部材と、
     前記第1導電体部の一部に沿って設けられ、前記第1導電体部とは異なる材料で構成された部材とを備え、
     前記第1導電体部は、第1基部と、前記絶縁層に直交する方向から見た外形面積が前記第1基部の外形面積より小さい第1狭小部とを含み、
     前記第1基部と前記第1狭小部とが、前記絶縁層に直交する方向に並んで設けられており、
     前記第1導電体部とは異なる材料で構成された前記部材は、前記絶縁層に直交する方向から見て、前記第1狭小部の外形と前記第1基部の外形とに囲まれた領域に設けられている、磁気センサ。
  2.  前記第1導電体部の前記第1狭小部は、前記絶縁層に直交する方向において、前記第1導電体部の絶縁層側の端部に位置しており、
     前記第1導電体部とは異なる材料で構成された前記部材は、前記第1基部と前記絶縁層とに挟まれて位置している、請求項1に記載の磁気センサ。
  3.  前記第1導電体部の前記第1狭小部は、前記絶縁層に直交する方向において、前記第1導電体部の第1磁性体部材側の端部に位置しており、
     前記第1導電体部とは異なる材料で構成された前記部材は、前記第1基部と前記第1磁性体部材とに挟まれて位置している、請求項1に記載の磁気センサ。
  4.  前記第1導電体部の前記第1基部は、前記絶縁層に直交する方向において、前記第1導電体部の絶縁層側の端部および第1磁性体部材側の端部の各々に位置し、
     前記第1導電体部の前記第1狭小部は、前記絶縁層に直交する方向において、前記第1導電体部の前記第1基部同士に挟まれて位置しており、
     前記第1導電体部とは異なる材料で構成された前記部材は、前記第1基部同士に挟まれて位置している、請求項1に記載の磁気センサ。
  5.  前記第1導電体部とは異なる材料で構成された前記部材は、応力緩和部である、請求項1から請求項4のいずれか1項に記載の磁気センサ。
  6.  前記感磁素子として、第1磁気抵抗素子を有し、
     前記磁気センサは、前記第1磁気抵抗素子と電気的に接続されてブリッジ回路を構成する第2磁気抵抗素子をさらに備え、
     前記第2磁気抵抗素子は、前記絶縁層に覆われている、請求項1から請求項5のいずれか1項に記載の磁気センサ。
  7.  前記感磁素子は、外周縁を有し、
     前記第1磁性体部材は、前記絶縁層に直交する方向から見て、前記感磁素子の前記外周縁より内側の領域に位置している、請求項6に記載の磁気センサ。
  8.  前記第1磁気抵抗素子は、内周縁をさらに有し、
     前記第2磁気抵抗素子は、前記絶縁層に直交する方向から見て、前記第1磁気抵抗素子の前記内周縁より内側の領域に位置して前記第1磁性体部材で覆われている、請求項7に記載の磁気センサ。
  9.  前記磁気センサは、
     前記絶縁層上に位置し、前記絶縁層に直交する方向から見て、前記第1導電体部とは異なる第2導電体部と、
     前記第2導電体部上に位置し、前記絶縁層に直交する方向から見て、前記第2導電体部を覆う、前記第1磁性体部材とは異なる第2磁性体部材とをさらに備え、
     前記第2磁気抵抗素子は、前記第1磁気抵抗素子の前記外周縁より外側の領域に位置して前記第2磁性体部材で覆われている、請求項7に記載の磁気センサ。
  10.  前記第2導電体部は、第2基部と、前記絶縁層に直交する方向から見た外形面積が前記第2基部の外形面積より小さい第2狭小部とを含み、
     前記第2導電体部においては、前記第2基部と前記第2狭小部とが、前記絶縁層に直交する方向に並んで設けられている、請求項9に記載の磁気センサ。
  11.  前記第2導電体部の前記第2狭小部は、前記絶縁層に直交する方向において、前記第2導電体部の絶縁層側の端部に位置している、請求項10に記載の磁気センサ。
  12.  前記第2導電体部の前記第2狭小部は、前記絶縁層に直交する方向において、前記第2導電体部の第2磁性体部材側の端部に位置している、請求項10に記載の磁気センサ。
  13.  前記第2導電体部の前記第2基部は、前記絶縁層に直交する方向において、前記第2導電体部の絶縁層側の端部および第2磁性体部材側の端部の各々に位置し、
     前記第2導電体部の前記第2狭小部は、前記絶縁層に直交する方向において、前記第2導電体部の前記第2基部同士に挟まれて位置している、請求項10に記載の磁気センサ。
  14.  感磁素子と、
     前記感磁素子を覆う絶縁層と、
     前記絶縁層上に位置する第1磁性体部材と、
     前記第1磁性体部材の一部に沿って設けられ、前記第1磁性体部材とは異なる材料で構成された応力緩和部とを備え、
     前記感磁素子は、外周縁を有し、
     前記第1磁性体部材は、前記絶縁層に直交する方向から見て、前記感磁素子の前記外周縁より内側の領域に位置しており、
     前記第1磁性体部材は、第1基部と、前記絶縁層に直交する方向から見た外形面積が前記第1基部の外形面積より小さい第1狭小部とを含み、
     前記第1磁性体部材においては、前記第1基部と前記第1狭小部とが、前記絶縁層に直交する方向に並んで設けられており、
     前記第1磁性体部材の前記第1狭小部は、前記絶縁層に直交する方向において、前記第1磁性体部材の絶縁層側の端部に位置しており、
     前記応力緩和部は、前記絶縁層に直交する方向から見て、前記第1狭小部の外形と前記第1基部の外形とに囲まれた領域に設けられており、前記第1基部と前記絶縁層とに挟まれて位置している、磁気センサ。
  15.  前記感磁素子として、第1磁気抵抗素子を有し、
     前記磁気センサは、前記第1磁気抵抗素子と電気的に接続されてブリッジ回路を構成する第2磁気抵抗素子をさらに備え、
     前記第2磁気抵抗素子は、前記絶縁層に覆われている、請求項14に記載の磁気センサ。
  16.  前記第1磁気抵抗素子は、内周縁をさらに有し、
     前記第2磁気抵抗素子は、前記絶縁層に直交する方向から見て、前記第1磁気抵抗素子の前記内周縁より内側の領域に位置して前記第1磁性体部材で覆われている、請求項15に記載の磁気センサ。
  17.  前記磁気センサは、前記絶縁層上に位置する、前記第1磁性体部材とは異なる第2磁性体部材をさらに備え、
     前記第2磁気抵抗素子は、前記第1磁気抵抗素子の前記外周縁より外側の領域に位置して前記第2磁性体部材で覆われている、請求項15に記載の磁気センサ。
PCT/JP2018/043607 2017-12-04 2018-11-27 磁気センサ WO2019111765A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880078092.1A CN111448470B (zh) 2017-12-04 2018-11-27 磁传感器
US16/891,243 US11333723B2 (en) 2017-12-04 2020-06-03 Magnetic sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017232855 2017-12-04
JP2017-232855 2017-12-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/891,243 Continuation US11333723B2 (en) 2017-12-04 2020-06-03 Magnetic sensor

Publications (1)

Publication Number Publication Date
WO2019111765A1 true WO2019111765A1 (ja) 2019-06-13

Family

ID=66750983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043607 WO2019111765A1 (ja) 2017-12-04 2018-11-27 磁気センサ

Country Status (3)

Country Link
US (1) US11333723B2 (ja)
CN (1) CN111448470B (ja)
WO (1) WO2019111765A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162584A1 (ja) * 2022-02-24 2023-08-31 株式会社村田製作所 磁気センサ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130895A (ja) * 2001-10-26 2003-05-08 Sanken Electric Co Ltd 電流検出装置
JP2007263951A (ja) * 2006-02-14 2007-10-11 Murata Mfg Co Ltd 磁気センサ
JP2010159982A (ja) * 2009-01-06 2010-07-22 Asahi Kasei Electronics Co Ltd 半導体装置及びその製造方法
JP2013044641A (ja) * 2011-08-24 2013-03-04 Murata Mfg Co Ltd 磁気センサ
JP2015118067A (ja) * 2013-12-20 2015-06-25 アルプス電気株式会社 磁気検知装置
WO2016013345A1 (ja) * 2014-07-24 2016-01-28 株式会社村田製作所 磁気センサ
JP2016125901A (ja) * 2014-12-27 2016-07-11 アルプス電気株式会社 磁界検知装置
JP2016173317A (ja) * 2015-03-17 2016-09-29 エスアイアイ・セミコンダクタ株式会社 半導体装置
US20170343622A1 (en) * 2016-05-31 2017-11-30 Texas Instruments Incorporated Highly sensitive, low power fluxgate magnetic sensor integrated onto semiconductor process technologies
US20170341934A1 (en) * 2016-03-17 2017-11-30 Texas Instruments Incorporated Selective patterning of titanium encapsulation layers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2557430B1 (en) 2006-04-13 2014-05-14 Asahi Kasei EMD Corporation Magnetic sensor and method for fabricating the same
JP6222351B2 (ja) * 2014-05-09 2017-11-01 愛知製鋼株式会社 磁気検出装置およびその製造方法
CN105223523B (zh) * 2014-05-30 2018-04-27 株式会社村田制作所 磁传感器
JP6597370B2 (ja) * 2015-03-12 2019-10-30 Tdk株式会社 磁気センサ
DE112015006591B8 (de) * 2015-06-04 2021-12-23 Murata Manufacturing Co., Ltd. Stromsensor
JPWO2017090728A1 (ja) * 2015-11-27 2018-09-13 Tdk株式会社 スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ
JP6697909B2 (ja) 2016-03-15 2020-05-27 エイブリック株式会社 半導体装置とその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130895A (ja) * 2001-10-26 2003-05-08 Sanken Electric Co Ltd 電流検出装置
JP2007263951A (ja) * 2006-02-14 2007-10-11 Murata Mfg Co Ltd 磁気センサ
JP2010159982A (ja) * 2009-01-06 2010-07-22 Asahi Kasei Electronics Co Ltd 半導体装置及びその製造方法
JP2013044641A (ja) * 2011-08-24 2013-03-04 Murata Mfg Co Ltd 磁気センサ
JP2015118067A (ja) * 2013-12-20 2015-06-25 アルプス電気株式会社 磁気検知装置
WO2016013345A1 (ja) * 2014-07-24 2016-01-28 株式会社村田製作所 磁気センサ
JP2016125901A (ja) * 2014-12-27 2016-07-11 アルプス電気株式会社 磁界検知装置
JP2016173317A (ja) * 2015-03-17 2016-09-29 エスアイアイ・セミコンダクタ株式会社 半導体装置
US20170341934A1 (en) * 2016-03-17 2017-11-30 Texas Instruments Incorporated Selective patterning of titanium encapsulation layers
US20170343622A1 (en) * 2016-05-31 2017-11-30 Texas Instruments Incorporated Highly sensitive, low power fluxgate magnetic sensor integrated onto semiconductor process technologies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162584A1 (ja) * 2022-02-24 2023-08-31 株式会社村田製作所 磁気センサ

Also Published As

Publication number Publication date
CN111448470B (zh) 2022-07-22
US20200292637A1 (en) 2020-09-17
US11333723B2 (en) 2022-05-17
CN111448470A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
JP6424889B2 (ja) 磁気センサ
JP6369548B2 (ja) 磁気センサ
US9891293B2 (en) Magnetic sensor device preventing concentration of magnetic fluxes to a magnetic sensing element
JP2017072375A (ja) 磁気センサ
WO2017209169A1 (ja) 磁気センサ
WO2014156751A1 (ja) 磁気センサ
WO2017199519A1 (ja) 平衡式磁気検知装置
WO2019111765A1 (ja) 磁気センサ
WO2019111766A1 (ja) 磁気センサ
JP6064656B2 (ja) センサ用磁気抵抗素子、およびセンサ回路
JP5413866B2 (ja) 磁気検出素子を備えた電流センサ
US10295615B2 (en) Magnetic sensor
WO2022018978A1 (ja) 磁気センサ
WO2019111782A1 (ja) 磁気センサ
JP6296160B2 (ja) 磁気センサ
WO2019111781A1 (ja) 磁気センサ
JP2012088225A (ja) 磁気検出装置
WO2019111780A1 (ja) 磁気センサ
CN110998349B (zh) 磁传感器
WO2015125699A1 (ja) 磁気センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP