WO2017199519A1 - 平衡式磁気検知装置 - Google Patents

平衡式磁気検知装置 Download PDF

Info

Publication number
WO2017199519A1
WO2017199519A1 PCT/JP2017/007187 JP2017007187W WO2017199519A1 WO 2017199519 A1 WO2017199519 A1 WO 2017199519A1 JP 2017007187 W JP2017007187 W JP 2017007187W WO 2017199519 A1 WO2017199519 A1 WO 2017199519A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge circuit
shield layer
magnetic field
measured
coil
Prior art date
Application number
PCT/JP2017/007187
Other languages
English (en)
French (fr)
Inventor
井出 洋介
彰 ▲高▼橋
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2017199519A1 publication Critical patent/WO2017199519A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Definitions

  • the present invention relates to a balanced magnetic detection device using a feedback coil, and more particularly to a balanced magnetic detection device capable of switching and setting a measurement range and detection sensitivity when measuring a measured magnetic field.
  • Patent Document 1 describes an invention relating to a so-called magnetic balance type current sensor capable of measuring current over a wide measurement range.
  • the magnetic balance type current sensor is disposed in the vicinity of the magnetic detection element and the magnetic detection element whose characteristics are changed by the induction magnetic field from the current to be measured, and a cancellation magnetic field for canceling the induction magnetic field when the cancellation current flows. And a coil for generating The magnetic balance type current sensor has an advantage of being able to detect the current to be measured in a wide measurement range with high accuracy, compared to a so-called magnetic proportional type current sensor which does not have a feedback coil.
  • the measurement range and the measurement sensitivity of the magnetic balance type current sensor are determined by the number of turns of the feedback coil. Therefore, it is difficult to measure a large current in a predetermined measurement range, for example, with a magnetic balance type current sensor having a configuration suitable for small current measurement, and conversely, a small current with a magnetic balance type current sensor suitable for large current measurement. It is difficult to detect with high sensitivity.
  • Patent Document 1 Since the magnetic balance type current sensor described in Patent Document 1 is provided with a plurality of feedback coils, it has a drawback that the structure becomes complicated and large, and the manufacturing cost becomes high.
  • the present invention solves the above-mentioned conventional problems, and provides a balanced magnetic detection device capable of switching between measurement range and measurement sensitivity by making at least two bridge circuits face one feedback coil.
  • the purpose is to
  • the present invention provides a feedback coil, a magnetic detection unit, and a coil that provides a cancellation current for inducing a cancellation magnetic field that cancels the measured magnetic field to the feedback coil according to the detection output when the magnetic detection unit detects the measured magnetic field.
  • the current detection unit includes a first bridge circuit to which a plurality of magnetoresistance effect elements are connected, a second bridge circuit to which a plurality of magnetoresistance effect elements are similarly connected, the first bridge circuit, and the first bridge circuit A switching unit which selects and operates one of the two bridge circuits;
  • the first bridge circuit and the second bridge circuit face the same feedback coil,
  • the current value of the cancel current when the first bridge circuit is operating in a state where the magnetic field to be measured of the same strength is applied is the cancel current when the second bridge circuit is operating.
  • a shield layer for attenuating the magnetic field to be measured and giving it to the first bridge circuit is provided, and a shield layer is provided for the second bridge circuit.
  • a second shield layer to be provided to the bridge circuit of The attenuation factor of the magnetic field to be measured by the first shield layer is higher than that of the second shield layer.
  • the thickness dimension of the first shield layer can be configured to be larger than that of the second shield layer.
  • a second shield layer to be provided to the bridge circuit of The distance between the first bridge circuit and the first shield layer may be shorter than the distance between the second bridge circuit and the second shield layer.
  • a first shield layer to attenuate the magnetic field to be measured to give to the first bridge circuit and a second magnetic field to attenuate the magnetic field to be measured as the feedback limiting means, a first shield layer to attenuate the magnetic field to be measured to give to the first bridge circuit and a second magnetic field to attenuate the magnetic field to be measured.
  • a second shield layer to be provided to the bridge circuit of The area of the first shield layer covering the first bridge circuit may be larger than the area of the second shield layer covering the second bridge circuit.
  • the thickness dimension and the composition of the magnetic material can be made the same between the first shield layer and the second shield layer.
  • the number of coil conductors facing the first bridge circuit is the coil conductor facing the second bridge circuit.
  • the winding structure of the coil is set so as to be more than the number of.
  • the feedback coil is formed by planarly winding a coil conductor in a plurality of turns, and the first opposing region in which the coil conductor extends linearly on both sides sandwiching a winding center And a second opposing area, It is preferable that the first bridge circuit faces the first opposing area and the second bridge circuit faces the second opposing area.
  • the magnetoresistive effect element forming the first bridge circuit and the magnetoresistive effect element forming the second bridge circuit are provided on a common substrate. It is possible to form by film formation.
  • the balanced magnetic sensing device uses the first bridge circuit with the feedback coil having the first bridge circuit and the second bridge circuit facing each other, and the same strength of the magnetic field to be measured being applied.
  • the feedback control means is provided to change the amount of cancellation current flowing through the feedback coil depending on whether it is operating or using the second bridge circuit.
  • the measurement range and the measurement sensitivity can be switched and used by switching and operating the first bridge circuit and the second bridge circuit.
  • the device By making at least two bridge circuits face one feedback coil, the device can be miniaturized and power consumption can also be reduced.
  • the bridge circuit when the bridge circuit is disposed in each of two opposing regions facing each other across the winding center in the feedback coil, the size can be reduced, and the cancellation magnetic field induced from the feedback coil can be effectively used.
  • three or more bridge circuits may be opposed to one feedback coil.
  • a plan view showing a current detection device using the balanced magnetic detection device according to the embodiment of the present invention A plan view showing a magnetic detection unit equipped in the balanced magnetic detection device shown in FIG. 1 and a wiring structure thereof Plan view showing one magnetic detection unit; An enlarged cross-sectional view of the current detection device using the balanced magnetic detection device shown in FIG.
  • a circuit diagram of a current detection device using the balanced magnetic detection device according to the embodiment A diagram illustrating the difference between the measurement range and the measurement sensitivity when switching between the first bridge circuit and the second bridge circuit.
  • the balanced magnetic detection device 1 is used as part of a current detection device for detecting the current value of the measured current I0 flowing through the current path 5 shown in FIGS. 1, 4 and 5 There is.
  • the balanced magnetic detection device 1 has a substrate 2.
  • the substrate 2 is a silicon (Si) substrate.
  • the surface 2a of the substrate 2 is a flat surface.
  • the magnetic detection unit 3 has a first bridge circuit 10 and a second bridge circuit 20.
  • the first bridge circuit 10 is composed of magnetoresistance effect elements 11, 12, 13 and 14, and the second bridge circuit 20 is composed of magnetoresistance effect elements 21, 22, 23 and 24.
  • Each magnetoresistive element is formed on the surface 2 a of the common substrate 2 by film formation.
  • a lower insulating layer (not shown) is formed on the first bridge circuit 10 and the second bridge circuit 20, and a feedback coil 30 is formed thereon by a plating process. Furthermore, the upper insulating layer is formed on the feedback coil 30, and the first shield layer 41 is formed on the upper insulating layer.
  • the first bridge circuit 10 and the second bridge circuit 20 are drawn as if they are disposed on the feedback coil 30 (on the front side of the drawing), but in practice
  • the balanced magnetic detection device 1 includes, from the bottom, the substrate 2, the first bridge circuit 10 and the second bridge circuit 20, the lower insulating layer, the feedback coil 30, the upper insulating layer, The first shield layer 41 is stacked in this order.
  • the balanced magnetic detection device 1 faces the lower side of the current path 5.
  • the first bridge circuit 10 and the second bridge circuit 20 that constitute the magnetic detection unit 3 are arranged at an interval in the Y direction.
  • the magnetoresistance effect elements are arranged in the order of 13, 14, 12, 11 from the X1 side toward the X2 direction, and arranged at regular intervals.
  • the magnetoresistance effect elements are arranged in order of 21, 22, 24, and 23 from the X1 side toward the X2 direction, and arranged at regular intervals.
  • the current path 5 is located above the first bridge circuit 10 and the second bridge circuit 20 in the Z direction.
  • the measured current I0 flowing in the current path 5 is an alternating current (or a direct current) and flows in the X1-X2 direction.
  • FIG. 1 and FIG. 2 The arrangement structure and the wiring structure of the magnetic detection unit 3 are shown in FIG. 1 and FIG. 2, and its circuit diagram is shown in FIG.
  • the magnetoresistive effect element 11 located at the end on the X2 side and the magnetoresistive effect element 13 located at the end on the X1 side are connected to the wiring path 51, and the wiring path A terminal 51 is connected to a power supply land (Vdd) 52.
  • the magnetoresistance effect element 11 located at the end on the X2 side and the magnetoresistance effect element 12 adjacent thereto are connected in series, and the magnetoresistance effect element 13 located at the end on the X1 side, and the magnetic resistance element adjacent thereto
  • the resistive effect elements 14 are connected in series.
  • the magnetoresistive effect element 12 is connected to the ground land portion (Gnd1) 53, and the magnetoresistive effect element 14 is connected to the ground land portion (Gnd2) 54.
  • the midpoint between the magnetoresistance effect element 11 and the magnetoresistance effect element 12 is connected to the output land (Out1) 55, and the midpoint between the magnetoresistance effect element 13 and the magnetoresistance effect element 14 is connected to the output land (Out2) 56 It is done.
  • the magnetoresistive effect element 23 located at the end on the X2 side and the magnetoresistive effect element 21 located at the end on the X1 side are connected to the wiring path 57, and the wiring path Terminals 57 are connected to a power supply land (Vdd) 58.
  • the magnetoresistive effect element 21 located at the end on the X1 side and the magnetoresistive effect element 22 adjacent thereto are connected in series, and the magnetoresistive effect element 23 located at the end on the X2 side, and the magnetic resistance adjacent thereto
  • the resistive effect elements 24 are connected in series.
  • the magnetoresistive effect element 22 is connected to the ground land (Gnd 2) 54, and the magnetoresistive effect element 24 is connected to the ground land (Gnd 1) 53.
  • the midpoint between the magnetoresistive element 21 and the magnetoresistive element 22 is connected to the output land (Out 2) 56, and the midpoint between the magnetoresistive element 23 and the magnetoresistive element 24 is connected to the output land (Out 1) 55 It is done.
  • the magnetic detection unit 3 is provided with a switching unit 62 which is a switch circuit.
  • the power supply unit 61 is switched to one of the two power supply land portions (Vdd) 52 and 58 and connected by the switching unit 62.
  • the wiring paths 51 and 57, the other wiring paths not designated by the reference numerals, and the land portions 52, 53, 54, 55, 56, and 58 are formed of a conductive layer such as gold.
  • the magnetoresistive effect element 11 is shown in an enlarged plan view, representing the plurality of magnetoresistive effect elements 11, 12, 13, 14, 21, 22, 23, 24.
  • the magnetoresistive effect element 11 shown in FIG. 3 has a plurality of sensing elements 6 in a stripe shape (long shape) having a longitudinal dimension in the X direction larger than a width dimension in the Y direction.
  • the plurality of stripe-shaped detection elements 6 are arranged in parallel to one another.
  • the ends on the X2 side of adjacent sensing elements 6 are connected by the connection electrode 7a, the ends on the X1 side are connected by the connection electrode 7b, and the sensing elements 6 are connected to a so-called meander pattern.
  • all sensing elements 6 are connected in series.
  • the sensing element 6 located on the Y1 side in FIG. 3 is connected to the power supply land (Vdd) 52 via the wiring path 8
  • the sensing element 6 located on the Y2 side is the wiring path 9 It is connected to the output land (Out1) 55 through the same.
  • the other magnetoresistance effect elements 12, 13, 14, 21, 22, 23, 24 also have the same planar shape as the magnetoresistance effect element 11, and each of the stripe-shaped sensing elements 6 is connected by the connection electrodes 7 a and 7 b. It is connected to a so-called meander pattern.
  • the sensing element 6 provided in each magnetoresistive element is a giant magnetoresistive element layer (GMR layer) that exerts a giant magnetoresistive effect, and is formed on the insulating underlayer formed on the surface 2 a of the substrate 2.
  • GMR layer giant magnetoresistive element layer
  • the fixed magnetic layer, the nonmagnetic layer, and the free magnetic layer are sequentially stacked, and the surface of the free magnetic layer is covered with a protective layer.
  • These layers are formed by a CVD or sputtering process and then formed into a stripe shape by etching.
  • connection electrodes 7a and 7b connecting the stripe-shaped magnetoresistive effect elements to the meander pattern, wiring paths 8 and 9, and wiring paths 51 and 57 shown in FIG. 2 are formed.
  • the fixed magnetic layer and the free magnetic layer of each sensing element 2 have a stripe shape in which the longitudinal direction is oriented in the X direction.
  • the magnetization P1 of the pinned magnetic layer is pinned in the Y2 direction.
  • the magnetoresistance effect elements 14, 21 and 24 have the magnetization P1 of the pinned magnetic layer fixed in the Y2 direction, similarly to the magnetoresistance effect element 11.
  • the magnetization P2 of the pinned magnetic layer is oriented in the Y1 direction and fixed, contrary to the magnetoresistive element 11.
  • the pinned magnetic layer is a self-pinned structure in which the first magnetic layer, the nonmagnetic intermediate layer, and the second magnetic layer are stacked.
  • the first magnetic layer and the second magnetic layer are ferromagnetic layers such as FeCo (iron-cobalt) alloy, and the nonmagnetic intermediate layer is Ru (ruthenium) or the like.
  • the magnetization directions of the first magnetic layer and the second magnetic layer are antiparallel It can be fixed to
  • the second magnetic layer faces the free magnetic layer, and the direction of the magnetization of the second magnetic layer is the direction of the magnetization P1 or P2 of the pinned magnetic layer.
  • the magnetization fixed directions P1 and P2 are the sensitivity axis directions of the respective magnetoresistance effect elements. In FIGS. 1 and 2, the directions of the fixed magnetizations P1 and P2 are indicated by filled arrows.
  • the pinned magnetic layer of the self-pinned structure does not need to be annealed in a magnetic field, so that the magnetoresistive elements 11, 14, 21 and 24 whose pinned magnetization P1 is directed to Y2 are formed in the same film formation step and then pinned.
  • the magnetoresistance effect elements 12, 13, 22, 23 whose magnetization P2 is oriented to Y1 can be formed in the same film formation step. Therefore, the magnetoresistive effect elements 11, 12, 13 and 14 constituting the first bridge circuit 10 and the magnetoresistive effect elements 21, 22, 23 and 24 constituting the second bridge circuit 20 are formed on the same substrate 2. It can be formed on the surface 2a. In each magnetoresistive element, since the sensing element 6 is patterned by etching, it is possible to form all the magnetoresistive elements with high accuracy and with high relative accuracy.
  • the magnetization F of the free layer is aligned to a single magnetic domain in the X2 direction by a shape anisotropy, a bias magnetic field using an antiferromagnetic layer, or the like.
  • the direction of magnetization F of the free layer is the same, and in FIGS. It is indicated by.
  • each of the magnetoresistance effect elements when the magnetic field to be measured H0 in the Y direction is applied, the direction of the magnetization F aligned in the X1 direction in the free magnetic layer is inclined in the Y1 direction or the Y2 direction.
  • the angle between the vector of the magnetization F of the free magnetic layer and the vector of the fixed magnetization P1 or P2 decreases, the electrical resistance of the magnetoresistive element decreases, and the vector of the magnetization of the free magnetic layer and the fixed direction P1 of the fixed magnetization F or As the angle with the vector of P2 increases, the resistance value of the magnetoresistive element increases.
  • the cross section of the sensing element 6 constituting the magnetoresistive effect element 14 of the first bridge circuit 10 and the detection constituting the magnetoresistive effect element 22 of the second bridge circuit 20 A cross section of the element 6 is shown.
  • the magnetoresistance effect elements of the magnetoresistance effect elements 11, 12, 13 and 14 which constitute the first bridge circuit 10 and the magnetoresistance effect elements 21, 22, 23 and 24 which constitute the second bridge circuit 20 The number of sensing elements 6 and the width dimension and the pitch of the sensing elements 6 in the Y1-Y2 direction are the same.
  • a lower insulating layer is formed on the first bridge circuit 10 and the second bridge circuit 20, and a feedback coil 30 is formed on the surface of the lower insulating layer.
  • a planar pattern of the feedback coil 30 is shown in FIG.
  • the feedback coil 30 is formed by spirally winding a plurality of turns clockwise from one land portion 31 to the other land portion 32.
  • the Y2 side of the feedback coil 30 is a first facing area 33 with the winding center interposed therebetween, and the Y1 side is a second facing area 34.
  • a plurality of coil conductors 30a extend linearly in the X1-X2 direction, and are formed in parallel with each other.
  • the cross-sectional area of the coil conductor 30 a is the same in the first opposing region 33 and the second opposing region 34. That is, the feedback coil 30 is formed in a plane spiral shape by the coil conductor 30a having a uniform width dimension and a uniform height dimension.
  • the pitch and spacing of the coil conductor 30 a in the Y1-Y2 direction in the first opposing region 33 is the pitch in the Y1-Y2 direction of the coil conductor 30 a in the second opposing region 34 and It is narrower than the interval. Therefore, the number of coil conductors 30a positioned within the width dimension A1 in the Y1-Y2 direction of the magnetoresistive effect elements 11, 12, 13, 14 constituting the first bridge circuit 10 is large, and the second bridge circuit 20 The number of coil conductors 30a located within the width dimension A2 in the Y1-Y2 direction of the magnetoresistance effect elements 21, 22, 23, 24 constituting the present invention is smaller than that within the width dimension A1. In addition, A1 and A2 are the same width dimensions.
  • the total amount of current flowing in the range of the width dimension A1 is larger than the total amount of current flowing in the range of the width dimension A2.
  • the pitch in the Y direction of the coil conductor 30a is wider than that of the first facing region 33, and in the second facing region 34 on the Y1 side.
  • the cross-sectional area of the coil conductor 30 a may be larger than that of the first facing region 33.
  • the middle point between the magnetoresistance effect element 11 and the magnetoresistance effect element 12 connected in series in the first bridge circuit 10 is connected to the output land portion 55, and the second bridge circuit 20.
  • the middle point of the magnetoresistance effect element 23 and the magnetoresistance effect element 24 which are connected in series is also connected to the output land portion 55.
  • the potential of the output land portion 55 is applied to the coil energizing portion 15 as the midpoint detection potential V1.
  • a middle point between the magnetoresistance effect element 13 and the magnetoresistance effect element 14 connected in series in the first bridge circuit 10 is connected to the output land portion 56 and connected in series in the second bridge circuit 20.
  • the midpoint between the magnetoresistive element 21 and the magnetoresistive element 22 is also connected to the output land 56.
  • the potential of the output land portion 56 is applied to the coil energizing portion 15 as the midpoint detection potential V2.
  • the coil conduction unit 15 has a differential amplification unit 15a and a compensation circuit 15b.
  • the differential amplification unit 15a mainly includes an operational amplifier, and the midpoint detection potential V1 of the output land portion 55 and the midpoint detection potential V2 of the output land portion 56 are applied to the differential amplification portion 15a, and the midpoint detection potential The difference (V1-V2) between V1 and V2 is obtained as the detection output Vd.
  • the detection output Vd is applied to the compensation circuit 15b, and the cancel current Id generated as a compensation current is applied to the feedback coil 30.
  • the integrated unit of the differential amplification unit 15a and the compensation circuit 15b may be called a compensation type differential amplification unit.
  • the land 31 of the feedback coil 30 is connected to the compensation circuit 15 b, and the land 32 is connected to the current detector 17.
  • the current detection unit 17 includes a resistor 17a connected to the feedback coil 30, and a voltage detection unit 17b that detects a voltage applied to the resistor 17a.
  • An upper insulating layer (not shown) is formed on the feedback coil 30 shown in FIG. 4, and on the surface of the upper insulating layer, the upper side of the magnetoresistive effect elements 11, 12, 13, 14 constituting the first bridge circuit 10.
  • the first shield layer 41 is formed to cover the The first shield layer 41 is a plated layer formed of a soft magnetic metal material such as a Ni—Fe alloy (nickel-iron alloy). However, in this embodiment, the shield layers do not cover the upper side of the magnetoresistance effect elements 21, 22, 23, 24 that constitute the second bridge circuit 20.
  • the balanced magnetic detection device 1 When an alternating current (or direct current) to-be-measured current I0 flows in the X direction in the current path 5, a to-be-measured magnetic field H0 is induced. As shown in FIG. 4, the distance from the current path 5 to the first bridge circuit 10 and the distance from the current path 5 to the second bridge circuit 20 are substantially equal.
  • the components of the magnetic field to be measured H0 directed in the Y1-Y2 direction are the magnetoresistive effect elements 11, 12, 13, 14 of the first bridge circuit 10 and the magnetoresistive effect elements 21, 22, 23 of the second bridge circuit 20. , 24 with substantially the same intensity in the sensitivity axis direction (P1 direction or P2 direction).
  • the magnetoresistance in which the direction of the fixed magnetization P1 is the Y2 direction The resistance values of the effect element 11 and the magnetoresistive element 14 change with the same polarity, and the resistance values of the magnetoresistive element 12 and the magnetoresistive element 13 whose direction of the fixed magnetization P2 is the Y1 direction change with the same polarity. Further, the midpoint detection potential V1 and the midpoint detection potential V2 change in opposite directions to each other as the to-be-measured magnetic field H0 increases or decreases.
  • the cancellation magnetic field Hd1 acting on the magnetoresistive effect elements 11, 12, 13 and 14 constituting the first bridge circuit 10 and the magnetic field to be measured H0 are in equilibrium, and the detection output Vd becomes equal to or less than a predetermined value At this time, the coil current Id (cancel current Id1) flowing through the feedback coil 30 is detected by the current detection unit 17 shown in FIG. 5, and this becomes a measured value of the current value of the measured current I0.
  • the second bridge circuit 20 is selected by the switching unit (SW) 62 and the power supply voltage Vdd is applied.
  • the resistance values of the magnetoresistive element 21 and the magnetoresistive element 24 in which the direction of the fixed magnetization P1 is the Y2 direction change with the same polarity, and the direction of the fixed magnetization P2 is the Y1 direction.
  • the resistance values of a certain magnetoresistive element 22 and magnetoresistive element 23 change with the same polarity.
  • the midpoint detection potential V1 and the midpoint detection potential V2 change to the opposite side by the increase and decrease of the measured magnetic field H0.
  • the coil current Id is given from the compensation circuit 15 b to the feedback coil 30, and the cancel current Id 1 flows in the feedback coil 30.
  • a cancellation magnetic field Hd2 that cancels the measured magnetic field H0 is induced by the cancellation current Id1 and is applied to the second bridge circuit 20.
  • the cancellation magnetic field Hd2 acting on the magnetoresistance effect elements 21, 22, 23, 24 constituting the second bridge circuit 20 and the magnetic field to be measured H0 are in equilibrium, and the detection output Vd becomes equal to or less than a predetermined value
  • the coil current Id (cancel current Id1) flowing through the feedback coil 30 is detected by the current detection unit 17 shown in FIG. 5, and this becomes a measured value of the current value of the measured current I0.
  • the direction in which the cancel current Id1 flows is reversed in the second opposing region 34 in which the effect elements 21, 22, 23, 24 oppose each other.
  • the direction of the fixed magnetization P1 of the magnetoresistive effect element 11 and the direction of the fixed magnetization P2 of the magnetoresistive effect element 23 are set in opposite directions, and the direction of the fixed magnetization P2 of the magnetoresistive effect element 12 and the magnetism
  • the direction of the fixed magnetization P1 of the resistance effect element 24 is set in the opposite direction.
  • the direction of the fixed magnetization P2 of the magnetoresistive effect element 13 and the direction of the fixed magnetization P1 of the magnetoresistive effect element 21 are set in the opposite direction, and the direction of the fixed magnetization P1 of the magnetoresistive effect element 14 and the direction of the magnetoresistive effect element 22
  • the direction of the fixed magnetization P2 is set reversely.
  • Feedback limiting means is provided for reducing the value to a value smaller than the current value of the cancel current Id1 when the second bridge circuit 20 is selected and operating.
  • the measurement range can be expanded so that a relatively large measured magnetic field H0 can be detected when the first bridge circuit 10 is selected, and the second bridge circuit 20 selects When the measurement is performed, the measurement range is narrowed, but the change of the measured magnetic field H0 can be detected with high sensitivity.
  • the first shield layer 41 is provided only between the first bridge circuit 10 and the current path 5 as the first feedback control means, as shown in FIG. And a shield layer is not provided on the second bridge circuit 20.
  • the magnetic field to be measured H0 is attenuated and applied to the magnetoresistive effect elements 11, 12, 13, and 14 constituting the first bridge circuit 10. Therefore, the ratio of the change of the detection output Vd of the first bridge circuit 10 to the change of the strength of the measured magnetic field H0 decreases, and the cancellation magnetic field Hd1 induced by the feedback coil 30 to cancel the measured magnetic field H0. The change is smaller. Further, the absolute value of the measured magnetic field H0 when the magnetoresistive effect elements 11, 12, 13, 14 are magnetically saturated is increased.
  • the ratio of the change in the detection output Vd of the second bridge circuit 20 to the change in the strength of the measured magnetic field H0 is large.
  • the change of the cancellation magnetic field Hd1 for canceling the measured magnetic field H0 also becomes large.
  • the absolute value of the to-be-measured magnetic field H0 when the magnetoresistive effect elements 21, 22, 23, 24 magnetically saturate becomes smaller.
  • the horizontal axis indicates the strength of the applied magnetic field (measured magnetic field H0), and the vertical axis indicates the magnitude of the cancel current Id1 flowing through the feedback coil 30.
  • (i) in FIG. 6 (change in cancel current Id1) / (change in strength of the measured magnetic field H0) becomes smaller, and the magnetoresistance is also reduced. Since the absolute value of the measured magnetic field H0 when the effect element is magnetically saturated is increased, the measurement range of the measured magnetic field H0 (measured current I0) is widened. However, the measurement sensitivity decreases.
  • the switching part (SW) 62 is switched to operate the first bridge circuit 10, and the to-be-measured magnetic field H0 (to-be-measured current I0) is small.
  • the switching unit (SW) 62 is switched to operate the second bridge circuit 20.
  • the widths of the magnetoresistive effect elements 11, 12, 13, 14 constituting the first bridge circuit 10 are as follows.
  • the number of coil conductors 30a opposed to the dimension A1 is large, and in the magnetoresistance effect elements 21, 22, 23, 24 constituting the second bridge circuit 20, the number of coil conductors 30a opposed to the width dimension A1 is It is less. That is, the total amount of coil current in the width dimension A1 is larger than the total amount of coil current in the width dimension A2.
  • the width dimensions of A1 and A2 are equal.
  • the cancel magnetic field for canceling the to-be-measured magnetic field H0 is It is possible to increase the cancellation current Id1 required to induce when the second bridge circuit 20 is selected than when the first bridge circuit 10 is selected.
  • the width dimension of the coil conductor 30 a in the Y direction is the same in the first facing region 33 and the second facing region 34 of the feedback coil 30. Then, the Y-direction spacing and pitch of the coil conductor 30a in the first facing area 33 is made narrower than the spacing and pitch in the second facing area 34, so that the total amount of coil current in the width dimension A1 is the width dimension More than the total amount of coil current in A2.
  • the width dimension of the coil conductor 30a in the first opposing region 33 in the Y direction is thinner than the width dimension of the coil conductor 30a in the second opposing region 34, the coil conductor in the first opposing region 33
  • the spacing and pitch of 30 a can be easily made smaller than the spacing and pitch of the coil conductors 30 a in the second facing region 34. Therefore, the number of coil conductors 30a in the width dimension A1 can be made larger than the number of coil conductors 30a in the width dimension A2.
  • the first feedback control means using the shield layer 41 and the second feedback control means in which the distance between the coil conductors 30a is changed are used in combination,
  • the difference between the measurement ranges and the difference between the measurement sensitivities can be set large between when the bridge circuit 10 is selected and when the second bridge circuit is selected.
  • only the first feedback control means using the shield layer 41 may be used, or only the second feedback control means in which the distance between the coil conductors 30a is changed may be used.
  • the first shield layer 41 is disposed on the first bridge circuit 10 and indicated by the broken line on the second bridge circuit 20.
  • the second shield layer 42 is disposed, and the rate at which the measured magnetic field H0 can be attenuated by the first shield layer 41 is high, and the rate at which the measured magnetic field H0 can be attenuated by the second shield layer 42 is high. It is also possible.
  • the composition of the magnetic material may be changed between the first shield layer 41 and the second shield layer 42 to make the magnetic permeability of the first shield layer 41 higher than that of the second shield layer 42.
  • the shield functions of the first shield layer 41 and the second shield layer 42 are set equal, that is, the thickness dimension and the composition of the magnetic material are made the same. Then, the distance between the first bridge circuit 10 and the first shield layer 41 is set to be shorter than the distance between the second bridge circuit 20 and the second shield layer 42.
  • the thickness dimension and the composition of the first shield layer 41 and the second shield layer 42 in the Z direction are the same, and the plane of the first shield layer 41 in the XY plane Make the aspect ratio of the dimension (width in Y direction / length in X direction) larger than the aspect ratio of surface in second shield layer 42 (width in Y direction / length in X direction) .
  • the first shield layer 41 and the second shield layer 42 have the same length in the X direction, the area of the first shield layer 41 covering the top of the first bridge circuit 10 is The area of the second shield layer 41 covering the top of the second bridge circuit 20 can be made larger.
  • the first bridge circuit 10 is formed in one of the first opposing area 33 and the second opposing area 34 which are two linear parts opposing each other across the winding center in the feedback coil 30 formed in a planar pattern.
  • the cancel magnetic fields Hd1 and Hd2 induced in the first opposing area 33 and the second opposing area 34 of the feedback coil 30 can be effectively used.
  • the size of the balanced magnetic detection device 1 can be matched to that of the feedback coil 30, and can be configured in a small size.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

共通のフィードバックコイルを用いて、被測定磁場(Ho)の変化に応じた測定レンジと測定感度に切替えることができる平衡式磁界検知装置を提供する。フィードバックコイル(30)の第1の対向領域(33)に第1のブリッジ回路(10)を構成する磁気抵抗効果素子(11,12,13,14)が対向し、第2の対向領域(34)に第2のブリッジ回路(20)を構成する磁気抵抗効果素子(21,22,23,24)が対向している。前記第1のブリッジ回路(10)はシールド層(41)で覆われているが、前記第2のブリッジ回路(20)はシールド層に覆われていない。切替え部(62)で前記第1のブリッジ回路(10)に切替えると、測定レンジが広くなり、前記第2のブリッジ回路(20)に切替えると、検知感度を高めることができる。

Description

平衡式磁気検知装置
 本発明は、フィードバックコイルを使用した平衡式磁気検知装置に係り、特に、被測定磁場を測定するときの測定レンジと検知感度とを切替えて設定することが可能な平衡式磁気検知装置に関する。
 特許文献1には、広い測定範囲にわたって電流を測定できるようにしたいわゆる磁気平衡式電流センサに関する発明が記載されている。
 磁気平衡式電流センサは、被測定電流からの誘導磁界により特性が変化する磁気検出素子と、磁気検出素子の近傍に配置されて、キャンセル電流が流れることにより前記誘導磁界を相殺するためのキャンセル磁界を発生するコイルとを有している。磁気平衡式電流センサは、フィードバックコイルを備えていないいわゆる磁気比例式電流センサよりも、広い測定レンジで被測定電流を高精度で検知できる利点を有している。
 しかしながら、磁気平衡式電流センサの測定レンジや測定感度は、フィードバックコイルのターン数によって決められる。そのため、例えば小電流の測定に適した構成の磁気平衡式電流センサで、大電流を所定の測定レンジで測定することは難しく、逆に大電流の測定に適した磁気平衡式電流センサで小電流を感度良く検知することは難しい。
 そこで、特許文献1に記載された磁気平衡式電流センサでは、ターン数が異なる複数のフィードバックコイルを直列に接続し、被測定電流の大小に応じてフィードバック回路を選択するスイッチ回路を設けている。
WO2012/011306 A1
 特許文献1に記載されている磁気平衡式電流センサは、複数のフィードバックコイルを設けているため、構造が複雑で大型になり、製造コストが高くなる欠点がある。
 また、特許文献1の図1などに示す回路構成では、スイッチ113bがONとなったときに、コイルAとコイルBが直列に接続されるため、フィードバックコイルの抵抗値が高くなり、消費電力が多くなる欠点もある。
 本発明は上記従来の課題を解決するものであり、1つのフィードバックコイルに少なくとも2つのブリッジ回路を対向させることで、測定レンジと測定感度を切替えることができるようにした平衡式磁気検知装置を提供することを目的としている。
 本発明は、フィードバックコイルと、磁気検知部と、前記磁気検知部が被測定磁場を検知した検知出力に応じて前記フィードバックコイルに被測定磁場を打ち消すキャンセル磁界を誘導するためのキャンセル電流を与えるコイル通電部と、前記キャンセル電流の電流値を検知する電流検知部、とが設けられた平衡式磁気検知装置において、
 前記電流検知部が、複数の磁気抵抗効果素子が接続された第1のブリッジ回路と、同じく複数の磁気抵抗効果素子が接続された第2のブリッジ回路と、前記第1のブリッジ回路と前記第2のブリッジ回路をいずれか選択して動作させる切替え部と、を有し、
 前記第1のブリッジ回路と前記第2のブリッジ回路とが、同じ前記フィードバックコイルに対向しており、
 同じ強度の被測定磁場が与えられた状態で、前記第1のブリッジ回路が動作しているときの前記キャンセル電流の電流値を、前記第2のブリッジ回路が動作しているときの前記キャンセル電流の電流値よりも低減させるためのフィードバック制限手段が設けられていることを特徴とするものである。
 本発明の平衡式磁気検知装置は、前記フィードバック制限手段として、被測定磁場を減衰させて前記第1のブリッジ回路に与えるシールド層が設けられ、前記第2のブリッジ回路にはシールド層が設けられていないものである。
 または、本発明の平衡式磁気検知装置は、前記フィードバック制限手段として、被測定磁場を減衰させて前記第1のブリッジ回路に与える第1のシールド層と、被測定磁場を減衰させて前記第2のブリッジ回路に与える第2のシールド層と、が設けられ、
 前記第1のシールド層による被測定磁場の減衰率が、前記第2のシールド層よりも高いものである。
 例えば、前記第1のシールド層の厚さ寸法が、前記第2のシールド層よりも大きいものとして構成できる。
 また、本発明の平衡式磁気検知装置は、前記フィードバック制限手段として、被測定磁場を減衰させて前記第1のブリッジ回路に与える第1のシールド層と、被測定磁場を減衰させて前記第2のブリッジ回路に与える第2のシールド層と、が設けられ、
 前記第1のブリッジ回路と前記第1のシールド層との距離が、前記第2のブリッジ回路と前記第2のシールド層との距離よりも短いものとして構成できる。
 または、本発明の平衡式磁気検知装置は、前記フィードバック制限手段として、被測定磁場を減衰させて前記第1のブリッジ回路に与える第1のシールド層と、被測定磁場を減衰させて前記第2のブリッジ回路に与える第2のシールド層と、が設けられ、
 前記第1のブリッジ回路を覆う前記第1のシールド層の面積が、前記第2のブリッジ回路を覆う前記第2のシールド層の面積よりも大きいものとして構成できる。
 この場合には、前記第1のシールド層と前記第2のシールド層とで厚さ寸法と磁性材料の組成を同じにすることができる。
 また、本発明の平衡式磁気検知装置は、前記フィードバック制限手段として、前記フィードバックコイルは、前記第1のブリッジ回路に対向するコイル導体の本数が、前記第2のブリッジ回路に対向する前記コイル導体の本数よりも多くなるように、コイルの巻き構造が設定されているものである。
 これは、前記第1のブリッジ回路に対向する前記コイル導体の間隔を、前記第2のブリッジ回路に対向する前記コイル導体の間隔よりも狭くすることで実現できる。さらに、前記第1のブリッジ回路に対向する前記コイル導体の幅寸法を、前記第2のブリッジ回路に対向する前記コイル導体の幅寸法よりも小さくすることが好ましい。
 本発明の平衡式磁気検知装置は、前記フィードバックコイルは、コイル導体が平面的に複数ターンに巻かれて形成され、巻き中心を挟む両側に、前記コイル導体が直線状に延びる第1の対向領域と第2の対向領域が設けられており、
 前記第1のブリッジ回路が前記第1の対向領域に対向し、前記第2のブリッジ回路が前記第2の対向領域に対向しているものが好ましい。
 また、本発明の平衡式磁気検知装置は、前記第1のブリッジ回路を構成する前記磁気抵抗効果素子と、前記第2のブリッジ回路を構成する前記磁気抵抗効果素子とを、共通の基板上に成膜して形成することが可能である。
 本発明の平衡式磁気検知装置は、1つのフィードバックコイルに第1のブリッジ回路と第2のブリッジ回路を対向させ、同じ強度の被測定磁場が与えられた状態で、第1のブリッジ回路を使用しているときと、第2のブリッジ回路を使用しているときとで、フィードバックコイルに流れるキャンセル電流の電流量を変化させるフィードバック制御手段が設けられている。第1のブリッジ回路と第2のブリッジ回路を切替えて動作させることで、測定レンジと測定感度を切替えて使用することができる。
 1つのフィードバックコイルに少なくとも2個のブリッジ回路を対向させることで、装置を小型にし、消費電力も低減させることができる。特に、フィードバックコイルにおいて巻き中心を挟んで対向する2箇所の対向領域のそれぞれにブリッジ回路を配置すると、小型に構成でき、フィードバックコイルから誘導されるキャンセル磁界を有効に利用することが可能になる。
 なお、本発明では、1つのフィードバックコイルに3個以上のブリッジ回路が対向する構成であってもよい。
本発明の実施の形態の平衡式磁気検知装置を使用した電流検知装置を示す平面図、 図1に示す平衡式磁気検知装置に装備されている磁気検知部とその配線構造を示す平面図、 1個の磁気検知部を示す平面図、 図1に示す平衡式磁気検知装置を用いた電流検知装置をIV-IV線で切断した拡大断面図、 実施の形態の平衡式磁気検知装置を使用した電流検知装置の回路図、 第1のブリッジ回路と第2のブリッジ回路を切替えたときの測定レンジと測定感度の違いを説明する線図、
 本発明の実施の形態の平衡式磁気検知装置1は、図1と図4および図5に示す電流路5を流れる被測定電流I0の電流値を検知する電流検知装置の一部として使用されている。
 図4の断面図に示すように、平衡式磁気検知装置1は、基板2を有している。基板2はシリコン(Si)基板である。基板2の表面2aは平坦面である。図1と図2に示すように、磁気検知部3は第1のブリッジ回路10と第2のブリッジ回路20を有している。第1のブリッジ回路10は、磁気抵抗効果素子11,12,13,14で構成され、第2のブリッジ回路20は、磁気抵抗効果素子21,22,23,24で構成されている。それぞれの磁気抵抗効果素子は、共通の基板2の表面2aに成膜されて形成されている。
 図4に示すように、第1のブリッジ回路10と第2のブリッジ回路20の上に下部絶縁層(図示省略)が形成され、その上にフィードバックコイル30がメッキ工程で形成されている。さらにフィードバックコイル30の上に上部絶縁層が形成され、上部絶縁層の上に第1のシールド層41が形成されている。
 図1では、説明の都合上、第1のブリッジ回路10と第2のブリッジ回路20がフィードバックコイル30の上(紙面手前側)に配置されているかのように描かれているが、実際には、図4に示すように、平衡式磁気検知装置1は、下側から、基板2、第1のブリッジ回路10および第2のブリッジ回路20、下部絶縁層、フィードバックコイル30、上部絶縁層、第1のシールド層41の順に積層されている。
 電流検知装置では、平衡式磁気検知装置1が電流路5の下側に対向している。
 図2に示すように、磁気検知部3を構成する第1のブリッジ回路10と第2のブリッジ回路20は、Y方向に間隔を空けて配置されている。Y2側に位置する第1のブリッジ回路10では、磁気抵抗効果素子が13,14,12,11の順で、X1側からX2方向に向けて、一定の間隔で並んで配置されている。Y1側に位置する第2のブリッジ回路20では、磁気抵抗効果素子が21,22,24,23の順で、X1側からX2方向に向けて、一定の間隔で並んで配置されている。
 前記電流路5は第1のブリッジ回路10と第2のブリッジ回路20のZ方向の上方に位置している。電流路5に流れる被測定電流I0は交流電流(または直流電流)であり、X1-X2方向に流れる。
 図1と図2に、磁気検知部3の配置構造と配線構造が示され、図5に、その回路図が示されている。
 第1のブリッジ回路10では、X2側の端部に位置する磁気抵抗効果素子11と、X1側の端部に位置する磁気抵抗効果素子13とが、配線路51に接続されており、配線路51の端末部が電源供給ランド部(Vdd)52に接続されている。X2側の端部に位置する磁気抵抗効果素子11と、これに隣接する磁気抵抗効果素子12が直列に接続され、X1側の端部に位置する磁気抵抗効果素子13と、これに隣接する磁気抵抗効果素子14が直列に接続されている。磁気抵抗効果素子12は接地ランド部(Gnd1)53に接続され、磁気抵抗効果素子14は接地ランド部(Gnd2)54に接続されている。磁気抵抗効果素子11と磁気抵抗効果素子12の中間点は出力ランド部(Out1)55に接続され、磁気抵抗効果素子13と磁気抵抗効果素子14の中間点は出力ランド部(Out2)56に接続されている。
 第2のブリッジ回路20では、X2側の端部に位置する磁気抵抗効果素子23と、X1側の端部に位置する磁気抵抗効果素子21とが、配線路57に接続されており、配線路57の端末部が電源供給ランド部(Vdd)58に接続されている。X1側の端部に位置する磁気抵抗効果素子21と、これに隣接する磁気抵抗効果素子22が直列に接続され、X2側の端部に位置する磁気抵抗効果素子23と、これに隣接する磁気抵抗効果素子24が直列に接続されている。磁気抵抗効果素子22は接地ランド部(Gnd2)54に接続され、磁気抵抗効果素子24は接地ランド部(Gnd1)53に接続されている。磁気抵抗効果素子21と磁気抵抗効果素子22の中間点は出力ランド部(Out2)56に接続され、磁気抵抗効果素子23と磁気抵抗効果素子24の中間点は出力ランド部(Out1)55に接続されている。
 磁気検知部3には、スイッチ回路である切替え部62が設けられている。切替え部62によって、電源供給部61が、2つの電源供給ランド部(Vdd)52、58のいずれかに切替えられて接続される。
 前記配線路51,57および符号を付していない他の配線路と、各ランド部52,53,54,55,56,58は、金などの導電層で形成されている。
 図3には、複数の磁気抵抗効果素子11,12,13,14,21,22,23,24を代表して、磁気抵抗効果素子11が拡大平面図で示されている。
 図3に示す磁気抵抗効果素子11は、Y方向の幅寸法よりもX方向の長手寸法が大きいストライプ形状(長尺形状)の複数本の検知素子6を有している。複数本のストライプ形状の検知素子6は互いに平行に配置されている。隣り合う検知素子6のX2側の端部どうしが接続電極7aで接続され、X1側の端部どうしが接続電極7bで接続されて、検知素子6がいわゆるミアンダパターンに接続されている。1つの磁気抵抗効果素子11内では全ての検知素子6が直列に接続されている。磁気抵抗効果素子11では、図3のY1側に位置する検知素子6が配線路8を介して電源供給ランド部(Vdd)52に接続され、Y2側に位置する検知素子6が配線路9を介して出力ランド部(Out1)55に接続されている。
 他の磁気抵抗効果素子12,13,14,21,22,23,24も、平面形状が磁気抵抗効果素子11と同じであり、それぞれ、ストライプ形状の検知素子6が、接続電極7a,7bによっていわゆるミアンダパターンに接続されている。
 それぞれの磁気抵抗効果素子に設けられた検知素子6は、巨大磁気抵抗効果を発揮する巨大磁気抵抗効果素子層(GMR層)であり、基板2の表面2aに形成された絶縁下地層の上に、固定磁性層と非磁性層とフリー磁性層が順に積層され、フリー磁性層の表面が保護層で覆われている。これらの層はCVDやスパッタ工程で形成され、その後にエッチングでストライプ形状に形成される。さらに、ストライプ形状の磁気抵抗効果素子をミアンダパターンに接続する接続電極7a,7bおよび配線路8,9よび図2に示す配線路51,57などが形成される。
 それぞれの検知素子2の固定磁性層とフリー磁性層は、長手方向がX方向に向けられたストライプ形状である。図1と図2に示すように、磁気抵抗効果素子11では、固定磁性層の磁化P1がY2方向に向けて固定されている。磁気抵抗効果素子14,21,24は、磁気抵抗効果素子11と同様に固定磁性層の磁化P1がY2方向に向けて固定されている。これに対し、磁気抵抗効果素子12,13,22,23は、磁気抵抗効果素子11とは逆に、固定磁性層の磁化P2がY1方向に向けられ固定されている。
 全ての磁気抵抗効果素子において、固定磁性層は、第1磁性層と非磁性中間層と第2の磁性層とが積層されたセルフピン止め構造である。セルフピン止め構造の固定磁性層は、第1磁性層と第2磁性層がFeCo(鉄-コバルト)合金などの強磁性層であり、非磁性中間層がRu(ルテニウム)などである。第1磁性層と第2磁性層の少なくとも一方をY1方向に向く磁場中、またはY2方向に向く磁場中で成膜することで、第1磁性層と第2磁性層の磁化の向きを反平行に固定できる。第2磁性層がフリー磁性層側に面しており、この第2磁性層の磁化の向きが、固定磁性層の磁化P1またはP2の向きである。磁化の固定方向P1,P2がそれぞれの磁気抵抗効果素子の感度軸方向である。図1と図2では、固定磁化P1,P2の向きが塗りつぶされた矢印で示されている。
 セルフピン止め構造の固定磁性層は、磁場中でアニールする必要がないため、固定磁化P1がY2に向く磁気抵抗効果素子11,14,21,24を同じ成膜工程で形成し、その後に、固定磁化P2がY1に向く磁気抵抗効果素子12,13,22,23を同じ成膜工程で形成することができる。そのため、第1のブリッジ回路10を構成する磁気抵抗効果素子11,12,13,14と、第2のブリッジ回路20を構成する磁気抵抗効果素子21,22,23,24を同一の基板2の表面2aに形成することができる。それぞれの磁気抵抗効果素子では、検知素子6がエッチングでパターン化されるため、全ての磁気抵抗効果素子を高精度にしかも相対位置を高精度に決めて形成することが可能になる。
 図3に示すように磁気検知素子6では、フリー層の磁化Fが形状異方性や反強磁性層を用いたバイアス磁界などによってX2方向に単磁区化されて揃えられている。全ての磁気抵抗効果素子11,12,13,14,21,22,23,24において、フリー層の磁化Fの向きが同じであり、図1と図2では磁化Fの向きが塗りつぶしのない矢印で示されている。
 それぞれの磁気抵抗効果素子では、Y方向への被測定磁場H0が与えられると、フリー磁性層においてX1方向に揃えられていた磁化Fの向きがY1方向またはY2方向へ向けて傾けられる。フリー磁性層の磁化Fのベクトルと固定磁化P1またはP2のベクトルとの角度が小さくなると、磁気抵抗効果素子の電気抵抗が低下し、フリー磁性層の磁化のベクトルと固定磁化Fの固定方向P1またはP2のベクトルとの角度が大きくなると、磁気抵抗効果素子の抵抗値が大きくなる。
 図4の断面図には、第1のブリッジ回路10の磁気抵抗効果素子14を構成している検知素子6の断面と、第2のブリッジ回路20の磁気抵抗効果素子22を構成している検知素子6の断面が示されている。第1のブリッジ回路10を構成する磁気抵抗効果素子11,12,13,14と、第2のブリッジ回路20を構成する磁気抵抗効果素子21,22,23,24の全ての磁気抵抗効果素子において、検知素子6の本数と、検知素子6のY1-Y2方向の幅寸法とピッチが同じである。
 第1のブリッジ回路10と第2のブリッジ回路20の上に下部絶縁層が形成され、下部絶縁層の表面にフィードバックコイル30が形成されている。図1にフィードバックコイル30の平面パターンが示されている。フィードバックコイル30は、一方のランド部31から他方のランド部32に向けて時計回りの複数ターンの螺旋状に巻かれて形成されている。
 図1に示すように、フィードバックコイル30は、巻き中心を挟んでY2側が第1の対向領域33となっており、Y1側が第2の対向領域34となっている。第1の対向領域33と第2の対向領域34では、複数のコイル導体30aがX1-X2方向へ直線状に延び、互いに平行に形成されている。図4に示すように、第1の対向領域33と第2の対向領域34においてコイル導体30aの断面積が同じである。すなわち、フィードバックコイル30は、均一な幅寸法で均一な高さ寸法のコイル導体30aで平面螺旋状に形成されている。
 ただし、図4に示すように、第1の対向領域33でのコイル導体30aのY1-Y2方向のピッチおよび間隔は、第2の対向領域34でのコイル導体30aのY1-Y2方向のピッチおよび間隔よりも狭くなっている。そのため、第1のブリッジ回路10を構成する磁気抵抗効果素子11,12,13,14のY1-Y2方向での幅寸法A1内に位置するコイル導体30aの本数が多く、第2のブリッジ回路20を構成する磁気抵抗効果素子21,22,23,24のY1-Y2方向での幅寸法A2内に位置するコイル導体30aの本数が、幅寸法A1内よりも少なくなっている。なお、A1とA2は同じ幅寸法である。
 したがって、フィードバックコイル30に所定の大きさのキャンセル電流Id1が与えられているときに、幅寸法A1の範囲に流れる電流の総量が、幅寸法A2の範囲で流れる電流の総量よりも多くなっている。
 なお、フィードバックコイル30では、Y1側の第2の対向領域34において、第1の対向領域33よりも、コイル導体30aのY方向のピッチを広くするとともに、Y1側の第2の対向領域34において、第1の対向領域33よりも、コイル導体30aの断面積を大きくしてもよい。第2の対向領域34においてコイル導体30aの断面積を大きくすることで、フィードバックコイル30の直流抵抗値を低下させ、消費電力を低下させることが可能になる。
 図2に示すように、第1のブリッジ回路10において直列に接続されている磁気抵抗効果素子11と磁気抵抗効果素子12の中点が、出力ランド部55に接続され、第2のブリッジ回路20において直列に接続されている磁気抵抗効果素子23と磁気抵抗効果素子24の中点も、出力ランド部55に接続されている。図5の回路図に示すように、出力ランド部55の電位は、中点検出電位V1としてコイル通電部15に与えられる。
 第1のブリッジ回路10において直列に接続されている磁気抵抗効果素子13と磁気抵抗効果素子14の中点が、出力ランド部56に接続され、第2のブリッジ回路20において直列に接続されている磁気抵抗効果素子21と磁気抵抗効果素子22の中点も、出力ランド部56に接続されている。図5の回路図に示すように、出力ランド部56の電位は、中点検出電位V2としてコイル通電部15に与えられる。
 図5の回路図に示すように、コイル通電部15は、差動増幅部15aと補償回路15bとを有している。差動増幅部15aはオペアンプを主体として構成されており、出力ランド部55の中点検出電位V1と出力ランド部56の中点検出電位V2は差動増幅部15aに与えられ、中点検出電位V1とV2との差(V1-V2)が検知出力Vdとして求められる。この検知出力Vdが補償回路15bに与えられ補償電流として生成されたキャンセル電流Idがフィードバックコイル30に与えられる。なお、差動増幅部15aと補償回路15bとが一体となったものが、補償型の差動増幅部と呼ばれることがある。
 図5に示すように、フィードバックコイル30のランド部31が補償回路15bに接続され、ランド部32が電流検知部17に接続されている。電流検知部17は、フィードバックコイル30に接続された抵抗17aと、抵抗17aに作用する電圧を検知する電圧検知部17bとを有している。
 図4に示すフィードバックコイル30の上に上部絶縁層(図示省略)が形成され、上部絶縁層の表面では、第1のブリッジ回路10を構成する磁気抵抗効果素子11,12,13,14の上方を覆うに第1のシールド層41が形成されている。第1のシールド層41は、Ni-Fe合金(ニッケルー鉄合金)などの軟磁性金属材料で形成されたメッキ層である。ただし、この実施の形態では、第2のブリッジ回路20を構成する磁気抵抗効果素子21,22,23,24の上方がシールド層で覆われていない。
 次に、平衡式磁気検知装置1の動作を説明する。
 図4に示すように、電流路5に交流(または直流)の被測定電流I0がX方向に流れると、被測定磁場H0が誘導される。図4に示すように、電流路5から第1のブリッジ回路10までの距離と、電流路5から第2のブリッジ回路20までの距離はほぼ等しい。被測定磁場H0のY1-Y2方向に向く成分は、第1のブリッジ回路10の磁気抵抗効果素子11,12,13,14と、第2のブリッジ回路20の磁気抵抗効果素子21,22,23,24に、ほぼ同じ強度で感度軸方向(P1方向またはP2方向)へ与えられる。
 切替え部(SW)62によって第1のブリッジ回路10が選択されて電源電圧Vddが印加されているときに、被測定磁場H0が誘導されると、固定磁化P1の向きがY2方向である磁気抵抗効果素子11と磁気抵抗効果素子14の抵抗値が同じ極性で変化し、固定磁化P2の向きがY1方向である磁気抵抗効果素子12と磁気抵抗効果素子13の抵抗値が同じ極性で変化する。また、中点検出電位V1と中点検出電位V2は、被測定磁場H0の増減によって互いに逆方向へ変化する。
 コイル通電部15の差動増幅器15aで差動増幅された検知出力Vd=(V1-V2)が補償回路15bに与えられると、補償回路15bからフィードバックコイル30にコイル電流Idが与えられ、フィードバックコイル30にキャンセル電流Id1が流れる。フィードバックコイル30の第1の対向領域33では、キャンセル電流Id1によって、被測定磁場H0をキャンセルするキャンセル磁界Hd1が誘導されて、第1のブリッジ回路10に与えられる。
 被測定電流I0で誘導される被測定磁場H0が、キャンセル磁界Hdよりも大きいときは、Vd=(V1-V2)の絶対値が大きくなるため、補償回路15bでは、キャンセル磁界Hd1を増加させて前記検知出力Vdをゼロに近づけるためのコイル電流Idが生成され、このコイル電流Idがフィードバックコイル30にキャンセル電流Id1として与えられる。第1のブリッジ回路10を構成する磁気抵抗効果素子11,12,13,14に作用するキャンセル磁界Hd1と被測定磁場H0とが平衡状態となって、前記検知出力Vdが所定値以下となったときに、フィードバックコイル30に流れているコイル電流Id(キャンセル電流Id1)が図5に示す電流検知部17で検知され、これが被測定電流I0の電流値の測定値となる。
 切替え部(SW)62によって第2のブリッジ回路20が選択されて電源電圧Vddが印加されているときも同じである。被測定磁場H0が誘導されると、固定磁化P1の向きがY2方向である磁気抵抗効果素子21と磁気抵抗効果素子24の抵抗値が同じ極性で変化し、固定磁化P2の向きがY1方向である磁気抵抗効果素子22と磁気抵抗効果素子23の抵抗値が同じ極性で変化する。また、中点検出電位V1と中点検出電位V2が、被測定磁場H0の増減によって逆側に変化する。
 コイル通電部15の差動増幅器15aでは検知出力Vd=(V1-V2)が得られて補償回路15bに与えられる。補償回路15bからフィードバックコイル30にコイル電流Idが与えられて、フィードバックコイル30にキャンセル電流Id1が流れる。フィードバックコイル30の第2の対向領域34では、キャンセル電流Id1によって、被測定磁場H0をキャンセルするキャンセル磁界Hd2が誘導されて、第2のブリッジ回路20に与えられる。
 第2のブリッジ回路20を構成する磁気抵抗効果素子21,22,23,24に作用するキャンセル磁界Hd2と被測定磁場H0とが平衡状態となって、前記検知出力Vdが所定値以下となったときに、フィードバックコイル30に流れているコイル電流Id(キャンセル電流Id1)が図5に示す電流検知部17で検知され、これが被測定電流I0の電流値の測定値となる。
 ここで、フィードバックコイル30では、第1のブリッジ回路10を構成する磁気抵抗効果素子11,12,13,14が対向する第1の対向領域33と、第2のブリッジ回路20を構成する磁気抵抗効果素子21,22,23,24が対向する第2の対向領域34とで、キャンセル電流Id1の流れる向きが逆である。
 これに対応するように、磁気抵抗効果素子11の固定磁化P1の向きと磁気抵抗効果素子23の固定磁化P2の向きが逆方向に設定され、磁気抵抗効果素子12の固定磁化P2の向きと磁気抵抗効果素子24の固定磁化P1の向きが逆方向に設定されている。また、磁気抵抗効果素子13の固定磁化P2の向きと磁気抵抗効果素子21の固定磁化P1の向きが逆方向に設定され、磁気抵抗効果素子14の固定磁化P1の向きと磁気抵抗効果素子22の固定磁化P2の向きが逆に設定されている。
 そのため、切替え部(SW)62によって第1のブリッジ回路10が選択されて動作しているときと、第2のブリッジ回路20が選択されて動作しているときとで、出力ランド部55の中点検出電位V1の極性と、出力ランド部56の中点検出電位V2の極性が常に同じである。
 この平衡式磁気検知装置1では、同じ強度の被測定磁場H0が与えられている状態で、第1のブリッジ回路10が選択されて動作しているときにフィードバックコイル30に流れるキャンセル電流Id1の電流値を、第2のブリッジ回路20が選択されて動作しているときのキャンセル電流Id1の電流値よりも低減させるためのフィードバック制限手段が設けられている。
 フィードバック制限手段を設けることにより、第1のブリッジ回路10が選択されているときに、比較的大きな被測定磁場H0を検知できるように測定レンジを広げることができ、第2のブリッジ回路20が選択されているときに、測定レンジが狭くなるが、被測定磁場H0の変化を感度良く検知できるようになる。
 実施の形態の平衡式磁気検知装置1では、第1のフィードバック制御手段として、図4に示すように、第1のブリッジ回路10と電流路5との間にのみ第1のシールド層41が設けられ、第2のブリッジ回路20の上にはシールド層が設けられていない。
 第1のシールド層41の存在によって、第1のブリッジ回路10を構成する磁気抵抗効果素子11,12,13,14に、被測定磁場H0が減衰して与えられる。そのため、被測定磁場H0の強度の変化にする第1のブリッジ回路10の検知出力Vdの変化の比率が小さくなり、被測定磁場H0をキャンセルするためにフィードバックコイル30で誘導されるキャンセル磁界Hd1の変化が小さくなる。また、磁気抵抗効果素子11,12,13,14が磁気飽和するときの被測定磁場H0の絶対値が大きくなる。
 これに対し、第2のブリッジ回路20の上にはシールド層が存在していないため、被測定磁場H0の強度の変化に対して第2のブリッジ回路20の検知出力Vdの変化の比率が大きくなり、被測定磁場H0をキャンセルするためのキャンセル磁界Hd1の変化も大きくなる。ただし、磁気抵抗効果素子21,22,23,24が磁気飽和するときの被測定磁場H0の絶対値は小さくなる。
 図6は、横軸に印加磁場(被測定磁場H0)の強度が示され、縦軸にフィードバックコイル30に流れるキャンセル電流Id1の大きさが示されている。第1のブリッジ回路10に切替えられているときは、図6に(i)で示すように、(キャンセル電流Id1の変化)/(被測定磁場H0の強度変化)が小さくなり、また、磁気抵抗効果素子が磁気飽和するときの被測定磁場H0の絶対値が大きくなるため、被測定磁場H0(被測定電流I0)の測定レンジが広くなる。ただし、測定感度は低下する。
 第2のブリッジ回路20に切替えられているときは、図6に(ii)で示すように、(キャンセル電流Id1の変化)/(被測定磁場H0の強度変化)が大きくなり、被測定磁場H0(被測定電流I0)の測定レンジが狭まるが、磁気抵抗効果素子が磁気飽和するときの被測定磁場H0の絶対値が小さくなるため、測定感度が高くなる。
 したがって、被測定磁場H0(被測定電流I0)が大きいときは、切替え部(SW)62を切替えて第1のブリッジ回路10を動作させ、被測定磁場H0(被測定電流I0)が小さいときは、切替え部(SW)62を切替えて第2のブリッジ回路20を動作させる。
  この切替えにより、被測定磁場H0(被測定電流I0)の大きさに適した測定動作が可能になる。
 実施の形態の平衡式磁気検知装置1では、第2のフィードバック制御手段として、図4に示すように、第1のブリッジ回路10を構成する磁気抵抗効果素子11,12,13,14では、幅寸法A1に対向するコイル導体30aの本数が多くなっており、第2のブリッジ回路20を構成する磁気抵抗効果素子21,22,23,24では、幅寸法A1に対向するコイル導体30aの本数が少なくなっている。すなわち、幅寸法A1におけるコイル電流の総量が、幅寸法A2におけるコイル電流の総量よりも多くなっている。ただし、A1とA2の幅寸法は等しい。
 第2のフィードバック制御手段によっても、同じ強度の被測定磁場H0が、第1のブリッジ回路10と第2のブリッジ回路20に与えられたときに、被測定磁場H0をキャンセルするためのキャンセル磁界を誘導するのに必要なキャンセル電流Id1を、第2のブリッジ回路20が選択されているときの方が、第1のブリッジ回路10が選択されているときよりも多くすることが可能である。
 したがって、第1のブリッジ回路10に切替えられているときは、図6に(i)で示すように、(キャンセル電流Id1の変化)/(被測定磁場H0の強度変化)が小さくなり、被測定磁場H0(被測定電流I0)の測定レンジが広くなる。ただし、測定感度は低下する。第2のブリッジ回路20に切替えられているときは、図6に(ii)で示すように、(キャンセル電流Id1の変化0)/(被測定磁場H0の強度変化)が大きくなり、被測定磁場H0(被測定電流I0)の測定レンジが狭まるが、測定感度は高くなる。
 図4に示す実施の形態では、フィードバックコイル30の第1の対向領域33と第2の対向領域34において、コイル導体30aのY方向の幅寸法が同一である。そして、第1の対向領域33におけるコイル導体30aのY方向の間隔とピッチを、第2の対向領域34における間隔およびピッチよりも狭くすることで、幅寸法A1におけるコイル電流の総量を、幅寸法A2におけるコイル電流の総量よりも多くしている。ただし、第1の対向領域33におけるコイル導体30aのY方向の幅寸法を、第2の対向領域34におけるコイル導体30aのY方向の幅寸法よりも細くすると、第1の対向領域33におけるコイル導体30aの間隔とピッチを、第2の対向領域34におけるコイル導体30aの間隔およびピッチよりも小さくしやすくなる。よって、幅寸法A1におけるコイル導体30aの本数を、幅寸法A2におけるコイル導体30aの本数よりもさらに多くすることが可能になる。
 実施の形態の平衡式磁気検知装置1では、シールド層41を使用した第1のフィードバック制御手段と、コイル導体30aの間隔を変えた第2のフィードバック制御手段とを併用しているため、第1のブリッジ回路10を選択しているときと第2のブリッジ回路を選択しているときとで、測定レンジの差と測定感度の差を大きく設定できる。
 ただし、本発明では、シールド層41を使用した第1のフィードバック制御手段のみを使用してもよいし、コイル導体30aの間隔を変えた第2のフィードバック制御手段のみを使用してもよい。
 次に、第3のフィードバック制御手段として、図4に示すように、第1のブリッジ回路10の上に第1のシールド層41を配置し、第2のブリッジ回路20の上に破線で示した第2のシールド層42を配置し、第1のシールド層41で被測定磁場H0を減衰させることができる率を、第2のシールド層42で被測定磁場H0を減衰させることができる率を高くすることも可能である。
 これは、第1のシールド層41の膜厚を、第2のシールド層42の膜厚よりも大きくすることで実現できる。または、第1のシールド層41と第2のシールド層42とで磁性材料の組成を変えて、第1のシールド層41の透磁率を第2のシールド層42よりも高くしてもよい。
 第4のフィードバック制御手段として、第1のシールド層41と第2のシールド層42のシールド機能を同等に設定し、すなわち厚さ寸法と磁性材料の組成を同じにする。そして、第1のブリッジ回路10と前記第1のシールド層41との距離を、第2のブリッジ回路20と前記第2のシールド層42との距離よりも短くなるように設定する。
 さらに、第5のフィードバック制御手段として、第1のシールド層41と第2のシールド層42のZ方向の厚さ寸法と組成を同じとし、X-Y平面において、第1のシールド層41の面寸法のアスペクト比(Y方向の幅寸法/X方向の長さ寸法)を、第2のシールド層42の面寸法のアスペクト比(Y方向の幅寸法/X方向の長さ寸法)よりも大きくする。ここで、第1のシールド層41と第2のシールド層42とでX方向の長さ寸法を同等にしておけば、第1のブリッジ回路10の上を覆う第1のシールド層41の面積を、第2のブリッジ回路20の上を覆う第2のシールド層41の面積よりも大きくすることができる。
 実施の形態では、平面パターンで形成されるフィードバックコイル30において巻き中心を挟んで対向する2つの直線部である第1の対向領域33と第2の対向領域34の一方に第1のブリッジ回路10を配置し、他方に第2のブリッジ回路20を配置したことにより、フィードバックコイル30の第1の対向領域33と第2の対向領域34に誘導されるキャンセル磁界Hd1,Hd2を有効に利用できる。また平衡式磁気検知装置1の大きさをフィードバックコイル30に合わせることができ、小型に構成することができる。
1 平衡式磁気検知装置
2 基板
3 磁気検知部
5 電流路
6 検知素子
10 第1のブリッジ回路
11,12,13,14 磁気抵抗効果素子
15 コイル通電部
17 電流検知部
20 第2のブリッジ回路
21,22,23,24 磁気抵抗効果素子
30 フィードバックコイル
30a コイル導体
33 第1の対向領域
34 第2の対向領域
41 第1のシールド層
42 第2のシールド層
62 切替え部
H0 被測定磁場
Hd1,Hd2 被測定磁界
I0 被測定電流
Id1 キャンセル電流

Claims (12)

  1.  フィードバックコイルと、磁気検知部と、前記磁気検知部が被測定磁場を検知した検知出力に応じて前記フィードバックコイルに被測定磁場を打ち消すキャンセル磁界を誘導するためのキャンセル電流を与えるコイル通電部と、前記キャンセル電流の電流値を検知する電流検知部、とが設けられた平衡式磁気検知装置において、
     前記電流検知部が、複数の磁気抵抗効果素子が接続された第1のブリッジ回路と、同じく複数の磁気抵抗効果素子が接続された第2のブリッジ回路と、前記第1のブリッジ回路と前記第2のブリッジ回路をいずれか選択して動作させる切替え部と、を有し、
     前記第1のブリッジ回路と前記第2のブリッジ回路とが、同じ前記フィードバックコイルに対向しており、
     同じ強度の被測定磁場が与えられた状態で、前記第1のブリッジ回路が動作しているときの前記キャンセル電流の電流値を、前記第2のブリッジ回路が動作しているときの前記キャンセル電流の電流値よりも低減させるためのフィードバック制限手段が設けられていることを特徴とする平衡式磁気検知装置。
  2.  前記フィードバック制限手段として、被測定磁場を減衰させて前記第1のブリッジ回路に与えるシールド層が設けられ、前記第2のブリッジ回路にはシールド層が設けられていない請求項1記載の平衡式磁気検知装置。
  3.  前記フィードバック制限手段として、被測定磁場を減衰させて前記第1のブリッジ回路に与える第1のシールド層と、被測定磁場を減衰させて前記第2のブリッジ回路に与える第2のシールド層と、が設けられ、
     前記第1のシールド層による被測定磁場の減衰率が、前記第2のシールド層よりも高い請求項1記載の平衡式磁気検知装置。
  4.  前記第1のシールド層の厚さ寸法が、前記第2のシールド層よりも大きい請求項3記載の平衡式磁気検知装置。
  5.  前記フィードバック制限手段として、被測定磁場を減衰させて前記第1のブリッジ回路に与える第1のシールド層と、被測定磁場を減衰させて前記第2のブリッジ回路に与える第2のシールド層と、が設けられ、
     前記第1のブリッジ回路と前記第1のシールド層との距離が、前記第2のブリッジ回路と前記第2のシールド層との距離よりも短い請求項1記載の平衡式磁気検知装置。
  6.  前記フィードバック制限手段として、被測定磁場を減衰させて前記第1のブリッジ回路に与える第1のシールド層と、被測定磁場を減衰させて前記第2のブリッジ回路に与える第2のシールド層と、が設けられ、
     前記第1のブリッジ回路を覆う前記第1のシールド層の面積が、前記第2のブリッジ回路を覆う前記第2のシールド層の面積よりも大きい請求項1記載の平衡式磁気検知装置。
  7.  前記第1のシールド層と前記第2のシールド層とで厚さ寸法と磁性材料の組成が同じである請求項5または6記載の平衡式磁気検知装置。
  8.  前記フィードバック制限手段として、前記フィードバックコイルは、前記第1のブリッジ回路に対向するコイル導体の本数が、前記第2のブリッジ回路に対向する前記コイル導体の本数よりも多くなるように、コイルの巻き構造が設定されている請求項1記載の平衡式磁気検知装置。
  9.  前記第1のブリッジ回路に対向する前記コイル導体の間隔が、前記第2のブリッジ回路に対向する前記コイル導体の間隔よりも狭い請求項8記載の平衡式磁気検知装置。
  10.  前記第1のブリッジ回路に対向する前記コイル導体の幅寸法が、前記第2のブリッジ回路に対向する前記コイル導体の幅寸法よりも小さい請求項9記載の平衡式磁気検知装置。
  11.  前記フィードバックコイルは、コイル導体が平面的に複数ターンに巻かれて形成され、巻き中心を挟む両側に、前記コイル導体が直線状に延びる第1の対向領域と第2の対向領域が設けられており、
     前記第1のブリッジ回路が前記第1の対向領域に対向し、前記第2のブリッジ回路が前記第2の対向領域に対向している請求項1ないし10のいずれかに記載の平衡式磁気検知装置。
  12.  前記第1のブリッジ回路を構成する前記磁気抵抗効果素子と、前記第2のブリッジ回路を構成する前記磁気抵抗効果素子が、共通の基板上に成膜されて形成されている請求項1ないし11のいずれに記載の平衡式磁気検知装置。
PCT/JP2017/007187 2016-05-17 2017-02-24 平衡式磁気検知装置 WO2017199519A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016098651 2016-05-17
JP2016-098651 2016-05-17

Publications (1)

Publication Number Publication Date
WO2017199519A1 true WO2017199519A1 (ja) 2017-11-23

Family

ID=60325914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007187 WO2017199519A1 (ja) 2016-05-17 2017-02-24 平衡式磁気検知装置

Country Status (1)

Country Link
WO (1) WO2017199519A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040921A1 (en) * 2018-08-20 2020-02-27 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
US10605874B2 (en) 2018-08-06 2020-03-31 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements having varying sensitivity
WO2021149726A1 (ja) * 2020-01-23 2021-07-29 アルプスアルパイン株式会社 磁気抵抗効果素子を用いた磁気センサおよび電流センサ
CN114264860A (zh) * 2021-12-21 2022-04-01 江苏多维科技有限公司 一种台阶式铜排电流检测装置
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429640B1 (en) * 2000-08-21 2002-08-06 The United States Of America As Represented By The Secretary Of The Air Force GMR high current, wide dynamic range sensor
JP2003519780A (ja) * 1999-12-31 2003-06-24 ハネウェル・インコーポレーテッド 磁気抵抗信号絶縁装置
JP2004132790A (ja) * 2002-10-09 2004-04-30 Fuji Electric Holdings Co Ltd 電流センサ
WO2012053296A1 (ja) * 2010-10-20 2012-04-26 アルプス・グリーンデバイス株式会社 電流センサ
JP2013053903A (ja) * 2011-09-02 2013-03-21 Alps Green Devices Co Ltd 電流センサ
WO2015156260A1 (ja) * 2014-04-07 2015-10-15 アルプス・グリーンデバイス株式会社 電流検知装置
WO2017064921A1 (ja) * 2015-10-14 2017-04-20 アルプス電気株式会社 電流検知装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003519780A (ja) * 1999-12-31 2003-06-24 ハネウェル・インコーポレーテッド 磁気抵抗信号絶縁装置
US6429640B1 (en) * 2000-08-21 2002-08-06 The United States Of America As Represented By The Secretary Of The Air Force GMR high current, wide dynamic range sensor
JP2004132790A (ja) * 2002-10-09 2004-04-30 Fuji Electric Holdings Co Ltd 電流センサ
WO2012053296A1 (ja) * 2010-10-20 2012-04-26 アルプス・グリーンデバイス株式会社 電流センサ
JP2013053903A (ja) * 2011-09-02 2013-03-21 Alps Green Devices Co Ltd 電流センサ
WO2015156260A1 (ja) * 2014-04-07 2015-10-15 アルプス・グリーンデバイス株式会社 電流検知装置
WO2017064921A1 (ja) * 2015-10-14 2017-04-20 アルプス電気株式会社 電流検知装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10605874B2 (en) 2018-08-06 2020-03-31 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements having varying sensitivity
WO2020040921A1 (en) * 2018-08-20 2020-02-27 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
WO2021149726A1 (ja) * 2020-01-23 2021-07-29 アルプスアルパイン株式会社 磁気抵抗効果素子を用いた磁気センサおよび電流センサ
JPWO2021149726A1 (ja) * 2020-01-23 2021-07-29
JP7332725B2 (ja) 2020-01-23 2023-08-23 アルプスアルパイン株式会社 磁気抵抗効果素子を用いた磁気センサおよび電流センサ
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor
CN114264860A (zh) * 2021-12-21 2022-04-01 江苏多维科技有限公司 一种台阶式铜排电流检测装置

Similar Documents

Publication Publication Date Title
JP6526319B2 (ja) 平衡式磁界検知装置
JP5250108B2 (ja) 磁気平衡式電流センサ
JP5012939B2 (ja) 電流センサ
WO2017199519A1 (ja) 平衡式磁気検知装置
JP5250109B2 (ja) 磁気平衡式電流センサ
JP5888402B2 (ja) 磁気センサ素子
JP6617156B2 (ja) 磁界検知装置
JP2017072375A (ja) 磁気センサ
JP2018112481A (ja) 磁気センサ
JP5505817B2 (ja) 磁気平衡式電流センサ
WO2015156260A1 (ja) 電流検知装置
CN110837066B (zh) 磁场感测装置
JP5413866B2 (ja) 磁気検出素子を備えた電流センサ
CN111693911A (zh) 磁传感器装置
JP6529885B2 (ja) 磁気センサ、磁界の測定方法、電流センサ、および電流の測定方法
JP2018096895A (ja) 磁場検出装置
WO2011111457A1 (ja) 磁気センサ及びそれを備えた磁気平衡式電流センサ
JP7096349B2 (ja) 磁気センサおよび電流センサ
WO2015125699A1 (ja) 磁気センサ
JP6522485B2 (ja) 磁気センサの製造方法
JP2017020818A (ja) 電流検知装置およびその製造方法
JP5849654B2 (ja) 電流センサ
US20220349962A1 (en) Magnetic sensor and current sensor including magneto-resistance element
JP2017058376A (ja) 電力検知センサ
JP2015099882A (ja) 磁気センサ

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798957

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP