WO2019230341A1 - スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ - Google Patents

スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ Download PDF

Info

Publication number
WO2019230341A1
WO2019230341A1 PCT/JP2019/018731 JP2019018731W WO2019230341A1 WO 2019230341 A1 WO2019230341 A1 WO 2019230341A1 JP 2019018731 W JP2019018731 W JP 2019018731W WO 2019230341 A1 WO2019230341 A1 WO 2019230341A1
Authority
WO
WIPO (PCT)
Prior art keywords
orbit torque
spin
layer
spin orbit
ferromagnetic layer
Prior art date
Application number
PCT/JP2019/018731
Other languages
English (en)
French (fr)
Inventor
陽平 塩川
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to JP2020511392A priority Critical patent/JP6819817B2/ja
Priority to US16/756,388 priority patent/US11391794B2/en
Priority to CN201980006458.9A priority patent/CN111492491B/zh
Publication of WO2019230341A1 publication Critical patent/WO2019230341A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/18Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/80Constructional details

Definitions

  • the present invention relates to a spin orbit torque type magnetization rotation element, a spin orbit torque type magnetoresistive effect element, and a magnetic memory.
  • Giant magnetoresistive (GMR) elements composed of a multilayer film of a ferromagnetic layer and a nonmagnetic layer, and tunnel magnetoresistive (TMR) elements using an insulating layer (tunnel barrier layer, barrier layer) as the nonmagnetic layer are known. Yes. These elements are used in magnetic sensors, high-frequency components, magnetic heads, nonvolatile random access memories (MRAM), and the like.
  • MRAM reads and writes data using the characteristic that the element resistance of the TMR element changes when the directions of magnetization of the two ferromagnetic layers sandwiching the insulating layer change.
  • writing magnetization reversal
  • writing is performed using spin transfer torque (STT) generated by flowing current in the stacking direction of the magnetoresistive effect element.
  • STT spin transfer torque
  • Patent Document 1 describes that the damping constant is 0.01 or less. It is known that the critical write current density using STT is proportional to the damping constant of the ferromagnetic layer, and it is preferable to use a material having a low damping constant from the viewpoint of energy saving, high durability, and high integration. In recent years, Mn—Ga and Mn—Ge alloys are expected as materials having a low damping constant. However, when the damping constant of the ferromagnetic layer is low, there is a possibility of erroneous writing due to the read current, and the problem of lowering the reliability of the device occurs at the same time.
  • Damping constant is a physical quantity originating from spin orbit interaction. Therefore, the damping constant has a close relationship with the magnetic anisotropy energy. Generally, when the damping constant is reduced, the magnetic anisotropy energy is also reduced. When the magnetic anisotropy energy is reduced, the magnetization of the ferromagnetic layer is easily reversed, and data reading / writing is facilitated.
  • Non-Patent Document 1 describes that a Co—Fe alloy, which is a material generally used in magnetoresistive elements, has a damping constant of less than 0.01.
  • a damping constant of Co—Fe—B alloy produced by sputtering is similarly less than 0.01.
  • those having a damping constant of 0.01 or more are only structures other than the BCC structure in which high output characteristics cannot be obtained. Therefore, a ferromagnetic material having a damping constant of less than 0.01 is used for the magnetoresistive effect element using STT.
  • Non-Patent Document 2 On the other hand, in recent years, attention has been focused on magnetization reversal using a pure spin current generated by spin-orbit interaction as a means for reducing reversal current (for example, Non-Patent Document 2). Pure spin current generated by spin-orbit interaction induces spin-orbit torque (SOT). Pure spin current is generated by the same number of upward spin electrons and downward spin electrons flowing in opposite directions. In the pure spin current, the number of electrons flowing in the opposite direction is the same, so the charge flow is canceled out. Therefore, the current flowing through the magnetoresistive element is zero due to the flow of the pure spin current, and the lifetime of the magnetoresistive element is expected to be extended.
  • SOT spin-orbit torque
  • Non-Patent Document 3 describes that in a laminate of a Pt oxide film, Ni 81 Fe 19 and an oxide cap layer, the damping constant of Ni 81 Fe 19 increases by increasing the degree of oxidation of the Pt oxide film. Has been.
  • the magnetization reversal element using SOT differs from the magnetization reversal element using STT in the mechanism of magnetization reversal. For this reason, an adequate configuration for driving a magnetization reversal element using SOT is not sufficiently known.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a spin orbit torque type magnetization rotating element, a spin orbit torque type magnetoresistive effect element, and a magnetic memory capable of quickly performing magnetization reversal.
  • a ferromagnetic layer can be obtained by inserting an oxide-containing layer into a ferromagnetic layer (free layer) whose magnetization is reversed in a spin-orbit torque-type magnetization rotating element. It was found that the magnetization reversal of the (free layer) can be performed quickly. That is, this invention provides the following means in order to solve the said subject.
  • the spin orbit torque type magnetization rotating element of the first embodiment includes a spin orbit torque wiring and a stacked body stacked on the spin orbit torque wiring, and the stacked body includes a first ferromagnetic layer. And an oxide-containing layer and a second ferromagnetic layer in order from the spin orbit torque wiring side, the oxide-containing layer containing an oxide of a nonmagnetic element, and the first ferromagnetic layer and the first ferromagnetic layer Two ferromagnetic layers are ferromagnetically coupled.
  • the easy axis of magnetization of the first ferromagnetic layer intersects the direction of spin injected from the spin orbit torque wiring into the first ferromagnetic layer. It may be.
  • the nonmagnetic element is Al, Si, Mg, Ti, Cr, Cu, Mo, Ru, Rh, Pd, Hf, Ta, W, Re, At least one selected from the group consisting of Ir, Pt, and Bi may be included.
  • the oxide-containing layer may have a thickness of 1.0 nm or less.
  • the oxide of the nonmagnetic element contained in the oxide-containing layer may be deficient in oxygen with respect to the stoichiometric composition.
  • a diffusion prevention layer may be inserted between the oxide-containing layer and the second ferromagnetic layer.
  • the film thickness of the first ferromagnetic layer may be larger than the film thickness of the second ferromagnetic layer.
  • the second ferromagnetic layer may contain at least one element selected from the group consisting of Co, Fe, and B.
  • a spin orbit torque type magnetoresistive effect element includes a spin orbit torque type magnetization rotating element according to the above aspect and a nonmagnetic layer laminated on the opposite side of the spin orbit torque wiring of the laminate. A layer, and a third ferromagnetic layer sandwiching the laminate and the nonmagnetic layer.
  • a magnetic memory according to a third aspect includes a plurality of spin orbit torque type magnetoresistive effect elements according to the above aspect.
  • a spin orbit torque type magnetization rotating element a spin orbit torque type magnetoresistive effect element, and a magnetic memory capable of quickly performing magnetization reversal.
  • FIG. 10 is a schematic cross-sectional view of another example of the spin orbit torque type magnetization rotating element according to Modification 1. It is a cross-sectional schematic diagram of an example of the spin orbit torque type magnetoresistance effect element according to the second embodiment. 6 is a schematic cross-sectional view of a spin orbit torque type magnetoresistive effect element according to Modification 1. FIG. It is the cross-sectional schematic diagram which cut
  • FIG. 10 is a schematic cross-sectional view of another example of a spin orbit torque type magnetoresistive effect element according to Modification 2.
  • FIG. 10 is a schematic cross-sectional view of a spin orbit torque type magnetoresistive effect element according to Modification 3.
  • FIG. It is the figure which showed typically the magnetic memory which concerns on 3rd Embodiment. It is a cross-sectional schematic diagram of the principal part of the magnetic memory which concerns on 3rd Embodiment.
  • FIG. 1 is a cross-sectional view schematically showing an example of a spin orbit torque type magnetization rotating element according to the first embodiment.
  • FIG. 1 shows a cross section of a spin orbit torque type magnetization rotating element cut along an xz plane passing through the center in the y direction of the spin orbit torque wiring 50.
  • a spin orbit torque type magnetization rotating element 101 shown in FIG. 1 includes a laminate 10 and a spin orbit torque wiring 50.
  • the direction in which the spin orbit torque wiring extends is referred to as the x direction
  • the stacking direction of the stacked body 10 is referred to as the z direction
  • the direction orthogonal to the x direction and the z direction is referred to as the y direction.
  • the stacked body 10 is stacked in the thickness direction of the spin orbit torque wiring 50.
  • the stacked body 10 includes a first ferromagnetic layer 11, an oxide-containing layer 12, and a second ferromagnetic layer 13 from the spin orbit torque wiring 50 side.
  • the first ferromagnetic layer 11 and the second ferromagnetic layer 13 are ferromagnetically coupled.
  • a ferromagnetic material in particular, a soft magnetic material can be applied to the first ferromagnetic layer 11 and the second ferromagnetic layer 13.
  • a metal selected from the group consisting of Cr, Mn, Co, Fe, and Ni, an alloy containing at least one of these metals, these metals and at least one element of B, C, and N The alloy etc. which are contained can be used.
  • Co—Fe, Co—Fe—B, and Ni—Fe can be exemplified.
  • the first ferromagnetic layer 11 is an in-plane magnetization film, for example, a Co—Ho alloy (CoHo 2 ), an Sm—Fe alloy (SmFe 12 ), or the like can be used.
  • a Heusler alloy such as Co 2 FeSi may be used for the first ferromagnetic layer 11 and the second ferromagnetic layer 13.
  • Heusler alloys include intermetallic compounds having a chemical composition of XYZ or X 2 YZ.
  • X in the chemical composition of the Heusler alloy is Co, Fe, Ni, or a Cu group transition metal element or noble metal element on the periodic table.
  • Y in the chemical composition of the Heusler alloy is an Mn, V, Cr or Ti group transition metal or X element species.
  • Z in the chemical composition of the Heusler alloy is a typical element from Group III to Group V.
  • the second ferromagnetic layer 13 preferably contains at least one element selected from the group consisting of Co, Fe, and B.
  • the second ferromagnetic layer 13 is particularly preferably Co—Fe—B.
  • the first ferromagnetic layer 11 and the second ferromagnetic layer 13 are ferromagnetically coupled. That is, the magnetization M 11 of the first ferromagnetic layer 11 and the magnetization M 13 of the second ferromagnetic layer 13 are oriented in the same direction. Or the magnetization M 11 and the magnetization M 13 are ferromagnetically coupled, is either antiferromagnetic coupling material of the oxide-containing layer 12 can be controlled by the film thickness. In the present embodiment, the material of the oxide-containing layer 12, the film thickness, the magnetization M 11 and the magnetization M 13 are controlled to be ferromagnetic coupling.
  • the film thickness of the first ferromagnetic layer 11 is preferably larger than the film thickness of the second ferromagnetic layer 13.
  • the thickness of the first ferromagnetic layer 11 is thicker, the effect acts strongly to try to orient the magnetization M 11 in the plane direction.
  • the thickness of the second ferromagnetic layer 13 is thin, the action to try to orient the magnetization M 13 in the orthogonal direction acts strongly. Due to the ferromagnetic coupling between the magnetization M 11 and the magnetization M 13, the magnetization M 11 of the first ferromagnetic layer 11 is oriented in a direction inclined from the orthogonal direction.
  • the film thickness of the first ferromagnetic layer 11 is preferably in the range of 0.3 nm to 2.0 nm.
  • the film thickness of the second ferromagnetic layer 13 is preferably in the range of not less than 0.5 nm and not more than 3.0 nm.
  • the film thickness of the first ferromagnetic layer 11 is preferably in the range of 150% to 200% with respect to the film thickness of the second ferromagnetic layer 13.
  • the oxide-containing layer 12 is located between the first ferromagnetic layer 11 and the second ferromagnetic layer 13. As described in Non-Patent Document 3, when an oxide film is disposed adjacent to a ferromagnetic layer, the damping constant of the ferromagnetic layer increases. The damping constant of the first ferromagnetic layer 11 and the second ferromagnetic layer 13 is increased when the oxide-containing layer 12 is adjacent to each of the first ferromagnetic layer 11 and the second ferromagnetic layer 13. The magnetization of the ferromagnet reverses while precessing. When damping constant is large, the force magnetization M 11 is the next in the easy magnetization direction is increased, it is possible to quickly magnetization reversal.
  • the oxide-containing layer 12 includes a nonmagnetic element oxide.
  • the nonmagnetic element includes at least one selected from the group consisting of Al, Si, Mg, Ti, Cr, Cu, Mo, Ru, Rh, Pd, Hf, Ta, W, Re, Ir, Pt, and Bi. Is preferred.
  • the nonmagnetic element is a light metal having an atomic number of 38 or less (Al, Si, Mg, Ti, Cr, Cu), a thin and stable oxide-containing layer 12 can be formed. Since these light elements have a relatively low electronegativity, they are less likely to cause oxygen diffusion due to heat and are stable as oxides.
  • the oxide-containing layer 12 has a first ferromagnetic property.
  • the magnetization M 11 of the layer 11 can be reduced switching current density required to magnetization reversal. Part of the current also enters the oxide-containing layer 12. This is because when a current flows through the oxide-containing layer 12 containing heavy metal, SOT (torque) is efficiently generated in the oxide-containing layer 12 and contributes to the magnetization reversal of the first ferromagnetic layer 11.
  • the oxide of the ferromagnetic metal element contained in the oxide-containing layer 12 preferably lacks oxygen relative to the stoichiometric composition.
  • the spin current supplied from the first ferromagnetic layer 11 easily passes through the oxide-containing layer 12, and the transmission efficiency of the spin current to the second ferromagnetic layer 13 is improved.
  • the oxide of the ferromagnetic metal element preferably lacks oxygen within a range of 5 atomic% to 30 atomic% with respect to the stoichiometric composition.
  • the film thickness of the oxide-containing layer 12 is preferably 1.0 nm or less.
  • the stability of magnetization against thermal disturbance or the like is increased.
  • the film thickness of the oxide containing layer 12 is thin, oxygen will be scattered and the object property of the crystal structure of the 1st ferromagnetic layer 11 will be easy to be destroyed.
  • the film thickness of the oxide containing layer 12 is more than one atomic layer. In the case of one atomic layer, a continuous uniform layer is not formed, and oxides are scattered, but this case is also treated as an oxide-containing layer.
  • the spin orbit torque wiring 50 extends in the x direction.
  • the spin orbit torque wiring 50 is located on one surface of the ferromagnetic conductor layer 11a.
  • the spin orbit torque wiring 50 may be directly connected to the ferromagnetic conductor layer 11a or may be connected via another layer.
  • the spin orbit torque wiring 50 generates a spin current by a spin Hall effect when a current flows.
  • the spin Hall effect is a phenomenon in which a spin current is induced in a direction orthogonal to the direction of the current based on the spin-orbit interaction when a current is passed through the wiring. The mechanism by which spin current is generated by the spin Hall effect will be described.
  • the number of electrons of the first spin S1 is equal to the number of electrons of the second spin S2 in the non-magnetic material (non-ferromagnetic material)
  • the number of electrons in the first spin S1 going upward in the figure and the downward direction The number of electrons of the second spin S2 going to is equal. Therefore, the current as a net flow of charge is zero.
  • This spin current without current is particularly called a pure spin current.
  • the electron flow of the first spin S1 is J ⁇
  • the electron flow of the second spin S2 is J ⁇
  • the spin current is JS
  • J S flows in the z direction in the figure.
  • the first ferromagnetic layer 11 exists on the upper surface of the spin orbit torque wiring 50. Therefore, spin is injected into the first ferromagnetic layer 11.
  • the direction of spin injected into the first ferromagnetic layer 11 and the easy axis of magnetization of the first ferromagnetic layer 11 intersect each other.
  • the magnetization M 11 of the first ferromagnetic layer 11 is oriented in the + y direction, the spin direction spin orientation to be injected when the -y direction (first ferromagnetic layer 11 to be injected, first strong If the axis of easy magnetization of the magnetic layer 11 is coincident), the magnetization M 11 receives the different forces of 180 ° vector direction by the spin injected. Therefore, the initial operation of the magnetization M 11 is slow.
  • the magnetization M 11 of the first ferromagnetic layer 11 is oriented in the + z-direction, when the spin direction to be injected is -y direction (spin direction that is injected into the first ferromagnetic layer 11 and the , when the magnetization easy axis of the first ferromagnetic layer 11 intersect), subjected to different forces of vector direction by the spin magnetization M 11 is injected, it starts to rotate quickly. Therefore, the initial operation of the magnetization M 11 is faster.
  • the magnetization reversal of the magnetization M 11 is quickly.
  • the spin direction to be injected, the magnetization easy axis of the first ferromagnetic layer 11, can be accelerated more magnetization reversal of the magnetization M 11 intersect.
  • the relationship in which the direction of spin injected into the first ferromagnetic layer 11 and the magnetization easy axis of the first ferromagnetic layer 11 intersect is unique to a spin orbit torque type magnetization rotating element using SOT.
  • the spin orbit torque wiring 50 is made of any one of a metal, an alloy, an intermetallic compound, a metal boride, a metal carbide, a metal silicide, and a metal phosphide having a function of generating a spin current by a spin Hall effect when a current flows. Composed.
  • the main configuration of the spin orbit torque wiring 50 is preferably a nonmagnetic heavy metal.
  • the heavy metal means a metal having a specific gravity equal to or higher than yttrium.
  • the nonmagnetic heavy metal is preferably a nonmagnetic metal having an atomic number of 39 or more and a large atomic number having d electrons or f electrons in the outermost shell. These nonmagnetic metals have a large spin-orbit interaction that causes a spin Hall effect.
  • Electrons generally move in the opposite direction of current, regardless of their spin direction.
  • the direction in which the electrons of the nonmagnetic metal having a large atomic number having d electrons or f electrons in the outermost shell move depends on the spin direction of the electrons. This is because a non-magnetic metal having d electrons or f electrons in the outermost shell and having a large atomic number has a large spin orbit interaction and a strong spin Hall effect. Accordingly, the spin current JS is likely to occur in a nonmagnetic heavy metal having a large atomic number having d electrons or f electrons in the outermost shell.
  • the spin orbit torque wiring 50 may include a magnetic metal.
  • the magnetic metal refers to a ferromagnetic metal or an antiferromagnetic metal. If a non-magnetic metal contains a trace amount of magnetic metal, the magnetic metal becomes a spin scattering factor. When the spin is scattered, the spin-orbit interaction is enhanced, and the generation efficiency of the spin current with respect to the current is increased.
  • the molar ratio of the magnetic metal added is preferably sufficiently smaller than the total molar ratio of the elements constituting the spin orbit torque wiring.
  • the molar ratio of the magnetic metal to be added is preferably 3% or less.
  • the spin orbit torque wiring 50 may include a topological insulator.
  • a topological insulator is a substance in which the inside of the substance is an insulator or a high-resistance substance, but a spin-polarized metal state is generated on the surface thereof.
  • An internal magnetic field is generated in the topological insulator by spin-orbit interaction. Therefore, even without an external magnetic field, a new topological phase appears due to the effect of spin-orbit interaction. That is, in the topological insulator, the symmetry of the magnetization direction of the insulator inside the substance or the high resistance body is disturbed even without an external magnetic field.
  • a topological insulator can generate a pure spin current with high efficiency by strong spin-orbit interaction and breaking inversion symmetry at the edge.
  • topological insulator examples include SnTe, Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 , TlBiSe 2 , Bi 2 Te 3 , Bi 1-x Sb x , (Bi 1-x Sb x ) 2 Te 3 and the like are preferable. These topological insulators can generate a spin current with high efficiency.
  • the spin orbit torque type magnetization rotation element 101 can be manufactured, for example, by laminating the first ferromagnetic layer 11, the oxide-containing layer 12, and the second ferromagnetic layer 13 in this order from the spin orbit torque wiring 50 side. it can.
  • the layers stacked on the spin orbit torque wiring 50 may be collectively referred to as a stacked body in the present specification.
  • the spin orbit torque type magnetization rotation element 101 the first ferromagnetic layer 11, the oxide-containing layer 12, and the second ferromagnetic layer 13 are collectively referred to as a stacked body 10.
  • a known method such as a sputtering method or a chemical vapor deposition (CVD) method can be used.
  • a method of laminating the oxide-containing layer 12 for example, a method of forming a ferromagnetic metal film by a sputtering method or a CVD method and then oxidizing the obtained ferromagnetic metal film, a ferromagnetic metal and an oxide are combined.
  • a method of co-sputtering can be used.
  • the obtained laminated body 10 is preferably subjected to an annealing treatment.
  • the annealing treatment By performing the annealing treatment, the crystallinity of each layer is improved, and the MR ratio of the stacked body 4 can be increased.
  • the annealing treatment heating is performed at a temperature of 300 ° C. or higher and 500 ° C. or lower for 5 minutes to 100 minutes in an inert atmosphere such as Ar, and then a magnetic field of 2 kOe or higher and 10 kOe or lower is applied. It is preferable to heat at a temperature of 500 ° C. or lower for 1 hour to 10 hours.
  • the spin orbit torque type magnetization rotating element 101 of the present embodiment configured as described above can quickly perform magnetization reversal of the second ferromagnetic layer 13. This is because the damping constant of the first ferromagnetic layer 11 and the second ferromagnetic layer 13 increases due to the stacked body 10 having an oxide-containing layer. By damping constant increases, the force magnetization M 13 of the magnetization M 11 and the second ferromagnetic layer 13 of the first ferromagnetic layer 11 and beyond to the easy magnetization direction is large, it is possible to perform quickly the magnetization reversal it can.
  • FIG. 2 is a schematic cross-sectional view of Modification 1 of the spin orbit torque type magnetization rotating element according to the first embodiment.
  • FIG. 2 is a cross section of the spin orbit torque type magnetization rotating element 102 cut along an xz plane passing through the center in the y direction of the spin orbit torque wiring 50.
  • the spin orbit torque type magnetization rotation element 102 shown in FIG. 2 is the same as the spin orbit torque type magnetization rotation element 101 shown in FIG. 1 except that the diffusion prevention layer 14 is provided. For this reason, the same code
  • the diffusion preventing layer 14 is inserted between the oxide-containing layer 12 and the second ferromagnetic layer 13.
  • the diffusion prevention layer is located, for example, between the oxide-containing layer 12 and the second ferromagnetic layer 13.
  • the diffusion prevention layer 14 has an element contained in the second ferromagnetic layer 13 in the oxide-containing layer 12 under a high temperature environment such as when annealing is performed during the manufacture of the spin orbit torque type magnetization rotation element 102. Suppresses elemental diffusion in the direction.
  • the diffusion prevention layer 14 preferably contains a nonmagnetic element.
  • the nonmagnetic element is, for example, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Pt, or Au, and the diffusion prevention layer 14 includes one of these elements alone. It may also be included in combination of two or more.
  • the thickness of the diffusion preventing layer 14 is preferably at least twice the diameter of the elements constituting the diffusion preventing layer 14. Strictly speaking, when a nonmagnetic element is formed in such a thickness, the nonmagnetic elements are scattered in islands. Therefore, the diffusion preventing layer 14 is a mixed layer of a part of the upper layer or the lower layer and a nonmagnetic element.
  • the thickness of the diffusion preventing layer 14 is preferably in the range of 0.3 nm to 2.0 nm.
  • the spin orbit torque type magnetization rotation element 102 is the same as the spin orbit torque type magnetization rotation element 101 except that the diffusion prevention layer 14 is laminated between the oxide-containing layer 12 and the second ferromagnetic layer 13. It can be manufactured in the same manner.
  • a method of laminating the diffusion preventing layer 14 a known method such as a sputtering method or a chemical vapor deposition (CVD) method can be used.
  • the spin orbit torque type magnetization rotating element 102 having the above-described configuration includes the oxide-containing layer 12, the damping constants of the first ferromagnetic layer 11 and the second ferromagnetic layer 13 are increased, and magnetization reversal is prevented. Become quick.
  • the spin orbit torque type magnetization rotation element 102 includes the diffusion preventing layer 14, it is difficult for the element contained in the second ferromagnetic layer 13 to diffuse into the oxide containing layer 12 even under a high temperature environment. For this reason, the oxide containing layer 12 is stabilized over a long period of time.
  • FIG. 3 is a schematic cross-sectional view of a preferred example of the spin orbit torque type magnetoresistive effect element according to the second embodiment.
  • FIG. 3 is a cross-sectional view taken along the xz plane passing through the center in the y direction of the spin orbit torque wiring 50 of the spin orbit torque type magnetoresistive element 200.
  • a spin orbit torque type magnetoresistive effect element 200 shown in FIG. 3 includes the spin orbit torque type magnetization rotating element 101 according to the first embodiment, a nonmagnetic layer 20, and a third ferromagnetic layer 30.
  • the same components as those of the spin orbit torque type magnetization rotating element 101 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the functional unit 40 in which the stacked body 10, the nonmagnetic layer 20, and the third ferromagnetic layer 30 are stacked functions in the same manner as a normal magnetoresistive element.
  • Functional unit 40 the magnetization M 30 of the third ferromagnetic layer 30 is fixed in one direction (z-direction), to function in the orientation of the magnetization M 13 of the second ferromagnetic layer 13 is relatively changed.
  • the functional unit 40 when the nonmagnetic layer 20 is made of an insulator, the functional unit 40 has the same configuration as a tunneling magnetoresistance (TMR) element. When the nonmagnetic layer 20 is made of metal, the functional unit 40 has the same configuration as a giant magnetoresistive (GMR) element.
  • TMR tunneling magnetoresistance
  • GMR giant magnetoresistive
  • the laminated structure of the functional unit 40 may employ a known laminated structure of magnetoresistive elements.
  • each layer of the functional unit 40 may be composed of a plurality of layers.
  • the functional unit 40 may further include layers other than the stacked body 10, the nonmagnetic layer 20, and the third ferromagnetic layer 30 such as an antiferromagnetic layer for fixing the magnetization direction of the third ferromagnetic layer 30.
  • the third ferromagnetic layer 30 may be referred to as a fixed layer or a reference layer, and the stacked body 10 may be referred to as a free layer or a storage layer.
  • the third ferromagnetic layer 30 is a known material.
  • the third metal layer 30 can also use an alloy containing these metals and at least one element of B, C, and N.
  • Co—Fe or Co—Fe—B can be used for the third ferromagnetic layer 30.
  • a Heusler alloy such as Co 2 FeSi may be used for the third ferromagnetic layer 30.
  • the Heusler alloy includes an intermetallic compound having a chemical composition of XYZ or X 2 YZ, and X of the chemical composition of the Heusler alloy is a transition metal element or noble metal element of Co, Fe, Ni, or Cu group on the periodic table. is there.
  • Y in the chemical composition of the Heusler alloy is an Mn, V, Cr or Ti group transition metal or X element species.
  • Z in the chemical composition of the Heusler alloy is a typical element from Group III to Group V.
  • the Heusler alloy for example, Co 2 FeSi, Co 2 MnSi, Co 2 Mn 1-a Fe a Al b Si 1-b or the like can be used as the third ferromagnetic layer 30.
  • the film thickness of the third ferromagnetic layer 30 is preferably in the range of not less than 0.5 nm and not more than 5.0 nm.
  • an antiferromagnetic material such as IrMn or PtMn may be provided in contact with the third ferromagnetic layer 30.
  • a synthetic ferromagnetic coupling structure may be used.
  • the nonmagnetic layer 20 is made of an insulator (when it is a tunnel barrier layer), the nonmagnetic layer 20 is, for example, Al 2 O 3 , SiO 2 , MgO, MgAl 2 O 4, or the like.
  • the nonmagnetic layer 20 may be one in which a part of Al, Si, Mg is replaced with Zn, Be, or the like.
  • MgO or MgAl 2 O 4 is used as the nonmagnetic layer 20
  • a coherent tunnel can be realized, so that spin can be injected efficiently.
  • the nonmagnetic layer 20 is, for example, Cu, Au, Ag, or the like. Further, when the nonmagnetic layer 20 is made of a semiconductor, the nonmagnetic layer 20 is, for example, Si, Ge, CuInSe 2 , CuGaSe 2 , Cu (In, Ga) Se 2 or the like.
  • the film thickness of the nonmagnetic layer 20 is preferably in the range of 0.3 nm to 3.0 nm.
  • the functional unit 40 may have other layers.
  • an underlayer may be provided between the stacked body 10 and the spin orbit torque wiring 50, and a cap layer is provided on the surface of the third ferromagnetic layer 30 opposite to the nonmagnetic layer 20. Also good.
  • the spin orbit torque wiring 50 When a layer is provided between the spin orbit torque wiring 50 and the first ferromagnetic layer 11, it is preferable not to dissipate the spin propagating from the spin orbit torque wiring 50.
  • silver, copper, magnesium, aluminum, and the like are known to have a long spin diffusion length of 100 nm or more and are difficult to dissipate spin, and can be suitably used.
  • the thickness of the layer disposed between the spin orbit torque wiring 50 and the first ferromagnetic layer 11 is preferably equal to or less than the spin diffusion length of the material constituting this layer. If the thickness of the layer is less than or equal to the spin diffusion length, the spin propagating from the spin orbit torque wiring 50 can be sufficiently transmitted to the first ferromagnetic layer 11.
  • the spin orbit torque type magnetoresistive effect element 200 can be manufactured by laminating the nonmagnetic layer 20 and the third ferromagnetic layer 30 in this order on the second ferromagnetic layer 13 of the spin orbit torque type magnetization rotating element 101. it can.
  • a known method such as a sputtering method or a chemical vapor deposition (CVD) method can be used.
  • the obtained functional unit 40 is preferably subjected to an annealing process.
  • the annealing treatment By performing the annealing treatment, the crystallinity of each layer is improved, and the MR ratio of the functional unit 40 can be increased.
  • the spin orbit torque type magnetoresistive element 200 having the above-described configuration includes the oxide-containing layer 12, the damping constants of the first ferromagnetic layer 11 and the second ferromagnetic layer 13 are increased, and the magnetization reversal is performed. Becomes quicker.
  • FIGS. 4 and 5 are schematic cross-sectional views of the spin orbit torque type magnetoresistive effect element 201 according to the first modification.
  • FIG. 4 is a cross section of the spin orbit torque type magnetoresistive effect element 201 cut along an xz plane passing through the center in the y direction of the spin orbit torque wiring 50.
  • FIG. 5 is a cross section of the spin orbit torque type magnetoresistive effect element 201 cut along a yz plane passing through the center of the functional unit 40 in the x direction.
  • the spin orbit torque magnetoresistive element 201 shown in FIGS. 4 and 5 is different from the spin orbit torque magnetoresistive element except that the shape of the side surface of the functional unit 40 and the shape of the first surface 50a of the spin orbit torque wiring 50 are different. This is the same as the effect element 200. For this reason, the same code
  • the functional unit 40 shown in FIGS. 4 and 5 spreads in the xy plane as it approaches the spin orbit torque wiring 50 as viewed from the z direction.
  • the outer peripheral length or outer diameter of the functional unit 40 increases as the spin orbit torque wiring 50 is approached.
  • the side surface 40s of the functional unit 40 is inclined with respect to the xy plane.
  • the inclination angle ⁇ of the side surface 40s with respect to the xy plane may be different depending on the height position in the z direction or may be constant. For example, the inclination angle ⁇ of the side surface 40s with respect to the xy plane decreases as the spin orbit torque wiring 50 is approached.
  • the side surface 40s of the functional unit 40 includes the side surfaces 30s, 20s, 13s of the third ferromagnetic layer 30, the nonmagnetic layer 20, the second ferromagnetic layer 13, the oxide-containing layer 12, and the first ferromagnetic conductive layer 11, respectively. 12s and 11s.
  • the side surfaces 11s, 12s, 13s, 20s, and 30s are inclined with respect to the xy plane, respectively.
  • the side surfaces 11s, 12s, 13s, 20s, and 30s are continuous to form one side surface 40s.
  • continuous means that the slope of the tangent line drawn along the side surface 40 s is constant or continuously changed in the cut surface cut along the xz plane or the yz plane.
  • the first surface 50 a is a surface closer to the functional unit 40 of the spin orbit torque wiring 50.
  • a portion that overlaps the functional unit 40 in the z direction is referred to as a first surface 50aA
  • a portion that does not overlap is referred to as a first surface 50aB.
  • the first surface 50aA is located in the + z direction from the first surface 50aB. That is, the first surface 50aA is located farther from the substrate Sub described later than the first surface 50aB.
  • the first surface 50aB may be formed at a position in the ⁇ z direction from the first surface 50aA by ion milling or the like when processing the functional unit 40 into a predetermined shape.
  • the side surface 50s of the spin orbit torque wiring 50 is inclined with respect to the xy plane.
  • the side surface 50s and the side surface 40s are discontinuous, for example. “Discontinuous” means that the slope of the tangent line drawn along the side surfaces 50s and 40s does not continuously change in the cut surface cut along the xz plane or the yz plane.
  • the side surface 50s and the side surface 40s may be discontinuous.
  • the insulating layers 90 and 91 are insulating layers that insulate between the wirings of the multilayer wiring and between the elements.
  • the insulating layers 90 and 91 include, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), silicon carbide (SiC), chromium nitride, silicon carbonitride (SiCN), silicon oxynitride (SiON), and aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO x ) and the like.
  • FIG. 6 is a schematic cross-sectional view of a spin orbit torque type magnetoresistive effect element 202 according to Modification 2.
  • FIG. 6 is a cross section of the spin orbit torque type magnetoresistive effect element 202 cut along an xz plane passing through the center in the y direction of the spin orbit torque wiring 50.
  • the spin orbit torque type magnetoresistive effect element 202 shown in FIG. 6 is the same as the spin orbit torque type magnetoresistive effect element 202 according to the first modification except that the shape of the side surface of the functional unit 40 is different. For this reason, the same code
  • the functional unit 40 shown in FIG. 6 gradually expands in the xy plane as it approaches the spin orbit torque wiring 50 as viewed from the z direction.
  • the third ferromagnetic layer 30, the second ferromagnetic layer 13, and the first ferromagnetic layer 11 made of metal in the functional unit 40 illustrated in FIG. 6 have an outer peripheral length or an outer diameter as they approach the spin orbit torque wiring 50. Becomes larger.
  • the nonmagnetic layer 20 and the oxide-containing layer 12 made of a material other than metal have an outer peripheral length or an outer diameter that decreases as the spin orbit torque wiring 50 is approached.
  • the side surfaces 30s, 13s, 11s of the third ferromagnetic layer 30, the second ferromagnetic layer 13, and the second ferromagnetic layer 11 are inclined at an inclination angle ⁇ 1, for example, with respect to the xy plane.
  • the nonmagnetic layer 20 and the side surfaces 20s and 12s of the oxide-containing layer 12 are inclined at an inclination angle ⁇ 2 with respect to the xy plane, for example.
  • the inclination angles ⁇ 1 and ⁇ 2 may be different depending on the height position in the z direction or may be constant.
  • the inclination angle ⁇ 1 and the inclination angle ⁇ 2 are different.
  • the inclination angle ⁇ 1 is, for example, less than 90 °
  • the inclination angle ⁇ 2 is, for example, 90 ° or more.
  • the side surface 40s of the functional unit 40 is discontinuous.
  • the side surface 40s is discontinuous at the boundary between the side surfaces 11s, 12s, 13s, 20s, and 30s of each layer.
  • the side surface 40s includes, for example, the boundary between the third ferromagnetic layer 30 and the nonmagnetic layer 20, the boundary between the nonmagnetic layer 20 and the second ferromagnetic layer 13, and the second ferromagnetic layer 13 and the oxide-containing layer 12. There is a step at the boundary, the boundary between the oxide-containing layer 12 and the first ferromagnetic layer 11.
  • ion milling side milling
  • the width of the functional unit 40 in the x direction and the y direction can be reduced, and the size of the functional unit 40 can be reduced.
  • the degree of progress of side milling varies depending on the material constituting the layer. Metals are often softer than non-metals, and side milling may proceed more with non-metals than with non-metals. Due to the difference in the degree of side milling of each layer, the side surface 40s of the functional unit 40 is discontinuous.
  • the spin orbit torque type magnetoresistive effect element 203 configured as described above can rapidly perform magnetization reversal because the damping constant of the first ferromagnetic layer 11 is increased. Further, since the side surface 11s of the ferromagnetic conductor layer 11 is inclined with respect to the xy plane, the current flow from the spin orbit torque wiring 50 to the ferromagnetic conductor layer 11 becomes smooth. Furthermore, the adhesiveness with the insulating layer 90 can be improved because the side surface 40s is discontinuous.
  • FIG. 7 is a schematic cross-sectional view of an example of a spin orbit torque type magnetoresistive effect element according to Modification 2.
  • FIG. 7 is a cross section of the spin orbit torque type magnetoresistive effect element 202 cut along an xz plane passing through the center in the y direction of the spin orbit torque wiring 50.
  • the spin orbit torque type magnetoresistive element 202A is an example when the tilt angle ⁇ 2 is 90 °.
  • FIG. 8 is a schematic cross-sectional view of a spin orbit torque type magnetoresistive effect element 203 according to Modification 3.
  • FIG. 8 is a cross section of the spin orbit torque type magnetoresistive effect element 203 cut along an xz plane passing through the center of the spin orbit torque wiring 50 in the y direction.
  • the spin orbit torque type magnetoresistive effect element 203 shown in FIG. 8 is the same as the spin orbit torque type magnetoresistive effect element 202 shown in FIG. 6 except that the positional relationship between the functional unit 40 and the spin orbit torque wiring 50 is different. is there. For this reason, the same code
  • the spin orbit torque wiring 50 is located in the + z direction with respect to the functional unit 40. That is, the spin orbit torque wiring 50 is located away from the substrate Sub, which will be described later, from the functional unit 40.
  • the functional unit 40 includes the third ferromagnetic layer 30, the nonmagnetic layer 20, the second ferromagnetic layer 13, the oxide-containing layer 12, and the first ferromagnetic layer 11 in this order in the + z direction.
  • the third ferromagnetic layer 30 is located closer to the substrate Sub described later than the first ferromagnetic layer 11.
  • the functional unit 40 may be referred to as a bottom pin structure.
  • the spin orbit torque wiring 50 is laminated at a position in the + z direction of the functional unit 40 and the insulating layer 90.
  • the first surface 50a and the second surface 50b of the spin orbit torque wiring 50 have different height positions in the z direction depending on the location.
  • the first surface 50a is a surface close to the functional unit 40 of the spin orbit torque wiring 50
  • the second surface 50b is a surface opposite to the first surface 50a.
  • a portion that overlaps the functional unit 40 in the z direction is referred to as a first surface 50aA
  • a portion that does not overlap is referred to as a first surface 50aB.
  • a portion that overlaps the functional unit 40 in the z direction is referred to as a second surface 50bA, and a portion that does not overlap is referred to as a second surface 50bB.
  • the first surface 50aB is located in the + z direction from the first surface 50aA. Due to the difference in polishing speed when the first surface 50a is subjected to, for example, chemical mechanical polishing (CMP), the first surface 50aA is recessed in the ⁇ z direction with respect to the first surface 50aB.
  • CMP chemical mechanical polishing
  • the second surface 50aB is located in the + z direction from the second surface 50aA.
  • the second surface 50b reflects the shape of the first surface 50a.
  • the characteristic configurations of the first to third modifications can be applied to the spin orbit torque type magnetization rotating element according to the first embodiment.
  • FIG. 9 is a schematic diagram of the magnetic memory 300.
  • the magnetic memory 300 includes a plurality of spin orbit torque type magnetoresistive elements 200 (see FIG. 3) of the first embodiment.
  • FIG. 3 corresponds to a cross-sectional view of the spin orbit torque type magnetoresistive effect element 200 cut along the AA plane in FIG.
  • the spin orbit torque type magnetoresistive effect elements 200 are arranged in a 3 ⁇ 3 matrix.
  • FIG. 9 is an example of a magnetic memory, and the configuration, number, and arrangement of the spin orbit torque type magnetoresistive effect element 200 are arbitrary.
  • the spin orbit torque type magnetoresistive effect element 200 is connected to one word line WL1 to WL3, one bit line BL1 to BL3, and one read line RL1 to RL3, respectively.
  • a current flows through the spin orbit torque wiring 50 of the arbitrary spin orbit torque type magnetoresistive effect element 200, and the write operation Is done. Further, by applying a voltage difference of a predetermined value or more between the lead lines RL1 to RL3 and the bit lines BL1 to BL3, a current flows in the stacking direction of the functional unit 40 of any spin orbit torque type magnetoresistive effect element 200, Read operation is performed. By reading data of an arbitrary element from the plurality of spin orbit torque type magnetoresistance effect elements 200, it can be used as a magnetic memory.
  • FIG. 10 is a cross-sectional view of the main part of the magnetic memory 300 shown in FIG. 9 cut along the AA plane.
  • the magnetic memory 300 includes a spin orbit torque type magnetoresistance effect element 200 and a plurality of switching elements connected to the spin orbit torque type magnetoresistance effect element 200.
  • the switching element shown in FIG. 10 is a transistor Tr.
  • the transistor Tr includes a gate electrode G, a gate insulating film GI, and a source region S and a drain region D formed in the substrate Sub.
  • the substrate Sub is, for example, a semiconductor substrate.
  • Each of the transistors Tr and the spin orbit torque type magnetoresistive effect element 200, the word line WL, and the bit line BL are electrically connected via the conductive portion Cw.
  • the conductive portion Cw is sometimes referred to as a connection wiring or a via wiring, for example.
  • the conductive part Cw includes a conductive material.
  • the conductive portion Cw extends in the z direction.
  • an electrode 80 is formed on the functional part 40 of the spin orbit torque type magnetoresistive effect element 200.
  • the electrode 80 includes a conductive material.
  • the electrode 80 is connected to the lead line RL.
  • a switching element (for example, a transistor) may be provided between the lead line RL and the electrode 80.
  • the switching element between the lead line RL and the electrode 80 is located, for example, in the depth direction (-y direction) in FIG.
  • the memory element 100 and the transistor Tr are electrically separated by the insulating layer 90 except for the conductive portion Cw.
  • the magnetic memory 300 according to the third embodiment has a plurality of spin orbit torque type magnetoresistance effect elements 200 according to the second embodiment. As described above, each of the spin orbit torque type magnetoresistive effect elements 200 can quickly perform magnetization reversal. Therefore, the magnetic memory 300 can be driven quickly.
  • SYMBOLS 10 Laminated body, 11 ... 1st ferromagnetic layer, 12 ... Oxide containing layer, 13 ... 2nd ferromagnetic layer, 20 ... Nonmagnetic layer, 30 ... 3rd ferromagnetic layer, 40 ... Functional part, 50 ... Spin Orbital torque wiring, 101, 102 ... Spin orbit torque type magnetization rotating element, 200 ... Spin orbit torque type magnetoresistive effect element, 300 ... Magnetic memory

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

このスピン軌道トルク型磁化回転素子は、スピン軌道トルク配線と、前記スピン軌道トルク配線に積層された積層体と、を備え、前記積層体は、第1強磁性層と、酸化物含有層と、第2強磁性層と、を前記スピン軌道トルク配線側から順に備え、前記酸化物含有層が非磁性元素の酸化物を含み、前記第1強磁性層と前記第2強磁性層とは、強磁性結合している。

Description

スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
 本発明は、スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリに関する。本願は、2018年5月31日に、日本に出願された特願2018-105393号に基づき優先権を主張し、その内容をここに援用する。
 強磁性層と非磁性層の多層膜からなる巨大磁気抵抗(GMR)素子、及び、非磁性層に絶縁層(トンネルバリア層、バリア層)を用いたトンネル磁気抵抗(TMR)素子が知られている。これらの素子は、磁気センサ、高周波部品、磁気ヘッド及び不揮発性ランダムアクセスメモリ(MRAM)等に利用されている。
 MRAMは、絶縁層を挟む二つの強磁性層の互いの磁化の向きが変化するとTMR素子の素子抵抗が変化するという特性を利用してデータを読み書きする。MRAMの書き込み方式としては、電流が作る磁場を利用して書き込み(磁化反転)を行う方式や磁気抵抗効果素子の積層方向に電流を流して生ずるスピントランスファートルク(STT)を利用して書き込み(磁化反転)を行う方式が知られている。
 STTを利用して書込みを行う磁気抵抗効果素子では、磁化反転をする強磁性層のダンピング定数を小さくする試みが進められている。例えば、特許文献1には、ダンピング定数を0.01以下にすることが記載されている。STTを利用した臨界書き込み電流密度は強磁性層のダンピング定数に比例することが知られており、省エネルギー、高耐久性及び高集積の観点からダンピング定数が低い材料を用いることが好ましい。近年ではMn-GaやMn-Ge合金は、ダンピング定数が低い材料として期待されている。しかしながら、強磁性層のダンピング定数が低いということは読み込み電流によって誤書き込みを行う可能性もあり、デバイスとしての信頼性を下げるという問題も同時に生じる。
 ダンピング定数は、スピン軌道相互作用を起源とする物理量である。そのためダンピング定数は、磁気異方性エネルギーと密接な関係を有する。一般に、ダンピング定数を小さくすると磁気異方性エネルギーも小さくなる。磁気異方性エネルギーが小さくなると、強磁性層の磁化が反転しやすくなり、データの読み書きが容易になる。
 また非特許文献1には、一般的に磁気抵抗効果素子で用いられている材料であるCo-Fe合金はダンピング定数が0.01未満であることが記載されている。非特許文献1によると、スパッタで作製されるCo-Fe-B合金でも同様にダンピング定数が0.01未満である。Co-Fe-B合金のうちダンピング定数が0.01以上であるものは、高い出力特性を得ることができないBCC構造以外の構造のみである。そのため、STTを用いた磁気抵抗効果素子には、ダンピング定数が0.01未満の強磁性材料が用いられている。
 一方、近年、反転電流を低減する手段としてスピン軌道相互作用により生成された純スピン流を利用した磁化反転に注目が集まっている(例えば、非特許文献2)。スピン軌道相互作用によって生じた純スピン流は、スピン軌道トルク(SOT)を誘起する。純スピン流は同数の上向きスピンの電子と下向きスピン電子とが互いに逆向きに流れることで生み出される。純スピン流は、逆向きに流れる電子の数が同数であるため電荷の流れは相殺されている。そのため純スピン流が流れることにより磁気抵抗効果素子に流れる電流はゼロであり、磁気抵抗効果素子の長寿命化が期待されている。
 SOTを用いた磁化反転においてもダンピング定数は、磁化反転の挙動に作用する要素の一つである。非特許文献3には、Pt酸化膜とNi81Fe19と酸化物キャップ層との積層体において、Pt酸化膜の酸化度を高めることで、Ni81Fe19のダンピング定数が大きくなることが記載されている。
特開2011-258596号公報
M.Oogane, T. Wakitani, S. Yakata, R. Yilgin, Y. Ando, A. Sakuma and T. Miyazaki, Japanease Journal of Applied Physics, Vol.45, pp. 3889-3891 (2006). I.M.Miron,K.Garello,G.Gaudin,P.J.Zermatten,M.V.Costache,S.Auffret,S.Bandiera,B.Rodmacq,A.Schuhl,and P.Gambardella,Nature,476,189(2011). Hongyu An, Takeo Ohno, Yusuke Kanno, Yuito Kageyama, Yasuaki Monnai, Hideyuki Maki, Ji Shi, Kazuya Ando, Science Advances, 4, eaar 2250 (2018)
 SOTを用いたスピン軌道トルク型磁化回転素子は、まだ研究が始まったばかりである。SOTを用いた磁化反転素子は、STTを用いた磁化反転素子と磁化反転のメカニズムが異なる。そのため、SOTを用いた磁化反転素子を駆動させるために、適切な構成については十分知られていない。
 本発明は上記問題に鑑みてなされたものであり、磁化反転を素早く行うことができるスピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリを提供することを目的とする。
 本発明者らは、上記の課題を解決するために検討した結果、スピン軌道トルク型磁化回転素子において磁化反転する強磁性層(自由層)に酸化物含有層を挿入することで、強磁性層(自由層)の磁化反転を素早く行うことが可能となることを見出した。
 すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。
(1)第1の実施形態のスピン軌道トルク型磁化回転素子は、スピン軌道トルク配線と、前記スピン軌道トルク配線に積層された積層体と、を備え、前記積層体は、第1強磁性層と、酸化物含有層と、第2強磁性層と、を前記スピン軌道トルク配線側から順に備え、前記酸化物含有層が非磁性元素の酸化物を含み、前記第1強磁性層と前記第2強磁性層とが強磁性結合している。
(2)上記態様にかかるスピン軌道トルク型磁化回転素子において、前記第1強磁性層の磁化容易軸は、前記スピン軌道トルク配線から前記第1強磁性層に注入されるスピンの向きと交差していてもよい。
(3)上記態様に係るスピン軌道トルク型磁化回転素子において、前記非磁性元素は、Al、Si、Mg、Ti、Cr、Cu、Mo、Ru、Rh、Pd、Hf、Ta、W、Re、Ir、Pt、Biからなる群より選ばれる少なくとも一つを含んでいてもよい。
(4)上記態様に係るスピン軌道トルク型磁化回転素子において、前記酸化物含有層の膜厚が1.0nm以下であってよい。
(5)上記態様に係るスピン軌道トルク型磁化回転素子において、前記酸化物含有層に含まれる前記非磁性元素の酸化物は、化学量論組成に対して酸素が欠損していてもよい。
(6)上記態様に係るスピン軌道トルク型磁化回転素子において、前記酸化物含有層と、前記第2強磁性層と、の間に拡散防止層が挿入されていてもよい。
(7)上記態様に係るスピン軌道トルク型磁化回転素子において、前記第1強磁性層の膜厚が、前記第2強磁性層の膜厚より厚くてもよい。
(8)上記態様に係るスピン軌道トルク型磁化回転素子において、前記第2強磁性層が、Co、Fe、Bからなる群より選ばれる少なくとも一つの元素を含んでいてもよい。
(9)第2の態様に係るスピン軌道トルク型磁気抵抗効果素子は、上記態様に係るスピン軌道トルク型磁化回転素子と、前記積層体の前記スピン軌道トルク配線と反対側に積層された非磁性層と、前記積層体と前記非磁性層を挟む第3強磁性層と、を備える。
(10)第3の態様に係る磁気メモリは、上記態様に係るスピン軌道トルク型磁気抵抗効果素子を複数備える。
 本発明によれば、磁化反転を素早く行うことができるスピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリを提供することが可能となる。
第1実施形態に係るスピン軌道トルク型磁化回転素子の一例の断面模式図である。 変形例1に係るスピン軌道トルク型磁化回転素子の別の一例の断面模式図である。 第2実施形態に係るスピン軌道トルク型磁気抵抗効果素子の一例の断面模式図である。 変形例1に係るスピン軌道トルク型磁気抵抗効果素子の断面模式図である。 変形例1に係るスピン軌道トルク型磁気抵抗効果素子を別の面で切断した断面模式図である。 変形例2に係るスピン軌道トルク型磁気抵抗効果素子の断面模式図である。 変形例2に係るスピン軌道トルク型磁気抵抗効果素子の別の例の断面模式図である。 変形例3に係るスピン軌道トルク型磁気抵抗効果素子の断面模式図である。 第3実施形態に係る磁気メモリを模式的に示した図である。 第3実施形態に係る磁気メモリの要部の断面模式図である。
 以下、本発明の好ましい例について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。
<第1実施形態(スピン軌道トルク型磁化回転素子)>
 図1は、第1実施形態に係るスピン軌道トルク型磁化回転素子の一例を模式的に示した断面図である。図1は、スピン軌道トルク型磁化回転素子をスピン軌道トルク配線50のy方向の中心を通るxz平面で切断した断面を示す。図1に示すスピン軌道トルク型磁化回転素子101は、積層体10とスピン軌道トルク配線50とを備える。
 本明細書において、スピン軌道トルク配線が延在する方向をx方向、積層体10の積層方向をz方向、x方向及びz方向に直交する方向をy方向という。
[積層体10]
 積層体10は、スピン軌道トルク配線50の厚み方向に積層されている。積層体10は、スピン軌道トルク配線50側から第1強磁性層11と、酸化物含有層12と、第2強磁性層13と、を備える。第1強磁性層11と第2強磁性層13とは、強磁性結合している。
(第1強磁性層及び第2強磁性層)
 第1強磁性層11及び第2強磁性層13には、強磁性材料、特に軟磁性材料を適用できる。例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、これらの金属を少なくとも1種以上含む合金、これらの金属とB、C、及びNの少なくとも1種以上の元素とが含まれる合金等を用いることができる。具体的には、Co-Fe、Co-Fe-B、Ni-Feを例示できる。また第1強磁性層11が面内磁化膜の場合は、例えば、Co-Ho合金(CoHo)、Sm-Fe合金(SmFe12)等を用いることができる。
 第1強磁性層11及び第2強磁性層13には、CoFeSi等のホイスラー合金を用いてもよい。ホイスラー合金は、XYZまたはXYZの化学組成をもつ金属間化合物を含む。ホイスラー合金の化学組成におけるXは、周期表上でCo、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素である。ホイスラー合金の化学組成におけるYは、Mn、V、CrあるいはTi族の遷移金属又はXの元素種である。ホイスラー合金の化学組成におけるZは、III族からV族の典型元素である。ホイスラー合金は、例えば、CoFeSi、CoFeGe、CoFeGa、CoMnSi、CoMn1-aFeAlSi1-b、CoFeGe1-cGa等が挙げられる。第2強磁性層13は、Co、Fe、Bからなる群より選ばれる少なくとも一つの元素を含むことが好ましい。第2強磁性層13は、Co-Fe-Bであることが特に好ましい。
 第1強磁性層11と第2強磁性層13とは、強磁性結合している。すなわち、第1強磁性層11の磁化M11と第2強磁性層13の磁化M13とは同じ方向に配向している。磁化M11と磁化M13とが強磁性結合するか、反強磁性結合するかは、酸化物含有層12の材料、膜厚によって制御できる。本実施形態では、酸化物含有層12の材料、膜厚を、磁化M11と磁化M13とが強磁性結合するように制御している。
 また、第1強磁性層11の膜厚は、第2強磁性層13の膜厚より厚いことが好ましい。第1強磁性層11の膜厚が厚くなると、磁化M11を面内方向に配向させようとする作用が強くはたらく。一方で、第2強磁性層13の膜厚が薄いと、磁化M13を面直方向に配向させようとする作用が強くはたらく。磁化M11と磁化M13とは強磁性結合しているため、第1強磁性層11の磁化M11は、面直方向から傾いた方向に配向する。第1強磁性層11の磁化M11が傾くと、磁化反転の反転対称性が崩れ、第1強磁性層11が磁化反転しやすくなり、無磁場磁化反転が容易になる。第1強磁性層11の膜厚は、0.3nm以上2.0nm以下の範囲内にあることが好ましい。第2強磁性層13の膜厚は、0.5nm以上3.0nm以下の範囲内にあることが好ましい。第1強磁性層11の膜厚は、第2強磁性層13の膜厚に対して150%以上200%以下の範囲内にあることが好ましい。
(酸化物含有層)
 酸化物含有層12は、第1強磁性層11と第2強磁性層13との間に位置している。
 非特許文献3にも記載のように、強磁性層に酸化膜を隣接して配置すると、強磁性層のダンピング定数が大きくなる。第1強磁性層11及び第2強磁性層13のダンピング定数は、酸化物含有層12が第1強磁性層11と第2強磁性層13とのそれぞれに隣接していることで大きくなる。強磁性体の磁化は、歳差運動を行いながら磁化反転する。ダンピング定数が大きいと、磁化M11が磁化容易方向に向こうとする力が大きくなり、磁化反転を素早く行うことができる。
 酸化物含有層12は、非磁性元素の酸化物を含む。非磁性元素は、Al、Si、Mg、Ti、Cr、Cu、Mo、Ru、Rh、Pd、Hf、Ta、W、Re、Ir、Pt、Biからなる群より選ばれる少なくとも一つを含むことが好ましい。
 非磁性元素が、原子番号が38以下の軽金属(Al、Si、Mg、Ti、Cr、Cu)である場合、薄く安定的な酸化物含有層12を形成することができる。これら軽元素の電気陰性度は、比較的小さいため、熱による酸素の拡散が引き起こされにくく、酸化物として安定している。
 非磁性元素が、原子番号が39以上の重金属(Mo、Ru、Rh、Pd、Hf、Ta、W、Re、Ir、Pt、Bi)である場合、酸化物含有層12は、第1強磁性層11の磁化M11を磁化反転させるのに必要な反転電流密度を低減できる。酸化物含有層12にも電流の一部は侵入する。重金属を含む酸化物含有層12に電流が流れると、酸化物含有層12でもSOT(トルク)が効率的に生じ、第1強磁性層11の磁化反転に寄与するためである。
 酸化物含有層12に含まれる強磁性金属元素の酸化物は、化学量論組成に対して酸素が欠損していることが好ましい。この場合、第1強磁性層11から供給されるスピン流が酸化物含有層12を通りやすくなり、第2強磁性層13へのスピン流の伝達効率が向上する。強磁性金属元素の酸化物は、化学量論組成に対して、酸素が5原子%以上30原子%以下の範囲内で欠損していることが好ましい。
 酸化物含有層12の膜厚は、1.0nm以下であることが好ましい。この場合、第1強磁性層11と第2強磁性層13とがより強く強磁性結合するので、熱擾乱等に対する磁化の安定性が高まる。また、酸化物含有層12の膜厚が薄いと酸素が点在することになり、第1強磁性層11の結晶構造の対象性を崩しやすくなる。このため、酸化物含有層12の膜厚は、原子一層分以上であることが好ましい。なお、原子一層分の場合は、連続した一様な層にはならず、酸化物が点在することになるが、この場合も酸化物含有層として扱う。
[スピン軌道トルク配線]
 スピン軌道トルク配線50は、x方向に延在する。スピン軌道トルク配線50は、強磁性導電体層11aの一面に位置する。スピン軌道トルク配線50は、強磁性導電体層11aに直接接続されていてもよいし、他の層を介して接続されていてもよい。
 スピン軌道トルク配線50は、電流が流れるとスピンホール効果によってスピン流を生成する。スピンホール効果とは、配線に電流を流した場合にスピン軌道相互作用に基づき、電流の向きに直交する方向にスピン流が誘起される現象である。スピンホール効果によりスピン流が生み出されるメカニズムについて説明する。
 図1に示すように、スピン軌道トルク配線50のx方向の両端に電位差を与えるとx方向に沿って電流Iが流れる。電流Iが流れると、y方向に配向した第1スピンS1と-y方向に配向した第2スピンS2はそれぞれ電流と直交する方向に曲げられる。通常のホール効果とスピンホール効果とは運動(移動)する電荷(電子)が運動(移動)方向を曲げられる点で共通する。一方で、通常のホール効果とスピンホール効果とは運動(移動)する電荷(電子)が運動(移動)方向を曲げられるのに必要な条件が異なる。通常のホール効果は磁場中で運動する荷電粒子がローレンツ力を受けて運動方向を曲げられるのに対して、スピンホール効果では磁場が存在しないのに電子が移動するだけ(電流が流れるだけ)で移動方向が曲げられる点で大きく異なる。スピンホール効果によって生じる第1スピンS1及び第2スピンS2の偏在状態を解消するために、z方向にスピン流が生じる。
 非磁性体(強磁性体ではない材料)は、第1スピンS1の電子数と第2スピンS2の電子数とが等しいので、図中で上方向に向かう第1スピンS1の電子数と下方向に向かう第2スピンS2の電子数が等しい。そのため、電荷の正味の流れとしての電流はゼロである。この電流を伴わないスピン流は特に純スピン流と呼ばれる。
 ここで、第1スピンS1の電子の流れをJ、第2スピンS2の電子の流れをJ、スピン流をJと表すと、J=J-Jで定義される。スピン流Jは、図中のz方向に流れる。図1において、スピン軌道トルク配線50の上面には第1強磁性層11が存在する。そのため、第1強磁性層11にスピンが注入される。
 第1強磁性層11に注入されるスピンの向きと、第1強磁性層11の磁化容易軸とは交差していることが好ましい。
 例えば、第1強磁性層11の磁化M11が+y方向に配向し、注入されるスピンの向きが-y方向の場合(第1強磁性層11に注入されるスピンの向きと、第1強磁性層11の磁化容易軸とが一致する場合)、磁化M11は注入されるスピンにより180°ベクトル方向の異なる力を受ける。そのため、磁化M11の初期動作は遅くなる。
 これに対し、例えば、第1強磁性層11の磁化M11が+z方向に配向し、注入されるスピンの向きが-y方向の場合(第1強磁性層11に注入されるスピンの向きと、第1強磁性層11の磁化容易軸とが交差する場合)、磁化M11は注入されるスピンによりベクトル方向の異なる力を受け、素早く回転し始める。そのため、磁化M11の初期動作は早くなる。
 第1強磁性層11のダンピング定数を大きくすると、磁化M11の磁化反転が素早くなる。注入されるスピンの向きと、第1強磁性層11の磁化容易軸とが、交差していると磁化M11の磁化反転をより早めることができる。第1強磁性層11に注入されるスピンの向きと、第1強磁性層11の磁化容易軸とが交差する関係性は、SOTを用いたスピン軌道トルク型磁化回転素子ならではのものである。
 スピン軌道トルク配線50は、電流が流れる際のスピンホール効果によってスピン流を発生させる機能を有する金属、合金、金属間化合物、金属硼化物、金属炭化物、金属珪化物、金属燐化物のいずれかによって構成される。
 スピン軌道トルク配線50の主構成は、非磁性の重金属であることが好ましい。ここで、重金属とは、イットリウム以上の比重を有する金属を意味する。非磁性の重金属は最外殻にd電子又はf電子を有する、原子番号39以上の、原子番号が大きい非磁性金属であることが好ましい。これらの非磁性金属は、スピンホール効果を生じさせるスピン軌道相互作用が大きい。
 電子は、一般にそのスピンの向きに関わりなく、電流とは逆向きに動く。しかしながら、最外殻にd電子又はf電子を有する原子番号が大きい非磁性金属の電子が動く方向は、電子のスピンの向きに依存する。なぜなら、最外殻にd電子又はf電子を有する原子番号が大きい非磁性金属はスピン軌道相互作用が大きく、スピンホール効果が強く作用するためである。従って、最外殻にd電子又はf電子を有する原子番号が大きい非磁性の重金属中ではスピン流Jが発生しやすい。
 またスピン軌道トルク配線50は、磁性金属を含んでもよい。磁性金属とは、強磁性金属、あるいは、反強磁性金属を指す。非磁性金属に微量な磁性金属が含まれると磁性金属はスピンの散乱因子となる。スピンが散乱するとスピン軌道相互作用が増強され、電流に対するスピン流の生成効率が高くなる。
 一方で、磁性金属の添加量が多過ぎると、発生したスピン流が添加された磁性金属によって散乱され、結果としてスピン流が減少する作用が強くなる場合がある。そのため、添加される磁性金属のモル比はスピン軌道トルク配線を構成する元素の総モル比よりも十分小さい方が好ましい。添加される磁性金属のモル比は、全体の3%以下であることが好ましい。
 スピン軌道トルク配線50は、トポロジカル絶縁体を含んでもよい。トポロジカル絶縁体とは、物質内部が絶縁体、あるいは、高抵抗体であるが、その表面にスピン偏極した金属状態が生じている物質である。トポロジカル絶縁体にはスピン軌道相互作用により内部磁場が生じる。そこで外部磁場が無くてもスピン軌道相互作用の効果で新たなトポロジカル相が発現する。すなわち、トポロジカル絶縁体は、外部磁場が無くても物質内部の絶縁体、あるいは、高抵抗体の磁化方向の対称性が乱される。トポロジカル絶縁体は、強いスピン軌道相互作用とエッジにおける反転対称性の破れにより純スピン流を高効率に生成できる。
 トポロジカル絶縁体としては例えば、SnTe、Bi1.5Sb0.5Te1.7Se1.3、TlBiSe、BiTe、Bi1-xSb、(Bi1-xSbTeなどが好ましい。これらのトポロジカル絶縁体は、高効率にスピン流を生成することが可能である。
 スピン軌道トルク型磁化回転素子101は、例えば、スピン軌道トルク配線50側から、第1強磁性層11、酸化物含有層12、第2強磁性層13をこの順に積層することによって製造することができる。以下、本明細書においてスピン軌道トルク配線50上に積層された層を総称して積層体という場合がある。例えば、スピン軌道トルク型磁化回転素子101において、第1強磁性層11、酸化物含有層12、第2強磁性層13を総称して積層体10という。第1強磁性層11、第2強磁性層13を積層する方法としては、スパッタリング法、化学気相成長(CVD)法などの公知の方法を用いることができる。酸化物含有層12を積層する方法としては、例えば、スパッタリング法やCVD法により、強磁性金属膜を形成し、次いで得られた強磁性金属膜を酸化させる方法、強磁性金属と酸化物とをコスパッタリングする方法を用いることができる。
 得られた積層体10は、アニール処理を行うことが好ましい。アニール処理を行うことによって、各層の結晶性が向上し、積層体4のMR比を高めることができる。
 アニール処理としては、Arなどの不活性雰囲気中で、300℃以上500℃以下の温度で、5分以上100分以下の時間加熱した後、2kOe以上10kOe以下の磁場を印加した状態で、100℃以上500℃以下の温度で、1時間以上10時間以下の時間加熱することが好ましい。
 以上のような構成とされた本実施形態のスピン軌道トルク型磁化回転素子101は、第2強磁性層13の磁化反転を素早く行うことができる。これは、積層体10が、酸化物含有層を有することによって、第1強磁性層11及び第2強磁性層13のダンピング定数が増大するためである。ダンピング定数が増大することによって、第1強磁性層11の磁化M11及び第2強磁性層13の磁化M13が磁化容易方向に向こうとする力が大きくなるので、磁化反転を素早く行うことができる。
 図2は、第1実施形態に係るスピン軌道トルク型磁化回転素子の変形例1の断面模式図である。図2は、スピン軌道トルク型磁化回転素子102をスピン軌道トルク配線50のy方向の中心を通るxz平面で切断した断面である。図2に示すスピン軌道トルク型磁化回転素子102は、拡散防止層14を有していること以外は、図1に示したスピン軌道トルク型磁化回転素子101と同様である。このため、スピン軌道トルク型磁化回転素子101と同一の構成については同一の符号を付し、説明を省略する。
 拡散防止層14は、酸化物含有層12と、第2強磁性層13の間に挿入されている。拡散防止層は、例えば酸化物含有層12と第2強磁性体層13との間に位置する。拡散防止層14は、例えば、スピン軌道トルク型磁化回転素子102の製造時においてアニール処理を行ったときなどの高温環境下において、第2強磁性層13に含まれる元素が酸化物含有層12の方向に元素拡散することを抑制する。
 拡散防止層14は、非磁性元素を含むことが好ましい。非磁性元素は、例えば、Mo、Ru、Rh、Pd、Ag、Hf、Ta、W、Re、Ir、Pt、Auである拡散防止層14は、これの元素の1種を単独で含んでいてもよいし、2種以上を組合せて含んでいてもよい。また、拡散防止層14の厚さは、拡散防止層14を構成する元素の直径の2倍以上であることが好ましい。非磁性元素をこの程度の厚さで成膜しようとすると非磁性元素は、厳密には島状に点在する。従って、拡散防止層14は、上層又は下層の一部と非磁性元素との混合層となる。
 拡散防止層14の膜厚は、0.3nm以上2.0nm以下の範囲内にあることが好ましい。
 スピン軌道トルク型磁化回転素子102は、酸化物含有層12と、第2強磁性層13との間に、拡散防止層14を積層すること以外は、スピン軌道トルク型磁化回転素子101の場合と同様にして製造することができる。拡散防止層14を積層する方法としては、スパッタリング法、化学気相成長(CVD)法などの公知の方法を用いることができる。
 以上のような構成とされたスピン軌道トルク型磁化回転素子102は、酸化物含有層12を備えるので、第1強磁性層11及び第2強磁性層13のダンピング定数が大きくなり、磁化反転が素早くなる。またスピン軌道トルク型磁化回転素子102は、拡散防止層14を有するので、高温環境下においても第2強磁性層13に含まれる元素が酸化物含有層12に元素拡散することが起こりにくい。このため、酸化物含有層12が長期間にわたって安定する。
<第2実施形態(スピン軌道トルク型磁気抵抗効果素子)>
 図3は、第2実施形態に係るスピン軌道トルク型磁気抵抗効果素子の好ましい例の断面模式図である。図3は、スピン軌道トルク型磁気抵抗効果素子200のスピン軌道トルク配線50のy方向中心を通るxz平面で切断した断面である。図3に示すスピン軌道トルク型磁気抵抗効果素子200は、第1実施形態に係るスピン軌道トルク型磁化回転素子101と、非磁性層20と、第3強磁性層30とを備える。第1実施形態のスピン軌道トルク型磁化回転素子101と同等の構成については、同一の符号を付し説明を省略する。
 積層体10と非磁性層20と第3強磁性層30とが積層された機能部40は、通常の磁気抵抗効果素子と同様に機能する。機能部40は、第3強磁性層30の磁化M30が一方向(z方向)に固定され、第2強磁性層13の磁化M13の向きが相対的に変化することで機能する。第3強磁性層30の磁化M30は、同じ外力が印加された場合に、第2強磁性層13の磁化M13より動きにくい。保磁力差型(擬似スピンバルブ型;Pseudo spin valve 型)のMRAMに適用する場合には、第3強磁性層30の保磁力を第2強磁性層13の保磁力よりも大きくする。交換バイアス型(スピンバルブ;spin valve型)のMRAMに適用する場合には、第3強磁性層30の磁化M30を反強磁性層との交換結合によって固定する。
 また機能部40において、非磁性層20が絶縁体からなる場合、機能部40はトンネル磁気抵抗(TMR:Tunneling Magnetoresistance)素子と同様の構成となる。また、非磁性層20が金属からなる場合、機能部40は巨大磁気抵抗(GMR:Giant Magnetoresistance)素子と同様の構成となる。
 機能部40の積層構成は、公知の磁気抵抗効果素子の積層構成を採用できる。例えば、機能部40の各層は複数の層からなるものでもよい。例えば、機能部40は、第3強磁性層30の磁化方向を固定するための反強磁性層等、積層体10、非磁性層20、第3強磁性層30以外の層をさらに備えてもよい。第3強磁性層30は固定層や参照層などと言われる場合があり、積層体10は自由層や記憶層などと言われる場合がある。
 第3強磁性層30は、公知の材料である。例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、及び、この群から選択される金属を1種以上含み強磁性を示す合金である。第3金属層30は、これらの金属や合金以外にも、これらの金属と、B、C、及びNの少なくとも1種以上の元素とを含む合金を用いることもできる。第3強磁性層30は、例えばCo-FeやCo-Fe-Bを用いることができる。
 また第3強磁性層30には、CoFeSiなどのホイスラー合金を用いてもよい。ホイスラー合金を用いることで、機能部40のMR比をより高くすることができる。ホイスラー合金は、XYZまたはXYZの化学組成をもつ金属間化合物を含み、ホイスラー合金の化学組成のXは、周期表上でCo、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素である。ホイスラー合金の化学組成のYは、Mn、V、CrあるいはTi族の遷移金属またはXの元素種である。ホイスラー合金の化学組成のZは、III族からV族の典型元素である。ホイスラー合金は、例えば、CoFeSi、CoMnSiやCoMn1-aFeAlSi1-bなどを第3強磁性層30として用いることができる。
 第3強磁性層30の膜厚は、0.5nm以上5.0nm以下の範囲内にあることが好ましい。
 第3強磁性層30の積層体10に対する保磁力をより大きくするために、第3強磁性層30に接してIrMn、PtMnなどの反強磁性材料を備えていてもよい。また、第3強磁性層30の漏れ磁場を積層体10に影響させないようにするため、シンセティック強磁性結合の構造としてもよい。
 非磁性層20には、公知の材料を用いることができる。
 例えば、非磁性層20が絶縁体からなる場合(トンネルバリア層である場合)、非磁性層20は、例えば、Al、SiO、MgO、及び、MgAl等である。また、非磁性層20は、これらの他にも、Al、Si、Mgの一部が、Zn、Be等に置換されたものも用いることができる。これらの中でも、MgOやMgAlは非磁性層20として用いるとコヒーレントトンネルが実現できるため、スピンを効率よく注入できる。非磁性層20が金属からなる場合、非磁性層20は、例えばCu、Au、Ag等である。さらに、非磁性層20が半導体からなる場合、非磁性層20は、例えばSi、Ge、CuInSe、CuGaSe、Cu(In,Ga)Seなどである。
 非磁性層20の膜厚は、0.3nm以上3.0nm以下の範囲内にあることが好ましい。
 機能部40は、その他の層を有していてもよい。例えば、積層体10とスピン軌道トルク配線50との間に下地層を有していてもよいし、第3強磁性層30の非磁性層20と反対側の面にキャップ層を有していてもよい。
 スピン軌道トルク配線50と第1強磁性層11との間に層を配設する場合は、スピン軌道トルク配線50から伝播するスピンを散逸しないことが好ましい。例えば、銀、銅、マグネシウム、及び、アルミニウム等は、スピン拡散長が100nm以上と長く、スピンが散逸しにくいことが知られており、好適に用いることができる。また、スピン軌道トルク配線50と第1強磁性層11との間に配設する層の厚みは、この層を構成する物質のスピン拡散長以下であることが好ましい。層の厚みがスピン拡散長以下であれば、スピン軌道トルク配線50から伝播するスピンを第1強磁性層11に十分伝えることができる。
 スピン軌道トルク型磁気抵抗効果素子200は、第2強磁性層13の磁化M13と第3強磁性層30の磁化M30との相対角の違いにより生じる機能部の抵抗値変化を用いてデータの記録、読出しを行う。
 スピン軌道トルク型磁気抵抗効果素子200は、スピン軌道トルク型磁化回転素子101の第2強磁性層13に、非磁性層20、第3強磁性層30をこの順に積層することによって製造することができる。非磁性層20、第3強磁性層30を積層する方法としては、スパッタリング法、化学気相成長(CVD)法などの公知の方法を用いることができる。
 得られた機能部40は、アニール処理を行うことが好ましい。アニール処理を行うことによって、各層の結晶性が向上し、機能部40のMR比を高めることができる。
 以上のような構成とされたスピン軌道トルク型磁気抵抗効果素子200は、酸化物含有層12を備えるので、第1強磁性層11及び第2強磁性層13のダンピング定数が大きくなり、磁化反転が素早くなる。
 図4及び図5は、変形例1に係るスピン軌道トルク型磁気抵抗効果素子201の断面模式図である。図4は、スピン軌道トルク型磁気抵抗効果素子201をスピン軌道トルク配線50のy方向の中心を通るxz平面で切断した断面である。図5は、スピン軌道トルク型磁気抵抗効果素子201を機能部40のx方向の中心を通るyz平面で切断した断面である。図4及び図5に示すスピン軌道トルク型磁気抵抗効果素子201は、機能部40の側面の形状及びスピン軌道トルク配線50の第1面50aの形状が異なること以外は、スピン軌道トルク型磁気抵抗効果素子200と同様である。このため、スピン軌道トルク型磁気抵抗効果素子200と同一の構成については同一の符号を付し、説明を省略する。
 図4及び図5に示す機能部40は、z方向から見て、スピン軌道トルク配線50に近づくに従い、xy面内に広がっている。z方向から見て、機能部40の外周長または外径は、スピン軌道トルク配線50に近づくに従い、大きくなる。またx方向又はy方向から見て、機能部40の側面40sは、xy平面に対して傾斜している。側面40sのxy平面に対する傾斜角θは、z方向の高さ位置によって異なっていても、一定でもよい。側面40sのxy平面に対する傾斜角θは、例えば、スピン軌道トルク配線50に近づくにつれて小さくなる。
 機能部40の側面40sは、第3強磁性層30、非磁性層20、第2強磁性層13、酸化物含有層12、第1強磁性導層11のそれぞれの側面30s、20s、13s、12s、11sによって構成される。側面11s、12s、13s、20s、30sは、それぞれxy平面に対して傾斜する。側面11s、12s、13s、20s、30sは、それぞれ連続し、一つの側面40sを形成する。ここで「連続」とは、xz平面又はyz平面で切断した切断面において、側面40sに沿って引いた接線の傾きが一定である、又は、連続的に変化することをいう。
 またスピン軌道トルク配線50の第1面50aは、場所によってz方向の高さ位置が異なる。第1面50aは、スピン軌道トルク配線50の機能部40に近い側の面である。以下、第1面50aのうち、z方向において機能部40と重なる部分を第1面50aAと称し、重ならない部分を第1面50aBと称する。第1面50aAは、第1面50aBより+z方向に位置する。すなわち、第1面50aAは、第1面50aBより後述する基板Subから離れた位置にある。第1面50aBは、機能部40を所定の形状に加工する際のイオンミリング等により、第1面50aAより-z方向の位置に形成される場合がある。
 また図5に示すように、スピン軌道トルク配線50の側面50sは、xy平面に対して傾斜する。側面50sと側面40sとは、例えば、不連続である。「不連続」とは、xz平面又はyz平面で切断した切断面において、側面50s、40sに沿って引いた接線の傾きが連続的に変化しないことを言う。スピン軌道トルク配線50を所定の形状に加工した後に、機能部40を所定の形状に加工する場合、側面50sと側面40sとは不連続になる場合がある。
 また図4及び図5では、機能部40及びスピン軌道トルク配線50の周囲を囲む絶縁層90、91を同時に図示した。絶縁層90、91は、多層配線の配線間や素子間を絶縁する絶縁層である。絶縁層90、91は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、炭化シリコン(SiC)、窒化クロム、炭窒化シリコン(SiCN)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)等である。
 以上のような構成とされたスピン軌道トルク型磁気抵抗効果素子201は、第1強磁性層11のダンピング定数が大きくなるので、磁化M11が磁化容易方向に向こうとする力が大きくなり、磁化反転を素早く行うことができる。また第1強磁性体層11の側面11sがxy平面に対して傾斜していることで、スピン軌道トルク配線50から第1強磁性層11への電流の流れがスムーズになる。すなわち、スピン軌道トルク型磁気抵抗効果素子201は、急激な電流密度の変化に伴う電流のロスを抑制できる。
 図6は、変形例2に係るスピン軌道トルク型磁気抵抗効果素子202の断面模式図である。図6は、スピン軌道トルク型磁気抵抗効果素子202をスピン軌道トルク配線50のy方向の中心を通るxz平面で切断した断面である。図6に示すスピン軌道トルク型磁気抵抗効果素子202は、機能部40の側面の形状が異なること以外は、変形例1にかかるスピン軌道トルク型磁気抵抗効果素子202と同様である。このため、スピン軌道トルク型磁気抵抗効果素子202と同一の構成については同一の符号を付し、説明を省略する。
 図6に示す機能部40は、z方向から見て、スピン軌道トルク配線50に近づくに従い、段階的にxy面内に広がっている。図6に示す機能部40のうち金属により構成される第3強磁性層30、第2強磁性層13、第1強磁性層11は、スピン軌道トルク配線50に近づくに従い、外周長又は外径が大きくなる。図6に示す機能部40のうち金属以外により構成される非磁性層20、酸化物含有層12は、スピン軌道トルク配線50に近づくに従い、外周長又は外径が小さくなる。
 第3強磁性層30、第2強磁性層13、第2強磁性層11の側面30s、13s、11sは、例えば、xy平面に対して傾斜角θ1で傾斜する。非磁性層20、酸化物含有層12の側面20s、12sは、例えば、xy平面に対して傾斜角θ2で傾斜する。傾斜角θ1、θ2は、z方向の高さ位置によって異なっていても、一定でもよい。傾斜角θ1と傾斜角θ2とは、異なる。傾斜角θ1は、例えば90°未満であり、傾斜角θ2は例えば90°以上である。
 機能部40の側面40sは、不連続である。各層の側面11s、12s、13s、20s、30sの境界において、側面40sは不連続である。側面40sは、例えば、第3強磁性層30と非磁性層20との境界、非磁性層20と第2強磁性層13との境界、第2強磁性層13と酸化物含有層12との境界、酸化物含有層12と第1強磁性層11との境界において、段差を有する。
 機能部40を形成する場合に、マスクを介してz方向から加工の後に、x方向またはy方向からイオンミリング(サイドミリング)等を行う場合がある。サイドミリングを行うと、機能部40のx方向及びy方向の幅を小さくでき、機能部40のサイズを微細化できる。サイドミリングの進行度は、層を構成する材料によって異なる。金属は非金属より柔らかい場合が多く、金属の方が非金属よりサイドミリングが進行する場合がある。各層のサイドミリングの進行度の違いにより、機能部40の側面40sは、不連続になる。
 以上のような構成とされたスピン軌道トルク型磁気抵抗効果素子203は、第1強磁性層11のダンピング定数が大きくなるので、磁化反転を素早く行うことができる。また強磁性導電体層11の側面11sがxy平面に対して傾斜していることで、スピン軌道トルク配線50から強磁性導電体層11への電流の流れがスムーズになる。さらに、側面40sが不連続であることで、絶縁層90との密着性を高めることができる。
 また図7は、変形例2に係るスピン軌道トルク型磁気抵抗効果素子の例の断面模式図である。図7は、スピン軌道トルク型磁気抵抗効果素子202をスピン軌道トルク配線50のy方向の中心を通るxz平面で切断した断面である。スピン軌道トルク型磁気抵抗効果素子202Aは、傾斜角θ2が90°の場合の例である。
 図8は、変形例3に係るスピン軌道トルク型磁気抵抗効果素子203の断面模式図である。図8は、スピン軌道トルク型磁気抵抗効果素子203をスピン軌道トルク配線50のy方向の中心を通るxz平面で切断した断面である。図8に示すスピン軌道トルク型磁気抵抗効果素子203は、機能部40とスピン軌道トルク配線50との位置関係が異なること以外は、図6に示すスピン軌道トルク型磁気抵抗効果素子202と同様である。このため、スピン軌道トルク型磁気抵抗効果素子202と同一の構成については同一の符号を付し、説明を省略する。
 スピン軌道トルク型磁気抵抗効果素子203は、スピン軌道トルク配線50が機能部40に対して+z方向の位置にある。すなわち、スピン軌道トルク配線50は、機能部40より後述する基板Subから離れた位置にある。
 機能部40は、第3強磁性層30、非磁性層20、第2強磁性層13、酸化物含有層12、第1強磁性層11を+z方向に順に有する。第3強磁性層30は、第1強磁性層11より後述する基板Subに近い位置にある。機能部40は、ボトムピン構造と言われる場合がある。
 スピン軌道トルク配線50は、機能部40及び絶縁層90の+z方向の位置に積層されている。スピン軌道トルク配線50の第1面50a及び第2面50bは、場所によってz方向の高さ位置が異なる。第1面50aは、スピン軌道トルク配線50の機能部40に近い側の面であり、第2面50bは第1面50aと反対側の面である。以下、第1面50aのうち、z方向において機能部40と重なる部分を第1面50aAと称し、重ならない部分を第1面50aBと称する。以下、第2面50bのうち、z方向において機能部40と重なる部分を第2面50bAと称し、重ならない部分を第2面50bBと称する。第1面50aBは、第1面50aAより+z方向に位置する。第1面50aを例えば化学機械研磨(CMP)する際の研磨スピードの違いにより、第1面50aAは第1面50aBに対して-z方向に凹む。第2面50aBは、第2面50aAより+z方向に位置する。第2面50bは、第1面50aの形状を反映する。
 以上のような構成とされたスピン軌道トルク型磁気抵抗効果素子203は、ボトムピン構造であっても、第1強磁性層11のダンピング定数が大きくなるので、磁化反転を素早く行うことができる。
 変形例1~3の特徴的な構成は、第1実施形態に係るスピン軌道トルク型磁化回転素子にも適用可能である。
<第3実施形態(磁気メモリ)>
 図9は、磁気メモリ300の模式図である。磁気メモリ300は、第1実施形態のスピン軌道トルク型磁気抵抗効果素子200(図3参照)を複数備える。図3は、図9におけるA-A面に沿ってスピン軌道トルク型磁気抵抗効果素子200を切断した断面図に対応する。図9に示す磁気メモリ300は、スピン軌道トルク型磁気抵抗効果素子200が3×3のマトリックス配置をしている。図9は、磁気メモリの一例であり、スピン軌道トルク型磁気抵抗効果素子200の構成、数及び配置は任意である。
 スピン軌道トルク型磁気抵抗効果素子200には、それぞれ1本のワードラインWL1~WL3と、1本のビットラインBL1~BL3、1本のリードラインRL1~RL3が接続されている。
 ワードラインWL1~WL3とビットラインBL1~BL3との間に所定値以上の電圧差を与えることで、任意のスピン軌道トルク型磁気抵抗効果素子200のスピン軌道トルク配線50に電流が流れ、書き込み動作が行われる。またリードラインRL1~RL3とビットラインBL1~BL3との間に所定値以上の電圧差を与えることで、任意のスピン軌道トルク型磁気抵抗効果素子200の機能部40の積層方向に電流が流れ、読み出し動作を行う。これらの複数のスピン軌道トルク型磁気抵抗効果素子200から任意の素子のデータを読み出すことで磁気メモリとしての活用ができる。
また図10は、図9に示す磁気メモリ300の要部をA-A面に沿って切断した断面図である。磁気メモリ300は、スピン軌道トルク型磁気抵抗効果素子200と、スピン軌道トルク型磁気抵抗効果素子200に接続された複数のスイッチング素子とを有する。
 図10に示すスイッチング素子は、トランジスタTrである。トランジスタTrは、ゲート電極Gと、ゲート絶縁膜GIと、基板Subに形成されたソース領域S及びドレイン領域Dと、を有する。基板Subは、例えば、半導体基板である。
 トランジスタTrのそれぞれとスピン軌道トルク型磁気抵抗効果素子200、ワードラインWL及びビットラインBLとは、導電部Cwを介して、電気的に接続されている。導電部Cwは、例えば、接続配線、ビア配線と言われることがある。導電部Cwは、導電性を有する材料を含む。導電部Cwは、z方向に延びる。
 またスピン軌道トルク型磁気抵抗効果素子200の機能部40には電極80が形成されている。電極80は、導電性を有する材料を含む。電極80は、リードラインRLに接続される。リードラインRLと電極80との間に、スイッチング素子(例えば、トランジスタ)を有してもよい。リードラインRLと電極80との間のスイッチング素子は、図10における紙面奥行き方向(-y方向)に例えば位置する。
 記憶素子100とトランジスタTrとは、導電部Cwを除いて、絶縁層90によって電気的に分離されている。
 第3実施形態に係る磁気メモリ300は、第2実施形態に係るスピン軌道トルク型磁気抵抗効果素子200を複数有する。上述のように、スピン軌道トルク型磁気抵抗効果素子200は、それぞれ磁化反転を素早く行うことができる。したがって、磁気メモリ300は、素早く駆動できる。
10…積層体、11…第1強磁性層、12…酸化物含有層、13…第2強磁性層、20…非磁性層、30…第3強磁性層、40…機能部、50…スピン軌道トルク配線、101、102…スピン軌道トルク型磁化回転素子、200…スピン軌道トルク型磁気抵抗効果素子、300…磁気メモリ

Claims (10)

  1.  スピン軌道トルク配線と、
     前記スピン軌道トルク配線に積層された積層体と、を備え、
     前記積層体は、第1強磁性層と、酸化物含有層と、第2強磁性層と、を前記スピン軌道トルク配線側から順に備え、
     前記酸化物含有層が非磁性元素の酸化物を含み、
     前記第1強磁性層と前記第2強磁性層とは、強磁性結合している、スピン軌道トルク型磁化回転素子。
  2.  前記第1強磁性層の磁化容易軸は、前記スピン軌道トルク配線から前記第1強磁性層に注入されるスピンの向きと交差している、請求項1に記載のスピン軌道トルク型磁化回転素子。
  3.  前記酸化物含有層に含まれる前記酸化物の前記非磁性元素は、Al、Si、Mg、Ti、Cr、Cu、Mo、Ru、Rh、Pd、Hf、Ta、W、Re、Ir、Pt、Biからなる群より選ばれる少なくとも一つを含む、請求項1又は2に記載のスピン軌道トルク型磁化回転素子。
  4.  前記酸化物含有層の膜厚が1.0nm以下である、請求項1~3のいずれか一項に記載のスピン軌道トルク型磁化回転素子。
  5.  前記酸化物含有層に含まれる前記酸化物は、化学量論組成に対して酸素が欠損している、請求項1~4のいずれか一項に記載のスピン軌道トルク型磁化回転素子。
  6.  前記酸化物含有層と、前記第2強磁性層と、の間に拡散防止層が挿入されている、請求項1~5のいずれか一項に記載のスピン軌道トルク型磁化回転素子。
  7.  前記第1強磁性層の膜厚が、前記第2強磁性層の膜厚より厚い、請求項1~6のいずれか一項に記載のスピン軌道トルク型磁化回転素子。
  8.  前記第2強磁性層が、Co、Fe、Bからなる群より選ばれる少なくとも一つの元素を含む、請求項1~7のいずれか一項に記載のスピン軌道トルク型磁化回転素子。
  9.  請求項1~8のいずれか一項に記載のスピン軌道トルク型磁化回転素子と、
     前記積層体の前記スピン軌道トルク配線と反対側に積層された非磁性層と、
     前記積層体と前記非磁性層を挟む第3強磁性層と、を備えるスピン軌道トルク型磁気抵抗効果素子。
  10.  請求項9に記載のスピン軌道トルク型磁気抵抗効果素子を複数備える、磁気メモリ。
PCT/JP2019/018731 2018-05-31 2019-05-10 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ WO2019230341A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020511392A JP6819817B2 (ja) 2018-05-31 2019-05-10 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
US16/756,388 US11391794B2 (en) 2018-05-31 2019-05-10 Spin-orbit-torque magnetization rotational element, spin-orbit-torque type magnetoresistance effect element, and magnetic memory
CN201980006458.9A CN111492491B (zh) 2018-05-31 2019-05-10 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件以及磁存储器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-105393 2018-05-31
JP2018105393 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230341A1 true WO2019230341A1 (ja) 2019-12-05

Family

ID=68696715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018731 WO2019230341A1 (ja) 2018-05-31 2019-05-10 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ

Country Status (4)

Country Link
US (1) US11391794B2 (ja)
JP (1) JP6819817B2 (ja)
CN (1) CN111492491B (ja)
WO (1) WO2019230341A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6803575B2 (ja) * 2016-06-24 2020-12-23 国立研究開発法人物質・材料研究機構 I−iii−vi2化合物半導体を用いた磁気抵抗素子及びその製造方法、これを用いた磁気記憶装置並びにスピントランジスタ
JP6686990B2 (ja) * 2017-09-04 2020-04-22 Tdk株式会社 スピン軌道トルク型磁化反転素子及び磁気メモリ
US11211552B2 (en) * 2018-05-31 2021-12-28 Tdk Corporation Spin-orbit torque magnetoresistance effect element and magnetic memory
US11276730B2 (en) * 2019-01-11 2022-03-15 Intel Corporation Spin orbit torque memory devices and methods of fabrication
EP3731289A1 (en) * 2019-04-23 2020-10-28 IMEC vzw A magnetic tunnel junction device
CN113948632A (zh) * 2021-10-18 2022-01-18 深圳技术大学 一种自旋电子异质结及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059679A (ja) * 2015-09-16 2017-03-23 株式会社東芝 磁気メモリ
WO2017090736A1 (ja) * 2015-11-27 2017-06-01 Tdk株式会社 スピン流磁化反転型磁気抵抗効果素子及びスピン流磁化反転型磁気抵抗効果素子の製造方法
JP2018022796A (ja) * 2016-08-04 2018-02-08 株式会社東芝 磁気メモリ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004042338B4 (de) * 2004-09-01 2006-09-07 Infineon Technologies Ag MRAM mit verbesserten Speicher- und Ausleseeigenschaften
JP2006319259A (ja) * 2005-05-16 2006-11-24 Fujitsu Ltd 強磁性トンネル接合素子、これを用いた磁気ヘッド、磁気記録装置、および磁気メモリ装置
US8374025B1 (en) 2007-02-12 2013-02-12 Avalanche Technology, Inc. Spin-transfer torque magnetic random access memory (STTMRAM) with laminated free layer
JP5725735B2 (ja) 2010-06-04 2015-05-27 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
WO2014089182A1 (en) * 2012-12-04 2014-06-12 Carnegie Mellon University A nonvolatile magnetic logic device
US9349945B2 (en) * 2014-10-16 2016-05-24 Micron Technology, Inc. Memory cells, semiconductor devices, and methods of fabrication
JP6806375B2 (ja) * 2015-11-18 2021-01-06 国立大学法人東北大学 磁気トンネル接合素子及び磁気メモリ
US9899071B2 (en) * 2016-01-20 2018-02-20 The Johns Hopkins University Heavy metal multilayers for switching of magnetic unit via electrical current without magnetic field, method and applications
US10686127B2 (en) * 2016-03-28 2020-06-16 National University Of Singapore Antiferromagnet and heavy metal multilayer magnetic systems for switching magnetization using spin-orbit torque
JP6934673B2 (ja) * 2016-06-08 2021-09-15 国立大学法人東北大学 磁気トンネル接合素子および磁気メモリ
JP6724646B2 (ja) * 2016-08-10 2020-07-15 Tdk株式会社 磁気抵抗効果素子、熱履歴センサおよびスピングラス利用型磁気メモリ
JP2018074139A (ja) * 2016-10-27 2018-05-10 Tdk株式会社 電流磁場アシスト型スピン流磁化反転素子、磁気抵抗効果素子、磁気メモリおよび高周波フィルタ
US10340901B2 (en) * 2017-03-01 2019-07-02 Tdk Corporation Random number generator, random number generation device, neuromorphic computer, and quantum computer
JP6686990B2 (ja) * 2017-09-04 2020-04-22 Tdk株式会社 スピン軌道トルク型磁化反転素子及び磁気メモリ
US11211552B2 (en) * 2018-05-31 2021-12-28 Tdk Corporation Spin-orbit torque magnetoresistance effect element and magnetic memory
US10447277B1 (en) * 2018-09-04 2019-10-15 University Of Rochester Method of electrical reconfigurability and an electrical reconfigurable logic gate device instrinsically enabled by spin-orbit materials
CN113330582A (zh) * 2019-01-31 2021-08-31 Tdk株式会社 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件、磁存储器及储备池元件
US11176979B2 (en) * 2019-02-28 2021-11-16 Regents Of The University Of Minnesota Computational random access memory (CRAM) based on spin-orbit torque devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059679A (ja) * 2015-09-16 2017-03-23 株式会社東芝 磁気メモリ
WO2017090736A1 (ja) * 2015-11-27 2017-06-01 Tdk株式会社 スピン流磁化反転型磁気抵抗効果素子及びスピン流磁化反転型磁気抵抗効果素子の製造方法
JP2018022796A (ja) * 2016-08-04 2018-02-08 株式会社東芝 磁気メモリ

Also Published As

Publication number Publication date
JP6819817B2 (ja) 2021-01-27
US20200278403A1 (en) 2020-09-03
CN111492491A (zh) 2020-08-04
CN111492491B (zh) 2024-04-09
US11391794B2 (en) 2022-07-19
JPWO2019230341A1 (ja) 2020-07-09

Similar Documents

Publication Publication Date Title
JP6819817B2 (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP5360596B2 (ja) 磁気ランダムアクセスメモリ及びその製造方法
US10762941B2 (en) Spin-orbit torque magnetization rotating element, spin-orbit torque magnetoresistance effect element, and magnetic memory
JP6743986B2 (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
US11211547B2 (en) Spin-orbit-torque type magnetization rotating element, spin-orbit-torque type magnetoresistance effect element, and magnetic memory
JP2008109118A (ja) 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ
JP7211252B2 (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP2020035971A (ja) スピン流磁化回転型磁気素子、スピン流磁化回転型磁気抵抗効果素子及び磁気メモリ
JP6690805B1 (ja) スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP7095490B2 (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
US11744163B2 (en) Spin-orbit-torque type magnetoresistance effect element and magnetic memory
JP2020053509A (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
WO2023170738A1 (ja) 磁化回転素子、磁気抵抗効果素子及び磁気メモリ
US11925123B2 (en) Spin-orbit torque type magnetization rotational element, spin-orbit torque type magnetoresistance effect element, and magnetic memory
JP7024914B2 (ja) 磁壁移動素子及び磁気記録アレイ
WO2023089766A1 (ja) 磁化回転素子、磁気抵抗効果素子及び磁気メモリ
JP6838694B2 (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
CN115700065A (zh) 磁化旋转元件、磁阻效应元件和磁存储器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511392

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810316

Country of ref document: EP

Kind code of ref document: A1