WO2016043124A1 - 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置 - Google Patents
円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置 Download PDFInfo
- Publication number
- WO2016043124A1 WO2016043124A1 PCT/JP2015/075757 JP2015075757W WO2016043124A1 WO 2016043124 A1 WO2016043124 A1 WO 2016043124A1 JP 2015075757 W JP2015075757 W JP 2015075757W WO 2016043124 A1 WO2016043124 A1 WO 2016043124A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plate
- film
- resin
- circularly polarizing
- stretching
- Prior art date
Links
- 238000005401 electroluminescence Methods 0.000 title claims description 8
- 238000010521 absorption reaction Methods 0.000 claims abstract description 81
- 239000006185 dispersion Substances 0.000 claims abstract description 35
- 229920005989 resin Polymers 0.000 claims description 167
- 239000011347 resin Substances 0.000 claims description 167
- 229920000642 polymer Polymers 0.000 claims description 121
- 238000004519 manufacturing process Methods 0.000 claims description 58
- 239000004793 Polystyrene Substances 0.000 claims description 56
- 229920002223 polystyrene Polymers 0.000 claims description 56
- 229920001955 polyphenylene ether Polymers 0.000 claims description 44
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 19
- 239000010410 layer Substances 0.000 description 147
- 238000000034 method Methods 0.000 description 77
- 239000000203 mixture Substances 0.000 description 68
- 239000000178 monomer Substances 0.000 description 55
- 125000004122 cyclic group Chemical group 0.000 description 41
- 229920005672 polyolefin resin Polymers 0.000 description 38
- -1 acryl Chemical group 0.000 description 35
- 239000000853 adhesive Substances 0.000 description 33
- 230000001070 adhesive effect Effects 0.000 description 33
- 230000003287 optical effect Effects 0.000 description 32
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 28
- 239000005060 rubber Substances 0.000 description 24
- 229920001971 elastomer Polymers 0.000 description 23
- 238000005259 measurement Methods 0.000 description 23
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 22
- 229920001577 copolymer Polymers 0.000 description 22
- 230000009477 glass transition Effects 0.000 description 22
- 230000002829 reductive effect Effects 0.000 description 21
- 238000000465 moulding Methods 0.000 description 20
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 19
- 229920000058 polyacrylate Polymers 0.000 description 18
- 229920006302 stretch film Polymers 0.000 description 18
- 230000008569 process Effects 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 14
- 238000013329 compounding Methods 0.000 description 14
- 239000011241 protective layer Substances 0.000 description 14
- 239000002245 particle Substances 0.000 description 13
- 239000004925 Acrylic resin Substances 0.000 description 12
- 229920000178 Acrylic resin Polymers 0.000 description 12
- 125000002723 alicyclic group Chemical group 0.000 description 11
- 125000004432 carbon atom Chemical group C* 0.000 description 11
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 150000001993 dienes Chemical class 0.000 description 10
- 229920001519 homopolymer Polymers 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000010030 laminating Methods 0.000 description 9
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 9
- 239000008188 pellet Substances 0.000 description 9
- 230000000379 polymerizing effect Effects 0.000 description 9
- 238000007142 ring opening reaction Methods 0.000 description 9
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 9
- 150000001925 cycloalkenes Chemical class 0.000 description 8
- 125000001424 substituent group Chemical group 0.000 description 8
- OMIHGPLIXGGMJB-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]hepta-1,3,5-triene Chemical group C1=CC=C2OC2=C1 OMIHGPLIXGGMJB-UHFFFAOYSA-N 0.000 description 7
- 229920010524 Syndiotactic polystyrene Polymers 0.000 description 7
- 239000006096 absorbing agent Substances 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 7
- 125000005843 halogen group Chemical group 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 230000001771 impaired effect Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 150000003440 styrenes Chemical class 0.000 description 7
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 150000004678 hydrides Chemical class 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920002852 poly(2,6-dimethyl-1,4-phenylene oxide) polymer Polymers 0.000 description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 4
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 4
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- 101100388071 Thermococcus sp. (strain GE8) pol gene Proteins 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 150000001924 cycloalkanes Chemical group 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- CTHJQRHPNQEPAB-UHFFFAOYSA-N 2-methoxyethenylbenzene Chemical compound COC=CC1=CC=CC=C1 CTHJQRHPNQEPAB-UHFFFAOYSA-N 0.000 description 2
- GVLZQVREHWQBJN-UHFFFAOYSA-N 3,5-dimethyl-7-oxabicyclo[2.2.1]hepta-1,3,5-triene Chemical group CC1=C(O2)C(C)=CC2=C1 GVLZQVREHWQBJN-UHFFFAOYSA-N 0.000 description 2
- IWTYTFSSTWXZFU-UHFFFAOYSA-N 3-chloroprop-1-enylbenzene Chemical compound ClCC=CC1=CC=CC=C1 IWTYTFSSTWXZFU-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 125000005396 acrylic acid ester group Chemical group 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000005250 alkyl acrylate group Chemical group 0.000 description 2
- 125000005907 alkyl ester group Chemical group 0.000 description 2
- FQUNFJULCYSSOP-UHFFFAOYSA-N bisoctrizole Chemical compound N1=C2C=CC=CC2=NN1C1=CC(C(C)(C)CC(C)(C)C)=CC(CC=2C(=C(C=C(C=2)C(C)(C)CC(C)(C)C)N2N=C3C=CC=CC3=N2)O)=C1O FQUNFJULCYSSOP-UHFFFAOYSA-N 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- ZXIJMRYMVAMXQP-UHFFFAOYSA-N cycloheptene Chemical compound C1CCC=CCC1 ZXIJMRYMVAMXQP-UHFFFAOYSA-N 0.000 description 2
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 description 2
- 239000004913 cyclooctene Substances 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- DDKMFQGAZVMXQV-UHFFFAOYSA-N (3-chloro-2-hydroxypropyl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CCl DDKMFQGAZVMXQV-UHFFFAOYSA-N 0.000 description 1
- JBVMSEMQJGGOFR-FNORWQNLSA-N (4e)-4-methylhexa-1,4-diene Chemical compound C\C=C(/C)CC=C JBVMSEMQJGGOFR-FNORWQNLSA-N 0.000 description 1
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- WLTSXAIICPDFKI-FNORWQNLSA-N (E)-3-dodecene Chemical compound CCCCCCCC\C=C\CC WLTSXAIICPDFKI-FNORWQNLSA-N 0.000 description 1
- UTOVMEACOLCUCK-SNAWJCMRSA-N (e)-4-butoxy-4-oxobut-2-enoic acid Chemical compound CCCCOC(=O)\C=C\C(O)=O UTOVMEACOLCUCK-SNAWJCMRSA-N 0.000 description 1
- DTCCVIYSGXONHU-CJHDCQNGSA-N (z)-2-(2-phenylethenyl)but-2-enedioic acid Chemical compound OC(=O)\C=C(C(O)=O)\C=CC1=CC=CC=C1 DTCCVIYSGXONHU-CJHDCQNGSA-N 0.000 description 1
- GWYPDXLJACEENP-UHFFFAOYSA-N 1,3-cycloheptadiene Chemical compound C1CC=CC=CC1 GWYPDXLJACEENP-UHFFFAOYSA-N 0.000 description 1
- BOVQCIDBZXNFEJ-UHFFFAOYSA-N 1-chloro-3-ethenylbenzene Chemical compound ClC1=CC=CC(C=C)=C1 BOVQCIDBZXNFEJ-UHFFFAOYSA-N 0.000 description 1
- OEVVKKAVYQFQNV-UHFFFAOYSA-N 1-ethenyl-2,4-dimethylbenzene Chemical compound CC1=CC=C(C=C)C(C)=C1 OEVVKKAVYQFQNV-UHFFFAOYSA-N 0.000 description 1
- JWVTWJNGILGLAT-UHFFFAOYSA-N 1-ethenyl-4-fluorobenzene Chemical compound FC1=CC=C(C=C)C=C1 JWVTWJNGILGLAT-UHFFFAOYSA-N 0.000 description 1
- LMAUULKNZLEMGN-UHFFFAOYSA-N 1-ethyl-3,5-dimethylbenzene Chemical compound CCC1=CC(C)=CC(C)=C1 LMAUULKNZLEMGN-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- KPTMGJRRIXXKKW-UHFFFAOYSA-N 2,3,5-trimethyl-7-oxabicyclo[2.2.1]hepta-1,3,5-triene Chemical group O1C2=C(C)C(C)=C1C=C2C KPTMGJRRIXXKKW-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- IYAZLDLPUNDVAG-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 IYAZLDLPUNDVAG-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- FZHNODDFDJBMAS-UHFFFAOYSA-N 2-ethoxyethenylbenzene Chemical compound CCOC=CC1=CC=CC=C1 FZHNODDFDJBMAS-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- KBKNKFIRGXQLDB-UHFFFAOYSA-N 2-fluoroethenylbenzene Chemical compound FC=CC1=CC=CC=C1 KBKNKFIRGXQLDB-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- DXIJHCSGLOHNES-UHFFFAOYSA-N 3,3-dimethylbut-1-enylbenzene Chemical compound CC(C)(C)C=CC1=CC=CC=C1 DXIJHCSGLOHNES-UHFFFAOYSA-N 0.000 description 1
- CEBRPXLXYCFYGU-UHFFFAOYSA-N 3-methylbut-1-enylbenzene Chemical compound CC(C)C=CC1=CC=CC=C1 CEBRPXLXYCFYGU-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- YKXAYLPDMSGWEV-UHFFFAOYSA-N 4-hydroxybutyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCO YKXAYLPDMSGWEV-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- VSQLAQKFRFTMNS-UHFFFAOYSA-N 5-methylhexa-1,4-diene Chemical compound CC(C)=CCC=C VSQLAQKFRFTMNS-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- DSXPRCXSZTWNSX-UHFFFAOYSA-N CO.C1C2=CC=CC=C2C2=C1CCCC2 Chemical compound CO.C1C2=CC=CC=C2C2=C1CCCC2 DSXPRCXSZTWNSX-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- IEPRKVQEAMIZSS-UHFFFAOYSA-N Di-Et ester-Fumaric acid Natural products CCOC(=O)C=CC(=O)OCC IEPRKVQEAMIZSS-UHFFFAOYSA-N 0.000 description 1
- IEPRKVQEAMIZSS-WAYWQWQTSA-N Diethyl maleate Chemical compound CCOC(=O)\C=C/C(=O)OCC IEPRKVQEAMIZSS-WAYWQWQTSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- XLYMOEINVGRTEX-ARJAWSKDSA-N Ethyl hydrogen fumarate Chemical compound CCOC(=O)\C=C/C(O)=O XLYMOEINVGRTEX-ARJAWSKDSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- KVICEWSUCIECMS-UHFFFAOYSA-N OC1=C(C(=O)C2=C(C=C(C=C2)OC)O)C=CC(=C1)OC.C(C)(C)(C)C1=C(C(=CC(=C1)C(C)(C)C)N1N=C2C(=N1)C=CC(=C2)Cl)O Chemical compound OC1=C(C(=O)C2=C(C=C(C=C2)OC)O)C=CC(=C1)OC.C(C)(C)(C)C1=C(C(=CC(=C1)C(C)(C)C)N1N=C2C(=N1)C=CC(=C2)Cl)O KVICEWSUCIECMS-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- YMOONIIMQBGTDU-VOTSOKGWSA-N [(e)-2-bromoethenyl]benzene Chemical compound Br\C=C\C1=CC=CC=C1 YMOONIIMQBGTDU-VOTSOKGWSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- WXNRYSGJLQFHBR-UHFFFAOYSA-N bis(2,4-dihydroxyphenyl)methanone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=C(O)C=C1O WXNRYSGJLQFHBR-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- OCWYEMOEOGEQAN-UHFFFAOYSA-N bumetrizole Chemical compound CC(C)(C)C1=CC(C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O OCWYEMOEOGEQAN-UHFFFAOYSA-N 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- XZKRXPZXQLARHH-UHFFFAOYSA-N buta-1,3-dienylbenzene Chemical compound C=CC=CC1=CC=CC=C1 XZKRXPZXQLARHH-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- CFBGXYDUODCMNS-UHFFFAOYSA-N cyclobutene Chemical compound C1CC=C1 CFBGXYDUODCMNS-UHFFFAOYSA-N 0.000 description 1
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 description 1
- GVRWIAHBVAYKIZ-UHFFFAOYSA-N dec-3-ene Chemical compound CCCCCCC=CCC GVRWIAHBVAYKIZ-UHFFFAOYSA-N 0.000 description 1
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 1
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 1
- IEPRKVQEAMIZSS-AATRIKPKSA-N diethyl fumarate Chemical compound CCOC(=O)\C=C\C(=O)OCC IEPRKVQEAMIZSS-AATRIKPKSA-N 0.000 description 1
- ZWWQRMFIZFPUAA-UHFFFAOYSA-N dimethyl 2-methylidenebutanedioate Chemical compound COC(=O)CC(=C)C(=O)OC ZWWQRMFIZFPUAA-UHFFFAOYSA-N 0.000 description 1
- LDCRTTXIJACKKU-ONEGZZNKSA-N dimethyl fumarate Chemical compound COC(=O)\C=C\C(=O)OC LDCRTTXIJACKKU-ONEGZZNKSA-N 0.000 description 1
- 229960004419 dimethyl fumarate Drugs 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 238000009820 dry lamination Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- FKIRSCKRJJUCNI-UHFFFAOYSA-N ethyl 7-bromo-1h-indole-2-carboxylate Chemical compound C1=CC(Br)=C2NC(C(=O)OCC)=CC2=C1 FKIRSCKRJJUCNI-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N fumaric acid monoethyl ester Natural products CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000005462 imide group Chemical group 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000001225 nuclear magnetic resonance method Methods 0.000 description 1
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001596 poly (chlorostyrenes) Polymers 0.000 description 1
- 229920003197 poly( p-chlorostyrene) Polymers 0.000 description 1
- 229920002587 poly(1,3-butadiene) polymer Polymers 0.000 description 1
- 229920001620 poly(3-methyl styrene) Polymers 0.000 description 1
- 229920001627 poly(4-methyl styrene) Polymers 0.000 description 1
- 229920005575 poly(amic acid) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920001608 poly(methyl styrenes) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 239000005268 rod-like liquid crystal Substances 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- XBFJAVXCNXDMBH-UHFFFAOYSA-N tetracyclo[6.2.1.1(3,6).0(2,7)]dodec-4-ene Chemical compound C1C(C23)C=CC1C3C1CC2CC1 XBFJAVXCNXDMBH-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/08—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/281—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/86—Arrangements for improving contrast, e.g. preventing reflection of ambient light
- H10K50/865—Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/8791—Arrangements for improving contrast, e.g. preventing reflection of ambient light
- H10K59/8792—Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3016—Polarising elements involving passive liquid crystal elements
Definitions
- the present invention relates to a circularly polarizing plate, a broadband ⁇ / 4 plate, and an organic electroluminescence display device including the same.
- an organic electroluminescence display device (hereinafter sometimes referred to as “organic EL display device” as appropriate) is sometimes provided with a circularly polarizing plate in order to reduce reflection of external light on the display surface.
- a circularly polarizing plate a film in which a polarizing film and a ⁇ / 4 plate are combined is generally used.
- most of the conventional ⁇ / 4 plates can actually achieve a phase difference of about 1 ⁇ 4 wavelength only with light in a specific narrow wavelength range. Therefore, although reflection of outside light in a specific narrow wavelength range can be reduced by the circularly polarizing plate, it is difficult to reduce reflection of other outside light.
- a broadband ⁇ / 4 plate in which a ⁇ / 4 plate and a ⁇ / 2 plate are combined has been proposed (see Patent Documents 1 to 6).
- the optical axis directions of the polarizing film absorption axis, ⁇ / 2 plate slow axis, and ⁇ / 4 plate slow axis are set. Therefore, it is required to adjust these optical axes so as to form a predetermined angle.
- a circularly polarizing plate having a broadband ⁇ / 4 plate has not only a ⁇ / 4 plate but also a ⁇ / 2 plate, and therefore has a larger number of optical axes than a conventional circularly polarizing plate.
- the apparent optical axis shift is larger than that of the conventional circularly polarizing plate not having the ⁇ / 2 plate, and the reflection of external light in the tilt direction is reduced. There was a tendency to be inferior in ability.
- the present invention was devised in view of the above-described problems, and is a circularly polarizing plate that can effectively reduce the reflection of external light in both the front direction and the tilt direction; the external light in both the front direction and the tilt direction.
- An object is to provide a broadband ⁇ / 4 plate capable of realizing a circularly polarizing plate capable of effectively reducing reflection; and an organic electroluminescence display device including the circularly polarizing plate or the broadband ⁇ / 4 plate.
- the present inventor has intensively studied to solve the above problems. As a result, in a circularly polarizing plate having a polarizing film, a ⁇ / 2 plate, and ⁇ / 4 in this order, by combining the following (1) to (3), it is possible to reflect external light in both the front direction and the inclined direction. It was found that it can be effectively reduced.
- (1) The angle formed between the absorption axis of the polarizing film and the slow axis of the ⁇ / 2 plate is within a predetermined range, and the angle formed between the absorption axis of the polarizing film and the slow axis of the ⁇ / 4 plate is predetermined. Fit the angle.
- the wavelength dispersion of the ⁇ / 2 plate and the wavelength dispersion of the ⁇ / 4 plate are substantially matched.
- the refractive index of one of the ⁇ / 2 plate and the ⁇ / 4 plate is set to nz ⁇ nx> ny, and the other refractive index of the ⁇ / 2 plate and the ⁇ / 4 plate is set to nx> ny ⁇ nz.
- the wavelength dispersion of the ⁇ / 2 plate and the wavelength dispersion of the ⁇ / 4 plate are substantially the same,
- the refractive index in the slow axis direction in the plane is represented by nx
- the refractive index in the fast axis direction in the plane is represented by ny
- the refractive index in the thickness direction is represented by nz
- the ⁇ / 2 plate and the ⁇ / 4 plate A circularly polarizing plate in which one refractive index is nz ⁇ nx> ny and the other refractive index of the ⁇
- Reh (400) represents an in-plane retardation of the ⁇ / 2 plate at a wavelength of 400 nm
- the in-plane retardation of the ⁇ / 2 plate at a wavelength of 550 nm is represented by Reh (550)
- the circularly polarizing plate is a long film, The circularly polarizing plate according to any one of [1] to [6], wherein an absorption axis of the polarizing film is in a longitudinal direction of the circularly polarizing plate.
- the wavelength dispersion of the ⁇ / 2 plate and the wavelength dispersion of the ⁇ / 4 plate are substantially the same,
- the refractive index in the slow axis direction in the plane is represented by nx
- the refractive index in the fast axis direction in the plane is represented by ny
- the refractive index in the thickness direction is represented by nz
- the ⁇ / 2 plate and the ⁇ / 4 plate A broadband ⁇ / 4 plate in which one refractive index is nz ⁇ nx> ny and the other refractive index of the ⁇ / 2 plate and the ⁇ / 4 plate is nx> ny ⁇ nz
- the broadband ⁇ / 4 plate is a long film, The broadband ⁇ / 4 plate according to [8], wherein the ⁇ / 2 plate and the ⁇ / 4 plate are manufactured by a manufacturing method including oblique stretching.
- An organic electroluminescence display device comprising the circularly polarizing plate according to any one of [1] to [6] or the broadband ⁇ / 4 plate according to [8] or [9].
- a circularly polarizing plate that can effectively reduce reflection of external light in both the front direction and the tilt direction; circularly polarized light that can effectively reduce reflection of external light in both the front direction and the tilt direction
- a broadband ⁇ / 4 plate capable of realizing a plate
- an organic electroluminescence display device including the circularly polarizing plate or the broadband ⁇ / 4 plate
- FIG. 1 is an exploded perspective view of a circularly polarizing plate according to an embodiment of the present invention.
- the “long” film means a film having a length of 5 times or more, preferably 10 times or more, and specifically a roll. A film having such a length that it can be wound up and stored or transported.
- the refractive index nx of a film represents the refractive index in the slow axis direction in the plane of the film unless otherwise specified.
- This refractive index nx is normally a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the film and giving the maximum refractive index.
- the refractive index ny of a film represents the refractive index in the fast axis direction in the plane of the film unless otherwise specified.
- This refractive index ny usually represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the film and perpendicular to the nx direction.
- the refractive index nz of a film represents the refractive index in the thickness direction of the film unless otherwise specified.
- the measurement wavelength of these refractive indexes nx, ny and nz is 590 nm unless otherwise specified.
- the NZ coefficient of the film is a value represented by (nx ⁇ nz) / (nx ⁇ ny) unless otherwise specified.
- d represents the thickness of the film.
- the measurement wavelength is 590 nm unless otherwise specified.
- the intrinsic birefringence value being positive means that the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular thereto unless otherwise noted.
- the negative intrinsic birefringence value means that the refractive index in the stretching direction is smaller than the refractive index in the direction perpendicular to the stretching direction unless otherwise specified.
- the value of intrinsic birefringence can be calculated from the dielectric constant distribution.
- (meth) acryl includes both “acryl” and “methacryl”.
- the slanting direction of the long film indicates the in-plane direction of the film, which is neither parallel nor perpendicular to the width direction of the film.
- the front direction of a film means the normal direction of the main surface of the film, specifically, the direction of the polar angle 0 ° and the azimuth angle 0 ° of the main surface. Point to.
- the inclination direction of a film means a direction that is neither parallel nor perpendicular to the main surface of the film, and specifically, the polar angle of the main surface is larger than 0 ° and 90 °. Point in a direction smaller than °.
- the directions of the elements “parallel”, “vertical”, and “orthogonal” include errors within a range that does not impair the effects of the present invention, for example, ⁇ 5 °, unless otherwise specified. You may go out.
- the longitudinal direction of the long film is usually parallel to the film flow direction in the production line.
- polarizing plate “ ⁇ / 2 plate” and “ ⁇ / 4 plate” are not limited to rigid members, unless otherwise specified, such as a resin film. The member which has is also included.
- the angle formed by the optical axis (absorption axis, slow axis, etc.) of each film in a member having a plurality of films represents the angle when the film is viewed from the thickness direction unless otherwise noted. .
- the slow axis and the fast axis of the film represent the slow axis and the fast axis in the plane of the film unless otherwise specified.
- FIG. 1 is an exploded perspective view of a circularly polarizing plate according to an embodiment of the present invention.
- an axis 112 obtained by projecting the absorption axis 111 of the polarizing film 110 on the surface of the ⁇ / 2 plate 120 is indicated by a one-dot chain line.
- an axis 113 obtained by projecting the absorption axis 111 of the polarizing film 110 on the surface of the ⁇ / 4 plate 130 is indicated by a one-dot chain line.
- a circularly polarizing plate 100 includes a polarizing film 110, a ⁇ / 2 plate 120, and a ⁇ / 4 plate 130 in the thickness direction of the circularly polarizing plate 100. Prepare in this order.
- the polarizing film 110 is a polarizing plate having an absorption axis 111 and has a function of absorbing linearly polarized light having a vibration direction parallel to the absorption axis 111 and transmitting other polarized light.
- the vibration direction of linearly polarized light means the vibration direction of the electric field of linearly polarized light.
- the ⁇ / 2 plate 120 is an optical member having a predetermined phase difference.
- the ⁇ / 2 plate 120 has a slow axis 121 parallel to the in-plane direction of the ⁇ / 2 plate 120 in a direction that forms a predetermined angle ⁇ h with respect to the absorption axis 111 of the polarizing film 110.
- the ⁇ / 4 plate 130 is an optical member having a predetermined phase difference different from that of the ⁇ / 2 plate 120.
- the ⁇ / 4 plate 130 has a slow axis 131 parallel to the in-plane direction of the ⁇ / 4 plate 130 in a direction that forms a predetermined angle ⁇ q with respect to the absorption axis 111 of the polarizing film 110.
- the layer portion including the ⁇ / 2 plate 120 and the ⁇ / 4 plate 130 is substantially 1 ⁇ 4 of the wavelength of the light transmitted through the layer portion in a wide wavelength range.
- the broadband ⁇ / 4 plate 140 can provide an in-plane retardation of the wavelength. Therefore, the circularly polarizing plate 100 can function as a circularly polarizing plate that can absorb one of right circularly polarized light and left circularly polarized light and transmit the remaining light in a wide wavelength range.
- the circularly polarizing plate 100 may be a single-wafer film, but is preferably a long film because it can be manufactured efficiently.
- the absorption axis 111 of the polarizing film 110 is usually parallel to the longitudinal direction of the circularly polarizing plate 100.
- the polarizing film usually includes a polarizer layer, and includes a protective film layer for protecting the polarizer layer as necessary.
- a polarizer layer for example, a film of an appropriate vinyl alcohol polymer such as polyvinyl alcohol or partially formalized polyvinyl alcohol, dyeing treatment with dichroic substances such as iodine and dichroic dye, stretching treatment, crosslinking treatment Or the like can be used in an appropriate order and manner.
- a long film before stretching is stretched in the longitudinal direction, so that the obtained polarizer layer exhibits an absorption axis parallel to the longitudinal direction of the polarizer layer. Yes.
- This polarizer layer is capable of absorbing linearly polarized light having a vibration direction parallel to the absorption axis, and is particularly preferably excellent in polarization degree.
- the thickness of the polarizer layer is generally 5 ⁇ m to 80 ⁇ m, but is not limited thereto.
- any transparent film can be used as the protective film layer for protecting the polarizer layer.
- a resin film excellent in transparency, mechanical strength, thermal stability, moisture shielding properties and the like is preferable.
- resins include acetate resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, cyclic olefin resins, (meth) acrylic resins, and the like.
- acetate resin, cyclic olefin resin, and (meth) acrylic resin are preferable in terms of low birefringence, and cyclic olefin resin is particularly preferable from the viewpoint of transparency, low moisture absorption, dimensional stability, lightness, and the like.
- the polarizing film either a single-piece polarizing film or a long polarizing film may be used in accordance with the shape of the circularly polarizing plate.
- the absorption axis of the polarizing film is parallel to the longitudinal direction of the polarizing film.
- the polarizing film can have an absorption axis in the longitudinal direction of the long circularly polarizing plate provided with the polarizing film.
- a polarizing plate can be produced by a roll-to-roll method. Therefore, it becomes possible to increase the manufacturing efficiency of the circularly polarizing plate.
- the polarizing film can be manufactured, for example, by laminating a polarizer layer and a protective film layer. In bonding, an adhesive may be used as necessary.
- a polarizing film when a polarizing film is produced as a long film, it can be produced by laminating a long polarizer layer and a long protective film layer with a roll-to-roll with their longitudinal directions parallel to each other. Therefore, manufacturing efficiency can be increased.
- the sheet-shaped polarizing film can be manufactured by cutting the long polarizing film into a predetermined shape.
- the ⁇ / 2 plate is an optical member having an in-plane retardation of usually 240 nm or more and usually 300 nm or less at a measurement wavelength of 590 nm. Since the ⁇ / 2 plate has such an in-plane retardation, a broadband ⁇ / 4 plate can be realized by combining the ⁇ / 2 plate and the ⁇ / 4 plate. Therefore, the circularly polarizing plate of the present invention can exhibit a function capable of absorbing one of right circularly polarized light and left circularly polarized light and transmitting the remaining light in a wide wavelength range.
- the in-plane retardation of the ⁇ / 2 plate at a measurement wavelength of 590 nm is preferably 250 nm or more, preferably 280 nm or less, more preferably It is 265 nm or less.
- the ⁇ / 2 plate has chromatic dispersion that substantially matches the chromatic dispersion of the ⁇ / 4 plate.
- the wavelength dispersion of a certain retardation film is represented by a value obtained by dividing the in-plane retardation at a wavelength of 400 nm by the in-plane retardation at a wavelength of 550 nm. Accordingly, the in-plane retardation of the ⁇ / 2 plate at a wavelength of 400 nm is Reh (400), the in-plane retardation of the ⁇ / 2 plate at a wavelength of 550 nm is Reh (550), and the in-plane retardation of the ⁇ / 4 plate at a wavelength of 400 nm.
- is preferably 0.60 or less, more preferably 0.10 or less, and particularly preferably 0.06 or less. is there.
- the refractive index of one of the ⁇ / 2 plate and the ⁇ / 4 plate is nz ⁇ nx> ny
- the other refractive index of the ⁇ / 2 plate and ⁇ / 4 plate is nx> ny ⁇ . nz. Therefore, when the refractive indexes nx, ny, and nz of the ⁇ / 4 plate satisfy nz ⁇ nx> ny, the refractive indexes nx, ny, and nz of the ⁇ / 2 plate satisfy nx> ny ⁇ nz.
- the refractive indexes nx, ny, and nz of the ⁇ / 4 plate satisfy nx> ny ⁇ nz
- the refractive indexes nx, ny, and nz of the ⁇ / 2 plate satisfy nz ⁇ nx> ny.
- the NZ coefficient of one of the ⁇ / 2 plate and the ⁇ / 4 plate is preferably ⁇ 0.5 to 0.0, and the ⁇ / 2 plate and the ⁇ / 4 plate
- the other NZ coefficient is preferably 1.0 to 1.3.
- the NZ coefficient (NZh) of the ⁇ / 2 plate is preferably 1.3 or less, more preferably 1 .2 or less, particularly preferably 1.1 or less.
- the NZ coefficient (NZh) of the ⁇ / 2 plate is preferably ⁇ 0.5 or more, more preferably ⁇ 0. It is 3 or more, particularly preferably ⁇ 0.2 or more. This makes it possible to more appropriately compensate for the apparent angular deviation between the slow axis of the ⁇ / 2 plate and the slow axis of the ⁇ / 4 plate when the circularly polarizing plate is viewed from the tilt direction. Therefore, the circularly polarizing plate of the present invention can particularly effectively reduce the reflection of external light in the tilt direction.
- the ⁇ / 2 plate has the slow axis of the ⁇ / 2 plate in a direction that forms a predetermined angle ⁇ h with respect to the absorption axis of the polarizing film.
- the range of the angle ⁇ h is usually 15 ° ⁇ 5 °.
- the angle ⁇ h formed by the slow axis of the ⁇ / 2 plate with respect to the absorption axis of the polarizing film is preferably 15 ° ⁇ 3 °, more preferably 15 ° ⁇ 1 °.
- the total light transmittance of the ⁇ / 2 plate is preferably 80% or more.
- the light transmittance can be measured using a spectrophotometer (manufactured by JASCO Corporation, ultraviolet-visible near-infrared spectrophotometer “V-570”) in accordance with JIS K0115.
- the haze of the ⁇ / 2 plate is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
- the haze can be measured at five locations using “turbidity meter NDH-300A” manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS K7361-1997, and the average value obtained therefrom can be adopted.
- the thickness of the ⁇ / 2 plate is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, further preferably 30 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and even more preferably 60 ⁇ m or less. Thereby, the mechanical strength of the ⁇ / 2 plate can be increased.
- the ⁇ / 4 plate is an optical member having an in-plane retardation of usually 110 nm or more and usually 154 nm or less at a measurement wavelength of 590 nm. Since the ⁇ / 4 plate has such an in-plane retardation, a broadband ⁇ / 4 plate can be realized by combining the ⁇ / 2 plate and the ⁇ / 4 plate. Therefore, the circularly polarizing plate of the present invention can exhibit a function capable of absorbing one of right circularly polarized light and left circularly polarized light and transmitting the remaining light in a wide wavelength range.
- the in-plane retardation of the ⁇ / 4 plate at a measurement wavelength of 590 nm is preferably 118 nm or more, preferably 138 nm or less, more preferably 128 nm or less.
- one refractive index of the ⁇ / 2 plate and the ⁇ / 4 plate is nz ⁇ nx> ny, and the other refractive index of the ⁇ / 2 plate and the ⁇ / 4 plate.
- the refractive indexes nx, ny, and nz of the ⁇ / 2 plate satisfy nx> ny ⁇ nz
- the refractive indexes nx, ny, and nz of the ⁇ / 4 plate satisfy nz ⁇ nx> ny.
- the NZ coefficient of one of the ⁇ / 2 plate and the ⁇ / 4 plate is ⁇ 0.5 to 0.0
- the other NZ coefficient of the ⁇ / 4 plate is preferably 1.0 to 1.3.
- the NZ coefficient (NZh) of the ⁇ / 4 plate is preferably 1.3 or less, more preferably 1 .2 or less, particularly preferably 1.1 or less.
- the NZ coefficient (NZh) of the ⁇ / 4 plate is preferably ⁇ 0.5 or more, more preferably ⁇ 0. It is 3 or more, particularly preferably ⁇ 0.2 or more, and preferably 0.0 or less. This makes it possible to more appropriately compensate for the apparent angular deviation between the slow axis of the ⁇ / 2 plate and the slow axis of the ⁇ / 4 plate when the circularly polarizing plate is viewed from the tilt direction. Therefore, the circularly polarizing plate of the present invention can particularly effectively reduce the reflection of external light in the tilt direction.
- the ⁇ / 4 plate has the slow axis of the ⁇ / 4 plate in a direction that forms a predetermined angle ⁇ q with respect to the absorption axis of the polarizing film.
- the range of the angle ⁇ q is usually 75 ° ⁇ 5 °.
- the angle ⁇ q formed by the slow axis of the ⁇ / 4 plate with respect to the absorption axis of the polarizing film is preferably 75 ° ⁇ 3 °, more preferably 75 ° ⁇ 1 °.
- the direction in which the slow axis of the ⁇ / 4 plate forms an angle ⁇ q with respect to the absorption axis of the polarizing film is the direction in which the slow axis of the ⁇ / 2 plate forms an angle ⁇ h with respect to the absorption axis of the polarizing film.
- the circularly polarizing plate is viewed from the thickness direction
- the slow axis of the ⁇ / 2 plate makes an angle ⁇ h in the clockwise direction with respect to the absorption axis of the polarizing film
- the absorption axis of the polarizing film In contrast, the slow axis of the ⁇ / 4 plate forms an angle ⁇ q in the clockwise direction.
- the circularly polarizing plate when the circularly polarizing plate is viewed from the thickness direction, when the slow axis of the ⁇ / 2 plate makes an angle ⁇ h in the counterclockwise direction with respect to the absorption axis of the polarizing film, the absorption of the polarizing film The slow axis of the ⁇ / 4 plate with respect to the axis forms an angle ⁇ q in the counterclockwise direction.
- the total light transmittance of the ⁇ / 4 plate is preferably 80% or more.
- the haze of the ⁇ / 4 plate is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
- the thickness of the ⁇ / 4 plate is preferably 40 ⁇ m or more, more preferably 45 ⁇ m or more, particularly preferably 50 ⁇ m or more, preferably 80 ⁇ m or less, more preferably 75 ⁇ m or less, and particularly preferably 70 ⁇ m or less.
- Retardation film usable as ⁇ / 2 plate and ⁇ / 4 plate As the ⁇ / 2 plate and ⁇ / 4 plate having optical properties described above, a retardation film having a resin layer is usually used. Among them, since the enlargement is easy and efficient production is possible, the retardation film used as the ⁇ / 2 plate and the ⁇ / 4 plate is a stretch obtained by stretching a pre-stretch film made of resin. A film is preferred. Further, the ⁇ / 2 plate and the ⁇ / 4 plate may be a single-layer film having only one layer, or may be a multilayer film having two or more layers.
- thermoplastic resin As the resin for forming the ⁇ / 2 plate and the ⁇ / 4 plate, a thermoplastic resin is preferable. These resins may be resins having a positive intrinsic birefringence value or resins having a negative intrinsic birefringence value.
- the resin having a positive intrinsic birefringence value usually includes a polymer having a positive intrinsic birefringence value.
- this polymer include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyarylene sulfides such as polyphenylene sulfide; polyvinyl alcohol; polycarbonate; polyarylate; cellulose ester polymer; Polysulfone; polyallyl sulfone; polyvinyl chloride; cyclic olefin polymer such as norbornene polymer; rod-like liquid crystal polymer.
- the resin having a negative intrinsic birefringence value usually includes a polymer having a negative intrinsic birefringence value.
- this polymer include a homopolymer of a styrene compound and a polystyrene polymer containing a copolymer of a styrene compound and an arbitrary monomer; a polyacrylonitrile polymer; a polymethyl methacrylate polymer; or These multi-component copolymer polymers;
- the optional monomer that can be copolymerized with the styrene compound include acrylonitrile, maleic anhydride, methyl methacrylate, and butadiene.
- the polymer may be a homopolymer or a copolymer. Moreover, the said polymer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. For example, a polymer having a positive intrinsic birefringence value and a polymer having a negative intrinsic birefringence value may be used in combination.
- a retardation film having a layer containing a resin having a positive intrinsic birefringence value is used as one of the ⁇ / 2 plate and the ⁇ / 4 plate, and the intrinsic birefringence value is used as the other of the ⁇ / 2 plate and the ⁇ / 4 plate. It is preferable to use a retardation film provided with a layer containing a negative resin.
- a retardation film including a layer made of a resin containing a polystyrene-based polymer having a polyphenylene ether and a syndiotactic structure, and ⁇ / 2
- a retardation film having a layer made of a resin containing a cyclic olefin polymer As the other of the plate and the ⁇ / 4 plate, it is preferable to use a retardation film having a layer made of a resin containing a cyclic olefin polymer.
- “resin containing a polyphenylene ether and a polystyrene-based polymer having a syndiotactic structure” may be referred to as “blend resin p1” as appropriate.
- the “resin containing a cyclic olefin polymer” may be referred to as a “cyclic olefin resin” as appropriate.
- the cyclic olefin resin has a small wavelength dispersion.
- the blend resin p1 can adjust the wavelength dispersion by the mixing ratio of polyphenylene ether and syndiotactic polystyrene.
- a retardation film having a layer made of the blend resin p1 is used, and as the other of the ⁇ / 2 plate and the ⁇ / 4 plate, a layer made of a cyclic olefin resin is used.
- the retardation film provided the wavelength dispersion of both the ⁇ / 2 plate and the ⁇ / 4 plate can be easily made substantially coincident. Therefore, the optical characteristics of the circularly polarizing plate of the present invention can be further improved.
- the sign (positive and negative) of the intrinsic birefringence value of the blend resin p1 can be adjusted according to the type and amount of the polymer contained in the blend resin p1.
- the blend resin p1 has a negative intrinsic birefringence value.
- the retardation film including a layer made of the blend resin p1 may be used as a ⁇ / 2 plate, but is preferably used as a ⁇ / 4 plate.
- the refractive index of the retardation film including a layer made of the blend resin p1 may satisfy nz ⁇ nx> ny, or may satisfy nx> ny ⁇ nz.
- the wavelength dispersion of the blend resin p1 can be adjusted with a high degree of freedom by adjusting the quantitative ratio between the polyphenylene ether and the polystyrene-based polymer.
- Polyphenylene ether is usually a polymer having a positive intrinsic birefringence value.
- This polyphenylene ether includes a structural unit having a structure formed by polymerizing phenyl ether or a phenyl ether derivative.
- a polymer having a structural unit having a phenylene ether skeleton in the main chain is used as polyphenylene ether.
- the “structural unit having a phenylene ether skeleton” is appropriately referred to as a “phenylene ether unit”.
- the benzene ring in the phenylene ether unit may have a substituent unless the effects of the present invention are significantly impaired.
- polystyrene resin a polymer containing a phenylene ether unit represented by the following formula (I) is preferable.
- each Q 1 independently represents a halogen atom, a lower alkyl group (for example, an alkyl group having 7 or less carbon atoms), a phenyl group, a haloalkyl group, an aminoalkyl group, a hydrocarbonoxy group, or a halo.
- a hydrocarbon oxy group (wherein the halogen atom and the oxygen atom are separated by at least two carbon atoms).
- Q 1 is preferably an alkyl group or a phenyl group, and more preferably an alkyl group having 1 to 4 carbon atoms.
- each Q 2 independently represents a hydrogen atom, a halogen atom, a lower alkyl group (for example, an alkyl group having 7 or less carbon atoms), a phenyl group, a haloalkyl group, a hydrocarbon oxy group, or a halocarbon.
- a hydrogenoxy group (however, a group in which at least two carbon atoms are separated from the halogen atom and the oxygen atom). Among them, preferably a hydrogen atom Q 2.
- the polyphenylene ether may be a homopolymer having one type of structural unit or a copolymer having two or more types of structural units.
- the polymer containing the structural unit represented by the formula (I) is a homopolymer
- preferred examples of the homopolymer include 2,6-dimethyl-1,4-phenylene ether units (“-( And a homopolymer having a structural unit represented by C 6 H 2 (CH 3 ) 2 —O) — ”.
- the polymer containing the structural unit represented by the formula (I) is a copolymer
- preferred examples of the copolymer include 2,6-dimethyl-1,4-phenylene ether units and 2,3 , 6-trimethyl-1,4-phenylene ether unit (a structural unit represented by “— (C 6 H (CH 3 ) 3 —O —) —”).
- the polyphenylene ether may contain any structural unit other than the phenylene ether unit.
- the polyphenylene ether is a copolymer having a phenylene ether unit and an arbitrary structural unit.
- the amount of any structural unit in the polyphenylene ether is preferably reduced to such an extent that the effects of the present invention are not significantly impaired.
- the amount of phenylene ether units in the polyphenylene ether is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 80% by weight or more.
- Polyphenylene ether may be used alone or in combination of two or more at any ratio.
- the weight average molecular weight of the polyphenylene ether is preferably 15,000 or more, more preferably 25,000 or more, particularly preferably 35,000 or more, preferably 100,000 or less, more preferably 85,000 or less, particularly preferably. Is less than 70,000.
- strength of the layer which consists of blend resin p1 can be raised.
- the dispersibility of polyphenylene ether can be improved by making it below an upper limit, it becomes possible to mix polyphenylene ether and a polystyrene-type polymer uniformly at a high level.
- the weight average molecular weight may be a standard polystyrene equivalent value measured by gel permeation chromatography (GPC) at a temperature of 135 ° C. using 1,2,4-trichlorobenzene as a solvent.
- polyphenylene ether there is no limitation on the method for producing polyphenylene ether, and for example, it can be produced by the method described in JP-A-11-302529.
- a polystyrene polymer having a syndiotactic structure is usually a polymer having a negative intrinsic birefringence value.
- This polystyrene polymer includes a structural unit formed by polymerizing a styrene compound.
- the “structural unit formed by polymerizing a styrene compound” is appropriately referred to as a “styrene unit”.
- styrene compounds include styrene and styrene derivatives.
- styrene derivatives include those in which a substituent is substituted at the benzene ring or ⁇ -position of styrene.
- styrene compounds include styrene; alkyl styrene such as methyl styrene and 2,4-dimethyl styrene; halogenated styrene such as chlorostyrene; halogen-substituted alkyl styrene such as chloromethyl styrene; alkoxy styrene such as methoxy styrene. And so on. Among them, styrene having no substituent is preferable as the styrene compound. Moreover, a styrene compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the polystyrene polymer contained in the blend resin p1 a polymer having a syndiotactic structure is used.
- the polystyrene polymer has a syndiotactic structure means that the stereochemical structure of the polystyrene polymer has a syndiotactic structure.
- the syndiotactic structure refers to a three-dimensional structure in which phenyl groups as side chains are alternately positioned in opposite directions in the Fischer projection formula with respect to a main chain formed of carbon-carbon bonds.
- the tacticity (stericity) of the polystyrene-based polymer can be quantified by an isotope carbon nuclear magnetic resonance method ( 13 C-NMR method).
- the tacticity measured by 13 C-NMR method can be shown by the abundance ratio of a plurality of continuous structural units. In general, for example, two continuous structural units are dyads, three are triads, and five are pentads.
- the polystyrene-based polymer having a syndiotactic structure preferably has a syndiotacticity of preferably 75% or more, more preferably 85% or more in racemic dyad, or preferably in racemic pentad. It means having a syndiotacticity of 30% or more, more preferably 50% or more.
- polystyrene polymers include polystyrene, poly (alkyl styrene), poly (halogenated styrene), poly (halogenated alkyl styrene), poly (alkoxy styrene), poly (vinyl benzoate), and hydrogens thereof. And a copolymer thereof.
- poly (alkyl styrene) examples include poly (methyl styrene), poly (ethyl styrene), poly (isopropyl styrene), poly (t-butyl styrene), poly (phenyl styrene), poly (vinyl naphthalene), poly ( Vinyl styrene).
- poly (halogenated styrene) include poly (chlorostyrene), poly (bromostyrene), poly (fluorostyrene), and the like.
- poly (halogenated alkylstyrene) examples include poly (chloromethylstyrene).
- poly (alkoxystyrene) examples include poly (methoxystyrene) and poly (ethoxystyrene).
- polystyrene polymers are polystyrene, poly (p-methylstyrene), poly (m-methylstyrene), poly (pt-butylstyrene), poly (p-chlorostyrene), poly ( m-chlorostyrene), poly (p-fluorostyrene), hydrogenated polystyrene, and copolymers containing these structural units.
- the polystyrene polymer may be a homopolymer having only one type of structural unit, or may be a copolymer having two or more types of structural units.
- the polystyrene polymer may be a copolymer containing two or more types of styrene units, and it is a copolymer containing a styrene unit and a structural unit other than the styrene unit. There may be.
- the amount of the structural unit other than the styrene unit in the polystyrene polymer has the effect of the present invention. It is preferable to reduce it to such an extent that it is not significantly impaired.
- the amount of styrene units in the polystyrene-based polymer is preferably 80% by weight or more, more preferably 83% by weight or more, and particularly preferably 85% by weight or more.
- a desired retardation can be easily expressed in the layer made of the blend resin p1.
- One type of polystyrene polymer may be used alone, or two or more types may be used in combination at any ratio.
- the weight average molecular weight of the polystyrene polymer is usually 130,000 or more, preferably 140,000 or more, more preferably 150,000 or more, and usually 300,000 or less, preferably 270,000 or less, more preferably 250. , 000 or less. With such a weight average molecular weight, the glass transition temperature of the polystyrene-based polymer can be increased, and the heat resistance of the layer made of the blend resin p1 can be stably improved.
- the glass transition temperature of the polystyrene-based polymer is preferably 85 ° C or higher, more preferably 90 ° C or higher, and particularly preferably 95 ° C or higher.
- the glass transition temperature of the blend resin p1 can be effectively increased, and as a result, the heat resistance of the layer made of the blend resin p1 can be stably improved.
- the glass transition temperature of the polystyrene-based polymer is preferably 160 ° C. or lower, more preferably 155 ° C.
- it is particularly preferably 150 ° C. or lower.
- a polystyrene polymer having a syndiotactic structure polymerizes a styrene compound using, for example, a titanium compound and a condensation product of water and trialkylaluminum as a catalyst in an inert hydrocarbon solvent or in the absence of a solvent.
- Poly (halogenated alkylstyrene) can be produced, for example, by the method described in JP-A-1-146912. Further, these hydrogenated polymers can be produced, for example, by the method described in JP-A-1-178505.
- the polyphenylene ether and the polystyrene-based polymer contained in the blend resin p1 are (i) different from each other in wavelength dispersion, (ii) have different signs of intrinsic birefringence values, and (iii) are compatible. Therefore, the wavelength dispersion of the layer made of the blend resin p1 can be adjusted by adjusting the weight ratio between the amount of polyphenylene ether and the amount of polystyrene polymer.
- the weight ratio of polyphenylene ether to polystyrene polymer (“amount of polyphenylene ether” / “polystyrene polymer”) Is preferably within a predetermined range.
- the specific range of this weight ratio is preferably more than 30/70, more preferably 32/68 or more, particularly preferably 34/66 or more, preferably less than 40/60, more preferably 38/62.
- it is particularly preferably 37/63 or less.
- the circularly polarizing plate of the present invention comprises a combination of a retardation film having a layer made of a blend resin p1 and a retardation film having a layer made of a resin containing a cyclic olefin polymer, as ⁇ / 2 plates and ⁇ / 4 plates.
- reflection of external light can be particularly effectively reduced by keeping the weight ratio (“amount of polyphenylene ether” / “amount of polystyrene polymer”) within the above range.
- the mechanism by which the wavelength dispersion of the layer made of the blend resin p1 can be adjusted is assumed as follows.
- the polyphenylene ether and the polystyrene polymer are compatible with each other. Therefore, when the layer made of the blend resin p1 is stretched, the phase difference expressed by the orientation of the polyphenylene ether and the phase difference expressed by the orientation of the polystyrene polymer are synthesized, and the entire layer made of the blend resin p1 Phase difference occurs.
- the sign of the intrinsic birefringence value differs between polyphenylene ether and polystyrene polymer.
- the retardation value as a whole of the layer made of the blend resin p1 appears as a difference between the retardation developed by the orientation of the polyphenylene ether and the retardation developed by the orientation of the polystyrene polymer.
- the wavelength dispersion of the retardation that appears when the layer made of the blend resin p1 is stretched there is a difference between the wavelength dispersion of the polyphenylene ether and the wavelength dispersion of the polystyrene polymer.
- the wavelength dispersion of polyphenylene ether is usually larger than the wavelength dispersion of polystyrene-based polymers.
- the value of the phase difference expressed as the whole layer made of the blend resin p1 can be adjusted for each wavelength. Therefore, it is presumed that the wavelength dispersion of the layer made of the blend resin p1 can be adjusted by adjusting the weight ratio of the polyphenylene ether and the polystyrene polymer in the layer made of the blend resin p1 (Japanese Patent Laid-Open No. 2012-226996). See the official gazette).
- the proportion of the total of the polyphenylene ether and the polystyrene-based polymer in the blend resin p1 is preferably 50% by weight to 100% by weight, more preferably 70% by weight to 100% by weight, and particularly preferably 90% by weight to 100% by weight. is there.
- the layer made of the blend resin p1 can exhibit appropriate optical characteristics.
- the blend resin p1 can contain any component other than polyphenylene ether and polystyrene-based polymer.
- the blend resin p1 may contain a polymer in addition to the above-described polyphenylene ether and polystyrene polymer.
- the amount of the polymer other than polyphenylene ether and polystyrene polymer is preferably 15 parts by weight or less, more preferably 10 parts by weight or less, and more preferably 5 parts by weight or less, based on 100 parts by weight of the total amount of polyphenylene ether and polystyrene polymer. Is particularly preferred.
- the blend resin p1 may contain a compounding agent.
- compounding agents are layered crystal compounds; fine particles; antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, UV absorbers, near infrared absorbers and other stabilizers; plasticizers: dyes and pigments, etc. Colorants; antistatic agents; and the like.
- a compounding agent may use one type and may use it combining two or more types by arbitrary ratios.
- the amount of the compounding agent can be appropriately determined as long as the effects of the present invention are not significantly impaired. For example, it is a range in which the total light transmittance of the layer made of the blend resin p1 can be maintained at 85% or more.
- an ultraviolet absorber is preferable in that the weather resistance can be improved.
- ultraviolet absorbers include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone ultraviolet absorbers, benzotriazole ultraviolet absorbers, acrylonitrile ultraviolet absorbers, triazine compounds, nickel complex compounds. And inorganic powders.
- UV absorbers examples include 2,2′-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, and 2,2′-methylenebis (4- ( 1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol.
- the glass transition temperature of the blend resin p1 is preferably 115 ° C. or higher, more preferably 118 ° C. or higher, and even more preferably 120 ° C. or higher. Since the blend resin p1 contains a combination of polyphenylene ether and polystyrene polymer, the glass transition temperature can be increased as compared with a resin containing only a polystyrene polymer. Since the glass transition temperature is thus high, the relaxation of orientation of the blend resin p1 can be reduced, so that a ⁇ / 2 plate or ⁇ / 4 plate having excellent heat resistance can be realized. Moreover, although there is no restriction
- the retardation film provided with the layer made of the blend resin p1 can be provided with an arbitrary layer in combination with the layer made of the blend resin p1.
- a layer made of an arbitrary resin can be used as an arbitrary layer to be combined with the layer made of the blend resin p1.
- a retardation film including a layer made of the blend resin p1 can include a protective layer made of a (meth) acrylic resin containing a (meth) acrylic polymer.
- the layer made of the blend resin p1 tends to have a low mechanical strength, but the protective layer made of the (meth) acrylic resin is excellent in mechanical strength. Therefore, by combining the layer made of the blend resin p1 and the protective layer, molding is performed. It is possible to suppress breakage of the layer made of the blend resin p1 at the time and during stretching. Further, the protective layer can normally suppress bleed-out of the components of the layer made of the blend resin p1.
- the (meth) acrylic polymer is a polymer including a structural unit having a structure formed by polymerizing (meth) acrylic acid or a (meth) acrylic acid derivative.
- examples of the (meth) acrylic polymer include homopolymers and copolymers such as acrylic acid, acrylic acid ester, acrylamide, acrylonitrile, methacrylic acid, and methacrylic acid ester.
- the (meth) acrylic polymer a polymer containing a structural unit formed by polymerizing a (meth) acrylic acid ester is preferable.
- (meth) acrylic acid esters include alkyl esters of (meth) acrylic acid.
- the alkyl esters of (meth) acrylic acid those derived from (meth) acrylic acid and alkanol or cycloalkanol are preferred, and those derived from (meth) acrylic acid and alkanol are more preferred.
- the number of carbon atoms per molecule of the alkanol or cycloalkanol is preferably 1 to 15, more preferably 1 to 8. By reducing the number of carbon atoms per molecule of alkanol or cycloalkanol as described above, the elongation at break of the film can be increased.
- the acrylate ester include methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, sec-butyl acrylate, and t-acrylate.
- methacrylic acid ester examples include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, sec-butyl methacrylate, methacrylic acid.
- methacrylic acid examples thereof include t-butyl acid, n-hexyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, n-decyl methacrylate, and n-dodecyl methacrylate.
- the (meth) acrylic acid ester may have a substituent such as a hydroxyl group or a halogen atom as long as the effects of the present invention are not significantly impaired.
- a substituent such as a hydroxyl group or a halogen atom
- examples of the (meth) acrylic acid ester having such a substituent include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxymethacrylate.
- Examples thereof include hydroxypropyl, 4-hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, glycidyl methacrylate and the like.
- the amount of the structural unit having a structure formed by polymerizing (meth) acrylic acid or a (meth) acrylic acid derivative is preferably 50% by weight or more, more preferably 85% by weight or more. Particularly preferably, it is 90% by weight or more.
- the (meth) acrylic polymer may be a polymer containing only (meth) acrylic acid or a (meth) acrylic acid derivative, and any copolymerizable with (meth) acrylic acid or a (meth) acrylic acid derivative. Copolymers with these monomers may also be used.
- Optional monomers include, for example, ⁇ , ⁇ -ethylenically unsaturated carboxylic acid ester monomers other than (meth) acrylic acid esters, as well as ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomers, alkenyls Aromatic monomers, conjugated diene monomers, non-conjugated diene monomers, carboxylic acid unsaturated alcohol esters, olefin monomers, and the like can be mentioned.
- ⁇ , ⁇ -ethylenically unsaturated carboxylic acid ester monomers other than (meth) acrylic acid esters include dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, dimethyl itaconate and the like. It is done.
- the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer may be any of a monocarboxylic acid, a polyvalent carboxylic acid, a partial ester of a polyvalent carboxylic acid, and a polyvalent carboxylic acid anhydride. Specific examples thereof include crotonic acid, maleic acid, fumaric acid, itaconic acid, monoethyl maleate, mono-n-butyl fumarate, maleic anhydride, itaconic anhydride and the like.
- alkenyl aromatic monomer examples include styrene, ⁇ -methylstyrene, methyl ⁇ -methylstyrene, vinyl toluene and divinylbenzene.
- conjugated diene monomer examples include 1,3-butadiene, 2-methyl-1,3-butadiene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, and 2-chloro-1. , 3-butadiene, cyclopentadiene and the like.
- non-conjugated diene monomer examples include 1,4-hexadiene, dicyclopentadiene, ethylidene norbornene and the like.
- carboxylic acid unsaturated alcohol ester monomer examples include vinyl acetate.
- olefin monomer examples include ethylene, propylene, butene, pentene and the like.
- Any monomer that can be copolymerized with (meth) acrylic acid or a (meth) acrylic acid derivative may be used alone, or two or more monomers may be used in combination at any ratio.
- one (meth) acrylic polymer may be used alone, or two or more (meth) acrylic polymers may be used in combination at any ratio.
- polymethacrylate is preferred, and polymethyl methacrylate is more preferred.
- the amount of the (meth) acrylic polymer in the (meth) acrylic resin is preferably 50% to 100% by weight, more preferably 70% to 100% by weight, and particularly preferably 90% to 100% by weight. By setting the amount of the (meth) acrylic polymer in the above range, the mechanical strength of the protective layer can be effectively increased.
- (Meth) acrylic resin may contain rubber particles. By including the rubber particles, the flexibility of the (meth) acrylic resin can be increased and the impact resistance can be improved. Moreover, since the unevenness
- Examples of the rubber forming the rubber particles include acrylate polymer rubber, polymer rubber mainly composed of butadiene, and ethylene-vinyl acetate copolymer rubber.
- Examples of the acrylate polymer rubber include those having butyl acrylate, 2-ethylhexyl acrylate, or the like as a main component of monomer units. Among these, acrylic acid ester polymer rubber mainly composed of butyl acrylate and polymer rubber mainly composed of butadiene are preferable.
- the rubber particles may contain two or more kinds of rubber. Further, these rubbers may be mixed uniformly, but may be layered.
- rubber particles in which rubber is layered include particles in which a core made of a rubber elastic component and a hard resin layer (shell) form a core-shell structure.
- examples of the rubber elastic component include a rubber elastic component obtained by grafting an alkyl acrylate such as butyl acrylate and styrene.
- examples of the hard resin layer (shell) include a hard resin layer made of a copolymer of one or both of polymethyl methacrylate and methyl methacrylate and an alkyl acrylate.
- the rubber particles preferably have a number average particle diameter of 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and preferably 0.3 ⁇ m or less, and 0.25 ⁇ m or less. Is more preferable. By setting the number average particle diameter within the above range, moderate unevenness can be formed on the surface of the protective layer, and the slipperiness of the retardation film can be improved.
- the amount of rubber particles is preferably 5 parts by weight or more and preferably 50 parts by weight or less with respect to 100 parts by weight of the (meth) acrylic polymer.
- the (meth) acrylic resin may contain components other than the (meth) acrylic polymer and rubber particles as long as the effects of the present invention are not significantly impaired.
- any polymer other than the (meth) acrylic polymer may be included.
- the amount of any polymer is preferably small.
- the specific amount of the arbitrary polymer is, for example, preferably 10 parts by weight or less, more preferably 5 parts by weight or less, and still more preferably 3 parts by weight or less with respect to 100 parts by weight of the (meth) acrylic polymer. Among these, it is particularly preferable that no arbitrary polymer is contained.
- (Meth) acrylic resin may contain, for example, a compounding agent.
- a compounding agent the same example as the compounding agent which blend resin p1 can contain is mentioned.
- a compounding agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Further, the amount of the compounding agent can be appropriately determined within a range that does not significantly impair the effects of the present invention.
- the glass transition temperature of the (meth) acrylic resin is preferably 90 ° C. or higher, more preferably 95 ° C. or higher, particularly preferably 100 ° C. or higher, preferably 145 ° C. or lower, more preferably 140 ° C. or lower, particularly preferably 135. It is below °C.
- the retardation film provided with the layer made of the blend resin p1 includes, for example, (a) a first step of preparing a pre-stretch film comprising a layer made of the blend resin p1, and (b) stretching the prepared pre-stretch film. And a second step of expressing a desired retardation in the layer made of the blend resin p1.
- a pre-stretch film including a layer made of the blend resin p1 is prepared.
- the film before stretching can be produced, for example, by a film production method such as a melt molding method or a solution casting method. More specific examples of the melt molding method include an extrusion molding method, a press molding method, an inflation molding method, an injection molding method, a blow molding method, and a stretch molding method. Among these methods, in order to obtain a retardation film having excellent mechanical strength and surface accuracy, an extrusion molding method, an inflation molding method or a press molding method is preferable. Among these methods, extrusion is performed from the viewpoint that a film before stretching can be produced efficiently and easily. A molding method is particularly preferred.
- a pre-stretch film is produced as a multi-layer film having two or more layers, such as a pre-stretch film having a layer made of the blend resin p1 and a protective layer, a coextrusion T-die method, a co-extrusion Co-extrusion molding methods such as inflation method and co-extrusion lamination method; film lamination molding methods such as dry lamination; coating molding methods such as coating a resin solution that constitutes the other layer on one layer sell.
- a coextrusion molding method is preferable from the viewpoint that production efficiency is good and volatile components such as a solvent do not remain in the film before stretching.
- the coextrusion T-die method is preferable. Further, examples of the coextrusion T-die method include a feed block method and a multi-manifold method, but the multi-manifold method is more preferable in that variation in layer thickness can be reduced.
- the film before stretching is obtained as a long resin film.
- a ⁇ / 2 plate and a ⁇ / 4 plate made of a retardation film obtained by stretching the film, and a circular polarizing plate as a product as a long film can be manufactured as.
- a long film can be produced in a production line while being continuously conveyed in the longitudinal direction. For this reason, when manufacturing a phase difference film, it is possible to perform in part or all of each process in-line, so that manufacturing can be performed easily and efficiently.
- an appropriate one can be arbitrarily adopted depending on the optical characteristics desired to be exhibited by stretching.
- a method of uniaxial stretching in the longitudinal direction using the difference in peripheral speed between rolls (longitudinal uniaxial stretching); a method of uniaxial stretching in the width direction using a tenter stretching machine (lateral uniaxial stretching); Examples include a method of sequentially performing uniaxial stretching (sequential biaxial stretching); a method of stretching a pre-stretched film in an oblique direction (oblique stretching); and the like.
- These stretching may be performed once or twice or more.
- uniaxial stretching in which stretching is performed only in one direction is preferable.
- Uniaxial stretching can enhance the uniaxiality of the retardation film.
- the term “uniaxial” refers to a property capable of expressing optical properties close to a film obtained by stretching in one direction.
- the NZ coefficient expressed when a layer made of a resin having a positive intrinsic birefringence value is stretched tends to be closer to 1.0 as the uniaxiality of the stretched layer is higher.
- the NZ coefficient expressed when a layer made of a resin having a negative intrinsic birefringence value is stretched tends to approach 0.0 as the uniaxiality of the stretched layer increases.
- a retardation film having high uniaxiality can easily obtain a NZ coefficient suitable for a ⁇ / 2 plate and a ⁇ / 4 plate. Therefore, a circularly polarizing plate provided with the retardation film as a ⁇ / 2 plate or a ⁇ / 4 plate can be obtained. It is easy to increase the ability to reduce the reflection of external light in the tilt direction.
- the stretching direction in the second step can be set according to the direction of the slow axis desired to be expressed by stretching, and in particular, when the pre-stretching film is a long film, the stretching direction is oblique. Direction is preferred. Specifically, it is preferable to stretch in a direction that forms an angle of 15 ° ⁇ 5 ° or 75 ° ⁇ 5 ° with respect to the longitudinal direction of the film before stretching. Thus, by extending
- the circularly polarizing plate of the present invention can be easily manufactured.
- the draw ratio is preferably 1.2 times or more, more preferably 1.3 times or more, particularly preferably 1.5 times or more, preferably 8.0 times or less, more preferably 6.0 times or less, particularly Preferably it is 5.0 times or less.
- a retardation film having desired optical properties can be obtained as a stretched film by keeping the stretch ratio in the second step in the above range.
- the stretching temperature in the second step is preferably “Tg p1 ⁇ 20 ° C.” or higher, more preferably “Tg p1 ⁇ 5 ° C.” or higher, preferably “Tg p1 + 20 ° C.” or lower, more preferably “Tg p1 + 20 ° C.” or lower. Tg p1 + 10 ° C. ”or lower.
- Tg p1 represents the glass transition temperature of the blend resin p1.
- a retardation film including a layer made of the blend resin p1 having a desired retardation is obtained as a stretched film.
- the retardation film may be used as it is as a ⁇ / 2 plate or a ⁇ / 4 plate.
- the third step may be performed as necessary (c) to peel off the arbitrary layer.
- the protective layer made of the (meth) acrylic resin described above usually does not develop a phase difference due to the stretching in (b) the second step. Therefore, by separating the protective layer from the retardation film, the thickness of the retardation film can be reduced without impairing the desired retardation.
- phase difference film provided with the layer which consists of blend resin p1 you may further perform processes other than the process mentioned above. For example, you may perform the process of giving preheat processing with respect to the film before extending
- the apparatus for heating the film before stretching include an oven-type heating apparatus, a radiation heating apparatus, or a hot tub for immersing in a liquid. Of these, an oven-type heating device is preferable.
- the heating temperature in the preheating step is preferably “stretching temperature ⁇ 40 ° C.” or more, more preferably “stretching temperature ⁇ 30 ° C.” or more, preferably “stretching temperature + 20 ° C.” or less, more preferably “stretching temperature + 15 ° C.”
- the stretching temperature means a set temperature of the heating device.
- the temperature in the fixing treatment is preferably room temperature or higher, more preferably “stretching temperature ⁇ 40 ° C.” or higher, preferably “stretching temperature + 30 ° C.” or lower, more preferably “stretching temperature + 20 ° C.” or lower.
- the cyclic olefin resin is usually a thermoplastic resin having a positive intrinsic birefringence value.
- a retardation film provided with a layer made of a cyclic olefin resin may be used as a ⁇ / 4 plate, but is preferably used as a ⁇ / 2 plate.
- the refractive index of a retardation film provided with the layer which consists of cyclic olefin resin may satisfy
- fill nz> nx> ny, and may satisfy
- fill nx>ny> nz.
- the cyclic olefin resin is excellent in mechanical properties, heat resistance, transparency, low hygroscopicity, dimensional stability and lightness.
- the cyclic olefin resin is a resin containing a cyclic olefin polymer.
- the cyclic olefin polymer is a polymer in which the structural unit of the polymer has an alicyclic structure.
- the cyclic olefin polymer includes a polymer having an alicyclic structure in a main chain, a polymer having an alicyclic structure in a side chain, a polymer having an alicyclic structure in a main chain and a side chain, and these 2 It can be set as a mixture of the above arbitrary ratios. Among these, from the viewpoint of mechanical strength and heat resistance, a polymer having an alicyclic structure in the main chain is preferable.
- alicyclic structure examples include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structure.
- cycloalkane saturated alicyclic hydrocarbon
- cycloalkene unsaturated alicyclic hydrocarbon
- cycloalkyne unsaturated alicyclic hydrocarbon
- a cycloalkane structure and a cycloalkene structure are preferable, and a cycloalkane structure is particularly preferable.
- the number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, particularly preferably per alicyclic structure. Is 15 or less. When the number of carbon atoms constituting the alicyclic structure is within this range, the mechanical strength, heat resistance and moldability of the layer made of the cyclic olefin resin are highly balanced.
- the proportion of the structural unit having an alicyclic structure is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
- the proportion of the structural unit having an alicyclic structure in the cyclic olefin polymer is within this range, the transparency and heat resistance of the layer made of the cyclic olefin resin are improved.
- a cycloolefin polymer is a polymer having a structure obtained by polymerizing a cycloolefin monomer.
- the cycloolefin monomer is a compound having a ring structure formed of carbon atoms and having a polymerizable carbon-carbon double bond in the ring structure.
- Examples of the polymerizable carbon-carbon double bond include a carbon-carbon double bond capable of polymerization such as ring-opening polymerization.
- Examples of the ring structure of the cycloolefin monomer include monocycles, polycycles, condensed polycycles, bridged rings, and polycycles obtained by combining these.
- a polycyclic cycloolefin monomer is preferable from the viewpoint of highly balancing the dielectric properties and heat resistance of the resulting polymer.
- norbornene polymers preferred are norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, hydrides thereof, and the like.
- norbornene-based polymers are particularly suitable because of good moldability.
- Examples of the norbornene polymer include a ring-opening polymer of a monomer having a norbornene structure and a hydride thereof; an addition polymer of a monomer having a norbornene structure and a hydride thereof.
- Examples of a ring-opening polymer of a monomer having a norbornene structure include a ring-opening homopolymer of one kind of monomer having a norbornene structure and a ring-opening of two or more kinds of monomers having a norbornene structure. Examples thereof include a copolymer and a ring-opening copolymer with a monomer having a norbornene structure and another monomer that can be copolymerized therewith.
- examples of the addition polymer of a monomer having a norbornene structure include an addition homopolymer of one kind of monomer having a norbornene structure and an addition copolymer of two or more kinds of monomers having a norbornene structure. And addition copolymers with monomers having a norbornene structure and other monomers copolymerizable therewith.
- a hydride of a ring-opening polymer of a monomer having a norbornene structure is particularly suitable from the viewpoints of moldability, heat resistance, low moisture absorption, dimensional stability, lightness, and the like.
- Examples of monomers having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.1 2,5 ] deca-3,7. - diene (common name: dicyclopentadiene), 7,8-tricyclo [4.3.0.1 2, 5] dec-3-ene (common name: methanolate tetrahydrofluorene), tetracyclo [4.4. 0.1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (for example, those having a substituent in the ring).
- examples of the substituent include an alkyl group, an alkylene group, and a polar group. Moreover, these substituents may be the same or different, and a plurality thereof may be bonded to the ring.
- One type of monomer having a norbornene structure may be used alone, or two or more types may be used in combination at any ratio.
- Examples of polar groups include heteroatoms and atomic groups having heteroatoms.
- Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
- Specific examples of polar groups include carboxyl groups, carbonyloxycarbonyl groups, epoxy groups, hydroxyl groups, oxy groups, ester groups, silanol groups, silyl groups, amino groups, amide groups, imide groups, nitrile groups, and sulfonic acid groups. Is mentioned.
- Examples of monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof; cyclic conjugated dienes such as cyclohexadiene and cycloheptadiene; And derivatives thereof.
- monomers having a norbornene structure and a monomer capable of ring-opening copolymerization one kind may be used alone, or two or more kinds may be used in combination at any ratio.
- a ring-opening polymer of a monomer having a norbornene structure can be produced, for example, by polymerizing or copolymerizing a monomer in the presence of a ring-opening polymerization catalyst.
- Examples of monomers that can be copolymerized with a monomer having a norbornene structure include ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, and cyclohexene. And non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, and the like.
- ⁇ -olefin is preferable, and ethylene is more preferable.
- the monomer which can carry out addition copolymerization with the monomer which has a norbornene structure may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- An addition polymer of a monomer having a norbornene structure can be produced, for example, by polymerizing or copolymerizing a monomer in the presence of an addition polymerization catalyst.
- the hydrogenated product of the above-described ring-opening polymer and addition polymer is, for example, carbon in the presence of a hydrogenation catalyst containing a transition metal such as nickel or palladium in a solution of these ring-opening polymer or addition polymer.
- a hydrogenation catalyst containing a transition metal such as nickel or palladium in a solution of these ring-opening polymer or addition polymer.
- -Carbon unsaturated bonds can be prepared by hydrogenation, preferably more than 90%.
- X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.1 2,5 ] decane- Having a 7,9-diyl-ethylene structure, and the amount of these structural units is 90% by weight or more based on the total structural units of the norbornene polymer, and the ratio of X to Y The ratio is preferably 100: 0 to 40:60 by weight ratio of X: Y.
- the layer containing the norbornene-based polymer can be made long-term without dimensional change and excellent in optical property stability.
- Examples of monocyclic olefin polymers include addition polymers of cyclic olefin monomers having a single ring such as cyclohexene, cycloheptene, and cyclooctene.
- cyclic conjugated diene polymers include polymers obtained by cyclization of addition polymers of conjugated diene monomers such as 1,3-butadiene, isoprene and chloroprene; cyclic conjugates such as cyclopentadiene and cyclohexadiene. Mention may be made of 1,2- or 1,4-addition polymers of diene monomers; and their hydrides.
- the weight average molecular weight (Mw) of the cyclic olefin polymer is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000 or more, preferably 100,000 or less, more preferably 80, 000 or less, particularly preferably 50,000 or less.
- the weight average molecular weight is in such a range, the mechanical strength and molding processability of the layer made of the cyclic olefin resin are highly balanced and suitable.
- the weight average molecular weight is a polyisoprene or polystyrene converted weight average molecular weight measured by gel permeation chromatography using cyclohexane as a solvent. In the gel permeation chromatography, when the sample does not dissolve in cyclohexane, toluene may be used as a solvent.
- the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the cyclic olefin polymer is preferably 1.2 or more, more preferably 1.5 or more, particularly preferably 1.8 or more, preferably Is 3.5 or less, more preferably 3.0 or less, and particularly preferably 2.7 or less.
- productivity of a polymer can be improved and manufacturing cost can be suppressed.
- the quantity of a low molecular component becomes small by making it into an upper limit or less, the relaxation at the time of high temperature exposure can be suppressed and the stability of the layer which consists of cyclic olefin resin can be improved.
- the ratio of the cyclic olefin polymer in the cyclic olefin resin is preferably 50% by weight to 100% by weight, more preferably 70% by weight to 100% by weight, and particularly preferably 90% by weight to 100% by weight. By setting the ratio of the polymer in the above range, the layer made of the cyclic olefin resin can obtain sufficient heat resistance and transparency.
- the cyclic olefin resin may contain a compounding agent in addition to the cyclic olefin polymer.
- a compounding agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the glass transition temperature of the cyclic olefin resin is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, particularly preferably 120 ° C. or higher, preferably 190 ° C. or lower, more preferably 180 ° C. or lower, particularly preferably 170 ° C. or lower. It is.
- the glass transition temperature of the cyclic olefin resin is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, particularly preferably 120 ° C. or higher, preferably 190 ° C. or lower, more preferably 180 ° C. or lower, particularly preferably 170 ° C. or lower. It is.
- the glass transition temperature of the cyclic olefin resin is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, particularly preferably 120 ° C. or higher, preferably 190 ° C. or lower, more preferably 180 ° C. or lower, particularly preferably 170 ° C. or
- the absolute value of the photoelastic coefficient of the cyclic olefin resin is preferably 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 7 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, particularly preferably 4 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less. It is. Thereby, the dispersion
- the retardation film including a layer made of a cyclic olefin resin can include any layer other than the layer made of a cyclic olefin resin.
- the retardation film usually has a single layer structure including only a layer made of a cyclic olefin resin.
- the retardation film provided with a layer made of a cyclic olefin resin is, for example, (d) a fourth step of preparing a pre-stretch film provided with a layer made of a cyclic olefin resin, and (e) stretching the prepared pre-stretch film. And a fifth step of expressing a desired phase difference in the layer made of the cyclic olefin resin.
- a pre-stretch film including a layer made of a cyclic olefin resin is prepared.
- stretching the film manufacturing method similar to the film manufacturing method quoted by description of the manufacturing method of the film before extending
- the film before stretching is obtained as a long resin film.
- the pre-stretch film By preparing the pre-stretch film as a long resin film, it is possible to carry out part or all of each process in-line when producing a retardation film, so that the production is performed simply and efficiently. it can.
- a desired retardation film that can be used as a ⁇ / 2 plate or a ⁇ / 4 plate is used as a stretched film because a desired retardation is developed in a layer made of a cyclic olefin resin by stretching in the fifth step. can get.
- Examples of the stretching method in the fifth step include the same stretching method as that for the pre-stretching film including a layer made of the blend resin p1. Also, the number of stretching operations may be one time or two or more times. Furthermore, you may perform the extending
- the stretching direction in the fifth step can be set according to the direction of the slow axis desired to be expressed by stretching, and the oblique direction is particularly preferable. Specifically, it is preferable to stretch in a direction that forms an angle of 15 ° ⁇ 5 ° or 75 ° ⁇ 5 ° with respect to the longitudinal direction of the film before stretching.
- the slow axis can be easily expressed in a desired direction as in the case of the retardation film including the layer made of the blend resin p1, so that the desired ⁇ / 2 plate can be obtained. And a ⁇ / 4 plate can be easily manufactured.
- the long ⁇ / 2 plate and ⁇ / 4 plate obtained by stretching in the oblique direction are long polarized light having an absorption axis in the longitudinal direction, similar to the retardation film having a layer made of the blend resin p1.
- the direction of the optical axis of each layer can be appropriately adjusted by making the longitudinal direction of the ⁇ / 2 plate, the longitudinal direction of the ⁇ / 4 plate, and the longitudinal direction of the polarizing film parallel. Therefore, the circularly polarizing plate of the present invention can be easily manufactured.
- the draw ratio in the fifth step is preferably 1.2 times or more, more preferably 1.3 times or more, particularly preferably 1.5 times or more, preferably 8.0 times or less, more preferably 6.0 times or less, particularly preferably 5.0 times or less.
- a retardation film having desired optical characteristics can be easily obtained as a stretched film by keeping the stretch ratio in the fifth step within the above range.
- the stretching temperature in the fifth step is preferably “Tg COP ⁇ 20 ° C.” or higher, more preferably “Tg COP ⁇ 10 ° C.” or higher, preferably “Tg COP + 20 ° C.” or lower, more preferably “Tg COP + 20 ° C.” or lower. Tg COP + 10 ° C. ”or lower.
- Tg COP represents the glass transition temperature of the cyclic olefin resin.
- a retardation film including a layer made of a cyclic olefin resin having a desired retardation is obtained as a stretched film.
- the retardation film may be used as it is as a ⁇ / 2 plate or a ⁇ / 4 plate. Further, another process may be performed in the same manner as in the method for producing a retardation film having a layer made of the blend resin p1.
- the amount of the volatile component contained in the retardation film described above is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and further preferably 0.02% by weight or less, ideally zero. It is. By reducing the amount of the volatile component, the dimensional stability of the retardation film can be improved, and the temporal change in optical characteristics such as retardation can be reduced.
- a method for reducing the amount of volatile components in this way for example, a film before stretching is produced by a melt molding method.
- the volatile component is a substance having a molecular weight of 200 or less contained in a trace amount in the film, and examples thereof include a residual monomer and a solvent.
- the amount of volatile components can be quantified by dissolving the film in chloroform and analyzing it by gas chromatography as the sum of the substances having a molecular weight of 200 or less contained in the film.
- the saturated water absorption of the retardation film is preferably 0.03% by weight or less, more preferably 0.02% by weight or less, particularly preferably 0.01% by weight or less, and ideally zero.
- the saturated water absorption rate of the retardation film is within the above range, a change with time in optical characteristics such as retardation can be reduced.
- the saturated water absorption is a value expressed as a percentage of the increased mass of the film specimen immersed in water at 23 ° C. for 24 hours with respect to the mass of the film specimen before immersion.
- the circularly polarizing plate of the present invention can be provided with an arbitrary layer other than the polarizing film, the ⁇ / 2 plate and the ⁇ / 4 plate as long as the effects of the present invention are not significantly impaired.
- the circularly polarizing plate of the present invention can include a protective film layer for preventing scratches.
- the circularly polarizing plate of the present invention can include an adhesive layer or an adhesive layer for adhesion between the polarizing film and the ⁇ / 2 plate and adhesion between the ⁇ / 2 plate and the ⁇ / 4 plate.
- the circularly polarizing plate of the present invention When the circularly polarizing plate of the present invention is provided on a surface that can reflect light, reflection of external light can be effectively reduced in both the front direction and the tilt direction.
- the circularly polarizing plate of the present invention is useful in that reflection of external light can be effectively reduced in a wide wavelength range in the visible region.
- a ⁇ / 4 plate having a slow axis that forms an angle ⁇ ( ⁇ / 4) with respect to a reference direction, and ⁇ / that has a slow axis that forms an angle ⁇ ( ⁇ / 2) with respect to the reference direction.
- ⁇ ( ⁇ / 4) 2 ⁇ ( ⁇ / 2) + 45 °”
- the multilayer film transmits the multilayer film in a wide wavelength range.
- This is a broadband ⁇ / 4 plate that can give an in-plane phase difference of approximately 1 ⁇ 4 wavelength of the wavelength of the light (see Japanese Patent Application Laid-Open No. 2007-004120).
- the ⁇ / 2 plate and the ⁇ / 4 plate satisfy a relationship close to that represented by Formula C, so that the portion including the ⁇ / 2 plate and the ⁇ / 4 plate has a broadband ⁇ / Can function as 4 plates. Therefore, since the circularly polarizing plate of the present invention can absorb circularly polarized light in a wide wavelength range, reflection of external light can be effectively reduced.
- a large refractive index nz is developed in the thickness direction on one of the ⁇ / 2 plate and the ⁇ / 4 plate. Due to the refractive index nz in the thickness direction, as described above, the apparent angle shift between the slow axis of the ⁇ / 2 plate and the slow axis of the ⁇ / 4 plate when the circularly polarizing plate is viewed from the tilt direction. Can compensate. Therefore, since the circularly polarizing plate of the present invention can absorb circularly polarized light in a wide wavelength range, not only in the front direction but also in the inclined direction, reflection of external light can be effectively reduced.
- the circularly polarizing plate of the present invention can be produced by laminating the above-described polarizing film, ⁇ / 2 plate and ⁇ / 4 plate. At this time, the polarizing film, the ⁇ / 2 plate, and the ⁇ / 4 plate are set so that the slow axis of the ⁇ / 2 plate and the slow axis of the ⁇ / 4 plate make a desired angle with respect to the absorption axis of the polarizing film. Align and align the optical axes.
- a circularly polarizing plate is obtained.
- a long polarizing film having an absorption axis in the longitudinal direction of the polarizing film and a long axis having a slow axis in a direction forming an angle of 15 ° ⁇ 5 ° with respect to the longitudinal direction of the ⁇ / 2 plate.
- a circularly polarizing plate obtained by laminating a long ⁇ / 2 plate and a long ⁇ / 4 plate having a slow axis in a direction forming an angle of 75 ° ⁇ 5 ° with respect to the longitudinal direction of the ⁇ / 4 plate. In the case of producing a circularly polarizing plate, these polarizing films, ⁇ / 2 plate and ⁇ / 4 plate are bonded together with their longitudinal directions parallel to each other.
- the circularly polarizing plate can be manufactured by a roll-to-roll method. Therefore, this circularly polarizing plate, unlike the method of laminating a single sheet of polarizing film, ⁇ / 2 plate and ⁇ / 4 plate, eliminates the need for a complicated optical axis alignment process, thus realizing efficient production. it can.
- an adhesive or a pressure-sensitive adhesive can be used as necessary.
- the adhesive or pressure-sensitive adhesive include acrylics, silicones, polyesters, polyurethanes, polyethers, and rubbers. Among these, an acrylic type is preferable from the viewpoint of heat resistance and transparency.
- any protective layer or the like may be peeled off.
- the broadband ⁇ / 4 plate of the present invention is an optical member having the same structure as the portion other than the polarizing film in the circularly polarizing plate of the present invention described above. Therefore, as described above, the broadband ⁇ / 4 plate of the present invention includes the ⁇ / 2 plate and the ⁇ / 4 plate having substantially the same wavelength dispersion, and one of the ⁇ / 2 plate and the ⁇ / 4 plate.
- the refractive index is nz ⁇ nx> ny
- the other refractive index of the ⁇ / 2 plate and the ⁇ / 4 plate is nx> ny ⁇ nz.
- the ⁇ / 2 plate has a slow axis in a direction that makes an angle of 75 ° ⁇ 5 ° with respect to a certain reference direction, and the ⁇ / 4 plate has a 15 ° ⁇ with respect to the reference direction. It has a slow axis in the direction of an angle of 5 °.
- the reference direction corresponds to the direction of the absorption axis of the polarizing film in the circularly polarizing plate of the present invention.
- the broadband ⁇ / 4 plate of the present invention can obtain at least the following advantages.
- the broadband ⁇ / 4 plate of the present invention can give an in-plane phase difference of approximately 1 ⁇ 4 wavelength of the light transmitted through the broadband ⁇ / 4 plate in the front direction in a wide wavelength range.
- the broadband ⁇ / 4 plate of the present invention can give an in-plane phase difference of approximately 1 ⁇ 4 wavelength of the light transmitted through the broadband ⁇ / 4 plate in the tilt direction over a wide wavelength range. Therefore, by combining the broadband ⁇ / 4 plate of the present invention with a polarizing film, a circularly polarizing plate that can reduce reflection of light in a wide wavelength range in both the front direction and the tilt direction can be realized.
- the broadband ⁇ / 4 plate of the present invention is preferably a long film.
- Such a long broadband ⁇ / 4 plate can be manufactured by laminating a long ⁇ / 2 plate and a long ⁇ / 4 plate in parallel in the longitudinal direction. Therefore, efficient production can be realized. Further, when manufacturing such a long broadband ⁇ / 4 plate, the long ⁇ / 2 plate and the long ⁇ / 4 plate may be manufactured by a manufacturing method including oblique stretching. preferable. Diagonal stretching represents stretching the pre-stretched film in an oblique direction.
- the long ⁇ / 2 plate manufactured by the manufacturing method including oblique stretching exhibits a slow axis in a direction that forms an angle of 15 ° ⁇ 5 ° with respect to the longitudinal direction of the ⁇ / 2 plate.
- Cheap a long ⁇ / 4 plate manufactured by a manufacturing method including oblique stretching tends to develop a slow axis in a direction that forms an angle of 75 ° ⁇ 5 ° with respect to the longitudinal direction of the ⁇ / 4 plate. . Therefore, since a complicated optical axis alignment process is not required when manufacturing a broadband ⁇ / 4 plate, efficient manufacturing can be realized.
- the organic EL display device of the present invention includes the circularly polarizing plate of the present invention or the broadband ⁇ / 4 plate of the present invention.
- the organic EL display device of the present invention includes a circularly polarizing plate
- the organic EL display device usually includes a circularly polarizing plate on the display surface.
- a circularly-polarizing plate can function as an antireflection film of an organic EL display device. That is, by providing a circularly polarizing plate on the display surface of the organic EL display device so that the surface on the polarizing film side faces the viewing side, light incident from the outside of the device is reflected inside the device and emitted to the outside of the device. As a result, glare of the display surface of the display device can be suppressed.
- the organic EL display device of the present invention includes a broadband ⁇ / 4 plate
- the organic EL display device can include a broadband ⁇ / 4 plate at an arbitrary position.
- a mirror having a planar reflecting surface was prepared. This mirror was placed so that the reflecting surface was horizontal and facing upward. A circularly polarizing plate was attached on the reflecting surface of this mirror so that the polarizing film side would face upward.
- the circularly polarizing plate on the mirror was visually observed in a state where the circularly polarizing plate was illuminated with sunlight on a sunny day. Observation of the circularly polarizing plate, (I) a front direction with a polar angle of 0 ° and an azimuth angle of 0 °; (Ii) The measurement was carried out in both a polar angle of 45 ° and an inclination angle of azimuth angle of 0 ° to 360 °.
- the above visual evaluation was performed by five observers, and the results of all examples and comparative examples were ranked.
- the ranked results were arranged in the order of points, and evaluation was performed in the order of A, B, C, D and E from the upper group within the range of the points.
- the reflectance when light was irradiated to a circularly-polarizing plate from D65 light source was calculated in the (i) front direction and (ii) inclination direction of the said circularly-polarizing plate.
- (i) In the front direction the reflectance in the direction of polar angle 0 ° and azimuth angle 0 ° was calculated.
- (ii) in the tilt direction the polar angle is 45 °
- the azimuth angle is calculated in 5 ° increments in the azimuth angle range of 0 ° to 360 °
- the average of the calculated values is the modeled circularly polarizing plate It was adopted as the reflectance in the tilt direction.
- the formed molten resin in the form of a film was cast on a cast roll adjusted to a surface temperature of 110 ° C., and then passed between two cooling rolls adjusted to a surface temperature of 50 ° C.
- the resin was cooled and solidified on a cast roll to obtain a film before stretching.
- a pre-stretching film PF-1 having a thickness of 50 ⁇ m
- a pre-stretching film PF-2 having a thickness of 100 ⁇ m
- a pre-stretching film PF-3 having a thickness of 200 ⁇ m were produced.
- the same production method as that for the resin R2 is performed except that the mixing ratio of syndiotactic polystyrene and poly (2,6-dimethyl-1,4-phenylene oxide) is 64 parts by weight and 36 parts by weight.
- a resin pellet R3 glass transition temperature 134 ° C.
- the production method is the same as that for resin R2, except that the mixing ratio of syndiotactic polystyrene and poly (2,6-dimethyl-1,4-phenylene oxide) is 60 parts by weight and 40 parts by weight.
- a resin pellet R4 glass transition temperature 141 ° C.
- resin R5 glass transition temperature 145 ° C.
- a film forming apparatus for two-layer / two-layer coextrusion molding (a molding apparatus capable of molding a two-layer film with two kinds of resins) equipped with a single-screw extruder equipped with a double flight type screw was prepared. .
- the resin R3 pellets were charged into one uniaxial extruder of the film forming apparatus and melted.
- pellets of impact-resistant polymethyl methacrylate resin R6 (“SUMIPEX HT55X” manufactured by Sumitomo Chemical Co., Ltd.) were charged into the other uniaxial extruder of the film forming apparatus and melted.
- the molten resin R3 at 290 ° C. was supplied to one manifold of a multi-manifold die (die slip surface roughness Ra: 0.1 ⁇ m) through a leaf disk-shaped polymer filter having an opening of 10 ⁇ m. Further, the melted resin R6 at 260 ° C. was supplied to the other manifold of the multi-manifold die through a leaf disk-shaped polymer filter having an opening of 10 ⁇ m.
- Resin R3 and resin R6 were simultaneously extruded from a multi-manifold die at 280 ° C. to form a film.
- the formed molten resin in the form of a film was cast on a cast roll adjusted to a surface temperature of 110 ° C., and then passed between two cooling rolls adjusted to a surface temperature of 50 ° C.
- the resin was cooled and solidified on a cast roll to obtain a pre-stretch film including a layer made of resin R3 and a layer made of resin R6.
- a pre-stretch film PF-4 (thickness 100 ⁇ m) having a layer made of resin R3 (thickness 50 ⁇ m) and a layer made of resin R6 (thickness 50 ⁇ m)
- a pre-stretch film PF-5 (thickness 200 ⁇ m) comprising a layer made of resin R3 (thickness 100 ⁇ m) and a layer made of resin R6 (thickness 100 ⁇ m) was produced.
- a layer made of the resin R2 (thickness 50 ⁇ m) and a layer made of the resin R6 (thickness 50 ⁇ m) were produced in the same manner as the method for producing the pre-stretched film PF-4 except that the resin R2 was used instead of the resin R3.
- Film PF-6 (thickness: 100 ⁇ m).
- a layer made of resin R4 (thickness: 100 ⁇ m) and a layer made of resin R6 (thickness: 100 ⁇ m) were produced in the same manner as the method for producing the unstretched film PF-4 except that resin R4 was used instead of resin R3.
- An unstretched film PF-7 (thickness: 200 ⁇ m) was obtained.
- a layer made of resin R5 (thickness: 200 ⁇ m) and a layer made of resin R6 (thickness: 100 ⁇ m) were produced in the same manner as in the production method of film PF-5 before stretching except that resin R5 was used instead of resin R3.
- An unstretched film PF-9 (thickness: 300 ⁇ m) was obtained.
- Example 1 (1-i. Production of polarizing film) A long unstretched film made of polyvinyl alcohol resin dyed with iodine was prepared. This unstretched film was stretched in the longitudinal direction at an angle of 90 ° with respect to the width direction of the unstretched film to obtain a long polarizing film. This polarizing film had an absorption axis in the longitudinal direction of the polarizing film, and a transmission axis in the width direction of the polarizing film.
- An optical transparent adhesive sheet (“LUCIACS CS9621T” manufactured by Nitto Denko Corporation) was prepared as the adhesive layer.
- the polarizing film, the ⁇ / 2 plate HF-1, and the ⁇ / 4 plate QF-1 were bonded in this order.
- a circularly polarizing plate POL-1 including a polarizing film, an adhesive sheet, a ⁇ / 2 plate, an adhesive sheet, and a ⁇ / 4 plate in this order was obtained.
- the ⁇ / 2 plate HF-1 and the ⁇ / 4 plate QF-1 were cut into single sheets of film so that the axis directions were ⁇ h and ⁇ q, respectively.
- the following examples and comparative examples were similarly cut out into single wafer films.
- the circularly polarizing plate POL-1 was evaluated by the method described above.
- Example 2 (2-i. Production of ⁇ / 2 plate)
- the unstretched film PF-3 was stretched in the width direction at an angle of 90 ° with respect to the longitudinal direction by a transverse stretching machine to produce a ⁇ / 2 plate HF-2.
- the stretching temperature and the stretching ratio were adjusted so that the in-plane retardation Re at the measurement wavelength of 590 nm was 260 nm within the range of the stretching temperature of 140 ° C. to 150 ° C. at a stretching ratio of 4.0 times.
- Example 1 (2-iii. Pasting) Example 1 except that a ⁇ / 2 plate HF-2 was used instead of the ⁇ / 2 plate HF-1, and a ⁇ / 4 plate QF-2 was used instead of the ⁇ / 4 plate QF-1.
- Example 3 (3-i. Production of ⁇ / 2 plate)
- the unstretched film PF-5 was freely uniaxially stretched in the longitudinal direction of the unstretched film, and then the layer made of the resin R6 was peeled off to produce a ⁇ / 2 plate HF-3 made of the resin R3.
- the stretching temperature and the stretching ratio were adjusted so that the in-plane retardation Re at a measurement wavelength of 590 nm was 260 nm within a range of a stretching temperature of 134 ° C. to 144 ° C. at a stretching ratio of 1.6.
- the unstretched film PF-1 was freely uniaxially stretched in the longitudinal direction of the unstretched film to produce a ⁇ / 4 plate QF-3.
- the stretching temperature and the stretching ratio were adjusted so that the in-plane retardation Re at the measurement wavelength of 590 nm was 130 nm within the range of the stretching temperature of 140 ° C. to 150 ° C. at a stretching ratio of 1.6 times.
- Example 1 except that a ⁇ / 2 plate HF-3 was used instead of the ⁇ / 2 plate HF-1, and a ⁇ / 4 plate QF-3 was used instead of the ⁇ / 4 plate QF-1.
- Example 4 (4-i. Production of ⁇ / 4 plate)
- the unstretched film PF-6 was freely uniaxially stretched in the longitudinal direction of the unstretched film, and then the layer made of the resin R6 was peeled off to produce a ⁇ / 4 plate QF-4 made of the resin R2.
- the stretching temperature and the stretching ratio were adjusted such that the in-plane retardation Re at the measurement wavelength of 590 nm was 129 nm within the range of the stretching temperature of 125 ° C. to 135 ° C. at a stretching ratio of 1.6 times.
- Example 5 (5-i. Production of ⁇ / 4 plate)
- the unstretched film PF-7 was freely uniaxially stretched in the longitudinal direction of the unstretched film, and then the layer made of the resin R6 was peeled off to produce a ⁇ / 4 plate QF-5 made of the resin R4.
- the stretching temperature and the stretching ratio were adjusted so that the in-plane retardation Re at the measurement wavelength of 590 nm was 132 nm within the range of the stretching temperature of 141 ° C. to 151 ° C. at a stretching ratio of 1.6 times.
- Example 6 (6-i. Bonding) Except for using ⁇ / 2 plate HF-2 instead of ⁇ / 2 plate HF-1, in the same manner as in Example 1 (1-iv. bonding), polarizing film, adhesive sheet, ⁇ / A circularly polarizing plate POL-6 including two plates, an adhesive sheet, and a ⁇ / 4 plate in this order was obtained.
- Example 7 (7-i. Production of ⁇ / 2 plate)
- the unstretched film PF-3 was stretched in the width direction at an angle of 90 ° with respect to the longitudinal direction by a transverse stretching machine to obtain a ⁇ / 2 plate HF-4.
- the stretching temperature and the stretching ratio were adjusted so that the in-plane retardation Re at the measurement wavelength of 590 nm was 260 nm within the range of the stretching temperature of 140 ° C. to 150 ° C. at a stretching ratio of 3.0.
- Example 8 (8-i. Bonding) Except for using ⁇ / 4 plate QF-2 instead of ⁇ / 4 plate QF-1, the same procedure as in Example 1 (1-iv. bonding), polarizing film, adhesive sheet, ⁇ / A circularly polarizing plate POL-8 including two plates, an adhesive sheet, and a ⁇ / 4 plate in this order was obtained.
- Example 9 (9-i. Production of ⁇ / 4 plate)
- the unstretched film PF-5 is stretched in the width direction at an angle of 90 ° with respect to the longitudinal direction by a transverse stretching machine, and then the layer made of the resin R6 is peeled off to form the ⁇ / 2 plate QF made of the resin R3. -6 was obtained.
- the stretching temperature and the stretching ratio were adjusted such that the in-plane retardation Re at the measurement wavelength of 590 nm was 130 nm within the range of the stretching temperature of 134 ° C. to 144 ° C. at a stretching ratio of 2.0.
- a coating solution having the composition shown in Table 1 below was continuously applied using a bar coater to form a coating solution film.
- the discotic liquid crystalline molecules are fixed by irradiating with ultraviolet rays to form an optically anisotropic layer having a thickness of 1.7 ⁇ m. Obtained.
- a ⁇ / 4 plate QF-8 having a transparent support and an optically anisotropic layer was obtained.
- the discotic liquid crystalline molecules were homogeneously aligned so as to have an optical axis (director) in a direction forming an angle of 45 ° with the longitudinal direction of the transparent support.
- the ⁇ / 4 plate QF-8 had a slow axis in a direction orthogonal to the optical axis (director) (that is, a direction forming an angle of 45 ° with the longitudinal direction of the transparent support).
- the angle ⁇ q that the slow axis of the ⁇ / 4 plate makes counterclockwise was as shown in Table 1.
- the circularly polarizing plate POL-12 was evaluated by the method described above.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Polarising Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
Abstract
Description
これに対し、近年、λ/4板とλ/2板とを組み合わせた広帯域λ/4板が提案されている(特許文献1~6参照)。
(1)偏光フィルムの吸収軸とλ/2板の遅相軸とがなす角度を所定の範囲に収め、且つ、偏光フィルムの吸収軸とλ/4板の遅相軸とがなす角度を所定の角度に収める。
(2)λ/2板の波長分散とλ/4板の波長分散とを略一致させる。
(3)λ/2板及びλ/4板の一方の屈折率をnz≧nx>nyにし、且つ、λ/2板及びλ/4板の他方の屈折率をnx>ny≧nzにする。
このような知見に基づいて、本発明は完成された。
すなわち、本発明は、以下の通りである。
前記偏光フィルムの吸収軸に対して15°±5°の角度をなす方向に遅相軸を有するλ/2板と、
前記偏光フィルムの吸収軸に対して75°±5°の角度をなす方向に遅相軸を有するλ/4板と、をこの順に備え、
前記λ/2板の波長分散と前記λ/4板の波長分散とが略一致しており、
面内の遅相軸方向の屈折率をnx、面内の進相軸方向の屈折率をny、厚み方向の屈折率をnzで表した場合、前記λ/2板及び前記λ/4板の一方の屈折率がnz≧nx>nyであり、前記λ/2板及び前記λ/4板の他方の屈折率がnx>ny≧nzである、円偏光板。
〔2〕 波長400nmにおける前記λ/2板の面内位相差をReh(400)、
波長550nmにおける前記λ/2板の面内位相差をReh(550)、
波長400nmにおける前記λ/4板の面内位相差をReq(400)、及び
波長550nmにおける前記λ/4板の面内位相差をReq(550)としたとき、
下記式(A):
|Reh(400)/Reh(550)-Req(400)/Req(550)|<1.00
を満たす、〔1〕記載の円偏光板。
〔3〕 前記λ/2板及び前記λ/4板の一方のNZ係数が、-0.5~0.0であり、
前記λ/2板及び前記λ/4板の他方のNZ係数が、1.0~1.3である、〔1〕又は〔2〕記載の円偏光板。
〔4〕 前記λ/2板及び前記λ/4板の片方が、ポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む樹脂からなる層を備える、〔1〕~〔3〕のいずれか一項に記載の円偏光板。
〔5〕 前記ポリフェニレンエーテルと前記ポリスチレン系重合体との重量比が、30/70より大きく、40/60より小さい、〔4〕記載の円偏光板。
〔6〕 前記λ/2板及び前記λ/4板の片方が、環状オレフィン重合体を含む樹脂からなる層を備える、〔1〕~〔5〕のいずれか一項に記載の円偏光板。
〔7〕 前記円偏光板が、長尺のフィルムであって、
前記偏光フィルムの吸収軸が、前記円偏光板の長手方向にある、〔1〕~〔6〕のいずれか一項に記載の円偏光板。
〔8〕 基準方向に対して75°±5°の角度をなす方向に遅相軸を有するλ/2板と、
前記基準方向に対して15°±5°の角度をなす方向に遅相軸を有するλ/4板とを備え、
前記λ/2板の波長分散と前記λ/4板の波長分散とが略一致しており、
面内の遅相軸方向の屈折率をnx、面内の進相軸方向の屈折率をny、厚み方向の屈折率をnzで表した場合、前記λ/2板及び前記λ/4板の一方の屈折率がnz≧nx>nyであり、前記λ/2板及び前記λ/4板の他方の屈折率がnx>ny≧nzである、広帯域λ/4板。
〔9〕 前記広帯域λ/4板が、長尺のフィルムであって、
前記λ/2板及び前記λ/4板が、斜め延伸を含む製造方法により製造されたものである、〔8〕記載の広帯域λ/4板。
〔10〕 〔1〕~〔6〕のいずれか一項に記載の円偏光板、又は、〔8〕若しくは〔9〕記載の広帯域λ/4板を備える、有機エレクトロルミネッセンス表示装置。
以下の説明において、フィルムの屈折率nyは、別に断らない限り、そのフィルムの面内の進相軸方向の屈折率を表す。この屈折率nyは、通常、フィルムの厚み方向に垂直な方向(面内方向)であって前記nxの方向に直交する方向の屈折率を表す。
以下の説明において、フィルムの屈折率nzは、別に断らない限り、そのフィルムの厚み方向の屈折率を表す。
これらの屈折率nx、ny及びnzの測定波長は、別に断らない限り、590nmである。
図1は、本発明の一実施形態に係る円偏光板の分解斜視図である。図1では、λ/2板120の表面に、偏光フィルム110の吸収軸111を投影した軸112を一点鎖線で示す。また、図1では、λ/4板130の表面に、偏光フィルム110の吸収軸111を投影した軸113を一点鎖線で示す。
偏光フィルムは、通常は偏光子層を備え、必要に応じて偏光子層を保護するための保護フィルム層を備える。
偏光子層としては、例えば、ポリビニルアルコール、部分ホルマール化ポリビニルアルコール等の適切なビニルアルコール系重合体のフィルムに、ヨウ素及び二色性染料等の二色性物質による染色処理、延伸処理、架橋処理等の適切な処理を適切な順序及び方式で施したものを用いうる。通常、偏光子層を製造するための延伸処理では、延伸前の長尺のフィルムを長手方向に延伸するので、得られる偏光子層においては当該偏光子層の長手方向に平行な吸収軸が発現しうる。この偏光子層は、吸収軸と平行な振動方向を有する直線偏光を吸収しうるものであり、特に、偏光度に優れるものが好ましい。偏光子層の厚さは、5μm~80μmが一般的であるが、これに限定されない。
長尺の偏光フィルムを用いる場合、その偏光フィルムの吸収軸は、当該偏光フィルムの長手方向に平行であることが好ましい。これにより、偏光フィルムは、当該偏光フィルムを備える長尺の円偏光板の長手方向に吸収軸を有することができる。これにより、通常は、長尺の偏光フィルム、長尺のλ/2板及び長尺のλ/4板を長手方向を平行にして貼り合せることによって長尺の円偏光板を製造できるので、円偏光板をロールトゥロール法によって製造することが可能になる。そのため、円偏光板の製造効率を高めることが可能となる。
λ/2板は、測定波長590nmにおいて、通常240nm以上通常300nm以下の面内位相差を有する光学部材である。λ/2板がこのような面内位相差を有することにより、λ/2板及びλ/4板を組み合わせて広帯域λ/4板を実現できる。そのため、本発明の円偏光板は、広い波長範囲において、右円偏光及び左円偏光の一方の光を吸収し、残りの光を透過させうる機能を発現できる。したがって、本発明の円偏光板により、正面方向及び傾斜方向の両方において、広い波長範囲の光の反射を低減することが可能となる。中でも、傾斜方向における外光の反射を特に効果的に低減するためには、測定波長590nmにおけるλ/2板の面内位相差は、好ましくは250nm以上であり、好ましくは280nm以下、より好ましくは265nm以下である。
|Reh(400)/Reh(550)-Req(400)/Req(550)|<1.00
を満たすことを言う。前記の|Reh(400)/Reh(550)-Req(400)/Req(550)|は、好ましくは0.60以下であり、より好ましくは0.10以下、特に好ましくは0.06以下である。このように略一致する波長分散を有するλ/2板とλ/4板とを組み合わせることにより、本発明の円偏光板の正面方向において外光の反射を効果的に低減できる。
λ/4板は、測定波長590nmにおいて、通常110nm以上通常154nm以下の面内位相差を有する光学部材である。λ/4板がこのような面内位相差を有することにより、λ/2板及びλ/4板を組み合わせて広帯域λ/4板を実現できる。そのため、本発明の円偏光板は、広い波長範囲において、右円偏光及び左円偏光の一方の光を吸収し、残りの光を透過させうる機能を発現できる。したがって、本発明の円偏光板により、正面方向及び傾斜方向の両方において、広い波長範囲の光の反射を低減することが可能となる。中でも、傾斜方向における外光の反射を特に効果的に低減するためには、測定波長590nmにおけるλ/4板の面内位相差は、好ましくは118nm以上であり、好ましくは138nm以下、より好ましくは128nm以下である。
λ/4板のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。
上述した光学物性を有するλ/2板及びλ/4板としては、通常、樹脂層を備える位相差フィルムを用いる。中でも、大面積化が容易であり効率的な製造が可能であることから、λ/2板及びλ/4板として用いる位相差フィルムとしては、樹脂からなる延伸前フィルムを延伸して得られる延伸フィルムが好ましい。また、λ/2板及びλ/4板は、1層のみ備える単層構造のフィルムであってもよく、2層以上の層を備える複層構造のフィルムであってもよい。
また、前記の重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。例えば、固有複屈折値が正の重合体と、固有複屈折値が負の重合体とを組み合わせて用いてもよい。
ブレンド樹脂p1は、当該ブレンド樹脂p1が含む重合体の種類及び量に応じて、その固有複屈折値の符号(正及び負)を調整しうる。通常、ブレンド樹脂p1として、負の固有複屈折値を有するものを用いる。ブレンド樹脂p1からなる層を備える位相差フィルムは、λ/2板として用いてもよいが、λ/4板として用いることが好ましい。また、ブレンド樹脂p1からなる層を備える位相差フィルムの屈折率は、nz≧nx>nyを満たしていてもよく、nx>ny≧nzを満たしていてもよい。ブレンド樹脂p1では、ポリフェニレンエーテルとポリスチレン系重合体との量比を調整することにより、当該ブレンド樹脂p1の波長分散を高い自由度で調整することができる。
式(I)で表される構造単位を含む重合体が単独重合体である場合、当該単独重合体の好ましい例を挙げると、2,6-ジメチル-1,4-フェニレンエーテル単位(「-(C6H2(CH3)2-O)-」で表される構造単位)を有する単独重合体が挙げられる。
式(I)で表される構造単位を含む重合体が共重合体である場合、当該共重合体の好ましい例を挙げると、2,6-ジメチル-1,4-フェニレンエーテル単位と2,3,6-トリメチル-1,4-フェニレンエーテル単位(「-(C6H(CH3)3-O-)-」で表される構造単位)と組み合わせて有するランダム共重合体が挙げられる。
ここで、重量平均分子量は、1,2,4-トリクロロベンゼンを溶媒として温度135℃でゲルパーミエーションクロマトグラフィー(GPC)で測定した、標準ポリスチレン換算の値を採用しうる。
ポリ(アルキルスチレン)としては、例えばポリ(メチルスチレン)、ポリ(エチルスチレン)、ポリ(イソピルスチレン)、ポリ(t-ブチルスチレン)、ポリ(フェニルスチレン)、ポリ(ビニルナフタレン)、ポリ(ビニルスチレン)などが挙げられる。
ポリ(ハロゲン化スチレン)としては、例えば、ポリ(クロロスチレン)、ポリ(ブロモスチレン)、ポリ(フルオロスチレン)などが挙げられる。
ポリ(ハロゲン化アルキルスチレン)としては、例えば、ポリ(クロロメチルスチレン)などが挙げられる。
ポリ(アルコキシスチレン)としては、例えば、ポリ(メトキシスチレン)、ポリ(エトキシスチレン)などが挙げられる。
ポリフェニレンエーテルとポリスチレン系重合体とは、相溶可能である。そのため、ブレンド樹脂p1からなる層を延伸した場合、ポリフェニレンエーテルの配向により発現する位相差と、ポリスチレン系重合体の配向により発現する位相差とが合成されて、ブレンド樹脂p1からなる層の全体としての位相差が生じる。ここで、ポリフェニレンエーテルとポリスチレン系重合体とは、その固有複屈折値の符号が異なる。そのため、ブレンド樹脂p1からなる層の全体としての位相差の値は、ポリフェニレンエーテルの配向により発現する位相差と、ポリスチレン系重合体の配向により発現する位相差との差として現れる。また、ブレンド樹脂p1からなる層を延伸した場合に発現する位相差の波長分散については、ポリフェニレンエーテルの波長分散と、ポリスチレン系重合体の波長分散との間には、差がある。具体的には、ポリフェニレンエーテルの波長分散の方が、通常は、ポリスチレン系重合体の波長分散よりも大きい。そのため、ポリフェニレンエーテルの量とポリスチレン系重合体の量との比を適切に調整することにより、ポリフェニレンエーテルの配向により発現する位相差の大きさとポリスチレン系重合体の配向により発現する位相差の大きさとのバランスを調整できるので、ブレンド樹脂p1からなる層の全体として発現する位相差の値を、波長毎に調整できる。したがって、ブレンド樹脂p1からなる層においてポリフェニレンエーテルとポリスチレン系重合体との重量比を調整することにより、ブレンド樹脂p1からなる層の波長分散を調整できるものと推察される(特開2012-226996号公報参照)。
例えば、ブレンド樹脂p1は、上述したポリフェニレンエーテル及びポリスチレン系重合体以外にも重合体を含んでいてもよい。ポリフェニレンエーテル及びポリスチレン系重合体以外の重合体の量は、ポリフェニレンエーテル及びポリスチレン系重合体の合計量を100重量部として、15重量部以下が好ましく、10重量部以下がより好ましく、5重量部以下が特に好ましい。
配合剤の量は、本発明の効果を著しく損なわない範囲で適宜定めうる。例えばブレンド樹脂p1からなる層の全光線透過率を85%以上に維持できる範囲である。
紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、アクリロニトリル系紫外線吸収剤、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体などが挙げられる。好適な紫外線吸収剤の例としては、2,2’-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2,4-ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノンが挙げられ、特に好適なものとしては、2,2’-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノールが挙げられる。
(メタ)アクリル重合体としては、例えば、アクリル酸、アクリル酸エステル、アクリルアミド、アクリロニトリル、メタクリル酸およびメタクリル酸エステルなどの単独重合体及び共重合体が挙げられる。
例えば、延伸される前に延伸前フィルムに対して予熱処理を施す工程を行ってもよい。延伸前フィルムを加熱する装置としては、例えば、オーブン型加熱装置、ラジエーション加熱装置、又は液体中に浸すための温浴槽などが挙げられる。中でもオーブン型加熱装置が好ましい。予熱工程における加熱温度は、好ましくは「延伸温度-40℃」以上、より好ましくは「延伸温度-30℃」以上であり、好ましくは「延伸温度+20℃」以下、より好ましくは「延伸温度+15℃」以下である。ここで、延伸温度とは、加熱装置の設定温度を意味する。
環状オレフィン樹脂は、通常、正の固有複屈折値を有する熱可塑性樹脂である。環状オレフィン樹脂からなる層を備える位相差フィルムは、λ/4板として用いてもよいが、λ/2板として用いることが好ましい。また、環状オレフィン樹脂からなる層を備える位相差フィルムの屈折率は、nz≧nx>nyを満たしていてもよく、nx>ny≧nzを満たしていてもよい。環状オレフィン樹脂は、機械特性、耐熱性、透明性、低吸湿性、寸法安定性及び軽量性に優れる。
上述した位相差フィルムが含む揮発性成分の量は、好ましくは0.1重量%以下、より好ましくは0.05重量%以下、さらに好ましくは0.02重量%以下であり、理想的にはゼロである。揮発性成分の量を少なくすることにより、位相差フィルムの寸法安定性が向上し、位相差等の光学特性の経時変化を小さくすることができる。このように揮発性成分の量を少なくするための方法としては、例えば、延伸前フィルムを溶融成形法によって製造することが挙げられる。
ここで、揮発性成分とは、フィルム中に微量含まれる分子量200以下の物質であり、例えば、残留単量体及び溶媒などが挙げられる。揮発性成分の量は、フィルム中に含まれる分子量200以下の物質の合計として、フィルムをクロロホルムに溶解させてガスクロマトグラフィーにより分析することにより定量することができる。
ここで、飽和吸水率は、フィルムの試験片を23℃の水中に24時間浸漬し、増加した質量の、浸漬前フィルム試験片の質量に対する百分率で表される値である。
本発明の円偏光板は、本発明の効果を著しく損なわない範囲において、偏光フィルム、λ/2板及びλ/4板以外に、任意の層を備えうる。
例えば、本発明の円偏光板は、傷つき防止のための保護フィルム層を備えうる。また、例えば、本発明の円偏光板は、偏光フィルムとλ/2板との接着、並びに、λ/2板とλ/4板との接着のために、接着層又は粘着層を備えうる。
本発明の円偏光板は、光を反射しうる面に設けた場合に、正面方向及び傾斜方向のいずれにおいても外光の反射を効果的に低減できる。特に、本発明の円偏光板は、可視領域の広い波長範囲において、外光の反射を効果的に低減できる点で、有用である。
本発明の円偏光板は、上述した偏光フィルム、λ/2板及びλ/4板を貼り合わせることにより、製造できる。この際、偏光フィルム、λ/2板及びλ/4板は、偏光フィルムの吸収軸に対してλ/2板の遅相軸及びλ/4板の遅相軸が所望の角度をなすように、光軸を合わせて貼り合わせを行う。例えば、偏光フィルム、λ/2板及びλ/4板を枚葉のフィルムに切り出し、切り出した枚葉の偏光フィルム、λ/2板及びλ/4板を光軸を合わせて貼り合わせることで、円偏光板が得られる。
本発明の広帯域λ/4板は、上述した本発明の円偏光板における偏光フィルム以外の部分と同様の構造を有する光学部材である。したがって、本発明の広帯域λ/4板は、上述したように、略一致する波長分散を有するλ/2板及びλ/4板を備え、これらのλ/2板及びλ/4板の一方の屈折率がnz≧nx>nyであり、λ/2板及びλ/4板の他方の屈折率がnx>ny≧nzである。そして、λ/2板は、ある基準方向に対して75°±5°の角度をなす方向に遅相軸を有し、且つ、λ/4板は、前記の基準方向に対して15°±5°の角度をなす方向に遅相軸を有する。前記の基準方向は、本発明の円偏光板における偏光フィルムの吸収軸の方向に相当する。
・本発明の広帯域λ/4板は、広い波長範囲において、当該広帯域λ/4板を正面方向に透過する光に、その光の波長の略1/4波長の面内位相差を与えられる。
・本発明の広帯域λ/4板は、広い波長範囲において、当該広帯域λ/4板を傾斜方向に透過する光に、その光の波長の略1/4波長の面内位相差を与えられる。
・したがって、本発明の広帯域λ/4板は、偏光フィルムと組み合わせることにより、正面方向及び傾斜方向の両方において広い波長範囲の光の反射を低減できる円偏光板を実現できる。
本発明の有機EL表示装置は、本発明の円偏光板、又は、本発明の広帯域λ/4板を備える。
以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
(位相差の測定方法)
位相差計(王子計測社製「KOBRA-21ADH」)を用いて、フィルムの幅方向に50mm間隔の複数の地点で、面内位相差及び厚み方向の位相差を測定した。これらの地点での測定値の平均値を計算し、この平均値を、当該フィルムの面内位相差及び厚み方向の位相差とした。この際、測定は、400nm、550nm及び590nmの波長でそれぞれ行った。
位相差計(王子計測社製「KOBRA-21ADH」)を用いて、フィルムの幅方向に50mm間隔の複数の地点で、当該フィルムのNZ係数を測定した。これらの地点での測定値の平均値を計算し、この平均値を当該フィルムのNZ係数とした。この際、測定波長は590nmとした。
平面状の反射面を有するミラーを用意した。このミラーを、反射面が水平で且つ上向きになるように置いた。このミラーの反射面上に、偏光フィルム側が上向きになるように円偏光板を貼り付けた。
(i)極角0°、方位角0°の正面方向と、
(ii)極角45°、方位角0°~360°の傾斜方向と
の両方で行った。
また、(ii)傾斜方向での観察では、方位角によって反射率及び色味が変化しないかどうかを評価した。
シミュレーション用のソフトウェアとしてシンテック社製「LCD Master」を用いて、各実施例及び比較例で製造された円偏光板をモデル化し、反射率を計算した。
単層のフィルム成形装置を用意した。シクロオレフィン樹脂R1(日本ゼオン社製「ZEONOR1420」、ガラス転移温度140℃)のペレットを、フィルム成形装置のダブルフライト型のスクリューを備えた一軸押出機に投入して260℃で溶融し、目開き10μmのリーフディスク形状のポリマーフィルターを通して、260℃に温調されたダイ(ダイスリップの表面粗さRa:0.1μm)から押し出し、フィルム状に成形した。成形されたフィルム状の溶融樹脂を、表面温度110℃に調整されたキャストロールにキャストし、次いで表面温度50℃に調整された2本の冷却ロール間に通した。樹脂はキャストロール上で冷却固化して、延伸前フィルムが得られた。この際、キャストロールの回転速度を調整することにより、厚み50μmの延伸前フィルムPF-1、厚み100μmの延伸前フィルムPF-2、及び、厚み200μmの延伸前フィルムPF-3を製造した。
(ブレンド樹脂の製造)
シンジオタクチックポリスチレン(出光興産社製「130-ZC」、ガラス転移温度98℃、結晶化温度140℃)70重量部と、ポリ(2,6-ジメチル-1,4-フェニレンオキサイド)(アルドリッチ社カタログNo.18242-7)30重量部とを、2軸押出機で混錬し、透明な樹脂R2のペレットを得た。得られた樹脂R2のガラス転移温度は125℃であった。
ダブルフライト型のスクリューを備えた一軸押出機を備える、二種二層の共押出成形用のフィルム成形装置(2種類の樹脂によって2層構造のフィルムを成形しうるタイプの成形装置)を準備した。樹脂R3のペレットを、前記のフィルム成形装置の一方の一軸押出機に投入して、溶融させた。また、耐衝撃性ポリメチルメタクリレート樹脂R6(住友化学社製「スミペックスHT55X」)のペレットを、前記のフィルム成形装置のもう一方の一軸押出機に投入して、溶融させた。
(1-i.偏光フィルムの製造)
ヨウ素で染色した、ポリビニルアルコール樹脂製の長尺の延伸前フィルムを用意した。この延伸前フィルムを、当該延伸前フィルムの幅方向に対して90°の角度をなす長手方向に延伸して、長尺の偏光フィルムを得た。この偏光フィルムは、当該偏光フィルムの長手方向に吸収軸を有し、当該偏光フィルムの幅方向に透過軸を有していた。
延伸前フィルムPF-2を、当該延伸前フィルムの長手方向に自由一軸延伸して、λ/2板HF-1を製造した。この際、延伸温度及び延伸倍率は、延伸倍率1.6倍において、延伸温度140℃~150℃の範囲内で、測定波長590nmでの面内位相差Reが260nmとなるように調整した。
延伸前フィルムPF-4を、当該延伸前フィルムの長手方向に自由一軸延伸し、その後、樹脂R6からなる層を剥離して、樹脂R3からなるλ/4板QF-1を製造した。この際、延伸温度及び延伸倍率は、延伸倍率1.6倍において、延伸温度134℃~144℃の範囲内で、測定波長590nmでの面内位相差Reが130nmとなるように調整した。
粘着剤の層として、光学用透明粘着シート(日東電工社製「LUCIACS CS9621T」)を用意した。この粘着シートを用いて、前記の偏光フィルム、λ/2板HF-1、及び、λ/4板QF-1を、この順で貼り合わせた。これにより、偏光フィルム、粘着シート、λ/2板、粘着シート及びλ/4板をこの順に備える円偏光板POL-1を得た。この円偏光板POL-1を偏光フィルム側から見た場合において、偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度θh、及び、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度θqは、表2に示す通りであった。なお、λ/2板及びλ/4板を、偏光フィルムや粘着シートと貼り合わせる際には、偏光フィルムの吸収軸に対する、λ/2板の遅相軸の方向及びλ/4板の遅相軸の方向が、それぞれθh、θqとなるように、λ/2板HF-1及びλ/4板QF―1を枚葉のフィルムに切り出した。以下の実施例及び比較例も同様に枚葉のフィルムに切り出した。
円偏光板POL-1について、上述した方法で評価を行った。
(2-i.λ/2板の製造)
延伸前フィルムPF-3を、横延伸機で、長手方向に対して90°の角度をなす幅方向に延伸して、λ/2板HF-2を製造した。この際、延伸温度及び延伸倍率は、延伸倍率4.0倍において、延伸温度140℃~150℃の範囲内で、測定波長590nmでの面内位相差Reが260nmとなるように調整した。
延伸前フィルムPF-5を、横延伸機で長手方向に対して90°の角度をなす幅方向に延伸し、その後、樹脂R6からなる層を剥離して、樹脂R3からなるλ/2板QF-2を製造した。この際、延伸温度及び延伸倍率は、延伸倍率2.5倍において、延伸温度134℃~144℃の範囲内で、測定波長590nmでの面内位相差Reが130nmとなるように調整した。
λ/2板HF-1の代わりにλ/2板HF-2を使用し、更に、λ/4板QF-1の代わりにλ/4板QF-2を使用したこと以外は、実施例1の工程(1-iv.貼り合わせ)と同様にして、偏光フィルム、粘着シート、λ/2板、粘着シート及びλ/4板をこの順に備える円偏光板POL-2を得た。この円偏光板POL-2を偏光フィルム側から見た場合において、偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度θh、及び、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度θqは、表2に示す通りであった。
円偏光板POL-2について、上述した方法で評価を行った。
(3-i.λ/2板の製造)
延伸前フィルムPF-5を、当該延伸前フィルムの長手方向に自由一軸延伸して、その後、樹脂R6からなる層を剥離して、樹脂R3からなるλ/2板HF-3を製造した。この際、延伸温度及び延伸倍率は、延伸倍率1.6倍において、延伸温度134℃~144℃の範囲内で、測定波長590nmでの面内位相差Reが260nmとなるように調整した。
延伸前フィルムPF-1を、当該延伸前フィルムの長手方向に自由一軸延伸して、λ/4板QF-3を製造した。この際、延伸温度及び延伸倍率は、延伸倍率1.6倍において、延伸温度140℃~150℃の範囲内で、測定波長590nmでの面内位相差Reが130nmとなるように調整した。
λ/2板HF-1の代わりにλ/2板HF-3を使用し、更に、λ/4板QF-1の代わりにλ/4板QF-3を使用したこと以外は、実施例1の工程(1-iv.貼り合わせ)と同様にして、偏光フィルム、粘着シート、λ/2板、粘着シート及びλ/4板をこの順に備える円偏光板POL-3を得た。この円偏光板POL-3を偏光フィルム側から見た場合において、偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度θh、及び、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度θqは、表2に示す通りであった。
円偏光板POL-3について、上述した方法で評価を行った。
(4-i.λ/4板の製造)
延伸前フィルムPF-6を、当該延伸前フィルムの長手方向に自由一軸延伸し、その後、樹脂R6からなる層を剥離して、樹脂R2からなるλ/4板QF-4を製造した。この際、延伸温度及び延伸倍率は、延伸倍率1.6倍において、延伸温度125℃~135℃の範囲内で、測定波長590nmでの面内位相差Reが129nmとなるように調整した。
λ/4板QF-1の代わりにλ/4板QF-4を使用したこと以外は、実施例1の工程(1-iv.貼り合わせ)と同様にして、偏光フィルム、粘着シート、λ/2板、粘着シート及びλ/4板をこの順に備える円偏光板POL-4を得た。この円偏光板POL-4を偏光フィルム側から見た場合において、偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度θh、及び、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度θqは、表2に示す通りであった。
円偏光板POL-4について、上述した方法で評価を行った。
(5-i.λ/4板の製造)
延伸前フィルムPF-7を、当該延伸前フィルムの長手方向に自由一軸延伸し、その後、樹脂R6からなる層を剥離して、樹脂R4からなるλ/4板QF-5を製造した。この際、延伸温度及び延伸倍率は、延伸倍率1.6倍において、延伸温度141℃~151℃の範囲内で、測定波長590nmでの面内位相差Reが132nmとなるように調整した。
λ/4板QF-1の代わりにλ/4板QF-5を使用したこと以外は、実施例1の工程(1-iv.貼り合わせ)と同様にして、偏光フィルム、粘着シート、λ/2板、粘着シート及びλ/4板をこの順に備える円偏光板POL-5を得た。この円偏光板POL-5を偏光フィルム側から見た場合において、偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度θh、及び、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度θqは、表2に示す通りであった。
円偏光板POL-5について、上述した方法で評価を行った。
(6-i.貼り合わせ)
λ/2板HF-1の代わりにλ/2板HF-2を使用したこと以外は、実施例1の工程(1-iv.貼り合わせ)と同様にして、偏光フィルム、粘着シート、λ/2板、粘着シート及びλ/4板をこの順に備える円偏光板POL-6を得た。この円偏光板POL-6を偏光フィルム側から見た場合において、偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度θh、及び、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度θqは、表2に示す通りであった。
円偏光板POL-6について、上述した方法で評価を行った。
(7-i.λ/2板の製造)
延伸前フィルムPF-3を、横延伸機で、長手方向に対して90°の角度をなす幅方向に延伸して、λ/2板HF-4を得た。この際、延伸温度及び延伸倍率は、延伸倍率3.0倍において、延伸温度140℃~150℃の範囲内で、測定波長590nmでの面内位相差Reが260nmとなるように調整した。
λ/2板HF-1の代わりにλ/2板HF-4を使用したこと以外は、実施例1の工程(1-iv.貼り合わせ)と同様にして、偏光フィルム、粘着シート、λ/2板、粘着シート及びλ/4板をこの順に備える円偏光板POL-7を得た。この円偏光板POL-7を偏光フィルム側から見た場合において、偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度θh、及び、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度θqは、表2に示す通りであった。
円偏光板POL-7について、上述した方法で評価を行った。
(8-i.貼り合わせ)
λ/4板QF-1の代わりにλ/4板QF-2を使用したこと以外は、実施例1の工程(1-iv.貼り合わせ)と同様にして、偏光フィルム、粘着シート、λ/2板、粘着シート及びλ/4板をこの順に備える円偏光板POL-8を得た。この円偏光板POL-8を偏光フィルム側から見た場合において、偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度θh、及び、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度θqは、表2に示す通りであった。
円偏光板POL-8について、上述した方法で評価を行った。
(9-i.λ/4板の製造)
延伸前フィルムPF-5を、横延伸機で長手方向に対して90°の角度をなす幅方向に延伸し、その後、樹脂R6からなる層を剥離して、樹脂R3からなるλ/2板QF-6を得た。この際、延伸温度及び延伸倍率は、延伸倍率2.0倍において、延伸温度134℃~144℃の範囲内で、測定波長590nmでの面内位相差Reが130nmとなるように調整した。
λ/4板QF-1の代わりにλ/4板QF-6を使用したこと以外は、実施例1の工程(1-iv.貼り合わせ)と同様にして、偏光フィルム、粘着シート、λ/2板、粘着シート及びλ/4板をこの順に備える円偏光板POL-9を得た。この円偏光板POL-9を偏光フィルム側から見た場合において、偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度θh、及び、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度θqは、表2に示す通りであった。
円偏光板POL-9について、上述した方法で評価を行った。
(10-i.貼り合わせ)
λ/4板QF-1の代わりにλ/4板QF-3を使用したこと以外は、実施例1の工程(1-iv.貼り合わせ)と同様にして、偏光フィルム、粘着シート、λ/2板、粘着シート及びλ/4板をこの順に備える円偏光板POL-10を得た。この円偏光板POL-10を偏光フィルム側から見た場合において、偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度θh、及び、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度θqは、表2に示す通りであった。
円偏光板POL-10について、上述した方法で評価を行った。
(11-i.λ/4板の製造)
延伸前フィルムPF-8を、当該延伸前フィルムの長手方向に自由一軸延伸し、その後、樹脂R6からなる層を剥離して、樹脂R7からなるλ/4板QF-7を製造した。この際、延伸温度及び延伸倍率は、延伸倍率1.6倍において、延伸温度130℃~140℃の範囲内で、測定波長590nmでの面内位相差Reが128nmとなるように調整した。
λ/4板QF-1の代わりにλ/4板QF-7を使用したこと以外は、実施例1の工程(1-iv.貼り合わせ)と同様にして、偏光フィルム、粘着シート、λ/2板、粘着シート及びλ/4板をこの順に備える円偏光板POL-11を得た。この円偏光板POL-11を偏光フィルム側から見た場合において、偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度θh、及び、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度θqは、表2に示す通りであった。
円偏光板POL-11について、上述した方法で評価を行った。
(12-i.4/λ板)
厚さ25μm、幅500mm、長さ500mの光学的に等方性のロール状シクロオレフィン樹脂フィルムを、透明支持体として用意した。
ステロイド変性ポリアミック酸の希釈液を、透明支持体上に連続塗布し、厚さ0.5μmの垂直配向膜を形成した。次に、透明支持体の長手方向に対して45゜の角度をなす方向に、連続的に垂直配向膜のラビング処理を実施した。
λ/4板QF-1の代わりにλ/4板QF-8を使用したこと以外は、実施例1の工程(1-iv.貼り合わせ)と同様にして、偏光フィルム、粘着シート、λ/2板、粘着シート及びλ/4板をこの順に備える円偏光板POL-12を得た。この円偏光板POL-12を偏光フィルム側から見た場合において、偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度θh、及び、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度θqは、表1に示す通りであった。
円偏光板POL-12について、上述した方法で評価を行った。
(13-i.λ/4板の製造)
延伸前フィルムPF-9を、当該延伸前フィルムの長手方向に自由一軸延伸し、その後、樹脂R6からなる層を剥離して、樹脂R5からなるλ/4板QF-9を製造した。この際、延伸温度及び延伸倍率は、延伸倍率1.6倍において、延伸温度145℃~155℃の範囲内で、測定波長590nmでの面内位相差Reが134nmとなるように調整した。
λ/4板QF-1の代わりにλ/4板QF-9を使用したこと以外は、実施例1の工程(1-iv.貼り合わせ)と同様にして、偏光フィルム、粘着シート、λ/2板、粘着シート及びλ/4板をこの順に備える円偏光板POL-13を得た。この円偏光板POL-13を偏光フィルム側から見た場合において、偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度θh、及び、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度θqは、表2に示す通りであった。
円偏光板POL-13について、上述した方法で評価を行った。
(14-i.貼り合わせ)
偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度θh、及び、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度θqを下記表2に示すように変更したこと以外は、実施例1の工程(1-iv.貼り合わせ)と同様にして、偏光フィルム、粘着シート、λ/2板、粘着シート及びλ/4板をこの順に備える円偏光板POL-14を得た。この円偏光θh、θqは、表2に示す通りであった。
円偏光板POL-14について、上述した方法で評価を行った。
(15-i.貼り合わせ)
偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度θh、及び、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度θqを下記表2に示すように変更したこと以外は、実施例1の工程(1-iv.貼り合わせ)と同様にして、偏光フィルム、粘着シート、λ/2板、粘着シート及びλ/4板をこの順に備える円偏光板POL-15を得た。この円偏光θh、θqは、表2に示す通りであった。
円偏光板POL-15について、上述した方法で評価を行った。
上述した実施例及び比較例の構成を下記の表2に示し、結果を表3に示す。下記の表において、略称の意味は、以下の通りである。
COP:環状オレフィン樹脂
PPE:ポリ(2,6-ジメチル-1,4-フェニレンオキサイド)
SPS:シンジオタクチックポリスチレン
SMA:スチレン-マレイン酸共重合体樹脂
Discotic LC:ディスコティック液晶性分子
Re:測定波長590nmでの面内位相差
Rth:測定波長590nmでの厚み方向の位相差
θh:偏光フィルム側から円偏光板を見た場合に、偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度
θq:偏光フィルム側から円偏光板を見た場合に、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度
NZh:λ/2板のNZ係数
NZq:λ/4板のNZ係数
110 偏光フィルム
111 偏光フィルムの吸収軸
112 偏光フィルムの吸収軸をλ/2板の表面に投影した軸
113 偏光フィルムの吸収軸をλ/4板の表面に投影した軸
120 λ/2板
121 λ/2板の遅相軸
130 λ/4板
131 λ/4板の遅相軸
140 広帯域λ/4板
Claims (10)
- 偏光フィルムと、
前記偏光フィルムの吸収軸に対して15°±5°の角度をなす方向に遅相軸を有するλ/2板と、
前記偏光フィルムの吸収軸に対して75°±5°の角度をなす方向に遅相軸を有するλ/4板と、をこの順に備え、
前記λ/2板の波長分散と前記λ/4板の波長分散とが略一致しており、
面内の遅相軸方向の屈折率をnx、面内の進相軸方向の屈折率をny、厚み方向の屈折率をnzで表した場合、前記λ/2板及び前記λ/4板の一方の屈折率がnz≧nx>nyであり、前記λ/2板及び前記λ/4板の他方の屈折率がnx>ny≧nzである、円偏光板。 - 波長400nmにおける前記λ/2板の面内位相差をReh(400)、
波長550nmにおける前記λ/2板の面内位相差をReh(550)、
波長400nmにおける前記λ/4板の面内位相差をReq(400)、及び
波長550nmにおける前記λ/4板の面内位相差をReq(550)としたとき、
下記式(A):
|Reh(400)/Reh(550)-Req(400)/Req(550)|<1.00
を満たす、請求項1記載の円偏光板。 - 前記λ/2板及び前記λ/4板の一方のNZ係数が、-0.5~0.0であり、
前記λ/2板及び前記λ/4板の他方のNZ係数が、1.0~1.3である、請求項1又は2記載の円偏光板。 - 前記λ/2板及び前記λ/4板の片方が、ポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む樹脂からなる層を備える、請求項1~3のいずれか一項に記載の円偏光板。
- 前記ポリフェニレンエーテルと前記ポリスチレン系重合体との重量比が、30/70より大きく、40/60より小さい、請求項4記載の円偏光板。
- 前記λ/2板及び前記λ/4板の片方が、環状オレフィン重合体を含む樹脂からなる層を備える、請求項1~5のいずれか一項に記載の円偏光板。
- 前記円偏光板が、長尺のフィルムであって、
前記偏光フィルムの吸収軸が、前記円偏光板の長手方向にある、請求項1~6のいずれか一項に記載の円偏光板。 - 基準方向に対して75°±5°の角度をなす方向に遅相軸を有するλ/2板と、
前記基準方向に対して15°±5°の角度をなす方向に遅相軸を有するλ/4板とを備え、
前記λ/2板の波長分散と前記λ/4板の波長分散とが略一致しており、
面内の遅相軸方向の屈折率をnx、面内の進相軸方向の屈折率をny、厚み方向の屈折率をnzで表した場合、前記λ/2板及び前記λ/4板の一方の屈折率がnz≧nx>nyであり、前記λ/2板及び前記λ/4板の他方の屈折率がnx>ny≧nzである、広帯域λ/4板。 - 前記広帯域λ/4板が、長尺のフィルムであって、
前記λ/2板及び前記λ/4板が、斜め延伸を含む製造方法により製造されたものである、請求項8記載の広帯域λ/4板。 - 請求項1~6のいずれか一項に記載の円偏光板、又は、請求項8若しくは9記載の広帯域λ/4板を備える、有機エレクトロルミネッセンス表示装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/511,641 US10254459B2 (en) | 2014-09-17 | 2015-09-10 | Circular polarizing plate, wideband lambda/4 plate, and organic electroluminescence display device |
CN201580049581.0A CN107076904B (zh) | 2014-09-17 | 2015-09-10 | 圆偏振片、宽频带λ/4波片、以及有机电致发光显示装置 |
JP2016548862A JP6805827B2 (ja) | 2014-09-17 | 2015-09-10 | 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置 |
KR1020177007106A KR102571446B1 (ko) | 2014-09-17 | 2015-09-10 | 원편광판, 광대역 λ/4 판, 및, 유기 일렉트로루미네선스 표시 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-189301 | 2014-09-17 | ||
JP2014189301 | 2014-09-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016043124A1 true WO2016043124A1 (ja) | 2016-03-24 |
Family
ID=55533162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/075757 WO2016043124A1 (ja) | 2014-09-17 | 2015-09-10 | 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10254459B2 (ja) |
JP (3) | JP6805827B2 (ja) |
KR (1) | KR102571446B1 (ja) |
CN (1) | CN107076904B (ja) |
TW (1) | TWI682197B (ja) |
WO (1) | WO2016043124A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016047517A1 (ja) * | 2014-09-26 | 2017-07-13 | 日本ゼオン株式会社 | 円偏光板及びその製造方法、広帯域λ/4板、有機エレクトロルミネッセンス表示装置、並びに液晶表示装置 |
WO2017170360A1 (ja) * | 2016-03-30 | 2017-10-05 | 日本ゼオン株式会社 | 光学異方性積層体、円偏光板、及び、画像表示装置 |
WO2018159297A1 (ja) * | 2017-02-28 | 2018-09-07 | 日本ゼオン株式会社 | 光学異方性積層体、円偏光板、及び画像表示装置 |
JPWO2017188160A1 (ja) * | 2016-04-27 | 2019-02-28 | 日本ゼオン株式会社 | フィルムセンサ部材及びその製造方法、円偏光板及びその製造方法、並びに、画像表示装置 |
WO2019124456A1 (ja) * | 2017-12-20 | 2019-06-27 | 日本ゼオン株式会社 | 円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置及び液晶表示装置 |
KR20190083338A (ko) * | 2016-11-30 | 2019-07-11 | 니폰 제온 가부시키가이샤 | 광학 적층체, 원 편광판, 터치 패널 및 화상 표시 장치 |
WO2019188205A1 (ja) * | 2018-03-30 | 2019-10-03 | 日本ゼオン株式会社 | 光学異方性積層体、偏光板、及び画像表示装置 |
WO2020137409A1 (ja) * | 2018-12-27 | 2020-07-02 | 日本ゼオン株式会社 | 光学異方性積層体及びその製造方法、円偏光板、並びに画像表示装置 |
JP2021501366A (ja) * | 2018-06-05 | 2021-01-14 | エルジー・ケム・リミテッド | 積層体およびこれを含む液晶表示装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6554536B2 (ja) * | 2015-03-31 | 2019-07-31 | 富士フイルム株式会社 | 円偏光板、および、屈曲可能な表示装置 |
JP6640847B2 (ja) * | 2015-05-29 | 2020-02-05 | 富士フイルム株式会社 | 有機エレクトロルミネッセンス表示装置 |
WO2018079745A1 (ja) * | 2016-10-31 | 2018-05-03 | 日本ゼオン株式会社 | 広帯域波長フィルム及びその製造方法並びに円偏光フィルムの製造方法 |
KR20180063418A (ko) * | 2016-12-01 | 2018-06-12 | 삼성디스플레이 주식회사 | 표시 장치 및 표시 장치 제조 방법 |
US11442211B2 (en) | 2017-09-22 | 2022-09-13 | Zeon Corporation | Viewer for determination of authenticity |
JP2019158953A (ja) * | 2018-03-08 | 2019-09-19 | シャープ株式会社 | 円偏光板、表示装置、及び、積層型位相差板 |
JP7413997B2 (ja) * | 2018-04-27 | 2024-01-16 | 日本ゼオン株式会社 | 広帯域波長フィルムの製造方法、並びに円偏光フィルムの製造方法 |
KR102435573B1 (ko) * | 2018-06-20 | 2022-08-23 | 삼성에스디아이 주식회사 | 광학필름, 이를 포함하는 편광판 및 이를 포함하는 디스플레이 장치 |
CN112433286A (zh) * | 2019-08-26 | 2021-03-02 | 陕西坤同半导体科技有限公司 | 一种偏光片、显示装置 |
JP7181260B2 (ja) * | 2019-09-17 | 2022-11-30 | 住友化学株式会社 | 円偏光板 |
CN111308603A (zh) * | 2020-04-09 | 2020-06-19 | 四川龙华光电薄膜股份有限公司 | 一种斜向光轴相位差膜 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001249222A (ja) * | 2000-03-02 | 2001-09-14 | Teijin Ltd | 反射防止フィルム及びそれを用いてなる発光表示素子 |
JP2004184575A (ja) * | 2002-12-02 | 2004-07-02 | Sumitomo Chem Co Ltd | 半透過半反射性偏光フィルム並びにそれを用いた偏光光源装置及び液晶表示装置 |
JP2010256900A (ja) * | 2009-01-27 | 2010-11-11 | Sharp Corp | 液晶表示装置 |
JP2011248045A (ja) * | 2010-05-26 | 2011-12-08 | Sumitomo Chemical Co Ltd | 楕円偏光板セット及びこれを備えた液晶パネル並びに液晶表示装置 |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62187708A (ja) | 1985-11-11 | 1987-08-17 | Idemitsu Kosan Co Ltd | スチレン系重合体の製造法 |
JPH0784503B2 (ja) | 1987-12-04 | 1995-09-13 | 出光興産株式会社 | 新規スチレン系重合体およびその製造方法 |
JP2597375B2 (ja) | 1987-12-29 | 1997-04-02 | 出光興産株式会社 | ビニルシクロヘキサン系重合体およびその製造方法 |
US5834565A (en) | 1996-11-12 | 1998-11-10 | General Electric Company | Curable polyphenylene ether-thermosetting resin composition and process |
US6400433B1 (en) | 1998-11-06 | 2002-06-04 | Fuji Photo Film Co., Ltd. | Circularly polarizing plate comprising linearly polarizing membrane and quarter wave plate |
JP2000206331A (ja) * | 1999-01-14 | 2000-07-28 | Fuji Photo Film Co Ltd | 位相差板および楕円偏光板 |
US6853423B2 (en) | 1998-11-06 | 2005-02-08 | Fuji Photo Film Co., Ltd. | Quarter wave plate comprising two optically anisotropic layers |
JP3734211B2 (ja) | 1999-01-27 | 2006-01-11 | 富士写真フイルム株式会社 | 位相差板、円偏光板および反射型液晶表示装置 |
JP2001004837A (ja) | 1999-06-22 | 2001-01-12 | Fuji Photo Film Co Ltd | 位相差板および円偏光板 |
JP2002151251A (ja) * | 2000-11-09 | 2002-05-24 | Sharp Corp | 発光素子 |
JP2003014931A (ja) | 2001-06-29 | 2003-01-15 | Fuji Photo Film Co Ltd | 広帯域1/4波長板及び円偏光板 |
JP3916950B2 (ja) | 2001-12-25 | 2007-05-23 | 富士フイルム株式会社 | 光学積層体、及びその製造方法、並びに円偏光板 |
EP1508823B1 (en) | 2002-05-30 | 2010-06-23 | Zeon Corporation | Optical laminate |
JP2004020701A (ja) * | 2002-06-13 | 2004-01-22 | Nippon Zeon Co Ltd | 光学積層体 |
US6922221B2 (en) * | 2002-10-17 | 2005-07-26 | Research Foundation Of The University Of Central Florida | Broadband quarter-wave film device including in combination a chromatic half-wave film and a TN-LC polymeric film |
KR20050060847A (ko) * | 2003-12-17 | 2005-06-22 | 삼성전자주식회사 | 액정 표시 장치와, 이의 광학 필름 어셈블리 |
JP4449533B2 (ja) | 2004-03-30 | 2010-04-14 | 日本ゼオン株式会社 | 広帯域1/4波長板の長尺巻状体、広帯域円偏光素子の長尺巻状体 |
JP2006178389A (ja) * | 2004-07-05 | 2006-07-06 | Nitto Denko Corp | 楕円偏光板の製造方法および楕円偏光板を用いた画像表示装置 |
US7423714B2 (en) * | 2004-12-02 | 2008-09-09 | Nitto Denko Corporation | Polarizing plate provided with optical compensation layers and image display apparatus using the same |
CN100394226C (zh) * | 2004-12-14 | 2008-06-11 | 日东电工株式会社 | 椭圆偏光板、其制法和使用该椭圆偏光板的图像显示装置 |
JP2006201746A (ja) * | 2004-12-22 | 2006-08-03 | Nitto Denko Corp | 楕円偏光板およびそれを用いた画像表示装置 |
CN100489575C (zh) * | 2004-12-22 | 2009-05-20 | 日东电工株式会社 | 椭圆偏光板及使用该椭圆偏光板的图像显示装置 |
KR100840166B1 (ko) * | 2005-02-25 | 2008-06-23 | 닛토덴코 가부시키가이샤 | 타원 편광판의 제조방법 및 타원 편광판을 사용한화상표시장치 |
JP3974631B2 (ja) | 2005-03-02 | 2007-09-12 | 日東電工株式会社 | 光学フィルムおよびその製造方法、ならびに該光学フィルムを用いた画像表示装置 |
JP2006285208A (ja) * | 2005-03-07 | 2006-10-19 | Nitto Denko Corp | 液晶パネル、液晶テレビおよび液晶表示装置 |
KR20100029260A (ko) * | 2005-05-11 | 2010-03-16 | 닛토덴코 가부시키가이샤 | 광학 보상층 부착 편광판 및 그것을 사용한 화상 표시 장치 |
US20090122236A1 (en) * | 2005-10-21 | 2009-05-14 | Nitto Denko Corporation | Polarizing plate with an optical compensation layer and image display apparatus using the same |
US7548290B1 (en) * | 2005-11-28 | 2009-06-16 | Nitto Denko Corporation | Polarizing plate with optical compensation layer and image display apparatus using the same |
JP2007187741A (ja) * | 2006-01-11 | 2007-07-26 | Dainippon Printing Co Ltd | 位相差板 |
JP4998941B2 (ja) * | 2006-11-20 | 2012-08-15 | 日東電工株式会社 | 積層光学フィルム、積層光学フィルムを用いた液晶パネルおよび液晶表示装置 |
JP5375043B2 (ja) * | 2007-11-30 | 2013-12-25 | Jsr株式会社 | 積層光学フィルムの製造方法、積層光学フィルムおよびその用途 |
JP5273775B2 (ja) * | 2008-04-09 | 2013-08-28 | 日東電工株式会社 | 積層光学フィルム、積層光学フィルムを用いた液晶パネルおよび液晶表示装置 |
JP2010002808A (ja) * | 2008-06-23 | 2010-01-07 | Sumitomo Chemical Co Ltd | 楕円偏光板およびその製造方法、ならびに楕円偏光板チップ、液晶表示装置 |
CN102422206A (zh) * | 2009-03-09 | 2012-04-18 | 奇像素公司 | 寻常黑透反式液晶显示器 |
RU2012107284A (ru) * | 2009-07-30 | 2013-09-10 | Шарп Кабусики Кайся | Жидкокристаллическое дисплейное устройство |
JP5923864B2 (ja) | 2011-04-20 | 2016-05-25 | 日本ゼオン株式会社 | 有機el表示装置 |
JP5891870B2 (ja) * | 2012-03-15 | 2016-03-23 | 日本ゼオン株式会社 | 光学フィルム、及び光学フィルムの製造方法 |
CN104170525B (zh) * | 2012-03-15 | 2016-09-21 | 富士胶片株式会社 | 具有光学层叠体的有机el显示元件 |
CN104169757B (zh) * | 2012-03-15 | 2017-08-18 | 日本瑞翁株式会社 | 相位差膜叠层体、相位差膜叠层体的制造方法以及相位差膜的制造方法 |
JP5528606B2 (ja) * | 2012-06-21 | 2014-06-25 | 日東電工株式会社 | 偏光板および有機elパネル |
JP6216323B2 (ja) * | 2012-10-04 | 2017-10-18 | 富士フイルム株式会社 | 円偏光板およびその製造方法、光学積層体 |
WO2014196637A1 (ja) * | 2013-06-06 | 2014-12-11 | 富士フイルム株式会社 | 光学シート部材及びそれを用いた画像表示装置 |
-
2015
- 2015-09-10 US US15/511,641 patent/US10254459B2/en active Active
- 2015-09-10 WO PCT/JP2015/075757 patent/WO2016043124A1/ja active Application Filing
- 2015-09-10 CN CN201580049581.0A patent/CN107076904B/zh active Active
- 2015-09-10 KR KR1020177007106A patent/KR102571446B1/ko active IP Right Grant
- 2015-09-10 JP JP2016548862A patent/JP6805827B2/ja active Active
- 2015-09-11 TW TW104130048A patent/TWI682197B/zh active
-
2020
- 2020-09-10 JP JP2020152325A patent/JP6885500B2/ja active Active
- 2020-12-02 JP JP2020200053A patent/JP7067600B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001249222A (ja) * | 2000-03-02 | 2001-09-14 | Teijin Ltd | 反射防止フィルム及びそれを用いてなる発光表示素子 |
JP2004184575A (ja) * | 2002-12-02 | 2004-07-02 | Sumitomo Chem Co Ltd | 半透過半反射性偏光フィルム並びにそれを用いた偏光光源装置及び液晶表示装置 |
JP2010256900A (ja) * | 2009-01-27 | 2010-11-11 | Sharp Corp | 液晶表示装置 |
JP2011248045A (ja) * | 2010-05-26 | 2011-12-08 | Sumitomo Chemical Co Ltd | 楕円偏光板セット及びこれを備えた液晶パネル並びに液晶表示装置 |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016047517A1 (ja) * | 2014-09-26 | 2017-07-13 | 日本ゼオン株式会社 | 円偏光板及びその製造方法、広帯域λ/4板、有機エレクトロルミネッセンス表示装置、並びに液晶表示装置 |
WO2017170360A1 (ja) * | 2016-03-30 | 2017-10-05 | 日本ゼオン株式会社 | 光学異方性積層体、円偏光板、及び、画像表示装置 |
CN108780186A (zh) * | 2016-03-30 | 2018-11-09 | 日本瑞翁株式会社 | 光学各向异性层叠体、圆偏振片以及图像显示装置 |
JPWO2017170360A1 (ja) * | 2016-03-30 | 2019-02-07 | 日本ゼオン株式会社 | 光学異方性積層体、円偏光板、及び、画像表示装置 |
JPWO2017188160A1 (ja) * | 2016-04-27 | 2019-02-28 | 日本ゼオン株式会社 | フィルムセンサ部材及びその製造方法、円偏光板及びその製造方法、並びに、画像表示装置 |
KR102436821B1 (ko) | 2016-11-30 | 2022-08-26 | 니폰 제온 가부시키가이샤 | 광학 적층체, 원 편광판, 터치 패널 및 화상 표시 장치 |
KR20190083338A (ko) * | 2016-11-30 | 2019-07-11 | 니폰 제온 가부시키가이샤 | 광학 적층체, 원 편광판, 터치 패널 및 화상 표시 장치 |
TWI740005B (zh) * | 2017-02-28 | 2021-09-21 | 日商日本瑞翁股份有限公司 | 液晶顯示裝置 |
WO2018159297A1 (ja) * | 2017-02-28 | 2018-09-07 | 日本ゼオン株式会社 | 光学異方性積層体、円偏光板、及び画像表示装置 |
US11391876B2 (en) | 2017-02-28 | 2022-07-19 | Zeon Corporation | Optically anisotropic laminate, circularly polarizing plate and image display device |
JPWO2018159297A1 (ja) * | 2017-02-28 | 2019-12-19 | 日本ゼオン株式会社 | 光学異方性積層体、円偏光板、及び画像表示装置 |
CN111448496B (zh) * | 2017-12-20 | 2022-05-13 | 日本瑞翁株式会社 | 圆偏振片、长条状的宽频带λ/4波片、有机电致发光显示装置及液晶显示装置 |
CN111448496A (zh) * | 2017-12-20 | 2020-07-24 | 日本瑞翁株式会社 | 圆偏振片、长条状的宽频带λ/4波片、有机电致发光显示装置及液晶显示装置 |
JP7259762B2 (ja) | 2017-12-20 | 2023-04-18 | 日本ゼオン株式会社 | 円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置及び液晶表示装置 |
JPWO2019124456A1 (ja) * | 2017-12-20 | 2021-01-14 | 日本ゼオン株式会社 | 円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置及び液晶表示装置 |
WO2019124456A1 (ja) * | 2017-12-20 | 2019-06-27 | 日本ゼオン株式会社 | 円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置及び液晶表示装置 |
JPWO2019188205A1 (ja) * | 2018-03-30 | 2021-04-15 | 日本ゼオン株式会社 | 光学異方性積層体、偏光板、及び画像表示装置 |
WO2019188205A1 (ja) * | 2018-03-30 | 2019-10-03 | 日本ゼオン株式会社 | 光学異方性積層体、偏光板、及び画像表示装置 |
CN111868582A (zh) * | 2018-03-30 | 2020-10-30 | 日本瑞翁株式会社 | 光学各向异性层叠体、偏振片及图像显示装置 |
CN111868582B (zh) * | 2018-03-30 | 2022-09-09 | 日本瑞翁株式会社 | 光学各向异性层叠体、偏振片及图像显示装置 |
JP7519899B2 (ja) | 2018-03-30 | 2024-07-22 | 日本ゼオン株式会社 | 画像表示装置 |
US12114523B2 (en) | 2018-03-30 | 2024-10-08 | Zeon Corporation | Optical anisotropic layered body, polarizing plate, and image display device |
JP7123468B2 (ja) | 2018-06-05 | 2022-08-23 | エルジー・ケム・リミテッド | 積層体およびこれを含む液晶表示装置 |
JP2021501366A (ja) * | 2018-06-05 | 2021-01-14 | エルジー・ケム・リミテッド | 積層体およびこれを含む液晶表示装置 |
JPWO2020137409A1 (ja) * | 2018-12-27 | 2021-11-11 | 日本ゼオン株式会社 | 光学異方性積層体及びその製造方法、円偏光板、並びに画像表示装置 |
WO2020137409A1 (ja) * | 2018-12-27 | 2020-07-02 | 日本ゼオン株式会社 | 光学異方性積層体及びその製造方法、円偏光板、並びに画像表示装置 |
JP7452436B2 (ja) | 2018-12-27 | 2024-03-19 | 日本ゼオン株式会社 | 光学異方性積層体及びその製造方法、円偏光板、並びに画像表示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107076904B (zh) | 2019-11-12 |
JP7067600B2 (ja) | 2022-05-16 |
CN107076904A (zh) | 2017-08-18 |
TWI682197B (zh) | 2020-01-11 |
JP6805827B2 (ja) | 2020-12-23 |
JP2021051316A (ja) | 2021-04-01 |
JPWO2016043124A1 (ja) | 2017-06-29 |
JP2021005098A (ja) | 2021-01-14 |
KR102571446B1 (ko) | 2023-08-25 |
US20170261668A1 (en) | 2017-09-14 |
KR20170055968A (ko) | 2017-05-22 |
JP6885500B2 (ja) | 2021-06-16 |
TW201614285A (en) | 2016-04-16 |
US10254459B2 (en) | 2019-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6885500B2 (ja) | 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置 | |
JP6702193B2 (ja) | 長尺の円偏光板、長尺の広帯域λ/4板、並びに、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置、及び、液晶表示装置の、製造方法 | |
JP6168045B2 (ja) | 位相差フィルム積層体、位相差フィルム積層体の製造方法、並びに位相差フィルムの製造方法 | |
TW200428042A (en) | Optical element, polarization element, and illuminating device and liquid crystal display unit | |
JP2018060227A (ja) | 有機el表示装置 | |
JP7519899B2 (ja) | 画像表示装置 | |
TWI681218B (zh) | 圓偏光板及其製造方法、廣帶域λ/4板、有機電激發光顯示裝置及液晶顯示裝置 | |
US11391876B2 (en) | Optically anisotropic laminate, circularly polarizing plate and image display device | |
JP7056152B2 (ja) | 液晶表示装置 | |
JPWO2010074166A1 (ja) | 光学フィルム、製造方法及び輝度向上フィルム | |
WO2017026459A1 (ja) | 液晶表示装置 | |
KR20150079630A (ko) | 적층체 및 그의 제조 방법, 위상차 필름, 편광판, 및 ips 액정 패널 | |
JP2004004474A (ja) | 光学補償偏光板及び表示装置 | |
JPWO2019124456A1 (ja) | 円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置及び液晶表示装置 | |
JP2014186273A (ja) | 位相差フィルム積層体、位相差フィルム積層体の製造方法、位相差フィルム、製造方法、及び用途 | |
JP7405013B2 (ja) | 長尺の円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置、及び、液晶表示装置 | |
JP6485348B2 (ja) | 光学積層体、偏光板複合体、液晶表示装置、及び製造方法 | |
JP6825654B2 (ja) | 円偏光板の製造方法及び光学積層体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15842441 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016548862 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177007106 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15511641 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15842441 Country of ref document: EP Kind code of ref document: A1 |