WO2018159297A1 - 光学異方性積層体、円偏光板、及び画像表示装置 - Google Patents

光学異方性積層体、円偏光板、及び画像表示装置 Download PDF

Info

Publication number
WO2018159297A1
WO2018159297A1 PCT/JP2018/005121 JP2018005121W WO2018159297A1 WO 2018159297 A1 WO2018159297 A1 WO 2018159297A1 JP 2018005121 W JP2018005121 W JP 2018005121W WO 2018159297 A1 WO2018159297 A1 WO 2018159297A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically anisotropic
anisotropic layer
layer
plate
polarizer
Prior art date
Application number
PCT/JP2018/005121
Other languages
English (en)
French (fr)
Inventor
和弘 大里
将 相松
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019502863A priority Critical patent/JPWO2018159297A1/ja
Priority to CN201880009732.3A priority patent/CN110249244B/zh
Priority to KR1020197024300A priority patent/KR20190124714A/ko
Priority to US16/482,787 priority patent/US11391876B2/en
Publication of WO2018159297A1 publication Critical patent/WO2018159297A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/05Bonding or intermediate layer characterised by chemical composition, e.g. sealant or spacer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133635Multifunctional compensators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/06Two plates on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/07All plates on one side of the LC cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission

Definitions

  • the present invention relates to an optically anisotropic laminate, and a circularly polarizing plate and an image display device including the same.
  • an optically anisotropic film is usually provided as an optical film.
  • an optical film is usually provided as an optical film.
  • JP 2014-071209 A JP 2014-123099 A JP 2011-138144 A Japanese Patent Laying-Open No. 2015-040904 Japanese Patent Laying-Open No. 2015-079230 (corresponding publication: US Patent Application Publication No. 2015/062505) JP 2007-328310 A (corresponding publication: US Patent Application Publication No. 2009/296027) JP 2005-326818 A (corresponding publication: US Patent Application Publication No. 2005/231660)
  • a circularly polarizing plate may be used in order to improve the visibility when viewing an image through polarized sunglasses.
  • the circularly polarizing plate can be composed of a linear polarizer and a quarter wave plate.
  • the quarter-wave plate for example, a stretched polymer compound film obtained by stretching a polymer compound film can be used.
  • the quarter-wave plate functions as a quarter-wave plate at all wavelengths.
  • a conventional stretched polymer compound film generally exhibits forward wavelength dispersibility that in-plane retardation becomes smaller as the wavelength becomes longer, so that it may not function as a quarter-wave plate depending on the wavelength.
  • the linearly polarized light transmitted through the circularly polarizing plate is not converted into an ideal circularly polarized light depending on the wavelength of the linearly polarized light, but is converted into an elliptically polarized light. Is done.
  • the color of the image changes when the display surface is rotated in the same plane as the display surface while observing the display surface of the image display device provided with the circularly polarizing plate from the front direction of the display surface through polarized sunglasses. There was a case.
  • the inventor has laminated a 1 ⁇ 2 wavelength plate exhibiting reverse wavelength dispersion that the in-plane retardation is increased as the wavelength is longer, and a 1 ⁇ 4 wavelength plate exhibiting reverse wavelength dispersion to obtain a wider wavelength.
  • a wide-band quarter-wave plate that can function as a quarter-wave plate in a range can be obtained, and a circularly polarizing plate equipped with this wide-band quarter-wave plate can greatly reduce changes in the color of an image. I found. However, even when a circularly polarizing plate having such a broadband quarter-wave plate is used, if the display surface is rotated in the same plane as the display surface while observing from the tilt direction of the display surface of the image display device, an image is obtained. There was a case where the color of the color changed.
  • the present invention has been made in view of the above-described problems, and changes in color that occur when the display surface is rotated while observing the image display device through the polarized sunglasses from the front direction or the tilt direction of the display surface. It is an object to provide an optically anisotropic laminate capable of reducing the above; and a circularly polarizing plate and an image display device provided with the optically anisotropic laminate.
  • An optically anisotropic laminate including a second optically anisotropic layer having a coefficient; and a circularly polarizing plate and an image display device including the optically anisotropic laminate find that the above-described problem is achieved. It was. That is, the present invention is as follows.
  • the first optically anisotropic layer satisfies the following formula (1), formula (2), formula (3), and formula (4)
  • the second optically anisotropic layer is an optically anisotropic laminate satisfying the following formula (5), formula (6), formula (7), and formula (8).
  • Re1 (450), Re1 (550), Re1 (590), and Re1 (650) represent the in-plane retardation Re of the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, 590 nm, and 650 nm, respectively.
  • NZ1 represents the NZ coefficient of the first optically anisotropic layer at a wavelength of 590 nm
  • Re2 (450), Re2 (550), Re2 (590), and Re2 (650) represent in-plane retardation Re of the second optical anisotropic layer at wavelengths of 450 nm, 550 nm, 590 nm, and 650 nm, respectively.
  • NZ2 represents the NZ coefficient of the second optical anisotropic layer at a wavelength of 590 nm.
  • the angle formed by the direction showing the maximum refractive index nx1 in the plane of the first optical anisotropic layer and the direction showing the maximum refractive index nx2 in the plane of the second optical anisotropic layer is 60
  • an optically anisotropic laminate that can reduce a change in tint that occurs when the display surface is rotated while observing the image display device from the front or tilt direction of the display surface through polarized sunglasses. And a circularly polarizing plate and an image display device including the optically anisotropic laminate.
  • FIG. 1 is a cross-sectional view schematically showing an optically anisotropic laminate according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the optically anisotropic laminate according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a circularly polarizing plate according to one embodiment of the present invention.
  • FIG. 4 is an exploded perspective view of a circularly polarizing plate according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a liquid crystal display device as an image display device according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing an organic EL display device as an image display device according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing an optically anisotropic laminate according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the optically anisotropic laminate according to an embodiment of the present
  • the “long” film means a film having a length of 5 times or more, preferably 10 times or more, and specifically a roll.
  • the upper limit of the length of the long film is not particularly limited, and can be, for example, 100,000 times or less with respect to the width.
  • nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the layer and giving a maximum refractive index (slow axis direction), and ny represents the in-plane direction of the layer.
  • nz represents the refractive index in the thickness direction of the layer
  • d represents the thickness of the layer.
  • the measurement wavelength is 590 nm unless otherwise specified.
  • the slow axis of a certain layer represents the slow axis in the plane of the layer unless otherwise specified.
  • the front direction of a surface means the normal direction of the surface, and specifically refers to the direction of the polar angle 0 ° and the azimuth angle 0 ° of the surface.
  • the inclination direction of a surface means a direction that is neither parallel nor perpendicular to the surface, and specifically, a range in which the polar angle of the surface is greater than 0 ° and less than 90 °. Pointing in the direction.
  • the directions of the elements “parallel”, “vertical”, and “orthogonal” include errors within a range that does not impair the effects of the present invention, for example, ⁇ 5 °, unless otherwise specified. You may go out.
  • the longitudinal direction of the long film is usually parallel to the film flow direction in the production line.
  • circularly polarizing plate “retardation plate”, “ ⁇ / 2 plate” and “ ⁇ / 4 plate” are not limited to rigid members unless otherwise specified, for example, a resin film. The member which has flexibility like this is also included.
  • angles formed by the optical axes (polarization absorption axis, polarization transmission axis, slow axis, etc.) of each layer in a member having a plurality of layers are as viewed from the thickness direction unless otherwise noted. Represents the angle.
  • (meth) acrylate is a term encompassing “acrylate”, “methacrylate” and mixtures thereof, and “(meth) acryl” is “acryl”, “methacryl” and It is a term encompassing these combinations.
  • a polymer having a positive intrinsic birefringence value and “a resin having a positive intrinsic birefringence value” mean that “the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular thereto. “Polymer” and “resin in which the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular to the polymer”, respectively.
  • a polymer having a negative intrinsic birefringence value and “a resin having a negative intrinsic birefringence value” are “a polymer in which the refractive index in the stretching direction is smaller than the refractive index in the direction perpendicular thereto” And “resin in which the refractive index in the stretching direction is smaller than the refractive index in the direction perpendicular thereto”.
  • the intrinsic birefringence value can be calculated from the dielectric constant distribution.
  • the adhesive is not only a narrowly defined adhesive (an adhesive having a shear storage modulus of 1 MPa to 500 MPa at 23 ° C. after irradiation with energy rays or after heat treatment), A pressure-sensitive adhesive having a shear storage modulus at 23 ° C. of less than 1 MPa is also included.
  • the optically anisotropic laminate of the present invention includes a first optically anisotropic layer and a second optically anisotropic layer.
  • the first optically anisotropic layer satisfies the following formula (1), formula (2), formula (3), and formula (4).
  • the second optical anisotropic layer 120 satisfies the following formula (5), formula (6), formula (7), and formula (8).
  • FIG. 1 is a cross-sectional view schematically showing an optically anisotropic laminate 100 according to an embodiment of the present invention.
  • the optically anisotropic laminate 100 includes a first optically anisotropic layer 110 and a second optically anisotropic layer 120.
  • the first optical anisotropic layer 110 satisfies the following formula (1), formula (2), formula (3), and formula (4). 220 nm ⁇ Re1 (590) ⁇ 330 nm (1) Re1 (450) / Re1 (550) ⁇ 1.0 (2) Re1 (650) / Re1 (550) ⁇ 1.0 (3) 0.95 ⁇ NZ1 ⁇ 2.00 (4)
  • Re1 (450), Re1 (550), Re1 (590), and Re1 (650) are the in-plane retardations Re of the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, 590 nm, and 650 nm, respectively.
  • NZ1 represents the NZ coefficient of the first optically anisotropic layer at a wavelength of 590 nm.
  • the second optical anisotropic layer 120 satisfies the following formula (5), formula (6), formula (7), and formula (8).
  • Re2 (450), Re2 (550), Re2 (590), and Re2 (650) represent the in-plane retardation Re of the second optical anisotropic layer at wavelengths of 450 nm, 550 nm, 590 nm, and 650 nm, respectively.
  • NZ2 represents the NZ coefficient of the first optically anisotropic layer at a wavelength of 590 nm.
  • the optically anisotropic laminate includes a first optically anisotropic layer satisfying the formulas (1) to (4) and a second optically anisotropic layer satisfying the formulas (5) to (8). Reduces the change in color of the display surface that occurs when the display surface is rotated while observing the image display device including the optically anisotropic laminate through the polarized sunglasses from the front direction or the tilt direction of the display surface. can do.
  • a circularly polarizing plate obtained by combining the optically anisotropic laminate with a polarizer is usually provided in an organic EL display device, so that the display surface of the organic EL display device usually has a front direction and an inclination. Reflection of external light in the direction can be suppressed.
  • Re1 (590) is preferably 258 nm or more, more preferably 268 nm or more, particularly preferably 273 nm or more, preferably 288 nm or less, more preferably 283 nm or less.
  • Re1 (590) is in such a range, the change in color on the display surface can be further reduced.
  • the in-plane retardation ratio Re1 (450) / Re1 (550) is preferably 0.80 or more, preferably 0.95 or less, more preferably 0.90 or less.
  • the ratio Re1 (450) / Re1 (550) is in such a range, the change in color on the display surface can be further reduced.
  • the in-plane retardation ratio Re1 (650) / Re1 (550) is preferably 1.01 or more, more preferably 1.02 or more, and preferably 1.20 or less.
  • the ratio Re1 (650) / Re1 (550) is in such a range, the change in color on the display surface can be further reduced.
  • NZ coefficient NZ1 becomes like this. Preferably it is 1.0 or more, Preferably it is 1.5 or less, More preferably, it is 1.2 or less. When NZ1 is in such a range, a change in color on the display surface can be further reduced.
  • Re2 (590) is preferably 129 nm or more, more preferably 134 nm or more, preferably 144 nm or less, and more preferably 142 nm or less. When Re2 (590) is in such a range, a change in color on the display surface can be further reduced.
  • the in-plane retardation ratio Re2 (450) / Re2 (550) is preferably 0.80 or more, preferably 0.95 or less, and more preferably 0.90 or less. .
  • the ratio Re2 (450) / Re2 (550) is in such a range, it is possible to further reduce the reduction in color change on the display surface.
  • the in-plane retardation ratio Re2 (650) / Re2 (550) is preferably 1.01 or more, more preferably 1.02 or more, and preferably 1.20 or less. .
  • the ratio Re2 (650) / Re2 (550) is in such a range, the change in color on the display surface can be further reduced.
  • the NZ coefficient NZ2 is preferably ⁇ 1.0 or more, more preferably ⁇ 0.75 or more, particularly preferably ⁇ 0.70 or more, preferably 0.0 or less. More preferably -0.25 or less, and particularly preferably -0.30 or less. When NZ2 is in such a range, a change in color on the display surface can be further reduced.
  • is preferably 0.09 or less, more preferably 0.05 or less, and more preferably 0.001. And ideally 0.000.
  • takes the above values, the reduction in the change in color on the display surface is further reduced. it can.
  • is preferably 0.04 or less, more preferably 0.02 or less, and more preferably 0.001. And ideally 0.000.
  • FIG. 2 is an exploded perspective view of the optically anisotropic laminate 100 according to one embodiment of the present invention.
  • the first optical anisotropic layer 110 has a slow axis 111 in a direction parallel to the in-plane direction
  • the second optical anisotropic layer 120 has a slow axis 121 in a direction parallel to the in-plane direction.
  • a line segment 113 indicated by a one-dot chain line is a line segment parallel to the slow axis 111 and present on the surface of the second optical anisotropic layer 120.
  • the angle ⁇ is an angle formed by the slow axis 111 and the slow axis 121.
  • the slow axis 111 is a direction indicating the maximum refractive index nx1 in the plane of the first optical anisotropic layer 110, and the slow axis 121 is the maximum refractive index nx2 in the plane of the second optical anisotropic layer 120. It is the direction which shows.
  • the angle ⁇ is preferably 60 ° ⁇ 10 ° (that is, (60 ° ⁇ 10 °) or more and (60 ° + 10 °) or less). Since the angle formed by the slow axis 111 and the slow axis 121 is within this range, linearly polarized light in a wider wavelength range can be converted into circularly polarized light by the optical anisotropic laminate 100. Therefore, the change in color on the display surface can be further reduced.
  • the angle ⁇ is more preferably 60 ° ⁇ 5 °, further preferably 60 ° ⁇ 3 °. When the angle ⁇ is within this range, linearly polarized light in a wider wavelength range can be more effectively converted into circularly polarized light by the optical anisotropic laminate 100. Therefore, the change in color on the display surface can be further reduced.
  • first optical anisotropic layer and second optical anisotropic layer examples include a resin, and among them, a thermoplastic resin is preferable.
  • the material for forming the first optical anisotropic layer and the second optical anisotropic layer is a polymer having a negative intrinsic birefringence value even if it is a resin containing a polymer having a positive intrinsic birefringence value. Or a resin containing a polymer having a positive intrinsic birefringence value and a polymer having a negative intrinsic birefringence value.
  • the polymer having a positive intrinsic birefringence value is not particularly limited.
  • polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyarylene sulfides such as polyphenylene sulfide; polyvinyl alcohol; polycarbonates; Examples thereof include arylates; cellulose ester polymers, polyethersulfones; polysulfones; polyarylsulfones; polyvinyl chloride; cyclic olefin polymers such as norbornene polymers;
  • the polymer having a negative intrinsic birefringence value is not particularly limited.
  • the optional monomer that can be copolymerized with the styrene compound include acrylonitrile, maleic anhydride, methyl methacrylate, and butadiene, and one kind selected from acrylonitrile, maleic anhydride, methyl methacrylate, and butadiene. The above is preferable.
  • the polymer may be a homopolymer or a copolymer. Moreover, the said polymer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the second optically anisotropic layer can increase the refractive index in the thickness direction
  • the second optically anisotropic layer preferably contains a resin containing a polymer having a negative intrinsic birefringence value, more preferably a polyphenylene ether and a syndiotactic structure.
  • a layer made of a resin containing a polystyrene polymer having a polyphenylene ether and a syndiotactic structure may be referred to as “blend resin p1” as appropriate.
  • the blend resin p1 can adjust the sign (positive and negative) of its intrinsic birefringence value according to the type and amount of the polymer contained in the blend resin p1. Usually, the blend resin p1 has a negative intrinsic birefringence value.
  • the wavelength dispersion of the blend resin p1 can be adjusted with a high degree of freedom by adjusting the quantitative ratio between the polyphenylene ether and the polystyrene-based polymer.
  • Polyphenylene ether is usually a polymer having a positive intrinsic birefringence value.
  • This polyphenylene ether includes a structural unit having a structure formed by polymerizing phenyl ether or a phenyl ether derivative.
  • a polymer having a structural unit having a phenylene ether skeleton in the main chain is used as polyphenylene ether.
  • the “structural unit having a phenylene ether skeleton” is appropriately referred to as a “phenylene ether unit”.
  • the benzene ring in the phenylene ether unit may have a substituent unless the effects of the present invention are significantly impaired.
  • polystyrene resin a polymer containing a phenylene ether unit represented by the following formula (I) is preferable.
  • each Q 1 independently represents a halogen atom, a lower alkyl group (for example, an alkyl group having 7 or less carbon atoms), a phenyl group, a haloalkyl group, an aminoalkyl group, a hydrocarbonoxy group, or a halo.
  • a hydrocarbon oxy group (wherein the halogen atom and the oxygen atom are separated by at least two carbon atoms).
  • Q 1 is preferably an alkyl group or a phenyl group, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • each Q 2 independently represents a hydrogen atom, a halogen atom, a lower alkyl group (for example, an alkyl group having 7 or less carbon atoms), a phenyl group, a haloalkyl group, a hydrocarbon oxy group, or a halocarbon.
  • a hydrogenoxy group (however, a group in which at least two carbon atoms are separated from the halogen atom and the oxygen atom). Among them, preferably a hydrogen atom Q 2.
  • the polyphenylene ether may be a homopolymer having one type of structural unit or a copolymer having two or more types of structural units.
  • the polymer containing the structural unit represented by the formula (I) is a homopolymer
  • preferred examples of the homopolymer include 2,6-dimethyl-1,4-phenylene ether units (“-( And a homopolymer having a structural unit represented by C 6 H 2 (CH 3 ) 2 —O) — ”.
  • the polymer containing the structural unit represented by the formula (I) is a copolymer
  • preferred examples of the copolymer include 2,6-dimethyl-1,4-phenylene ether units and 2,3 , 6-trimethyl-1,4-phenylene ether unit (a structural unit represented by “— (C 6 H (CH 3 ) 3 —O —) —”).
  • the polyphenylene ether may contain any structural unit other than the phenylene ether unit.
  • the polyphenylene ether is a copolymer having a phenylene ether unit and an arbitrary structural unit.
  • the amount of any structural unit in the polyphenylene ether is preferably reduced to such an extent that the effects of the present invention are not significantly impaired.
  • the amount of phenylene ether units in the polyphenylene ether is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 80% by weight or more.
  • Polyphenylene ether may be used alone or in combination of two or more at any ratio.
  • the weight average molecular weight of the polyphenylene ether is preferably 15,000 or more, more preferably 25,000 or more, particularly preferably 35,000 or more, preferably 100,000 or less, more preferably 85,000 or less, particularly preferably. Is less than 70,000.
  • strength of the layer which consists of blend resin p1 can be raised.
  • the dispersibility of polyphenylene ether can be improved by making it below an upper limit, it becomes possible to mix polyphenylene ether and a polystyrene-type polymer uniformly at a high level.
  • the weight average molecular weight may be a standard polystyrene equivalent value measured by gel permeation chromatography (GPC) at a temperature of 135 ° C. using 1,2,4-trichlorobenzene as a solvent.
  • a polystyrene polymer having a syndiotactic structure is usually a polymer having a negative intrinsic birefringence value.
  • This polystyrene polymer includes a structural unit formed by polymerizing a styrene compound.
  • the “structural unit formed by polymerizing a styrene compound” is appropriately referred to as a “styrene unit”.
  • styrene compounds include styrene and styrene derivatives.
  • styrene derivatives include derivatives in which a substituent is substituted at the benzene ring or ⁇ -position of styrene.
  • styrene compounds include styrene; alkyl styrene such as methyl styrene and 2,4-dimethyl styrene; halogenated styrene such as chlorostyrene; halogen-substituted alkyl styrene such as chloromethyl styrene; alkoxy styrene such as methoxy styrene. Is mentioned. Among them, styrene having no substituent is preferable as the styrene compound. Moreover, a styrene compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the polystyrene polymer contained in the blend resin p1 a polymer having a syndiotactic structure is used.
  • the polystyrene polymer has a syndiotactic structure means that the stereochemical structure of the polystyrene polymer has a syndiotactic structure.
  • the syndiotactic structure refers to a three-dimensional structure in which phenyl groups as side chains are alternately positioned in opposite directions in the Fischer projection formula with respect to a main chain formed of carbon-carbon bonds.
  • the tacticity (stericity) of the polystyrene-based polymer can be quantified by an isotope carbon nuclear magnetic resonance method ( 13 C-NMR method).
  • the tacticity measured by 13 C-NMR method can be shown by the abundance ratio of a plurality of continuous structural units. In general, for example, two continuous structural units are dyads, three are triads, and five are pentads.
  • the polystyrene-based polymer having a syndiotactic structure preferably has a syndiotacticity of preferably 75% or more, more preferably 85% or more in racemic dyad, or preferably in racemic pentad. It means having a syndiotacticity of 30% or more, more preferably 50% or more.
  • polystyrene polymers include polystyrene, poly (alkyl styrene), poly (halogenated styrene), poly (halogenated alkyl styrene), poly (alkoxy styrene), poly (vinyl benzoate), and hydrogens thereof. And a copolymer thereof.
  • poly (alkyl styrene) examples include poly (methyl styrene), poly (ethyl styrene), poly (isopropyl styrene), poly (t-butyl styrene), poly (phenyl styrene), poly (vinyl naphthalene), and poly (Vinyl styrene).
  • poly (halogenated styrene) include poly (chlorostyrene), poly (bromostyrene), and poly (fluorostyrene).
  • poly (halogenated alkylstyrene) examples include poly (chloromethylstyrene).
  • poly (alkoxystyrene) examples include poly (methoxystyrene) and poly (ethoxystyrene).
  • polystyrene polymers are polystyrene, poly (p-methylstyrene), poly (m-methylstyrene), poly (pt-butylstyrene), poly (p-chlorostyrene), poly ( m-chlorostyrene), poly (p-fluorostyrene), hydrogenated polystyrene, and copolymers containing these structural units.
  • the polystyrene polymer may be a homopolymer having only one type of structural unit, or may be a copolymer having two or more types of structural units.
  • the polystyrene polymer may be a copolymer containing two or more types of styrene units, and it is a copolymer containing a styrene unit and a structural unit other than the styrene unit. There may be.
  • the amount of the structural unit other than the styrene unit in the polystyrene polymer has the effect of the present invention. It is preferable to reduce it to such an extent that it is not significantly impaired.
  • the amount of styrene units in the polystyrene-based polymer is preferably 80% by weight or more, more preferably 83% by weight or more, and particularly preferably 85% by weight or more.
  • a desired retardation can be easily expressed in the layer made of the blend resin p1.
  • One type of polystyrene polymer may be used alone, or two or more types may be used in combination at any ratio.
  • the weight average molecular weight of the polystyrene polymer is usually 130,000 or more, preferably 140,000 or more, more preferably 150,000 or more, and usually 300,000 or less, preferably 270,000 or less, more preferably 250. , 000 or less. With such a weight average molecular weight, the glass transition temperature of the polystyrene-based polymer can be increased, and the heat resistance of the layer made of the blend resin p1 can be stably improved.
  • the glass transition temperature of the polystyrene-based polymer is preferably 85 ° C or higher, more preferably 90 ° C or higher, and particularly preferably 95 ° C or higher.
  • the glass transition temperature of the blend resin p1 can be effectively increased, and as a result, the heat resistance of the layer made of the blend resin p1 can be stably improved.
  • the glass transition temperature of the polystyrene polymer is preferably 160 ° C. or lower, more preferably 155 ° C. or lower, particularly preferably 150 ° C. or lower. is there.
  • a polystyrene-based polymer having a syndiotactic structure can be produced by a known method, for example, a titanium compound and a condensation product of water and a trialkylaluminum in an inert hydrocarbon solvent or in the absence of a solvent. Can be produced by polymerizing a styrene compound.
  • the polyphenylene ether and the polystyrene-based polymer contained in the blend resin p1 are (i) different from each other in wavelength dispersion, (ii) have different signs of intrinsic birefringence values, and (iii) are compatible. Therefore, the wavelength dispersion of the layer made of the blend resin p1 can be adjusted by adjusting the weight ratio between the amount of polyphenylene ether and the amount of polystyrene polymer.
  • the weight ratio of polyphenylene ether to polystyrene polymer (“amount of polyphenylene ether” / “amount of polystyrene polymer”) is preferably 35/65 or more, more preferably 37/63 or more, preferably 45/55 or less, more preferably 43/57 or less.
  • the proportion of the total of the polyphenylene ether and the polystyrene-based polymer in the blend resin p1 is preferably 50% by weight to 100% by weight, more preferably 70% by weight to 100% by weight, and particularly preferably 90% by weight to 100% by weight. is there.
  • the layer made of the blend resin p1 can exhibit appropriate optical characteristics.
  • the blend resin p1 can contain any component other than polyphenylene ether and polystyrene-based polymer.
  • the blend resin p1 may contain a polymer in addition to the above-described polyphenylene ether and polystyrene polymer.
  • the amount of the polymer other than polyphenylene ether and polystyrene polymer is preferably 15 parts by weight or less, more preferably 10 parts by weight or less, and more preferably 5 parts by weight or less, based on 100 parts by weight of the total amount of polyphenylene ether and polystyrene polymer. Is particularly preferred.
  • the blend resin p1 may contain a compounding agent.
  • compounding agents are layered crystal compounds; fine particles; antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, UV absorbers, near infrared absorbers and other stabilizers; plasticizers: dyes and pigments, etc. Colorants; antistatic agents; and the like.
  • a compounding agent may use one type and may use it combining two or more types by arbitrary ratios.
  • the amount of the compounding agent can be appropriately determined as long as the effects of the present invention are not significantly impaired. For example, it is a range in which the total light transmittance of the layer made of the blend resin p1 can be maintained at 85% or more.
  • an ultraviolet absorber is preferable in that the weather resistance can be improved.
  • ultraviolet absorbers include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone ultraviolet absorbers, benzotriazole ultraviolet absorbers, acrylonitrile ultraviolet absorbers, triazine compounds, nickel complex compounds. And inorganic powders.
  • UV absorbers examples include 2,2′-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, and 2,2′-methylenebis (4- ( 1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol.
  • the glass transition temperature of the blend resin p1 is preferably 115 ° C. or higher, more preferably 118 ° C. or higher, and even more preferably 120 ° C. or higher. Since the blend resin p1 contains a combination of polyphenylene ether and polystyrene polymer, the glass transition temperature can be increased as compared with a resin containing only a polystyrene polymer. Since the glass transition temperature is so high, the relaxation of the orientation of the blend resin p1 can be reduced, so that a second optical anisotropic layer having excellent heat resistance can be realized. Moreover, although there is no restriction
  • first optically anisotropic layer and the second optically anisotropic layer are easy to increase in area and can be efficiently produced, from a stretched film obtained by stretching a stretched film made of resin. Preferably it is manufactured.
  • Each of the first optical anisotropic layer and the second optical anisotropic layer may have a single layer structure or a multilayer structure including two or more layers.
  • each of the first optical anisotropic layer and the second optical anisotropic layer has a single layer structure.
  • the optical characteristics of the first optical anisotropic layer and the second optical anisotropic layer can be changed, for example, by changing the type of resin contained in the layer, or by changing the proportion of structural units of the polymer contained in the resin. It can be adjusted by changing the stretching conditions of the film before stretching.
  • the slow axis direction indicating the maximum refractive index in the plane of the first optically anisotropic layer can be arbitrarily set according to the use of the optically anisotropic laminate.
  • the angle formed by the slow axis of the first optically anisotropic layer and the width direction of the optically anisotropic laminate is greater than 0 ° and less than 90 °. It is preferable.
  • the angle formed by the slow axis of the first optically anisotropic layer and the width direction of the optically anisotropic laminate is preferably 15 ° ⁇ 5 °, 22.5 ° ⁇ 5 °, 45 ° ⁇ 5 °, 67.5 ° ⁇ 5 °, or 75 ° ⁇ 5 °, more preferably 15 ° ⁇ 4 °, 22.5 ° ⁇ 4 °, 45 ° ⁇ 4 °, 67.5 ° ⁇ 4 ° Or a specific range such as 75 ° ⁇ 4 °, even more preferably 15 ° ⁇ 3 °, 22.5 ° ⁇ 3 °, 45 ° ⁇ 3 °, 67.5 ° ⁇ 3 °, or 75 ° ⁇ 3 ° It can be.
  • the optically anisotropic laminate can be made a material that enables efficient production of a circularly polarizing plate.
  • the slow axis direction indicating the maximum refractive index in the plane of the second optically anisotropic layer can be arbitrarily set according to the use of the optically anisotropic laminate.
  • the angle formed by the slow axis of the second optically anisotropic layer and the width direction of the optically anisotropic laminate is greater than 0 ° and less than 90 °. It is preferable.
  • the angle formed by the slow axis of the second optically anisotropic layer and the width direction of the optically anisotropic laminate is preferably 15 ° ⁇ 5 °, 22.5 ° ⁇ 5 °, 45 ° ⁇ 5 °, 67.5 ° ⁇ 5 °, or 75 ° ⁇ 5 °, more preferably 15 ° ⁇ 4 °, 22.5 ° ⁇ 4 °, 45 ° ⁇ 4 °, 67.5 ° ⁇ 4 ° Or a specific range such as 75 ° ⁇ 4 °, even more preferably 15 ° ⁇ 3 °, 22.5 ° ⁇ 3 °, 45 ° ⁇ 3 °, 67.5 ° ⁇ 3 °, or 75 ° ⁇ 3 ° It can be.
  • the optically anisotropic laminate can be made a material that enables efficient production of a circularly polarizing plate.
  • the thicknesses of the first optical anisotropic layer and the second optical anisotropic layer are not particularly limited, and can be appropriately adjusted so that the optical characteristics of each layer can be within a desired range.
  • the specific thickness of the first optically anisotropic layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and particularly preferably 60 ⁇ m or less.
  • the specific thickness of the second optically anisotropic layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and particularly preferably 60 ⁇ m or less.
  • optically anisotropic laminate of the present invention can contain any layer other than the first optically anisotropic layer and the second optically anisotropic layer. Although it does not specifically limit as an arbitrary layer which the optically anisotropic laminated body of this invention can contain, For example, an adhesive bond layer and a hard-coat layer are mentioned.
  • the optically anisotropic laminate may contain only one of these arbitrary layers or a plurality of layers.
  • the optically anisotropic laminated body can be manufactured by a manufacturing method including bonding the first optically anisotropic layer and the second optically anisotropic layer.
  • An appropriate adhesive may be used for bonding the first optical anisotropic layer and the second optical anisotropic layer.
  • the adhesive it is preferable to use the same adhesive as that used in the circularly polarizing plate described later.
  • the circularly polarizing plate of the present invention includes a polarizer and an optically anisotropic laminate.
  • FIG. 3 is a cross-sectional view schematically showing a circularly polarizing plate according to one embodiment of the present invention.
  • the circularly polarizing plate 200 includes a polarizer 210 and an optically anisotropic laminate 100.
  • the circularly polarizing plate 200 includes a polarizer 210, a first optical anisotropic layer 110, and a second optical anisotropic layer 120 in this order.
  • the polarizer 210 a known polarizer used in devices such as a liquid crystal display device and other optical devices can be used.
  • the polarizer 210 include a polarizer having a function of separating polarized light into reflected light and transmitted light, such as a grid polarizer, a multilayer polarizer, and a cholesteric liquid crystal polarizer. Of these, the polarizer 210 is preferably a polarizer containing polyvinyl alcohol.
  • the polarizer 210 may be a long film.
  • the polarization absorption axis of the polarizer 210 is parallel or perpendicular to the width direction of the polarizer 210.
  • Such a long polarizer 210 can be bonded to the above-described optically anisotropic laminate 100 by roll-to-roll to easily manufacture a long circularly polarizing plate 200.
  • the polarization degree of this polarizer 210 is not specifically limited, Preferably it is 98% or more, More preferably, it is 99% or more.
  • the thickness of the polarizer 210 is preferably 5 ⁇ m to 80 ⁇ m.
  • FIG. 4 is an exploded perspective view of a circularly polarizing plate 200 according to an embodiment of the present invention.
  • a polarization absorption axis direction D P of the polarizer 210 the angle slow the axial direction D H is the first optically anisotropic layer 110 in the plane, expressed by symbol " ⁇ 1”
  • a polarization absorption axis direction D P of the polarizer 210 the angle slow the axial direction D Q is in the second optically anisotropic layer 120 in the plane, expressed by symbol " ⁇ 2".
  • ⁇ 90 ° ⁇ 1 ⁇ 90 ° and ⁇ 90 ° ⁇ 2 ⁇ 90 ° the angle slow the axial direction D H is the first optically anisotropic layer 110 in the plane, expressed by symbol " ⁇ 1"
  • a polarization absorption axis direction D P of the polarizer 210 the angle slow the axial direction D Q is in the second optically anisotropic layer 120 in the plane, expressed by symbol " ⁇ 2”.
  • the slow axis direction D P is a direction showing a maximum refractive index nx1 in the first optically anisotropic layer 110 in the plane slow axis direction D Q, the surface of the second optical anisotropic layer 120 It is a direction which shows the maximum refractive index nx2 in the inside.
  • angles ⁇ 1 and ⁇ 2 have the same sign, and satisfy the following expressions (9) and (10).
  • 15 ° ⁇ 5 ° (9)
  • 75 ° ⁇ 10 ° (10)
  • the equation (9) will be described in detail.
  • of the angle ⁇ 1 is usually 15 ° ⁇ 5 °, preferably 15 ° ⁇ 3 °, more preferably 15 ° ⁇ 1 °.
  • the equation (10) will be described in detail.
  • of the angle ⁇ 2 is usually 75 ° ⁇ 10 °, preferably 75 ° ⁇ 6 °, more preferably 75 ° ⁇ 2 °.
  • angles ⁇ 1 and ⁇ 2 have the same sign, and satisfy the following expressions (11) and (12).
  • 75 ° ⁇ 5 ° (11)
  • 15 ° ⁇ 10 ° (12)
  • the equation (11) will be described in detail.
  • of the angle ⁇ 1 is usually 75 ° ⁇ 5 °, preferably 75 ° ⁇ 3 °, more preferably 75 ° ⁇ 2 °.
  • the equation (12) will be described in detail.
  • of the angle ⁇ 2 is usually 15 ° ⁇ 10 °, preferably 15 ° ⁇ 6 °, more preferably 15 ° ⁇ 1 °.
  • the in-plane optical axis (slow axis, polarization transmission axis, polarization absorption axis, etc.) direction and geometric direction (film longitudinal direction, width direction, etc.) Is defined as a positive shift in one direction and a negative shift in the other direction, and the positive and negative directions are defined in common in the components in the product.
  • the slow axis direction of the first optical anisotropic layer relative to the polarization absorption axis direction of the polarizer is 15 °
  • the second optical anisotropic layer direction relative to the polarization absorption axis direction of the polarizer is “The slow axis direction is 75 °”
  • the slow axis direction of the first optical anisotropic layer is shifted 15 ° clockwise from the polarization absorption axis direction of the polarizer
  • the second optical The slow axis direction of the anisotropic layer is shifted by 75 ° clockwise from the polarization absorption axis direction of the polarizer.
  • the slow axis direction of the first optically anisotropic layer is shifted 15 ° counterclockwise from the polarization absorption axis direction of the polarizer, and the second The slow axis direction of the optically anisotropic layer is shifted by 75 ° counterclockwise from the polarization absorption axis direction of the polarizer.
  • the circularly polarizing plate 200 may further include an adhesive layer (not shown) for bonding the polarizer 210 and the optically anisotropic laminate 100 together.
  • an adhesive layer a pressure-sensitive adhesive layer may be used, but a layer obtained by curing a curable adhesive is preferably used.
  • a thermosetting adhesive may be used as the curable adhesive, but a photocurable adhesive is preferably used.
  • a photocurable adhesive what contains a polymer or a reactive monomer can be used. Further, the adhesive may contain one or more of a solvent, a photopolymerization initiator, other additives and the like as necessary.
  • the photocurable adhesive is an adhesive that can be cured when irradiated with light such as visible light, ultraviolet light, and infrared light.
  • light such as visible light, ultraviolet light, and infrared light.
  • an adhesive that can be cured with ultraviolet rays is preferable because of its simple operation.
  • the photocurable adhesive contains 50% by weight or more of a (meth) acrylate monomer having a hydroxyl group.
  • a (meth) acrylate monomer having a hydroxyl group when the phrase “adhesive contains a monomer in a certain ratio”, the ratio of the monomer means that the monomer exists as a monomer, the monomer already It is the ratio of the sum of both of those polymerized to form part of the polymer.
  • Examples of (meth) acrylate monomers having a hydroxyl group include 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) ) Acrylates, hydroxyalkyl (meth) acrylates such as 2-hydroxy-3-acryloyloxypropyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl (meth) acrylate and the like. These may be used alone or in combination of two or more at any ratio. The content when used in combination is a total ratio.
  • Examples of the monomer other than the (meth) acrylate monomer having a hydroxyl group that can be contained in the photocurable adhesive include (meth) acrylate monomer having no monofunctional or polyfunctional hydroxyl group, and one or more per molecule The compound containing the epoxy group of this is mentioned.
  • the adhesive may further contain an optional component as long as the effects of the present invention are not significantly impaired.
  • optional components include a photopolymerization initiator, a crosslinking agent, an inorganic filler, a polymerization inhibitor, a color pigment, a dye, an antifoaming agent, a leveling agent, a dispersant, a light diffusing agent, a plasticizer, an antistatic agent, and an interface.
  • An activator, a non-reactive polymer (inactive polymer), a viscosity modifier, a near-infrared absorber, etc. are mentioned. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • Examples of the photopolymerization initiator include a radical initiator and a cationic initiator.
  • Examples of the cationic initiator include Irgacure 250 (diallyliodonium salt, manufactured by BASF).
  • Examples of the radical initiator include Irgacure 184, Irgacure 819, Irgacure 2959 (all manufactured by BASF).
  • the thickness of the adhesive layer is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the circularly polarizing plate 200 can further include an arbitrary layer.
  • a polarizer protective film layer (not shown) is mentioned, for example. Any transparent film layer can be used as the polarizer protective film layer.
  • a resin film layer excellent in transparency, mechanical strength, thermal stability, moisture shielding properties and the like is preferable.
  • resins include acetate resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, chain olefin resins, cyclic olefin resins, (meth) acrylic resins, and the like.
  • examples of the optional layer that the circularly polarizing plate 200 can include include a hard coat layer such as an impact-resistant polymethacrylate resin layer, a mat layer that improves the slipperiness of the film, an antireflection layer, and an antifouling layer. It is done.
  • a hard coat layer such as an impact-resistant polymethacrylate resin layer
  • a mat layer that improves the slipperiness of the film
  • an antireflection layer an antifouling layer. It is done.
  • Each of the above layers may be provided with only one layer or two or more layers.
  • the circularly polarizing plate 200 can be manufactured by a manufacturing method including bonding the polarizer 210 and the optically anisotropic laminated body 100 together.
  • the image display device of the present invention includes an image display element and the above-described circularly polarizing plate.
  • the circularly polarizing plate is usually provided on the viewing side of the image display element.
  • the direction of the circularly polarizing plate can be arbitrarily set according to the use of the circularly polarizing plate. Therefore, the image display apparatus may include the optically anisotropic laminate, the polarizer, and the image display element in this order.
  • the image display device may include a polarizer, an optically anisotropic laminate, and an image display element in this order.
  • image display devices There are various types of image display devices depending on the type of image display element. Typical examples include a liquid crystal display device having a liquid crystal cell as an image display element, and an organic electroluminescence element as an image display element. (Hereinafter, it may be referred to as “organic EL element” as appropriate).
  • FIG. 5 is a cross-sectional view schematically showing a liquid crystal display device 300 as an image display device according to an embodiment of the present invention.
  • the liquid crystal display device 300 includes a light source 310; a light source side linear polarizer 320; a liquid crystal cell 330 as an image display element; a polarizer 210 as a viewing side linear polarizer;
  • the optically anisotropic laminate 100 including the conductive layer 110 and the second optically anisotropic layer 120 is provided in this order.
  • the liquid crystal cell 330 may be, for example, in-plane switching (IPS) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, continuous spin wheel alignment (CPA) mode, hybrid alignment nematic (HAN) mode, twisted.
  • IPS in-plane switching
  • VA vertical alignment
  • MVA multi-domain vertical alignment
  • CPA continuous spin wheel alignment
  • HAN hybrid alignment nematic
  • a liquid crystal cell of any mode such as a nematic (TN) mode, a super twisted nematic (STN) mode, or an optically compensated bend (OCB) mode can be used.
  • an image is displayed by light emitted from the light source 310 and passed through the light source side linear polarizer 320, the liquid crystal cell 330, the polarizer 210, and the optically anisotropic laminate 100. Therefore, the light for displaying an image is linearly polarized when it passes through the polarizer 210, but is converted into circularly polarized light by passing through the optically anisotropic laminate 100. Therefore, in the liquid crystal display device 300, an image is displayed by circularly polarized light. Therefore, when the display surface 300U is viewed through polarized sunglasses, the image can be visually recognized.
  • the optical anisotropic laminate 100 can convert light for displaying an image into ideal circularly polarized light in a wide wavelength range and emit the light in the front direction and the tilt direction of the display surface. Therefore, in the liquid crystal display device 300 according to the present embodiment, the change in the color of the display surface 300U that occurs when the display surface 300U is rotated while observing through the polarized sunglasses from the front direction or the tilt direction of the display surface 300U is reduced. can do.
  • FIG. 6 is a cross-sectional view schematically showing an organic EL display device 400 as an image display device according to an embodiment of the present invention.
  • the organic EL display device 400 includes an organic EL element 410 as an image display element; an optical anisotropic laminate 100 including a second optical anisotropic layer 120 and a first optical anisotropic layer 110. As well as a polarizer 210 in this order.
  • the organic EL element 410 includes a transparent electrode layer, a light emitting layer, and an electrode layer in this order, and the light emitting layer can generate light when voltage is applied from the transparent electrode layer and the electrode layer.
  • the material constituting the organic light emitting layer include polyparaphenylene vinylene-based, polyfluorene-based, and polyvinyl carbazole-based materials.
  • the light emitting layer may have a stack of layers having different emission colors or a mixed layer in which a different dye is doped in a certain dye layer.
  • the organic EL element 410 may include functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
  • the circularly polarizing plate 200 including the optically anisotropic laminate 100 and the polarizer 210 causes reflection of external light when viewed from the front direction or the tilt direction of the display surface 400U.
  • the glare of the display surface 400U can be suppressed.
  • only a part of the linearly polarized light passes through the polarizer 210 and then passes through the optically anisotropic laminate 100, and becomes circularly polarized light.
  • Circularly polarized light is reflected by a component (such as a reflective electrode (not shown) in the organic EL element 410) that reflects light in the display device, and enters the optically anisotropic laminated body 100 again to enter.
  • the linearly polarized light has a vibration direction orthogonal to the vibration direction of the linearly polarized light and does not pass through the polarizer 210. Thereby, the function of reflection suppression is achieved.
  • the first optical anisotropic layer 110 and the second optical anisotropic layer 120 included in the optical anisotropic laminate 100 satisfy the above-described requirements.
  • the function of suppressing reflection can be effectively exhibited in a wide wavelength range and in observation from the front direction and the tilt direction of the display surface. Therefore, in the organic EL display device 400, reflection of external light in the front direction and the tilt direction of the display surface 400U of the organic EL display device 400 can be effectively suppressed, and excellent visibility can be realized.
  • the size of the glass plate was 75 mm ⁇ 25 mm, the glass plate was bonded so that the long side of the glass plate and the long side of the sample piece were parallel, and the excess part of the sample piece protruding from the glass plate was cut off with a cutter. . Thereby, a retardation plate for measurement having a layer configuration of (glass plate) / (adhesive layer) / (optically anisotropic layer) was obtained.
  • in-plane retardations Re (450), Re (550), Re (590), Re (650) of the optically anisotropic layer at wavelengths of 450 nm, 550 nm, 590 nm, and 650 nm. ), Rth at a wavelength of 590 nm, and the slow axis direction were measured using a phase difference measuring apparatus (“AxoScan” manufactured by AXOMETRIICS).
  • AxoScan manufactured by AXOMETRIICS.
  • the values of Re (450) / Re (550) and Re (650) / Re (550) of the optically anisotropic layer and the NZ coefficient at a wavelength of 590 nm were determined. Further, the angle formed by the slow axis of the optically anisotropic layer with respect to the film width direction was determined.
  • an image display device obtained by bonding the surface on the first optical anisotropic layer side of the optically anisotropic laminate to the display surface of a commercially available liquid crystal display device was set.
  • a liquid crystal display device (“iPad Air (registered trademark)” manufactured by Apple) including a light source, a light source side linear polarizer, a liquid crystal cell, and a viewing side linear polarizer in this order was employed.
  • the pasting is performed in the thickness direction, with respect to the polarization absorption axis of the viewing-side linear polarizer, the slow axis of the first optical anisotropic layer and the second optical anisotropic layer of the optically anisotropic laminate.
  • This image display device includes, from the viewing side, a second optical anisotropic layer, a first optical anisotropic layer, a viewing side linear polarizer, and a liquid crystal cell as an image display element in this order.
  • FIG. 7 is set when calculating the change in brightness ( ⁇ L * ) and the change in hue ( ⁇ a * , ⁇ b * ) in the L * a * b * color system in the simulations of the examples and comparative examples. It is a perspective view which shows an evaluation model typically.
  • a line segment 22 parallel to the polarization absorption axis 21 of the polarized sunglasses 20 is indicated by a one-dot chain line on the display surface 10 of the image display device.
  • An axis 23 perpendicular to the display surface 10 of the image display device is indicated by a chain line.
  • the image display device was displayed in white, and the brightness (L * ) and hue (a * , b * ) of the image seen through the polarized sunglasses 20 were calculated.
  • An ideal polarizing film was set as the polarizing sunglasses 20.
  • the ideal polarizing film refers to a film that transmits all linearly polarized light having a vibration direction parallel to a certain direction but does not allow linearly polarized light having a vibration direction perpendicular to that direction to pass through at all.
  • the lightness (L * ) and hue (a * , b * ) were calculated.
  • the display surface 10 is rotated around the axis 23, and the azimuth angle ⁇ formed by the polarization absorption axis 21 of the polarized sunglasses 20 with respect to the reference direction 11 is in increments of 5 ° within a range of 0 ° to less than 360 °. I went for a number of cases that I changed.
  • white display image data that can be seen without passing through the polarized sunglasses 20 was set to white.
  • the image display devices for evaluation obtained in the following examples and comparative examples were displayed in white, and the display surface was visually observed through polarized sunglasses from the front direction (polar angle 0 °) of the display surface. During this observation, the image display device was rotated once about a rotation axis perpendicular to the display surface. Then, whether the observed image has a change in brightness / hue according to the rotation angle was evaluated based on an evaluation criterion of five levels (A, B, C, D, E). The evaluation A has the smallest color change according to the rotation angle, and the evaluation E has the largest color change according to the rotation angle.
  • the observation direction was observed and evaluated in the same manner as above except that the observation direction was changed from the front direction of the display surface (polar angle 0 °) to the tilt direction of the display surface (polar angle 45 °).
  • comprehensive evaluation is performed according to the following method. It was.
  • Resin R1 has a positive intrinsic birefringence value.
  • Process B Production of film before stretching
  • the obtained polycarbonate resin R1 is vacuum-dried at 80 ° C. for 5 hours, and then formed into a film using a film-forming apparatus equipped with a single-screw extruder, a T-die, a chill roll, and a winder before long stretching. A film was obtained.
  • the thickness of the pre-stretched film was adjusted in the range of 170 to 230 ⁇ m so that ⁇ / 2 plate H1 having physical properties as shown in Tables 1, 2, and 3 below could be obtained.
  • Processcess C Production of ⁇ / 2 plate
  • the obtained pre-stretched film was vacuum-dried at 100 ° C.
  • a ⁇ / 2 plate H1 having physical properties as shown in Tables 1, 2, and 3 below can be obtained.
  • the retardation film was obtained by adjusting.
  • step B the thickness of the film before stretching is adjusted in the range of 170 to 230 ⁇ m so as to obtain a ⁇ / 2 plate H2 having physical properties as shown in Table 2 below.
  • ⁇ / 2 plate H2 having physical properties as shown in Table 2 below was obtained in the range of 127 to 177 ° C. and draw ratio of 1.5 to 2.5 times Thus, a ⁇ / 2 plate H2 was obtained.
  • step B the thickness of the film before stretching is adjusted in the range of 170 to 230 ⁇ m so that a ⁇ / 2 plate H3 having physical properties as shown in Table 2 below is obtained.
  • ⁇ / 2 plate H3 having physical properties as shown in Table 2 below was obtained in the range of 127 to 177 ° C. and draw ratio of 1.5 to 2.5 times Thus, a ⁇ / 2 plate H3 was obtained.
  • step B the thickness of the film before stretching is adjusted in the range of 170 to 230 ⁇ m so that a ⁇ / 2 plate H4 having physical properties as shown in Table 2 below is obtained.
  • ⁇ / 2 plate H4 having physical properties as shown in Table 2 below was obtained in the range of 127 to 177 ° C. and draw ratio of 1.5 to 2.5 times Thus, a ⁇ / 2 plate H4 was obtained.
  • Step B the thickness of the film before stretching is adjusted in the range of 70 to 130 ⁇ m so that a ⁇ / 4 plate QC1 having physical properties as shown in Table 3 below can be obtained.
  • the ⁇ / 4 plate QC1 having physical properties as shown in Table 3 below was adjusted within the range of 127 to 177 ° C. and the draw ratio of 1.5 to 2.5 times.
  • a ⁇ / 4 plate QC1 was obtained.
  • a film forming apparatus for two-layer / two-layer coextrusion molding (a molding apparatus capable of molding a two-layer film with two kinds of resins) equipped with a single-screw extruder equipped with a double flight type screw was prepared. .
  • the resin R2 pellets were charged into one uniaxial extruder of the film forming apparatus and melted.
  • pellets of impact resistant polymethyl methacrylate resin R3 (“Sumipex (registered trademark) HT55X” manufactured by Sumitomo Chemical Co., Ltd.) were charged into the other single screw extruder of the film forming apparatus and melted.
  • the molten resin R2 at 290 ° C. was supplied to one manifold of a multi-manifold die (die slip surface roughness Ra: 0.1 ⁇ m) through a leaf disk-shaped polymer filter with an opening of 10 ⁇ m. Further, the melted resin R3 at 260 ° C. was supplied to the other manifold of the multi-manifold die through a leaf disk-shaped polymer filter having an opening of 10 ⁇ m.
  • Resin R2 and Resin R3 were simultaneously extruded from a multi-manifold die at 280 ° C. to form a film.
  • the formed molten resin in the form of a film was cast on a cast roll adjusted to a surface temperature of 110 ° C., and then passed between two cooling rolls adjusted to a surface temperature of 50 ° C.
  • the resin was cooled and solidified on a cast roll to obtain a pre-stretch film including a layer made of resin R2 and a layer made of resin R3.
  • the thickness of the pre-stretched film including the layer made of the resin R2 (thickness 50 to 100 ⁇ m) and the layer made of the resin R3 (thickness 50 to 100 ⁇ m) is obtained. Adjustment was made so that a ⁇ / 4 plate Q1 having physical properties as shown in Table 1 below was obtained in a thickness range of 100 to 200 ⁇ m.
  • the stretching conditions were adjusted so that a ⁇ / 4 plate Q2 having physical properties as shown in Table 1 below could be obtained within a range of a stretching temperature of 134 ° C. to 148 ° C. and a stretching ratio of 1.5 to 3.5 times.
  • a ⁇ / 4 plate Q3 made of resin R2 was produced.
  • the stretching conditions are as shown in Table 1 below in the range of a stretching temperature of 134 ° C. to 148 ° C., a longitudinal stretching ratio of 1.1 to 1.5 times, and a transverse stretching ratio of 1.5 to 3.5 times. Of ⁇ / 4 plate Q3 was adjusted.
  • a ⁇ / 4 plate Q4 made of resin R2 was produced.
  • the stretching conditions are as shown in Table 1 below in the range of a stretching temperature of 134 ° C. to 148 ° C., a stretching ratio of 1.3 to 1.7 times in the machine direction, and a stretching ratio of 1.7 to 3.7 times in the transverse direction.
  • the ⁇ / 4 plate Q4 was adjusted.
  • the stretching conditions are as shown in Table 2 below in the range of a stretching temperature of 134 ° C. to 148 ° C., a longitudinal stretching ratio of 1.5 to 2.0 times, and a transverse stretching ratio of 2.0 to 4.0 times. Of ⁇ / 4 plate Q5 was adjusted.
  • a ⁇ / 4 plate Q6 made of resin R2 was produced.
  • the stretching conditions are as shown in Table 2 below in the range of a stretching temperature of 134 ° C. to 148 ° C., a longitudinal stretching ratio of 1.1 to 1.5 times, and a transverse stretching ratio of 1.5 to 3.5 times.
  • the ⁇ / 4 plate Q6 was adjusted.
  • the ⁇ / 4 plate Q7 made of the resin R2 was peeled off.
  • the stretching conditions are as shown in Table 2 below in the range of a stretching temperature of 134 ° C. to 148 ° C., a longitudinal stretching ratio of 1.1 to 1.5 times, and a transverse stretching ratio of 1.5 to 3.5 times.
  • the ⁇ / 4 plate Q7 was adjusted.
  • the ⁇ / 4 plate Q8 made of the resin R2 was peeled off.
  • the stretching conditions are as shown in Table 2 below in the range of a stretching temperature of 134 ° C. to 148 ° C., a longitudinal stretching ratio of 1.1 to 1.5 times, and a transverse stretching ratio of 1.5 to 3.5 times. Of ⁇ / 4 plate Q8 was adjusted.
  • the formed molten resin in the form of a film was cast on a cast roll adjusted to a surface temperature of 110 ° C., and then passed between two cooling rolls adjusted to a surface temperature of 50 ° C. The resin was cooled and solidified on a cast roll to obtain a film before stretching. At this time, the thickness of the film before stretching was adjusted by adjusting the rotational speed of the cast roll so that a ⁇ / 2 plate HC2 having physical properties as shown in Table 3 below could be obtained in the thickness range of 80 to 120 ⁇ m.
  • Step A by adjusting the rotation speed of the cast roll, the thickness of the film before stretching was adjusted so that a ⁇ / 4 plate QC2 having physical properties as shown in Table 3 below was obtained in the thickness range of 30 to 70 ⁇ m.
  • a film before stretching was obtained.
  • the obtained film before stretching was freely uniaxially stretched to obtain a ⁇ / 4 plate QC2.
  • ⁇ / 4 plate QC2 having physical properties as shown in Table 3 below is obtained when the uniaxial stretching conditions are a stretching temperature: 140 to 150 ° C. and a stretching ratio: 1.4 to 1.8 times. It was adjusted.
  • Examples and Comparative Examples Using the evaluation model for simulation provided with the ⁇ / 2 plate as the first optical anisotropic layer and the ⁇ / 4 plate as the second optical anisotropic layer as in the following examples and comparative examples, The amount of change in brightness and hue by simulation was calculated by the method. In addition, as shown in the following Examples and Comparative Examples, an image display device was manufactured, and the color change of the image was visually evaluated by the above method.
  • Example 1 As an adhesive layer, an optical transparent adhesive sheet (“LUCIACS (registered trademark) CS9621T” manufactured by Nitto Denko Corporation) was prepared. Using this pressure-sensitive adhesive sheet, the ⁇ / 2 plate H1 obtained in Production Example 1-1 and the ⁇ / 4 plate Q1 obtained in Production Example 2-1 were combined with the slow axis of the ⁇ / 2 plate H1 and ⁇ / 4. The plates were bonded together so that the slow axis of the plate Q1 forms an angle of 60 ° to obtain an optically anisotropic laminate.
  • LCIACS registered trademark
  • CS9621T manufactured by Nitto Denko Corporation
  • a liquid crystal display device (“iPad (registered trademark)” manufactured by Apple) provided with a light source, a light source side linear polarizer, an IPS mode liquid crystal cell as an image display element, and a viewing side linear polarizer in this order was prepared.
  • the display surface portion of the liquid crystal display device was disassembled to expose the viewing-side linear polarizer of the liquid crystal display device.
  • the surface on the ⁇ / 2 plate side of the optically anisotropic laminate (that is, the surface on the first optically anisotropic layer side) was bonded to the exposed viewing-side linear polarizer using a hand-bonded roller.
  • the bonding was performed via an adhesive layer (“LUCIACS (registered trademark) CS9621T” manufactured by Nitto Denko).
  • the bonding is performed in the thickness direction of the first optically anisotropic layer and the slow axis of the first optically anisotropic layer with respect to the polarization absorption axis of the viewing-side linear polarizer of the liquid crystal display device.
  • the angle formed by the slow axis was 15.0 ° and 75.0 °, respectively.
  • a ⁇ / 4 plate as the second optical anisotropic layer, a ⁇ / 2 plate as the first optical anisotropy, a polarizer, and a liquid crystal cell as an image display element are provided in this order.
  • An image display device was obtained.
  • the image display device includes a circularly polarizing plate including a polarizer, a ⁇ / 2 plate as a first optical anisotropic layer, and a ⁇ / 4 plate as a second optical anisotropic layer in this order.
  • Example 2 An image display including an optically anisotropic laminate and a circularly polarizing plate in the same manner as in Example 1 except that the ⁇ / 4 plate Q2 obtained in Production Example 2-2 was used instead of the ⁇ / 4 plate Q1. Got the device.
  • Example 3 An image display including an optically anisotropic laminate and a circularly polarizing plate in the same manner as in Example 1 except that the ⁇ / 4 plate Q3 obtained in Production Example 2-3 was used instead of the ⁇ / 4 plate Q1. Got the device.
  • Example 4 An image including the optically anisotropic laminate 4 and the circularly polarizing plate in the same manner as in Example 1 except that the ⁇ / 4 plate Q4 obtained in Production Example 2-4 was used instead of the ⁇ / 4 plate Q1. A display device was obtained.
  • Example 5 An image display including an optically anisotropic laminate and a circularly polarizing plate in the same manner as in Example 1 except that the ⁇ / 4 plate Q5 obtained in Production Example 2-5 is used instead of the ⁇ / 4 plate Q1. Got the device.
  • Example 6 The ⁇ / 2 plate H2 obtained in Production Example 1-2 was used instead of the ⁇ / 2 plate H1, and the ⁇ / 4 plate Q6 obtained in Production Example 2-6 was used instead of the ⁇ / 4 plate Q1. In the same manner as in Example 1, an image display device including an optically anisotropic laminate and a circularly polarizing plate was obtained.
  • Example 7 The ⁇ / 2 plate H3 obtained in Production Example 1-3 was used instead of the ⁇ / 2 plate H1, and the ⁇ / 4 plate Q7 obtained in Production Example 2-7 was used instead of the ⁇ / 4 plate Q1. In the same manner as in Example 1, an image display device including an optically anisotropic laminate and a circularly polarizing plate was obtained.
  • Example 8 The ⁇ / 2 plate H4 obtained in Production Example 1-4 was used instead of the ⁇ / 2 plate H1, and the ⁇ / 4 plate Q8 obtained in Production Example 2-8 was used instead of the ⁇ / 4 plate Q1. In the same manner as in Example 1, an image display device including an optically anisotropic laminate and a circularly polarizing plate was obtained.
  • Table 1 Table 2, and Table 3 show the configurations of the image display devices of Examples 1 to 4, Examples 5 to 8, and Comparative Examples 1 to 2, respectively. The evaluation results are shown in Table 4.
  • SPSPPE means a blend resin containing syndiotactic polystyrene and poly (2,6-dimethyl-1,4-phenylene oxide)
  • COP means a cycloolefin resin.
  • ⁇ 1 means an angle formed between the polarization absorption axis direction of the polarizer and the direction (slow axis direction) indicating the maximum refractive index nx1 in the plane of the ⁇ / 2 plate as the first optical anisotropic layer.
  • the image display devices of Examples 1 to 8 have a higher overall evaluation than the comparative example, and the change in the color of the display surface is reduced.
  • the image display devices of Comparative Examples 1 and 2 in which the ⁇ / 4 plate as the second optically anisotropic layer does not satisfy the formula (8) the color in the observation from the tilt direction (polar angle 45 °) It can be seen that the change in is large compared to the example. Further, the ⁇ / 2 plate as the first optically anisotropic layer does not satisfy the expressions (2) and (3), and the ⁇ / 4 plate as the second optically anisotropic layer has the expression (6).
  • fill (7) has a big change of the color in the observation from a front direction (polar angle 0 degree) and an inclination direction (polar angle 45 degrees) compared with an Example.
  • the optically anisotropic laminate, circularly polarizing plate, and image display device of the present invention occur when the display surface is rotated while observing through polarized sunglasses from the front direction or the tilt direction of the display surface. It can be seen that the change in color can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

第1光学異方性層及び第2光学異方性層を含み、前記第1光学異方性層は、220nm<Re1(590)<330nm、Re1(450)/Re1(550)≦1.0、Re1(650)/Re1(550)≧1.0、及び0.95<NZ1<2.00を満たし、前記第2光学異方性層は、110nm<Re2(590)<165nm、Re2(450)/Re2(550)≦1.0、Re2(650)/Re2(550)≧1.0、及び-1.5≦NZ2≦0.00を満たす、光学異方性積層体。

Description

光学異方性積層体、円偏光板、及び画像表示装置
 本発明は、光学異方性積層体、並びに、それを備える円偏光板及び画像表示装置に関する。
 液晶表示装置及び有機エレクトロルミネッセンス表示装置(以下、適宜「有機EL表示装置」ということがある。)等の画像表示装置には、通常、光学異方性のフィルムが、光学フィルムとして設けられる。このような光学フィルムについては、従来から、様々な研究がなされている(特許文献1~7参照)。
特開2014-071209号公報 特開2014-123099号公報 特開2011-138144号公報 特開2015-040904号公報 特開2015-079230号公報(対応公報:米国特許出願公開第2015/062505号明細書) 特開2007-328310号公報(対応公報:米国特許出願公開第2009/296027号明細書) 特開2005-326818号公報(対応公報:米国特許出願公開第2005/231660号明細書)
 画像表示装置には、偏光サングラスを通して画像を見た場合の視認性を向上させるために、円偏光板が使用される場合がある。円偏光板は、直線偏光子と1/4波長板とで構成されうる。1/4波長板としては、例えば、高分子化合物のフィルムを延伸して得られる高分子化合物延伸フィルムが用いられうる。
 1/4波長板は、全ての波長において1/4波長板として機能することが理想である。しかし、実際には従来の高分子化合物延伸フィルムは、一般に波長が長いほど面内レターデーションが小さくなるという順波長分散性を示すため、波長によっては1/4波長板として機能しない場合がある。したがって、1/4波長板として順波長分散性を有するフィルムを用いた場合、円偏光板を透過する直線偏光は、直線偏光の波長によっては、理想的な円偏光に変換されず楕円偏光に変換される。その結果、円偏光板を備えた画像表示装置の表示面を、偏光サングラスを通して表示面の正面方向から観察しつつ、表示面を表示面と同一面内で回転させると、画像の色味が変化してしまう場合があった。
 本発明者は、波長が長いほど面内レターデーションが大きくなるという逆波長分散性を示す1/2波長板と、逆波長分散性を示す1/4波長板とを積層することで、広い波長範囲において1/4波長板として機能しうる広帯域1/4波長板が得られることを見出し、この広帯域1/4波長板を備えた円偏光板により、画像の色味の変化が大幅に低減できることを見出した。
 しかし、このような広帯域1/4波長板を備えた円偏光板を用いても、画像表示装置の表示面の傾斜方向から観察しつつ、表示面を表示面と同一面内で回転させると画像の色味が変化する場合があった。
 本発明は、上記の課題に鑑みてなされたものであって、画像表示装置を表示面の正面方向又は傾斜方向から偏光サングラスを通して観察しつつ表示面を回転させた場合に生じる、色味の変化を低減することができる光学異方性積層体;並びに、前記の光学異方性積層体を備えた、円偏光板及び画像表示装置を提供することを目的とする。
 本発明者は、前記の課題を解決するべく鋭意研究した結果、逆波長分散性を有し、所定のNZ係数を有する第1光学異方性層と、逆波長分散性を有し所定のNZ係数を有する第2光学異方性層とを含む光学異方性積層体;並びに前記の光学異方性積層体を含む、円偏光板及び画像表示装置により、上記課題が達成されることを見出した。
 すなわち、本発明は下記の通りである。
 [1] 第1光学異方性層及び第2光学異方性層を含み、
 前記第1光学異方性層は、下記式(1)、式(2)、式(3)、及び式(4)を満たし、
 前記第2光学異方性層は、下記式(5)、式(6)、式(7)、及び式(8)を満たす、光学異方性積層体。
 220nm<Re1(590)<330nm (1)
 Re1(450)/Re1(550)≦1.0 (2)
 Re1(650)/Re1(550)≧1.0 (3)
 0.95<NZ1<2.00     (4)
 110nm<Re2(590)<165nm (5)
 Re2(450)/Re2(550)≦1.0 (6)
 Re2(650)/Re2(550)≧1.0 (7)
 -1.5≦NZ2≦0.00     (8)
 ただし、
 Re1(450)、Re1(550)、Re1(590)、及びRe1(650)は、波長450nm、550nm、590nm、及び650nmにおける第1光学異方性層の面内レターデーションReをそれぞれ表し、
 NZ1は波長590nmにおける第1光学異方性層のNZ係数を表し、
 Re2(450)、Re2(550)、Re2(590)、及びRe2(650)は、波長450nm、550nm、590nm、及び650nmにおける第2光学異方性層の面内レターデーションReをそれぞれ表し、
 NZ2は波長590nmにおける第2光学異方性層のNZ係数を表す。
 [2] 前記第1光学異方性層の面内における最大屈折率nx1を示す方向と、前記第2光学異方性層の面内における最大屈折率nx2を示す方向とがなす角度が、60°±10°である、[1]に記載の光学異方性積層体。
 [3] 前記第2光学異方性層が、ポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む樹脂からなる層を含む、[1]又は[2]に記載の光学異方性積層体。
 [4] ポリフェニレンエーテルの、シンジオタクチック構造を有するポリスチレン系重合体に対する重量比率が、35/65以上45/55以下である、[3]に記載の光学異方性積層体。
 [5] 偏光子と、[1]~[4]のいずれか1項に記載の光学異方性積層体とを含み、
 前記偏光子、前記第1光学異方性層、及び前記第2光学異方性層を、この順で備える、円偏光板。
 [6] 前記偏光子の偏光吸収軸方向と、前記第1光学異方性層の面内における最大屈折率nx1を示す方向とがなす角度θ1が、下記式(9)を満たし、
 前記偏光子の偏光吸収軸方向と、前記第2光学異方性層の面内における最大屈折率nx2を示す方向とがなす角度θ2が、下記式(10)を満たす、[5]に記載の円偏光板。
 |θ1|=15°±5°  (9)
 |θ2|=75°±10° (10)
 ただし、θ1とθ2とは同符号である。
 [7] 前記偏光子の偏光吸収軸方向と、前記第1光学異方性層の面内における最大屈折率nx1を示す方向とがなす角度θ1が、下記式(11)を満たし、
 前記偏光子の偏光吸収軸方向と、前記第2光学異方性層の面内における最大屈折率nx2を示す方向とがなす角度θ2が、下記式(12)を満たす、[5]に記載の円偏光板。
 |θ1|=75°±5° (11)
 |θ2|=15°±10°  (12)
 ただし、θ1とθ2とは同符号である。
 [8] [5]~[7]のいずれか1項に記載の円偏光板及び画像表示素子を含み、
 前記光学異方性積層体、前記偏光子、及び前記画像表示素子を、この順で備える、画像表示装置。
 [9] [5]~[7]のいずれか1項に記載の円偏光板及び有機エレクトロルミネッセンス素子を含む、有機エレクトロルミネッセンス表示装置であって、
 前記偏光子、前記光学異方性積層体、及び前記有機エレクトロルミネッセンス素子を、この順で備える、画像表示装置。
 本発明によれば、画像表示装置を表示面の正面方向又は傾斜方向から偏光サングラスを通して観察しつつ表示面を回転させた場合に生じる、色味の変化を低減することができる光学異方性積層体;並びに、前記の光学異方性積層体を含む、円偏光板及び画像表示装置を提供することができる。
図1は、本発明の一実施形態に係る光学異方性積層体を模式的に示す断面図である。 図2は、本発明の一実施形態に係る光学異方性積層体の分解斜視図である。 図3は、本発明の一実施形態に係る円偏光板を模式的に示す断面図である。 図4は、本発明の一実施形態に係る円偏光板の分解斜視図である。 図5は、本発明の一実施形態に係る画像表示装置としての液晶表示装置を模式的に示す断面図である。 図6は、本発明の一実施形態に係る画像表示装置としての有機EL表示装置を模式的に示す断面図である。 図7は、実施例及び比較例でのシミュレーションにおいて、L表色系における明度の変化(ΔL)及び色相の変化(Δa、Δb)の計算を行う際に設定した評価モデルを模式的に示す斜視図である。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。また、以下の説明において、同一の要素には、同一の符号を付してその説明を省略することがある。
 以下の説明において、「長尺」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。長尺のフィルムの長さの上限は、特に制限は無く、例えば、幅に対して10万倍以下としうる。
 以下の説明において、別に断らない限り、ある層の面内レターデーションReは、Re=(nx-ny)×dで表される値を示す。ある層の厚み方向の位相差Rthは、別に断らない限り、Rth={(nx+ny)/2-nz}×dで表される値である。さらに、ある層のNZ係数(NZ)は、別に断らない限り、NZ=(nx-nz)/(nx-ny)で表される値を示す。
 ここで、nxは、層の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向(遅相軸方向)の屈折率を表し、nyは、層の前記面内方向であってnxの方向に直交する方向の屈折率を表し、nzは、層の厚み方向の屈折率を表し、dは、層の厚みを表す。測定波長は、別に断らない限り、590nmである。
 以下の説明において、ある層の遅相軸とは、別に断らない限り、当該層の面内における遅相軸を表す。
 以下の説明において、ある面の正面方向とは、別に断らない限り、当該面の法線方向を意味し、具体的には前記面の極角0°且つ方位角0°の方向を指す。
 以下の説明において、ある面の傾斜方向とは、別に断らない限り、当該面に平行でも垂直でもない方向を意味し、具体的には当該面の極角が0°より大きく90°より小さい範囲の方向を指す。
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。
 以下の説明において、長尺状のフィルムの長手方向は、通常は製造ラインにおけるフィルムの流れ方向と平行である。
 以下の説明において、「円偏光板」、「位相差板」、「λ/2板」及び「λ/4板」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。
 以下の説明において、複数の層を備える部材における各層の光学軸(偏光吸収軸、偏光透過軸、遅相軸等)がなす角度は、別に断らない限り、前記の層を厚み方向から見たときの角度を表す。
 以下の説明において、別に断らない限り、「(メタ)アクリレート」は「アクリレート」、「メタクリレート」及びこれらの混合物を包含する用語であり、「(メタ)アクリル」は「アクリル」、「メタクリル」及びこれらの組み合わせを包含する用語である。
 以下の説明において、「正の固有複屈折値を有する重合体」及び「正の固有複屈折値を有する樹脂」とは、「延伸方向の屈折率がそれに直交する方向の屈折率よりも大きくなる重合体」及び「延伸方向の屈折率がそれに直交する方向の屈折率よりも大きくなる樹脂」をそれぞれ意味する。また、「負の固有複屈折値を有する重合体」及び「負の固有複屈折値を有する樹脂」とは、「延伸方向の屈折率がそれに直交する方向の屈折率よりも小さくなる重合体」及び「延伸方向の屈折率がそれに直交する方向の屈折率よりも小さくなる樹脂」をそれぞれ意味する。固有複屈折値は、誘電率分布から計算しうる。
 以下の説明において、接着剤とは、別に断らない限り、狭義の接着剤(エネルギー線照射後、あるいは加熱処理後、23℃における剪断貯蔵弾性率が1MPa~500MPaである接着剤)のみならず、23℃における剪断貯蔵弾性率が1MPa未満である粘着剤をも包含する。
 [1.光学異方性積層体の概要]
 本発明の光学異方性積層体は、第1光学異方性層及び第2光学異方性層を含む。
 ここで、第1光学異方性層は、下記式(1)、式(2)、式(3)、及び式(4)を満たす。第2光学異方性層120は、下記式(5)、式(6)、式(7)、及び式(8)を満たす。
 図1は、本発明の一実施形態に係る光学異方性積層体100を模式的に示す断面図である。光学異方性積層体100は、第1光学異方性層110及び第2光学異方性層120を備える。
 [1-1.第1光学異方性層及び第2光学異方性層の光学特性]
 第1光学異方性層110は、下記式(1)、式(2)、式(3)、及び式(4)を満たす。
 220nm<Re1(590)<330nm (1)
 Re1(450)/Re1(550)≦1.0 (2)
 Re1(650)/Re1(550)≧1.0 (3)
 0.95<NZ1<2.00     (4)
 ここで、Re1(450)、Re1(550)、Re1(590)、及びRe1(650)は、波長450nm、550nm、590nm、及び650nmにおける第1光学異方性層の面内レターデーションReをそれぞれ表し、NZ1は波長590nmにおける第1光学異方性層のNZ係数を表す。
 第2光学異方性層120は、下記式(5)、式(6)、式(7)、及び式(8)を満たす。
 110nm<Re2(590)<165nm (5)
 Re2(450)/Re2(550)≦1.0 (6)
 Re2(650)/Re2(550)≧1.0 (7)
 -1.5≦NZ2≦0.00     (8)
 ここで、Re2(450)、Re2(550)、Re2(590)、及びRe2(650)は、波長450nm、550nm、590nm、及び650nmにおける第2光学異方性層の面内レターデーションReをそれぞれ表し、NZ2は波長590nmにおける第1光学異方性層のNZ係数を表す。
 光学異方性積層体が、前記式(1)~(4)を満たす第1光学異方性層と、前記式(5)~(8)を満たす第2光学異方性層とを含むことにより、光学異方性積層体を備えた画像表示装置を、表示面の正面方向又は傾斜方向から偏光サングラスを通して観察しつつ表示面を回転させた場合に生じる、表示面の色味の変化を低減することができる。また、前記の光学異方性積層体を偏光子と組み合わせて得られる円偏光板は、有機EL表示装置に設けることにより、通常は、その有機EL表示装置が有する表示面の、正面方向及び傾斜方向における外光の反射を抑制できる。
 式(1)について、Re1(590)は、好ましくは258nm以上であり、より好ましくは268nm以上であり、特に好ましくは273nm以上であり、好ましくは288nm以下であり、より好ましくは283nm以下である。Re1(590)がこのような範囲にあることにより、表示面における色味の変化をより低減できる。
 式(2)について、面内レターデーションの比Re1(450)/Re1(550)は、好ましくは0.80以上であり、好ましくは0.95以下であり、より好ましくは0.90以下である。比Re1(450)/Re1(550)がこのような範囲にあることにより、表示面における色味の変化をより低減できる。
 式(3)について、面内レターデーションの比Re1(650)/Re1(550)は、好ましくは1.01以上であり、より好ましくは1.02以上であり、好ましくは1.20以下である。比Re1(650)/Re1(550)がこのような範囲にあることにより、表示面における色味の変化をより低減できる。
 式(4)について、NZ係数NZ1は、好ましくは1.0以上であり、好ましくは1.5以下であり、より好ましくは1.2以下である。NZ1がこのような範囲にあることにより、表示面における色味の変化をより低減できる。
 式(5)について、Re2(590)は、好ましくは129nm以上であり、より好ましくは134nm以上であり、好ましくは144nm以下であり、より好ましくは142nm以下である。Re2(590)がこのような範囲にあることにより、表示面における色味の変化をより低減できる。
 式(6)について、面内レターデーションの比Re2(450)/Re2(550)は、好ましくは0.80以上であり、好ましくは0.95以下であり、より好ましくは0.90以下である。比Re2(450)/Re2(550)がこのような範囲にあることにより、表示面における色味の変化の低減をより低減できる。
 式(7)について、面内レターデーションの比Re2(650)/Re2(550)は、好ましくは1.01以上であり、より好ましくは1.02以上であり、好ましくは1.20以下である。比Re2(650)/Re2(550)がこのような範囲にあることにより、表示面における色味の変化をより低減できる。
 式(8)について、NZ係数NZ2は、好ましくは-1.0以上であり、より好ましくは-0.75以上であり、特に好ましくは-0.70以上であり、好ましくは0.0以下であり、より好ましくは-0.25以下であり、特に好ましくは-0.30以下である。NZ2がこのような範囲にあることにより、表示面における色味の変化をより低減できる。
 第1光学異方性層の面内レターデーションの比Re1(450)/Re1(550)と、第2光学異方性層の面内レターデーションの比Re2(450)/Re2(550)と、の差|Re1(450)/Re1(550)-Re2(450)/Re2(550)|は、好ましくは0.09以下であり、さらに好ましくは0.05以下であり、より好ましくは0.001以下であり、理想的には0.000である。面内レターデーションの比の差|Re1(450)/Re1(550)-Re2(450)/Re2(550)|が上記の値を取ることにより、表示面における色味の変化の低減をより低減できる。
 第1光学異方性層の面内レターデーションの比Re1(650)/Re1(550)と、第2光学異方性層の面内レターデーションの比Re2(650)/Re2(550)と、の差|Re1(650)/Re1(550)-Re2(650)/Re2(550)|は、好ましくは0.04以下であり、さらに好ましくは0.02以下であり、より好ましくは0.001以下であり、理想的には0.000である。面内レターデーションの比の差|Re1(650)/Re1(550)-Re2(650)/Re2(550)|が上記の値を取ることにより、表示面における色味の変化の低減をより低減できる。
 [1-2.第1光学異方性層及び第2光学異方性層の関係]
 図2は、本発明の一実施形態に係る光学異方性積層体100の分解斜視図である。第1光学異方性層110は、面内方向と平行な方向に遅相軸111を有し、第2光学異方性層120は、面内方向と平行な方向に遅相軸121を有する。一点鎖線で示した線分113は、遅相軸111と平行であり第2光学異方性層120の表面にある線分である。角度θは、遅相軸111と遅相軸121とがなす角度である。
 遅相軸111は、第1光学異方性層110の面内における最大屈折率nx1を示す方向であり、遅相軸121は、第2光学異方性層120の面内における最大屈折率nx2を示す方向である。
 角度θは、好ましくは、60°±10°(すなわち、(60°-10°)以上(60°+10°)以下)である。遅相軸111と遅相軸121とがなす角度が、この範囲にあることにより、より広い波長範囲の直線偏光を、光学異方性積層体100によって円偏光に変換できる。したがって、表示面における色味の変化をより低減できる。
 角度θは、より好ましくは、60°±5°さらに好ましくは60°±3°である。角度θがこの範囲にあることにより、さらに効果的に広い波長範囲の直線偏光を、光学異方性積層体100によって円偏光に変換できる。したがって、表示面における色味の変化をさらに低減できる。
 [1-3.第1光学異方性層及び第2光学異方性層の構成]
 第1光学異方性層及び第2光学異方性層を形成するための材料としては、例えば樹脂が挙げられ、中でも熱可塑性樹脂が好ましい。
 第1光学異方性層及び第2光学異方性層を形成するための材料としては、固有複屈折値が正の重合体を含む樹脂であっても、固有複屈折値が負の重合体を含む樹脂であっても、固有複屈折値が正の重合体及び固有複屈折値が負の重合体を含む樹脂であってもよい。
 固有複屈折値が正の重合体としては、特に限定されないが、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル;ポリフェニレンサルファイド等のポリアリーレンサルファイド;ポリビニルアルコール;ポリカーボネート;ポリアリレート;セルロースエステル重合体、ポリエーテルスルホン;ポリスルホン;ポリアリールスルホン;ポリ塩化ビニル;ノルボルネン重合体等の環状オレフィン重合体;棒状液晶ポリマーが挙げられる。
 固有複屈折値が負の重合体としては、特に限定されないが、例えば、スチレン類化合物の単独重合体、並びに、スチレン類化合物と任意のモノマーとの共重合体を含むポリスチレン系重合体;ポリアクリロニトリル重合体;ポリメチルメタクリレート重合体;あるいはこれらの多元共重合ポリマーが挙げられる。また、スチレン類化合物に共重合させうる前記任意のモノマーとしては、例えば、アクリロニトリル、無水マレイン酸、メチルメタクリレート、及びブタジエンが挙げられ、アクリロニトリル、無水マレイン酸、メチルメタクリレート、及びブタジエンから選ばれる1種以上が好ましい。
 前記の重合体は、単独重合体でもよく、共重合体でもよい。
 また、前記の重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 第2光学異方性層は、厚み方向の屈折率を大きくすることができることから、好ましくは固有複屈折値が負の重合体を含む樹脂を含み、より好ましくはポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む樹脂を含み、さらに好ましくはポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む樹脂からなる層を含む。以下、「ポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む樹脂」を、適宜、「ブレンド樹脂p1」ということがある。
 ブレンド樹脂p1は、当該ブレンド樹脂p1が含む重合体の種類及び量に応じて、その固有複屈折値の符号(正及び負)を調整しうる。通常、ブレンド樹脂p1として、負の固有複屈折値を有するものを用いる。ブレンド樹脂p1では、ポリフェニレンエーテルとポリスチレン系重合体との量比を調整することにより、当該ブレンド樹脂p1の波長分散を高い自由度で調整することができる。
 ポリフェニレンエーテルは、通常、正の固有複屈折値を有する重合体である。このポリフェニレンエーテルは、フェニルエーテル又はフェニルエーテル誘導体を重合して形成される構造を有する構造単位を含む。通常は、フェニレンエーテル骨格を有する構造単位を主鎖に有する重合体を、ポリフェニレンエーテルとして用いる。以下、「フェニレンエーテル骨格を有する構造単位」を、適宜「フェニレンエーテル単位」という。ただし、フェニレンエーテル単位におけるベンゼン環には、本発明の効果を著しく損なわない限り、置換基を有していてもよい。
 中でも、ポリフェニレンエーテルとしては、下記式(I)で表されるフェニレンエーテル単位を含む重合体が好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(I)において、Qは、それぞれ独立に、ハロゲン原子、低級アルキル基(例えば炭素数7個以下のアルキル基)、フェニル基、ハロアルキル基、アミノアルキル基、炭化水素オキシ基、または、ハロ炭化水素オキシ基(ただし、そのハロゲン原子と酸素原子とを少なくとも2つの炭素原子が分離している基)を表す。中でも、Qとしてはアルキル基及びフェニル基が好ましく、特に炭素数1以上4以下のアルキル基がより好ましい。
 式(I)において、Qは、それぞれ独立に、水素原子、ハロゲン原子、低級アルキル基(例えば炭素数7個以下のアルキル基)、フェニル基、ハロアルキル基、炭化水素オキシ基、または、ハロ炭化水素オキシ基(ただし、そのハロゲン原子と酸素原子とを少なくとも2つの炭素原子が分離している基)を表す。中でも、Qとしては水素原子が好ましい。
 ポリフェニレンエーテルは、1種類の構造単位を有する単独重合体(ホモポリマー)であってもよく、2種類以上の構造単位を有する共重合体(コポリマー)であってもよい。
 式(I)で表される構造単位を含む重合体が単独重合体である場合、当該単独重合体の好ましい例を挙げると、2,6-ジメチル-1,4-フェニレンエーテル単位(「-(C(CH-O)-」で表される構造単位)を有する単独重合体が挙げられる。
 式(I)で表される構造単位を含む重合体が共重合体である場合、当該共重合体の好ましい例を挙げると、2,6-ジメチル-1,4-フェニレンエーテル単位と2,3,6-トリメチル-1,4-フェニレンエーテル単位(「-(CH(CH-O-)-」で表される構造単位)と組み合わせて有するランダム共重合体が挙げられる。
 また、ポリフェニレンエーテルは、フェニレンエーテル単位以外の任意の構造単位を含んでいてもよい。この場合、ポリフェニレンエーテルは、フェニレンエーテル単位と任意の構造単位とを有する共重合体となる。ただし、ポリフェニレンエーテルにおける任意の構造単位の量は、本発明の効果を著しく損なわない程度に少なくすることが好ましい。具体的には、ポリフェニレンエーテルにおけるフェニレンエーテル単位の量は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは80重量%以上である。
 ポリフェニレンエーテルは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ポリフェニレンエーテルの重量平均分子量は、好ましくは15,000以上、より好ましくは25,000以上、特に好ましくは35,000以上であり、好ましくは100,000以下、より好ましくは85,000以下、特に好ましくは70,000以下である。重量平均分子量を前記範囲の下限値以上にすることにより、ブレンド樹脂p1からなる層の強度を高めることができる。また、上限値以下にすることにより、ポリフェニレンエーテルの分散性を高められるので、ポリフェニレンエーテルとポリスチレン系重合体とを高いレベルで均一に混合することが可能となる。
 ここで、重量平均分子量は、1,2,4-トリクロロベンゼンを溶媒として温度135℃でゲルパーミエーションクロマトグラフィー(GPC)で測定した、標準ポリスチレン換算の値を採用しうる。
 ポリフェニレンエーテルの製造方法に制限は無く、公知の方法により製造しうる。
 シンジオタクチック構造を有するポリスチレン系重合体は、通常、負の固有複屈折値を有する重合体である。このポリスチレン系重合体は、スチレン類化合物を重合して形成される構造単位を含む。以下、「スチレン類化合物を重合して形成される構造単位」を、適宜「スチレン類単位」という。スチレン類化合物の例としては、スチレン及びスチレン誘導体が挙げられる。スチレン誘導体の例としては、スチレンのベンゼン環またはα位に置換基が置換した誘導体が挙げられる。
 スチレン類化合物の具体例を挙げると、スチレン;メチルスチレン、2,4-ジメチルスチレン等のアルキルスチレン;クロロスチレン等のハロゲン化スチレン;クロロメチルスチレン等のハロゲン置換アルキルスチレン;メトキシスチレン等のアルコキシスチレンが挙げられる。中でもスチレン類化合物としては、置換基を有しないスチレンが好ましい。また、スチレン類化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ブレンド樹脂p1が含むポリスチレン系重合体としては、シンジオタクチック構造を有するものを用いる。ここで、ポリスチレン系重合体がシンジオタクチック構造を有する、とは、ポリスチレン系重合体の立体化学構造がシンジオタクチック構造となっていることをいう。また、シンジオタクチック構造とは、炭素-炭素結合で形成される主鎖に対して、側鎖であるフェニル基が、フィッシャー投影式において、交互に反対方向に位置する立体構造のことをいう。
 ポリスチレン系重合体のタクティシティー(tacticity:立体規則性)は、同位体炭素による核磁気共鳴法(13C-NMR法)により定量されうる。13C-NMR法により測定されるタクティシティーは、連続する複数個の構造単位の存在割合により示すことができる。一般に、例えば、連続する構造単位が2個の場合はダイアッド、3個の場合はトリアッド、5個の場合はペンタッドとなる。この場合、前記シンジオタクチック構造を有するポリスチレン系重合体とは、ラセミダイアッドで好ましくは75%以上、より好ましくは85%以上のシンジオタクティシティーを有するか、若しくは、ラセミペンタッドで好ましくは30%以上、より好ましくは50%以上のシンジオタクティシティーを有することをいう。
 ポリスチレン系重合体の例としては、ポリスチレン、ポリ(アルキルスチレン)、ポリ(ハロゲン化スチレン)、ポリ(ハロゲン化アルキルスチレン)、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸エステル)、及びこれらの水素化重合体、並びにこれらの共重合体が挙げられる。
 ポリ(アルキルスチレン)としては、例えば、ポリ(メチルスチレン)、ポリ(エチルスチレン)、ポリ(イソプロピルスチレン)、ポリ(t-ブチルスチレン)、ポリ(フェニルスチレン)、ポリ(ビニルナフタレン)、及びポリ(ビニルスチレン)が挙げられる。
 ポリ(ハロゲン化スチレン)としては、例えば、ポリ(クロロスチレン)、ポリ(ブロモスチレン)、及びポリ(フルオロスチレン)が挙げられる。
 ポリ(ハロゲン化アルキルスチレン)としては、例えば、ポリ(クロロメチルスチレン)などが挙げられる。
 ポリ(アルコキシスチレン)としては、例えば、ポリ(メトキシスチレン)、及びポリ(エトキシスチレン)が挙げられる。
 これらのうち特に好ましいポリスチレン系重合体としては、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(m-メチルスチレン)、ポリ(p-t-ブチルスチレン)、ポリ(p-クロロスチレン)、ポリ(m-クロロスチレン)、ポリ(p-フルオロスチレン)、水素化ポリスチレン、及びこれらの構造単位を含む共重合体が挙げられる。
 また、ポリスチレン系重合体は、1種類の構造単位のみを有する単独重合体であってもよく、2種類以上の構造単位を有する共重合体であってもよい。また、ポリスチレン系重合体が共重合体である場合、2種類以上のスチレン類単位を含む共重合体であってもよく、スチレン類単位とスチレン類単位以外の構造単位とを含む共重合体であってもよい。ただし、ポリスチレン系重合体がスチレン類単位とスチレン類単位以外の構造単位とを含む共重合体である場合、ポリスチレン系重合体中のスチレン類単位以外の構造単位の量は、本発明の効果を著しく損なわない程度に少なくすることが好ましい。具体的には、ポリスチレン系重合体におけるスチレン類単位の量は、好ましくは80重量%以上、より好ましくは83重量%以上、特に好ましくは85重量%以上である。通常は、スチレン類単位の量をこのような範囲にすることで、ブレンド樹脂p1からなる層に所望の位相差を容易に発現させることができる。
 ポリスチレン系重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ポリスチレン系重合体の重量平均分子量は、通常130,000以上、好ましくは140,000以上、より好ましくは150,000以上であり、通常300,000以下、好ましくは270,000以下、より好ましくは250,000以下である。このような重量平均分子量とすると、ポリスチレン系重合体のガラス転移温度を高めて、ブレンド樹脂p1からなる層の耐熱性を安定して改善することができる。
 ポリスチレン系重合体のガラス転移温度は、好ましくは85℃以上、より好ましくは90℃以上、特に好ましくは95℃以上である。このようにポリスチレン系重合体のガラス転移温度を高めることにより、ブレンド樹脂p1のガラス転移温度を効果的に高め、ひいてはブレンド樹脂p1からなる層の耐熱性を安定して改善することができる。また、ブレンド樹脂p1からなる層の製造を安定して容易に行う観点から、ポリスチレン系重合体のガラス転移温度は、好ましくは160℃以下、より好ましくは155℃以下、特に好ましくは150℃以下である。
 シンジオタクチック構造を有するポリスチレン系重合体は、公知の方法により製造することができ、例えば、不活性炭化水素溶媒中又は溶媒の不存在下において、チタン化合物及び水とトリアルキルアルミニウムの縮合生成物を触媒として、スチレン類化合物を重合することにより製造しうる。
 ブレンド樹脂p1に含まれるポリフェニレンエーテルとポリスチレン系重合体とは、(i)互いに波長分散が異なり、(ii)固有複屈折値の符号が異なり、且つ、(iii)相溶可能である。そのため、ポリフェニレンエーテルの量とポリスチレン系重合体の量との重量比を調整することにより、そのブレンド樹脂p1からなる層の波長分散を調整できる。ポリフェニレンエーテルのポリスチレン系重合体に対する重量比率(「ポリフェニレンエーテルの量」/「ポリスチレン系重合体の量」)は、好ましくは35/65以上であり、より好ましくは37/63以上であり、好ましくは45/55以下であり、より好ましくは43/57以下である。ポリフェニレンエーテルのポリスチレン系重合体に対する重量比率を前記範囲とすることにより、ブレンド樹脂p1からなる層が好ましい逆波長分散性を発現しうる。
 ブレンド樹脂p1においてポリフェニレンエーテル及びポリスチレン系重合体の合計が占める割合は、好ましくは50重量%~100重量%、より好ましくは70重量%~100重量%、特に好ましくは90重量%~100重量%である。ポリフェニレンエーテル及びポリスチレン系重合体の合計の割合を前記範囲にすることにより、ブレンド樹脂p1からなる層が適切な光学特性を発現しうる。
 ブレンド樹脂p1は、ポリフェニレンエーテル及びポリスチレン系重合体以外の任意の成分を含みうる。
 例えば、ブレンド樹脂p1は、上述したポリフェニレンエーテル及びポリスチレン系重合体以外にも重合体を含んでいてもよい。ポリフェニレンエーテル及びポリスチレン系重合体以外の重合体の量は、ポリフェニレンエーテル及びポリスチレン系重合体の合計量を100重量部として、15重量部以下が好ましく、10重量部以下がより好ましく、5重量部以下が特に好ましい。
 例えば、ブレンド樹脂p1は、配合剤を含んでいてもよい。配合剤の例を挙げると、層状結晶化合物;微粒子;酸化防止剤、熱安定剤、光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤等の安定剤;可塑剤:染料及び顔料等の着色剤;帯電防止剤;などが挙げられる。また、配合剤は、1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 配合剤の量は、本発明の効果を著しく損なわない範囲で適宜定めうる。例えばブレンド樹脂p1からなる層の全光線透過率を85%以上に維持できる範囲である。
 上述した中でも、配合剤としては、耐候性を向上させることができる点で、紫外線吸収剤が好ましい。
 紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、アクリロニトリル系紫外線吸収剤、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体などが挙げられる。好適な紫外線吸収剤の例としては、2,2’-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2,4-ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノンが挙げられ、特に好適なものとしては、2,2’-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノールが挙げられる。
 ブレンド樹脂p1のガラス転移温度は、好ましくは115℃以上、より好ましくは118℃以上、さらにより好ましくは120℃以上である。ブレンド樹脂p1はポリフェニレンエーテル及びポリスチレン系重合体を組み合わせて含むので、ポリスチレン系重合体のみを含む樹脂と比べて、ガラス転移温度を高めることができる。ガラス転移温度がこのように高いことにより、ブレンド樹脂p1の配向緩和を低減することができるので、耐熱性に優れた第2光学異方性層を実現できる。また、ブレンド樹脂p1のガラス転移温度の上限に特に制限は無いが、通常は200℃以下である。
 第1光学異方性層及び第2光学異方性層は、大面積化が容易であり効率的な製造が可能であることから、樹脂からなる延伸前フィルムを延伸して得られる延伸フィルムから製造されることが好ましい。第1光学異方性層及び第2光学異方性層は、それぞれ単層構造であっても、2種以上の層を備える複層構造であってもよい。好ましくは、第1光学異方性層及び第2光学異方性層は、それぞれ単層構造である。
 第1光学異方性層及び第2光学異方性層の光学特性は、例えば、層に含まれる樹脂の種類を変更すること、樹脂に含まれる重合体が有する構成単位の比率を変化させること、延伸前フィルムの延伸条件を変化させることによって調整することができる。
 第1光学異方性層の面内における最大屈折率を示す遅相軸方向は、光学異方性積層体の用途に応じて任意に設定しうる。光学異方性積層体が長尺の形状を有する場合、第1光学異方性層の遅相軸と光学異方性積層体の幅方向とがなす角度は、0°超90°未満であることが好ましい。また、ある態様において、第1光学異方性層の遅相軸と光学異方性積層体の幅方向とがなす角度は、好ましくは15°±5°、22.5°±5°、45°±5°、67.5°±5°、又は75°±5°、より好ましくは15°±4°、22.5°±4°、45°±4°、67.5°±4°、又は75°±4°、さらにより好ましくは15°±3°、22.5°±3°、45°±3°、67.5°±3°、又は75°±3°といった特定の範囲としうる。このような角度関係を有することにより、光学異方性積層体を、円偏光板の効率的な製造を可能にする材料とすることができる。
 第2光学異方性層の面内における最大屈折率を示す遅相軸方向は、光学異方性積層体の用途に応じて任意に設定しうる。光学異方性積層体が長尺の形状を有する場合、第二光学異方性層の遅相軸と光学異方性積層体の幅方向とがなす角度は、0°超90°未満であることが好ましい。また、ある態様において、第2光学異方性層の遅相軸と光学異方性積層体の幅方向とがなす角度は、好ましくは15°±5°、22.5°±5°、45°±5°、67.5°±5°、又は75°±5°、より好ましくは15°±4°、22.5°±4°、45°±4°、67.5°±4°、又は75°±4°、さらにより好ましくは15°±3°、22.5°±3°、45°±3°、67.5°±3°、又は75°±3°といった特定の範囲としうる。このような角度関係を有することにより、光学異方性積層体を、円偏光板の効率的な製造を可能にする材料とすることができる。
 第1光学異方性層及び第2光学異方性層の厚みは特に限定されず、それぞれの層の光学特性を所望の範囲とできるように適切に調整しうる。
 第1光学異方性層の具体的な厚みは、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、特に好ましくは60μm以下である。
 第2光学異方性層の具体的な厚みは、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、特に好ましくは60μm以下である。
 [1-4.光学異方性積層体が含みうる任意の層]
 本発明の光学異方性積層体は、第1光学異方性層及び第2光学異方性層以外に任意の層を含みうる。
 本発明の光学異方性積層体が含み得る任意の層としては、特に限定されないが、例えば、接着剤層及びハードコート層が挙げられる。光学異方性積層体は、これら任意の層を1層のみ含んでいてもよく、複数層含んでいてもよい。
 [1-5.光学異方性積層体の製造方法]
 光学異方性積層体は、第1光学異方性層と第2光学異方性層とを貼り合わせることを含む製造方法によって、製造しうる。
 第1光学異方性層と第2光学異方性層との貼り合わせには、適切な接着剤を用いうる。
 接着剤としては、後述する円偏光板において用いる接着剤と同様の接着剤を用いることが好ましい。
 [2.円偏光板]
 本発明の円偏光板は、偏光子及び光学異方性積層体を含む。
 図3は、本発明の一実施形態に係る円偏光板を模式的に示す断面図である。
 円偏光板200は、偏光子210と光学異方性積層体100とを備える。また、この円偏光板200は、偏光子210と、第1光学異方性層110と、第2光学異方性層120とをこの順に備える。
 偏光子210としては、液晶表示装置、及びその他の光学装置等の装置に用いられている既知の偏光子を用いうる。
 偏光子210の例としては、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるフィルム;ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるフィルム;が挙げられる。また、偏光子210の他の例としては、グリッド偏光子、多層偏光子、コレステリック液晶偏光子などの、偏光を反射光と透過光に分離する機能を有する偏光子が挙げられる。これらのうち、偏光子210としては、ポリビニルアルコールを含有する偏光子が好ましい。
 偏光子210は、長尺のフィルムであってもよい。偏光子210が長尺のフィルムである場合、偏光子210の偏光吸収軸は、当該偏光子210の幅方向に平行又は垂直である。このような長尺の偏光子210は、上述した光学異方性積層体100とロールツーロールで貼り合わせて、長尺の円偏光板200を容易に製造できる。
 偏光子210に自然光を入射させると、一方の偏光だけが透過する。この偏光子210の偏光度は特に限定されないが、好ましくは98%以上、より好ましくは99%以上である。
 また、偏光子210の厚みは、好ましくは5μm~80μmである。
 図4は、本発明の一実施形態に係る円偏光板200の分解斜視図である。
 図4に示すように、偏光子210の偏光吸収軸方向Dと、第1光学異方性層110の面内における遅相軸方向Dとがなす角度を、符号「θ1」で表し、偏光子210の偏光吸収軸方向Dと、第2光学異方性層120の面内における遅相軸方向Dとがなす角度を、符号「θ2」で表す。この際、-90°<θ1<90°、且つ、-90°<θ2<90°である。また、遅相軸方向Dは、第1光学異方性層110の面内における最大屈折率nx1を示す方向であり、遅相軸方向Dは、第2光学異方性層120の面内における最大屈折率nx2を示す方向である。
 この場合、前記の角度θ1及びθ2は、正負の符号が同符号であり、且つ、下記式(9)及び(10)を満たすことが好ましい。
 |θ1|=15°±5°  (9)
 |θ2|=75°±10° (10)
 式(9)を詳細に説明すると、角度θ1の絶対値|θ1|は、通常15°±5°、好ましくは15°±3°、より好ましくは15°±1°である。
 式(10)を詳細に説明すると、角度θ2の絶対値|θ2|は、通常75°±10°、好ましくは75°±6°、より好ましくは75°±2°である。
 このような要件を満たすことにより、偏光子210を透過した広い波長範囲の直線偏光を、第1光学異方性層110及び第2光学異方性層120を含む光学異方性積層体100によって、円偏光に変換できる。したがって、円偏光板200を画像表示装置に設けた場合に、表示面における色味の変化をより低減できる。
 または、前記の角度θ1及びθ2は、正負の符号が同符号であり、且つ、下記式(11)及び(12)を満たすことが好ましい。
 |θ1|=75°±5° (11)
 |θ2|=15°±10°  (12)
 式(11)を詳細に説明すると、角度θ1の絶対値|θ1|は、通常75°±5°、好ましくは75°±3°、より好ましくは75°±2°である。
 式(12)を詳細に説明すると、角度θ2の絶対値|θ2|は、通常15°±10°、好ましくは15°±6°、より好ましくは15°±1°である。
 このような要件を満たすことにより、偏光子210を透過した広い波長範囲の直線偏光を、第1光学異方性層110及び第2光学異方性層120を含む光学異方性積層体100によって、円偏光に変換できる。したがって、円偏光板200を画像表示装置に設けた場合に、表示面における色味の変化をより低減できる。
 本発明にかかるある製品(円偏光板等)において、面内の光学軸(遅相軸、偏光透過軸、偏光吸収軸等)の方向及び幾何学的方向(フィルムの長手方向及び幅方向等)の角度関係は、ある方向のシフトを正、他の方向のシフトを負として規定され、当該正及び負の方向は、当該製品内の構成要素において共通に規定される。例えば、ある円偏光板において、「偏光子の偏光吸収軸方向に対する第1光学異方性層の遅相軸方向が15°であり偏光子の偏光吸収軸方向に対する第2光学異方性層の遅相軸方向が75°である」とは、下記の2通りの場合を表す:
 ・当該円偏光板を、そのある一方の面から観察すると、第1光学異方性層の遅相軸方向が、偏光子の偏光吸収軸方向から時計周りに15°シフトし、且つ第2光学異方性層の遅相軸方向が、偏光子の偏光吸収軸方向から時計周りに75°シフトしている。
 ・当該円偏光板を、そのある一方の面から観察すると、第1光学異方性層の遅相軸方向が、偏光子の偏光吸収軸方向から反時計周りに15°シフトし、且つ第2光学異方性層の遅相軸方向が、偏光子の偏光吸収軸方向から反時計周りに75°シフトしている。
 円偏光板200は、更に、偏光子210と光学異方性積層体100とを貼り合わせるための、接着層(図示せず。)を備えていてもよい。接着層としては、粘着剤の層を用いてもよいが、硬化性接着剤を硬化させてなる層を用いることが好ましい。硬化性接着剤としては、熱硬化性接着剤を用いてもよいが、光硬化性接着剤を用いることが好ましい。光硬化性接着剤としては、重合体又は反応性の単量体を含んだものを用いうる。また、接着剤は、必要に応じて溶媒、光重合開始剤、その他の添加剤等の一以上を含みうる。
 光硬化性接着剤は、可視光線、紫外線、及び赤外線等の光を照射すると硬化しうる接着剤である。中でも、操作が簡便なことから、紫外線で硬化しうる接着剤が好ましい。
 好ましい態様において、光硬化性接着剤は、水酸基を有する(メタ)アクリレートモノマーを50重量%以上含む。ここで、「接着剤が、ある割合で単量体を含む」という場合、当該単量体の割合は、当該単量体が単量体のまま存在しているもの、当該単量体が既に重合して重合体の一部となっているものの両方の合計の割合である。
 水酸基を有する(メタ)アクリレートモノマーの例としては、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートが挙げられる。これらは、1種類で使用してもよく、2種類以上を任意の比率で組み合わせて用いてもよい。組み合わせて使用する場合の含有量は、合計の割合である。
 光硬化性接着剤が含みうる、水酸基を有する(メタ)アクリレートモノマー以外の単量体の例としては、単官能、又は多官能の水酸基を有しない(メタ)アクリレートモノマー、及び1分子あたり1以上のエポキシ基を含有する化合物が挙げられる。
 接着剤は、本発明の効果を著しく損なわない範囲で、さらに任意の成分を含んでいてもよい。任意の成分の例としては、光重合開始剤、架橋剤、無機フィラー、重合禁止剤、着色顔料、染料、消泡剤、レベリング剤、分散剤、光拡散剤、可塑剤、帯電防止剤、界面活性剤、非反応性ポリマー(不活性重合体)、粘度調整剤、近赤外線吸収材等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 光重合開始剤の例としては、ラジカル開始剤及びカチオン開始剤が挙げられる。カチオン開始剤の例としてはIrgacure250(ジアリルヨードニウム塩、BASF社製)が挙げられる。ラジカル開始剤の例としてIrgacure184、Irgacure819、Irgacure2959、(いずれもBASF社製)が挙げられる。
 接着層の厚みは、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは30μm以下、より好ましくは20μm以下、さらに好ましくは10μm以下である。接着層の厚みを前記範囲内とすることにより、光学異方性積層体の光学的性質を損ねずに、良好な接着を達成しうる。
 円偏光板200は、更に、任意の層を含みうる。任意の層としては、例えば、偏光子保護フィルム層(図示せず。)が挙げられる。偏光子保護フィルム層としては、任意の透明フィルム層を用いうる。中でも、透明性、機械的強度、熱安定性、水分遮蔽性等に優れる樹脂のフィルム層が好ましい。そのような樹脂としては、トリアセチルセルロース等のアセテート樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、鎖状オレフィン樹脂、環状オレフィン樹脂、(メタ)アクリル樹脂等が挙げられる。
 さらに、円偏光板200が含みうる任意の層としては、例えば、耐衝撃性ポリメタクリレート樹脂層などのハードコート層、フィルムの滑り性を良くするマット層、反射防止層、防汚層等が挙げられる。
 前記の層は、それぞれ、1層だけを設けてもよく、2層以上を設けてもよい。
 円偏光板200は、偏光子210と光学異方性積層体100とを貼り合わせることを含む製造方法によって、製造しうる。
 [3.画像表示装置]
 本発明の画像表示装置は、画像表示素子と、上述した円偏光板とを含む。画像表示装置において、円偏光板は、通常、画像表示素子の視認側に設けられる。この際、円偏光板の向きは、その円偏光板の用途に応じて任意に設定しうる。よって、画像表示装置は、光学異方性積層体と、偏光子と、画像表示素子とを、この順に備えていてもよい。また、画像表示装置は、偏光子と、光学異方性積層体と、画像表示素子とを、この順に備えていてもよい。
 画像表示装置としては、画像表示素子の種類に応じて様々なものがあるが、代表的な例としては、画像表示素子として液晶セルを備える液晶表示装置、及び、画像表示素子として有機エレクトロルミネッセンス素子(以下、適宜「有機EL素子」ということがある。)を備える有機EL表示装置が挙げられる。
 図5は、本発明の一実施形態に係る画像表示装置としての液晶表示装置300を模式的に示す断面図である。
 図5に示すように、液晶表示装置300は、光源310;光源側直線偏光子320;画像表示素子としての液晶セル330;視認側直線偏光子としての偏光子210;並びに、第1光学異方性層110及び第2光学異方性層120を備える光学異方性積層体100;を、この順に備える。
 液晶セル330は、例えば、インプレーンスイッチング(IPS)モード、バーチカルアラインメント(VA)モード、マルチドメインバーチカルアラインメント(MVA)モード、コンティニュアスピンホイールアラインメント(CPA)モード、ハイブリッドアラインメントネマチック(HAN)モード、ツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、オプチカルコンペンセイテッドベンド(OCB)モードなど、任意のモードの液晶セルを用いうる。
 このような液晶表示装置300においては、光源310から発せられ、光源側直線偏光子320、液晶セル330、偏光子210及び光学異方性積層体100を通過した光によって、画像が表示される。よって、画像を表示する光は、偏光子210を通過した時点では直線偏光であるが、光学異方性積層体100を通過することによって、円偏光に変換される。したがって、前記の液晶表示装置300では、円偏光によって画像が表示されるので、偏光サングラスを通して表示面300Uを見た場合に、画像を視認することが可能である。
 また、前記の液晶表示装置300において、光学異方性積層体100が含む第1光学異方性層110及び第2光学異方性層120が上述した要件を満たすので、光学異方性積層体100は、広い波長範囲において、画像を表示する光を理想的な円偏光に変換して表示面の正面方向及び傾斜方向に出射できる。したがって、本実施形態に係る液晶表示装置300では、表示面300Uの正面方向又は傾斜方向から偏光サングラスを通して観察しつつ表示面300Uを回転させた場合に生じる、表示面300Uの色味の変化を低減することができる。
 図6は、本発明の一実施形態に係る画像表示装置としての有機EL表示装置400を模式的に示す断面図である。
 図6に示すように、有機EL表示装置400は、画像表示素子としての有機EL素子410;第2光学異方性層120及び第1光学異方性層110を備える光学異方性積層体100;並びに、偏光子210;を、この順に備える。
 前記の有機EL素子410は、透明電極層、発光層及び電極層をこの順に備え、透明電極層及び電極層から電圧を印加されることにより発光層が光を生じうる。有機発光層を構成する材料の例としては、ポリパラフェニレンビニレン系、ポリフルオレン系、およびポリビニルカルバゾール系の材料を挙げることができる。また、発光層は、複数の発光色が異なる層の積層体、あるいはある色素の層に異なる色素がドーピングされた混合層を有していてもよい。さらに、有機EL素子410は、正孔注入層、正孔輸送層、電子注入層、電子輸送層、等電位面形成層、電荷発生層等の機能層を備えていてもよい。
 このような有機EL表示装置400においては、光学異方性積層体100及び偏光子210を備える円偏光板200によって、表示面400Uの正面方向又は傾斜方向から見た場合に、外光の反射による表示面400Uのぎらつきを抑制できる。
 具体的には、装置外部から入射した光は、その一部の直線偏光のみが偏光子210を通過し、次にそれが光学異方性積層体100を通過することにより、円偏光となる。円偏光は、表示装置内の光を反射する構成要素(有機EL素子410中の反射電極(図示せず)等)により反射され、再び光学異方性積層体100を通過することにより、入射した直線偏光の振動方向と直交する振動方向を有する直線偏光となり、偏光子210を通過しなくなる。これにより、反射抑制の機能が達成される。
 また、前記の有機EL表示装置400において、光学異方性積層体100が含む第1光学異方性層110及び第2光学異方性層120が上述した要件を満たすので、円偏光板200は、前記の反射抑制の機能を、広い波長範囲において、また表示面の正面方向及び傾斜方向からの観察において、効果的に発揮できる。したがって、この有機EL表示装置400では、その有機EL表示装置400の表示面400Uの正面方向及び傾斜方向における外光の反射を効果的に抑制して、優れた視認性を実現することができる。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。
 [評価方法]
 〔光学異方性層の位相差特性の測定方法〕
 光学異方性層を備えるフィルムから、フィルムの長手方向に平行な長辺と、フィルムの幅方向に平行な短辺とを有する、A4サイズのサンプル片を切り出した。
 光学的に等方性のガラス板の一方の面と、前記サンプル片の光学異方性層側の面とを、手貼りローラーを用いて、貼り合わせた。貼り合わせは、粘着剤層(日東電工製「CS9621」)を介して行った。また、ガラス板のサイズは75mm×25mmであり、ガラス板の長辺とサンプル片の長辺とが平行になるように貼り合わせ、ガラス板からはみ出したサンプル片の余り部分は、カッターで切り落とした。これにより、(ガラス板)/(粘着剤層)/(光学異方性層)の層構成を有する、測定用位相差板を得た。
 こうして得られた測定用位相差板を用いて、波長450nm、550nm、590nm及び650nmにおける光学異方性層の面内レターデーションRe(450)、Re(550)、Re(590)、Re(650)、波長590nmにおけるRth、並びに、遅相軸方向を、位相差測定装置(AXOMETRICS社製「AxoScan」)を用いて測定した。そして、光学異方性層のRe(450)/Re(550)及びRe(650)/Re(550)の値、並びに波長590nmにおけるNZ係数を求めた。また、フィルム幅方向に対して、光学異方性層の遅相軸がなす角度を求めた。
 〔シミュレーションによる明度及び色相の変化量の計算方法〕
 シミュレーション用のソフトウェアとして、シンテック社製「LCD Master」を用いて、光学異方性積層体を備える下記の評価モデルを作成した。
 シミュレーション用の評価モデルでは、市販の液晶表示装置の表示面に、光学異方性積層体の第1光学異方性層側の面を貼り合わせて得られる画像表示装置を設定した。市販の液晶表示装置としては、光源、光源側直線偏光子、液晶セル及び視認側直線偏光子をこの順に備える液晶表示装置(Apple社製「iPad Air(登録商標)」)を採用した。前記の貼り合わせは、厚み方向から見て、視認側直線偏光子の偏光吸収軸に対して光学異方性積層体の第1光学異方性層の遅相軸及び第2光学異方性層の遅相軸がなす角度θ1及びθ2が、それぞれ15.0°及び75.0°となるように設定した。この画像表示装置は、視認側から、第2光学異方性層、第1光学異方性層、視認側直線偏光子、及び、画像表示素子としての液晶セルを、この順に備えている。
 図7は、実施例及び比較例でのシミュレーションにおいて、L表色系における明度の変化(ΔL)及び色相の変化(Δa、Δb)の計算を行う際に設定した評価モデルを模式的に示す斜視図である。図7において、画像表示装置の表示面10には、偏光サングラス20の偏光吸収軸21に平行な線分22を、一点鎖線で示す。また、画像表示装置の表示面10に垂直な軸23を鎖線で示す。
 前記の画像表示装置を白表示にして、偏光サングラス20を通して見える画像の明度(L)及び色相(a、b)を計算した。計算に際し、観察方向は、図7に示す表示面10の極角θp=0°の方向(表示面10の正面方向)又は表示面10の極角θp=45°の方向(表示面10の正面方向から45°の傾斜方向)とした。偏光サングラス20としては、理想偏光フィルムを設定した。ここで、理想偏光フィルムとは、ある方向に平行な振動方向を有する直線偏光の全てを通過させるが、その方向に垂直な振動方向を有する直線偏光を全く通過させないフィルムをいう。
 前記の明度(L)及び色相(a、b)の計算を行った。計算は、表示面10を軸23を中心として回転させて、基準方向11に対して偏光サングラス20の偏光吸収軸21がなす方位角φを、0°以上360°未満の範囲で、5°刻みで変えた多数の場合について行った。計算に際して、偏光サングラス20を通さずに見える白表示の画像データを白に設定した。そして、計算された明度(L)及び色相(a、b)の変化量(最大値-最小値)を算出し、それぞれ明度の変化量ΔL及び色相の変化量(Δa、Δb)とした。これらの変化量が小さいほど、表示面の色味の変化が低減された良好な結果であることを示す。
 〔目視による画像の色味変化の評価方法〕
 下記実施例及び比較例で得られた評価用の画像表示装置を白表示にして、表示面の正面方向(極角0°)から、偏光サングラスを通して表示面を目視にて観察した。この観察の際、画像表示装置を、その表示面に垂直な回転軸を中心にして一回転させた。そして、観察される像に、回転角度に応じた明るさ・色相の変化があるか、5段階(A、B、C、D、E)の評価基準により評価した。評価Aは最も回転角度に応じた色の変化が小さく、評価Eは最も回転角度に応じた色の変化が大きい。回転角度に応じた色の変化が小さいほど、良好な結果であり、表示面の色味の変化が低減されていることを示す。
 また、観察方向を表示面の正面方向(極角0°)から表示面の傾斜方向(極角45°)へ変更した以外は上記と同様にして観察し、評価した。
 また、表示面の正面方向(極角0°)からの観察による評価結果と、表示面の傾斜方向(極角45°)からの観察による評価結果を用いて、下記の方法に従い総合評価を行った。
 (総合評価の方法)
 5段階の評価A、B、C、D、及びEに、それぞれ素点5点、4点、3点、2点、及び1点を与えた。正面方向(極角0°)からの観察による評価の素点と、傾斜方向(極角45°)からの観察による評価の素点を乗算し、得られた点数に、下記の基準により5段階評価を与えた。得られた点数が高いほど、表示面の色味の変化を低減することについての評価が高い。
 A:21点以上
 B:16~20点
 C:11~15点
 D:6~10点
 E:1~5点
 [製造例1-1.第1光学異方性層としてのλ/2板の製造]
 (工程A.樹脂R1の製造)
 イソソルビドを397.3重量部、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンを960.1重量部、ポリエチレングリコール(数平均分子量1000、三洋化成工業(株)製)を14.6重量部、ジフェニルカーボネートを1065.1重量部、及び触媒として酢酸マグネシウム4水和物を8.45×10-3重量部用いて、特開2013-076982号公報の合成例9に記載された方法に従い、ポリカーボネート樹脂R1を得た。樹脂R1は、固有複屈折値が正である。
 (工程B.延伸前フィルムの製造)
 得られたポリカーボネート樹脂R1を80℃で5時間真空乾燥した後、単軸押出機、Tダイ、チルロール、及び巻取機を備えたフィルム製膜装置を用いて製膜して長尺の延伸前フィルムを得た。この延伸前フィルムの厚みを、170~230μmの範囲で、下記表1、2、3のような物性のλ/2板H1が得られるように調整した。
 (工程C.λ/2板の製造)
 得られた延伸前フィルムを100℃で3日間真空乾燥した後、自由一軸延伸してλ/2板H1を得た。一軸延伸の条件を延伸温度:127~177℃、延伸倍率:1.5~2.5倍の範囲において、下記表1、2、3のような物性のλ/2板H1が得られるように調整することで、位相差フィルムを得た。
 [製造例1-2.第1光学異方性層としてのλ/2板の製造]
 工程Bにおいて、延伸前フィルムの厚みを、170~230μmの範囲で、下記表2のような物性のλ/2板H2が得られるように調整し、工程Cにおいて、一軸延伸の条件を延伸温度:127~177℃、延伸倍率:1.5~2.5倍の範囲において、下記表2のような物性のλ/2板H2が得られるように調整した以外は製造例1-1と同様にして、λ/2板H2を得た。
 [製造例1-3.第1光学異方性層としてのλ/2板の製造]
 工程Bにおいて、延伸前フィルムの厚みを、170~230μmの範囲で、下記表2のような物性のλ/2板H3が得られるように調整し、工程Cにおいて、一軸延伸の条件を延伸温度:127~177℃、延伸倍率:1.5~2.5倍の範囲において、下記表2のような物性のλ/2板H3が得られるように調整した以外は製造例1-1と同様にして、λ/2板H3を得た。
 [製造例1-4.第1光学異方性層としてのλ/2板の製造]
 工程Bにおいて、延伸前フィルムの厚みを、170~230μmの範囲で、下記表2のような物性のλ/2板H4が得られるように調整し、工程Cにおいて、一軸延伸の条件を延伸温度:127~177℃、延伸倍率:1.5~2.5倍の範囲において、下記表2のような物性のλ/2板H4が得られるように調整した以外は製造例1-1と同様にして、λ/2板H4を得た。
 [製造例1-5.第2光学異方性層としてのλ/4板の製造]
 工程Bにおいて、延伸前フィルムの厚みを、70~130μmの範囲で、下記表3のような物性のλ/4板QC1が得られるように調整し、工程Cにおいて、一軸延伸の条件を延伸温度:127~177℃、延伸倍率:1.5~2.5倍の範囲において、下記表3のような物性のλ/4板QC1が得られるように調整した以外は製造例1-1と同様にして、λ/4板QC1を得た。
 [製造例2-1.第2光学異方性としてのλ/4板の製造]
 (工程A.ブレンド樹脂p1としての樹脂R2の製造)
 シンジオタクチックポリスチレン(出光興産社製「130-ZC」、ガラス転移温度98℃、結晶化温度140℃)60重量部と、ポリ(2,6-ジメチル-1,4-フェニレンオキサイド)(アルドリッチ社カタログNo.18242-7)40重量部とを、2軸押出機で混錬し、ブレンド樹脂p1としての、透明な樹脂R2のペレットを得た。得られた樹脂R2のガラス転移温度は141℃であった。樹脂R2の固有複屈折値は、負である。
 (工程B.延伸前フィルムの製造)
 ダブルフライト型のスクリューを備えた一軸押出機を備える、二種二層の共押出成形用のフィルム成形装置(2種類の樹脂によって2層構造のフィルムを成形しうるタイプの成形装置)を準備した。樹脂R2のペレットを、前記のフィルム成形装置の一方の一軸押出機に投入して、溶融させた。また、耐衝撃性ポリメチルメタクリレート樹脂R3(住友化学社製「スミペックス(登録商標)HT55X」)のペレットを、前記のフィルム成形装置のもう一方の一軸押出機に投入して、溶融させた。
 溶融された290℃の樹脂R2を、目開き10μmのリーフディスク形状のポリマーフィルターを通して、マルチマニホールドダイ(ダイスリップの表面粗さRa:0.1μm)の一方のマニホールドに供給した。また、溶融された260℃の樹脂R3を、目開き10μmのリーフディスク形状のポリマーフィルターを通して、前記マルチマニホールドダイのもう一方のマニホールドに供給した。
 樹脂R2及び樹脂R3をマルチマニホールドダイから280℃で同時に押し出して、フィルム状に成形した。成形されたフィルム状の溶融樹脂を、表面温度110℃に調整されたキャストロールにキャストし、次いで表面温度50℃に調整された2本の冷却ロール間に通した。樹脂はキャストロール上で冷却固化して、樹脂R2からなる層及び樹脂R3からなる層を備える延伸前フィルムが得られた。この際、キャストロールの回転速度を調整することにより、樹脂R2からなる層(厚さ50~100μm)と樹脂R3からなる層(厚さ50~100μm)とを備える延伸前フィルムの厚さを、厚さ100~200μmの範囲で、下記表1のような物性のλ/4板Q1が得られるように調整した。
 (工程C.λ/4板の製造)
 得られた延伸前フィルムを、縦延伸機で当該延伸前フィルムの長手方向に自由一軸延伸し、その後、樹脂R3からなる層を剥離して、樹脂R2からなる、λ/4板Q1を製造した。この際、自由一軸延伸の条件は、延伸温度134℃~148℃、延伸倍率1.3~2.0倍の範囲で下記表1のような物性のλ/4板Q1が得られるように調整した。得られたλ/4板は、当該λ/4板の幅方向に遅相軸を有していた。また、このλ/4板において、アクリル樹脂の層には位相差が発現しなかった。
 [製造例2-2.第2光学異方性層としてのλ/4板の製造]
 製造例2-1の工程Bにおいてキャストロールの回転速度を調整することにより、厚さ100~200μmの範囲で、下記表1のような物性のλ/4板Q2が得られるように延伸前フィルムの厚さを調整した以外は製造例2-1の工程A及び工程Bと同様にして、延伸前フィルムを得た。
 得られた延伸前フィルムを、横延伸機で長手方向に対して90°の角度をなす幅方向に延伸し、その後樹脂R3からなる層を剥離して、樹脂R2からなる、λ/4板Q2を製造した。
 延伸の条件は、延伸温度134℃~148℃、延伸倍率1.5~3.5倍の範囲で下記表1のような物性のλ/4板Q2が得られるように調整した。
 [製造例2-3.第2光学異方性層としてのλ/4板の製造]
 製造例2-1の工程Bにおいてキャストロールの回転速度を調整することにより、厚さ100~200μmの範囲で、下記表1のような物性のλ/4板Q3が得られるように延伸前フィルムの厚さを調整した以外は製造例2-1の工程A及び工程Bと同様にして、延伸前フィルムを得た。
 得られた延伸前フィルムを、縦延伸機で長手方向に自由一軸延伸し、次に横延伸機で長手方向に対して90°の角度をなす幅方向に延伸し、その後樹脂R3からなる層を剥離して、樹脂R2からなる、λ/4板Q3を製造した。
 延伸の条件は、延伸温度134℃~148℃、縦方向の延伸倍率1.1~1.5倍、横方向の延伸倍率1.5~3.5倍の範囲で下記表1のような物性のλ/4板Q3が得られるように調整した。
 [製造例2-4.第2光学異方性層としてのλ/4板の製造]
 製造例2-1の工程Bにおいてキャストロールの回転速度を調整することにより、厚さ100~200μmの範囲で、下記表1のような物性のλ/4板Q4が得られるように延伸前フィルムの厚さを調整した以外は製造例2-1の工程A及び工程Bと同様にして、延伸前フィルムを得た。
 得られた延伸前フィルムを、縦延伸機で長手方向に自由一軸延伸し、次に横延伸機で長手方向に対して90°の角度をなす幅方向に延伸し、その後樹脂R3からなる層を剥離して、樹脂R2からなる、λ/4板Q4を製造した。
 延伸の条件は、延伸温度134℃~148℃、縦方向の延伸倍率1.3~1.7倍、横方向の延伸倍率1.7~3.7倍の範囲で下記表1のような物性のλ/4板Q4が得られるように調整した。
 [製造例2-5.第2光学異方性層としてのλ/4板の製造]
 製造例2-1の工程Bにおいてキャストロールの回転速度を調整することにより、厚さ100~200μmの範囲で、下記表2のような物性のλ/4板Q5が得られるように延伸前フィルムの厚さを調整した以外は製造例2-1の工程A及び工程Bと同様にして、延伸前フィルムを得た。
 得られた延伸前フィルムを、縦延伸機で長手方向に自由一軸延伸し、次に横延伸機で長手方向に対して90°の角度をなす幅方向に延伸し、その後樹脂R3からなる層を剥離して、樹脂R2からなる、λ/4板Q5を製造した。
 延伸の条件は、延伸温度134℃~148℃、縦方向の延伸倍率1.5~2.0倍、横方向の延伸倍率2.0~4.0倍の範囲で下記表2のような物性のλ/4板Q5が得られるように調整した。
 [製造例2-6.第2光学異方性層としてのλ/4板の製造]
 製造例2-1の工程Bにおいてキャストロールの回転速度を調整することにより、厚さ100~200μmの範囲で、下記表2のような物性のλ/4板Q6が得られるように延伸前フィルムの厚さを調整した以外は製造例2-1の工程A及び工程Bと同様にして、延伸前フィルムを得た。
 得られた延伸前フィルムを、縦延伸機で長手方向に自由一軸延伸し、次に横延伸機で長手方向に対して90°の角度をなす幅方向に延伸し、その後樹脂R3からなる層を剥離して、樹脂R2からなる、λ/4板Q6を製造した。
 延伸の条件は、延伸温度134℃~148℃、縦方向の延伸倍率1.1~1.5倍、横方向の延伸倍率1.5~3.5倍の範囲で下記表2のような物性のλ/4板Q6が得られるように調整した。
 [製造例2-7.第2光学異方性層としてのλ/4板の製造]
 製造例2-1の工程Bにおいてキャストロールの回転速度を調整することにより、厚さ100~200μmの範囲で、下記表2のような物性のλ/4板Q7が得られるように延伸前フィルムの厚さを調整した以外は製造例2-1の工程A及び工程Bと同様にして、延伸前フィルムを得た。
 得られた延伸前フィルムを、縦延伸機で長手方向に自由一軸延伸し、次に横延伸機で長手方向に対して90°の角度をなす幅方向に延伸し、その後樹脂R3からなる層を剥離して、樹脂R2からなる、λ/4板Q7を製造した。
 延伸の条件は、延伸温度134℃~148℃、縦方向の延伸倍率1.1~1.5倍、横方向の延伸倍率1.5~3.5倍の範囲で下記表2のような物性のλ/4板Q7が得られるように調整した。
 [製造例2-8.第2光学異方性層としてのλ/4板の製造]
 製造例2-1の工程Bにおいてキャストロールの回転速度を調整することにより、厚さ100~200μmの範囲で、下記表2のような物性のλ/4板Q8が得られるように延伸前フィルムの厚さを調整した以外は製造例2-1の工程A及び工程Bと同様にして、延伸前フィルムを得た。
 得られた延伸前フィルムを、縦延伸機で長手方向に自由一軸延伸し、次に横延伸機で長手方向に対して90°の角度をなす幅方向に延伸し、その後樹脂R3からなる層を剥離して、樹脂R2からなる、λ/4板Q8を製造した。
 延伸の条件は、延伸温度134℃~148℃、縦方向の延伸倍率1.1~1.5倍、横方向の延伸倍率1.5~3.5倍の範囲で下記表2のような物性のλ/4板Q8が得られるように調整した。
 [製造例3-1.第1光学異方性層としてのλ/2板の製造]
 (工程A.シクロオレフィン樹脂R4からなる延伸前フィルムの製造)
 単層のフィルム成形装置を用意した。シクロオレフィン樹脂R4(日本ゼオン社製「ZEONOR1420」、ガラス転移温度140℃)のペレットを、フィルム成形装置のダブルフライト型のスクリューを備えた一軸押出機に投入して260℃で溶融し、目開き10μmのリーフディスク形状のポリマーフィルターを通して、260℃に温調されたダイ(ダイスリップの表面粗さRa:0.1μm)から押し出し、フィルム状に成形した。成形されたフィルム状の溶融樹脂を、表面温度110℃に調整されたキャストロールにキャストし、次いで表面温度50℃に調整された2本の冷却ロール間に通した。樹脂はキャストロール上で冷却固化して、延伸前フィルムが得られた。この際、キャストロールの回転速度を調整することにより、厚み80~120μmの範囲で、下記表3のような物性のλ/2板HC2が得られるように延伸前フィルムの厚みを調整した。
 (工程B.λ/2板の製造)
 得られた延伸前フィルムを、自由一軸延伸してλ/2板HC2を得た。ここで、一軸延伸の条件を、延伸温度:140~150℃、延伸倍率:1.4~1.8倍の範囲において、下記表3のような物性のλ/2板HC2が得られるように調整した。
 [製造例3-2.第2光学異方性層としてのλ/4板の製造]
 工程Aにおいて、キャストロールの回転速度を調整することにより、厚み30~70μmの範囲で、下記表3のような物性のλ/4板QC2が得られるように延伸前フィルムの厚みを調整した以外は製造例3-1の工程Aと同様にして、延伸前フィルムを得た。得られた延伸前フィルムを、自由一軸延伸してλ/4板QC2を得た。ここで、一軸延伸の条件を、延伸温度:140~150℃、延伸倍率:1.4~1.8倍の範囲において、下記表3のような物性のλ/4板QC2が得られるように調整した。
 [実施例及び比較例]
 下記実施例及び比較例の通りの、第1光学異方性層としてのλ/2板及び第2光学異方性層としてのλ/4板を備えたシミュレーション用評価モデルを用いて、上記の方法によりシミュレーションによる明度及び色相の変化量を計算した。
 また、下記実施例及び比較例の通り、画像表示装置を製造して、上記の方法により目視による画像の色味変化の評価を行った。
 [実施例1]
 粘着剤層として、光学用透明粘着シート(日東電工社製「LUCIACS(登録商標) CS9621T」)を用意した。この粘着シートを用いて、製造例1-1で得たλ/2板H1と製造例2-1で得たλ/4板Q1とを、λ/2板H1の遅相軸とλ/4板Q1の遅相軸とが60°の角度をなすようにして貼り合わせて、光学異方性積層体を得た。
 次いで、光源、光源側直線偏光子、画像表示素子としてのIPSモードの液晶セル、及び視認側直線偏光子をこの順に備えた液晶表示装置(Apple社製「iPad(登録商標)」)を用意した。この液晶表示装置の表示面部分を分解し、液晶表示装置の視認側直線偏光子を露出させた。露出した視認側直線偏光子に、光学異方性積層体のλ/2板側の面(すなわち、第1光学異方性層側の面)を、手貼りローラーを用いて貼り合わせた。貼り合わせは、粘着剤層(日東電工製「LUCIACS(登録商標) CS9621T」)を介して行った。また、前記の貼り合わせは、厚み方向から見て、液晶表示装置の視認側直線偏光子の偏光吸収軸に対して第1光学異方性層の遅相軸及び第2光学異方性層の遅相軸がなす角度が、それぞれ、15.0°及び75.0°となるように行った。
 このようにして、第2光学異方性層としてのλ/4板、第1光学異方性としてのλ/2板、偏光子、及び画像表示素子としての液晶セルを、この順で備える、画像表示装置が得られた。画像表示装置は、偏光子、第1光学異方性層としてのλ/2板、及び第2光学異方性層としてのλ/4板をこの順で備える、円偏光板を含んでいる。
 [実施例2]
 λ/4板Q1の代わりに製造例2-2で得たλ/4板Q2を用いた以外は、実施例1と同様にして、光学異方性積層体、及び円偏光板を含む画像表示装置を得た。
 [実施例3]
 λ/4板Q1の代わりに製造例2-3で得たλ/4板Q3を用いた以外は、実施例1と同様にして、光学異方性積層体、及び円偏光板を含む画像表示装置を得た。
 [実施例4]
 λ/4板Q1の代わりに製造例2-4で得たλ/4板Q4を用いた以外は、実施例1と同様にして、光学異方性積層体4、及び円偏光板を含む画像表示装置を得た。
 [実施例5]
 λ/4板Q1の代わりに製造例2-5で得たλ/4板Q5を用いた以外は、実施例1と同様にして、光学異方性積層体、及び円偏光板を含む画像表示装置を得た。
 [実施例6]
 λ/2板H1の代わりに製造例1-2で得たλ/2板H2を用い、λ/4板Q1の代わりに製造例2-6で得たλ/4板Q6を用いた以外は、実施例1と同様にして、光学異方性積層体、及び円偏光板を含む画像表示装置を得た。
 [実施例7]
 λ/2板H1の代わりに製造例1-3で得たλ/2板H3を用い、λ/4板Q1の代わりに製造例2-7で得たλ/4板Q7を用いた以外は、実施例1と同様にして、光学異方性積層体、及び円偏光板を含む画像表示装置を得た。
 [実施例8]
 λ/2板H1の代わりに製造例1-4で得たλ/2板H4を用い、λ/4板Q1の代わりに製造例2-8で得たλ/4板Q8を用いた以外は、実施例1と同様にして、光学異方性積層体、及び円偏光板を含む画像表示装置を得た。
 [比較例1]
 λ/2H1の代わりに製造例3-1で得たλ/2板HC2を用い、λ/4板Q1の代わりに製造例3-2で得たλ/4板QC2を用いた以外は、実施例1と同様にして、光学異方性積層体、及び円偏光板を含む画像表示装置を得た。
 [比較例2]
 λ/4板Q1の代わりに製造例1-5で得たλ/4板QC1を用いた以外は、実施例1と同様にして、光学異方性積層体、及び円偏光板を含む画像表示装置を得た。
 実施例1~4、実施例5~8、及び比較例1~2の画像表示装置の構成をそれぞれ表1、表2、及び表3に示した。また、評価結果を表4に示した。
 下記表において、SPSPPEは、シンジオタクチックポリスチレンとポリ(2,6-ジメチル-1,4-フェニレンオキサイド)とを含むブレンド樹脂を意味し、COPは、シクロオレフィン樹脂を意味する。
 また、θ1は、偏光子の偏光吸収軸方向と、第1光学異方性層としてのλ/2板の面内における最大屈折率nx1を示す方向(遅相軸方向)とがなす角度を意味し、θ2は、偏光子の偏光吸収軸方向と、第2光学異方性層としてのλ/4板の面内における最大屈折率nx2を示す方向(遅相軸方向)とがなす角度を意味する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例1~8の画像表示装置は、総合評価が比較例と比較して高く、表示面の色味の変化が低減されていることが分かる。
 一方、第2光学異方性層としてのλ/4板が、式(8)を満たしていない比較例1及び2の画像表示装置は、傾斜方向(極角45°)からの観察における色味の変化が実施例と比較して大きいことが分かる。また、第1光学異方性層としてのλ/2板が、式(2)及び(3)を満たしておらず、第2光学異方性層としてのλ/4板が、式(6)及び(7)を満たしていない比較例1の画像表示装置は、正面方向(極角0°)及び傾斜方向(極角45°)からの観察における色味の変化が実施例と比較して大きいことが分かる。
 以上の結果から、本発明の光学異方性積層体、円偏光板、及び画像表示装置は、表示面の正面方向又は傾斜方向から偏光サングラスを通して観察しつつ表示面を回転させた場合に生じる、色味の変化を低減できることが分かる。
 100 光学異方性積層体
 110 第1光学異方性層
 120 第2光学異方性層
 200 円偏光板
 210 偏光子
 300 液晶表示装置
 310 光源
 320 光源側直線偏光子
 330 液晶セル
 400 有機EL表示装置
 410 有機EL素子

Claims (9)

  1.  第1光学異方性層及び第2光学異方性層を含み、
     前記第1光学異方性層は、下記式(1)、式(2)、式(3)、及び式(4)を満たし、
     前記第2光学異方性層は、下記式(5)、式(6)、式(7)、及び式(8)を満たす、光学異方性積層体。
     220nm<Re1(590)<330nm (1)
     Re1(450)/Re1(550)≦1.0 (2)
     Re1(650)/Re1(550)≧1.0 (3)
     0.95<NZ1<2.00     (4)
     110nm<Re2(590)<165nm (5)
     Re2(450)/Re2(550)≦1.0 (6)
     Re2(650)/Re2(550)≧1.0 (7)
     -1.5≦NZ2≦0.00     (8)
     ただし、
     Re1(450)、Re1(550)、Re1(590)、及びRe1(650)は、波長450nm、550nm、590nm、及び650nmにおける第1光学異方性層の面内レターデーションReをそれぞれ表し、
     NZ1は波長590nmにおける第1光学異方性層のNZ係数を表し、
     Re2(450)、Re2(550)、Re2(590)、及びRe2(650)は、波長450nm、550nm、590nm、及び650nmにおける第2光学異方性層の面内レターデーションReをそれぞれ表し、
     NZ2は波長590nmにおける第2光学異方性層のNZ係数を表す。
  2.  前記第1光学異方性層の面内における最大屈折率nx1を示す方向と、前記第2光学異方性層の面内における最大屈折率nx2を示す方向とがなす角度が、60°±10°である、請求項1に記載の光学異方性積層体。
  3.  前記第2光学異方性層が、ポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む樹脂からなる層を含む、請求項1又は2に記載の光学異方性積層体。
  4.  ポリフェニレンエーテルの、シンジオタクチック構造を有するポリスチレン系重合体に対する重量比率が、35/65以上45/55以下である、請求項3に記載の光学異方性積層体。
  5.  偏光子と、請求項1~4のいずれか1項に記載の光学異方性積層体とを含み、
     前記偏光子、前記第1光学異方性層、及び前記第2光学異方性層を、この順で備える、円偏光板。
  6.  前記偏光子の偏光吸収軸方向と、前記第1光学異方性層の面内における最大屈折率nx1を示す方向とがなす角度θ1が、下記式(9)を満たし、
     前記偏光子の偏光吸収軸方向と、前記第2光学異方性層の面内における最大屈折率nx2を示す方向とがなす角度θ2が、下記式(10)を満たす、請求項5に記載の円偏光板。
     |θ1|=15°±5°  (9)
     |θ2|=75°±10° (10)
     ただし、θ1とθ2とは同符号である。
  7.  前記偏光子の偏光吸収軸方向と、前記第1光学異方性層の面内における最大屈折率nx1を示す方向とがなす角度θ1が、下記式(11)を満たし、
     前記偏光子の偏光吸収軸方向と、前記第2光学異方性層の面内における最大屈折率nx2を示す方向とがなす角度θ2が、下記式(12)を満たす、請求項5に記載の円偏光板。
     |θ1|=75°±5° (11)
     |θ2|=15°±10°  (12)
     ただし、θ1とθ2とは同符号である。
  8.  請求項5~7のいずれか1項に記載の円偏光板及び画像表示素子を含み、
     前記光学異方性積層体、前記偏光子、及び前記画像表示素子を、この順で備える、画像表示装置。
  9.  請求項5~7のいずれか1項に記載の円偏光板及び有機エレクトロルミネッセンス素子を含む、有機エレクトロルミネッセンス表示装置であって、
     前記偏光子、前記光学異方性積層体、及び前記有機エレクトロルミネッセンス素子を、この順で備える、画像表示装置。
PCT/JP2018/005121 2017-02-28 2018-02-14 光学異方性積層体、円偏光板、及び画像表示装置 WO2018159297A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019502863A JPWO2018159297A1 (ja) 2017-02-28 2018-02-14 光学異方性積層体、円偏光板、及び画像表示装置
CN201880009732.3A CN110249244B (zh) 2017-02-28 2018-02-14 光学各向异性层叠体、圆偏振片以及图像显示装置
KR1020197024300A KR20190124714A (ko) 2017-02-28 2018-02-14 광학 이방성 적층체, 원 편광판, 및 화상 표시 장치
US16/482,787 US11391876B2 (en) 2017-02-28 2018-02-14 Optically anisotropic laminate, circularly polarizing plate and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017037591 2017-02-28
JP2017-037591 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159297A1 true WO2018159297A1 (ja) 2018-09-07

Family

ID=63370885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005121 WO2018159297A1 (ja) 2017-02-28 2018-02-14 光学異方性積層体、円偏光板、及び画像表示装置

Country Status (6)

Country Link
US (1) US11391876B2 (ja)
JP (1) JPWO2018159297A1 (ja)
KR (1) KR20190124714A (ja)
CN (1) CN110249244B (ja)
TW (1) TWI740005B (ja)
WO (1) WO2018159297A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124456A1 (ja) * 2017-12-20 2019-06-27 日本ゼオン株式会社 円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置及び液晶表示装置
WO2021085332A1 (ja) * 2019-10-31 2021-05-06 Agc株式会社 光学素子
WO2022196784A1 (ja) * 2021-03-18 2022-09-22 日本化薬株式会社 光学積層体、それを用いたアイウェア
WO2022196785A1 (ja) * 2021-03-18 2022-09-22 日本化薬株式会社 光学積層体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210341787A1 (en) * 2018-09-28 2021-11-04 Sharp Kabushiki Kaisha Circularly polarizing plate, method for producing circularly polarizing plate, display device and method for producing display device
CN115132069B (zh) * 2021-03-26 2024-04-19 虹软科技股份有限公司 适用于屏下传感器的柔性显示器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026705A1 (fr) * 1998-10-30 2000-05-11 Teijin Limited Film a differences de phase et dispositif optique dans lequel il est utilise
JP2004184575A (ja) * 2002-12-02 2004-07-02 Sumitomo Chem Co Ltd 半透過半反射性偏光フィルム並びにそれを用いた偏光光源装置及び液晶表示装置
JP2008249943A (ja) * 2007-03-30 2008-10-16 Nec Lcd Technologies Ltd タッチパネル付き液晶表示装置及び端末装置
WO2013137113A1 (ja) * 2012-03-15 2013-09-19 日本ゼオン株式会社 有機el表示装置
JP2015106114A (ja) * 2013-12-02 2015-06-08 日東電工株式会社 有機el表示装置用円偏光板および有機el表示装置
WO2015166991A1 (ja) * 2014-05-01 2015-11-05 富士フイルム株式会社 有機el表示装置
WO2016043124A1 (ja) * 2014-09-17 2016-03-24 日本ゼオン株式会社 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置
WO2016047517A1 (ja) * 2014-09-26 2016-03-31 日本ゼオン株式会社 円偏光板及びその製造方法、広帯域λ/4板、有機エレクトロルミネッセンス表示装置、並びに液晶表示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138144A (ja) 2000-09-05 2011-07-14 Nitto Denko Corp タッチパネル付el表示装置
JP4350052B2 (ja) 2004-04-16 2009-10-21 シャープ株式会社 円偏光板及び液晶表示装置
JP4849454B2 (ja) 2006-05-12 2012-01-11 日東電工株式会社 楕円偏光板およびそれを用いた画像表示装置
KR101072371B1 (ko) * 2010-09-20 2011-10-11 주식회사 엘지화학 편광판용 접착제 및 이를 포함하는 편광판
JP2013076982A (ja) * 2011-09-14 2013-04-25 Mitsubishi Chemicals Corp 位相差フィルム、並びにこれを用いた円偏光板及び画像表示装置
JP2014071209A (ja) 2012-09-28 2014-04-21 Dainippon Printing Co Ltd 光学フィルム用転写体、光学フィルム、光学フィルム用転写体の製造方法
JP6179308B2 (ja) 2012-11-21 2017-08-16 大日本印刷株式会社 光学フィルム、光学フィルム用転写体、画像表示装置
KR101542618B1 (ko) * 2012-12-14 2015-08-06 제일모직주식회사 편광판 및 이를 포함하는 광학 표시 장치
JP5615987B2 (ja) * 2013-02-07 2014-10-29 日東電工株式会社 偏光膜を有する光学積層体
CN103207426B (zh) * 2013-03-28 2015-09-16 京东方科技集团股份有限公司 一种偏光片及显示装置
TWI645962B (zh) 2013-08-09 2019-01-01 住友化學股份有限公司 光學異向性薄片
JP6175972B2 (ja) 2013-08-20 2017-08-09 大日本印刷株式会社 光学フィルム、画像表示装置、光学フィルム用転写体、光学フィルムの製造方法及び光学フィルム用転写体の製造方法
JP2015079230A (ja) 2013-09-10 2015-04-23 住友化学株式会社 積層体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026705A1 (fr) * 1998-10-30 2000-05-11 Teijin Limited Film a differences de phase et dispositif optique dans lequel il est utilise
JP2004184575A (ja) * 2002-12-02 2004-07-02 Sumitomo Chem Co Ltd 半透過半反射性偏光フィルム並びにそれを用いた偏光光源装置及び液晶表示装置
JP2008249943A (ja) * 2007-03-30 2008-10-16 Nec Lcd Technologies Ltd タッチパネル付き液晶表示装置及び端末装置
WO2013137113A1 (ja) * 2012-03-15 2013-09-19 日本ゼオン株式会社 有機el表示装置
JP2015106114A (ja) * 2013-12-02 2015-06-08 日東電工株式会社 有機el表示装置用円偏光板および有機el表示装置
WO2015166991A1 (ja) * 2014-05-01 2015-11-05 富士フイルム株式会社 有機el表示装置
WO2016043124A1 (ja) * 2014-09-17 2016-03-24 日本ゼオン株式会社 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置
WO2016047517A1 (ja) * 2014-09-26 2016-03-31 日本ゼオン株式会社 円偏光板及びその製造方法、広帯域λ/4板、有機エレクトロルミネッセンス表示装置、並びに液晶表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124456A1 (ja) * 2017-12-20 2019-06-27 日本ゼオン株式会社 円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置及び液晶表示装置
WO2021085332A1 (ja) * 2019-10-31 2021-05-06 Agc株式会社 光学素子
WO2022196784A1 (ja) * 2021-03-18 2022-09-22 日本化薬株式会社 光学積層体、それを用いたアイウェア
WO2022196785A1 (ja) * 2021-03-18 2022-09-22 日本化薬株式会社 光学積層体

Also Published As

Publication number Publication date
CN110249244B (zh) 2021-08-17
JPWO2018159297A1 (ja) 2019-12-19
TWI740005B (zh) 2021-09-21
KR20190124714A (ko) 2019-11-05
US11391876B2 (en) 2022-07-19
CN110249244A (zh) 2019-09-17
US20200233133A1 (en) 2020-07-23
TW201833603A (zh) 2018-09-16

Similar Documents

Publication Publication Date Title
JP7067600B2 (ja) 円偏光板、広帯域λ/4板及びその製造方法、並びに、有機エレクトロルミネッセンス表示装置
WO2018159297A1 (ja) 光学異方性積層体、円偏光板、及び画像表示装置
JP5640745B2 (ja) 光学フィルム、製造方法及び輝度向上フィルム
JP6168045B2 (ja) 位相差フィルム積層体、位相差フィルム積層体の製造方法、並びに位相差フィルムの製造方法
TWI777051B (zh) 光學各向異性堆疊體、偏光板及影像顯示裝置
US11987742B2 (en) Polymerizable liquid crystal composition, cured product, optical film, polarizing plate, and image display device
KR102577635B1 (ko) 광학 적층체 및 해당 광학 적층체를 이용한 화상 표시 장치
WO2015072486A1 (ja) 位相差フィルムの製造方法
JPWO2018062424A1 (ja) 光学素子、光学素子の製造方法および液晶表示装置
TWI749694B (zh) 偏光板及包括其的光學顯示裝置
JP6303275B2 (ja) 位相差フィルム積層体、位相差フィルム積層体の製造方法、位相差フィルム、製造方法、及び用途
JP5891870B2 (ja) 光学フィルム、及び光学フィルムの製造方法
JP6485348B2 (ja) 光学積層体、偏光板複合体、液晶表示装置、及び製造方法
JP2013011725A (ja) 複層フィルム及び複層フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502863

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197024300

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760982

Country of ref document: EP

Kind code of ref document: A1