WO2016047517A1 - 円偏光板及びその製造方法、広帯域λ/4板、有機エレクトロルミネッセンス表示装置、並びに液晶表示装置 - Google Patents
円偏光板及びその製造方法、広帯域λ/4板、有機エレクトロルミネッセンス表示装置、並びに液晶表示装置 Download PDFInfo
- Publication number
- WO2016047517A1 WO2016047517A1 PCT/JP2015/076235 JP2015076235W WO2016047517A1 WO 2016047517 A1 WO2016047517 A1 WO 2016047517A1 JP 2015076235 W JP2015076235 W JP 2015076235W WO 2016047517 A1 WO2016047517 A1 WO 2016047517A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plate
- film
- circularly polarizing
- polarizing film
- slow axis
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 66
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 19
- 238000010521 absorption reaction Methods 0.000 claims abstract description 64
- 239000006185 dispersion Substances 0.000 claims abstract description 27
- 239000007788 liquid Substances 0.000 claims description 52
- 229920006302 stretch film Polymers 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 20
- 238000005401 electroluminescence Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 abstract description 62
- 239000010410 layer Substances 0.000 description 97
- 229920005989 resin Polymers 0.000 description 66
- 239000011347 resin Substances 0.000 description 66
- 229920000642 polymer Polymers 0.000 description 63
- 239000000178 monomer Substances 0.000 description 37
- 230000003287 optical effect Effects 0.000 description 33
- 238000000576 coating method Methods 0.000 description 19
- 125000004122 cyclic group Chemical group 0.000 description 19
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 19
- 150000002430 hydrocarbons Chemical group 0.000 description 18
- 125000004432 carbon atom Chemical group C* 0.000 description 16
- 238000000465 moulding Methods 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 15
- -1 acryl Chemical group 0.000 description 14
- 230000009477 glass transition Effects 0.000 description 13
- 229920005672 polyolefin resin Polymers 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 125000005647 linker group Chemical group 0.000 description 12
- 230000000704 physical effect Effects 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 11
- 239000012790 adhesive layer Substances 0.000 description 11
- 125000002723 alicyclic group Chemical group 0.000 description 11
- 239000000853 adhesive Substances 0.000 description 10
- 230000001070 adhesive effect Effects 0.000 description 10
- 229920002451 polyvinyl alcohol Polymers 0.000 description 10
- 239000011241 protective layer Substances 0.000 description 10
- 239000004372 Polyvinyl alcohol Substances 0.000 description 9
- 125000002947 alkylene group Chemical group 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 9
- 229920001721 polyimide Polymers 0.000 description 9
- 238000007142 ring opening reaction Methods 0.000 description 9
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 125000000732 arylene group Chemical group 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 239000004925 Acrylic resin Substances 0.000 description 7
- 229920000178 Acrylic resin Polymers 0.000 description 7
- 239000004642 Polyimide Substances 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- 238000010030 laminating Methods 0.000 description 7
- 239000000155 melt Substances 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 239000004793 Polystyrene Substances 0.000 description 6
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 6
- 125000004450 alkenylene group Chemical group 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000013329 compounding Methods 0.000 description 6
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 6
- 150000001993 dienes Chemical class 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 239000004417 polycarbonate Substances 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- 229920005992 thermoplastic resin Polymers 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- DTCCVIYSGXONHU-CJHDCQNGSA-N (z)-2-(2-phenylethenyl)but-2-enedioic acid Chemical compound OC(=O)\C=C(C(O)=O)\C=CC1=CC=CC=C1 DTCCVIYSGXONHU-CJHDCQNGSA-N 0.000 description 5
- 229920006026 co-polymeric resin Polymers 0.000 description 5
- 150000001925 cycloalkenes Chemical class 0.000 description 5
- 150000004678 hydrides Chemical class 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 239000003505 polymerization initiator Substances 0.000 description 5
- 230000000379 polymerizing effect Effects 0.000 description 5
- 229920000098 polyolefin Polymers 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 4
- 150000003440 styrenes Chemical class 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229920005668 polycarbonate resin Polymers 0.000 description 3
- 239000004431 polycarbonate resin Substances 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 125000002345 steroid group Chemical group 0.000 description 3
- 150000000000 tetracarboxylic acids Chemical class 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- MWKAGZWJHCTVJY-UHFFFAOYSA-N 3-hydroxyoctadecan-2-one Chemical compound CCCCCCCCCCCCCCCC(O)C(C)=O MWKAGZWJHCTVJY-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 239000004985 Discotic Liquid Crystal Substance Substances 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 150000001350 alkyl halides Chemical class 0.000 description 2
- 229920000402 bisphenol A polycarbonate polymer Polymers 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- ZXIJMRYMVAMXQP-UHFFFAOYSA-N cycloheptene Chemical compound C1CCC=CCC1 ZXIJMRYMVAMXQP-UHFFFAOYSA-N 0.000 description 2
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 description 2
- 239000004913 cyclooctene Substances 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000004313 glare Effects 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000009966 trimming Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- JBVMSEMQJGGOFR-FNORWQNLSA-N (4e)-4-methylhexa-1,4-diene Chemical compound C\C=C(/C)CC=C JBVMSEMQJGGOFR-FNORWQNLSA-N 0.000 description 1
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- WLTSXAIICPDFKI-FNORWQNLSA-N (E)-3-dodecene Chemical compound CCCCCCCC\C=C\CC WLTSXAIICPDFKI-FNORWQNLSA-N 0.000 description 1
- GWYPDXLJACEENP-UHFFFAOYSA-N 1,3-cycloheptadiene Chemical compound C1CC=CC=CC1 GWYPDXLJACEENP-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- VSQLAQKFRFTMNS-UHFFFAOYSA-N 5-methylhexa-1,4-diene Chemical compound CC(C)=CCC=C VSQLAQKFRFTMNS-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000004420 Iupilon Substances 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- ZLSMCQSGRWNEGX-UHFFFAOYSA-N bis(4-aminophenyl)methanone Chemical compound C1=CC(N)=CC=C1C(=O)C1=CC=C(N)C=C1 ZLSMCQSGRWNEGX-UHFFFAOYSA-N 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical class C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- CFBGXYDUODCMNS-UHFFFAOYSA-N cyclobutene Chemical compound C1CC=C1 CFBGXYDUODCMNS-UHFFFAOYSA-N 0.000 description 1
- GVRWIAHBVAYKIZ-UHFFFAOYSA-N dec-3-ene Chemical compound CCCCCCC=CCC GVRWIAHBVAYKIZ-UHFFFAOYSA-N 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009820 dry lamination Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000005462 imide group Chemical group 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- AZQWKYJCGOJGHM-UHFFFAOYSA-N para-benzoquinone Natural products O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000001791 phenazinyl group Chemical class C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920005575 poly(amic acid) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 239000005268 rod-like liquid crystal Substances 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 238000007767 slide coating Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- XBFJAVXCNXDMBH-UHFFFAOYSA-N tetracyclo[6.2.1.1(3,6).0(2,7)]dodec-4-ene Chemical compound C1C(C23)C=CC1C3C1CC2CC1 XBFJAVXCNXDMBH-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/286—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
- G02F1/133541—Circular polarisers
Definitions
- the present invention relates to a circularly polarizing plate and a method for manufacturing the same, and a broadband ⁇ / 4 plate including the circularly polarizing plate, an organic electroluminescence display device, and a liquid crystal display device.
- an organic electroluminescence display device (hereinafter sometimes referred to as “organic EL display device” as appropriate) and a liquid crystal display device are provided with a circularly polarizing plate in order to reduce reflection of external light on the display surface.
- a circularly polarizing plate a film in which a polarizing film and a ⁇ / 4 plate are combined is generally used.
- most of the conventional ⁇ / 4 plates can actually achieve a phase difference of about 1 ⁇ 4 wavelength only with light in a specific narrow wavelength range. Therefore, although reflection of outside light in a specific narrow wavelength range can be reduced by the circularly polarizing plate, it is difficult to reduce reflection of other outside light.
- Japanese Patent Laid-Open No. 05-100114 JP 2007-004120 (corresponding foreign publication: US Patent Application Publication No. 2009/052028) JP 2013-235272 A (corresponding foreign publication: US Patent Application Publication No. 2013/301129) Japanese Unexamined Patent Publication No. 2000-284120 (corresponding foreign publication: US Pat. No. 6,400,433)
- the optical axis directions of the polarizing film absorption axis, ⁇ / 2 plate slow axis, and ⁇ / 4 plate slow axis It is required to adjust the optical axis to be at a predetermined angle.
- a circularly polarizing plate having a broadband ⁇ / 4 plate has not only a ⁇ / 4 plate but also a ⁇ / 2 plate, and therefore has a larger number of optical axes than a conventional circularly polarizing plate.
- the apparent optical axis shift is larger than that of the conventional circularly polarizing plate not having the ⁇ / 2 plate, and the reflection of external light in the tilt direction is reduced. There was a tendency to be inferior in ability.
- the present invention was devised in view of the above-described problems, and is a circularly polarizing plate that can effectively reduce the reflection of external light in both the front direction and the tilt direction; the external light in both the front direction and the tilt direction.
- An object is to provide a broadband ⁇ / 4 plate capable of realizing a circularly polarizing plate capable of effectively reducing reflection; and an organic electroluminescence display device and a liquid crystal display device provided with the circularly polarizing plate.
- the present inventor has intensively studied to solve the above problems.
- the circularly polarizing film including the polarizing film, the ⁇ / 2 plate, and the ⁇ / 4 in this order by combining the following (1) to (3), it is possible to reflect outside light in both the front direction and the tilt direction. It has been found that a circularly polarizing plate that can be effectively reduced can be realized.
- (1) The angle formed by the absorption axis of the polarizing film and the absorption axis of the ⁇ / 2 plate is within a predetermined range, and the angle formed by the absorption axis of the polarizing film and the absorption axis of the ⁇ / 4 plate is within the predetermined range. To fit.
- the wavelength dispersion of the ⁇ / 2 plate is different from the wavelength dispersion of the ⁇ / 4 plate.
- the ⁇ / 2 plate and the ⁇ / 4 plate are optically uniaxial. Based on such knowledge, the present invention has been completed. That is, the present invention is as follows.
- a polarizing film A ⁇ / 2 plate having a slow axis in a direction forming an angle of 22.5 ° ⁇ 10 ° with respect to the absorption axis of the polarizing film; A ⁇ / 4 plate having a slow axis in the direction of 90 ° ⁇ 20 ° with respect to the absorption axis of the polarizing film, in this order,
- the wavelength dispersion of the ⁇ / 2 plate is different from the wavelength dispersion of the ⁇ / 4 plate.
- the NZ coefficient of the ⁇ / 2 plate is 1.00 ⁇ 0.05, A circularly polarizing plate, wherein the ⁇ / 4 plate has an NZ coefficient of 0.00 ⁇ 0.05.
- Reh (400) represents an in-plane retardation of the ⁇ / 2 plate at a wavelength of 400 nm
- the in-plane retardation of the ⁇ / 2 plate at a wavelength of 550 nm is represented by Reh (550)
- Req (400) represents the in-plane retardation of the ⁇ / 4 plate at a wavelength of 400 nm
- Req (550) represents the in-plane retardation of the ⁇ / 4 plate at a wavelength of 400 nm
- Req (550) When the in-plane retardation of the ⁇ / 4 plate at a wavelength of 550 nm is Req (550),
- the in-plane retardation of the ⁇ / 2 plate at a wavelength of 550 nm is represented by Reh (550)
- Req (400) represents the in-plane retardation of the ⁇ / 4 plate at a wavelength of 400 nm
- the following formula (B): Req (400) / Req (550) -Reh (400) / Reh (550) 0.12 ⁇ 0.08
- the circularly polarizing plate according to any one of [1] to [4], wherein the ⁇ / 2 plate includes a layer made of a material having a positive intrinsic birefringence value.
- a ⁇ / 2 plate having a slow axis in a direction that forms an angle of 22.5 ° ⁇ 10 ° with respect to the reference direction;
- a ⁇ / 4 plate having a slow axis in a direction forming an angle of 90 ° ⁇ 20 ° with respect to the reference direction,
- the wavelength dispersion of the ⁇ / 2 plate is different from the wavelength dispersion of the ⁇ / 4 plate.
- the NZ coefficient of the ⁇ / 2 plate is 1.00 ⁇ 0.05
- a broadband ⁇ / 4 plate wherein the NZ coefficient of the ⁇ / 4 plate is 0.00 ⁇ 0.05.
- An organic electroluminescence display device comprising the circularly polarizing plate according to any one of [1] to [5].
- a liquid crystal display device comprising the circularly polarizing plate according to any one of [1] to [5].
- the NZ coefficient of the ⁇ / 2 plate is 1.00 ⁇ 0.05
- a circularly polarizing plate that can effectively reduce reflection of external light in both the front direction and the tilt direction; circularly polarized light that can effectively reduce reflection of external light in both the front direction and the tilt direction
- a broadband ⁇ / 4 plate capable of realizing a plate
- an organic electroluminescence display device and a liquid crystal display device including the circularly polarizing plate can be provided.
- FIG. 1 is an exploded perspective view of a circularly polarizing plate according to an embodiment of the present invention.
- the “long” film means a film having a length of 5 times or more, preferably 10 times or more, and specifically a roll. A film having such a length that it can be wound up and stored or transported.
- the NZ coefficient of the film is a value represented by (nx ⁇ nz) / (nx ⁇ ny) unless otherwise specified.
- nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the film and giving the maximum refractive index.
- ny represents the refractive index in the in-plane direction and orthogonal to the nx direction.
- nz represents the refractive index in the thickness direction.
- d represents the thickness of the film. The measurement wavelength is 590 nm unless otherwise specified.
- the intrinsic birefringence value being positive means that the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular thereto unless otherwise noted.
- the negative intrinsic birefringence value means that the refractive index in the stretching direction is smaller than the refractive index in the direction perpendicular to the stretching direction unless otherwise specified.
- the value of intrinsic birefringence can be calculated from the dielectric constant distribution.
- (meth) acryl includes both “acryl” and “methacryl”.
- the slanting direction of the long film indicates the in-plane direction of the film, which is neither parallel nor perpendicular to the width direction of the film.
- the front direction of a film means the normal direction of the main surface of the film, specifically, the direction of the polar angle 0 ° and the azimuth angle 0 ° of the main surface. Point to.
- the inclination direction of a film means a direction that is neither parallel nor perpendicular to the main surface of the film, and specifically, the polar angle of the main surface is larger than 0 ° and 90 °. Point in a direction smaller than °.
- the directions of the elements “parallel”, “vertical”, and “orthogonal” include errors within a range that does not impair the effects of the present invention, for example, ⁇ 5 °, unless otherwise specified. You may go out.
- the longitudinal direction of the long film is usually parallel to the film flow direction in the production line.
- polarizing plate “ ⁇ / 2 plate” and “ ⁇ / 4 plate” are not limited to rigid members, unless otherwise specified, such as a resin film. The member which has is also included.
- an angle formed by an optical axis (absorption axis, slow axis, etc.) of each film in a member including a plurality of films represents an angle when the film is viewed from the thickness direction.
- the slow axis of a film represents the slow axis in the plane of the film.
- FIG. 1 is an exploded perspective view of a circularly polarizing plate according to an embodiment of the present invention.
- an axis 112 obtained by projecting the absorption axis 111 of the polarizing film 110 on the surface of the ⁇ / 2 plate 120 is indicated by a one-dot chain line.
- an axis 113 obtained by projecting the absorption axis 111 of the polarizing film 110 on the surface of the ⁇ / 4 plate 130 is indicated by a one-dot chain line.
- a circularly polarizing plate 100 includes a polarizing film 110, a ⁇ / 2 plate 120, and a ⁇ / 4 plate 130 in the thickness direction of the circularly polarizing plate 100. Prepare in this order.
- the polarizing film 110 is a polarizing plate having an absorption axis 111 and has a function of absorbing linearly polarized light having a vibration direction parallel to the absorption axis 111 and transmitting other polarized light.
- the vibration direction of linearly polarized light means the vibration direction of the electric field of linearly polarized light.
- the ⁇ / 2 plate 120 is an optical member having a predetermined phase difference.
- the ⁇ / 2 plate 120 has a slow axis 121 parallel to the in-plane direction of the ⁇ / 2 plate 120 in a direction that forms a predetermined angle ⁇ h with respect to the absorption axis 111 of the polarizing film 110.
- the ⁇ / 4 plate 130 is an optical member having a predetermined phase difference different from that of the ⁇ / 2 plate 120.
- the ⁇ / 4 plate 130 has a slow axis 131 parallel to the in-plane direction of the ⁇ / 4 plate 130 in a direction that forms a predetermined angle ⁇ q with respect to the absorption axis 111 of the polarizing film 110.
- the layer portion including the ⁇ / 2 plate 120 and the ⁇ / 4 plate 130 is substantially 1 ⁇ 4 of the wavelength of the light transmitted through the layer portion in a wide wavelength range.
- the broadband ⁇ / 4 plate 140 can provide an in-plane retardation of the wavelength. Therefore, the circularly polarizing plate 100 can function as a circularly polarizing plate that can absorb one of right circularly polarized light and left circularly polarized light and transmit the remaining light in a wide wavelength range.
- the circularly polarizing plate 100 may be a single-wafer film, but is preferably a long film because it can be manufactured efficiently.
- the absorption axis 111 of the polarizing film 110 is usually parallel to the longitudinal direction of the circularly polarizing plate 100.
- the polarizing film usually includes a polarizer layer, and includes a protective film layer for protecting the polarizer layer as necessary.
- a polarizer layer for example, a film of an appropriate vinyl alcohol polymer such as polyvinyl alcohol or partially formalized polyvinyl alcohol, dyeing treatment with dichroic substances such as iodine and dichroic dye, stretching treatment, crosslinking treatment Or the like can be used in an appropriate order and manner.
- a long film before stretching is stretched in the longitudinal direction, so that the obtained polarizer layer exhibits an absorption axis parallel to the longitudinal direction of the polarizer layer. Yes.
- This polarizer layer is capable of absorbing linearly polarized light having a vibration direction parallel to the absorption axis, and is particularly preferably excellent in polarization degree.
- the thickness of the polarizer layer is generally 5 ⁇ m to 80 ⁇ m, but is not limited thereto.
- any transparent film can be used as the protective film layer for protecting the polarizer layer.
- a resin film excellent in transparency, mechanical strength, thermal stability, moisture shielding properties and the like is preferable.
- resins include acetate resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, cyclic olefin resins, (meth) acrylic resins, and the like.
- acetate resin, cyclic olefin resin, and (meth) acrylic resin are preferable in terms of low birefringence, and cyclic olefin resin is particularly preferable from the viewpoint of transparency, low moisture absorption, dimensional stability, lightness, and the like.
- polarizing film either a single-wafer polarizing film or a long polarizing film may be used in accordance with the shape of the circularly polarizing plate.
- the polarizing film can be manufactured, for example, by laminating a polarizer layer and a protective film layer. In bonding, an adhesive may be used as necessary.
- a polarizing film when a polarizing film is produced as a long film, it can be produced by laminating a long polarizer layer and a long protective film layer with a roll-to-roll with their longitudinal directions parallel to each other. Therefore, manufacturing efficiency can be increased.
- the sheet-shaped polarizing film can be manufactured by cutting the long polarizing film into a predetermined shape.
- the ⁇ / 2 plate is an optical member having an in-plane retardation of usually 240 nm or more and usually 300 nm or less at a measurement wavelength of 590 nm. Since the ⁇ / 2 plate has such an in-plane retardation, a broadband ⁇ / 4 plate can be realized by combining the ⁇ / 2 plate and the ⁇ / 4 plate. Therefore, the circularly polarizing plate of the present invention can exhibit a function capable of absorbing one of right circularly polarized light and left circularly polarized light and transmitting the remaining light in a wide wavelength range.
- the in-plane retardation of the ⁇ / 2 plate at a measurement wavelength of 590 nm is preferably 250 nm or more, preferably 280 nm or less, more preferably It is 265 nm or less.
- the NZ coefficient (NZh) of the ⁇ / 2 plate is usually 1.00 ⁇ 0.05.
- a ⁇ / 2 plate having an NZ coefficient (NZh) of approximately 1.0 as described above indicates that the ⁇ / 2 plate has optical uniaxiality.
- the circularly polarizing plate of the present invention can effectively reduce the reflection of external light in the tilt direction.
- the ⁇ / 2 plate has the slow axis of the ⁇ / 2 plate in a direction that forms a predetermined angle ⁇ h with respect to the absorption axis of the polarizing film.
- the range of the angle ⁇ h is usually 22.5 ° ⁇ 10 °.
- the angle ⁇ h formed by the slow axis of the ⁇ / 2 plate with respect to the absorption axis of the polarizing film is preferably 22.5 ° ⁇ 7.5 °, more preferably 22.5 ° ⁇ 4.5 °. It is. Thereby, reflection of external light can be effectively reduced by the circularly polarizing plate of the present invention, particularly in the tilt direction.
- a resin film is usually used.
- a resin a thermoplastic resin is preferable.
- the ⁇ / 2 plate may be a single-layer resin film having only one layer, or may be a multi-layer resin film having two or more layers.
- the ⁇ / 2 plate is provided with a layer made of a material having a positive intrinsic birefringence value because it can be easily manufactured.
- a material having a positive intrinsic birefringence value a resin having a positive intrinsic birefringence value is usually used.
- the resin having a positive intrinsic birefringence value includes a polymer having a positive intrinsic birefringence value.
- this polymer examples include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyarylene sulfides such as polyphenylene sulfide; polyvinyl alcohol; polycarbonate; polyarylate; cellulose ester polymer; Polysulfone; polyallyl sulfone; polyvinyl chloride; cyclic olefin polymer such as norbornene polymer; rod-like liquid crystal polymer. These polymers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. The polymer may be a homopolymer or a copolymer.
- a polycarbonate polymer is preferred because it is excellent in retardation development and stretchability at low temperature, and it is excellent in mechanical properties, heat resistance, transparency, low hygroscopicity, dimensional stability and lightness. Cyclic olefin polymers are preferred.
- any polymer having a structural unit containing a carbonate bond (—O—C ( ⁇ O) —O—) can be used.
- the polycarbonate polymer include bisphenol A polycarbonate, branched bisphenol A polycarbonate, o, o, o ', o'-tetramethylbisphenol A polycarbonate, and the like.
- the cyclic olefin polymer is a polymer in which the structural unit of the polymer has an alicyclic structure.
- the cyclic olefin polymer includes a polymer having an alicyclic structure in a main chain, a polymer having an alicyclic structure in a side chain, a polymer having an alicyclic structure in a main chain and a side chain, and these 2 It can be set as a mixture of the above arbitrary ratios. Among these, from the viewpoint of mechanical strength and heat resistance, a polymer having an alicyclic structure in the main chain is preferable.
- alicyclic structure examples include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structure.
- cycloalkane saturated alicyclic hydrocarbon
- cycloalkene unsaturated alicyclic hydrocarbon
- cycloalkyne unsaturated alicyclic hydrocarbon
- a cycloalkane structure and a cycloalkene structure are preferable, and a cycloalkane structure is particularly preferable.
- the number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, particularly preferably per alicyclic structure. Is 15 or less. When the number of carbon atoms constituting the alicyclic structure is within this range, the mechanical strength, heat resistance and moldability of the ⁇ / 2 plate are highly balanced.
- the proportion of the structural unit having an alicyclic structure is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
- the proportion of the structural unit having an alicyclic structure in the cyclic olefin polymer is within this range, the transparency and heat resistance of the ⁇ / 2 plate are improved.
- a cycloolefin polymer is a polymer having a structure obtained by polymerizing a cycloolefin monomer.
- the cycloolefin monomer is a compound having a ring structure formed of carbon atoms and having a polymerizable carbon-carbon double bond in the ring structure.
- Examples of the polymerizable carbon-carbon double bond include a carbon-carbon double bond capable of polymerization such as ring-opening polymerization.
- Examples of the ring structure of the cycloolefin monomer include monocycles, polycycles, condensed polycycles, bridged rings, and polycycles obtained by combining these.
- a polycyclic cycloolefin monomer is preferable from the viewpoint of highly balancing the dielectric properties and heat resistance of the resulting polymer.
- norbornene polymers preferred are norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, hydrides thereof, and the like.
- norbornene-based polymers are particularly suitable because of good moldability.
- Examples of the norbornene polymer include a ring-opening polymer of a monomer having a norbornene structure and a hydride thereof; an addition polymer of a monomer having a norbornene structure and a hydride thereof.
- Examples of a ring-opening polymer of a monomer having a norbornene structure include a ring-opening homopolymer of one kind of monomer having a norbornene structure and a ring-opening of two or more kinds of monomers having a norbornene structure. Examples thereof include a copolymer and a ring-opening copolymer with a monomer having a norbornene structure and another monomer that can be copolymerized therewith.
- examples of the addition polymer of a monomer having a norbornene structure include an addition homopolymer of one kind of monomer having a norbornene structure and an addition copolymer of two or more kinds of monomers having a norbornene structure. And addition copolymers with monomers having a norbornene structure and other monomers copolymerizable therewith.
- a hydride of a ring-opening polymer of a monomer having a norbornene structure is particularly suitable from the viewpoints of moldability, heat resistance, low moisture absorption, dimensional stability, lightness, and the like.
- Examples of monomers having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.1 2,5 ] deca-3,7. -Diene (common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4. 0.1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (for example, those having a substituent in the ring).
- examples of the substituent include an alkyl group, an alkylene group, and a polar group. Moreover, these substituents may be the same or different, and a plurality thereof may be bonded to the ring.
- One type of monomer having a norbornene structure may be used alone, or two or more types may be used in combination at any ratio.
- Examples of polar groups include heteroatoms and atomic groups having heteroatoms.
- Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
- Specific examples of polar groups include carboxyl groups, carbonyloxycarbonyl groups, epoxy groups, hydroxyl groups, oxy groups, ester groups, silanol groups, silyl groups, amino groups, amide groups, imide groups, nitrile groups, and sulfonic acid groups. Is mentioned.
- Examples of the monomer capable of ring-opening copolymerization with a monomer having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof; cyclic conjugated dienes such as cyclohexadiene and cycloheptadiene; And derivatives thereof.
- monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof
- cyclic conjugated dienes such as cyclohexadiene and cycloheptadiene
- the monomer having a norbornene structure and a monomer capable of ring-opening copolymerization one kind may be used alone, or two or more kinds may be used in combination at any ratio.
- a ring-opening polymer of a monomer having a norbornene structure can be produced, for example, by polymerizing or copolymerizing a monomer in the presence of a ring-opening polymerization catalyst.
- Examples of monomers that can be copolymerized with a monomer having a norbornene structure include ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, and cyclohexene. And non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, and the like.
- ⁇ -olefin is preferable, and ethylene is more preferable.
- the monomer which can carry out addition copolymerization with the monomer which has a norbornene structure may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- An addition polymer of a monomer having a norbornene structure can be produced, for example, by polymerizing or copolymerizing a monomer in the presence of an addition polymerization catalyst.
- the hydrogenated product of the above-described ring-opening polymer and addition polymer is, for example, carbon in the presence of a hydrogenation catalyst containing a transition metal such as nickel or palladium in a solution of these ring-opening polymer or addition polymer.
- a hydrogenation catalyst containing a transition metal such as nickel or palladium in a solution of these ring-opening polymer or addition polymer.
- -Carbon unsaturated bonds can be prepared by hydrogenation, preferably more than 90%.
- X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.1 2,5 ] decane- Having a 7,9-diyl-ethylene structure, and the amount of these structural units is 90% by weight or more based on the total structural units of the norbornene polymer, and the ratio of X to Y The ratio is preferably 100: 0 to 40:60 by weight ratio of X: Y.
- the ⁇ / 2 plate containing the norbornene polymer can be made long-term without dimensional change and excellent in optical properties.
- Examples of monocyclic olefin polymers include addition polymers of cyclic olefin monomers having a single ring such as cyclohexene, cycloheptene, and cyclooctene.
- cyclic conjugated diene polymers include polymers obtained by cyclization of addition polymers of conjugated diene monomers such as 1,3-butadiene, isoprene and chloroprene; cyclic conjugates such as cyclopentadiene and cyclohexadiene. Mention may be made of 1,2- or 1,4-addition polymers of diene monomers; and their hydrides.
- the weight average molecular weight (Mw) of the polymer contained in the resin having a positive intrinsic birefringence value is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000 or more, preferably 100 50,000 or less, more preferably 80,000 or less, particularly preferably 50,000 or less.
- the weight average molecular weight is in such a range, the mechanical strength and molding processability of the ⁇ / 2 plate are highly balanced and suitable.
- the weight average molecular weight is calculated by polyisoprene or polystyrene measured by gel permeation chromatography using cyclohexane as a solvent (however, toluene may be used when the sample does not dissolve in cyclohexane).
- the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the polymer contained in the resin having a positive intrinsic birefringence value is preferably 1.2 or more, more preferably 1.5 or more, particularly preferably. Is 1.8 or more, preferably 3.5 or less, more preferably 3.0 or less, and particularly preferably 2.7 or less.
- productivity of a polymer can be improved and manufacturing cost can be suppressed.
- moderation at the time of high temperature exposure can be suppressed, and stability of (lambda) / 2 board can be improved.
- the proportion of the polymer in the resin having a positive intrinsic birefringence value is preferably 50% by weight to 100% by weight, more preferably 70% by weight to 100% by weight, and particularly preferably 90% by weight to 100% by weight.
- the resin having a positive intrinsic birefringence value can contain a compounding agent in addition to the polymer.
- compounding agents include colorants such as pigments and dyes; plasticizers; fluorescent brighteners; dispersants; thermal stabilizers; light stabilizers; ultraviolet absorbers; antistatic agents; Examples include activators. These components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the glass transition temperature Tg of the resin having a positive intrinsic birefringence value is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, particularly preferably 120 ° C. or higher, preferably 190 ° C. or lower, more preferably 180 ° C. or lower, Especially preferably, it is 170 degrees C or less.
- Resins having a positive intrinsic birefringence value have an absolute value of photoelastic coefficient of preferably 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 7 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and particularly preferably 4 ⁇ 10 ⁇ . 12 Pa ⁇ 1 or less.
- ⁇ / 2 plate is a resin film made of a thermoplastic resin as described above, a first pre-stretch film made of a thermoplastic resin is prepared, and the first pre-stretch film is stretched to obtain a desired retardation.
- ⁇ / 2 plate can be produced by developing For example, when the ⁇ / 2 plate includes a layer made of a resin having a positive intrinsic birefringence value, the ⁇ / 2 plate includes (a) a first pre-stretch film including a layer made of a resin having a positive intrinsic birefringence value. And (b) a second step of stretching the prepared first unstretched film in one direction to obtain a ⁇ / 2 plate having a slow axis in the stretched direction. Preferably, it is produced by a method.
- a first pre-stretch film having a layer made of a resin having a positive intrinsic birefringence value is prepared.
- the first pre-stretch film can be produced by a melt molding method or a solution casting method, and a melt molding method is preferred.
- a melt molding method is preferred.
- an extrusion molding method, an inflation molding method or a press molding method is preferable, and an extrusion molding method is particularly preferable.
- the first pre-stretch film is obtained as a long resin film.
- the first pre-stretch film is obtained as a long resin film.
- the stretching method in the second step an appropriate one can be arbitrarily adopted depending on the optical characteristics desired to be exhibited by stretching.
- a method of uniaxially stretching in the longitudinal direction using the difference in peripheral speed between rolls (longitudinal uniaxial stretching); a method of uniaxially stretching in the width direction using a tenter stretching machine (lateral uniaxial stretching); The method of extending
- the stretch direction is arbitrary.
- the first unstretched film is a long film
- the first unstretched film is preferably stretched in the longitudinal direction of the first unstretched film.
- free uniaxial stretching refers to stretching in a certain direction and applying no restraining force in directions other than the stretching direction.
- Such stretching in the longitudinal direction can be performed, for example, using a roll stretching machine while continuously transporting the first pre-stretching film in the longitudinal direction.
- the draw ratio in the second step is preferably 1.1 times or more, more preferably 1.3 times or more, particularly preferably 1.5 times or more, preferably 4 times or less, more preferably 3 times. Hereinafter, it is particularly preferably 2.5 times or less. (B) By keeping the draw ratio in the second step within the above range, it is easy to obtain a ⁇ / 2 plate having desired optical characteristics.
- the stretching temperature in the second step is preferably Tg ° C. or higher, more preferably “Tg + 2 ° C.” or higher, particularly preferably “Tg + 5 ° C.” or higher, preferably “Tg + 40 ° C.” or lower, more preferably “Tg + 35”. ° C "or less, particularly preferably” Tg + 30 ° C "or less.
- Tg represents the glass transition temperature of a resin having a positive intrinsic birefringence value.
- a trimming step of cutting the ⁇ / 2 plate into a desired shape may be performed.
- a single-wafer ⁇ / 2 plate having a desired shape is obtained.
- a step of providing a protective layer on the ⁇ / 2 plate may be performed.
- the total light transmittance of the ⁇ / 2 plate is preferably 80% or more.
- the light transmittance can be measured using a spectrophotometer (manufactured by JASCO Corporation, ultraviolet-visible near-infrared spectrophotometer “V-570”) in accordance with JIS K0115.
- the haze of the ⁇ / 2 plate is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
- the haze can be measured at five locations using “turbidity meter NDH-300A” manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS K7361-1997, and the average value obtained therefrom can be adopted.
- the amount of the volatile component contained in the ⁇ / 2 plate is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and further preferably 0.02% by weight or less, ideally zero. is there.
- the volatile component is a substance having a molecular weight of 200 or less contained in a trace amount in the film, and examples thereof include a residual monomer and a solvent.
- the amount of volatile components can be quantified by dissolving the film in chloroform and analyzing it by gas chromatography as the sum of the substances having a molecular weight of 200 or less contained in the film.
- the saturated water absorption rate of the ⁇ / 2 plate is preferably 0.03% by weight or less, more preferably 0.02% by weight or less, particularly preferably 0.01% by weight or less, and ideally zero.
- the saturated water absorption rate of the ⁇ / 2 plate is within the above range, it is possible to reduce a change with time in optical characteristics such as in-plane retardation.
- the saturated water absorption is a value expressed as a percentage of the increased mass of the film specimen immersed in water at 23 ° C. for 24 hours with respect to the mass of the film specimen before immersion.
- the thickness of the ⁇ / 2 plate is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, further preferably 30 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and even more preferably 60 ⁇ m or less. Thereby, the mechanical strength of the ⁇ / 2 plate can be increased.
- the ⁇ / 4 plate is an optical member having an in-plane retardation of usually 110 nm or more and usually 154 nm or less at a measurement wavelength of 590 nm. Since the ⁇ / 4 plate has such an in-plane retardation, a broadband ⁇ / 4 plate can be realized by combining the ⁇ / 2 plate and the ⁇ / 4 plate. Therefore, the circularly polarizing plate of the present invention can exhibit a function capable of absorbing one of right circularly polarized light and left circularly polarized light and transmitting the remaining light in a wide wavelength range.
- the in-plane retardation of the ⁇ / 4 plate at a measurement wavelength of 590 nm is preferably 118 nm or more, preferably 138 nm or less, more preferably 128 nm or less.
- the NZ coefficient (NZq) of the ⁇ / 4 plate is usually 0.00 ⁇ 0.05.
- the fact that the ⁇ / 4 plate has the NZ coefficient (NZq) as described above indicates that the refractive index nz in the thickness direction is large in the ⁇ / 4 plate. Since the refractive index nz in the thickness direction is large in this way, it is possible to compensate for an apparent angular shift between the slow axis of the ⁇ / 2 plate and the slow axis of the ⁇ / 4 plate when viewed from the tilt direction. Therefore, the circularly polarizing plate of the present invention can effectively reduce reflection of external light in the tilt direction.
- the ⁇ / 4 plate having the NZ coefficient (NZq) of approximately 0.0 as described above indicates that the ⁇ / 4 plate has optical uniaxiality.
- NZq NZ coefficient
- the refractive index nz in order to compensate for the apparent angle shift between the slow axis of the ⁇ / 2 plate and the slow axis of the ⁇ / 4 plate when viewed from the tilt direction, it is also conceivable to increase the refractive index nz.
- the refractive index nz in the thickness direction of the ⁇ / 2 plate when the refractive index nz in the thickness direction of the ⁇ / 2 plate is increased, the refractive index nz in the thickness direction of the ⁇ / 2 plate tends to be excessive, so It is difficult to stably manufacture a ⁇ / 2 plate having a refractive index nz. Therefore, from the viewpoint of increasing the productivity of the circularly polarizing plate that can reduce the reflection of external light in the tilt direction, it is desirable that the ⁇ / 4 plate has a large refractive index nz in the thickness direction as described above.
- the ⁇ / 4 plate has a wavelength dispersion different from that of the ⁇ / 2 plate.
- the wavelength dispersion of a certain retardation film is represented by a value obtained by dividing the in-plane retardation at a wavelength of 400 nm by the in-plane retardation at a wavelength of 550 nm.
- the in-plane retardation of the ⁇ / 2 plate at a wavelength of 400 nm is Reh (400)
- the in-plane retardation of the ⁇ / 2 plate at a wavelength of 550 nm is Reh (550)
- the in-plane retardation of the ⁇ / 4 plate at a wavelength of 400 nm is Reh (400)
- Reh Reh
- the ⁇ / 4 plate has the slow axis of the ⁇ / 4 plate in a direction that forms a predetermined angle ⁇ q with respect to the absorption axis of the polarizing film.
- the range of the angle ⁇ q is normally 90 ° ⁇ 20 °.
- the angle ⁇ q formed by the slow axis of the ⁇ / 4 plate with respect to the absorption axis of the polarizing film is preferably 90 ° ⁇ 15.0 °.
- the ⁇ / 4 plate having the optical properties described above a resin film is usually used.
- a resin a thermoplastic resin is preferable.
- the ⁇ / 4 plate may be a single-layer resin film having only one layer, or may be a multi-layer resin film having two or more layers.
- the ⁇ / 4 plate includes a layer made of a material having a negative intrinsic birefringence value because it can be easily manufactured.
- a material having a negative intrinsic birefringence value a resin having a negative intrinsic birefringence value is usually used.
- the resin having a negative intrinsic birefringence value includes a polymer having a negative intrinsic birefringence value.
- this polymer examples include a homopolymer of styrene or a styrene derivative, and a polystyrene polymer including a copolymer of styrene or a styrene derivative and an arbitrary monomer; a polyacrylonitrile polymer; a polymethyl methacrylate polymer. Or a multi-component copolymer thereof; and the like.
- said arbitrary monomer which can be copolymerized with styrene or a styrene derivative acrylonitrile, maleic anhydride, methyl methacrylate, and butadiene are mentioned as a preferable thing, for example.
- these polymers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- a polystyrene-based polymer is preferable from the viewpoint of high retardation development, and a copolymer of styrene or a styrene derivative and maleic anhydride is particularly preferable from the viewpoint of high heat resistance.
- the amount of the structural unit (maleic anhydride unit) having a structure formed by polymerizing maleic anhydride with respect to 100 parts by weight of the polystyrene-based polymer is preferably 5 parts by weight or more, more preferably 10 parts. Part by weight or more, particularly preferably 15 parts by weight or more, preferably 30 parts by weight or less, more preferably 28 parts by weight or less, particularly preferably 26 parts by weight or less.
- the proportion of the polymer in the resin having a negative intrinsic birefringence value is preferably 50% by weight to 100% by weight, more preferably 70% by weight to 100% by weight, and particularly preferably 90% by weight to 100% by weight.
- the ⁇ / 4 plate can exhibit appropriate optical characteristics.
- the resin having a negative intrinsic birefringence value may contain a compounding agent in addition to the polymer.
- a compounding agent in addition to the polymer.
- a compounding agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the glass transition temperature Tg of the resin having a negative intrinsic birefringence value is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, still more preferably 100 ° C. or higher, particularly preferably 110 ° C. or higher, and particularly preferably 120 ° C. or higher. . Since the glass transition temperature Tg of the resin having a negative intrinsic birefringence value is thus high, the relaxation of the orientation of the resin having a negative intrinsic birefringence value can be reduced. Moreover, although there is no restriction
- Some resins having a negative intrinsic birefringence value have low mechanical strength.
- a resin containing a polystyrene-based polymer tends to have low mechanical strength. Therefore, a ⁇ / 4 plate including a layer made of a resin having a negative intrinsic birefringence value is combined with a layer made of a resin having a negative intrinsic birefringence value to protect the layer made of a resin having a negative intrinsic birefringence value.
- a protective layer any layer can be used as long as the effects of the present invention are not significantly impaired.
- a layer made of a resin having a positive intrinsic birefringence value can be used as the protective layer.
- the in-plane retardation and the thickness direction retardation of the protective layer are preferably close to zero.
- the glass transition temperature of the resin contained in the protective layer is made higher than the glass transition temperature of the resin having a negative intrinsic birefringence value The method of making it low is mentioned.
- the protective layer may be provided only on one side of the layer made of a resin having a negative intrinsic birefringence value, or may be provided on both sides.
- ⁇ / 4 plate is a resin film made of a thermoplastic resin as described above, a second pre-stretch film made of a thermoplastic resin is prepared, and the second pre-stretch film is stretched to obtain a desired retardation.
- ⁇ / 4 plate can be produced by developing For example, when the ⁇ / 4 plate includes a layer made of a resin having a negative intrinsic birefringence value, the ⁇ / 4 plate includes (c) a second pre-stretch film including a layer made of a resin having a negative intrinsic birefringence value.
- a second pre-stretch film having a layer made of a resin having a negative intrinsic birefringence value is prepared.
- the second pre-stretch film can be produced by a melt molding method or a solution casting method, and a melt molding method is preferred.
- a melt molding method is preferred.
- an extrusion molding method, an inflation molding method or a press molding method is preferable, and an extrusion molding method is particularly preferable.
- the coextrusion T-die method when the second pre-stretch film is produced as a multilayer film, such as a multilayer film comprising a layer made of a resin having a negative intrinsic birefringence value and a protective layer, the coextrusion T-die method, coextrusion Co-extrusion molding methods such as inflation method and co-extrusion lamination method; film lamination molding methods such as dry lamination; coating molding methods such as coating a resin solution that constitutes the other layer on one layer sell.
- the coextrusion molding method is preferable from the viewpoint that production efficiency is good and volatile components such as a solvent do not remain on the ⁇ / 4 plate.
- the coextrusion molding methods the coextrusion T-die method is preferable.
- examples of the coextrusion T-die method include a feed block method and a multi-manifold method, but the multi-manifold method is more preferable in that variation in layer thickness can be reduced.
- the second pre-stretch film is obtained as a long resin film.
- the second pre-stretch film is obtained as a long resin film.
- Examples of the stretching method in the fourth step include the same stretching methods as those described in the description of the method for producing a ⁇ / 2 plate. Also, the number of stretching operations may be one time or two or more times.
- uniaxial stretching that stretches only in one direction can be performed to enhance the uniaxiality of the layer made of a resin having a negative intrinsic birefringence value.
- the higher the uniaxiality the closer the NZ coefficient (NZq) tends to 0.0. Since the uniaxial ⁇ / 4 plate can bring the NZ coefficient (NZq) close to 0.0, the circularly polarizing plate including the ⁇ / 4 plate can more effectively reduce the reflection of external light in the tilt direction.
- the stretch direction is arbitrary.
- the second unstretched film is a long film
- the second unstretched film is preferably stretched in the longitudinal direction of the second unstretched film.
- Such stretching in the longitudinal direction can be performed, for example, using a roll stretching machine while continuously transporting the second pre-stretching film in the longitudinal direction, in the same manner as in the production method of the ⁇ / 2 plate.
- the draw ratio in the fourth step is preferably 1.1 times or more, more preferably 1.15 times or more, particularly preferably 1.2 times or more, preferably 4 times or less, more preferably 3 times. Hereinafter, it is particularly preferably 2 times or less. (D) By keeping the draw ratio in the fourth step within the above range, it is easy to obtain a ⁇ / 4 plate having desired optical characteristics.
- the stretching temperature in the fourth step is preferably 110 ° C. or higher, more preferably 115 ° C. or higher, particularly preferably 120 ° C. or higher, preferably 150 ° C. or lower, more preferably 140 ° C. or lower, particularly preferably 130. It is below °C. (D) By setting the stretching temperature in the fourth step within the above range, the molecules contained in the second pre-stretched film can be reliably oriented, so that a ⁇ / 4 plate having desired optical characteristics can be easily obtained. Can get to.
- a film having an optically anisotropic layer containing a fixed discotic liquid crystalline molecule may be used as the ⁇ / 4 plate having the optical properties described above.
- An optically anisotropic layer containing discotic liquid crystalline molecules can easily increase the refractive index in the thickness direction. Therefore, if an optically anisotropic layer containing such discotic liquid crystalline molecules is used, a ⁇ / 4 plate having a suitable NZ coefficient (NZq) can be easily produced.
- the ⁇ / 4 plate having the optically anisotropic layer as described above forms a layer containing discotic liquid crystalline molecules on a support, aligns the discotic liquid crystalline molecules contained in the layer, and aligns the orientation. It can be produced by fixing the discotic liquid crystalline molecules while maintaining them.
- any support when the support is peeled off from the optically anisotropic layer after forming the optically anisotropic layer, any support can be used.
- a transparent support is usually used as the support.
- that the support is transparent means that the total light transmittance of the support is 80% or more.
- optically isotropic means that the in-plane retardation of the support is usually 0 to 20 nm, preferably 0 to 10 nm.
- a resin film can be used as such a transparent support. Examples of such a resin film include a cyclic polyolefin film, a cellulose ester film, a polyvinyl alcohol film, a polyimide film, a UV transparent acrylic film, a polycarbonate film, a polysulfone film, a polyethersulfone film, an epoxy polymer film, and a polystyrene film. It is done.
- a cyclic polyolefin film and a cellulose ester film are preferable from the viewpoints of transparency, low hygroscopicity, dimensional stability, lightness, and the like. Further, a ⁇ / 2 plate may be used as the support.
- the thickness of the support is preferably 20 ⁇ m or more, more preferably 50 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 200 ⁇ m or less.
- the surface of the support may be subjected to surface treatment.
- a glow discharge treatment, a corona discharge treatment, an ultraviolet (UV) treatment, a flame treatment, or the like may be performed in order to improve the adhesiveness of the surface treated surface.
- the discotic liquid crystalline molecules are substantially separated from the surface of the support. It is preferable to align vertically. Specifically, it is preferable to align the discotic liquid crystalline molecules with an average inclination angle in the range of 50 ° to 90 ° with respect to the surface of the support. In order to orient the discotic liquid crystalline molecules in this way, it is preferable to subject the surface of the support on which the optically anisotropic layer is formed to an orientation treatment that can impart an orientation regulating force to the surface. Examples of the orientation treatment include performing a rubbing treatment on the surface of the support. Another example of the orientation treatment is to form an orientation film on the surface of the support.
- the alignment film a film having a low surface energy is usually used. Due to the low surface energy of the alignment film, the discotic liquid crystalline molecules can be aligned vertically.
- Examples of such an alignment film include a polymer film having a functional group capable of reducing the surface energy of the alignment film.
- a hydrocarbon group having 10 or more carbon atoms is preferable.
- any of an aliphatic group, an aromatic group, and a combination thereof can be used.
- the aliphatic group may be any of cyclic, branched or straight chain.
- the aliphatic group is preferably an alkyl group (which may be a cycloalkyl group) or an alkenyl group (which may be a cycloalkenyl group).
- the hydrocarbon group may have a substituent that does not exhibit strong hydrophilicity, such as a halogen atom.
- the number of carbon atoms of the hydrocarbon group is preferably 10 to 100, more preferably 10 to 60, and particularly preferably 10 to 40.
- the main chain of the polymer forming the alignment film preferably has a polyimide structure or a polyvinyl alcohol structure. Therefore, as a material for the alignment film, polyimide having a hydrocarbon group and polyvinyl alcohol having a hydrocarbon group are preferable.
- Polyimide can generally be synthesized by a condensation reaction between tetracarboxylic acid and diamine.
- a polyimide corresponding to the copolymer may be synthesized using two or more kinds of tetracarboxylic acids or two or more kinds of diamines.
- the hydrocarbon group may be present in a structural unit derived from tetracarboxylic acid, may be present in a structural unit derived from diamine, or is present in both structural units. Also good.
- a steroid structure in the main chain or side chain of the polyimide.
- the steroid structure present in the side chain corresponds to a hydrocarbon group having 10 or more carbon atoms, and usually has a function of vertically aligning discotic liquid crystalline molecules.
- the steroid structure means a cyclopentanohydrophenanthrene ring structure or a ring structure in which a part of the bond of the ring is a double bond in the range of an aliphatic ring (a range that does not form an aromatic ring). To do.
- Polyvinyl alcohol preferably contains a structural unit having a hydrocarbon group having 10 or more carbon atoms in a range of 2 mol% to 80 mol%, and more preferably 3 mol% to 70 mol%.
- Preferable examples of the polyvinyl alcohol having a hydrocarbon group include those represented by the following formula (I). -(VAl) x- (HyC) y- (VAc) z- (I)
- VAl represents a vinyl alcohol structural unit.
- HyC represents a structural unit having a hydrocarbon group having 10 or more carbon atoms.
- VAc represents a vinyl acetate structural unit.
- x represents a proportion of vinyl alcohol structural units, and is usually 20 mol% or more, preferably 25 mol% or more, and usually 95 mol% or less, preferably 90 mol% or less.
- y represents the proportion of the structural unit HyC having a hydrocarbon group having 10 or more carbon atoms, usually 2 mol% or more, preferably 3 mol% or more, usually 80 mol% or less, Preferably it is 70 mol% or less.
- z represents the proportion of vinyl acetate structural units, and is usually 0 mol% or more, preferably 2 mol% or more, and usually 30 mol% or less, preferably 20 mol% or less.
- HyC hydrocarbon group having 10 or more carbon atoms
- preferred examples include those represented by the following formula (HyC-I) or formula (HyC-II).
- L 1 represents a divalent linking group selected from —O—, —CO—, —SO 2 —, —NH—, an alkylene group, an arylene group, and combinations thereof.
- L 2 represents a single bond or a divalent linking group selected from —O—, —CO—, —SO 2 —, —NH—, an alkylene group, an arylene group, and combinations thereof. To express. Examples of the divalent linking group formed by the above combination are shown below.
- R 1 and R 2 each represent a hydrocarbon group having 10 or more carbon atoms. Although the upper limit of the number of carbon atoms of R 1 and R 2 is not particularly limited, each may be 30 or less.
- the degree of polymerization of the polymer contained in the alignment film is preferably 200 or more, more preferably 300 or more, preferably 5000 or less, more preferably 3000 or less.
- the weight average molecular weight of the polymer contained in the alignment film is preferably 9000 or more, more preferably 13000 or more, preferably 200000 or less, more preferably 130,000 or less.
- the polymer which can be contained in alignment film may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the alignment film is preferably subjected to a rubbing treatment.
- This rubbing treatment can be performed by rubbing the surface of the alignment film once or a plurality of times in a certain direction with a member such as paper and cloth.
- discotic liquid crystalline molecules include C.I. Destrade et al. Mol. Crysr. Liq. Cryst. , Vol. 71, page 111 (1981); edited by the Chemical Society of Japan, quarterly chemistry review, No. 22, Liquid Crystal Chemistry, Chapter 5, Chapter 10, Section 2 (1994); Kohne et al. , Angew. Chem. Soc. Chem. Comm. , Page 1794 (1985); Zhang et al. , J .; Am. Chem. Soc. , Vol. 116, page 2655 (1994).
- discotic liquid crystalline molecules In addition, from the viewpoint of fixing the discotic liquid crystalline molecules with the optically anisotropic layer, it is preferable to use polymerizable molecules as the discotic liquid crystalline molecules.
- the polymerization of discotic liquid crystalline molecules is described in, for example, JP-A-8-27284.
- a discotic liquid crystalline molecule in which a polymerizable group is bonded as a substituent to a discotic core (discotic core) of the discotic liquid crystalline molecule is preferable.
- a polymerizable group is directly connected to the discotic core, it may be difficult to maintain the orientation state in the polymerization reaction, so there is a linking group between the discotic core and the polymerizable group. It is preferably introduced.
- discotic liquid crystalline molecules include, for example, compounds represented by the following formula (II).
- D represents a disk-shaped core. Examples of the disk-shaped core (D) in the formula (II) are shown below.
- LP and PL represent a combination of a divalent linking group (L) and a polymerizable group (P).
- each L independently represents a divalent linking group.
- the divalent linking group (L) in the formula (II) include an alkylene group, an alkenylene group, an arylene group, —CO—, —NH—, —O—, —S—, and combinations thereof.
- the bivalent coupling group chosen is mentioned.
- the divalent linking group (L) includes at least two divalent groups selected from the group consisting of an alkylene group, an alkenylene group, an arylene group, —CO—, —NH—, —O—, and —S—. More preferred is a combined group.
- the divalent linking group (L) is a group obtained by combining at least two divalent groups selected from the group consisting of an alkylene group, an alkenylene group, an arylene group, —CO— and —O—. Particularly preferred.
- the alkylene group preferably has 1 to 12 carbon atoms
- the alkenylene group preferably has 2 to 12 carbon atoms
- the arylene group has carbon atoms. Is 6-10.
- the alkylene group, alkenylene group, and arylene group may have a substituent such as an alkyl group, a halogen atom, a cyano, an alkoxy group, or an acyloxy group.
- divalent linking group (L) is shown below.
- the left side is bonded to the discotic core (D), and the right side is bonded to the polymerizable group (P).
- AL represents an alkylene group or an alkenylene group
- AR represents an arylene group.
- each P independently represents a polymerizable group.
- the type of polymerizable group (P) in formula (II) can be determined according to the type of polymerization reaction. Examples of the polymerizable group (P) are shown below.
- unsaturated polymerizable groups P1, P2, P3, P7, P8, P15, P16, P17
- epoxy groups P6, P18
- unsaturated polymerizable groups are preferred.
- ethylenically unsaturated polymerizable groups P1, P7, P8, P15, P16, P17).
- n represents an integer of 4 or more and 12 or less. A specific value of the integer n can be determined according to the type of the disk-shaped core (D).
- the combination of a plurality of L and P may be different but is preferably the same.
- one type of discotic liquid crystalline molecule may be used alone, or two or more types may be used in combination at any ratio.
- a discotic liquid crystal molecule having an asymmetric carbon atom in a divalent linking group may be used in combination with a discotic liquid crystal molecule that does not have an asymmetric carbon atom.
- a coating solution containing discotic liquid crystalline molecules is usually applied to the surface of the support.
- the coating liquid may contain any component other than the discotic liquid crystalline molecules.
- optional components include a solvent and a polymerization initiator.
- Organic solvent can be used as the solvent.
- Organic solvents include amide solvents such as N, N-dimethylformamide; sulfoxide solvents such as dimethyl sulfoxide; heterocyclic compound solvents such as pyridine; hydrocarbon solvents such as benzene and hexane; alkyl halide solvents such as chloroform and dichloromethane; acetic acid Examples thereof include ester solvents such as methyl and butyl acetate; ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as tetrahydrofuran and 1,2-dimethoxyethane. Of these, alkyl halide solvents and ketone solvents are preferred.
- a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- the polymerization initiator a thermal polymerization initiator and a photopolymerization initiator can be used, and among them, a photopolymerization initiator is preferable.
- the photopolymerization initiator include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatic acyloin. Compound (described in US Pat. No. 2,722,512), polynuclear quinone compound (described in US Pat. Nos.
- a polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the amount of the polymerization initiator in the coating solution is preferably 0.01 parts by weight or more, more preferably 0.5 parts by weight or more, and usually 20 parts by weight or less, preferably 100 parts by weight of the solid content of the coating solution. Is 5 parts by weight or less.
- a coating method of the coating liquid for example, die coating method, curtain coating method, extrusion coating method, roll coating method, spin coating method, dip coating method, bar coating method, spray coating method, slide coating method, print coating method, Examples include a gravure coating method, a cap coating method, and a dipping method.
- the drying method is arbitrary, and can be performed by, for example, heat drying, natural drying, vacuum drying, or vacuum heat drying.
- a step of orienting the discotic liquid crystalline molecules may be performed as necessary.
- the discotic liquid crystalline molecules are aligned by heat treatment.
- the step of drying the coating solution the discotic liquid crystalline molecules may be aligned. In this case, drying of the coating liquid film and orientation of the discotic liquid crystalline molecules may be performed in the same step.
- the discotic liquid crystalline molecules are fixed while maintaining the alignment.
- the fixing of the discotic liquid crystalline molecules is usually performed by polymerizing the discotic liquid crystalline molecules.
- the polymerization may be performed by heating or by light irradiation, but is preferably performed by light irradiation. In light irradiation, it is preferable to use ultraviolet rays as light. Irradiation energy of the light is preferably 20 mJ / cm 2 or more, more preferably 50 mJ / cm 2 or more, preferably 800 J / cm 2 or less, more preferably 100 mJ / cm 2 or less. Furthermore, in order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions.
- optically anisotropic layer containing discotic liquid crystalline molecules fixed in an aligned state
- a desired phase difference corresponding to the orientation of the discotic liquid crystalline molecules is exhibited, so that a ⁇ / 4 plate can be obtained.
- the thickness of the optically anisotropic layer is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, particularly preferably 1 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
- the optically anisotropic layer may be peeled off from the support and used as a ⁇ / 4 plate.
- the discotic liquid crystalline molecules fixed while maintaining the alignment state can maintain the alignment state even when the optically anisotropic layer is peeled off from the support.
- the total light transmittance of the ⁇ / 4 plate is preferably 80% or more.
- the haze of the ⁇ / 4 plate is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
- the amount of the volatile component contained in the ⁇ / 4 plate is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, still more preferably 0.02% by weight or less, and ideally zero. is there.
- the amount of the volatile component By reducing the amount of the volatile component, the dimensional stability of the ⁇ / 4 plate can be improved, and the change over time in optical characteristics such as retardation can be reduced.
- the saturated water absorption of the ⁇ / 4 plate is preferably 0.03% by weight or less, more preferably 0.02% by weight or less, particularly preferably 0.01% by weight or less, and ideally zero.
- the saturated water absorption rate of the ⁇ / 4 plate is within the above range, a change with time in optical characteristics such as in-plane retardation can be reduced.
- the thickness of the ⁇ / 4 plate is preferably 40 ⁇ m or more, more preferably 45 ⁇ m or more, particularly preferably 50 ⁇ m or more, preferably 80 ⁇ m or less, more preferably 75 ⁇ m or less, and particularly preferably 70 ⁇ m or less.
- the circularly polarizing plate of the present invention can include an arbitrary layer other than the polarizing film, the ⁇ / 2 plate, and the ⁇ / 4 plate as long as the effects of the present invention are not significantly impaired.
- the circularly polarizing plate of the present invention can include a protective film layer for preventing scratches.
- the circularly polarizing plate of the present invention can include an adhesive layer or an adhesive layer for adhesion between the polarizing film and the ⁇ / 2 plate and adhesion between the ⁇ / 2 plate and the ⁇ / 4 plate.
- circularly polarizing plate of the present invention When the circularly polarizing plate of the present invention is provided on a surface that can reflect light, reflection of external light can be effectively reduced in both the front direction and the tilt direction.
- the circularly polarizing plate of the present invention is useful in that reflection of external light can be effectively reduced in a wide wavelength range in the visible region.
- a ⁇ / 4 plate having a slow axis that forms an angle ⁇ ( ⁇ / 4) with respect to a reference direction, and ⁇ / that has a slow axis that forms an angle ⁇ ( ⁇ / 2) with respect to the reference direction.
- ⁇ ( ⁇ / 4) 2 ⁇ ( ⁇ / 2) + 45 °”
- the multilayer film transmits the multilayer film in a wide wavelength range.
- This is a broadband ⁇ / 4 plate capable of giving an in-plane phase difference of approximately 1 ⁇ 4 wavelength of the wavelength of the light (see Patent Document 2).
- the ⁇ / 2 plate and the ⁇ / 4 plate satisfy a relationship close to that represented by Formula C, so that the portion including the ⁇ / 2 plate and the ⁇ / 4 plate has a broadband ⁇ / Can function as 4 plates. Therefore, since the circularly polarizing plate of the present invention can absorb circularly polarized light in a wide wavelength range, reflection of external light can be effectively reduced.
- a large refractive index nz is expressed in the thickness direction in the ⁇ / 4 plate. Due to the refractive index nz in the thickness direction, as described above, the apparent angle shift between the slow axis of the ⁇ / 2 plate and the slow axis of the ⁇ / 4 plate when the circularly polarizing plate is viewed from the tilt direction. Can compensate. Therefore, since the circularly polarizing plate of the present invention can absorb circularly polarized light in a wide wavelength range, not only in the front direction but also in the inclined direction, reflection of external light can be effectively reduced.
- the circularly polarizing plate of the present invention can be produced by laminating the above polarizing film, ⁇ / 2 plate, and ⁇ / 4 plate. At this time, the polarizing film, the ⁇ / 2 plate, and the ⁇ / 4 plate are set so that the slow axis of the ⁇ / 2 plate and the slow axis of the ⁇ / 4 plate make a desired angle with respect to the absorption axis of the polarizing film. Align and align the optical axes.
- the polarizing film and the ⁇ / 2 plate are arranged such that the slow axis of the ⁇ / 2 plate is a predetermined angle ⁇ h (specifically, the absorption axis of the polarizing film). 22.5 ° ⁇ 10 °), the ⁇ / 2 plate and the ⁇ / 4 plate are bonded to each other so that the slow axis of the ⁇ / 4 plate is predetermined with respect to the absorption axis of the polarizing film. And a step of bonding so as to form an angle ⁇ q (specifically, 90 ° ⁇ 20 °).
- the manufacturing method of the circularly polarizing plate of the present invention can be manufactured by the following manufacturing method, for example.
- (Manufacturing method 2) Stretching a first pre-stretched film comprising a layer made of a material having a positive intrinsic birefringence value in one direction to obtain a ⁇ / 2 plate having a slow axis in the stretched direction; Forming a layer containing discotic liquid crystalline molecules on a support, orienting the discotic liquid crystalline molecules and fixing the discotic liquid crystalline molecules to obtain a ⁇ / 4 plate; Bonding the polarizing film and the ⁇ / 2 plate so that the slow axis of the ⁇ / 2 plate forms a predetermined angle ⁇ h with respect to the absorption axis of the polarizing film; bonding the ⁇ / 2 plate and the ⁇ / 4 plate so that the slow axis of the ⁇ / 4 plate forms a predetermined angle ⁇ q with respect to the absorption axis of the polarizing film.
- either the step of laminating the multilayer film and the ⁇ / 2 plate and the step of laminating the ⁇ / 2 plate and the ⁇ / 4 plate may be performed first, and both steps are performed simultaneously. May be. Moreover, you may use an adhesive or an adhesive agent as needed at the time of bonding.
- a circularly polarizing plate is manufactured using a ⁇ / 4 plate having an optically anisotropic layer manufactured using a ⁇ / 2 plate as a support
- the ⁇ / 2 plate and the ⁇ / 4 plate are Obtained as a single multilayer film.
- a circularly polarizing plate can be produced by laminating the multilayer film and the polarizing film.
- the polarizing film, the ⁇ / 2 plate and the ⁇ / 4 plate may be bonded together in the state of a long film.
- a long polarizing film, a ⁇ / 2 plate and a ⁇ / 4 plate are cut into a single sheet polarizing film, a ⁇ / 2 plate and a ⁇ / 4 plate, and the cut sheet
- a circularly polarizing plate may be produced by laminating the polarizing film, the ⁇ / 2 plate, and the ⁇ / 4 plate.
- the broadband ⁇ / 4 plate of the present invention is an optical member having the same structure as the portion other than the polarizing film in the circularly polarizing plate of the present invention described above. Accordingly, the broadband ⁇ / 4 plate of the present invention includes the ⁇ / 2 plate and the ⁇ / 4 plate described above.
- the ⁇ / 2 plate has a slow axis in a direction that forms a predetermined angle ⁇ h (usually 22.5 ° ⁇ 10 °) with respect to a certain reference direction, and the ⁇ / 4 plate It has a slow axis in a direction that forms a predetermined angle ⁇ q (usually 90 ° ⁇ 20 °) with respect to the reference direction.
- the reference direction corresponds to the direction of the absorption axis of the polarizing film in the circularly polarizing plate of the present invention.
- the broadband ⁇ / 4 plate of the present invention can obtain at least the following advantages.
- the broadband ⁇ / 4 plate of the present invention can give an in-plane phase difference of approximately 1 ⁇ 4 wavelength of the light transmitted through the broadband ⁇ / 4 plate in the front direction in a wide wavelength range.
- the broadband ⁇ / 4 plate of the present invention can give an in-plane phase difference of approximately 1 ⁇ 4 wavelength of the light transmitted through the broadband ⁇ / 4 plate in the tilt direction over a wide wavelength range. Therefore, by combining the broadband ⁇ / 4 plate of the present invention with a polarizing film, a circularly polarizing plate that can reduce reflection of light in a wide wavelength range in both the front direction and the tilt direction can be realized.
- the organic EL display device of the present invention includes the circularly polarizing plate of the present invention or the broadband ⁇ / 4 plate of the present invention.
- the organic EL display device of the present invention includes a circularly polarizing plate
- the organic EL display device usually includes a circularly polarizing plate on the display surface.
- a circularly-polarizing plate can function as an antireflection film of an organic EL display device. That is, by providing a circularly polarizing plate on the display surface of the organic EL display device so that the surface on the polarizing film side faces the viewing side, light incident from the outside of the device is reflected inside the device and emitted to the outside of the device. As a result, glare of the display surface of the display device can be suppressed.
- the organic EL display device of the present invention includes a broadband ⁇ / 4 plate
- the organic EL display device can include a broadband ⁇ / 4 plate at an arbitrary position.
- the liquid crystal display device of the present invention includes the circularly polarizing plate of the present invention or the broadband ⁇ / 4 plate of the present invention.
- the liquid crystal display device of the present invention includes a circularly polarizing plate
- the liquid crystal display device usually includes a circularly polarizing plate on the display surface.
- a circularly-polarizing plate can function as an antireflection film of a liquid crystal display device. That is, by providing a circularly polarizing plate on the display surface of the liquid crystal display device so that the surface on the polarizing film side faces the viewing side, light incident from the outside of the device is reflected inside the device and emitted to the outside of the device. As a result, glare of the display surface of the display device can be suppressed.
- the liquid crystal display device of the present invention includes a broadband ⁇ / 4 plate
- the liquid crystal display device normally includes a broadband ⁇ / 4 plate on the viewing side of the liquid crystal panel.
- the broadband ⁇ / 4 plate can function as a film for enhancing the visibility of the display surface by an observer wearing polarized sunglasses. That is, the circularly polarizing plate is provided at a position closer to the display surface than the viewing side polarizer of the liquid crystal panel of the liquid crystal display device.
- the slow axis of the ⁇ / 2 plate of the broadband ⁇ / 4 plate is set to make an angle of 22.5 ° ⁇ 10 ° with respect to the absorption axis of the viewing side polarizer.
- the linearly polarized light transmitted through the viewing side polarizer is converted into circularly polarized light by the broadband ⁇ / 4 plate, so that the light emitted from the display surface can be stably visually recognized by the polarized sunglasses.
- a mirror having a planar reflecting surface was prepared. This mirror was placed so that the reflecting surface was horizontal and facing upward. A circularly polarizing plate was attached on the reflecting surface of this mirror so that the polarizing film side would face upward.
- the circularly polarizing plate on the mirror was visually observed in a state where the circularly polarizing plate was illuminated with sunlight on a sunny day. Observation of the circularly polarizing plate, (I) a front direction with a polar angle of 0 ° and an azimuth angle of 0 °; (Ii) The measurement was performed in both of a polar angle of 45 ° and an azimuth angle of 0 ° to 360 °.
- the above-mentioned visual evaluation is performed by 20 observers, and each person ranks the results of all the examples and comparative examples, and the points corresponding to the ranks (first 16 points, second 15 points,... ⁇ The lowest one was given.
- the total points scored by each person were arranged in the order of points, and evaluation was performed in the order of A, B, C, D, and E from the upper group within the range of the points.
- the reflectance when light was irradiated to a circularly-polarizing plate from D65 light source was calculated in the (i) front direction and (ii) inclination direction of the said circularly-polarizing plate.
- (i) In the front direction the reflectance in the direction of polar angle 0 ° and azimuth angle 0 ° was calculated.
- (Ii) In the tilt direction at a polar angle of 45 °, the azimuth angle is calculated in 5 ° increments in the azimuth angle range of 0 ° to 360 °, and the average of the calculated values is calculated. It was adopted as the reflectance in the tilt direction of the modeled circularly polarizing plate. In the simulation, the surface reflection component actually generated on the surface of the polarizing film is excluded from the reflectance.
- Examples 1-1 to 1-9 (1-i. Production of polarizing film) A long unstretched film made of polyvinyl alcohol resin dyed with iodine was prepared. This unstretched film was stretched in the longitudinal direction at an angle of 90 ° with respect to the width direction of the unstretched film to obtain a long polarizing film. This polarizing film had an absorption axis in the longitudinal direction of the polarizing film, and a transmission axis in the width direction of the polarizing film.
- a long cyclic olefin resin film (“Zeonor film” manufactured by Nippon Zeon Co., Ltd., glass transition temperature 126 ° C .; thickness 45 ⁇ m) obtained by forming a cyclic olefin resin into a film by a melt extrusion method is used as a film before stretching. Prepared. This cyclic olefin resin film was stretched in the longitudinal direction at an angle of 90 ° with respect to the width direction of the cyclic olefin resin film to obtain a long ⁇ / 2 plate.
- the stretching conditions at this time were set so that a ⁇ / 2 plate having the physical properties as shown in Table 2 below could be obtained within a stretching temperature range of 120 ° C. to 150 ° C. and a stretching ratio of 1.3 times to 3 times.
- the obtained ⁇ / 2 plate had a slow axis in the longitudinal direction of the ⁇ / 2 plate.
- a styrene-maleic acid copolymer resin (“Daylake D332” manufactured by Nova Chemical Co., Ltd., glass transition temperature 130 ° C., oligomer component content 3% by weight) was prepared.
- acrylic resin for the protective layer “SUMIPEX HT-55X” (glass transition temperature 105 ° C.) manufactured by Sumitomo Chemical Co., Ltd. was prepared.
- a modified ethylene-vinyl acetate copolymer (“Modic AP A543” manufactured by Mitsubishi Chemical Corporation, Vicat softening point 80 ° C.) was prepared.
- the prepared styrene-maleic acid copolymer resin, acrylic resin and adhesive were coextruded to obtain an acrylic resin layer, an adhesive layer, a styrene-maleic acid copolymer resin layer, an adhesive layer and an acrylic resin layer.
- a long unstretched film having layers in this order was obtained.
- the thickness of the styrene-maleic acid copolymer resin layer of the pre-stretched film was adjusted in the range of 40 ⁇ m to 100 ⁇ m so that a ⁇ / 4 plate having physical properties as shown in Table 2 below was obtained.
- this pre-stretched film was stretched in the longitudinal direction at an angle of 90 ° with respect to the width direction to obtain a long ⁇ / 2 plate.
- the stretching conditions at this time were set so that a ⁇ / 4 plate having physical properties as shown in Table 2 below could be obtained within a stretching temperature range of 120 ° C. to 140 ° C. and a stretching ratio of 1.2 times to 2.0 times.
- the obtained ⁇ / 4 plate had a slow axis in the width direction of the ⁇ / 4 plate. Further, in this ⁇ / 4 plate, no retardation was developed in the acrylic resin layer and the adhesive layer.
- a long polarizing film, a long ⁇ / 2 plate, and a long ⁇ / 4 plate were cut out to obtain a single-wafer polarizing film, a single-wafer ⁇ / 2 plate, and a single-wafer ⁇ / 4 plate.
- the direction of the slow axis of the ⁇ / 2 plate and the direction of the slow axis of the ⁇ / 4 plate with respect to the absorption axis of the polarizing film are respectively the ⁇ / 2 plate of the sheet and the ⁇ / 4 plate of the sheet.
- a long ⁇ / 2 plate and a long ⁇ / 4 plate were cut out so as to be ⁇ h and ⁇ q.
- a sheet of ⁇ / 2 plate is applied to a sheet of polarizing film, and an adhesive (“CS9621” manufactured by Nitto Denko Corporation) is used to delay the ⁇ / 2 plate with respect to the absorption axis of the polarizing film when viewed from the polarizing film side. Bonding was performed so that the phase axis formed an angle of 22.5 ° counterclockwise. Furthermore, when the ⁇ / 4 plate is a single ⁇ / 4 plate and the adhesive is used, the slow axis of the ⁇ / 4 plate is counterclockwise with respect to the absorption axis of the polarizing film when viewed from the polarizing film side.
- Example 2-1 (2-1-i. Production of polarizing film) A long polarizing film was produced in the same manner as in the steps of Examples 1-1 to 1-9 (1-i. Production of polarizing film).
- a circularly polarizing plate comprising a polarizing film, a pressure-sensitive adhesive layer, a ⁇ / 2 plate, a pressure-sensitive adhesive layer, and a ⁇ / 4 plate in this order was obtained.
- the circularly polarizing plate thus obtained was evaluated by the method described above.
- Example 2-2 (2-2-i. Production of polarizing film) A long polarizing film was produced in the same manner as in the steps of Examples 1-1 to 1-9 (1-i. Production of polarizing film).
- a coating solution having the composition shown in Table 1 below was continuously applied using a bar coater to form a coating solution film.
- the discotic liquid crystalline molecules are fixed by irradiating with ultraviolet rays to form an optically anisotropic layer having a thickness of 1.7 ⁇ m. Obtained.
- a ⁇ / 4 plate provided with a transparent support and an optically anisotropic layer was obtained.
- the discotic liquid crystalline molecules were homogeneously aligned so as to have an optical axis (director) in a direction forming an angle of 45 ° with the longitudinal direction of the transparent support.
- the ⁇ / 4 plate had a slow axis in a direction perpendicular to the optical axis (director) (that is, a direction forming an angle of 45 ° with the longitudinal direction of the transparent support).
- a circularly polarizing plate comprising a polarizing film, a pressure-sensitive adhesive layer, a ⁇ / 2 plate, a pressure-sensitive adhesive layer, and a ⁇ / 4 plate in this order was obtained.
- the circularly polarizing plate thus obtained was evaluated by the method described above.
- Examples 3-1 to 3-3 (3-i. Production of polarizing film) A long polarizing film was produced in the same manner as in the steps of Examples 1-1 to 1-9 (1-i. Production of polarizing film).
- the slow axis of the ⁇ / 4 plate appears counterclockwise with respect to the absorption axis of the polarizing film when viewed from the polarizing film side. Bonding was performed so that the angle ⁇ h shown in FIG. This obtained the circularly-polarizing plate provided with the polarizing film, the adhesive layer, the ⁇ / 2 plate, the adhesive layer, and the ⁇ / 4 plate in this order.
- the circularly polarizing plate thus obtained was evaluated by the method described above.
- a circularly polarizing plate comprising a polarizing film, a pressure-sensitive adhesive layer, a ⁇ / 2 plate, a pressure-sensitive adhesive layer, and a ⁇ / 4 plate in this order was obtained.
- the circularly polarizing plate thus obtained was evaluated by the method described above.
- the slow axis of the ⁇ / 4 plate appears counterclockwise with respect to the absorption axis of the polarizing film when viewed from the polarizing film side. Bonding was performed so that the angle ⁇ h shown in FIG. This obtained the circularly-polarizing plate provided with the polarizing film, the adhesive layer, the ⁇ / 2 plate, the adhesive layer, and the ⁇ / 4 plate in this order.
- the circularly polarizing plate thus obtained was evaluated by the method described above.
- Counterclockwise angle ⁇ q Angle when the slow axis of the ⁇ / 4 plate is counterclockwise with respect to the absorption axis of the polarizing film when the circularly polarizing plate is viewed from the polarizing film side
- NZh ⁇ / 2 plate
- NZ coefficient NZq NZ coefficient of ⁇ / 4 plate
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Polarising Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
(1)偏光フィルムの吸収軸とλ/2板の吸収軸とがなす角度を所定の範囲に収め、且つ、偏光フィルムの吸収軸とλ/4板の吸収軸とがなす角度を所定の範囲に収める。
(2)λ/2板の波長分散とλ/4板の波長分散とを相違させる。
(3)λ/2板及びλ/4板を、光学的に一軸性にする。
このような知見に基づいて、本発明は完成された。
すなわち、本発明は、以下の通りである。
前記偏光フィルムの吸収軸に対して22.5°±10°の角度をなす方向に遅相軸を有するλ/2板と、
前記偏光フィルムの吸収軸に対して90°±20°の角度をなす方向に遅相軸を有するλ/4板と、をこの順に備え、
前記λ/2板の波長分散と前記λ/4板の波長分散とが異なり、
前記λ/2板のNZ係数が1.00±0.05であり、
前記λ/4板のNZ係数が0.00±0.05である、円偏光板。
〔2〕 波長400nmにおける前記λ/2板の面内位相差をReh(400)、
波長550nmにおける前記λ/2板の面内位相差をReh(550)、
波長400nmにおける前記λ/4板の面内位相差をReq(400)、及び、
波長550nmにおける前記λ/4板の面内位相差をReq(550)としたとき、
下記式(A):
Reh(400)/Reh(550)<Req(400)/Req(550)
を満たす、〔1〕記載の円偏光板。
〔3〕 波長400nmにおける前記λ/2板の面内位相差をReh(400)、
波長550nmにおける前記λ/2板の面内位相差をReh(550)、
波長400nmにおける前記λ/4板の面内位相差をReq(400)、及び、
波長550nmにおける前記λ/4板の面内位相差をReq(550)としたとき、
下記式(B):
Req(400)/Req(550)-Reh(400)/Reh(550)=0.12±0.08
を満たす、〔1〕又は〔2〕記載の円偏光板。
〔4〕 前記λ/4板が、固有複屈折値が負の材料からなる層を備える、〔1〕~〔3〕のいずれか一項に記載の円偏光板。
〔5〕 前記λ/2板が、固有複屈折値が正の材料からなる層を備える、請求項〔1〕~〔4〕のいずれか一項に記載の円偏光板。
〔6〕 基準方向に対して22.5°±10°の角度をなす方向に遅相軸を有するλ/2板と、
前記基準方向に対して90°±20°の角度をなす方向に遅相軸を有するλ/4板とを備え、
前記λ/2板の波長分散と前記λ/4板の波長分散とが異なり、
前記λ/2板のNZ係数が1.00±0.05であり、
前記λ/4板のNZ係数が0.00±0.05である、広帯域λ/4板。
〔7〕 〔1〕~〔5〕のいずれか一項に記載の円偏光板を備える、有機エレクトロルミネッセンス表示装置。
〔8〕 〔1〕~〔5〕のいずれか一項に記載の円偏光板を備える、液晶表示装置。
〔9〕 固有複屈折値が正の材料からなる層を備える第一の延伸前フィルムを一方向に延伸して、延伸した方向に遅相軸を有するλ/2板を得る工程と、
固有複屈折値が負の材料からなる層を備える第二の延伸前フィルムを一方向に延伸して、延伸した方向に対して垂直な方向に遅相軸を有するλ/4板を得る工程と、
偏光フィルムと前記λ/2板とを、前記偏光フィルムの吸収軸に対して前記λ/2板の遅相軸が22.5°±10°の角度をなすように貼り合わせる工程と、
前記λ/2板と前記λ/4板とを、前記偏光フィルムの吸収軸に対して前記λ/4板の遅相軸が90°±20°の角度をなすように貼り合わせる工程と、を含み、
前記λ/2板の波長分散と前記λ/4板の波長分散とが異なり、
前記λ/2板のNZ係数が1.00±0.05であり、
前記λ/4板のNZ係数が0.00±0.05である、円偏光板の製造方法。
〔10〕 固有複屈折値が正の材料からなる層を備える第一の延伸前フィルムを一方向に延伸して、延伸した方向に遅相軸を有するλ/2板を得る工程と、
支持体上にディスコティック液晶性分子を含む層を形成し、前記ディスコティック液晶性分子を配向させ、前記ディスコティック液晶性分子を固定して、λ/4板を得る工程と、
偏光フィルムと前記λ/2板とを、前記偏光フィルムの吸収軸に対して前記λ/2板の遅相軸が22.5°±10°の角度をなすように貼り合わせる工程と、
前記λ/2板と前記λ/4板とを、前記偏光フィルムの吸収軸に対して前記λ/4板の遅相軸が90°±20°の角度をなすように貼り合わせる工程と、を含み、
前記λ/2板の波長分散と前記λ/4板の波長分散とが異なり、
前記λ/2板のNZ係数が1.00±0.05であり、
前記λ/4板のNZ係数が0.00±0.05である、円偏光板の製造方法。
図1は、本発明の一実施形態に係る円偏光板の分解斜視図である。図1では、λ/2板120の表面に、偏光フィルム110の吸収軸111を投影した軸112を一点鎖線で示す。また、図1では、λ/4板130の表面に、偏光フィルム110の吸収軸111を投影した軸113を一点鎖線で示す。
偏光フィルムは、通常は偏光子層を備え、必要に応じて偏光子層を保護するための保護フィルム層を備える。
偏光子層としては、例えば、ポリビニルアルコール、部分ホルマール化ポリビニルアルコール等の適切なビニルアルコール系重合体のフィルムに、ヨウ素及び二色性染料等の二色性物質による染色処理、延伸処理、架橋処理等の適切な処理を適切な順序及び方式で施したものを用いうる。通常、偏光子層を製造するための延伸処理では、延伸前の長尺のフィルムを長手方向に延伸するので、得られる偏光子層においては当該偏光子層の長手方向に平行な吸収軸が発現しうる。この偏光子層は、吸収軸と平行な振動方向を有する直線偏光を吸収しうるものであり、特に、偏光度に優れるものが好ましい。偏光子層の厚さは、5μm~80μmが一般的であるが、これに限定されない。
λ/2板は、測定波長590nmにおいて、通常240nm以上通常300nm以下の面内位相差を有する光学部材である。λ/2板がこのような面内位相差を有することにより、λ/2板及びλ/4板を組み合わせて広帯域λ/4板を実現できる。そのため、本発明の円偏光板は、広い波長範囲において、右円偏光及び左円偏光の一方の光を吸収し、残りの光を透過させうる機能を発現できる。したがって、本発明の円偏光板により、正面方向及び傾斜方向の両方において、広い波長範囲の光の反射を低減することが可能となる。中でも、傾斜方向における外光の反射を特に効果的に低減するためには、測定波長590nmにおけるλ/2板の面内位相差は、好ましくは250nm以上であり、好ましくは280nm以下、より好ましくは265nm以下である。
例えば、長尺の第一の延伸前フィルムを用いて長尺のλ/2板を製造した場合には、当該λ/2板を所望の形状に切り出すトリミング工程を行ってもよい。トリミング工程を行うことにより、所望の形状を有する枚葉のλ/2板が得られる。
また、例えば、λ/2板に保護層を設ける工程を行なってもよい。
ここで、揮発性成分とは、フィルム中に微量含まれる分子量200以下の物質であり、例えば、残留単量体及び溶媒などが挙げられる。揮発性成分の量は、フィルム中に含まれる分子量200以下の物質の合計として、フィルムをクロロホルムに溶解させてガスクロマトグラフィーにより分析することにより定量することができる。
ここで、飽和吸水率は、フィルムの試験片を23℃の水中に24時間浸漬し、増加した質量の、浸漬前フィルム試験片の質量に対する百分率で表される値である。
λ/4板は、測定波長590nmにおいて、通常110nm以上通常154nm以下の面内位相差を有する光学部材である。λ/4板がこのような面内位相差を有することにより、λ/2板及びλ/4板を組み合わせて広帯域λ/4板を実現できる。そのため、本発明の円偏光板は、広い波長範囲において、右円偏光及び左円偏光の一方の光を吸収し、残りの光を透過させうる機能を発現できる。したがって、本発明の円偏光板により、正面方向及び傾斜方向の両方において、広い波長範囲の光の反射を低減することが可能となる。中でも、傾斜方向における外光の反射を特に効果的に低減するためには、測定波長590nmにおけるλ/4板の面内位相差は、好ましくは118nm以上であり、好ましくは138nm以下、より好ましくは128nm以下である。
Reh(400)/Reh(550)<Req(400)/Req(550)
が満たされていることが好ましい。これにより、円偏光板の正面方向において外光の反射を効果的に低減できる。
Req(400)/Req(550)-Reh(400)/Reh(550)=0.12±0.08
が満たされていることが好ましい。これにより、円偏光板の正面方向において外光の反射を特に効果的に低減できる。
保護層は、本発明の効果を著しく損なわない範囲で任意の層を用いうる。例えば、保護層としては、固有複屈折値が正の樹脂からなる層を用いうる。その際、λ/4板における位相差の調整を容易にする観点から、保護層が有する面内位相差及び厚み方向の位相差はゼロに近いことが好ましい。このように保護層の面内位相差及び厚み方向の位相差をゼロに近づける方法としては、例えば、保護層に含まれる樹脂のガラス転移温度を固有複屈折値が負の樹脂のガラス転移温度よりも低くする方法が挙げられる。
また、保護層は、固有複屈折値が負の樹脂からなる層の片側だけに設けられていてもよく、両側に設けられていてもよい。
(d)第四工程における延伸温度を前記の範囲にすることにより、第二の延伸前フィルムに含まれる分子を確実に配向させることができるので、所望の光学特性を有するλ/4板を容易に得ることができる。
例えば、λ/2板の製造方法で例示した任意の工程と同様の工程を行ってもよい。
支持体の表面には、表面処理が施されていてもよい。例えば、表面処理を施された面の接着性を向上させるために、グロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理等が施されていてもよい。
-(VAl)x-(HyC)y-(VAc)z- (I)
式(I)において、VAlは、ビニルアルコール構造単位を表す。
式(I)において、HyCは、炭素原子数が10以上の炭化水素基を有する構造単位を表す。
式(I)において、VAcは、酢酸ビニル構造単位を表す。
式(I)において、xは、ビニルアルコール構造単位の割合を表し、通常20モル%以上、好ましくは25モル%以上であり、通常95モル%以下、好ましくは90モル%以下である。
式(I)において、yは、炭素原子数が10以上の炭化水素基を有する構造単位HyCの割合を表し、通常2モル%以上、好ましくは3モル%以上であり、通常80モル%以下、好ましくは70モル%以下である。
式(I)において、zは、酢酸ビニル構造単位の割合を表し、通常0モル%以上、好ましくは2モル%以上であり、通常30モル%以下、好ましくは20モル%以下である。
式(HyC-II)において、L2は、単結合あるいは-O-、-CO-、-SO2-、-NH-、アルキレン基、アリーレン基およびそれらの組み合わせから選ばれる二価の連結基を表す。
上記の組み合わせにより形成される二価の連結基の例を、以下に示す。
-O-CO-
-O-CO-アルキレン基-O-
-O-CO-アルキレン基-CO-NH-
-O-CO-アルキレン基-NH-SO2-アリーレン基-O-
-アリーレン基-NH-CO-
-アリーレン基-CO-O-
-アリーレン基-CO-NH-
-アリーレン基-O-
-O-CO-NH-アリーレン基-NH-CO-
配向膜に含まれるポリマーの重量平均分子量は、好ましくは9000以上、より好ましくは13000以上であり、好ましくは200000以下、より好ましくは130000以下である。
また、配向膜に含まれうるポリマーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
ディスコティック液晶性分子としては、例えば、C. Destrade et al.,Mol. Crysr. Liq. Cryst.,vol.71,page 111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B. Kohne et al.,Angew. Chem. Soc. Chem. Comm.,page 1794(1985);J. Zhang et al.,J. Am.Chem. Soc.,vol.116,page 2655(1994)に記載のものを用いうる。
D(-L-P)n (II)
L1:-AL-CO-O-AL-
L2:-AL-CO-O-AL-O-
L3:-AL-CO-O-AL-O-AL-
L4:-AL-CO-O-AL-O-CO-
L5:-CO-AR-O-AL-
L6:-CO-AR-O-AL-O-
L7:-CO-AR-O-AL-O-CO-
L8:-CO-NH-AL-
L9:-NH-AL-O-
L10:-NH-AL-O-CO-
L11:-O-AL-
L12:-O-AL-O-
L13:-O-AL-O-CO-
L14:-O-AL-O-CO-NH-AL-
L15:-O-AL-S-AL-
L16:-O-CO-AL-AR-O-AL-O-CO-
L17:-O-CO-AR-O-AL-CO-
L18:-O-CO-AR-O-AL-O-CO-
L19:-O-CO-AR-O-AL-O-AL-O-CO-
L20:-O-CO-AR-O-AL-O-AL-O-AL-O-CO-
L21:-S-AL-
L22:-S-AL-O-
L23:-S-AL-O-CO-
L24:-S-AL-S-AL-
L25:-S-AR-AL-
また、ディスコティック液晶性分子は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。例えば、二価の連結基に不斉炭素原子を有するディスコティック液晶性分子と有していないディスコティック液晶性分子とを組み合わせて用いてもよい。
λ/4板のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。
本発明の円偏光板は、本発明の効果を著しく損なわない範囲において、偏光フィルム、λ/2板及びλ/4板以外に、任意の層を備えうる。
例えば、本発明の円偏光板は、傷つき防止のための保護フィルム層を備えうる。また、例えば、本発明の円偏光板は、偏光フィルムとλ/2板との接着、並びに、λ/2板とλ/4板との接着のために、接着層又は粘着層を備えうる。
本発明の円偏光板は、光を反射しうる面に設けた場合に、正面方向及び傾斜方向のいずれにおいても外光の反射を効果的に低減できる。特に、本発明の円偏光板は、可視領域の広い波長範囲において、外光の反射を効果的に低減できる点で、有用である。
本発明の円偏光板は、上述した偏光フィルム、λ/2板及びλ/4板を貼り合わせることにより、製造しうる。この際、偏光フィルム、λ/2板及びλ/4板は、偏光フィルムの吸収軸に対してλ/2板の遅相軸及びλ/4板の遅相軸が所望の角度をなすように、光軸を合わせて貼り合わせを行う。したがって、本発明の円偏光板の製造方法は、通常、偏光フィルムとλ/2板とを、偏光フィルムの吸収軸に対してλ/2板の遅相軸が所定の角度θh(具体的には、22.5°±10°)をなすように貼り合わせる工程と、λ/2板とλ/4板とを、偏光フィルムの吸収軸に対してλ/4板の遅相軸が所定の角度θq(具体的には、90°±20°)をなすように貼り合わせる工程と、を含む。
固有複屈折値が正の材料からなる層を備える第一の延伸前フィルムを一方向に延伸して、延伸した方向に遅相軸を有するλ/2板を得る工程と、
固有複屈折値が負の材料からなる層を備える第二の延伸前フィルムを一方向に延伸して、延伸した方向に対して垂直な方向に遅相軸を有するλ/4板を得る工程と、
偏光フィルムとλ/2板とを、偏光フィルムの吸収軸に対してλ/2板の遅相軸が所定の角度θhをなすように貼り合わせる工程と、
λ/2板とλ/4板とを、偏光フィルムの吸収軸に対してλ/4板の遅相軸が所定の角度θqをなすように貼り合わせる工程と、を含む製造方法。
固有複屈折値が正の材料からなる層を備える第一の延伸前フィルムを一方向に延伸して、延伸した方向に遅相軸を有するλ/2板を得る工程と、
支持体上にディスコティック液晶性分子を含む層を形成し、ディスコティック液晶性分子を配向させ、ディスコティック液晶性分子を固定して、λ/4板を得る工程と、
偏光フィルムとλ/2板とを、偏光フィルムの吸収軸に対してλ/2板の遅相軸が所定の角度θhをなすように貼り合わせる工程と、
λ/2板とλ/4板とを、偏光フィルムの吸収軸に対してλ/4板の遅相軸が所定の角度θqをなすように貼り合わせる工程と、を含む製造方法。
また、貼り合わせの際、必要に応じて、粘着剤又は接着剤を用いてもよい。
本発明の広帯域λ/4板は、上述した本発明の円偏光板における偏光フィルム以外の部分と同様の構造を有する光学部材である。したがって、本発明の広帯域λ/4板は、上述したλ/2板及びλ/4板を備える。そして、λ/2板は、ある基準方向に対して所定の角度θh(通常は22.5°±10°)をなす方向に遅相軸を有し、さらに、λ/4板は、前記の基準方向に対して所定の角度θq(通常は90°±20°)の角度をなす方向に遅相軸を有する。前記の基準方向は、本発明の円偏光板における偏光フィルムの吸収軸の方向に相当する。
・本発明の広帯域λ/4板は、広い波長範囲において、当該広帯域λ/4板を正面方向に透過する光に、その光の波長の略1/4波長の面内位相差を与えられる。
・本発明の広帯域λ/4板は、広い波長範囲において、当該広帯域λ/4板を傾斜方向に透過する光に、その光の波長の略1/4波長の面内位相差を与えられる。
・したがって、本発明の広帯域λ/4板は、偏光フィルムと組み合わせることにより、正面方向及び傾斜方向の両方において広い波長範囲の光の反射を低減できる円偏光板を実現できる。
本発明の有機EL表示装置は、本発明の円偏光板、又は、本発明の広帯域λ/4板を備える。
本発明の液晶表示装置は、本発明の円偏光板、又は、本発明の広帯域λ/4板を備える。
以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
(位相差及びNZ係数の測定方法)
位相差計(王子計測社製「KOBRA-21ADH」)を用いて、フィルムの幅方向に50mm間隔の複数の地点で、面内位相差及び厚み方向の位相差を測定した。これらの地点での測定値の平均値を計算し、この平均値を、当該フィルムの面内位相差及び厚み方向の位相差とした。この際、測定は、波長400nm、波長550nm及び波長590nmでそれぞれ行った。また、得られた面内位相差及び厚み方向の位相差からNZ係数を算出した。
平面状の反射面を有するミラーを用意した。このミラーを、反射面が水平で且つ上向きになるように置いた。このミラーの反射面上に、偏光フィルム側が上向きになるように円偏光板を貼り付けた。
(i)極角0°、方位角0°の正面方向と、
(ii)極角45°、方位角0°~360°の傾斜方向と
の両方で行った。
また、(ii)傾斜方向での観察では、方位角によって反射率及び色味が変化しないかどうかを評価した。
シミュレーション用のソフトウェアとしてシンテック社製「LCD Master」を用いて、各実施例及び比較例で製造された円偏光板をモデル化し、反射率を計算した。
(1-i.偏光フィルムの製造)
ヨウ素で染色した、ポリビニルアルコール樹脂製の長尺の延伸前フィルムを用意した。この延伸前フィルムを、当該延伸前フィルムの幅方向に対して90°の角度をなす長手方向に延伸して、長尺の偏光フィルムを得た。この偏光フィルムは、当該偏光フィルムの長手方向に吸収軸を有し、当該偏光フィルムの幅方向に透過軸を有していた。
環状オレフィン樹脂を溶融押出法でフィルム状に成形して得られた長尺の環状オレフィン樹脂フィルム(日本ゼオン社製「ゼオノアフィルム」、ガラス転移温度126℃;厚さ45μm)を、延伸前フィルムとして用意した。この環状オレフィン樹脂フィルムを、当該環状オレフィン樹脂フィルムの幅方向に対して90°の角度をなす長手方向に延伸して、長尺のλ/2板を得た。この際の延伸条件は、延伸温度120℃~150℃、延伸倍率1.3倍~3倍の範囲において、下記表2のような物性のλ/2板が得られるように設定した。得られたλ/2板は、当該λ/2板の長手方向に遅相軸を有していた。
固有複屈折値が負の材料として、スチレン-マレイン酸共重合体樹脂(ノヴァ・ケミカル社製「Daylark D332」、ガラス転移温度130℃、オリゴマー成分含有量3重量%)を用意した。
保護層用のアクリル樹脂として、住友化学社製「スミペックスHT-55X」(ガラス転移温度105℃)を用意した。
接着剤として、変性したエチレン-酢酸ビニル共重合体(三菱化学社製「モディックAP A543」、ビカット軟化点80℃)を用意した。
長尺の偏光フィルム、長尺のλ/2板及び長尺のλ/4板をそれぞれ切り出して、枚葉の偏光フィルム、枚葉のλ/2板及び枚葉のλ/4板を得た。なお、枚葉のλ/2板及び枚葉のλ/4板は、偏光フィルムの吸収軸に対する、λ/2板の遅相軸の方向及びλ/4板の遅相軸の方向が、それぞれθh、θqとなるように、長尺λ/2板及び長尺のλ/4板を切り出した。以下の実施例及び比較例も同様に枚葉のフィルムに切り出した。
枚葉の偏光フィルムに枚葉のλ/2板を、粘着剤(日東電工社製「CS9621」)を用いて、偏光フィルム側から見て偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りに22.5°の角度をなすように、貼り合わせた。さらに、λ/2板に枚葉のλ/4板を、前記の粘着剤を用いて、偏光フィルム側から見て偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りに90.0°の角度をなすように、貼り合わせた。これにより、偏光フィルム、粘着剤の層、λ/2板、粘着剤の層及びλ/4板をこの順に備える、円偏光板を得た。
こうして得た円偏光板について、上述した方法で評価を行った。
(2-1-i.偏光フィルムの製造)
実施例1-1~1-9の工程(1-i.偏光フィルムの製造)と同様の方法で、長尺の偏光フィルムを製造した。
実施例1-1~1-9の工程(1-ii.λ/2板の製造)と同様の方法で、表2に示す物性を有する、長尺のλ/2板を製造した。
ポリメタクリル酸メチル(住友化学社製「スミペックスEX」、ガラス転移温度103℃)をプレス成形機により250℃でプレス成型して、厚み110μmの延伸前フィルムを得た。この延伸前フィルムを、延伸倍率2倍、延伸温度108℃で当該延伸前フィルムの長手方向に延伸して、長尺のλ/4板(厚み75μm)を得た。得られたλ/4板は、当該λ/4板の幅方向に遅相軸を有していた。
長尺の偏光フィルム、長尺のλ/2板及び長尺のλ/4板をそれぞれ切り出して、枚葉の偏光フィルム、枚葉のλ/2板及び枚葉のλ/4板を得た。これらの枚葉の偏光フィルム、枚葉のλ/2板及び枚葉のλ/4板を、実施例1-1~1-9の工程(1-i.貼り合わせ)と同様に貼り合わせて、偏光フィルム、粘着剤の層、λ/2板、粘着剤の層及びλ/4板をこの順に備える、円偏光板を得た。
こうして得た円偏光板について、上述した方法で評価を行った。
(2-2-i.偏光フィルムの製造)
実施例1-1~1-9の工程(1-i.偏光フィルムの製造)と同様の方法で、長尺の偏光フィルムを製造した。
環状オレフィン樹脂フィルムの代わりに、ポリカーボネート樹脂からなる樹脂フィルム(三菱エンジニアリングプラスチックス社製「ユーピロンS3000」、ガラス転移温度150℃)を用いたこと以外は実施例1の工程(1-ii.λ/2板の製造)と同様の方法で、表2に示す物性を有する長尺のλ/2板を製造した。得られたλ/2板は、当該λ/2板の長手方向に遅相軸を有していた。
厚さ25μm、幅500mm、長さ500mの光学的に等方性のロール状シクロオレフィンポリマーの未延伸フィルムを、透明支持体として用意した。
ステロイド変性ポリアミック酸の希釈液を、透明支持体上に連続塗布し、厚さ0.5μmの垂直配向膜を形成した。次に、透明支持体の長手方向に対して45゜の角度をなす方向に、連続的に垂直配向膜のラビング処理を実施した。
長尺の偏光フィルム、長尺のλ/2板及び長尺のλ/4板をそれぞれ切り出して、枚葉の偏光フィルム、枚葉のλ/2板及び枚葉のλ/4板を得た。これらの枚葉の偏光フィルム、枚葉のλ/2板及び枚葉のλ/4板を、実施例1-1~1-9の工程(1-i.貼り合わせ)と同様に貼り合わせて、偏光フィルム、粘着剤の層、λ/2板、粘着剤の層及びλ/4板をこの順に備える、円偏光板を得た。
こうして得た円偏光板について、上述した方法で評価を行った。
(3-i.偏光フィルムの製造)
実施例1-1~1-9の工程(1-i.偏光フィルムの製造)と同様の方法で、長尺の偏光フィルムを製造した。
実施例1-1~1-9の工程(1-ii.λ/2板の製造)と同様の方法で、表2に示す物性を有する、長尺のλ/2板を製造した。
実施例1-1~1-9の工程(1-iii.λ/4板の製造)と同様の方法で、表2に示す物性を有する、長尺のλ/4板を製造した。
長尺の偏光フィルム、長尺のλ/2板及び長尺のλ/4板をそれぞれ切り出して、枚葉の偏光フィルム、枚葉のλ/2板及び枚葉のλ/4板を得た。
枚葉の偏光フィルムに枚葉のλ/2板を、粘着剤を用いて、偏光フィルム側から見て偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りに表2に示す角度θhをなすように、貼り合わせた。さらに、λ/2板に枚葉のλ/4板を、粘着剤を用いて、偏光フィルム側から見て偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りに表2に示す角度θhをなすように、貼り合わせた。これにより、偏光フィルム、粘着剤の層、λ/2板、粘着剤の層及びλ/4板をこの順に備える、円偏光板を得た。
こうして得た円偏光板について、上述した方法で評価を行った。
(C1-i.偏光フィルムの製造)
実施例1-1~1-9の工程(1-i.偏光フィルムの製造)と同様の方法で、長尺の偏光フィルムを製造した。
実施例1-1~1-9の工程(1-ii.λ/2板の製造)と同様の長尺の環状オレフィン樹脂フィルムを、延伸前フィルムとして用意した。この環状オレフィン樹脂フィルムを、テンター延伸機で当該環状オレフィン樹脂フィルムの幅方向に延伸して、長尺のλ/2板を得た。この際の延伸条件は、延伸温度120℃~150℃、延伸倍率2.0倍~5.0倍の範囲において、下記表2のような物性のλ/2板が得られるように設定した。
実施例1-1~1-9の工程(1-iii.λ/4板の製造)と同様の長尺の延伸前フィルムを用意した。この延伸前フィルムを、テンター延伸機で当該延伸前フィルムの幅方向に延伸して、長尺のλ/4板を得た。この際の延伸条件は、延伸温度110℃~140℃、延伸倍率1.5倍~4.0倍の範囲において、下記表2のような物性のλ/4板が得られるように設定した。
長尺の偏光フィルム、長尺のλ/2板及び長尺のλ/4板をそれぞれ切り出して、枚葉の偏光フィルム、枚葉のλ/2板及び枚葉のλ/4板を得た。これらの枚葉の偏光フィルム、枚葉のλ/2板及び枚葉のλ/4板を、実施例1-1~1-9の工程(1-i.貼り合わせ)と同様に貼り合わせて、偏光フィルム、粘着剤の層、λ/2板、粘着剤の層及びλ/4板をこの順に備える、円偏光板を得た。
こうして得た円偏光板について、上述した方法で評価を行った。
(C2-i.偏光フィルムの製造)
実施例1-1~1-9の工程(1-i.偏光フィルムの製造)と同様の方法で、長尺の偏光フィルムを製造した。
実施例1-1~1-9の工程(1-ii.λ/2板の製造)と同様の方法で、表2に示す物性を有する、長尺のλ/2板を製造した。
実施例1-1~1-9の工程(1-iii.λ/4板の製造)と同様の方法で、表2に示す物性を有する、長尺のλ/4板を製造した。
長尺の偏光フィルム、長尺のλ/2板及び長尺のλ/4板をそれぞれ切り出して、枚葉の偏光フィルム、枚葉のλ/2板及び枚葉のλ/4板を得た。
枚葉の偏光フィルムに枚葉のλ/2板を、粘着剤を用いて、偏光フィルム側から見て偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りに表2に示す角度θhをなすように、貼り合わせた。さらに、λ/2板に枚葉のλ/4板を、粘着剤を用いて、偏光フィルム側から見て偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りに表2に示す角度θhをなすように、貼り合わせた。これにより、偏光フィルム、粘着剤の層、λ/2板、粘着剤の層及びλ/4板をこの順に備える、円偏光板を得た。
こうして得た円偏光板について、上述した方法で評価を行った。
上述した実施例及び比較例の構成を下記の表2に示し、結果を表3に示す。下記の表において、略称の意味は、以下の通りである。
COP:環状オレフィン樹脂
PSt:スチレン-マレイン酸共重合体樹脂
PMMA:ポリメタクリル酸メチル
PC:ポリカーボネート樹脂
LQ:ディスコティック液晶性分子
IDR:固有複屈折値 P:正、N:負
Re:測定波長590nmでの面内位相差
Rth:測定波長590nmでの厚み方向の位相差
θh:偏光フィルム側から円偏光板を見た場合に、偏光フィルムの吸収軸に対してλ/2板の遅相軸が反時計回りになす角度
θq:偏光フィルム側から円偏光板を見た場合に、偏光フィルムの吸収軸に対してλ/4板の遅相軸が反時計回りになす角度
NZh:λ/2板のNZ係数
NZq:λ/4板のNZ係数
上述した実施例及び比較例からわかるように、本発明により、正面方向及び傾斜方向のいずれにおいても外光の反射を効果的に低減できることが確認された。
特に、実施例1-1~1-9から、λ/2板及びλ/4板には好適な位相差の範囲があることが確認された。
また、実施例2-1及び2-2から、λ/2板とλ/4板との波長分散の差には好適な範囲があることが確認された。
さらに、実施例3-1~3-3から、λ/2板及びλ/4板の遅相軸の方向には好適な範囲があることが確認された。
110 偏光フィルム
111 偏光フィルムの吸収軸
112 偏光フィルムの吸収軸をλ/2板の表面に投影した軸
113 偏光フィルムの吸収軸をλ/4板の表面に投影した軸
120 λ/2板
121 λ/2板の遅相軸
130 λ/4板
131 λ/4板の遅相軸
140 広帯域λ/4板
Claims (10)
- 偏光フィルムと、
前記偏光フィルムの吸収軸に対して22.5°±10°の角度をなす方向に遅相軸を有するλ/2板と、
前記偏光フィルムの吸収軸に対して90°±20°の角度をなす方向に遅相軸を有するλ/4板と、をこの順に備え、
前記λ/2板の波長分散と前記λ/4板の波長分散とが異なり、
前記λ/2板のNZ係数が1.00±0.05であり、
前記λ/4板のNZ係数が0.00±0.05である、円偏光板。 - 波長400nmにおける前記λ/2板の面内位相差をReh(400)、
波長550nmにおける前記λ/2板の面内位相差をReh(550)、
波長400nmにおける前記λ/4板の面内位相差をReq(400)、及び、
波長550nmにおける前記λ/4板の面内位相差をReq(550)としたとき、
下記式(A):
Reh(400)/Reh(550)<Req(400)/Req(550)
を満たす、請求項1記載の円偏光板。 - 波長400nmにおける前記λ/2板の面内位相差をReh(400)、
波長550nmにおける前記λ/2板の面内位相差をReh(550)、
波長400nmにおける前記λ/4板の面内位相差をReq(400)、及び、
波長550nmにおける前記λ/4板の面内位相差をReq(550)としたとき、
下記式(B):
Req(400)/Req(550)-Reh(400)/Reh(550)=0.12±0.08
を満たす、請求項1又は2記載の円偏光板。 - 前記λ/4板が、固有複屈折値が負の材料からなる層を備える、請求項1~3のいずれか一項に記載の円偏光板。
- 前記λ/2板が、固有複屈折値が正の材料からなる層を備える、請求項1~4のいずれか一項に記載の円偏光板。
- 基準方向に対して22.5°±10°の角度をなす方向に遅相軸を有するλ/2板と、
前記基準方向に対して90°±20°の角度をなす方向に遅相軸を有するλ/4板とを備え、
前記λ/2板の波長分散と前記λ/4板の波長分散とが異なり、
前記λ/2板のNZ係数が1.00±0.05であり、
前記λ/4板のNZ係数が0.00±0.05である、広帯域λ/4板。 - 請求項1~5のいずれか一項に記載の円偏光板を備える、有機エレクトロルミネッセンス表示装置。
- 請求項1~5のいずれか一項に記載の円偏光板を備える、液晶表示装置。
- 固有複屈折値が正の材料からなる層を備える第一の延伸前フィルムを一方向に延伸して、延伸した方向に遅相軸を有するλ/2板を得る工程と、
固有複屈折値が負の材料からなる層を備える第二の延伸前フィルムを一方向に延伸して、延伸した方向に対して垂直な方向に遅相軸を有するλ/4板を得る工程と、
偏光フィルムと前記λ/2板とを、前記偏光フィルムの吸収軸に対して前記λ/2板の遅相軸が22.5°±10°の角度をなすように貼り合わせる工程と、
前記λ/2板と前記λ/4板とを、前記偏光フィルムの吸収軸に対して前記λ/4板の遅相軸が90°±20°の角度をなすように貼り合わせる工程と、を含み、
前記λ/2板の波長分散と前記λ/4板の波長分散とが異なり、
前記λ/2板のNZ係数が1.00±0.05であり、
前記λ/4板のNZ係数が0.00±0.05である、円偏光板の製造方法。 - 固有複屈折値が正の材料からなる層を備える第一の延伸前フィルムを一方向に延伸して、延伸した方向に遅相軸を有するλ/2板を得る工程と、
支持体上にディスコティック液晶性分子を含む層を形成し、前記ディスコティック液晶性分子を配向させ、前記ディスコティック液晶性分子を固定して、λ/4板を得る工程と、
偏光フィルムと前記λ/2板とを、前記偏光フィルムの吸収軸に対して前記λ/2板の遅相軸が22.5°±10°の角度をなすように貼り合わせる工程と、
前記λ/2板と前記λ/4板とを、前記偏光フィルムの吸収軸に対して前記λ/4板の遅相軸が90°±20°の角度をなすように貼り合わせる工程と、を含み、
前記λ/2板の波長分散と前記λ/4板の波長分散とが異なり、
前記λ/2板のNZ係数が1.00±0.05であり、
前記λ/4板のNZ係数が0.00±0.05である、円偏光板の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580048792.2A CN107076902B (zh) | 2014-09-26 | 2015-09-16 | 圆偏振片及其制造方法、宽频带λ/4波片、有机电致发光显示装置、以及液晶显示装置 |
US15/512,192 US10310286B2 (en) | 2014-09-26 | 2015-09-16 | Circularly polarizing plate, method for producing same, broadband lambda/4 plate, organic electroluminescent display device, and liquid crystal display device |
JP2016550129A JP6520953B2 (ja) | 2014-09-26 | 2015-09-16 | 円偏光板及びその製造方法、有機エレクトロルミネッセンス表示装置、並びに液晶表示装置 |
KR1020177008000A KR102422556B1 (ko) | 2014-09-26 | 2015-09-16 | 원편광판 및 그 제조 방법, 광대역 λ/4판, 유기 일렉트로루미네센스 표시 장치, 그리고 액정 표시 장치 |
EP15844933.0A EP3199990A4 (en) | 2014-09-26 | 2015-09-16 | Circularly polarizing plate, method for producing same, broadband /4 plate, organic electroluminescent display device, and liquid crystal display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-197115 | 2014-09-26 | ||
JP2014197115 | 2014-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016047517A1 true WO2016047517A1 (ja) | 2016-03-31 |
Family
ID=55581044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/076235 WO2016047517A1 (ja) | 2014-09-26 | 2015-09-16 | 円偏光板及びその製造方法、広帯域λ/4板、有機エレクトロルミネッセンス表示装置、並びに液晶表示装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10310286B2 (ja) |
EP (1) | EP3199990A4 (ja) |
JP (2) | JP6520953B2 (ja) |
KR (1) | KR102422556B1 (ja) |
CN (1) | CN107076902B (ja) |
TW (1) | TWI681218B (ja) |
WO (1) | WO2016047517A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017138401A (ja) * | 2016-02-02 | 2017-08-10 | 大日本印刷株式会社 | 光学フィルム及び画像表示装置 |
WO2018159297A1 (ja) * | 2017-02-28 | 2018-09-07 | 日本ゼオン株式会社 | 光学異方性積層体、円偏光板、及び画像表示装置 |
WO2019039287A1 (ja) * | 2017-08-21 | 2019-02-28 | 住友化学株式会社 | フレキシブルディスプレイ用光学補償機能付き位相差板 |
WO2019124456A1 (ja) * | 2017-12-20 | 2019-06-27 | 日本ゼオン株式会社 | 円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置及び液晶表示装置 |
JP2022000674A (ja) * | 2020-06-19 | 2022-01-04 | 日本ゼオン株式会社 | 長尺の円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置、及び、液晶表示装置 |
WO2022045185A1 (ja) * | 2020-08-25 | 2022-03-03 | 富士フイルム株式会社 | 円偏光板、有機エレクトロルミネッセンス表示装置、表示装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6640847B2 (ja) * | 2015-05-29 | 2020-02-05 | 富士フイルム株式会社 | 有機エレクトロルミネッセンス表示装置 |
JP7413997B2 (ja) * | 2018-04-27 | 2024-01-16 | 日本ゼオン株式会社 | 広帯域波長フィルムの製造方法、並びに円偏光フィルムの製造方法 |
KR20230080146A (ko) * | 2021-11-29 | 2023-06-07 | 엘지디스플레이 주식회사 | 표시장치 및 그 제조방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006178389A (ja) * | 2004-07-05 | 2006-07-06 | Nitto Denko Corp | 楕円偏光板の製造方法および楕円偏光板を用いた画像表示装置 |
JP2006268006A (ja) * | 2005-02-25 | 2006-10-05 | Nitto Denko Corp | 楕円偏光板の製造方法および楕円偏光板を用いた画像表示装置 |
JP2008249943A (ja) * | 2007-03-30 | 2008-10-16 | Nec Lcd Technologies Ltd | タッチパネル付き液晶表示装置及び端末装置 |
JP2009110005A (ja) * | 2006-06-28 | 2009-05-21 | Sharp Corp | 複合複屈折媒体、偏光板及び液晶表示装置 |
JP2015210459A (ja) * | 2014-04-30 | 2015-11-24 | 日東電工株式会社 | 有機el表示装置用円偏光板および有機el表示装置 |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2367670A (en) | 1941-12-31 | 1945-01-23 | Du Pont | Cementing process |
US2367661A (en) | 1941-12-31 | 1945-01-23 | Du Pont | Process of photopolymerization |
US2448828A (en) | 1946-09-04 | 1948-09-07 | Du Pont | Photopolymerization |
US2722512A (en) | 1952-10-23 | 1955-11-01 | Du Pont | Photopolymerization process |
NL108006C (ja) | 1957-05-17 | |||
US3046127A (en) | 1957-10-07 | 1962-07-24 | Du Pont | Photopolymerizable compositions, elements and processes |
US3549367A (en) | 1968-05-24 | 1970-12-22 | Du Pont | Photopolymerizable compositions containing triarylimidazolyl dimers and p-aminophenyl ketones |
US4212970A (en) | 1977-11-28 | 1980-07-15 | Fuji Photo Film Co., Ltd. | 2-Halomethyl-5-vinyl-1,3,4-oxadiazole compounds |
JPS5928328B2 (ja) | 1977-11-29 | 1984-07-12 | 富士写真フイルム株式会社 | 光重合性組成物 |
DE3337024A1 (de) | 1983-10-12 | 1985-04-25 | Hoechst Ag, 6230 Frankfurt | Lichtempfindliche, trichlormethylgruppen aufweisende verbindungen, verfahren zu ihrer herstellung und diese verbindungen enthaltendes lichtempfindliches gemisch |
JP3174367B2 (ja) | 1991-10-07 | 2001-06-11 | 日東電工株式会社 | 積層波長板及び円偏光板 |
JP2692035B2 (ja) | 1994-05-13 | 1997-12-17 | 富士写真フイルム株式会社 | 薄膜の製造方法 |
JPH11231132A (ja) * | 1998-02-12 | 1999-08-27 | Nitto Denko Corp | 1/4波長板、円偏光板及び液晶表示装置 |
JP2000284120A (ja) | 1999-03-31 | 2000-10-13 | Fuji Photo Film Co Ltd | 位相差板および円偏光板 |
US6400433B1 (en) | 1998-11-06 | 2002-06-04 | Fuji Photo Film Co., Ltd. | Circularly polarizing plate comprising linearly polarizing membrane and quarter wave plate |
JP5191447B2 (ja) * | 1999-12-16 | 2013-05-08 | 富士フイルム株式会社 | 位相差板、その製造方法、及びそれを利用した円偏光板、1/2波長板並びに反射型液晶表示装置 |
JP3785303B2 (ja) * | 2000-02-21 | 2006-06-14 | 日東電工株式会社 | タッチパネル |
JP2002311239A (ja) * | 2001-04-16 | 2002-10-23 | Nitto Denko Corp | 1/4波長板、円偏光板及び表示装置 |
JP2002372622A (ja) * | 2001-06-14 | 2002-12-26 | Nitto Denko Corp | 複合位相差板、円偏光板及び液晶表示装置、有機el表示装置 |
JP2003114325A (ja) * | 2001-10-03 | 2003-04-18 | Nitto Denko Corp | 積層1/4波長板、円偏光板及びこれを用いた液晶表示装置、ならびにその製造方法 |
JP3841306B2 (ja) * | 2004-08-05 | 2006-11-01 | 日東電工株式会社 | 位相差フィルムの製造方法 |
CN100489575C (zh) * | 2004-12-22 | 2009-05-20 | 日东电工株式会社 | 椭圆偏光板及使用该椭圆偏光板的图像显示装置 |
KR100840166B1 (ko) * | 2005-02-25 | 2008-06-23 | 닛토덴코 가부시키가이샤 | 타원 편광판의 제조방법 및 타원 편광판을 사용한화상표시장치 |
JP3974631B2 (ja) | 2005-03-02 | 2007-09-12 | 日東電工株式会社 | 光学フィルムおよびその製造方法、ならびに該光学フィルムを用いた画像表示装置 |
US20060209239A1 (en) * | 2005-03-18 | 2006-09-21 | Toppoly Optoelectronics Corporation | Anti-reflective polarizing plate and uses thereof |
JP4909594B2 (ja) * | 2006-01-17 | 2012-04-04 | 東芝モバイルディスプレイ株式会社 | 液晶表示装置 |
JP5131510B2 (ja) * | 2006-07-18 | 2013-01-30 | Nltテクノロジー株式会社 | 液晶表示装置、及び端末装置 |
BRPI0822566A2 (pt) * | 2008-04-07 | 2019-09-24 | Sharp Kk | dispositivo de vídeo de cristal líquido |
JP2012032418A (ja) * | 2008-11-19 | 2012-02-16 | Sharp Corp | 円偏光板及び表示装置 |
CN102422206A (zh) * | 2009-03-09 | 2012-04-18 | 奇像素公司 | 寻常黑透反式液晶显示器 |
JP5660786B2 (ja) * | 2010-02-16 | 2015-01-28 | 富士フイルム株式会社 | パターニング位相差フィルムとその製造方法、偏光眼鏡、映像表示システムとその製造方法 |
KR20120055129A (ko) * | 2010-11-23 | 2012-05-31 | 동우 화인켐 주식회사 | 반사 방지용 편광판 및 이를 포함하는 화상표시장치 |
JP5912799B2 (ja) * | 2011-05-20 | 2016-04-27 | 日東電工株式会社 | 光学表示パネルの連続製造方法および光学表示パネルの連続製造システム |
JP6202828B2 (ja) * | 2012-02-17 | 2017-09-27 | 学校法人慶應義塾 | 液晶表示装置 |
CN104170525B (zh) * | 2012-03-15 | 2016-09-21 | 富士胶片株式会社 | 具有光学层叠体的有机el显示元件 |
JP2013235272A (ja) | 2012-05-10 | 2013-11-21 | Samsung Electronics Co Ltd | 多層型光学フィルム、その製造方法及び表示装置 |
JP6179308B2 (ja) * | 2012-11-21 | 2017-08-16 | 大日本印刷株式会社 | 光学フィルム、光学フィルム用転写体、画像表示装置 |
KR101628428B1 (ko) * | 2012-12-17 | 2016-06-08 | 제일모직주식회사 | 편광판, 이의 제조방법 및 이를 포함하는 광학표시장치 |
JP2014142462A (ja) * | 2013-01-23 | 2014-08-07 | Dainippon Printing Co Ltd | 光学機能層付きタッチパネル用電極部、円偏光板付きタッチパネル電極部、タッチパネル、画像表示装置 |
CN103207426B (zh) * | 2013-03-28 | 2015-09-16 | 京东方科技集团股份有限公司 | 一种偏光片及显示装置 |
US10254459B2 (en) * | 2014-09-17 | 2019-04-09 | Zeon Corporation | Circular polarizing plate, wideband lambda/4 plate, and organic electroluminescence display device |
CN107076905B (zh) * | 2014-09-26 | 2021-01-05 | 日本瑞翁株式会社 | 长条的圆偏振片、长条的宽频带λ/4片、有机电致发光显示装置和液晶显示装置 |
WO2016052360A1 (ja) * | 2014-09-30 | 2016-04-07 | 富士フイルム株式会社 | 円偏光板、表示装置 |
-
2015
- 2015-09-16 EP EP15844933.0A patent/EP3199990A4/en not_active Withdrawn
- 2015-09-16 JP JP2016550129A patent/JP6520953B2/ja active Active
- 2015-09-16 US US15/512,192 patent/US10310286B2/en active Active
- 2015-09-16 KR KR1020177008000A patent/KR102422556B1/ko active IP Right Grant
- 2015-09-16 CN CN201580048792.2A patent/CN107076902B/zh active Active
- 2015-09-16 WO PCT/JP2015/076235 patent/WO2016047517A1/ja active Application Filing
- 2015-09-21 TW TW104131088A patent/TWI681218B/zh active
-
2019
- 2019-04-26 JP JP2019085014A patent/JP2019139242A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006178389A (ja) * | 2004-07-05 | 2006-07-06 | Nitto Denko Corp | 楕円偏光板の製造方法および楕円偏光板を用いた画像表示装置 |
JP2006268006A (ja) * | 2005-02-25 | 2006-10-05 | Nitto Denko Corp | 楕円偏光板の製造方法および楕円偏光板を用いた画像表示装置 |
JP2009110005A (ja) * | 2006-06-28 | 2009-05-21 | Sharp Corp | 複合複屈折媒体、偏光板及び液晶表示装置 |
JP2008249943A (ja) * | 2007-03-30 | 2008-10-16 | Nec Lcd Technologies Ltd | タッチパネル付き液晶表示装置及び端末装置 |
JP2015210459A (ja) * | 2014-04-30 | 2015-11-24 | 日東電工株式会社 | 有機el表示装置用円偏光板および有機el表示装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3199990A4 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017138401A (ja) * | 2016-02-02 | 2017-08-10 | 大日本印刷株式会社 | 光学フィルム及び画像表示装置 |
US11391876B2 (en) | 2017-02-28 | 2022-07-19 | Zeon Corporation | Optically anisotropic laminate, circularly polarizing plate and image display device |
WO2018159297A1 (ja) * | 2017-02-28 | 2018-09-07 | 日本ゼオン株式会社 | 光学異方性積層体、円偏光板、及び画像表示装置 |
JPWO2018159297A1 (ja) * | 2017-02-28 | 2019-12-19 | 日本ゼオン株式会社 | 光学異方性積層体、円偏光板、及び画像表示装置 |
TWI740005B (zh) * | 2017-02-28 | 2021-09-21 | 日商日本瑞翁股份有限公司 | 液晶顯示裝置 |
WO2019039287A1 (ja) * | 2017-08-21 | 2019-02-28 | 住友化学株式会社 | フレキシブルディスプレイ用光学補償機能付き位相差板 |
JP2019035952A (ja) * | 2017-08-21 | 2019-03-07 | 住友化学株式会社 | フレキシブルディスプレイ用光学補償機能付き位相差板 |
KR20200036928A (ko) * | 2017-08-21 | 2020-04-07 | 스미또모 가가꾸 가부시끼가이샤 | 플렉시블 디스플레이용 광학 보상 기능 부착 위상차판 |
KR102695096B1 (ko) * | 2017-08-21 | 2024-08-13 | 스미또모 가가꾸 가부시끼가이샤 | 플렉시블 디스플레이용 광학 보상 기능 부착 위상차판 |
JP7529378B2 (ja) | 2017-08-21 | 2024-08-06 | 住友化学株式会社 | フレキシブルディスプレイ用光学補償機能付き位相差板 |
WO2019124456A1 (ja) * | 2017-12-20 | 2019-06-27 | 日本ゼオン株式会社 | 円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置及び液晶表示装置 |
JP7259762B2 (ja) | 2017-12-20 | 2023-04-18 | 日本ゼオン株式会社 | 円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置及び液晶表示装置 |
JPWO2019124456A1 (ja) * | 2017-12-20 | 2021-01-14 | 日本ゼオン株式会社 | 円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置及び液晶表示装置 |
JP7405013B2 (ja) | 2020-06-19 | 2023-12-26 | 日本ゼオン株式会社 | 長尺の円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置、及び、液晶表示装置 |
JP2022000674A (ja) * | 2020-06-19 | 2022-01-04 | 日本ゼオン株式会社 | 長尺の円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置、及び、液晶表示装置 |
WO2022045185A1 (ja) * | 2020-08-25 | 2022-03-03 | 富士フイルム株式会社 | 円偏光板、有機エレクトロルミネッセンス表示装置、表示装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6520953B2 (ja) | 2019-05-29 |
US20170299880A1 (en) | 2017-10-19 |
EP3199990A1 (en) | 2017-08-02 |
CN107076902A (zh) | 2017-08-18 |
KR20170063614A (ko) | 2017-06-08 |
CN107076902B (zh) | 2020-12-29 |
JP2019139242A (ja) | 2019-08-22 |
KR102422556B1 (ko) | 2022-07-18 |
EP3199990A4 (en) | 2018-05-30 |
TW201614286A (en) | 2016-04-16 |
US10310286B2 (en) | 2019-06-04 |
TWI681218B (zh) | 2020-01-01 |
JPWO2016047517A1 (ja) | 2017-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6520953B2 (ja) | 円偏光板及びその製造方法、有機エレクトロルミネッセンス表示装置、並びに液晶表示装置 | |
KR102571446B1 (ko) | 원편광판, 광대역 λ/4 판, 및, 유기 일렉트로루미네선스 표시 장치 | |
KR102412038B1 (ko) | 장척의 원편광판, 장척의 광대역 λ/4판, 유기 일렉트로 루미네선스 표시장치 및 액정표시장치 | |
JP5273775B2 (ja) | 積層光学フィルム、積層光学フィルムを用いた液晶パネルおよび液晶表示装置 | |
JP7182533B2 (ja) | 液晶組成物、光学異方性層、光学フィルム、偏光板および画像表示装置 | |
JP2008242467A (ja) | 光学フィルムおよびこれを用いた偏光フィルム、および偏光フィルムの視野角改良方法 | |
WO2019167926A1 (ja) | 積層体、有機電界発光装置、液晶表示装置 | |
TWI719042B (zh) | 液晶顯示裝置 | |
WO2017170346A1 (ja) | 円偏光板及び画像表示装置 | |
JP2006267851A (ja) | 光学補償フィルム、これを用いた偏光板 | |
KR102140552B1 (ko) | 광학 소자, 광학 소자의 제조 방법 및 액정 표시 장치 | |
JP2005321528A (ja) | 液晶表示装置 | |
JP2008164984A (ja) | 積層位相差フィルム | |
WO2017150375A1 (ja) | 画像表示装置 | |
JP7259762B2 (ja) | 円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置及び液晶表示装置 | |
TW201504065A (zh) | 偏光板及其製造方法以及轉印材料 | |
JP7405013B2 (ja) | 長尺の円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置、及び、液晶表示装置 | |
KR20090073235A (ko) | 적층 광학 필름, 적층 광학 필름을 사용한 액정 패널 및 액정 표시 장치 | |
JP2007279411A (ja) | 液晶表示装置 | |
WO2024004601A1 (ja) | 位相差フィルムの製造方法及び円偏光板の製造方法 | |
WO2024004605A1 (ja) | 位相差フィルムの製造方法及び円偏光板の製造方法 | |
JP5552087B2 (ja) | Ips又はffs型液晶表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15844933 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016550129 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015844933 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015844933 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15512192 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20177008000 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |