WO2019188205A1 - 光学異方性積層体、偏光板、及び画像表示装置 - Google Patents

光学異方性積層体、偏光板、及び画像表示装置 Download PDF

Info

Publication number
WO2019188205A1
WO2019188205A1 PCT/JP2019/009738 JP2019009738W WO2019188205A1 WO 2019188205 A1 WO2019188205 A1 WO 2019188205A1 JP 2019009738 W JP2019009738 W JP 2019009738W WO 2019188205 A1 WO2019188205 A1 WO 2019188205A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically anisotropic
layer
anisotropic layer
film
resin
Prior art date
Application number
PCT/JP2019/009738
Other languages
English (en)
French (fr)
Inventor
和弘 大里
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020509825A priority Critical patent/JPWO2019188205A1/ja
Priority to CN201980019682.1A priority patent/CN111868582B/zh
Priority to US16/982,040 priority patent/US20210020870A1/en
Priority to KR1020207026655A priority patent/KR20200136388A/ko
Publication of WO2019188205A1 publication Critical patent/WO2019188205A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers

Definitions

  • the present invention relates to an optically anisotropic laminate, a polarizing plate, and an image display device.
  • an image display device such as an organic electroluminescence (hereinafter also referred to as organic EL) image display device
  • a film having optical anisotropy is provided as an optical film.
  • Various studies have been made on such optical films (see Patent Documents 1 to 6).
  • JP 2014-167922 A JP 2016-053709 A JP2015-106114A JP2015-163935A Japanese Patent Laying-Open No. 2015-163936 Japanese Patent Laying-Open No. 2015-200861
  • the image display apparatus may deteriorate the quality of image display due to reflection of external light.
  • the image display quality is significantly reduced.
  • a circularly polarizing plate may be provided on the display surface of the image display device.
  • the term “circularly polarizing plate” includes not only a circularly polarizing plate in a narrow sense but also an elliptically polarizing plate.
  • the external light is converted into circularly polarized light in a certain direction by the circularly polarizing plate, and becomes circularly polarized light in the direction opposite to the certain direction when reflected by the image display device.
  • the reflected light that has become circularly polarized light in the reverse direction is not transmitted through the circularly polarizing plate, so that reflection is suppressed.
  • a laminate in which a retardation plate functioning as a ⁇ / 4 plate is laminated on a linear polarizer may be used.
  • a circularly polarizing plate is provided on the display surface of the image display device, when the display surface is observed from the tilt direction, the light reflected on the display surface is visually recognized, so that the display surface is colored. It was visible.
  • a laminate in which a positive C plate is laminated on a positive A plate, which is a ⁇ / 4 plate, may be combined with a linear polarizer.
  • the positive A plate is a film in which the refractive indexes nx, ny and nz satisfy nx> ny ⁇ nz
  • the positive C plate is the refractive index nx, ny and nz in which nz> nx ⁇ ny. It is a film that fills.
  • the positive C plate There are few choices of materials for forming the positive C plate, and usually a liquid crystal compound having forward wavelength dispersion is used as the material of the positive C plate.
  • the positive C plate using such a material has low heat resistance, and the positive C plate may greatly change the retardation Rth in the thickness direction in a high temperature environment. Therefore, the image display device provided with the circularly polarizing plate including the positive C plate sometimes changes in color when observed from the tilt direction after the heating test.
  • the positive C plate is generally expensive to manufacture. Therefore, it is required to suppress the coloring of the display surface viewed from the tilt direction without requiring the use of the positive C plate.
  • the optical anisotropy includes a first optical anisotropic layer that satisfies a predetermined optical condition and a second optical anisotropic layer that satisfies a predetermined optical condition.
  • the present invention has been completed by finding that the above-mentioned problems can be solved by an optically anisotropic laminate having a predetermined retardation and NZ coefficient. That is, the present invention provides the following.
  • An optically anisotropic laminate including a first optically anisotropic layer and a second optically anisotropic layer,
  • the first optically anisotropic layer satisfies the following formula (1):
  • the second optically anisotropic layer satisfies the following formula (2):
  • the optically anisotropic laminate satisfies the following formulas (3) and (4): Optically anisotropic laminate.
  • nx1 ⁇ ny1> nz1 Formula (1) ny2 ⁇ nx2 ⁇ nz2 Formula (2) Re (450) ⁇ Re (550) ⁇ Re (650) Formula (3) 0 ⁇ NZ ⁇ 1.0 Formula (4)
  • nx1 represents the refractive index in the in-plane direction of the first optically anisotropic layer and gives the maximum refractive index
  • ny1 is the in-plane direction of the first optically anisotropic layer
  • nx1 represents the refractive index in the direction perpendicular to the direction giving nx1
  • nz1 represents the refractive index in the thickness direction of the first optically anisotropic layer
  • nx2 represents the refractive index in the in-plane direction of the second optically anisotropic layer and gives the maximum refractive index
  • ny2 is the in-plane direction of the second optically anisotropic layer
  • nx2 represents the refractive index in the direction perpen
  • NZ represents the NZ coefficient of the optically anisotropic laminate.
  • a weight ratio of polyphenylene ether to a polystyrene-based polymer having a syndiotactic structure is 35/65 or more and 45/55 or less.
  • the optically anisotropic laminated body and polarizing plate which can implement
  • the image with which the coloring of the display surface seen from the inclination direction were suppressed A display device.
  • FIG. 1 is a cross-sectional view schematically showing an optically anisotropic laminate according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a polarizing plate according to one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing an image display apparatus according to an embodiment of the present invention.
  • FIG. 4 is a perspective view schematically showing a state of an evaluation model set when calculating chromaticity in simulations in Examples and Comparative Examples.
  • the “long” film means a film having a length of 5 times or more, preferably 10 times or more, and specifically a roll.
  • the upper limit of the length of the long film is not particularly limited, and can be, for example, 100,000 times or less with respect to the width.
  • nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the layer and giving a maximum refractive index (slow axis direction), and ny represents the in-plane direction of the layer.
  • nz represents the refractive index in the thickness direction of the layer
  • d represents the thickness of the layer.
  • the measurement wavelength is 590 nm unless otherwise specified.
  • the slow axis of a certain layer represents the slow axis in the plane of the layer unless otherwise specified.
  • the front direction of a surface means the normal direction of the surface, and specifically refers to the direction of the polar angle 0 ° and the azimuth angle 0 ° of the surface.
  • the inclination direction of a surface means a direction that is neither parallel nor perpendicular to the surface, and specifically, a range in which the polar angle of the surface is greater than 0 ° and less than 90 °. Pointing in the direction.
  • the directions of the elements “parallel”, “vertical”, and “orthogonal” include errors within a range that does not impair the effects of the present invention, for example, ⁇ 5 °, unless otherwise specified. You may go out.
  • the longitudinal direction of the long film is usually parallel to the film flow direction in the production line.
  • polarizing plate “circular polarizing plate”, “plate”, and “retardation plate” are not limited to rigid members unless otherwise specified, such as a resin film. A member having flexibility is also included.
  • angles formed by the optical axes (polarization absorption axis, polarization transmission axis, slow axis, etc.) of each layer in a member having a plurality of layers are as viewed from the thickness direction unless otherwise noted. Represents the angle.
  • a polymer having a positive intrinsic birefringence value and “a resin having a positive intrinsic birefringence value” mean that “the refractive index in the stretching direction is higher than the refractive index in the direction perpendicular to the stretching direction”.
  • the term “polymer that increases” and “resin in which the refractive index in the stretching direction is larger than the refractive index in the direction orthogonal to the stretching direction” are meant.
  • a polymer having a negative intrinsic birefringence value” and “a resin having a negative intrinsic birefringence value” mean that “the refractive index in the stretching direction is smaller than the refractive index in the direction perpendicular to the stretching direction”.
  • the intrinsic birefringence value can be calculated from the dielectric constant distribution.
  • the adhesive is not only a narrowly defined adhesive (an adhesive having a shear storage modulus of 1 MPa to 500 MPa at 23 ° C. after irradiation with energy rays or after heat treatment), A pressure-sensitive adhesive having a shear storage modulus at 23 ° C. of less than 1 MPa is also included.
  • the optically anisotropic laminate according to an embodiment of the present invention includes a first optically anisotropic layer and a second optically anisotropic layer.
  • FIG. 1 is a cross-sectional view schematically showing an optically anisotropic laminate according to an embodiment of the present invention.
  • the optically anisotropic laminate 100 according to this embodiment includes a first optically anisotropic layer 110 and a second optically anisotropic layer 120.
  • the optically anisotropic laminate 100 may include an arbitrary layer (not shown) as necessary.
  • the first optically anisotropic layer 110 satisfies the formula (1)
  • the second optically anisotropic layer 120 satisfies the formula (2)
  • the optically anisotropic laminate 100 has the formulas (3) and (4). Is satisfied.
  • nx1 represents the refractive index in the in-plane direction of the first optical anisotropic layer and the direction giving the maximum refractive index
  • ny1 represents the refractive index of the first optical anisotropic layer.
  • the refractive index in the in-plane direction and perpendicular to the direction giving nx1 is represented
  • nz1 represents the refractive index in the thickness direction of the first optically anisotropic layer.
  • the formula (1) indicates that the first optical anisotropic layer can function as a so-called negative C plate or negative B plate.
  • nx1 and ny1 are preferably the same or close in value. Therefore, it is preferable that nx1, ny1, and nz1 of the first optical anisotropic layer have a relationship of nx1 ⁇ ny1> nz1.
  • the difference between nx1 and ny1 (nx1 ⁇ ny1) is preferably 0.00000 to 0.00100, more preferably 0.00000 to 0.00050, and particularly preferably 0.00000 to 0.00020. is there.
  • the refractive index difference (nx1 ⁇ ny1) is within the above range, it is possible to realize an image display device that can more effectively suppress coloring due to reflected light when the display surface is viewed from the tilt direction.
  • the layer satisfying the formula (1) As a material of the layer satisfying the formula (1), a material having high heat resistance is known. By adopting such a material as the material of the first optical anisotropic layer, the display surface after the heating test is obtained. It is possible to easily realize an image display device in which the color tone is suppressed from changing.
  • the layer satisfying the formula (1) generally has a lower manufacturing cost than the positive C plate, the optically anisotropic laminate of the present embodiment including the first optically anisotropic layer keeps the manufacturing cost low. be able to.
  • nx2 represents the refractive index in the in-plane direction of the second optical anisotropic layer and the direction giving the maximum refractive index
  • ny2 represents the refractive index of the second optical anisotropic layer.
  • the refractive index is the in-plane direction and orthogonal to the direction giving nx2
  • nz2 represents the refractive index in the thickness direction of the second optical anisotropic layer.
  • Formula (2) indicates that the second optical anisotropic layer can function as a so-called negative A plate or positive B plate.
  • the second optical anisotropic layer satisfies the formula (2), an image display device that can effectively suppress coloring due to reflected light can be realized.
  • Re (450), Re (550), and Re (650) represent in-plane retardation Re of the optically anisotropic laminate at wavelengths of 450 nm, 550 nm, and 650 nm, respectively.
  • the above formula (3) indicates that the in-plane retardation Re of the optically anisotropic laminate is reverse wavelength dispersive.
  • the optically anisotropic laminate satisfies the formula (3), the polarization state of light transmitted through the optically anisotropic laminate can be uniformly converted in a wide wavelength range. Therefore, it is possible to realize an image display device that can effectively suppress coloring due to reflected light in a wide wavelength range.
  • NZ represents the NZ coefficient of the optically anisotropic laminate.
  • the NZ coefficient of the optically anisotropic laminate is preferably 0.1 or more, more preferably 0.2 or more, preferably 0.9 or less, more preferably 0.8 or less.
  • the NZ coefficient of the optically anisotropic laminate satisfies the above range, it is possible to realize an image display device that can effectively suppress coloring due to reflected light when the display surface is viewed from the tilt direction.
  • the in-plane retardation Re1 of the first optically anisotropic layer is usually 0 nm or more, preferably 0 nm or more and 10 nm or less, more preferably 0 nm or more and 5 nm or less, and further preferably 0 nm or more and 3 nm or less.
  • the in-plane retardation Re1 of the first optically anisotropic layer is within the above range, it is possible to realize an image display device that can more effectively suppress coloring of reflected light when the display surface is viewed from the tilt direction.
  • the retardation Rth1 in the thickness direction of the first optical anisotropic layer is preferably reverse wavelength dispersibility.
  • the first optically anisotropic layer preferably satisfies the following formula (5).
  • Rth1 (450), Rth1 (550), and Rth1 (650) represent retardation Rth in the thickness direction of the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, and 650 nm, respectively.
  • the first optical anisotropic layer satisfies the above formula, it is possible to realize an image display device that can more effectively suppress coloring due to reflected light in a wide wavelength range.
  • the in-plane retardation Re2 of the second optically anisotropic layer is preferably 100 nm or more, more preferably 110 nm or more, still more preferably 120 nm or more, preferably 180 nm or less, more preferably 170 nm or less, still more preferably 160 nm or less. It is.
  • an image display device that can more effectively suppress coloring due to reflected light when the display surface is viewed from the tilt direction can be realized.
  • the in-plane retardation Re2 of the second optical anisotropic layer is preferably reverse wavelength dispersibility.
  • the second optically anisotropic layer preferably satisfies the following formula (6). Re2 (450) ⁇ Re2 (550) ⁇ Re2 (650) Formula (6)
  • Re2 (450), Re2 (550), and Re2 (650) represent in-plane retardation Re of the second optical anisotropic layer at wavelengths of 450 nm, 550 nm, and 650 nm, respectively.
  • the second optical anisotropic layer satisfies the above formula, it is possible to realize an image display device that can more effectively suppress coloring due to reflected light in a wide wavelength range.
  • the total light transmittance of the first optically anisotropic layer is preferably 80% or more, more preferably 85% or more, particularly preferably 90% or more, and may be 100% or less.
  • the total light transmittance of the second optically anisotropic layer is preferably 80% or more, more preferably 85% or more, particularly preferably 90% or more, and can be 100% or less.
  • the haze of the first optically anisotropic layer is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
  • the haze of the second optically anisotropic layer is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
  • the thickness of the first optical anisotropic layer and the thickness of the second optical anisotropic layer can be arbitrarily adjusted within the range having the above optical characteristics.
  • the thickness of the first optical anisotropy is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the thickness of the second optically anisotropic layer is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the total light transmittance of the optically anisotropic laminate is preferably 80% or more, more preferably 85% or more, particularly preferably 90% or more, and can be 100% or less.
  • the haze of the optically anisotropic laminate is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
  • the thickness of the optically anisotropic laminate can be arbitrarily adjusted within the range having the above optical characteristics.
  • the specific thickness is preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, particularly preferably 5 ⁇ m or more, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably 12 ⁇ m or less from the viewpoint of thinning.
  • first optical anisotropic layer and second optical anisotropic layer examples include a resin, and among them, a thermoplastic resin is preferable.
  • a resin containing a polymer having a positive intrinsic birefringence value has a negative intrinsic birefringence value.
  • a resin containing a polymer may be a resin containing a polymer having a positive intrinsic birefringence value and a polymer having a negative intrinsic birefringence value.
  • Polyolefin such as polyethylene and a polypropylene
  • Polyesters such as a polyethylene terephthalate and a polybutylene terephthalate
  • Polyarylene sulfide such as a polyphenylene sulfide
  • Polyvinyl alcohol Polycarbonate; Polyarylate; cellulose ester
  • polyethersulfone polysulfone; polyarylsulfone; polyvinyl chloride
  • alicyclic structure-containing polymer such as norbornene polymer
  • rod-like liquid crystal polymer for example, Polyolefin, such as polyethylene and a polypropylene
  • Polyesters such as a polyethylene terephthalate and a polybutylene terephthalate
  • Polyarylene sulfide such as a polyphenylene sulfide
  • Polyvinyl alcohol Polycarbonate
  • Polyarylate Polyarylate
  • cellulose ester polyethersulfone
  • polysulfone polysulfone
  • the polystyrene polymer containing the homopolymer of a styrene compound, and the copolymer of a styrene compound and arbitrary monomers examples thereof include polyacrylonitrile polymers; polymethyl methacrylate polymers; and multi-component copolymers thereof.
  • the optional monomer that can be copolymerized with the styrene compound include acrylonitrile, maleic anhydride, methyl methacrylate, and butadiene, and one kind selected from acrylonitrile, maleic anhydride, methyl methacrylate, and butadiene. The above is preferable.
  • the polymer may be a homopolymer or a copolymer. Moreover, the said polymer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the resin for forming the first optical anisotropic layer and the second optical anisotropic layer may contain any compounding agent in addition to the polymer.
  • the compounding agents include antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, ultraviolet absorbers, stabilizers such as near infrared absorbers, plasticizers, and the like.
  • One type of compounding agent may be used, or two or more types may be used in combination at any ratio.
  • the first optically anisotropic layer preferably contains a resin having a positive intrinsic birefringence value, and is selected from a resin containing an alicyclic structure-containing polymer, a resin containing a cellulose ester, and a resin containing a polycarbonate. It is more preferable to include a seed or more, and it is more preferable to include a resin including an alicyclic structure-containing polymer, a resin including a cellulose ester, or a resin including a polycarbonate.
  • the first optical anisotropic layer is preferably a layer formed by stretching a layer containing a resin having a positive intrinsic birefringence value.
  • the alicyclic structure-containing polymer is a polymer having an alicyclic structure in a repeating unit, and is usually an amorphous polymer.
  • the alicyclic structure-containing polymer any of a polymer containing an alicyclic structure in the main chain and a polymer containing an alicyclic structure in the side chain can be used.
  • the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and a cycloalkane structure is preferable from the viewpoint of thermal stability.
  • the number of carbon atoms constituting one repeating unit of the alicyclic structure is not particularly limited, but is preferably 4 or more, more preferably 5 or more, particularly preferably 6 or more, preferably 30 or less, more The number is preferably 20 or less, particularly preferably 15 or less.
  • the proportion of the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer can be appropriately selected depending on the purpose of use, but is preferably 50% by weight or more, more preferably 70% by weight or more, particularly preferably. It may be 90% by weight or more and 100% by weight or less.
  • Examples of the alicyclic structure-containing polymer include (1) norbornene polymer, (2) monocyclic olefin polymer, (3) cyclic conjugated diene polymer, (4) vinyl alicyclic hydrocarbon polymer, And hydrogenated products thereof.
  • a norbornene polymer is more preferable from the viewpoint of transparency and moldability.
  • norbornene polymers include, for example, ring-opening polymers of norbornene monomers, ring-opening copolymers of norbornene monomers with other monomers capable of ring-opening copolymerization, and hydrogenated products thereof; addition polymers of norbornene monomers; Examples include addition copolymers with other monomers copolymerizable with norbornene monomers.
  • a ring-opening polymer hydrogenated product of norbornene monomer is particularly preferable from the viewpoint of transparency.
  • the alicyclic structure-containing polymer is selected from known polymers disclosed in, for example, JP-A No. 2002-321302.
  • the cellulose ester is typically a lower fatty acid ester of cellulose (eg, cellulose acetate, cellulose acetate butyrate and cellulose acetate propionate).
  • Lower fatty acid means a fatty acid having 6 or less carbon atoms per molecule.
  • Cellulose acetate includes triacetyl cellulose (TAC) and cellulose diacetate (DAC).
  • the total acyl group substitution degree of the cellulose ester is preferably 2.20 or more and 2.70 or less, more preferably 2.40 or more and 2.60 or less.
  • the total acyl group can be measured according to ASTM D817-91.
  • the weight average polymerization degree of the cellulose ester is preferably 350 or more and 800 or less, and more preferably 370 or more and 600 or less.
  • the number average molecular weight of the cellulose ester is preferably 60000 or more and 230,000 or less, and more preferably 70000 or more and 230,000 or less.
  • polycarbonate examples include a polymer having a structural unit derived from a dihydroxy compound and a carbonate structure (a structure represented by —O— (C ⁇ O) —O—).
  • dihydroxy compound examples include bisphenol A.
  • the structural unit derived from the dihydroxy compound contained in the polycarbonate may be one type or two or more types.
  • the first optically anisotropic layer contains a resin containing triacetylcellulose. Since the retardation of a film formed from a resin containing triacetyl cellulose generally has reverse wavelength dispersion, it is possible to realize an image display device that can more effectively suppress coloring due to reflected light in a wide wavelength range.
  • the first optically anisotropic layer is formed of a resin containing triacetylcellulose
  • the first optically anisotropic layer is preferably a layer formed by a solution casting method.
  • the second optically anisotropic layer preferably contains a resin containing a polymer having a negative intrinsic birefringence value, more preferably a polyphenylene ether and a syndiotactic structure. And a layer made of a resin containing a polystyrene polymer having a polyphenylene ether and a syndiotactic structure.
  • a resin containing a polyphenylene ether and a polystyrene-based polymer having a syndiotactic structure may be referred to as “blend resin p1” as appropriate.
  • the blend resin p1 can adjust the sign (positive and negative) of its intrinsic birefringence value according to the type and amount of the polymer contained in the blend resin p1. Usually, the blend resin p1 has a negative intrinsic birefringence value.
  • the wavelength dispersion of the blend resin p1 can be adjusted with a high degree of freedom by adjusting the quantitative ratio between the polyphenylene ether and the polystyrene-based polymer.
  • Polyphenylene ether is usually a polymer having a positive intrinsic birefringence value.
  • This polyphenylene ether includes a structural unit having a structure formed by polymerizing phenyl ether or a phenyl ether derivative.
  • a polymer having a structural unit having a phenylene ether skeleton in the main chain is used as polyphenylene ether.
  • the “structural unit having a phenylene ether skeleton” is appropriately referred to as a “phenylene ether unit”.
  • the benzene ring in the phenylene ether unit may have a substituent unless the effects of the present invention are significantly impaired.
  • polystyrene resin a polymer containing a phenylene ether unit represented by the following formula (I) is preferable.
  • each Q 1 independently represents a halogen atom, a lower alkyl group (for example, an alkyl group having 7 or less carbon atoms), a phenyl group, a haloalkyl group, an aminoalkyl group, a hydrocarbonoxy group, or a halo.
  • a hydrocarbon oxy group (wherein the halogen atom and the oxygen atom are separated by at least two carbon atoms).
  • Q 1 is preferably an alkyl group or a phenyl group, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • each Q 2 independently represents a hydrogen atom, a halogen atom, a lower alkyl group (for example, an alkyl group having 7 or less carbon atoms), a phenyl group, a haloalkyl group, a hydrocarbon oxy group, or a halocarbon.
  • a hydrogenoxy group (however, a group in which at least two carbon atoms are separated from the halogen atom and the oxygen atom). Among them, preferably a hydrogen atom Q 2.
  • the polyphenylene ether may be a homopolymer having one type of structural unit or a copolymer having two or more types of structural units.
  • the polymer containing the structural unit represented by the formula (I) is a homopolymer
  • preferred examples of the homopolymer include 2,6-dimethyl-1,4-phenylene ether units (“-( And a homopolymer having a structural unit represented by C 6 H 2 (CH 3 ) 2 —O) — ”.
  • the polymer containing the structural unit represented by the formula (I) is a copolymer
  • preferred examples of the copolymer include 2,6-dimethyl-1,4-phenylene ether units and 2,3 , 6-trimethyl-1,4-phenylene ether unit (a structural unit represented by “— (C 6 H (CH 3 ) 3 —O —) —”).
  • the polyphenylene ether may contain any structural unit other than the phenylene ether unit.
  • the polyphenylene ether is a copolymer having a phenylene ether unit and an arbitrary structural unit.
  • the amount of any structural unit in the polyphenylene ether is preferably reduced to such an extent that the effects of the present invention are not significantly impaired.
  • the amount of phenylene ether units in the polyphenylene ether is preferably 50% by weight or more, more preferably 70% by weight or more, particularly preferably 80% by weight or more, and may be 100% by weight or less.
  • Polyphenylene ether may be used alone or in combination of two or more at any ratio.
  • the weight average molecular weight of the polyphenylene ether is preferably 15,000 or more, more preferably 25,000 or more, particularly preferably 35,000 or more, preferably 100,000 or less, more preferably 85,000 or less, particularly preferably. Is less than 70,000.
  • strength of the layer which consists of blend resin p1 can be raised.
  • the dispersibility of polyphenylene ether can be improved by making it below an upper limit, it becomes possible to mix polyphenylene ether and a polystyrene-type polymer uniformly at a high level.
  • weight average molecular weight a standard polystyrene equivalent value measured by gel permeation chromatography (GPC) at a temperature of 135 ° C. using 1,2,4-trichlorobenzene as a solvent can be adopted.
  • a polystyrene polymer having a syndiotactic structure is usually a polymer having a negative intrinsic birefringence value.
  • This polystyrene polymer includes a structural unit formed by polymerizing a styrene compound.
  • the “structural unit formed by polymerizing a styrene compound” is appropriately referred to as a “styrene unit”.
  • styrene compounds include styrene and styrene derivatives.
  • styrene derivatives include derivatives in which a substituent is substituted at the benzene ring or ⁇ -position of styrene.
  • styrene compounds include styrene; alkyl styrene such as methyl styrene and 2,4-dimethyl styrene; halogenated styrene such as chlorostyrene; halogen-substituted alkyl styrene such as chloromethyl styrene; alkoxy styrene such as methoxy styrene. Is mentioned. Among them, styrene having no substituent is preferable as the styrene compound. Moreover, a styrene compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the polystyrene polymer contained in the blend resin p1 a polymer having a syndiotactic structure is used.
  • the polystyrene polymer has a syndiotactic structure means that the stereochemical structure of the polystyrene polymer has a syndiotactic structure.
  • the syndiotactic structure refers to a three-dimensional structure in which phenyl groups as side chains are alternately positioned in opposite directions in the Fischer projection formula with respect to a main chain formed of carbon-carbon bonds.
  • the tacticity (stericity) of the polystyrene-based polymer can be quantified by an isotope carbon nuclear magnetic resonance method ( 13 C-NMR method).
  • the tacticity measured by 13 C-NMR method can be shown by the abundance ratio of a plurality of continuous structural units. In general, for example, two continuous structural units are dyads, three are triads, and five are pentads.
  • the polystyrene-based polymer having a syndiotactic structure preferably has a syndiotacticity of preferably 75% or more, more preferably 85% or more in racemic dyad, or preferably in racemic pentad. It means having a syndiotacticity of 30% or more, more preferably 50% or more.
  • polystyrene polymers include polystyrene, poly (alkyl styrene), poly (halogenated styrene), poly (halogenated alkyl styrene), poly (alkoxy styrene), poly (vinyl benzoate), and hydrogens thereof. And a copolymer thereof.
  • poly (alkyl styrene) examples include poly (methyl styrene), poly (ethyl styrene), poly (isopropyl styrene), poly (t-butyl styrene), poly (phenyl styrene), poly (vinyl naphthalene), and poly (Vinyl styrene).
  • poly (halogenated styrene) include poly (chlorostyrene), poly (bromostyrene), and poly (fluorostyrene).
  • poly (halogenated alkylstyrene) examples include poly (chloromethylstyrene).
  • poly (alkoxystyrene) examples include poly (methoxystyrene) and poly (ethoxystyrene).
  • polystyrene polymers are polystyrene, poly (p-methylstyrene), poly (m-methylstyrene), poly (pt-butylstyrene), poly (p-chlorostyrene), poly ( m-chlorostyrene), poly (p-fluorostyrene), hydrogenated polystyrene, and copolymers containing these structural units.
  • the polystyrene polymer may be a homopolymer having only one type of structural unit, or may be a copolymer having two or more types of structural units.
  • the polystyrene polymer may be a copolymer containing two or more types of styrene units, and it is a copolymer containing a styrene unit and a structural unit other than the styrene unit. There may be.
  • the amount of the structural unit other than the styrene unit in the polystyrene polymer has the effect of the present invention. It is preferable to reduce it to such an extent that it is not significantly impaired.
  • the amount of styrene units in the polystyrene-based polymer is preferably 80% by weight or more, more preferably 83% by weight or more, particularly preferably 85% by weight or more, even if it is 100% by weight or less. Good.
  • a desired retardation can be easily expressed in the layer made of the blend resin p1.
  • One type of polystyrene polymer may be used alone, or two or more types may be used in combination at any ratio.
  • the weight average molecular weight of the polystyrene polymer is usually 130,000 or more, preferably 140,000 or more, more preferably 150,000 or more, and usually 300,000 or less, preferably 270,000 or less, more preferably 250. , 000 or less. With such a weight average molecular weight, the glass transition temperature of the polystyrene-based polymer can be increased, and the heat resistance of the layer made of the blend resin p1 can be stably improved.
  • the glass transition temperature of the polystyrene-based polymer is preferably 85 ° C or higher, more preferably 90 ° C or higher, and particularly preferably 95 ° C or higher.
  • the glass transition temperature of the blend resin p1 can be effectively increased, and as a result, the heat resistance of the layer made of the blend resin p1 can be stably improved.
  • the glass transition temperature of the polystyrene polymer is preferably 160 ° C. or lower, more preferably 155 ° C. or lower, particularly preferably 150 ° C. or lower. is there.
  • the polyphenylene ether and the polystyrene-based polymer contained in the blend resin p1 are (i) different from each other in wavelength dispersion, (ii) have different signs of intrinsic birefringence values, and (iii) are compatible. Therefore, the wavelength dispersion of the layer made of the blend resin p1 can be adjusted by adjusting the weight ratio between the amount of polyphenylene ether and the amount of polystyrene polymer.
  • the weight ratio of polyphenylene ether to polystyrene polymer (“amount of polyphenylene ether” / “amount of polystyrene polymer”) is preferably 35/65 or more, more preferably 37/63 or more, preferably 45/55 or less, more preferably 43/57 or less.
  • the proportion of the total of the polyphenylene ether and the polystyrene-based polymer in the blend resin p1 is preferably 50% by weight to 100% by weight, more preferably 70% by weight to 100% by weight, and particularly preferably 90% by weight to 100% by weight. is there.
  • the layer made of the blend resin p1 can exhibit appropriate optical characteristics.
  • the blend resin p1 can contain any component other than polyphenylene ether and polystyrene-based polymer.
  • the blend resin p1 may contain a polymer in addition to the above-described polyphenylene ether and polystyrene polymer.
  • the amount of the polymer other than polyphenylene ether and polystyrene polymer is preferably 15 parts by weight or less, more preferably 10 parts by weight or less, and more preferably 5 parts by weight or less, based on 100 parts by weight of the total amount of polyphenylene ether and polystyrene polymer. Is particularly preferred.
  • the blend resin p1 may contain a compounding agent.
  • compounding agents include layered crystal compounds; fine particles; antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, UV absorbers, near infrared absorbers and other stabilizers; plasticizers; dyes and pigments, etc. Colorants; antistatic agents; and the like.
  • a compounding agent may use one type and may use it combining two or more types by arbitrary ratios. The amount of the compounding agent can be appropriately determined as long as the effects of the present invention are not significantly impaired. For example, it is a range in which the total light transmittance of the layer made of the blend resin p1 can be maintained at 85% or more.
  • the glass transition temperature of the blend resin p1 is preferably 115 ° C. or higher, more preferably 118 ° C. or higher, and even more preferably 120 ° C. or higher. Since the blend resin p1 contains a combination of polyphenylene ether and polystyrene polymer, the glass transition temperature can be increased as compared with a resin containing only a polystyrene polymer. Since the glass transition temperature is so high, the relaxation of the orientation of the blend resin p1 can be reduced, so that a second optical anisotropic layer having excellent heat resistance can be realized. Moreover, although there is no restriction
  • the first optical anisotropic layer and the second optical anisotropic layer can be produced by a conventionally known method.
  • Examples of the method for producing the first optical anisotropic layer and the second optical anisotropic layer include a melt molding method and a solution casting method.
  • a melt molding method is preferable from the viewpoint of suppressing volatile components such as a solvent from remaining in the layer. More specifically, the melt molding method can be classified into an extrusion molding method, a press molding method, an inflation molding method, an injection molding method, a blow molding method, a stretch molding method, and the like. Among these methods, in order to obtain a layer having excellent mechanical strength and surface accuracy, the extrusion molding method, the inflation molding method and the press molding method are preferable, and the first optical anisotropic layer and the second optical anisotropic layer can be efficiently and easily used. The extrusion method is particularly preferable from the viewpoint of manufacturing the directivity.
  • the first optical anisotropic layer is formed of a resin containing triacetyl cellulose
  • the first optical anisotropic layer is preferably formed by a solution casting method.
  • fills Formula (1) can be manufactured easily.
  • a first optically anisotropic layer comprising a resin layer containing two or more types of triacetylcellulose prepared by preparing two or more types of solutions containing triacetylcellulose and using a casting machine equipped with two or more casting ports.
  • a resin layer containing two or more types of triacetylcellulose prepared by preparing two or more types of solutions containing triacetylcellulose and using a casting machine equipped with two or more casting ports.
  • the first optical anisotropic layer and the second optical anisotropic layer may be manufactured by different methods.
  • the first optical anisotropic layer may be manufactured by a solution casting method
  • the second optical anisotropic layer may be manufactured by a melt molding method.
  • stretching methods such as uniaxial stretching, simultaneous biaxial stretching, and sequential biaxial stretching
  • the stretching conditions such as the stretching ratio and the stretching temperature may be arbitrarily set according to the optical characteristics required for each of the first optical anisotropic layer and the second optical anisotropic layer.
  • the first optically anisotropic layer may be formed by biaxially stretching an unstretched film manufactured by a melt molding method or the like.
  • the second optical anisotropic layer may be formed by uniaxially stretching an unstretched film manufactured by a melt molding method or the like.
  • the stretching direction is relative to the film flow direction (transport direction), the transverse direction orthogonal to the transport direction, and the transport direction. Any of the diagonal directions which are neither parallel nor orthogonal may be sufficient.
  • the optically anisotropic laminate can be produced, for example, by laminating the first optically anisotropic layer produced by the above method and the second optically anisotropic layer.
  • An appropriate adhesive can be used for bonding.
  • an adhesive agent the adhesive agent similar to the adhesive agent which can be used for manufacture of the following polarizing plate can be used, for example.
  • FIG. 2 is a cross-sectional view schematically showing a polarizing plate according to one embodiment of the present invention.
  • the polarizing plate 200 includes a linear polarizer 210 and an optically anisotropic laminate 100. Since such a polarizing plate 200 can usually function as a circularly polarizing plate, reflection of external light can be suppressed by providing it on the display surface of the image display device.
  • the polarizing plate 200 including the optically anisotropic laminated body 100 when the display surface is viewed from the tilt direction, reflection of external light can be suppressed and coloring can be effectively suppressed.
  • the polarizing plate 200 may include the linear polarizer 210, the first optical anisotropic layer 110, and the second optical anisotropic layer 120 in this order, but effectively suppresses reflection of external light in the tilt direction. From the viewpoint, as shown in FIG. 2, it is preferable to include a linear polarizer 210, a second optical anisotropic layer 120, and a first optical anisotropic layer 110 in this order.
  • linear polarizer 210 Any linear polarizer can be used as the linear polarizer 210.
  • linear polarizers are films obtained by adsorbing iodine or dichroic dye on a polyvinyl alcohol film and then uniaxially stretching in a boric acid bath; adsorbing iodine or dichroic dye on a polyvinyl alcohol film And a film obtained by stretching and further modifying a part of the polyvinyl alcohol unit in the molecular chain to a polyvinylene unit.
  • Other examples of linear polarizers include polarizers having a function of separating polarized light into reflected light and transmitted light, such as grid polarizers, multilayer polarizers, and cholesteric liquid crystal polarizers.
  • the linear polarizer 210 is preferably a polarizer containing polyvinyl alcohol.
  • the degree of polarization of the linear polarizer 210 is not particularly limited, but is preferably 98% or more, more preferably 99% or more.
  • the thickness of the linear polarizer 210 is preferably 5 ⁇ m to 80 ⁇ m.
  • the polarizing plate may further include an adhesive layer for bonding the linear polarizer 210 and the optically anisotropic laminate 100 together.
  • an adhesive layer made of an adhesive adhesive may be used, or a layer obtained by curing a curable adhesive may be used.
  • a thermosetting adhesive may be used as the curable adhesive, but a photocurable adhesive is preferably used.
  • a photocurable adhesive what contains a polymer or a reactive monomer can be used. Further, the adhesive may contain a solvent, a photopolymerization initiator, other additives, and the like as necessary.
  • the photocurable adhesive is an adhesive that can be cured when irradiated with light such as visible light, ultraviolet light, and infrared light.
  • light such as visible light, ultraviolet light, and infrared light.
  • an adhesive that can be cured with ultraviolet rays is preferable because of its simple operation.
  • the thickness of the adhesive layer is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the angle formed by the slow axis of the optically anisotropic laminate 100 with respect to the polarization absorption axis of the linear polarizer 210 is preferably 45 ° or an angle close thereto, specifically, preferably It is 45 ° ⁇ 5 °, more preferably 45 ° ⁇ 4 °, particularly preferably 45 ° ⁇ 3 °.
  • the polarizing plate described above can further include an arbitrary layer.
  • the optional layer include a hard coat layer such as a polarizer protective film layer and an impact-resistant polymethacrylate resin layer, a mat layer that improves the slipperiness of the film, an antireflection layer, an antifouling layer, and an antistatic layer. Can be mentioned.
  • These arbitrary layers may be provided with only one layer or two or more layers.
  • a polarizing plate can be produced by bonding a linear polarizer and an optically anisotropic laminate together with an adhesive as necessary.
  • FIG. 3 is a cross-sectional view schematically showing an image display device 300 according to an embodiment of the present invention.
  • the image display apparatus 300 includes a polarizing plate 200 and an organic electroluminescence element (hereinafter sometimes referred to as “organic EL display element” as appropriate) 310.
  • This image display device 300 normally includes a linear polarizer 210, an optically anisotropic laminate 100, and an organic EL display element 310 in this order.
  • the image display apparatus 300 may include the linear polarizer 210, the first optical anisotropic layer 110, the second optical anisotropic layer 120, and the organic EL element 310 in this order, but the reflection of external light in the tilt direction. From the viewpoint of effectively suppressing the above, it is preferable to include a linear polarizer 210, a second optical anisotropic layer 120, a first optical anisotropic layer 110, and an organic EL element 310 in this order, as shown in FIG. .
  • the organic EL element 310 includes a transparent electrode layer, a light emitting layer, and an electrode layer in this order, and the light emitting layer can generate light when a voltage is applied from the transparent electrode layer and the electrode layer.
  • the material constituting the organic light emitting layer include polyparaphenylene vinylene-based, polyfluorene-based, and polyvinyl carbazole-based materials.
  • the light emitting layer may have a stack of layers having different emission colors or a mixed layer in which a different dye is doped in a certain dye layer.
  • the organic EL element 310 may include functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
  • the image display device 300 can suppress reflection of external light on the display surface 300U. Specifically, only a part of the linearly polarized light passes through the linear polarizer 210 and then passes through the optically anisotropic laminate 100, so that the light incident from the outside of the apparatus becomes circularly polarized light. . Circularly polarized light is reflected by a component that reflects light in the display device (such as a reflective electrode (not shown) in the organic EL element 310), and enters the optically anisotropic laminated body 100 again to enter.
  • the linearly polarized light has a vibration direction orthogonal to the vibration direction of the linearly polarized light and does not pass through the linear polarizer 210.
  • the vibration direction of linearly polarized light means the vibration direction of the electric field of linearly polarized light. Thereby, the function of reflection suppression is achieved.
  • the image display device 300 can exhibit the above-described reflection suppressing function not only in the front direction of the display surface 300U but also in the tilt direction. And thereby, coloring of the display surface 300U by reflected light can be suppressed. Therefore, the image display device 300 can effectively suppress reflection of external light and suppress coloring in both the front direction and the tilt direction of the display surface 300U.
  • the degree of coloring can be evaluated by the color difference ⁇ E * ab between the chromaticity measured by observing the display surface 300U from the tilt direction and the chromaticity of the black display surface 300U without reflection.
  • the chromaticity is obtained by measuring a spectrum of light reflected by the display surface 300U and multiplying the spectrum by a spectral sensitivity (color matching function) corresponding to the human eye to obtain tristimulus values X, Y and Z. It can be obtained by calculating chromaticity (a *, b *, L *).
  • the color difference ⁇ E * ab is the chromaticity when the display surface 300U is not illuminated by external light (a0 *, b0 *, L0 *) and the chromaticity when illuminated by external light ( a1 *, b1 *, L1 *) can be obtained from the following formula (X).
  • the coloring of the display surface 300U by reflected light may vary depending on the azimuth angle of the observation direction. Therefore, when observed from the tilt direction of the display surface 300U, the measured chromaticity can vary depending on the azimuth angle in the viewing direction, and thus the color difference ⁇ E * ab can also vary. Therefore, when evaluating the degree of coloring when observing from the tilt direction of the display surface 300U as described above, the evaluation of coloring is performed based on the average value of the color differences ⁇ E * ab obtained by observing from a plurality of azimuth directions. It is preferable to carry out. Specifically, the color difference ⁇ E * ab is measured in 5 ° increments in the azimuth direction and the azimuth angle ⁇ (see FIG.
  • a measurement retardation plate was produced by the following method.
  • the optically anisotropic layer to be evaluated formed on the film was bonded to a slide glass with an adhesive (adhesive is “CS9621T” manufactured by Nitto Denko Corporation). Thereafter, the film was peeled off to obtain a retardation plate for measurement.
  • Rth (450), Rth (550), Rth (590), Rth (650) at wavelengths of 450 nm, 550 nm, 590 and 650 nm, and a slow axis direction a phase difference measuring device (“AxoScan” manufactured by Axometrics) It measured using.
  • the in-plane retardation Re, the thickness direction retardation Rth, and the NZ coefficient of the optically anisotropic laminate were obtained by calculation from the optical characteristic values of the first optically anisotropic layer and the second optically anisotropic layer.
  • FIG. 4 is a perspective view schematically showing a state of an evaluation model set when calculating chromaticity in simulations in Examples and Comparative Examples.
  • the chromaticity was calculated.
  • the polar angle ⁇ represents an angle formed with respect to the normal direction 11 of the reflecting surface 10.
  • the chromaticity observed when not illuminated by a light source was calculated.
  • the color difference ⁇ E * ab was obtained from the chromaticity when illuminated with the light source and (ii) the chromaticity when not illuminated with the light source, using the above-described equation (X).
  • the calculation of the color difference ⁇ E * ab was performed in a range where the azimuth angle ⁇ was 0 ° or more and less than 360 ° by moving the observation direction 20 in the azimuth direction in increments of 5 °.
  • the azimuth angle ⁇ represents an angle formed by a direction parallel to the reflecting surface 10 with respect to a certain reference direction 12 parallel to the reflecting surface 10. Then, the average of the calculated color difference ⁇ E * ab was calculated to obtain the average color difference.
  • the polarizing plate of Apple's “AppleWatch” (registered trademark) is peeled off, and the display surface and the surface of the first optically anisotropic layer of the polarizing plate to be evaluated are passed through an adhesive layer (“CS9621” manufactured by Nitto Denko). Pasted together.
  • the above evaluation is performed by a large number of observers, and each person ranks the results of all the experimental examples (Examples and Comparative Examples) in the order of evaluation, and the score corresponding to the rank (1st place, 1 point, 2nd place 2 points, ... 5 points at the bottom).
  • the total score scored by each person was arranged in the order of low score, that is, in the order of high evaluation, and was evaluated in the order of A, B, C, D, and E from the group with the low score in the range of the score. The lower the score, the higher the evaluation.
  • the polarizing plate to be evaluated was bonded to Apple “Apple Watch” in the same manner as the visual reflection luminance and coloring evaluation method.
  • the screen was in a black display state (a state in which black was displayed on the entire screen), and the color was observed from all directions with a polar angle of 60 °.
  • the direction of the absorption axis of the polarizing plate was an azimuth angle of 0 °, and the direction perpendicular to the display surface was a polar angle of 0 °.
  • the polarizing plate to be evaluated was removed, and a heating test was performed in which the polarizing plate was left in an environment of 85 ° C. for 250 hours.
  • the polarizing plate was again bonded to the display surface, and the color was observed in the same manner as before the heating test.
  • the color observed without any change compared to before the heat test “slight” when the color changes slightly, and “bad” when the color changes markedly. evaluated.
  • Triacetyl cellulose is mixed with 100.0 weight, plasticizer (polyester oligomer) 10.0 weight part, methylene chloride 403.0 weight part, methanol 60.2 mass part, and triacetyl cellulose.
  • a solution containing was prepared. The solution was cast on a band of a band casting machine, dried to form a film, and the film was peeled off from the band by a peeling drum to obtain a film C1 of a triacetyl cellulose resin. The thickness of the film C1 was 100 ⁇ m. The retardation of the film C1 was measured by the above method.
  • nx ny> nz.
  • the formed molten resin in the form of a film was cast on a cast roll adjusted to a surface temperature of 110 ° C., and then passed between two cooling rolls adjusted to a surface temperature of 50 ° C. The resin was cooled and solidified on a cast roll to obtain a film before stretching. At this time, the thickness of the film before stretching was adjusted by adjusting the rotation speed of the cast roll so that a film C2 having physical properties as shown in Table 1 below could be obtained in the thickness range of 30 to 70 ⁇ m.
  • nx ny> nz.
  • a film made of polycarbonate resin (“Iupilon S3000” manufactured by Mitsubishi Engineering Plastics, glass transition temperature 150 ° C.) was prepared as a film before stretching.
  • This pre-stretch film was uniaxially stretched at the free end to obtain an intermediate film.
  • this intermediate film was uniaxially stretched at a free end in a direction perpendicular to the first stretching direction to obtain a film C3.
  • the uniaxial stretching temperature and the stretching ratio were adjusted so that a film C3 having physical properties as shown in Table 1 below was obtained in the range of a stretching temperature of 150 ° C. to 160 ° C. and a stretching ratio of 1.5 to 5 times. .
  • the thickness of the obtained film C3 was 40 ⁇ m.
  • a film before stretching was obtained in the same manner as in Step A of Production Example 1-2 except that the thickness of the film before stretching was adjusted.
  • the thickness of the film before stretching was adjusted by adjusting the rotation speed of the cast roll so that a film C4 having physical properties as shown in Table 1 below was obtained in the thickness range of 30 to 70 ⁇ m.
  • a film C4 was obtained in the same manner as in Step B of Production Example 1-2, except that the uniaxial stretching conditions were adjusted using the obtained unstretched film.
  • the conditions for each uniaxial stretching were adjusted such that films having physical properties as shown in Table 1 below were obtained in the range of stretching temperature: 140 to 150 ° C. and stretching ratio: 1.1 to 1.8 times.
  • the thickness of the obtained film C4 was 25 ⁇ m.
  • an unstretched film made by Nippon Zeon Co., Ltd., glass transition temperature (Tg) of 163 ° C., thickness of 100 ⁇ m
  • the base film was subjected to corona treatment (output 0.2 kW, electrode width 1600 mm, treatment speed 20 m / min).
  • the coating liquid (LC1) was applied to the surface of the base film subjected to corona treatment using a bar coater to form a coating liquid layer.
  • the coating liquid layer was heated in an oven at 110 ° C. for 2.5 minutes, and subjected to a drying process and an alignment process to obtain a liquid crystal composition layer. Thereafter, under a nitrogen atmosphere, the layer of the liquid crystal composition is irradiated with ultraviolet rays having an accumulated illuminance of 100 mJ / cm 2 (irradiation intensity of 10 mW / cm 2 for an irradiation time of 10 seconds) or more, and the polymerizable liquid crystal compound in the liquid crystal composition Was polymerized. This obtained the optically anisotropic transfer body provided with the base film and the 1st optically anisotropic layer C5 of thickness 0.5micrometer.
  • a film forming apparatus for two-layer / two-layer coextrusion molding (a molding apparatus capable of molding a two-layer film with two kinds of resins) equipped with a single-screw extruder equipped with a double flight type screw was prepared. .
  • the resin R1 pellets were charged into one uniaxial extruder of the film forming apparatus and melted.
  • pellets of impact-resistant polymethyl methacrylate resin R2 (“SUMIPEX (registered trademark) HT55X” manufactured by Sumitomo Chemical Co., Ltd.) were charged into the other uniaxial extruder of the film forming apparatus and melted.
  • the melted resin R1 at 290 ° C. was supplied to one manifold of a multi-manifold die (die slip surface roughness Ra: 0.1 ⁇ m) through a leaf disk-shaped polymer filter having an opening of 10 ⁇ m. Also, the melted resin R2 at 260 ° C. was supplied to the other manifold of the multi-manifold die through a leaf disk-shaped polymer filter having an opening of 10 ⁇ m.
  • Resin R1 and resin R2 were simultaneously extruded from a multi-manifold die at 280 ° C. to form a film.
  • the formed molten resin in the form of a film was cast on a cast roll adjusted to a surface temperature of 110 ° C., and then passed between two cooling rolls adjusted to a surface temperature of 50 ° C.
  • the resin was cooled and solidified on a cast roll to obtain a pre-stretch film including a layer made of resin R1 and a layer made of resin R2.
  • the thickness of the pre-stretched film including the layer made of the resin R1 (thickness 50 to 100 ⁇ m) and the layer made of the resin R2 (thickness 50 to 100 ⁇ m) Adjustment was made so that a film Q1 having physical properties as shown in Table 1 below was obtained in a thickness range of 100 to 200 ⁇ m.
  • Resin R1 was produced in the same manner as in Production Process 2-1.
  • a film before stretching was produced from Resin R1 and Resin R2 in the same manner as in Step B of Production Example 2-1, except that the thickness of the film before stretching was adjusted.
  • the thickness of the film before stretching was adjusted by adjusting the rotation speed of the cast roll so that the film Q2 having physical properties as shown in Table 1 below was obtained in the thickness range of 100 to 200 ⁇ m.
  • the obtained film before stretching was tenter-stretched in the short direction of the film before stretching with a longitudinal stretching machine, and then the layer made of the resin R2 was peeled off to produce a film Q2 made of the resin R1.
  • the tenter stretching conditions were adjusted such that a film Q2 having physical properties as shown in Table 1 below was obtained in the range of a stretching temperature of 134 ° C. to 148 ° C. and a stretching ratio of 1.5 to 2.5 times.
  • the obtained film Q2 had a slow axis in the width direction of the film Q2.
  • the obtained film Q2 had a thickness of 65 ⁇ m.
  • the retardation of the film Q2 was measured by the above method. From the measured values of Re and Rth and the definitions of nx, xy, nz, and NZ coefficients, the relationship of nx, ny, and nz was derived as follows, and ny ⁇ nx ⁇ nz.
  • Example 1 A film C1 as the first optically anisotropic layer obtained in Production Example 1-1 and a film Q1 as the second optically anisotropic layer obtained in Production Example 2-1 were bonded to an adhesive layer (manufactured by Nitto Denko). Bonding via “CS9621T”), an optically anisotropic laminate having a layer structure of (first optically anisotropic layer / adhesive layer / second optically anisotropic layer) was obtained.
  • a polarizing film (“HLC2” manufactured by Sanlitz Co., Ltd.) is used as a linear polarizer on the surface of the obtained optically anisotropic laminate on the second optically anisotropic layer side through an adhesive layer (“CS9621T” manufactured by Nitto Denko). ⁇ 5618S ”). This bonding was performed such that the slow axis of the second optically anisotropic layer and the polarization transmission axis of the polarizing film form an angle of 45 °.
  • a circularly polarizing plate having a layer structure of (polarizing film / adhesive layer / second optical anisotropic layer / adhesive layer / first optical anisotropic layer) was obtained.
  • the obtained circularly polarizing plate was evaluated by the method described above.
  • Example 2 The optically anisotropic laminate and the circularly polarizing plate were produced and evaluated in the same manner as in Example 1 except that the film C2 obtained in Production Example 1-2 was used as the first optically anisotropic layer. .
  • Example 3 The optically anisotropic laminate and the circularly polarizing plate were produced and evaluated in the same manner as in Example 1 except that the film C3 obtained in Production Example 1-3 was used as the first optically anisotropic layer. .
  • Example 4 Example 1 except that the film C4 obtained in Production Example 1-4 was used as the first optically anisotropic layer, and the film Q2 obtained in Production Example 2-2 was used as the second optically anisotropic layer. In the same manner as in Example 1, the optically anisotropic layer and the circularly polarizing plate were produced and evaluated.
  • SPSPPE means a blend resin of syndiotactic polystyrene and poly (2,6-dimethyl-1,4-phenylene oxide) used in Production Example 2-1 and Production Example 2-2.
  • PC means polycarbonate resin;
  • COP means cycloolefin resin;
  • TAC means triacetyl cellulose resin;
  • LC242 means a liquid crystal composition containing “LC242” manufactured by BASF, “Re (450)” and “Rth (450)” mean in-plane retardation and retardation in the thickness direction at a wavelength of 450 nm, respectively.
  • Re (550) and “Rth (550)” mean in-plane retardation and retardation in the thickness direction at a wavelength of 550 nm, respectively.
  • Re (590) and “Rth (590)” mean in-plane retardation and retardation in the thickness direction at a wavelength of 590 nm
  • Re (650) and “Rth (650)” mean in-plane retardation and retardation in the thickness direction at a wavelength of 650 nm, respectively.
  • NZ (590)” means the NZ coefficient at a wavelength of 590 nm.
  • the image display device including the polarizing plates of Examples 1 to 4 in which the optically anisotropic laminate and the linear polarizer are combined is the image display device including the polarizing plate of Comparative Example 1. It can be seen that the coloration of the display surface when observed from the front direction is equally suppressed, and the coloration of the display surface when observed from the tilt direction is significantly suppressed.
  • the optically anisotropic laminate, polarizing plate, and image display device of the present invention are colored on the display surface when viewed from the front and tilt directions without requiring the use of a positive C plate. This shows that a suppressed image display device can be realized. Therefore, the optically anisotropic laminate and the polarizing plate of the present invention can be manufactured at a lower cost than the optically anisotropic laminate and the polarizing plate including the positive C plate, and from the inclined direction after the heating test. Changes in the color of the viewed display surface can be suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)

Abstract

第1光学異方性層及び第2光学異方性層を含む光学異方性積層体であって、前記第1光学異方性層が、下記式(1)を満たし、前記第2光学異方性層が、下記式(2)を満たし、前記光学異方性積層体が、下記式(3)及び式(4)を満たす、光学異方性積層体。 nx1≧ny1>nz1 式(1) ny2<nx2≦nz2 式(2) Re(450)<Re(550)<Re(650) 式(3) 0<NZ<1.0 式(4) 但し、 nx1、ny1、nz1、nx2、ny2、nz2、Re(450)、Re(550)、Re(650)、及びNZは明細書中で定義されたとおりである。

Description

光学異方性積層体、偏光板、及び画像表示装置
 本発明は、光学異方性積層体、偏光板、及び画像表示装置に関する。
 有機エレクトロルミネッセンス(以下、有機ELともいう。)画像表示装置などの画像表示装置には、光学異方性を有するフィルムが、光学フィルムとして設けられる。このような光学フィルムについては、従来から、様々な研究がなされている(特許文献1~6参照)。
特開2014-167922号公報 特開2016-053709号公報 特開2015-106114号公報 特開2015-163935号公報 特開2015-163936号公報 特開2015-200861号公報
 画像表示装置は、外光を反射することにより、画像表示の品質が低下する場合がある。特に反射電極を備えた有機EL画像表示装置の場合、画像表示の品質低下が顕著である。
 このような反射を抑制するため、画像表示装置の表示面に、円偏光板が設けられることがある。ここで、用語「円偏光板」には、狭義の円偏光板だけでなく、楕円偏光板も含む。外光は、円偏光板によりある方向の円偏光に変換され、画像表示装置により反射される際にある方向とは逆方向の円偏光となる。逆方向の円偏光となった反射光は、円偏光板を透過しないため、反射が抑制される。
 画像表示装置の表示面に設ける円偏光板として、直線偏光子に、λ/4板として機能する位相差板を積層した積層体を用いる場合がある。
 しかし、画像表示装置の表示面に、かかる円偏光板を設けた場合であっても、表示面を傾斜方向から観察すると、表示面で反射した光が視認されることによって、表示面が色付いて見えていた。
 このように傾斜方向から見た表示面の色付きを低減するために、λ/4板であるポジティブAプレートにポジティブCプレートを積層した積層体を、直線偏光子と組み合わせる場合がある。ここで、ポジティブAプレートとは、屈折率nx、ny及びnzが、nx>ny≧nzを満たすフィルムであり、ポジティブCプレートとは、屈折率nx、ny及びnzが、nz>nx≧nyを満たすフィルムである。
 ポジティブCプレートを形成するための材料の選択肢は少なく、通常、ポジティブCプレートの材料として、順波長分散性である液晶化合物が用いられる。このような材料を用いたポジティブCプレートは、耐熱性が低く、ポジティブCプレートは、高温環境において、厚み方向のレターデーションRthが大きく変化する場合がある。そのため、ポジティブCプレートを含む円偏光板を設けた画像表示装置は、加熱試験後に、傾斜方向から観察した場合の色味が変化する場合があった。また、ポジティブCプレートは一般に製造コストが高い。したがって、ポジティブCプレートの使用を必須とせずに、傾斜方向から見た表示面の色付きを抑制することが求められている。
 よって、依然として、傾斜方向から見た表示面の色付きが抑制された画像表示装置を実現できる、光学異方性積層体及び偏光板;傾斜方向から見た表示面の色付きが抑制された画像表示装置;が求められている。
 前記課題を解決するべく、発明者は鋭意検討した結果、所定の光学的条件を満たす第1光学異方性層及び所定の光学的条件を満たす第2光学異方性層を含む光学異方性積層体であって、所定のレターデーション及びNZ係数を有する光学異方性積層体によって、前記課題を解決できることを見出し、本発明を完成した。すなわち、本発明は、以下を提供する。
 [1] 第1光学異方性層及び第2光学異方性層を含む光学異方性積層体であって、
 前記第1光学異方性層が、下記式(1)を満たし、
 前記第2光学異方性層が、下記式(2)を満たし、
 前記光学異方性積層体が、下記式(3)及び式(4)を満たす、
 光学異方性積層体。
 nx1≧ny1>nz1        式(1)
 ny2<nx2≦nz2        式(2)
 Re(450)<Re(550)<Re(650)  式(3)
 0<NZ<1.0          式(4)
 但し、
 nx1は、前記第1光学異方性層の面内方向であって最大の屈折率を与える方向の屈折率を表し、ny1は、前記第1光学異方性層の面内方向であって、nx1を与える方向に直交する方向の屈折率を表し、nz1は、前記第1光学異方性層の厚み方向の屈折率を表し、
 nx2は、前記第2光学異方性層の面内方向であって最大の屈折率を与える方向の屈折率を表し、ny2は、前記第2光学異方性層の面内方向であって、nx2を与える方向に直交する方向の屈折率を表し、nz2は、前記第2光学異方性層の厚み方向の屈折率を表し、
 Re(450)、Re(550)、及びRe(650)は、波長450nm、550nm、及び650nmにおける前記光学異方性積層体の面内レターデーションReをそれぞれ表し、
 NZは前記光学異方性積層体のNZ係数を表す。
 [2] 前記第2光学異方性層が、ポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む樹脂からなる層を含む、[1]に記載の光学異方性積層体。
 [3] ポリフェニレンエーテルの、シンジオタクチック構造を有するポリスチレン系重合体に対する重量比率が、35/65以上45/55以下である、[2]に記載の光学異方性積層体。
 [4] 前記第1光学異方性層が、正の固有複屈折値を有する樹脂を含む層を延伸してなる層である、[1]~[3]のいずれか1項に記載の光学異方性積層体。
 [5] [1]~[4]のいずれか1項に記載の光学異方性積層体と、
 直線偏光子とを含む、偏光板。
 [6] 直線偏光子と、[1]~[4]のいずれか1項に記載の光学異方性積層体と、有機エレクトロルミネッセンス素子とを、この順で含む、画像表示装置。
 本発明によれば、傾斜方向から見た表示面の色付きが抑制された画像表示装置を実現できる、光学異方性積層体及び偏光板;傾斜方向から見た表示面の色付きが抑制された画像表示装置;を提供できる。
図1は、本発明の一実施形態に係る光学異方性積層体を模式的に示す断面図である。 図2は、本発明の一実施形態に係る偏光板を模式的に示す断面図である。 図3は、本発明の一実施形態に係る画像表示装置を模式的に示す断面図である。 図4は、実施例及び比較例でのシミュレーションにおいて、色度の計算を行う際に設定した評価モデルの様子を模式的に示す斜視図である。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、「長尺」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。長尺のフィルムの長さの上限は、特に制限は無く、例えば、幅に対して10万倍以下としうる。
 以下の説明において、別に断らない限り、ある層の面内レターデーションReは、Re=(nx-ny)×dで表される値を示す。ある層の厚み方向のレターデーションRthは、別に断らない限り、Rth={(nx+ny)/2-nz}×dで表される値である。さらに、ある層のNZ係数(NZ)は、別に断らない限り、NZ=(nx-nz)/(nx-ny)で表される値を示す。NZ係数は、NZ=Rth/Re+0.5により算出されうる。
 ここで、nxは、層の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向(遅相軸方向)の屈折率を表し、nyは、層の前記面内方向であってnxの方向に直交する方向の屈折率を表し、nzは、層の厚み方向の屈折率を表し、dは、層の厚みを表す。測定波長は、別に断らない限り、590nmである。
 以下の説明において、ある層の遅相軸とは、別に断らない限り、当該層の面内における遅相軸を表す。
 以下の説明において、ある面の正面方向とは、別に断らない限り、当該面の法線方向を意味し、具体的には前記面の極角0°且つ方位角0°の方向を指す。
 以下の説明において、ある面の傾斜方向とは、別に断らない限り、当該面に平行でも垂直でもない方向を意味し、具体的には当該面の極角が0°より大きく90°より小さい範囲の方向を指す。
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。
 以下の説明において、長尺状のフィルムの長手方向は、通常は製造ラインにおけるフィルムの流れ方向と平行である。
 以下の説明において、「偏光板」、「円偏光板」、「プレート」、及び「位相差板」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。
 以下の説明において、複数の層を備える部材における各層の光学軸(偏光吸収軸、偏光透過軸、遅相軸等)がなす角度は、別に断らない限り、前記の層を厚み方向から見たときの角度を表す。
 以下の説明において、「正の固有複屈折値を有する重合体」及び「正の固有複屈折値を有する樹脂」とは、「延伸方向の屈折率が延伸方向に直交する方向の屈折率よりも大きくなる重合体」及び「延伸方向の屈折率が延伸方向に直交する方向の屈折率よりも大きくなる樹脂」をそれぞれ意味する。また、「負の固有複屈折値を有する重合体」及び「負の固有複屈折値を有する樹脂」とは、「延伸方向の屈折率が延伸方向に直交する方向の屈折率よりも小さくなる重合体」及び「延伸方向の屈折率が延伸方向に直交する方向の屈折率よりも小さくなる樹脂」をそれぞれ意味する。固有複屈折値は、誘電率分布から計算しうる。
 以下の説明において、接着剤とは、別に断らない限り、狭義の接着剤(エネルギー線照射後、あるいは加熱処理後、23℃における剪断貯蔵弾性率が1MPa~500MPaである接着剤)のみならず、23℃における剪断貯蔵弾性率が1MPa未満である粘着剤をも包含する。
[1.光学異方性積層体]
[1-1.光学異方性積層体の構成]
 本発明の一実施形態に係る光学異方性積層体は、第1光学異方性層及び第2光学異方性層を含む。図1は、本発明の一実施形態に係る光学異方性積層体を模式的に示す断面図である。図1に示すように、本実施形態に係る光学異方性積層体100は、第1光学異方性層110及び第2光学異方性層120を備える。光学異方性積層体100は、必要に応じて、任意の層(図示せず)を備えていてもよい。
 第1光学異方性層110は、式(1)を満たし、第2光学異方性層120は、式(2)を満たし、光学異方性積層体100は、式(3)及び(4)を満たす。
 前記の式(1)~式(4)を満たす光学特性を有する光学異方性積層体を直線偏光子と組み合わせて得られる円偏光板を画像表示装置に設けることにより、その画像表示装置の表示面を傾斜方向から見た場合に外光の反射を抑制して、色付きを効果的に抑制できる。
 nx1≧ny1>nz1        式(1)
 ny2<nx2≦nz2        式(2)
 Re(450)<Re(550)<Re(650)  式(3)
 0<NZ<1.0          式(4)
 前記式(1)において、nx1は、前記第1光学異方性層の面内方向であって最大の屈折率を与える方向の屈折率を表し、ny1は、前記第1光学異方性層の面内方向であって、nx1を与える方向に直交する方向の屈折率を表し、nz1は、前記第1光学異方性層の厚み方向の屈折率を表す。
 前記式(1)は、第1光学異方性層が、いわゆるネガティブCプレート又はネガティブBプレートとして機能しうることを示す。
 ここで、nx1及びny1は、値が同じであるか近いことが好ましい。よって、第1光学異方性層のnx1、ny1、及びnz1は、nx1≒ny1>nz1の関係にあることが好ましい。具体的には、nx1とny1との差(nx1-ny1)は、好ましくは0.00000~0.00100、より好ましくは0.00000~0.00050、特に好ましくは0.00000~0.00020である。屈折率差(nx1-ny1)が前記の範囲に収まることにより、表示面を傾斜方向から見た場合の反射光による色付きをより効果的に抑制できる画像表示装置を実現できる。
 前記式(1)を満たす層の材料としては、耐熱性が高い材料が知られているので、このような材料を第1光学異方性層の材料として採用することにより、加熱試験後に表示面の色味が変化することが抑制された画像表示装置を容易に実現できる。また、前記式(1)を満たす層は、一般にポジティブCプレートよりも製造コストが低いため、第1光学異方性層を含む本実施形態の光学異方性積層体は、製造コストを低く抑えることができる。
 前記式(2)において、nx2は、前記第2光学異方性層の面内方向であって最大の屈折率を与える方向の屈折率を表し、ny2は、前記第2光学異方性層の面内方向であって、nx2を与える方向に直交する方向の屈折率を表し、nz2は、前記第2光学異方性層の厚み方向の屈折率を表す。
 前記式(2)は、第2光学異方性層が、いわゆるネガティブAプレート、もしくはポジティブBプレートとして機能しうることを示す。第2光学異方性層が、式(2)を満たすことにより、反射光による色付きを効果的に抑制できる画像表示装置を実現できる。
 前記式(3)において、Re(450)、Re(550)、及びRe(650)は、波長450nm、550nm、及び650nmにおける前記光学異方性積層体の面内レターデーションReをそれぞれ表す。
 前記式(3)は、光学異方性積層体の面内レターデーションReが、逆波長分散性であることを示す。光学異方性積層体が、式(3)を満たすことにより、広い波長範囲において、光学異方性積層体を透過する光の偏光状態を均一に変換できる。よって、反射光による色付きを、広い波長範囲において効果的に抑制できる画像表示装置を実現できる。
 前記式(4)において、NZは前記光学異方性積層体のNZ係数を表す。光学異方性積層体のNZ係数は、好ましくは0.1以上であり、より好ましくは0.2以上であり、好ましくは0.9以下であり、より好ましくは0.8以下である。
 光学異方性積層体のNZ係数が前記範囲を満たすことにより、表示面を傾斜方向から見た場合の反射光による色付きを効果的に抑制できる画像表示装置を実現できる。
 第1光学異方性層の面内レターデーションRe1は、通常0nm以上であり、好ましくは0nm以上10nm以下、より好ましくは0nm以上5nm以下であり、更に好ましくは0nm以上3nm以下である。第1光学異方性層の面内レターデーションRe1が、前記範囲に収まることにより、表示面を傾斜方向から見た場合の反射光の色付きをより効果的に抑制できる画像表示装置を実現できる。
 第1光学異方性層の厚み方向のレターデーションRth1は、逆波長分散性であることが好ましい。具体的には、第1光学異方性層は、下記式(5)を満たすことが好ましい。
 Rth1(450)<Rth1(550)<Rth1(650)  式(5)
 前記式(5)において、Rth1(450)、Rth1(550)、及びRth1(650)は、波長450nm、550nm、及び650nmにおける第1光学異方性層の厚み方向のレターデーションRthをそれぞれ表す。
 第1光学異方性層が前記式を満たすことにより、反射光による色付きを、広い波長範囲においてより効果的に抑制できる画像表示装置を実現できる。
 第2光学異方性層の面内レターデーションRe2は、好ましくは100nm以上、より好ましくは110nm以上、更に好ましくは120nm以上であり、好ましくは180nm以下、より好ましくは170nm以下、更に好ましくは160nm以下である。第2光学異方性層の面内レターデーションRe2が前記範囲に収まることにより、表示面を傾斜方向から見た場合の反射光による色付きをより効果的に抑制できる画像表示装置を実現できる。
 第2光学異方性層の面内レターデーションRe2は、逆波長分散性であることが好ましい。具体的には、第2光学異方性層は、下記式(6)を満たすことが好ましい。
 Re2(450)<Re2(550)<Re2(650)  式(6)
 前記式(6)において、Re2(450)、Re2(550)、及びRe2(650)は、波長450nm、550nm、及び650nmにおける第2光学異方性層の面内レターデーションReをそれぞれ表す。
 第2光学異方性層が前記式を満たすことにより、反射光による色付きを、広い波長範囲においてより効果的に抑制できる画像表示装置を実現できる。
 第1光学異方性層の全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは90%以上であり、100%以下としうる。
 第2光学異方性層の全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは90%以上であり、100%以下としうる。
 第1光学異方性層のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。
 第2光学異方性層のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。
 第1光学異方性層の厚み及び第2光学異方性層の厚みは、前記の光学特性を有する範囲で任意に調整しうる。
 第1光学異方性の厚みは、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは150μm以下、より好ましくは100μm以下である。
 第2光学異方性層の厚みは、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは150μm以下、より好ましくは100μm以下である。
 光学異方性積層体の全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは90%以上であり、100%以下としうる。
 光学異方性積層体のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。
 光学異方性積層体の厚みは、前記の光学特性を有する範囲で任意に調整しうる。具体的な厚みは、薄型化の観点から、好ましくは3μm以上、より好ましくは4μm以上、特に好ましくは5μm以上であり、好ましくは20μm以下、より好ましくは15μm以下、特に好ましくは12μm以下である。
[1-2.第1光学異方性層及び第2光学異方性層の材料]
 第1光学異方性層及び第2光学異方性層を形成するための材料としては、例えば樹脂が挙げられ、中でも熱可塑性樹脂が好ましい。
 第1光学異方性層及び第2光学異方性層を形成するための材料としては、正の固有複屈折値を有する重合体を含む樹脂であっても、負の固有複屈折値を有する重合体を含む樹脂であっても、正の固有複屈折値を有する重合体及び負の固有複屈折値を有する重合体を含む樹脂であってもよい。
 正の固有複屈折値を有する重合体としては、特に限定されないが、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル;ポリフェニレンサルファイド等のポリアリーレンサルファイド;ポリビニルアルコール;ポリカーボネート;ポリアリレート;セルロースエステル;ポリエーテルスルホン;ポリスルホン;ポリアリールスルホン;ポリ塩化ビニル;ノルボルネン重合体等の脂環式構造含有重合体;棒状液晶ポリマーが挙げられる。
 負の固有複屈折値を有する重合体としては、特に限定されないが、例えば、スチレン類化合物の単独重合体、並びに、スチレン類化合物と任意のモノマーとの共重合体を含む、ポリスチレン系重合体;ポリアクリロニトリル重合体;ポリメチルメタクリレート重合体;あるいはこれらの多元共重合ポリマーが挙げられる。また、スチレン類化合物に共重合させうる前記任意のモノマーとしては、例えば、アクリロニトリル、無水マレイン酸、メチルメタクリレート、及びブタジエンが挙げられ、アクリロニトリル、無水マレイン酸、メチルメタクリレート、及びブタジエンから選ばれる1種以上が好ましい。
 前記の重合体は、単独重合体でもよく、共重合体でもよい。
 また、前記の重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 第1光学異方性層及び第2光学異方性層を形成するための樹脂は、前記重合体以外に、任意の配合剤を含んでいてもよい。配合剤の例としては、酸化防止剤、熱安定剤、光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤等の安定剤;可塑剤;などが挙げられる。配合剤は、1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[1-3.好適な第1光学異方性層の材料]
 第1光学異方性層は、好ましくは、正の固有複屈折値を有する樹脂を含み、脂環式構造含有重合体を含む樹脂、セルロースエステルを含む樹脂、及びポリカーボネートを含む樹脂から選ばれる1種以上を含むことがより好ましく、脂環式構造含有重合体を含む樹脂、セルロースエステルを含む樹脂、又はポリカーボネートを含む樹脂を含むことが更に好ましい。正の固有複屈折値を有する樹脂を材料として用いることにより、該樹脂で形成されたフィルムを二軸延伸して容易に式(1)を満たす第1光学異方性層を製造しうる。よって、第1光学異方性層は、正の固有複屈折値を有する樹脂を含む層を延伸してなる層であることが好ましい。
 脂環式構造含有重合体は、繰り返し単位中に脂環式構造を有する重合体であり、通常は非晶質の重合体である。脂環式構造含有重合体としては、主鎖中に脂環式構造を含有する重合体及び側鎖に脂環式構造を含有する重合体のいずれも用いうる。
 脂環式構造としては、例えば、シクロアルカン構造、シクロアルケン構造等が挙げられるが、熱安定性等の観点からシクロアルカン構造が好ましい。
 1つの脂環式構造の繰り返し単位を構成する炭素数に特に制限はないが、好ましくは4個以上、より好ましくは5個以上、特に好ましくは6個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。
 脂環式構造含有重合体中の脂環式構造を有する繰り返し単位の割合は、使用目的に応じて適宜選択されうるが、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上であり、100重量%以下であってもよい。脂環式構造を有する繰り返し単位を前記のように多くすることにより、第1光学異方性層の耐熱性を高くできる。
 脂環式構造含有重合体は、例えば、(1)ノルボルネン重合体、(2)単環の環状オレフィン重合体、(3)環状共役ジエン重合体、(4)ビニル脂環式炭化水素重合体、及びこれらの水素添加物などが挙げられる。これらの中でも、透明性及び成形性の観点から、ノルボルネン重合体がより好ましい。
 ノルボルネン重合体としては、例えば、ノルボルネンモノマーの開環重合体、ノルボルネンモノマーと開環共重合可能なその他のモノマーとの開環共重合体、及びそれらの水素添加物;ノルボルネンモノマーの付加重合体、ノルボルネンモノマーと共重合可能なその他のモノマーとの付加共重合体などが挙げられる。これらの中でも、透明性の観点から、ノルボルネンモノマーの開環重合体水素添加物が特に好ましい。
 前記の脂環式構造含有重合体は、例えば特開2002-321302号公報等に開示されている公知の重合体から選ばれる。
 セルロースエステルとしては、セルロースの低級脂肪酸エステル(例:セルロースアセテート、セルロースアセテートブチレート及びセルロースアセテートプロピオネート)が代表的である。低級脂肪酸は、1分子あたりの炭素原子数6以下の脂肪酸を意味する。セルロースアセテートには、トリアセチルセルロース(TAC)及びセルロースジアセテート(DAC)が含まれる。
 セルロースエステルの総アシル基置換度は、好ましくは2.20以上2.70以下であり、より好ましくは2.40以上2.60以下である。ここで、総アシル基は、ASTM D817-91に準じて測定しうる。
 セルロースエステルの重量平均重合度は、好ましくは350以上800以下であり、より好ましくは370以上600以下である。セルロースエステルの数平均分子量は、好ましくは60000以上230000以下であり、より好ましくは70000以上230000以下である。
 ポリカーボネートとしては、ジヒドロキシ化合物から誘導される構造単位及びカーボネート構造(-O-(C=O)-O-で表される構造)を有する重合体が挙げられる。
 ジヒドロキシ化合物としては、例えば、ビスフェノールAが挙げられる。ポリカーボネート中に含まれる、ジヒドロキシ化合物から誘導される構造単位は、1種であっても2種以上であってもよい。
 第1光学異方性層は、トリアセチルセルロースを含む樹脂を含むことが更に好ましい。トリアセチルセルロースを含む樹脂から形成されたフィルムのレターデーションは、一般に逆波長分散性を有することから、反射光による色付きを、広い波長範囲においてより効果的に抑制できる画像表示装置を実現できる。
 第1光学異方性層を、トリアセチルセルロースを含む樹脂で形成する場合、第1光学異方性層は、溶液流延法により形成された層であることが好ましい。これにより、容易に式(1)を満たす第1光学異方性層を製造しうる。
[1-4.好適な第2光学異方性層の材料]
 第2光学異方性層は、厚み方向の屈折率を大きくすることができることから、好ましくは負の固有複屈折値を有する重合体を含む樹脂を含み、より好ましくはポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む樹脂を含み、更に好ましくはポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む樹脂からなる層を含む。以下、「ポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む樹脂」を、適宜、「ブレンド樹脂p1」ということがある。
 ブレンド樹脂p1は、当該ブレンド樹脂p1が含む重合体の種類及び量に応じて、その固有複屈折値の符号(正及び負)を調整しうる。通常、ブレンド樹脂p1として、負の固有複屈折値を有するものを用いる。ブレンド樹脂p1では、ポリフェニレンエーテルとポリスチレン系重合体との量比を調整することにより、当該ブレンド樹脂p1の波長分散を高い自由度で調整することができる。
 ポリフェニレンエーテルは、通常、正の固有複屈折値を有する重合体である。このポリフェニレンエーテルは、フェニルエーテル又はフェニルエーテル誘導体を重合して形成される構造を有する構造単位を含む。通常は、フェニレンエーテル骨格を有する構造単位を主鎖に有する重合体を、ポリフェニレンエーテルとして用いる。以下、「フェニレンエーテル骨格を有する構造単位」を、適宜「フェニレンエーテル単位」という。ただし、フェニレンエーテル単位におけるベンゼン環には、本発明の効果を著しく損なわない限り、置換基を有していてもよい。
 中でも、ポリフェニレンエーテルとしては、下記式(I)で表されるフェニレンエーテル単位を含む重合体が好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(I)において、Qは、それぞれ独立に、ハロゲン原子、低級アルキル基(例えば炭素数7個以下のアルキル基)、フェニル基、ハロアルキル基、アミノアルキル基、炭化水素オキシ基、または、ハロ炭化水素オキシ基(ただし、そのハロゲン原子と酸素原子とを少なくとも2つの炭素原子が分離している基)を表す。中でも、Qとしてはアルキル基及びフェニル基が好ましく、特に炭素数1以上4以下のアルキル基がより好ましい。
 式(I)において、Qは、それぞれ独立に、水素原子、ハロゲン原子、低級アルキル基(例えば炭素数7個以下のアルキル基)、フェニル基、ハロアルキル基、炭化水素オキシ基、または、ハロ炭化水素オキシ基(ただし、そのハロゲン原子と酸素原子とを少なくとも2つの炭素原子が分離している基)を表す。中でも、Qとしては水素原子が好ましい。
 ポリフェニレンエーテルは、1種類の構造単位を有する単独重合体(ホモポリマー)であってもよく、2種類以上の構造単位を有する共重合体(コポリマー)であってもよい。
 式(I)で表される構造単位を含む重合体が単独重合体である場合、当該単独重合体の好ましい例を挙げると、2,6-ジメチル-1,4-フェニレンエーテル単位(「-(C(CH-O)-」で表される構造単位)を有する単独重合体が挙げられる。
 式(I)で表される構造単位を含む重合体が共重合体である場合、当該共重合体の好ましい例を挙げると、2,6-ジメチル-1,4-フェニレンエーテル単位と2,3,6-トリメチル-1,4-フェニレンエーテル単位(「-(CH(CH-O-)-」で表される構造単位)と組み合わせて有するランダム共重合体が挙げられる。
 また、ポリフェニレンエーテルは、フェニレンエーテル単位以外の任意の構造単位を含んでいてもよい。この場合、ポリフェニレンエーテルは、フェニレンエーテル単位と任意の構造単位とを有する共重合体となる。ただし、ポリフェニレンエーテルにおける任意の構造単位の量は、本発明の効果を著しく損なわない程度に少なくすることが好ましい。具体的には、ポリフェニレンエーテルにおけるフェニレンエーテル単位の量は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは80重量%以上であり、100重量%以下であってもよい。
 ポリフェニレンエーテルは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ポリフェニレンエーテルの重量平均分子量は、好ましくは15,000以上、より好ましくは25,000以上、特に好ましくは35,000以上であり、好ましくは100,000以下、より好ましくは85,000以下、特に好ましくは70,000以下である。重量平均分子量を前記範囲の下限値以上にすることにより、ブレンド樹脂p1からなる層の強度を高めることができる。また、上限値以下にすることにより、ポリフェニレンエーテルの分散性を高められるので、ポリフェニレンエーテルとポリスチレン系重合体とを高いレベルで均一に混合することが可能となる。
 ここで、重量平均分子量としては、1,2,4-トリクロロベンゼンを溶媒として温度135℃でゲルパーミエーションクロマトグラフィー(GPC)で測定した、標準ポリスチレン換算の値を採用しうる。
 ポリフェニレンエーテルの製造方法に制限は無く、公知の方法により製造しうる。
 シンジオタクチック構造を有するポリスチレン系重合体は、通常、負の固有複屈折値を有する重合体である。このポリスチレン系重合体は、スチレン類化合物を重合して形成される構造単位を含む。以下、「スチレン類化合物を重合して形成される構造単位」を、適宜「スチレン類単位」という。スチレン類化合物の例としては、スチレン及びスチレン誘導体が挙げられる。スチレン誘導体の例としては、スチレンのベンゼン環またはα位に置換基が置換した誘導体が挙げられる。
 スチレン類化合物の具体例を挙げると、スチレン;メチルスチレン、2,4-ジメチルスチレン等のアルキルスチレン;クロロスチレン等のハロゲン化スチレン;クロロメチルスチレン等のハロゲン置換アルキルスチレン;メトキシスチレン等のアルコキシスチレンが挙げられる。中でもスチレン類化合物としては、置換基を有しないスチレンが好ましい。また、スチレン類化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ブレンド樹脂p1が含むポリスチレン系重合体としては、シンジオタクチック構造を有するものを用いる。ここで、ポリスチレン系重合体がシンジオタクチック構造を有する、とは、ポリスチレン系重合体の立体化学構造がシンジオタクチック構造となっていることをいう。また、シンジオタクチック構造とは、炭素-炭素結合で形成される主鎖に対して、側鎖であるフェニル基が、フィッシャー投影式において、交互に反対方向に位置する立体構造のことをいう。
 ポリスチレン系重合体のタクティシティー(tacticity:立体規則性)は、同位体炭素による核磁気共鳴法(13C-NMR法)により定量されうる。13C-NMR法により測定されるタクティシティーは、連続する複数個の構造単位の存在割合により示すことができる。一般に、例えば、連続する構造単位が2個の場合はダイアッド、3個の場合はトリアッド、5個の場合はペンタッドとなる。この場合、前記シンジオタクチック構造を有するポリスチレン系重合体とは、ラセミダイアッドで好ましくは75%以上、より好ましくは85%以上のシンジオタクティシティーを有するか、若しくは、ラセミペンタッドで好ましくは30%以上、より好ましくは50%以上のシンジオタクティシティーを有することをいう。
 ポリスチレン系重合体の例としては、ポリスチレン、ポリ(アルキルスチレン)、ポリ(ハロゲン化スチレン)、ポリ(ハロゲン化アルキルスチレン)、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸エステル)、及びこれらの水素化重合体、並びにこれらの共重合体が挙げられる。
 ポリ(アルキルスチレン)としては、例えば、ポリ(メチルスチレン)、ポリ(エチルスチレン)、ポリ(イソプロピルスチレン)、ポリ(t-ブチルスチレン)、ポリ(フェニルスチレン)、ポリ(ビニルナフタレン)、及びポリ(ビニルスチレン)が挙げられる。
 ポリ(ハロゲン化スチレン)としては、例えば、ポリ(クロロスチレン)、ポリ(ブロモスチレン)、及びポリ(フルオロスチレン)が挙げられる。
 ポリ(ハロゲン化アルキルスチレン)としては、例えば、ポリ(クロロメチルスチレン)などが挙げられる。
 ポリ(アルコキシスチレン)としては、例えば、ポリ(メトキシスチレン)、及びポリ(エトキシスチレン)が挙げられる。
 これらのうち特に好ましいポリスチレン系重合体としては、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(m-メチルスチレン)、ポリ(p-t-ブチルスチレン)、ポリ(p-クロロスチレン)、ポリ(m-クロロスチレン)、ポリ(p-フルオロスチレン)、水素化ポリスチレン、及びこれらの構造単位を含む共重合体が挙げられる。
 また、ポリスチレン系重合体は、1種類の構造単位のみを有する単独重合体であってもよく、2種類以上の構造単位を有する共重合体であってもよい。また、ポリスチレン系重合体が共重合体である場合、2種類以上のスチレン類単位を含む共重合体であってもよく、スチレン類単位とスチレン類単位以外の構造単位とを含む共重合体であってもよい。ただし、ポリスチレン系重合体がスチレン類単位とスチレン類単位以外の構造単位とを含む共重合体である場合、ポリスチレン系重合体中のスチレン類単位以外の構造単位の量は、本発明の効果を著しく損なわない程度に少なくすることが好ましい。具体的には、ポリスチレン系重合体におけるスチレン類単位の量は、好ましくは80重量%以上、より好ましくは83重量%以上、特に好ましくは85重量%以上であり、100重量%以下であってもよい。通常は、スチレン類単位の量をこのような範囲にすることで、ブレンド樹脂p1からなる層に所望の位相差を容易に発現させることができる。
 ポリスチレン系重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ポリスチレン系重合体の重量平均分子量は、通常130,000以上、好ましくは140,000以上、より好ましくは150,000以上であり、通常300,000以下、好ましくは270,000以下、より好ましくは250,000以下である。このような重量平均分子量とすると、ポリスチレン系重合体のガラス転移温度を高めて、ブレンド樹脂p1からなる層の耐熱性を安定して改善することができる。
 ポリスチレン系重合体のガラス転移温度は、好ましくは85℃以上、より好ましくは90℃以上、特に好ましくは95℃以上である。このようにポリスチレン系重合体のガラス転移温度を高めることにより、ブレンド樹脂p1のガラス転移温度を効果的に高め、ひいてはブレンド樹脂p1からなる層の耐熱性を安定して改善することができる。また、ブレンド樹脂p1からなる層の製造を安定して容易に行う観点から、ポリスチレン系重合体のガラス転移温度は、好ましくは160℃以下、より好ましくは155℃以下、特に好ましくは150℃以下である。
 ブレンド樹脂p1に含まれるポリフェニレンエーテルとポリスチレン系重合体とは、(i)互いに波長分散が異なり、(ii)固有複屈折値の符号が異なり、且つ、(iii)相溶可能である。そのため、ポリフェニレンエーテルの量とポリスチレン系重合体の量との重量比を調整することにより、そのブレンド樹脂p1からなる層の波長分散を調整できる。ポリフェニレンエーテルのポリスチレン系重合体に対する重量比率(「ポリフェニレンエーテルの量」/「ポリスチレン系重合体の量」)は、好ましくは35/65以上であり、より好ましくは37/63以上であり、好ましくは45/55以下であり、より好ましくは43/57以下である。ポリフェニレンエーテルのポリスチレン系重合体に対する重量比率を前記範囲とすることにより、ブレンド樹脂p1からなる層が好ましい逆波長分散性を発現しうる。
 ブレンド樹脂p1においてポリフェニレンエーテル及びポリスチレン系重合体の合計が占める割合は、好ましくは50重量%~100重量%、より好ましくは70重量%~100重量%、特に好ましくは90重量%~100重量%である。ポリフェニレンエーテル及びポリスチレン系重合体の合計の割合を前記範囲にすることにより、ブレンド樹脂p1からなる層が適切な光学特性を発現しうる。
 ブレンド樹脂p1は、ポリフェニレンエーテル及びポリスチレン系重合体以外の任意の成分を含みうる。
 例えば、ブレンド樹脂p1は、上述したポリフェニレンエーテル及びポリスチレン系重合体以外にも重合体を含んでいてもよい。ポリフェニレンエーテル及びポリスチレン系重合体以外の重合体の量は、ポリフェニレンエーテル及びポリスチレン系重合体の合計量を100重量部として、15重量部以下が好ましく、10重量部以下がより好ましく、5重量部以下が特に好ましい。
 例えば、ブレンド樹脂p1は、配合剤を含んでいてもよい。配合剤の例を挙げると、層状結晶化合物;微粒子;酸化防止剤、熱安定剤、光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤等の安定剤;可塑剤;染料及び顔料等の着色剤;帯電防止剤;などが挙げられる。また、配合剤は、1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 配合剤の量は、本発明の効果を著しく損なわない範囲で適宜定めうる。例えばブレンド樹脂p1からなる層の全光線透過率を85%以上に維持できる範囲である。
 ブレンド樹脂p1のガラス転移温度は、好ましくは115℃以上、より好ましくは118℃以上、さらにより好ましくは120℃以上である。ブレンド樹脂p1はポリフェニレンエーテル及びポリスチレン系重合体を組み合わせて含むので、ポリスチレン系重合体のみを含む樹脂と比べて、ガラス転移温度を高めることができる。ガラス転移温度がこのように高いことにより、ブレンド樹脂p1の配向緩和を低減することができるので、耐熱性に優れた第2光学異方性層を実現できる。また、ブレンド樹脂p1のガラス転移温度の上限に特に制限は無いが、通常は200℃以下である。
[1-5.第1光学異方性層及び第2光学異方性層の製造方法]
 第1光学異方性層及び第2光学異方性層は、従前公知の方法により製造することができる。第1光学異方性層及び第2光学異方性層の製造方法としては、例えば、溶融成形法、溶液流延法が挙げられる。
 第1光学異方性層及び第2光学異方性層の製造方法としては、溶媒などの揮発性成分が層に残留することを抑制する観点から、溶融成形法が好ましい。溶融成形法は、さらに詳細には、押出成形法、プレス成形法、インフレーション成形法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの方法の中でも、機械強度及び表面精度に優れた層を得るために、押出成形法、インフレーション成形法及びプレス成形法が好ましく、効率よく簡単に第1光学異方性層及び第2光学異方性を製造できる観点から、押出成形法が特に好ましい。
 前記のとおり、第1光学異方性層を、トリアセチルセルロースを含む樹脂で形成する場合、第1光学異方性層は、溶液流延法により形成することが好ましい。これにより、容易に式(1)を満たす第1光学異方性層を製造しうる。
 溶液流延法では、2層以上の流延を行ってもよい。例えば、トリアセチルセルロースを含む2種以上の溶液を準備し、2以上の流延口を備えた流延機により、2種以上のトリアセチルセルロースを含む樹脂層からなる第1光学異方性層を製造しうる。
 第1光学異方性層及び第2光学異方性層は、互いに異なる方法により製造されてもよい。例えば、第1光学異方性層を溶液流延法で製造し、第2光学異方性層を溶融成形法により製造してもよい。
 また、前記方法により得られたフィルムを、一軸延伸、同時二軸延伸、逐次二軸延伸などの延伸方法により延伸した後、第1光学異方性層又は第2光学異方性として用いてもよい。延伸倍率、延伸温度などの延伸条件は、第1光学異方性層及び第2光学異方性の層それぞれに必要とされる光学特性に応じて、任意に設定してよい。
 例えば、第1光学異方性層を、溶融成形法などにより製造された未延伸フィルムを二軸延伸することにより形成してもよい。例えば第2光学異方性層を、溶融成形法などにより製造された未延伸フィルムを一軸延伸することにより形成してもよい。
 例えば、第2光学異方性層を、未延伸フィルムを一軸延伸することにより形成する場合、延伸方向は、フィルムの流れ方向(搬送方向)、搬送方向と直交する横方向、搬送方向に対して平行でも直交する方向でもない斜め方向のいずれであってもよい。
[1-6.光学異方性積層体の製造方法]
 光学異方性積層体は、例えば、前記の方法により製造された第1光学異方性層と、第2光学異方性層とを貼り合せることにより製造しうる。貼り合わせには、適切な接着剤を用いうる。接着剤としては、例えば、下記偏光板の製造に用いうる接着剤と同様の接着剤を用いうる。
[2.偏光板]
 図2は、本発明の一実施形態に係る偏光板を模式的に示す断面図である。
 図2に示すように、偏光板200は、直線偏光子210と、光学異方性積層体100とを備える。このような偏光板200は、通常、円偏光板として機能できるので、画像表示装置の表示面に設けることにより、外光の反射を抑制できる。特に、光学異方性積層体100を備える前記の偏光板200によれば、表示面を傾斜方向から見た場合に、外光の反射を抑制して、色付きを効果的に抑制できる。
 偏光板200は、直線偏光子210、第1光学異方性層110及び第2光学異方性層120をこの順に備えていてもよいが、傾斜方向における外光の反射を効果的に抑制する観点から、図2に示すように、直線偏光子210、第2光学異方性層120及び第1光学異方性層110をこの順に備えることが好ましい。
 直線偏光子210としては、任意の直線偏光子を用いうる。直線偏光子の例としては、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるフィルム;ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるフィルム;が挙げられる。また、直線偏光子の他の例としては、グリッド偏光子、多層偏光子、コレステリック液晶偏光子などの、偏光を反射光と透過光に分離する機能を有する偏光子が挙げられる。これらのうち、直線偏光子210としては、ポリビニルアルコールを含有する偏光子が好ましい。
 直線偏光子210に自然光を入射させると、一方の偏光だけが透過する。この直線偏光子210の偏光度は特に限定されないが、好ましくは98%以上、より好ましくは99%以上である。
 また、直線偏光子210の厚みは、好ましくは5μm~80μmである。
 偏光板は、更に、直線偏光子210と光学異方性積層体100とを貼り合わせるための、接着層を備えていてもよい。接着層としては、粘着性の接着剤からなる粘着層を用いてもよく、硬化性接着剤を硬化させてなる層を用いてもよい。硬化性接着剤としては、熱硬化性接着剤を用いてもよいが、光硬化性接着剤を用いることが好ましい。光硬化性接着剤としては、重合体又は反応性の単量体を含んだものを用いうる。また、接着剤は、必要に応じて溶媒、光重合開始剤、その他の添加剤などを含みうる。
 光硬化性接着剤は、可視光線、紫外線、赤外線などの光を照射すると硬化しうる接着剤である。中でも、操作が簡便なことから、紫外線で硬化しうる接着剤が好ましい。
 接着層の厚みは、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは30μm以下、より好ましくは20μm以下、さらに好ましくは10μm以下である。接着層の厚みを前記範囲内とすることにより、光学異方性層の光学的性質を損ねずに、良好な接着を達成しうる。
 偏光板において、直線偏光子210の偏光吸収軸に対して光学異方性積層体100の遅相軸がなす角度は、45°またはそれに近い角度であることが好ましく、具体的には、好ましくは45°±5°、より好ましくは45°±4°、特に好ましくは45°±3°である。
 上述した偏光板は、更に、任意の層を含みうる。任意の層としては、例えば、偏光子保護フィルム層、耐衝撃性ポリメタクリレート樹脂層などのハードコート層、フィルムの滑り性を良くするマット層、反射抑制層、防汚層、帯電抑制層等が挙げられる。これらの任意の層は、1層だけを設けてもよく、2層以上を設けてもよい。
 偏光板は、直線偏光子と光学異方性積層体とを、必要に応じて接着剤を用いて、貼り合わせることによって、製造しうる。
[3.画像表示装置]
 図3は、本発明の一実施形態に係る画像表示装置300を模式的に示す断面図である。
 図3に示すように、画像表示装置300は、偏光板200と、有機エレクトロルミネッセンス素子(以下、適宜「有機EL表示素子」ということがある。)310とを備える。この画像表示装置300は、通常、直線偏光子210、光学異方性積層体100及び有機EL表示素子310を、この順に備える。
 画像表示装置300は、直線偏光子210、第1光学異方性層110、第2光学異方性層120及び有機EL素子310をこの順に備えていてもよいが、傾斜方向における外光の反射を効果的に抑制する観点から、図3に示すように、直線偏光子210、第2光学異方性層120、第1光学異方性層110及び有機EL素子310をこの順に備えることが好ましい。
 有機EL素子310は、透明電極層、発光層及び電極層をこの順に備え、透明電極層及び電極層から電圧を印加されることにより発光層が光を生じうる。有機発光層を構成する材料の例としては、ポリパラフェニレンビニレン系、ポリフルオレン系、及びポリビニルカルバゾール系の材料を挙げることができる。また、発光層は、複数の発光色が異なる層の積層体、あるいはある色素の層に異なる色素がドーピングされた混合層を有していてもよい。さらに、有機EL素子310は、正孔注入層、正孔輸送層、電子注入層、電子輸送層、等電位面形成層、電荷発生層等の機能層を備えていてもよい。
 前記の画像表示装置300は、表示面300Uにおける外光の反射を抑制できる。具体的には、装置外部から入射した光は、その一部の直線偏光のみが直線偏光子210を通過し、次にそれが光学異方性積層体100を通過することにより、円偏光となる。円偏光は、表示装置内の光を反射する構成要素(有機EL素子310中の反射電極(図示せず)等)により反射され、再び光学異方性積層体100を通過することにより、入射した直線偏光の振動方向と直交する振動方向を有する直線偏光となり、直線偏光子210を通過しなくなる。ここで、直線偏光の振動方向とは、直線偏光の電場の振動方向を意味する。これにより、反射抑制の機能が達成される。
 さらに、画像表示装置300は、光学異方性積層体100が所定の光学特性を有するので、前記の反射抑制の機能を、表示面300Uの正面方向だけでなく、傾斜方向においても発揮できる。そして、これにより、反射光による表示面300Uの色付きを抑制できる。したがって、画像表示装置300は、表示面300Uの正面方向及び傾斜方向の両方において、外光の反射を効果的に抑制して、色付きを抑制することが可能である。
 前記の色付きの程度は、表示面300Uを傾斜方向から観察して測定される色度と、反射の無い黒色の表示面300Uの色度との色差ΔE*abによって、評価しうる。前記の色度は、表示面300Uで反射した光のスペクトルを測定し、このスペクトルから、人間の目に対応する分光感度(等色関数)を乗じて三刺激値X、Y及びZを求め、色度(a*,b*,L*)を算出することにより求めうる。また、前記の色差ΔE*abは、外光によって表示面300Uが照らされていない場合の色度(a0*,b0*,L0*)、及び、外光によって照らされている場合の色度(a1*,b1*,L1*)から、下記の式(X)から求めうる。
Figure JPOXMLDOC01-appb-M000002
 また、一般に、反射光による表示面300Uの色付きは、観察方向の方位角によって異なりうる。そのため、表示面300Uの傾斜方向から観察した場合、観察方向の方位角によって、測定される色度は異なりうるので、色差ΔE*abも異なりうる。そこで、前記のように表示面300Uの傾斜方向から観察したときの色付きの程度を評価する場合には、複数の方位角方向から観察して得られる色差ΔE*abの平均値によって、色付きの評価を行うことが好ましい。具体的には、方位角方向に5°刻みで、方位角φ(図4参照。)が0°以上360°未満の範囲で、色差ΔE*abの測定を行い、測定された色差ΔE*abの平均値(平均色差)によって、色付きの程度を評価する。前記の平均色差が小さいほど、表示面300Uの傾斜方向から観察した場合の表示面の色付きが小さいことを表す。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。
[評価方法]
(評価対象フィルムの位相差特性)
 評価対象のフィルムから、フィルムの長手方向に平行な長辺と、フィルムの幅方向に平行な短辺とを有する、A4サイズのサンプル片を切り出した。
 光学的に等方性のガラス板の一方の面と、前記サンプル片を、手貼りローラーを用いて、貼り合わせた。貼り合わせは、粘着剤層(日東電工製「CS9621T」)を介して行った。また、ガラス板のサイズは75mm×25mmであり、ガラス板の長辺とサンプル片の長辺とが平行になるように貼り合わせ、ガラス板からはみ出したサンプル片の余り部分は、カッターで切り落とした。これにより、(ガラス板)/(粘着剤層)/(評価対象のフィルム)の層構成を有する、測定用位相差板を得た。
 あるフィルム(基材フィルム)上に形成された光学異方性層の位相差特性を測定する場合は、測定用位相差板を下記の方法で作製した。
 フィルム上に形成された評価対象となる光学異方性層を、粘着剤付スライドガラス(粘着剤は、日東電工社製「CS9621T」)に貼り合せた。その後、フィルムを剥離し、測定用位相差板を得た。
 こうして得られた測定用位相差板を用いて、波長450nm、550nm、590nm及び650nmにおける評価対象のフィルムの面内レターデーションRe(450)、Re(550)、Re(590)、Re(650)、波長450nm、550nm、590及び650nmにおけるRth(450)、Rth(550)、Rth(590)、Rth(650)、並びに、遅相軸方向を、位相差測定装置(Axometrics社製「AxoScan」)を用いて測定した。そして、評価対象のフィルムのRe(450)/Re(550)及びRe(650)/Re(550)の値又はRth(450)/Rth(550)及びRth(650)/Rth(550)の値を求めた。
 また、光学異方性積層体の面内レターデーションRe、厚み方向レターデーションRth及びNZ係数は、第1光学異方性層及び第2光学異方性層の光学特性値から計算により求めた。
(シミュレーションによる色差ΔE*abの計算方法)
 シミュレーション用のソフトウェアとしてシンテック社製「LCD Master」を用いて、各実施例及び比較例で製造された円偏光板を含む下記の評価モデルを作成した。
 シミュレーション用の評価モデルでは、平面状の反射面を有するミラーの前記反射面に、円偏光板の第1光学異方性層側の面を貼り合わせた構造を設定した。したがって、この評価モデルでは、視認側から、偏光フィルム、粘着層、第2光学異方性層、粘着層、第1光学異方性層及びミラーがこの順に設けられた構造が設定された。また、この評価モデルでは、ミラーとして、入射した光を反射率100%で鏡面反射しうる理想ミラーを設定し、さらに、偏光フィルムとして、ある方向に平行な振動方向を有する直線偏光の全てを通過させるが、その方向に垂直な振動方向を有する直線偏光を全く通過させない理想偏光フィルムを設定した。
 図4は、実施例及び比較例でのシミュレーションにおいて、色度の計算を行う際に設定した評価モデルの様子を模式的に示す斜視図である。
 図4に示すように、D65光源(図示せず。)によって照らされるミラーの反射面10を、前記反射面10に対して極角θ=60°の観察方向20から見たときに観察される色度を計算した。ここで、極角θとは、反射面10の法線方向11に対してなす角を表す。また、別途、光源によって照らされていないときに観察される色度を計算した。そして、(i)光源で照らされたときの色度と、(ii)光源で照らされていないときの色度とから、前述の式(X)を用いて、色差ΔE*abを求めた。
 前記の色差ΔE*abの計算を、観察方向20を方位角方向に5°刻みで移動させて、方位角φが0°以上360°未満の範囲で行った。ここで、方位角φとは、反射面10に平行な方向が、反射面10に平行なある基準方向12に対してなす角を表す。そして、計算された色差ΔE*abの平均を計算して、平均色差を得た。
 また、極角θ=0°の観察方向(即ち、法線方向11)から見たときに観察される色度を計算し、別途光源によって照らされていないときに観察される色度を計算し、極角θ=60°の観察方向から見た場合と同様にして、色差ΔE*abを求めた。
(目視による反射輝度及び色付きの評価方法)
 Apple社「AppleWatch」(登録商標)が備える偏光板を剥離し、表示面と評価対象の偏光板の第1光学異方性層の面とを粘着層(日東電工製「CS9621」)を介して貼り合せた。画面を白表示状態(画面全面に白色を表示した状態)にし、極角θ=0°(正面方向)及び極角θ=60°(傾斜方向)の全方位から表示面を観察した。観察の際、外光の反射による輝度及び色付きが小さいほど、良好な結果である。
 前記の評価を、多数の観察者が行い、各人が、全ての実験例(実施例及び比較例)の結果を評価のよい順に順位づけし、その順位に相当する点数(1位1点、2位2点、・・・最下位5点)を与えた。各実験例について各人が採点した合計点を得点の低い順、すなわち評価の高い順に並べ、その点数のレンジの中で得点の低いグループからA、B、C、D及びEの順に評価した。得点の低いグループほど評価が高い。
(加熱試験後におけるカラーシフトの評価方法)
 評価対象の偏光板を、目視による反射輝度及び色付きの評価方法と同様にして、Apple社「AppleWatch」に貼り合せた。画面を黒表示状態(画面全面に黒色を表示した状態)にして、極角60°の全方位から色味を観察した。ただし、偏光板の吸収軸の方向を方位角0°、表示面に対して垂直方向を極角0°とした。
 次いで、評価対象の偏光板を取り外し、偏光板を85℃の環境に250時間放置する加熱試験を行った。次いで、偏光板を再び表示面に貼り合せ、加熱試験前と同様にして色味を観察した。加熱試験後において、加熱試験前と比較して観察した色味に変化がないもの、色味に変化があってもわずかなものを「良」、色味変化が顕著なものを「不良」と評価した。
[製造例1-1]
 トリアセチルセルロースを100.0重量と、可塑剤(ポリエステルオリゴマー)を10.0重量部と、塩化メチレンを403.0重量部と、メタノールを60.2質量部とを混合して、トリアセチルセルロースを含む溶液を調製した。該溶液を、バンド流延機のバンド上に流延し、乾燥させてフィルムを形成し、はぎ取りドラムによりバンドからフィルムをはぎ取ってトリアセチルセルロース樹脂のフィルムC1を得た。フィルムC1の厚みは、100μmであった。フィルムC1のレターデーションを、前記の方法で測定した。
 測定されたRe及びRthの値、及びnx、xy、nz、NZ係数の定義より、nx、ny、及びnzの関係を導いたところ、nx=ny>nzであった。
[製造例1-2]
(工程A.シクロオレフィン樹脂からなる延伸前フィルムの製造)
 単層のフィルム成形装置を用意した。脂環式構造含有重合体を含む樹脂である、シクロオレフィン樹脂(日本ゼオン社製「ZEONOR1420」、ガラス転移温度140℃)のペレットを、フィルム成形装置の、ダブルフライト型のスクリューを備えた一軸押出機に投入して260℃で溶融し、目開き10μmのリーフディスク形状のポリマーフィルターを通して、260℃に温度調整されたダイ(ダイスリップの表面粗さRa:0.1μm)から押し出し、フィルム状に成形した。成形されたフィルム状の溶融樹脂を、表面温度110℃に調整されたキャストロールにキャストし、次いで表面温度50℃に調整された2本の冷却ロール間に通した。樹脂はキャストロール上で冷却固化して、延伸前フィルムが得られた。この際、キャストロールの回転速度を調整することにより、厚み30~70μmの範囲で、下記表1のような物性のフィルムC2が得られるように延伸前フィルムの厚みを調整した。
(工程B.位相差フィルムの製造)
 得られた延伸前フィルムを、自由端一軸延伸して中間フィルムを得た。さらに、この中間フィルムを、第一の延伸方向と垂直な方向に自由端一軸延伸してフィルムC2を得た。ここで、各一軸延伸の条件を、延伸温度:140~150℃、延伸倍率:1.1~1.8倍の範囲において、下記表1のような物性のフィルムC2が得られるように調整した。得られたフィルムC2の厚みは、30μmであった。フィルムC2のレターデーションを、前記の方法で測定した。
 測定されたRe及びRthの値、及びnx、xy、nz、NZ係数の定義より、nx、ny、及びnzの関係を導いたところ、nx=ny>nzであった。
[製造例1-3]
 延伸前フィルムとして、ポリカーボネート樹脂からなるフィルム(三菱エンジニアリングプラスチックス社製「ユーピロンS3000」、ガラス転移温度150℃)を用意した。この延伸前フィルムを、自由端一軸延伸して中間フィルムを得た。さらに、この中間フィルムを、第一の延伸方向と垂直な方向に自由端一軸延伸してフィルムC3を得た。この際、各一軸延伸温度及び延伸倍率を、延伸温度150℃~160℃、延伸倍率1.5倍~5倍の範囲において、下記表1のような物性のフィルムC3が得られるように調整した。得られたフィルムC3の厚みは、40μmであった。フィルムC3のレターデーションを、前記の方法で測定した。
 測定されたRe及びRthの値、及びnx、xy、nz、NZ係数の定義より、nx、ny、及びnzの関係を導いたところ、nx=ny>nzであった。
[製造例1-4]
 延伸前フィルムの厚みを調整した以外は、製造例1-2の工程Aと同様にして、延伸前フィルムを得た。延伸前フィルムの厚みの調整は、キャストロールの回転速度を調整することにより行い、厚み30~70μmの範囲で、下記表1のような物性のフィルムC4が得られるように行った。得られた延伸前フィルムを用い、各一軸延伸の条件を調整した以外は、製造例1-2の工程Bと同様にしてフィルムC4を得た。各一軸延伸の条件の調整は、延伸温度:140~150℃、延伸倍率:1.1~1.8倍の範囲において、下記表1のような物性のフィルムが得られるように行った。得られたフィルムC4の厚みは、25μmであった。フィルムC4のレターデーションを、前記の方法で測定した。
 測定されたRe及びRthの値、及びnx、xy、nz、NZ係数の定義より、nx、ny、及びnzの関係を導いたところ、nx=ny>nzであった。
[製造例1-5]
 重合性液晶化合物(BASF社製「LC242」。下記式(LC1)で示される化合物)68部、下記式(C1)で示される化合物29部、光重合開始剤(BASF製「イルガキュア184」)3部、及び、メチルエチルケトン400部を混合し、液晶組成物としての塗工液(LC1)を調製した。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 基材フィルムとして、脂環式構造含有重合体を含む樹脂からなる未延伸フィルム(日本ゼオン社製、樹脂のガラス転移温度(Tg)163℃、厚み100μm)を用意した。前記の基材フィルムに、コロナ処理(出力0.2kW、電極幅1600mm、処理速度20m/min)を施した。前記基材フィルムのコロナ処理を施した面に、バーコーターを用いて、前記塗工液(LC1)を塗工して、塗工液層を形成した。
 前記塗工液層を、110℃のオーブンで2.5分間加熱し、乾燥処理および配向処理を施し、液晶組成物の層を得た。その後、窒素雰囲気下で、液晶組成物の層に、積算照度100mJ/cm(照射強度10mW/cmを照射時間10秒)以上の紫外線を照射して、液晶組成物中の重合性液晶化合物を重合させた。これにより、基材フィルム及び厚み0.5μmの第1光学異方性層C5を備える光学異方性転写体を得た。第1光学異方性層C5のレターデーションを、前記の方法で測定した。
 測定されたRe及びRthの値、及びnx、xy、nz、NZ係数の定義より、nx、ny、及びnzの関係を導いたところ、nz>nx=nyであった。
[製造例2-1]
(工程A.ブレンド樹脂p1としての樹脂R1の製造)
 シンジオタクチックポリスチレン(出光興産社製「130-ZC」、ガラス転移温度98℃、結晶化温度140℃)60重量部と、ポリ(2,6-ジメチル-1,4-フェニレンオキサイド)(アルドリッチ社カタログNo.18242-7)40重量部とを、2軸押出機で混錬し、ブレンド樹脂p1としての、透明な樹脂R1のペレットを得た。得られた樹脂R1のガラス転移温度は141℃であった。樹脂R1の固有複屈折値は、負である。
(工程B.延伸前フィルムの製造)
 ダブルフライト型のスクリューを備えた一軸押出機を備える、二種二層の共押出成形用のフィルム成形装置(2種類の樹脂によって2層構造のフィルムを成形しうるタイプの成形装置)を準備した。樹脂R1のペレットを、前記のフィルム成形装置の一方の一軸押出機に投入して、溶融させた。また、耐衝撃性ポリメチルメタクリレート樹脂R2(住友化学社製「スミペックス(登録商標)HT55X」)のペレットを、前記のフィルム成形装置のもう一方の一軸押出機に投入して、溶融させた。
 溶融された290℃の樹脂R1を、目開き10μmのリーフディスク形状のポリマーフィルターを通して、マルチマニホールドダイ(ダイスリップの表面粗さRa:0.1μm)の一方のマニホールドに供給した。また、溶融された260℃の樹脂R2を、目開き10μmのリーフディスク形状のポリマーフィルターを通して、前記マルチマニホールドダイのもう一方のマニホールドに供給した。
 樹脂R1及び樹脂R2をマルチマニホールドダイから280℃で同時に押し出して、フィルム状に成形した。成形されたフィルム状の溶融樹脂を、表面温度110℃に調整されたキャストロールにキャストし、次いで表面温度50℃に調整された2本の冷却ロール間に通した。樹脂はキャストロール上で冷却固化して、樹脂R1からなる層及び樹脂R2からなる層を備える延伸前フィルムが得られた。この際、キャストロールの回転速度を調整することにより、樹脂R1からなる層(厚さ50~100μm)と樹脂R2からなる層(厚さ50~100μm)とを備える延伸前フィルムの厚さを、厚さ100~200μmの範囲で、下記表1のような物性のフィルムQ1が得られるように調整した。
(工程C.フィルムQ1の製造)
 得られた延伸前フィルムを、縦延伸機で当該延伸前フィルムの長手方向に自由端一軸延伸し、その後、樹脂R2からなる層を剥離して、樹脂R1からなる、フィルムQ1を製造した。この際、自由端一軸延伸の条件は、延伸温度134℃~148℃、延伸倍率1.3~2.0倍の範囲で下記表1のような物性のフィルムQ1が得られるように調整した。得られたフィルムQ1は、当該フィルムQ1の幅方向に遅相軸を有していた。得られたフィルムQ1の厚みは、75μmであった。フィルムQ1のレターデーションを、前記の方法で測定した。
 測定されたRe及びRthの値、及びnx、xy、nz、NZ係数の定義より、下記のとおりnx、ny、及びnzの関係を導いたところ、ny<nx=nzであった。
 フィルムQ1の面内レターデーションRe及び厚み方向のレターデーションRthより、Rth/Re=-0.5、NZ=Rth/Re+0.5=0と算出された。NZ=(nx-nz)/(nx-ny)=0より、nx=nzであり、また面内レターデーションRe≠0よりnx>nyである。
[製造例2-2]
 製造例2-1の工程Aと同様にして、樹脂R1を製造した。次いで、樹脂R1及び樹脂R2から、延伸前フィルムの厚みを調整した以外は製造例2-1の工程Bと同様にして延伸前フィルムを製造した。延伸前フィルムの厚みの調整は、キャストロールの回転速度を調整することにより行い、厚み100~200μmの範囲で、下記表1のような物性のフィルムQ2が得られるように行った。次いで、得られた延伸前フィルムを、縦延伸機で当該延伸前フィルムの短手方向にテンター延伸し、その後、樹脂R2からなる層を剥離して、樹脂R1からなる、フィルムQ2を製造した。この際、テンター延伸の条件は、延伸温度134℃~148℃、延伸倍率1.5~2.5倍の範囲で下記表1のような物性のフィルムQ2が得られるように調整した。得られたフィルムQ2は、当該フィルムQ2の幅方向に遅相軸を有していた。得られたフィルムQ2の厚みは、65μmであった。フィルムQ2のレターデーションを、前記の方法で測定した。
 測定されたRe及びRthの値、及びnx、xy、nz、NZ係数の定義より、下記のとおりnx、ny、及びnzの関係を導いたところ、ny<nx<nzであった。
 フィルムQ2の面内レターデーションRe及び厚み方向のレターデーションRthより、Rth/Re=-0.74、NZ=Rth/Re+0.5=-0.24と算出された。NZ=(nx-nz)/(nx-ny)=-0.24、また面内レターデーションRe≠0よりnx-ny>0であることから、nx<nzである。
[製造例2-3]
(工程A.樹脂R3の製造)
 イソソルビドを397.3重量部、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンを960.1重量部、ポリエチレングリコール(数平均分子量1000、三洋化成工業(株)製)を14.6重量部、ジフェニルカーボネートを1065.1重量部、及び触媒として酢酸マグネシウム4水和物を8.45×10-3重量部用いて、特開2013-076982号公報の合成例9に記載された方法に従い、ポリカーボネート樹脂R3を得た。樹脂R3は、固有複屈折値が正である。
(工程B.延伸前フィルムの製造)
 得られたポリカーボネート樹脂R3を80℃で5時間真空乾燥した後、単軸押出機、Tダイ、チルロール、及び巻取機を備えたフィルム製膜装置を用いて製膜して長尺の延伸前フィルムを得た。この延伸前フィルムの厚みを、70~130μmの範囲で、下記表1のような物性のフィルムQ3が得られるように調整した。
(工程C.フィルムQ3の製造)
 得られた延伸前フィルムを100℃で3日間真空乾燥した後、自由端一軸延伸してフィルムQ3を得た。この際、一軸延伸の条件を延伸温度:127~177℃、延伸倍率:1.5~2.5倍の範囲において、下記表1のような物性のフィルムQ3が得られるように調整した。得られたフィルムQ3の厚みは、70μmであった。フィルムQ3のレターデーションを、前記の方法で測定した。
 測定されたRe及びRthの値、及びnx、xy、nz、NZ係数の定義より、nx、ny、及びnzの関係を導いたところ、nx>ny=nzであった。
[実施例1]
 製造例1-1で得られた第1光学異方性層としてのフィルムC1と製造例2-1で得られた第2光学異方性層としてのフィルムQ1とを、粘着層(日東電工製「CS9621T」)を介して貼合し、(第1光学異方性層/粘着層/第2光学異方性層)の層構造を有する光学異方性積層体を得た。
 得られた光学異方性積層体の、第2光学異方性層側の面に、粘着層(日東電工製「CS9621T」)を介して、直線偏光子としての偏光フィルム(サンリッツ社製「HLC2-5618S」)を貼り合わせた。この貼り合わせは、第2光学異方性層の遅相軸と、偏光フィルムの偏光透過軸とが、45°の角度をなすように行った。これにより、(偏光フィルム/粘着層/第2光学異方性層/粘着層/第1光学異方性層)の層構造を有する円偏光板を得た。
 得られた円偏光板について、上述した方法で、評価を行った。
[実施例2]
 第1光学異方性層として、製造例1-2で得られたフィルムC2を用いた以外は実施例1と同様にして、光学異方性積層体及び円偏光板の製造及び評価を行った。
[実施例3]
 第1光学異方性層として、製造例1-3で得られたフィルムC3を用いた以外は実施例1と同様にして、光学異方性積層体及び円偏光板の製造及び評価を行った。
[実施例4]
 第1光学異方性層として、製造例1-4で得られたフィルムC4を用い、第2光学異方性層として、製造例2-2で得られたフィルムQ2を用いた以外は実施例1と同様にして、光学異方性層及び円偏光板の製造及び評価を行った。
[比較例1]
 製造例2-1で得られた第2光学異方性層としてのフィルムQ1を、粘着層(日東電工製「CS9621T」)を介して、直線偏光子としての偏光フィルム(サンリッツ社製「HLC2-5618S」)と貼り合わせた。この貼り合わせは、第2光学異方性層の遅相軸と、偏光フィルムの偏光透過軸とが、45°の角度をなすように行った。これにより、(偏光フィルム/粘着層/第2光学異方性層)の層構造を有する円偏光板を得た。
 得られた円偏光板について、上述した方法で、評価を行った。
[比較例2]
 製造例1-5で得られた光学異方性転写体の、第1光学異方性層側の面と、製造例2-3で得られた第2光学異方性層としてのフィルムQ3とを、粘着層(日東電工製「CS9621T」)を介して貼合した。その後、基材フィルムを剥離して、第1光学異方性層/粘着層/第2光学異方性層の層構造を有する光学異方性積層体を得た。得られた光学異方性積層体を用いた以外は実施例1と同様にして、円偏光板の製造及び評価を行った。
 以下に、各実施例及び比較例の評価結果を示す。
 表1中、
 「SPSPPE」は、製造例2-1及び製造例2-2で用いた、シンジオタクチックポリスチレンとポリ(2,6-ジメチル-1,4-フェニレンオキサイド)とのブレンド樹脂を意味し、
 「PC」は、ポリカーボネート樹脂を意味し、
 「COP」は、シクロオレフィン樹脂を意味し、
 「TAC]は、トリアセチルセルロース樹脂を意味し、
 「LC242」は、BASF社製「LC242」を含む液晶組成物を意味し、
 「Re(450)」及び「Rth(450)」は、波長450nmにおける面内レターデーション及び厚み方向のレターデーションをそれぞれ意味し、
 「Re(550)」及び「Rth(550)」は、波長550nmにおける面内レターデーション及び厚み方向のレターデーションをそれぞれ意味し、
 「Re(590)」及び「Rth(590)」は、波長590nmにおける面内レターデーション及び厚み方向のレターデーションをそれぞれ意味し、
 「Re(650)」及び「Rth(650)」は、波長650nmにおける面内レターデーション及び厚み方向のレターデーションをそれぞれ意味し、
 「NZ(590)」は、波長590nmにおけるNZ係数を意味する。
 表2中、
 「ΔE*ab(θ=0°)」は、極角θ=0°から観察したときの色差を意味し、
 「平均ΔE*ab(θ=60°)」は、極角θ=60°から観察したときの色差の平均を意味する。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以上の結果によれば、光学異方性積層体と直線偏光子とを組み合わせた、実施例1~4の偏光板を備えた画像表示装置は、比較例1の偏光板を備えた画像表示装置と比較して、正面方向から観察した場合の表示面の色付きが同等に抑制されており、かつ傾斜方向から観察した場合の表示面の色付きが顕著に抑制されていることが分かる。また、実施例1~3の偏光板を備えた画像表示装置は、nz>nx=nyを満たす(すなわちポジティブCプレートとして機能する)第1光学異方性層を含む、比較例2の偏光板を備えた画像表示装置と比較して、正面方向及び傾斜方向から観察した場合の表示面の色付きがより抑制されており、さらに加熱試験後のカラーシフトが抑制されていることが分かる。
 以上の結果は、本発明の光学異方性積層体、偏光板、及び画像表示装置が、ポジティブCプレートの使用を必須とせずに、正面方向及び傾斜方向から観察した場合の表示面の色付きが抑制された画像表示装置を実現できることを示すものである。よって、本発明の光学異方性積層体及び偏光板は、ポジティブCプレートを含む光学異方性積層体及び偏光板と比較して、低いコストで製造しうると共に、加熱試験後における傾斜方向から見た表示面の色味の変化を抑制しうる。
 100 光学異方性積層体
 110 第1光学異方性層
 120 第2光学異方性層
 200 偏光板
 210 直線偏光子
 300 画像表示装置
 310 有機EL素子

Claims (6)

  1.  第1光学異方性層及び第2光学異方性層を含む光学異方性積層体であって、
     前記第1光学異方性層が、下記式(1)を満たし、
     前記第2光学異方性層が、下記式(2)を満たし、
     前記光学異方性積層体が、下記式(3)及び式(4)を満たす、
     光学異方性積層体。
     nx1≧ny1>nz1        式(1)
     ny2<nx2≦nz2        式(2)
     Re(450)<Re(550)<Re(650)  式(3)
     0<NZ<1.0          式(4)
     但し、
     nx1は、前記第1光学異方性層の面内方向であって最大の屈折率を与える方向の屈折率を表し、ny1は、前記第1光学異方性層の面内方向であって、nx1を与える方向に直交する方向の屈折率を表し、nz1は、前記第1光学異方性層の厚み方向の屈折率を表し、
     nx2は、前記第2光学異方性層の面内方向であって最大の屈折率を与える方向の屈折率を表し、ny2は、前記第2光学異方性層の面内方向であって、nx2を与える方向に直交する方向の屈折率を表し、nz2は、前記第2光学異方性層の厚み方向の屈折率を表し、
     Re(450)、Re(550)、及びRe(650)は、波長450nm、550nm、及び650nmにおける前記光学異方性積層体の面内レターデーションReをそれぞれ表し、
     NZは前記光学異方性積層体のNZ係数を表す。
  2.  前記第2光学異方性層が、ポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む樹脂からなる層を含む、請求項1に記載の光学異方性積層体。
  3.  ポリフェニレンエーテルの、シンジオタクチック構造を有するポリスチレン系重合体に対する重量比率が、35/65以上45/55以下である、請求項2に記載の光学異方性積層体。
  4.  前記第1光学異方性層が、正の固有複屈折値を有する樹脂を含む層を延伸してなる層である、請求項1~3のいずれか1項に記載の光学異方性積層体。
  5.  請求項1~4のいずれか1項に記載の光学異方性積層体と、
     直線偏光子とを含む、偏光板。
  6.  直線偏光子と、請求項1~4のいずれか1項に記載の光学異方性積層体と、有機エレクトロルミネッセンス素子とを、この順で含む、画像表示装置。
PCT/JP2019/009738 2018-03-30 2019-03-11 光学異方性積層体、偏光板、及び画像表示装置 WO2019188205A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020509825A JPWO2019188205A1 (ja) 2018-03-30 2019-03-11 光学異方性積層体、偏光板、及び画像表示装置
CN201980019682.1A CN111868582B (zh) 2018-03-30 2019-03-11 光学各向异性层叠体、偏振片及图像显示装置
US16/982,040 US20210020870A1 (en) 2018-03-30 2019-03-11 Optical anisotropic layered body, polarizing plate, and image display device
KR1020207026655A KR20200136388A (ko) 2018-03-30 2019-03-11 광학 이방성 적층체, 편광판, 및 화상 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018069369 2018-03-30
JP2018-069369 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019188205A1 true WO2019188205A1 (ja) 2019-10-03

Family

ID=68061589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009738 WO2019188205A1 (ja) 2018-03-30 2019-03-11 光学異方性積層体、偏光板、及び画像表示装置

Country Status (6)

Country Link
US (1) US20210020870A1 (ja)
JP (1) JPWO2019188205A1 (ja)
KR (1) KR20200136388A (ja)
CN (1) CN111868582B (ja)
TW (1) TWI777051B (ja)
WO (1) WO2019188205A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145172A1 (ja) * 2020-12-28 2022-07-07 日本ゼオン株式会社 多層フィルム及びその製造方法
WO2022145169A1 (ja) * 2020-12-28 2022-07-07 日本ゼオン株式会社 光学フィルム及びその製造方法、並びに偏光板
KR20230121748A (ko) 2020-12-28 2023-08-21 니폰 제온 가부시키가이샤 복굴절 필름, 그 제조 방법, 및 광학 필름의 제조 방법
KR20230124554A (ko) 2020-12-28 2023-08-25 니폰 제온 가부시키가이샤 다층 필름, 광학 필름 및 제조 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102284417B1 (ko) * 2018-07-26 2021-08-02 주식회사 엘지화학 광학 필름

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3206132B2 (ja) * 1992-09-07 2001-09-04 住友化学工業株式会社 液晶表示装置
WO2013137113A1 (ja) * 2012-03-15 2013-09-19 日本ゼオン株式会社 有機el表示装置
KR20140000431A (ko) * 2012-06-22 2014-01-03 주식회사 엘지화학 위상차 필름 및 이를 포함하는 액정 표시장치
WO2016043124A1 (ja) * 2014-09-17 2016-03-24 日本ゼオン株式会社 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置
KR20170008478A (ko) * 2015-07-14 2017-01-24 주식회사 엘지화학 위상차 필름, 이의 제조방법 및 이를 포함하는 액정 표시 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3727638B2 (ja) * 2003-06-16 2005-12-14 日東電工株式会社 積層光学フィルム、楕円偏光板および画像表示装置
JP4583206B2 (ja) * 2005-02-23 2010-11-17 富士フイルム株式会社 液晶表示装置
JPWO2007129464A1 (ja) * 2006-05-01 2009-09-17 三井化学株式会社 光学部品の複屈折の波長依存性を補正する方法、光学部品、およびそれらを用いて得られた表示装置
US20110051062A1 (en) * 2008-02-07 2011-03-03 Akira Sakai Method for producing liquid crystal display device, and liquid crystal display device
JP5577162B2 (ja) * 2010-06-09 2014-08-20 株式会社林技術研究所 車載用表示装置
JP5528606B2 (ja) * 2012-06-21 2014-06-25 日東電工株式会社 偏光板および有機elパネル
JP6321435B2 (ja) 2012-06-21 2018-05-09 日東電工株式会社 偏光板および有機elパネル
US9535202B2 (en) * 2013-02-04 2017-01-03 Zeon Corporation Multilayer retardation film and method for producing same
KR102057611B1 (ko) * 2013-05-27 2019-12-20 삼성전자주식회사 역파장 분산 위상 지연 필름 및 이를 포함하는 표시 장치
TWI637197B (zh) 2013-08-09 2018-10-01 住友化學股份有限公司 Optical film
TWI653149B (zh) 2013-08-09 2019-03-11 住友化學股份有限公司 Optical film
JP6427340B2 (ja) 2013-09-11 2018-11-21 富士フイルム株式会社 光学異方性層とその製造方法、積層体とその製造方法、偏光板、液晶表示装置及び有機el表示装置
JP2015106114A (ja) 2013-12-02 2015-06-08 日東電工株式会社 有機el表示装置用円偏光板および有機el表示装置
KR20150113886A (ko) 2014-03-31 2015-10-08 후지필름 가부시키가이샤 광학 필름, 편광판, 및 광학 필름의 제조 방법
KR101822699B1 (ko) * 2014-12-23 2018-01-30 삼성에스디아이 주식회사 광학시트 및 이를 포함하는 액정표시장치
JP2017227790A (ja) * 2016-06-23 2017-12-28 日本ゼオン株式会社 液晶表示装置及びその製造方法
US10935835B2 (en) * 2016-08-08 2021-03-02 Zeon Corporation Optically anisotropic laminate, polarizing plate, and image display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3206132B2 (ja) * 1992-09-07 2001-09-04 住友化学工業株式会社 液晶表示装置
WO2013137113A1 (ja) * 2012-03-15 2013-09-19 日本ゼオン株式会社 有機el表示装置
KR20140000431A (ko) * 2012-06-22 2014-01-03 주식회사 엘지화학 위상차 필름 및 이를 포함하는 액정 표시장치
WO2016043124A1 (ja) * 2014-09-17 2016-03-24 日本ゼオン株式会社 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置
KR20170008478A (ko) * 2015-07-14 2017-01-24 주식회사 엘지화학 위상차 필름, 이의 제조방법 및 이를 포함하는 액정 표시 장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145172A1 (ja) * 2020-12-28 2022-07-07 日本ゼオン株式会社 多層フィルム及びその製造方法
WO2022145169A1 (ja) * 2020-12-28 2022-07-07 日本ゼオン株式会社 光学フィルム及びその製造方法、並びに偏光板
KR20230121748A (ko) 2020-12-28 2023-08-21 니폰 제온 가부시키가이샤 복굴절 필름, 그 제조 방법, 및 광학 필름의 제조 방법
KR20230122006A (ko) 2020-12-28 2023-08-22 니폰 제온 가부시키가이샤 다층 필름 및 그 제조 방법
KR20230124554A (ko) 2020-12-28 2023-08-25 니폰 제온 가부시키가이샤 다층 필름, 광학 필름 및 제조 방법

Also Published As

Publication number Publication date
TW201942606A (zh) 2019-11-01
US20210020870A1 (en) 2021-01-21
TWI777051B (zh) 2022-09-11
JPWO2019188205A1 (ja) 2021-04-15
CN111868582A (zh) 2020-10-30
CN111868582B (zh) 2022-09-09
KR20200136388A (ko) 2020-12-07

Similar Documents

Publication Publication Date Title
JP7067600B2 (ja) 円偏光板、広帯域λ/4板及びその製造方法、並びに、有機エレクトロルミネッセンス表示装置
WO2019188205A1 (ja) 光学異方性積層体、偏光板、及び画像表示装置
CN110249244B (zh) 光学各向异性层叠体、圆偏振片以及图像显示装置
JP6168045B2 (ja) 位相差フィルム積層体、位相差フィルム積層体の製造方法、並びに位相差フィルムの製造方法
TWI826618B (zh) 光學各向異性堆疊體及其製造方法、圓偏光板, 以及影像顯示裝置
JP6303275B2 (ja) 位相差フィルム積層体、位相差フィルム積層体の製造方法、位相差フィルム、製造方法、及び用途
JP5891870B2 (ja) 光学フィルム、及び光学フィルムの製造方法
JPWO2019124456A1 (ja) 円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置及び液晶表示装置
WO2023162545A1 (ja) 光学異方性積層体及びその製造方法、並びに、円偏光板及び画像表示装置
JP6485348B2 (ja) 光学積層体、偏光板複合体、液晶表示装置、及び製造方法
WO2024004605A1 (ja) 位相差フィルムの製造方法及び円偏光板の製造方法
WO2021085031A1 (ja) 位相差フィルム及びその製造方法、並びに円偏光板
WO2024004601A1 (ja) 位相差フィルムの製造方法及び円偏光板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509825

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19778411

Country of ref document: EP

Kind code of ref document: A1