JP2010256900A - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
JP2010256900A
JP2010256900A JP2010094302A JP2010094302A JP2010256900A JP 2010256900 A JP2010256900 A JP 2010256900A JP 2010094302 A JP2010094302 A JP 2010094302A JP 2010094302 A JP2010094302 A JP 2010094302A JP 2010256900 A JP2010256900 A JP 2010256900A
Authority
JP
Japan
Prior art keywords
liquid crystal
birefringent layer
polarizer
crystal display
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010094302A
Other languages
English (en)
Other versions
JP5248546B2 (ja
Inventor
Akira Sakai
彰 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010094302A priority Critical patent/JP5248546B2/ja
Publication of JP2010256900A publication Critical patent/JP2010256900A/ja
Application granted granted Critical
Publication of JP5248546B2 publication Critical patent/JP5248546B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/04Number of plates greater than or equal to 4

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

【課題】 本発明は、低コストかつ簡便に製造することができるとともに、広い視角範囲において高いコントスラト比を実現することができる液晶表示装置を提供する。
【解決手段】 本発明は、第一の偏光子、第一のλ/4板(nx>ny≧nz)、液晶セル、第一のλ/4板と略同じNz係数を有する第二のλ/4板、第二種(nx<ny≦nz)の複屈折層、及び、第二の偏光子をこの順に有する液晶表示装置であって、該第一の第一種の複屈折層の面内遅相軸は、該第一の偏光子の吸収軸に対して略45°の角度をなし、該第二の第一種の複屈折層の面内遅相軸は、該第一の第一種の複屈折層の面内遅相軸に対して略直交し、該第二の偏光子の吸収軸は、該第一の偏光子の吸収軸に対して略直交し、該第二種の複屈折層の面内進相軸は、該第二の偏光子の吸収軸に対して略直交し、液晶層中の液晶分子を基板面に略垂直に配向させることで黒表示を行う液晶表示装置である。
【選択図】 図12

Description

本発明は、液晶表示装置に関する。より詳しくは、円偏光板を用いたVA(垂直配向)モードの液晶表示装置に関するものである。
液晶表示装置は、コンピュータやテレビジョンをはじめとする様々な情報処理装置の表示装置として、広く用いられている。特にTFT方式の液晶表示装置(以下「TFT−LCD」ともいう)が広く普及し、市場の一層の拡大が期待されており、これに伴って、画質のより一層の向上が要望されている。以下、TFT−LCDを例として説明するが、本発明は、TFT−LCDに限定されるものではなく、液晶表示装置全般に適用可能であり、例えば単純マトリクス方式、プラズマアドレス方式等の液晶表示装置にも適用可能である。
現在まで、TFT−LCDで最も広く使用されてきた方式は、正の誘電率異方性を有する液晶を、相互に対向する基板間に水平配向させた、いわゆるTN(ツイステッド・ネマチック)モードであった。TNモードの液晶表示装置は、一方の基板に隣接する液晶分子の配向方向が、他方の基板に隣接する液晶分子の配向方向に対して90°ツイストしていることを特徴とする。このようなTNモードの液晶表示装置では、安価な製造技術が確立され、産業的に成熟しているが、高いコントラスト比を実現することが難しかった。
これに対し、負の誘電率異方性を有する液晶を、相互に対向する基板間に垂直配向させた、いわゆるVAモードの液晶表示装置が知られている。VAモードの液晶表示装置においては、電圧無印加時において、液晶分子が基板面に対し略垂直な方向に配向しているため、液晶セルはほとんど複屈折性及び旋光性を示さず、光はその偏光状態をほとんど変化させることなく液晶セルを通過する。したがって、液晶セルの上下に一対の偏光子(直線偏光子)をその吸収軸が互いに直交するように配する(以下「クロスニコル偏光子」ともいう)ことにより、電圧無印加時において、略完全な黒表示を実現できる。閾値電圧以上の電圧印加時(以下では、単に電圧印加時と略記する)には、液晶分子が傾斜して基板に略平行となり、大きな複屈折性を示して白表示を実現できる。したがって、このようなVAモードの液晶表示装置は、非常に高いコントラスト比を容易に実現することができる。
このようなVAモードの液晶表示装置においては、電圧印加時の液晶分子の傾斜方向が一方向であると液晶表示装置の視野角特性に非対称性が発生してしまうため、例えば画素電極の構造上の工夫や、画素内に突起物等の配向制御手段を設ける方法により、液晶分子の傾斜方向を画素内で複数に分割した配向分割型のVAモード、いわゆるMVAモード(マルチドメイン型VAモード)が広く用いられている。
MVAモードでは、白表示状態の透過率を最大化する観点から、通常は偏光子の軸方位と電圧印加時の液晶分子の傾斜方位とが45°の角度をなすように設定される。クロスニコル偏光子間に複屈折媒体を挟んだときの透過率は、偏光子の軸と複屈折媒体の遅相軸とのなす角をα(単位:rad)とするとき、sin(2α)に比例するためである。典型的なMVAモードでは、液晶分子の傾斜方位が45°、135°、225°、315°の4つのドメインに分割され得る。このような4つのドメインに分割されたMVAモードにおいても、ドメイン同士の境界や配向制御手段の近傍で、シュリーレン(Schliere)配向や意図しない方向への配向が観察されることが多く、透過率ロスの原因となっている。
こうした問題を解決するために、円偏光板を用いたVAモードの液晶表示装置が検討されている(例えば、特許文献1参照。)。そのような液晶表示装置によれば、互いに直交する左右円偏光板間に複屈折媒体を挟んだときの透過率は、偏光子の軸と複屈折媒体の遅相軸とのなす角に依存しないため、液晶分子の傾斜方位が45°、135°、225°、315°以外であっても、液晶分子の傾きさえ制御できれば所望の透過率が確保できる。したがって、例えば、画素中央に円形の突起物を配置し、液晶分子を全方位に傾斜させるものであってもよいし、又は、傾斜方位を全く制御せずにランダムな方位に傾斜させるものであってもよい。なお、本明細書中、円偏光板を用いたVAモードを、円偏光VAモード又は円偏光モードともいう。これに対して、直線偏光板を用いたVAモードを、直線偏光VAモード又は直線偏光モードともいう。また、円偏光板は、よく知られているように、典型的には直線偏光板とλ/4板との組み合わせによって構成される。
さらに、円偏光はミラー等で反射したときに左右の掌性が入れ替わる性質をもつため、例えばミラー上に左円偏光板を配置して光を入射させると、円偏光板を透過して左円偏光に変換された光はミラーで反射されることで右円偏光に変換され、その右円偏光は前記左円偏光板を透過できないので、結局、円偏光板には反射防止の光学的機能があることが知られている。このような円偏光板の反射防止の光学的機能は、表示装置を屋外等の明室環境で観察する場合の不要な反射を防止することができるため、VAモード液晶表示装置を初めとした表示装置の明室コントラスト比改善効果があることが知られている。ここで、前記不要な反射とは、表示装置の内部に存在する透明電極やTFT素子の金属配線等によるものが主であると考えられている。この不要な反射が防止されないと、暗室環境では略完全な黒表示を実現している表示装置であっても、明室環境で観察したときに、表示装置の黒表示時の光量が大きくなり、結果としてコントラスト比を低下させてしまう。
上記のように、円偏光板を用いた円偏光VAモードでは透過率改善効果と不要反射防止効果を得ることができるが、従来の円偏光VAモードの液晶表示装置では斜め視角でのコントラスト比が低く、充分な視野角特性が得られないという点で改善の余地があった。これに対しては、複屈折層(位相差フィルム)を用いた視野角特性の改良技術が種々提案されている。例えば、特許文献1には下記(A)の方法が、特許文献2には下記(B)の方法が、特許文献3には下記(C)の方法が、非特許文献1には下記(D)の方法が開示されている。
(A)nx>ny>nzの関係を満たすλ/4板を2枚用いる方法。
(B)nx>nz>nyの関係を満たすλ/4板を2枚と、nx=ny>nzの関係を満たす第三種の複屈折層を組み合わせて用いる方法。
(C)(B)の方法において、さらにnx>nz>nyの関係を満たすλ/2板を1枚又は2枚組み合わせて用いる方法。
(D)一軸性のλ/4板(nx>ny=nzの関係を満たす所謂Aプレート)を2枚と、nx=ny>nzの関係を満たす第三種の複屈折層と、nx>nz>nyの関係を満たす複屈折層を組み合わせて用いる方法。
特開2002−40428号公報 特開2003−207782号公報 特開2003−186017号公報
Zhibing Ge、外6名、「Wide−View Circular Polarizers for Mobile Liquid Crystal Displays」、IDRC08、2008年、p.266−268
しかしながら、本発明者が検討した結果、上記(A)及び(B)の方法でもまだ視野角特性に改善の余地があることがわかっている。また、上記(B)、(C)及び(D)の方法では、製造が難しく高コストなnx>nz>nyの関係を満たす(0<Nz<1の関係を満たす)二軸性位相差フィルムが必要であるという点で改善の余地があった。
本発明者は、上記の問題点を解決するために種々検討したところ、クロスニコル配置された一対の偏光子(第一及び第二の偏光子)の間に配置される複屈折層の位相差条件に着目し、第一の偏光子と第二の偏光子との間に、nx>ny≧nzの関係を満たす(Nz≧1.0を満たす)第一種の複屈折層と、nx<ny≦nzの関係を満たす(Nz≦0.0を満たす)第二種の複屈折層とを適切に配置することにより、正面方向における第一及び第二の偏光子の直交性を保持しつつ、斜め方向においても第一及び第二の偏光子の直交性を保持することができることを見いだし、下記(E)の方法を提案した。さらに、上記第一種及び第二種の複屈折層は、nx>nz>ny(0<Nz<1)に制御された二軸性位相差フィルムとは異なり、適当な固有複屈折を持つ材料を用いることにより、簡便な方法で製造できることを見いだし、先に特許出願している(日本国特許出願2008−099526号)。
(E)λ/4板を2枚と、nx=ny>nzの関係を満たす第三種の複屈折層と、nx>ny≧nzの関係を満たす第一種の複屈折層と、nx<ny≦nzの関係を満たす第二種の複屈折層を組み合わせて用いる方法。
しかしながら、本発明者がさらに検討した結果、上記(E)の方法では、5つ以上の複屈折層(位相差フィルム)を用いる形態が好適であり、製造コストに改善の余地があることがわかった。また、上記(E)の方法では、2枚のλ/4板のNz係数(二軸性を表すパラメーター)を最適設計することで視野角特性の向上が図られるが、nx>ny≧nz(Nz≧1.0)の関係を満たす汎用の二軸性λ/4板を2枚使った設計条件下では、視野角特性に改善の余地があることがわかった。
本発明は、上記現状に鑑みてなされたものであり、低コストかつ簡便に製造することができるとともに、広い視角範囲において高いコントスラト比を実現することができる液晶表示装置を提供することを目的とするものである。
本発明者らは、低コストかつ簡便に製造することができるとともに、広い視角範囲において高いコントスラト比を実現することができる液晶表示装置について種々検討したところ、クロスニコル配置された一対の偏光子(第一及び第二の偏光子)の間に配置される複屈折層の位相差条件に着目した。そして、2枚のλ/4板(第一及び第二のλ/4板)をnx>ny≧nzの関係を満たす(本明細書では、「nx>ny≧nzの関係を満たす複屈折層」を第一種の複屈折層と定義する)汎用の二軸性λ/4板とした上で、そのNz係数を略同じに調整し、第二のλ/4板と第二の偏光子との間に、nx<ny≦nzの関係を満たす複屈折層(本明細書では、「nx<ny≦nzの関係を満たす複屈折層」を第二種の複屈折層と定義する)を配置することにより、広い視角範囲において黒表示状態の光漏れを低減し、高いコントスラト比を実現することができることを見出した。さらに、上記第一種及び第二種の複屈折層は、nx>nz>ny(0<Nz<1)に制御された二軸性位相差フィルムとは異なり、適当な固有複屈折を持つ材料を用いることにより、簡便な方法で製造できることを見いだした。その結果、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、nx>ny≧nzの関係を満たす複屈折層を第一種の複屈折層、nx<ny≦nzの関係を満たす複屈折層を第二種の複屈折層、と定義するとき、第一の偏光子、面内位相差がλ/4に調整された第一の第一種の複屈折層、一対の対向する基板間に液晶層を備える液晶セル、該第一の第一種の複屈折層と略同じNz係数を有し、面内位相差がλ/4に調整された第二の第一種の複屈折層、第二種の複屈折層、及び、第二の偏光子をこの順に有する液晶表示装置であって、該第一の第一種の複屈折層の面内遅相軸は、該第一の偏光子の吸収軸に対して略45°の角度をなし、該第二の第一種の複屈折層の面内遅相軸は、該第一の第一種の複屈折層の面内遅相軸に対して略直交し、該第二の偏光子の吸収軸は、該第一の偏光子の吸収軸に対して略直交し、該第二種の複屈折層は、面内進相軸が該第二の偏光子の吸収軸に対して略直交し、液晶層中の液晶分子を基板面に略垂直に配向させることで黒表示を行う液晶表示装置である。
本明細書で「偏光子」とは、自然光を直線偏光に変える機能を有する素子のことであり、偏光板、偏光フィルムと同義である。「複屈折層」とは、光学的異方性を有する層のことであり、位相差フィルム、位相差板、光学異方性層、複屈折媒体等と同義である。本明細書における「複屈折層」は、本発明の作用効果を充分に奏する観点から、後述する面内位相差Rの絶対値及び厚み方向位相差Rthの絶対値のいずれか一方が10nm以上の値を有するものを意味し、好ましくは、20nm以上の値を有するものを意味する。また、上述のように、本明細書において、「第一種の複屈折層」とは、nx>ny≧nzの関係を満たす複屈折層を意味し、「第二種の複屈折層」とは、nx<ny≦nzの関係を満たす複屈折層を意味する。nx及びnyは、波長550nmの光に対する面内方向の主屈折率を表し、nzは、波長550nmの光に対する面外方向(厚み方向)の主屈折率を表す。
本明細書で「面内位相差R」は、複屈折層(液晶セルやλ/4板を含む)の面内方向の主屈折率をnxとnyと定義し、面外方向(厚み方向)の主屈折率をnz、複屈折層の厚みをdと定義したとき、R=|nx−ny|×dで定義される面内位相差(単位:nm)である。これに対して、「厚み方向位相差Rth」は、Rth=(nz−(nx+ny)/2)×dで定義される面外(厚み方向)位相差(単位:nm)である。「λ/4板」とは、少なくとも波長550nmの光に対して略1/4波長(正確には137.5nmであるが、115nmよりも大きく、160nmよりも小さければよい。)の光学的異方性を有する層のことであり、λ/4位相差フィルム、λ/4位相差板と同義である。
「面内遅相軸(進相軸)」は、上記面内主屈折率nx、nyのうち、大きい方をns、小さい方をnfと再定義するとき、主屈折率ns(nf)に対応する誘電主軸の方向(x軸、又はy軸方向)のことである。さらに、「Nz係数」は、Nz=(ns−nz)/(ns−nf)で定義される複屈折層の二軸性の程度を表わすパラメータである。なお、特に断りの無い限り、本明細書中で主屈折率や位相差の測定波長は550nmとする。また、同じNz係数をもつ複屈折層でも、複屈折層の平均屈折率=(nx+ny+nz)/3が異なれば、屈折角の影響で斜め方向からの入射に対して複屈折層の実効的な位相差が異なり、設計指針が複雑になってしまう。この問題を避けるため、本明細書では特に断りのない限り、各複屈折層の平均屈折率を1.5に統一してNz係数を算出している。実際の平均屈折率が1.5と異なる複屈折層についても平均屈折率1.5を想定して換算してある。また、厚み方向位相差Rthについても同様の扱いをしている。
本明細書において、「第一の第一種の複屈折層のNz係数と第二の第一種の複屈折層のNz係数とが略同じである」とは、Nz係数の差が0.1未満の場合を表し、0.05未満であることが好ましい。「第一の第一種の複屈折層の面内遅相軸と第一の偏光子の吸収軸とが略45°の角度をなす」とは、第一の第一種の複屈折層の面内遅相軸と第一の偏光子の吸収軸とのなす角が40〜50°であればよく、特に好ましくは45°である。第一の第一種の複屈折層の面内遅相軸と第一の偏光子の吸収軸との相対角度が完全に45°ではない場合であっても、第一の第一種の複屈折層の面内遅相軸と第二の第一種の複屈折層の面内遅相軸とが直交することにより、基板面に対して法線方向での光漏れについては、充分な防止効果が得られる。一方、反射防止機能や透過率向上の点では、上記相対角度が45°であることにより、顕著な効果が得られる。「第二の第一種の複屈折層の面内遅相軸が、第一の第一種の複屈折層の面内遅相軸に対して略直交する」とは、第二の第一種の複屈折層の面内遅相軸と第一の第一種の複屈折層の面内遅相軸とのなす角度が88〜92°であればよく、特に好ましくは90°である。「第二の偏光子の吸収軸は、第一の偏光子の吸収軸に対して略直交する」とは、第二の偏光子の吸収軸と第一の偏光子の吸収軸とのなす角度が88〜92°であればよく、特に好ましくは90°である。「第二種の複屈折層の面内進相軸は、第二の偏光子の吸収軸に対して略直交する」とは、第二種の複屈折層の面内進相軸と第二の偏光子の吸収軸とのなす角度が88〜92°であればよく、特に好ましくは90°である。
本発明の液晶表示装置は、上述した第一の偏光子、第一の第一種の複屈折層、液晶セル、第二の第一種の複屈折層、第二種の複屈折層、及び、第二の偏光子を構成要素として備えるものである限り、その他の部材により特に限定されるものではない。後述する本発明における表示光の偏光状態の変化を確実に実現する観点からは、本発明の液晶表示装置の好ましい形態として、上述した第一の偏光子、第一の第一種の複屈折層、液晶セル、第二の第一種の複屈折層、第二種の複屈折層、及び、第二の偏光子のほかに、第一の偏光子と第二の偏光子との間に複屈折媒体を含まない形態が挙げられる。また、液晶表示装置に使用する複屈折層の数を減らしてコストを低減する観点からは、本発明の液晶表示装置のより好ましい形態として、上述した第一の偏光子、第一の第一種の複屈折層、液晶セル、第二の第一種の複屈折層、第二種の複屈折層、及び、第二の偏光子のほかに、液晶表示装置中に複屈折媒体を含まない形態が挙げられる。一方、上述した第一の偏光子、第一の第一種の複屈折層、液晶セル、第二の第一種の複屈折層、第二種の複屈折層、及び、第二の偏光子のほかに、液晶表示装置中に複屈折媒体を付加してもよく、例えば、複屈折層等の波長分散性を調整するために、面内位相差がλ/2に調整されたλ/2板を液晶表示装置中に付加してもよい。
また、本発明者らは、方位によって完全な黒表示を妨げる要因が異なっていることを見いだし、第一及び第二のλ/4板の間に、nx=ny>nzの関係を満たす複屈折層(本明細書では、「nx=ny>nzの関係を満たす複屈折層」を第三種の複屈折層と定義する)を配置することにより、複数の方位に対する位相差補償を行うことができることを見いだした。第三種の複屈折層を設ける形態においては、最初に、第三種の複屈折層の位相差値を調整することによって、方位0°における位相差補償の条件を最適化することができ、次に、第二種の複屈折層の位相差値を適切に配置することによって、方位0°における位相差補償の最適化条件を変化させることなく、方位45°における位相差補償の条件を最適化することにより、より広い方位において斜め方向における黒表示状態の光漏れを低減できる。その結果、方位及び極角の両面において広い視角範囲での高いコントスラト比を実現できる。さらに、第三種の複屈折層は、nx>nz>ny(0<Nz<1)に制御された二軸性位相差フィルムとは異なり、適当な固有複屈折を持つ材料を用いることにより、簡便な方法で製造可能である。なお、本明細書では、「方位」とは、液晶セルの基板面と平行な方向における向きを表すものであり、0〜360°をとり、「極角」とは、液晶セルの基板面法線方向からの傾斜角を表すものであり、0〜90°をとる。
すなわち、本発明の液晶表示装置は、該第一のλ/4板と該液晶セルとの間、及び、該液晶セルと該第二のλ/4板との間の少なくとも一方に、第三種の複屈折層を少なくとも一層有するものであってもよい。上記第三種の複屈折層は、第一の第一種の複屈折層、及び、第二の第一種の複屈折層のNzが2.00未満である場合に、特に好適に用いられる。上記第三種の複屈折層は、液晶セルに隣接配置されることが好ましい。ここで、「隣接配置」とは、第三種の複屈折層と液晶セルとの間に複屈折媒体が設けられないことを意味し、例えば、第三種の複屈折層と液晶セルとの間に等方性フィルムが配置された形態も含まれる。また、複数の第三種の複屈折層が設けられる場合には、複数の第三種の複屈折層のうちの少なくとも一層が液晶セルと隣接配置され、各第三種の複屈折層同士が互いに隣接配置される形態が好適である。
なお、第三種の複屈折層におけるnx≒nyとは、|nx−ny|≒0とも換言でき、具体的には面内位相差R=|nx−ny|×dが20nm未満の場合を表し、10nm未満であることが好ましい。上記第三種の複屈折層は、多層からなるものであっても、一層のみからなるものであっても、上記第一のλ/4板及び上記第二のλ/4板よりも内側(液晶セル側)に配置され、かつ、その厚み方向位相差の総和が同じである限り、液晶表示装置の透過光強度の特性は原理的に全く同一となる。また、液晶表示装置が第三種の複屈折層を実際には有さない場合も、仮想的に厚み方向位相差がゼロの第三種の複屈折層を有するとして考えることに、原理上は何ら問題ない。従って、以降、特に断りのない限り、本明細書中では、本発明の液晶表示装置として、上記第二のλ/4板と上記液晶セルの間に、第三種の複屈折層が一層配置された液晶表示装置だけに言及して説明を簡略化する。
上記偏光子としては、典型的にはポリビニルアルコール(PVA)フィルムに二色性を有するヨウ素錯体等の異方性材料を吸着配向させたものが挙げられる。通常は、機械強度や耐湿熱性を確保するために、PVAフィルムの両側にトリアセチルセルロース(TAC)フィルム等の保護フィルムをラミネートして実用に供されるが、特に断りのない限り、本明細書中で「偏光子」というときは保護フィルムを含まず、偏光機能を有する素子だけを指す。なお、第一及び第二の偏光子は、いずれがポーラライザ(背面側の偏光子)又はアナライザ(観察面側の偏光子)であっても液晶表示装置の透過光強度の特性は原理的に全く同一となる。以降、特に断りのない限り、本明細書中では第一の偏光子がポーラライザである液晶表示装置だけに言及し、説明を簡略化する。
上記液晶セルは、一対の基板と、該一対の基板間に挟まれた液晶層とを有するものである。本発明に係る液晶セルは、液晶層中の液晶分子を基板面に略垂直に配向させることで黒表示を行う垂直配向(Vertical Alignment:VA)モードの液晶セルである。VAモードには、Multi−domain VA(MVA)モード、Continuous Pinwheel Alignment(CPA)モード、Patterned VA(PVA)モード、Biased VA(BVA)モード、Reverse TN(RTN)モード、In Plane Switching−VA(IPS−VA)モード等が含まれる。本明細書で「液晶分子を基板面に略垂直に配向させる」とは、液晶分子の平均プレチルト角が80°以上であればよい。
本発明の液晶表示装置は、第一の偏光子と第二の偏光子との間に、面内位相差がλ/4に調整された第一の第一種の複屈折層(第一のλ/4板)、及び、面内位相差がλ/4に調整された第二の第一種の複屈折層(第二のλ/4板)と、第二種の複屈折層とを有する。本発明においては、上述したように、第一の偏光子と第二の偏光子との間に、さらに、第三種の複屈折層を有していてもよい。例えば、第二のλ/4板と第二種の複屈折層の組み合わせ、第二のλ/4板と第三種の複屈折層の組み合わせ、第一のλ/4板と第三種の複屈折層の組み合わせは、粘着剤を介さずに積層された積層体であることが好ましい。このような積層体は、例えば、共押出し法等の押出し製膜と同時に接着剤で積層する方法や、積層体中の一方の複屈折層をポリマーフィルムから形成し、このポリマーフィルム上に液晶性材料や非液晶性材料から形成される他方の複屈折層を塗布により形成又は転写により積層する方法等で作製可能である。後者の塗布又は転写を用いる方法は、特に第三種の複屈折層が、ポリイミド等の非液晶性材料やコレステリック液晶等の液晶性材料を塗布する方法で作製されることが多いため、第二のλ/4板と第三種の複屈折層の積層体や第一のλ/4板と第三種の複屈折層の積層体を作製する際に好適に用いることができる。
本発明の液晶表示装置においては、第一の偏光子に対して正面方向から入射した光は、第一の偏光子により直線偏光に変換され、第一のλ/4板により直線偏光から円偏光に変換され、液晶セル及び第三種の複屈折層を偏光状態を維持したまま透過し、上記第一のλ/4板と直交関係にある第二のλ/4板により、円偏光から、上記第一の偏光子を透過した直後と同じ直線偏光に再変換され、第二種の複屈折層を偏光状態を維持したまま透過し、上記第一の偏光子と直交する第二の偏光子により直線偏光が遮断されることにより良好な黒表示が得られる。すなわち、第二種及び第三種の複屈折層は、正面方向から入射した光に対して偏光状態を変換することを目的としたものではない。
なお、上記説明は各層を透過する毎に変化する偏光状態を追跡することで黒表示が得られることを説明したものであるが、より直感的には次のような説明でも理解される。すなわち、本発明の液晶表示装置は、正面方向において、(1)第一及び第二の偏光子間に含まれる第一及び第二のλ/4板が互いに直交し、かつ、互いの位相差が同一(λ/4)のため、相互に位相差をキャンセルしあうことで無効化されており、(2)第一及び第二の偏光子間に含まれる第二種の複屈折層は、その進相軸が第二の偏光子の吸収軸と直交しているため実質的に無効化されており、さらに、(3)前記第一及び第二の偏光子間に含まれる第三種の複屈折層及び液晶セルは、正面方向において位相差がゼロのため実質的に無効化されており、さらに、(4)前記第一及び第二の偏光子が互いに直交しているため所謂クロスニコル偏光子が構成されているため、クロスニコル偏光子の完全な黒表示が得られる。
一方、本発明の液晶表示装置は、斜め方向においては、仮に第二種及び第三種の複屈折層による偏光状態の変換がないと想定すると、後述する三つの理由により、第一の偏光子に対して斜め方向から入射した光は、第二の偏光子により遮断されないため完全な黒表示が得られない。すなわち、第二種及び第三種の複屈折層は、斜め方向から入射した光に対してのみ偏光状態を変換し、視野角補償を行うことを目的としている。
以上のように、本発明における第二種及び第三種の複屈折層は、正面方向における良好な黒表示を維持したままで、斜め方向においても良好な黒表示を得ることを可能とするものであり、これにより斜め方向におけるコントラスト比を向上させ、視野角特性に優れた液晶表示装置を実現することができる。
次に、斜め方向から入射した光に対して、第二種及び第三種の複屈折層により偏光状態を変換し、視野角補償を行う三つの理由を詳述する。ここで、図1のように、第一の偏光子(吸収軸方位90°)110、第一のλ/4板(遅相軸方位135°)120、VAモード液晶セル130、第二のλ/4板(遅相軸方位45°)140、第二の偏光子(吸収軸方位0°)150がこの順に積層され、第二種及び第三種の複屈折層を含まない、最も簡単な構成の円偏光VAモード液晶表示装置100を考える。なお、図1中、第一及び第二の偏光子110、150に描かれた矢印は、その吸収軸の方位を表し、第一及び第二のλ/4板120、140に描かれた矢印は、その遅相軸の方位を表し、VAモード液晶セル130に描かれた楕円体は、その屈折率楕円体の形状を表している。
まず正面方向の黒表示について考えると、第一の偏光子110に対して正面方向から入射した光は第一の偏光子110により直線偏光に変換され、第一のλ/4板120により直線偏光から円偏光に変換され、液晶セル130を偏光状態を維持したまま透過し、上記第一のλ/4板120と直交関係にある第二のλ/4板140により円偏光から、第一の偏光子110を透過した直後と同じ直線偏光に再変換され、第一の偏光子110と直交する第二の偏光子150により直線偏光が遮断されることにより良好な黒表示が得られる。別の言い方をすれば、液晶表示装置100は、正面方向において、(1)上記第一及び第二の偏光子110,150間に含まれる第一及び第二のλ/4板120,140が互いに直交し、かつ、互いの位相差が同一(λ/4)のため、相互に位相差をキャンセルしあうことで無効化されており、(2)上記第一及び第二の偏光子110,150間に含まれる液晶セル130は、正面方向において位相差がゼロのため実質的に無効化されており、さらに、(3)上記第一及び第二の偏光子110,150が互いに直交しているため所謂クロスニコル偏光子が構成されているため、完全な黒表示が得られる。
次に斜め方向の黒表示について考えると、下記視野角阻害要因(1)〜(3)の理由により完全な黒表示は得られない。(1)上記第一及び第二のλ/4板120,140が互いに直交しない、または互いの位相差が同一ではなくなるため無効化されない、(2)上記液晶セル130の位相差がゼロではなくなるため無効化されない、(3)上記第一及び第二の偏光子110,150が互いに直交しないためクロスニコル偏光子が構成されない。
図2を参照しながら、上記視野角阻害要因(1)〜(3)をさらに詳細に説明する。図2(a)に模式的に示すように、正面方向(基板面に対して法線方向)では、第一のλ/4板120の遅相軸121と第二のλ/4板140の遅相軸141とが互いに直交するのに対し、方位0°における斜め方向においては、第一のλ/4板120の遅相軸121と第二のλ/4板140の遅相軸141とが互いに直交しなくなるため、相互に位相差をキャンセルせず無効化もされない。また、図2(b)に模式的に示すように、正面方向では、第一のλ/4板120の遅相軸121と第二のλ/4板140の遅相軸141とが互いに直交するのに対し、方位45°における斜め方向においては、第一及び第二のλ/4板120,140は遅相軸121と遅相軸141とが互いに直交するものの、互いの位相差が同一ではなくなるため相互に位相差をキャンセルしなくなる。位相差は複屈折(屈折率差)×厚みで決定されるが、実効的な複屈折が正面方向と斜め方向で異なり、しかも、方位にも依存することがその原因である。同じ理由で、正面方向ではゼロであったVAモード液晶セル130の位相差は、任意の斜め方向でゼロではなくなる。正面方向においてのみ実効的な複屈折がゼロとなり、位相差もゼロとなるのである。さらに、図2(c)に模式的に示すように、正面方向では、第一の偏光子110の吸収軸111と第二の偏光子150の吸収軸151とが互いに直交するのに対し、方位45°における斜め方向においては、第一の偏光子110の吸収軸111と第二の偏光子150の吸収軸151とが互いに直交しなくなる。
上に説明したように、最小構成の円偏光VAモード液晶表示装置100は、上記三つの視野角阻害要因(1)〜(3)により、斜め方向で完全な黒表示を得ることができない。逆に言うと、これらの阻害要因の手当て、すなわち光学補償を行うことができれば、斜め方向でもより良い黒表示を得ることができる。先に説明した視野角改良技術(A)〜(E)では実際にそれを行っている。なお、多くの場合、上記の視野角阻害要因(1)と(2)は複合化されて観測される。従って、それらを光学補償する場合も、個別最適化ではなく、視野角阻害要因(1)と(2)を全体最適化するような手法を用いてもよい。
そして、本発明の円偏光VAモード液晶表示装置では、下に詳述するような設計指針に基づき、上記視野角阻害要因(1)〜(3)を同時に光学補償するように設計されている。具体的には、第一及び第二のλ/4板をnx>ny≧nzの関係を満たす汎用の二軸性λ/4板(第一種の複屈折層)とした上で、そのNz係数を略同じに調整し、第二のλ/4板と第二の偏光子の間にnx<ny≦nzの関係を満たす複屈折層(第二種の複屈折層)を配置し、さらに、必要に応じて、第一及び第二のλ/4板の間にnx=ny>nzの関係を満たす複屈折層(第三種の複屈折層)を配置することによりそれを実現している。
ここで、本発明における複屈折層の設計指針について説明する。本発明者は、上記の視野角阻害要因の光学補償を簡便かつ効果的に行うために種々検討したところ、方位によって光学補償の必要性が異なることに着目した。そして、下記表1に示すように、方位0°では視野角阻害要因(3)に対する偏光子の光学補償が不要であることを見出し、この方位では視野角阻害要因(1)に対するλ/4板の光学補償と視野角阻害要因(2)に対する液晶セルの光学補償だけを行えばよいことを見出した。
Figure 2010256900
さらに、本発明者は、ポアンカレ球を用いた偏光状態図解とコンピューターシミュレーションにより、第一及び第二のλ/4板のNz係数Nzqと、液晶セルの厚み方向位相差Rlcとを最適調整することにより、さらに、必要に応じて、第一及び第二のλ/4板の間にnx=ny>nzの関係を満たす第三種の複屈折層を配置し、その厚み方向位相差R3をも最適調整することにより、方位0°において、上記視野角阻害要因(1)及び(2)を同時に、かつ効果的に光学補償できることに想到した。本明細書中、上記のように方位0°における光学補償を目的として、第一及び第二のλ/4板のNz係数Nzq、液晶セルの厚み方向位相差Rlc、及び、第三種の複屈折層の厚み方向位相差R3の最適値を選択するプロセスを1stステップと呼ぶ。
そして、本発明者は、この1stステップの後、第二のλ/4板と第二の偏光子の間にnx<ny≦nzの関係を満たす第二種の複屈折層を、その面内進相軸が該第二の偏光子の吸収軸に対して略直交するように配置し、そのNz係数Nz2と、面内位相差R2とを最適調整することにより、方位45°において、上記視野角阻害要因(1)、(2)及び(3)を同時かつ効果的に光学補償できることに想到した。本明細書中、上記のように1stステップの後に、方位45°における光学補償を目的として、第二種の複屈折層のNz係数Nz2及び面内位相差R2の最適値を選択するプロセスを2ndステップと呼ぶ。
2ndステップで追加される第二種の複屈折層の面内進相軸は、隣接する第二の偏光子の吸収軸に対して略直交するように配置するので、該第二の偏光子の吸収軸方位、すなわち、方位0°方向での光学特性を全く変化させることがない。すなわち、2ndステップの後も、1stステップで得られた最適化状態が相変わらず保存されるのが本発明の光学補償プロセスの特徴である。このように、1stステップと2ndステップとが完全に独立して検討可能であることが、複屈折層の設計を容易にしている。
上記の1stステップ、2ndステップによる光学補償原理の詳細は、ポアンカレ球を用いた図解で次のように説明される。ポアンカレ球による考え方は、複屈折層を通して変化する偏光状態の追跡に有用な手法として結晶光学等の分野で広く知られている(例えば、高崎宏著、「結晶光学」、森北出版、1975年、p.146−163参照)。
ポアンカレ球では、上半球には右周り偏光、下半球には左周り偏光が表され、赤道には直線偏光、上下両極には右円偏光及び左円偏光がそれぞれ表される。球の中心に対して対称な関係にある二つの偏光状態は、楕円率角の絶対値が等しくかつ極性が逆であることから、直交偏光の対を成している。
また、ポアンカレ球上における複屈折層の効果は、複屈折層通過直前の偏光状態を表す点を、ポアンカレ球上での遅相軸(より正確に言い換えると、二つある複屈折層の固有振動モードのうち、遅い方の偏光状態を表わすポアンカレ球上での点の位置。)を中心に(2π)×(位相差)/(波長)(単位:rad)で決定される角度だけ反時計回りに回転移動させた点に変換することである(進相軸を中心に時計回りに回転移動させても同じことである。)。
斜め方向から観察した場合の回転中心と回転角度は、その観察角度での遅相軸(または進相軸)と位相差により決定される。詳しい説明は省略するが、これらは、例えばフレネルの波面法線方程式を解き、複屈折層中の固有振動モードの振動方向と波数ベクトルを知ることで計算できる。斜め方向から観察した場合の遅相軸は、観察角度及びNz係数に依存し、斜め方向から観察した場合の位相差は、観察角度、Nz係数及び面内位相差R(または厚み方向位相差Rth)に依存する。
(1stステップの補償原理)
はじめに、図1の円偏光VAモード液晶表示装置100を、正面方向から観察した場合の偏光状態について考える。この条件において、バックライト(図1では、図示されていないが、第一の偏光子の下方にある。)から出射した光が各偏光子110,150、各複屈折層120,140、液晶セル130を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図3のようになる。なお、各偏光状態を表す点は実際にはポアンカレ球面上にあるが、それらをS1−S2平面に投影して図示している。また、偏光状態を表わす点は○で、複屈折層の遅(進)相軸を表わす点は×で図示している。
まず、第一の偏光子110を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子150が吸収できる偏光状態、すなわち、第二の偏光子150の消光位(吸収軸方位)と一致している。そして、第一のλ/4板120を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板120の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル130を透過するが、VAモード液晶セル130は正面方向で位相差がゼロなので、偏光状態は変化しない。最後に、第二のλ/4板140を透過することにより、点Q2で表わされる第二のλ/4板140の遅相軸を中心に特定角度の回転変換を受け、点P2に到達し、この点P2は、第二の偏光子150の消光位Eと一致する。このようにして、図1の液晶表示装置100は、正面方向から観察すると、バックライトからの光を遮断することができ、良好な黒表示が得られる。
さらに、図1の円偏光VAモード液晶表示装置100を、第二の偏光子150の吸収軸方位0°において、法線方向から60°傾斜した方向(以下、極60°と呼ぶこともある)から観察した場合の偏光状態について考える。この条件において、バックライトから出射した光が各偏光子110,150、各複屈折層120,140、液晶セル130を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図4のようになる。
まず、第一の偏光子110を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子150が吸収できる偏光状態、すなわち、第二の偏光子150の消光位(吸収軸方位)と一致している。そして、第一のλ/4板120を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板120の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル130を透過することにより、ポアンカレ球上の点Lで表わされる液晶セル130の遅相軸を中心に特定角度の回転変換を受け、点P2に到達する。このときの回転方向は点Lから原点Oを向かうように見て反時計回りである。最後に、第二のλ/4板140を透過することにより、点Q2で表わされる第二のλ/4板140の遅相軸を中心に特定角度の回転変換を受け、点P3に到達し、この点P3は、第二の偏光子150の消光位Eと一致しない。このようにして、図1の液晶表示装置100は、方位0°極60°から観察すると、バックライトからの光を遮断することができない。
なお、図3及び図4において点P1〜P3の位置は第一及び第二のλ/4板120,140のNz係数Nzq、及び、液晶セル130の厚み方向位相差Rlcに依存するが、図3及び図4では一例としてNzq=1.6、Rlc=320nmの形態を図示している。偏光状態の変換を分かりやすくするために、各点の位置は大まかに示されており、厳密には正確ではないものもある。また、図を明瞭に示すため、点P1〜P3の変換については軌跡を表す矢印を図示していない。なお、VAモード液晶セル130のRlcは、典型的には320nm程度であるが、一般的には、270〜400nmの範囲内で調整される。例えば、透過率を大きくする目的でRlcを320nmよりも大きくする場合がある。第一及び第二のλ/4板120,140のNzqは、一般的には、1.0〜2.9の範囲内で調整される。例えば、Rlcが400nm付近に設定されたVAモード液晶セルを用いる場合であって、第三種の複屈折層が設けられない形態においては、Nzq=2.9のλ/4板が好適に用いられる。
次に、図5に示すように、第一の偏光子(吸収軸方位90°)210、第一のλ/4板(遅相軸方位135°)220、VAモード液晶セル230、第三種の複屈折層235、第二のλ/4板(遅相軸方位45°)240及び第二の偏光子(吸収軸方位0°)250がこの順に積層された、第三種の複屈折層を含む円偏光VAモード液晶表示装置200を考える。なお、図5中、第一及び第二の偏光子210、250に描かれた矢印は、その吸収軸の方位を表し、第一及び第二のλ/4板220、240に描かれた矢印は、その遅相軸の方位を表し、VAモード液晶セル230及び第三種の複屈折層235に描かれた楕円体は、その屈折率楕円体の形状を表している。
はじめに、図5の円偏光VAモード液晶表示装置200を、正面方向から観察した場合の偏光状態について考える。この条件において、バックライト(図5では、図示されていないが、第一の偏光子210の下方にある。)から出射した光が各偏光子210,250、各複屈折層220,240、液晶セル230を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図6のようになる。
まず、第一の偏光子210を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子250が吸収できる偏光状態、すなわち、第二の偏光子250の消光位(吸収軸方位)と一致している。そして、第一のλ/4板220を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板220の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル230及び第三種の複屈折層235を透過するが、VAモード液晶セル230及び第三種の複屈折層235は正面方向で位相差がゼロなので、偏光状態は変化しない。最後に、第二のλ/4板240を透過することにより、点Q2で表わされる第二のλ/4板240の遅相軸を中心に特定角度の回転変換を受け、点P2に到達し、この点P2は、第二の偏光子250の消光位Eと一致する。このようにして、図5の液晶表示装置200は、正面方向から観察すると、図1の液晶表示装置100と同様に、バックライトからの光を遮断することができ、良好な黒表示が得られる。
さらに、図5の円偏光VAモード液晶表示装置200を、第二の偏光子210の吸収軸方位0°において、60°傾斜した方向から観察した場合の偏光状態について考える。この条件において、バックライトから出射した光が各偏光子210,250、各複屈折層220,240、液晶セル230を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図7のようになる。
まず、第一の偏光子210を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子250が吸収できる偏光状態、すなわち、第二の偏光子250の消光位(吸収軸方位)と一致している。そして、第一のλ/4板220を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板220の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル230を透過することにより、ポアンカレ球上の点Lで表わされる液晶セル230の遅相軸を中心に特定角度の回転変換を受け、点P2に到達する。このときの回転方向は点Lから原点Oを向かうように見て反時計回りである。次に、第三種の複屈折層235を透過することにより、ポアンカレ球上の点R3で表わされる第三種の複屈折層235の遅相軸を中心に特定角度の回転変換を受け、点P3に到達する。このときの回転方向は点R3から原点Oを向かうように見て反時計回りである。最後に、第二のλ/4板240を透過することにより、点Q2で表わされる第二のλ/4板240の遅相軸を中心に特定角度の回転変換を受け、点P4に到達し、この点P4は、第二の偏光子250の消光位Eと一致する。このようにして、図5の液晶表示装置200は、方位0°,極60°の斜め方向から観察した場合も、正面方向から観察した場合と同様に、バックライトからの光を遮断することができる。
なお、図6及び図7において点P1〜P4の位置は第一及び第二のλ/4板220,240のNz係数Nzq、液晶セル230の厚み方向位相差Rlc、及び、第三種の複屈折層235の厚み方向位相差R3に依存するが、図6及び図7では一例としてNzq=1.6、Rlc=320nm、R3=−129nmの形態を図示している。偏光状態の変換を分かりやすくするために、各点の位置は大まかに示されており、厳密には正確ではないものもある。また、図を明瞭に示すため、点P1〜P4の変換については軌跡を表す矢印を図示していない。
そして、本発明者が検討した結果、第一及び第二のλ/4板220,240のNz係数Nzqに応じて、第三種の複屈折層235の最適な位相差値R3があることが判明した。図8及び図9は、いずれも図5の円偏光VAモード液晶表示装置200を、第二の偏光子250の吸収軸方位0°において、60°傾斜した方向から観察した場合の偏光状態についてポアンカレ球のS1−S2平面で図示したもので、図8はNzq=2.0、Rlc=320nm、R3=−61nmの形態を、図9はNzq=2.35、Rlc=320nm、R3=0nmの形態を示している。
図7、図8及び図9からわかるように、第一及び第二のλ/4板220,240のNz係数Nzqが大きくなるにつれて、第一のλ/4板220を透過直後の偏光状態を表す点P1と、さらにVAモード液晶セル230を透過した後の偏光状態を表す点P2とが、S1軸に対して対称な点に近づくため、点P4と点Eを重ねるために必要なP2→P3変換の量、すなわち、第三種の複屈折層235の必要位相差R3の絶対値が小さくなる。上述したように、VAモード液晶セル230のRlcは、一般的に270〜400nmの範囲内で調整されることから、第一及び第二のλ/4板220,240のNzqが2.00を超えると、第三種の複屈折層235の必要位相差R3が略ゼロとなる。すなわち、第三種の複屈折層235が不要となる。典型的なVAモード液晶セルの位相差値、Rlc=320nmに対しては、Nzq=2.35のとき、第三種の複屈折層の必要位相差R3が略ゼロとなる。
ここで、コンピューターシミュレーションにより、第一及び第二のλ/4板220,240のNz係数Nzqと、第三種の複屈折層235の厚み方向位相差R3の最適値との関係を調べた結果を表2及び図10に示した。図7、図8及び図9のポアンカレ球を用いた図解では、点P1→P3の偏光状態変換を、VAモード液晶セル230の厚み方向位相差RlcによるP1→P2変換と、第三種の複屈折層235の厚み方向位相差R3によるP2→P3変換とに分けて図示した。しかしながら、これらの二つの変換は回転中心が同一で、回転方向が互いに逆なだけであり、回転方向は厚み方向位相差の符号により、回転角度は厚み方向位相差の絶対値により決まる。したがって、上記二つの変換は、「VAモード液晶セル230+第三種の複屈折層235」の、「トータル厚み方向位相差Rlc+R3」によるダイレクトなP1→P3変換として考えても同じことである。換言すると、Rlc+R3が同じでさえあれば、VAモード液晶セル230の厚み方向位相差Rlcに依らず、液晶表示装置の光学特性は同一となる。したがって、表2では、Rlc+R3の最適値をコンピューターシミュレーションにより算出した結果を示した。表2及び図10よりわかるように、Nzqと最適なRlc+R3との関係は1.0≦Nzq≦2.9の範囲では、下記式(A)が充分によい近似を与える。図10中に示した実線が下記式(A)を表わしている。
Rlc+R3=169nm×Nzq−81nm (A)
広い視角範囲においてコントラスト比が高い液晶表示を実現する観点から、上記VAモード液晶セル230の黒表示時(液晶層への電圧無印加時)の厚み方向位相差Rlcと、第三種の複屈折層235の厚み方向位相差R3との和であるRlc+R3は、表2及び図10に示した最適値であることが最も好ましいが、斜め視角でのコントラスト比を大きく低下させない範囲であれば、最適値から多少ずれていてもよい。本発明の作用効果を充分に奏する観点からは、最適値±30nmの範囲が好ましい。
Figure 2010256900
(2ndステップの補償原理)
はじめに、1stステップを終えた図5の液晶表示装置200を、第一の偏光子210の吸収軸方位90°と、第二の偏光子250の吸収軸方位0°を二等分する方位(以下、方位45°と呼ぶこともある)において、60°傾斜した方向から観察した場合を考える。上述したように、1stステップにおいて、液晶表示装置200は、第一及び第二のλ/4板220,240のNz係数Nzqに応じて、液晶セル230の厚み方向位相差Rlc、及び、第三種の複屈折層235の厚み方向位相差R3の最適値が選択され、方位0°における光学補償がなされている。この条件において、バックライトから出射した光が各偏光子210,250、各複屈折層220,240、液晶セル230を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図11のようになる。
まず、第一の偏光子210を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子250が吸収できる偏光状態、すなわち、第二の偏光子250の消光位(吸収軸方位)と一致していない。方位45°の斜め方向においては、第一及び第二の偏光子210,250が互いに直交しなくなるため、光学補償が必要なことを示唆している。そして、第一のλ/4板220を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板220の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル230を透過することにより、ポアンカレ球上の点Lで表わされる液晶セル230の遅相軸を中心に特定角度の回転変換を受け、点P2に到達する。このときの回転方向は点Lから原点Oを向かうように見て反時計回りである。次に、第三種の複屈折層235を透過することにより、ポアンカレ球上の点R3で表わされる第三種の複屈折層235の遅相軸を中心に特定角度の回転変換を受け、点P3に到達する。このときの回転方向は点R3から原点Oを向かうように見て反時計回りである。最後に、第二のλ/4板240を透過することにより、点Q2で表わされる第二のλ/4板240の遅相軸を中心に特定角度の回転変換を受け、点P4に到達し、この点P4は、第二の偏光子250の消光位Eと一致しない。このようにして、図5の液晶表示装置200は、方位45°,極60°の斜め方向から観察すると、バックライトからの光を遮断することができない。つまり、1stステップを終えただけの液晶表示装置200は、方位45°において光学補償がなされていない。
なお、図11において点P1〜P4の位置は第一及び第二のλ/4板220,240のNz係数Nzq、液晶セル230の厚み方向位相差Rlc、及び、第三種の複屈折層235の厚み方向位相差R3に依存するが、図11では一例としてNzq=1.6、Rlc=320nm、R3=−129nmの形態を図示している。偏光状態の変換を分かりやすくするために、各点の位置は大まかに示されており、厳密には正確ではないものもある。また、図を明瞭に示すため、点P1〜P4の変換については軌跡を表す矢印を図示していない。
次に、図12に示すように、第一の偏光子(吸収軸方位90°)310、第一のλ/4板(遅相軸方位135°)320、VAモード液晶セル330、第三種の複屈折層335、第二のλ/4板(遅相軸方位45°)340、第二種の複屈折層(進相軸方位90°)345及び第二の偏光子(吸収軸方位0°)350がこの順に積層された、第二種の複屈折層を含む円偏光VAモード液晶表示装置300を考える。第二種の複屈折層は、方位45°での光学補償を行うために図5の構成に追加されたものである。なお、図12中、第一及び第二の偏光子310、350に描かれた矢印は、その吸収軸の方位を表し、第一及び第二のλ/4板320、340に描かれた矢印は、その遅相軸の方位を表し、第二種の複屈折層345に描かれた矢印は、その進相軸の方位を表し、VAモード液晶セル330及び第三種の複屈折層335に描かれた楕円体は、その屈折率楕円体の形状を表している。
はじめに、図12の円偏光VAモード液晶表示装置300を、正面方向から観察した場合の偏光状態について考える。バックライト(図12では、図示されていないが、第一の偏光子310の下方にある。)から出射した光が各偏光子310,350、各複屈折層320,340、液晶セル330を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図13のようになる。
まず、第一の偏光子310を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子350が吸収できる偏光状態、すなわち、第二の偏光子350の消光位(吸収軸方位)と一致している。そして、第一のλ/4板320を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板320の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル330及び第三種の複屈折層335を透過するが、VAモード液晶セル330及び第三種の複屈折層335は正面方向で位相差がゼロなので、偏光状態は変化しない。次に、第二のλ/4板340を透過することにより、点Q2で表わされる第二のλ/4板340の遅相軸を中心に特定角度の回転変換を受け、点P2に到達する。最後に、第二種の複屈折層345を透過するが、点P2にあった偏光状態は、ポアンカレ球上の点R2で表わされる第二種の複屈折層345の進相軸を中心に特定角度の回転変換を受けても偏光状態は点P2から変化せず、この点P2は、第二の偏光子350の消光位Eと一致する。このようにして、図12の液晶表示装置300は、正面方向から観察すると、図1の液晶表示装置100と同様に、バックライトからの光を遮断することができ、良好な黒表示が得られる。
今度は、図12の円偏光VAモード液晶表示装置300を、方位45°において、60°傾斜した方向から観察した場合の偏光状態について考える。この条件において、バックライトから出射した光が各偏光子310,350、各複屈折層320,340、液晶セル330を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図14のようになる。
まず、第一の偏光子310を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子350が吸収できる偏光状態、すなわち、第二の偏光子350の消光位(吸収軸方位)と一致していない。そして、第一のλ/4板320を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板320の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル330を透過することにより、ポアンカレ球上の点Lで表わされる液晶セル330の遅相軸を中心に特定角度の回転変換を受け、点P2に到達する。このときの回転方向は点Lから原点Oを向かうように見て反時計回りである。次に、第三種の複屈折層335を透過することにより、ポアンカレ球上の点R3で表わされる第三種の複屈折層335の遅相軸を中心に特定角度の回転変換を受け、点P3に到達する。このときの回転方向は点R3から原点Oを向かうように見て反時計回りである。次に、第二のλ/4板340を透過することにより、点Q2で表わされる第二のλ/4板340の遅相軸を中心に特定角度の回転変換を受け、点P4に到達する。最後に、第二種の複屈折層345を透過することにより、ポアンカレ球上の点R2で表わされる第二種の複屈折層345の進相軸を中心に特定角度の回転変換を受け、点P5に到達する。このときの回転方向は点R2から原点Oを向かうように見て時計回りである。この点P5は、第二の偏光子350の消光位Eと一致している。このようにして、図12の液晶表示装置300は、方位45°,極60°の斜め方向から観察した場合も、正面方向から観察した場合と同様に、バックライトからの光を遮断することができる。
最後に、図12の円偏光VAモード液晶表示装置300を、方位0°において、60°傾斜した方向から観察した場合の偏光状態について考える。この条件において、バックライトから出射した光が各偏光子310,350、各複屈折層320,340、液晶セル330を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図15のようになる。
まず、第一の偏光子310を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子350が吸収できる偏光状態、すなわち、第二の偏光子350の消光位(吸収軸方位)と一致している。そして、第一のλ/4板320を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板320の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル330を透過することにより、ポアンカレ球上の点Lで表わされる液晶セル330の遅相軸を中心に特定角度の回転変換を受け、点P2に到達する。このときの回転方向は点Lから原点Oを向かうように見て反時計回りである。次に、第三種の複屈折層335を透過することにより、ポアンカレ球上の点R3で表わされる第三種の複屈折層335の遅相軸を中心に特定角度の回転変換を受け、点P3に到達する。このときの回転方向は点R3から原点Oを向かうように見て反時計回りである。次に、第二のλ/4板340を透過することにより、点Q2で表わされる第二のλ/4板340の遅相軸を中心に特定角度の回転変換を受け、点P4に到達する。最後に、第二種の複屈折層345を透過するが、点P4にあった偏光状態は、ポアンカレ球上の点R2で表わされる第二種の複屈折層345の進相軸を中心に特定角度の回転変換を受けても偏光状態は点P4から変化せず、この点P4は、第二の偏光子350の消光位Eと一致する。このようにして、図12の液晶表示装置300は、方位0°,極60°の斜め方向から観察しても、正面方向から観察した場合と同様に、バックライトからの光を遮断することができ、良好な黒表示が得られる。
このようにして、2ndステップを終えた図12の液晶表示装置300は、正面方向、方位0°の斜め方向、及び、方位45°の斜め方向の全てにおいて、バックライトからの光を遮断することができ、良好な黒表示が得られる。
なお、図13、図14及び図15において点P1〜P5の位置は第一及び第二のλ/4板320,340のNz係数Nzq、液晶セル330の厚み方向位相差Rlc、第三種の複屈折層335の厚み方向位相差R3、並びに、第二種の複屈折層345のNz係数Nz2及び面内位相差R2に依存するが、図13、図14及び図15では一例としてNzq=1.6、Rlc=320nm、R3=−129nm、Nz2=−0.30、R2=118nmの形態を図示している。偏光状態の変換を分かりやすくするために、各点の位置は大まかに示されており、厳密には正確ではないものもある。また、図を明瞭に示すため、点P1〜P5の変換については軌跡を表す矢印を図示していない。
そして、本発明者が検討した結果、第一及び第二のλ/4板320,340のNz係数Nzqに応じて、第二種の複屈折層345の最適なNz係数Nz2及び位相差値R2があることが判明した。図16及び図17は、いずれも図12の円偏光VAモード液晶表示装置300を、第二の偏光子350の吸収軸方位45°において、60°傾斜した方向から観察した場合の偏光状態についてポアンカレ球のS1−S2平面で図示したもので、図16はNzq=2.0、Rlc=320nm、R3=−61nm、Nz2=−1.00、R2=94nmの形態を、図17はNzq=2.35、Rlc=320nm、R3=0nm、Nz2=−1.80、R2=90nmの形態を示している。
図15、図16及び図17からわかるように、第一及び第二のλ/4板320,340のNz係数Nzqが大きくなるにつれて、第二種の複屈折層345透過直前の偏光状態を表す点P4が消光位である点Eから離れるため、点P4と点Eを重ねるために必要なP4→P5変換の回転半径を大きくする必要がある。本発明者が検討した結果、回転半径を大きくするためには第二種の複屈折層345の二軸性を増す必要がある。すなわち、Nz係数をより小さくする必要がある。
ここで、コンピューターシミュレーションにより、第一及び第二のλ/4板320,340のNz係数Nzqと、第二種の複屈折層345のNz係数Nz2及び面内位相差R2の最適値との関係を調べた結果を表3、図18及び図19に示した。表3、図18及び図19よりわかるように、Nzqと、最適なNz2、R2との関係は一般に簡単ではないが、1.0≦Nzq≦2.9の範囲では、下記式(B)及び(C)が充分によい近似を与える。図18及び図19中に示した実線がそれを表わしている。
Nz2=−0.63×Nzq2+0.56×Nzq+0.40 (B)
R2=43nm×Nzq2−226nm×Nzq+370nm (C)
広い視角範囲においてコントラスト比が高い液晶表示を実現する観点から、上記第二種の複屈折層345のNz2及びR2は、表3、図18及び図19に示した最適値であることが最も好ましいが、斜め視角でのコントラスト比を大きく低下させない範囲であれば、最適値から多少ずれていてもよい。本発明の作用効果を充分に奏する観点からは、Nz2は最適値±0.35の範囲が好ましい。R2は最適値±30nmの範囲が好ましい。
また、表3及び図18によると、Nzq<1.40の範囲で、Nz2の最適値は、0<Nz2<1の範囲となる。この範囲内のNz係数を示す複屈折層は、nx>nz>nyの関係を満たす二軸性位相差フィルムであるため、第二種の複屈折層に該当せず、第二種の複屈折層よりも製造が難しく高コストのフィルムである。そこで、本発明者が、Nzq<1.40の範囲について、より低コストかつ簡便に、広い視角範囲においてコントラスト比が高い液晶表示を実現する方法を検討した。その結果、Nzq<1.40の範囲では、表3、図18及び図19に示した最適なNz2,R2を満たす複屈折層の代わりとして、Nz2=0,R2=138nmの第二種の複屈折層を用いれば、同様の作用効果を充分に奏することができることを見出した。例えば、Nzq=1.00,1.10,1.20,1.30の各例で、Nz2=0に固定して最適なR2を計算してみると、Nzqによらず、いずれも138nmとなった。本発明の作用効果を充分に奏する観点からは、−0.35≦Nz2≦0を満たし、かつ108nm≦R2≦168nm(最適値138nm±30nmの範囲)を満たすことが好ましい。
Figure 2010256900
本発明の液晶表示装置によれば、低コストかつ簡便に製造することができるとともに、広い視角範囲において高いコントスラト比を実現することができる。このような本発明の液晶表示装置は、屋外用サイネージディスプレイ等の表示装置に好適に用いることができるものである。
第二種及び第三種の複屈折層を含まない、最も簡単な構成からなる円偏光VAモード液晶表示装置の構成を示す斜視分解図である。 (a)は、正面方向で直交する第一のλ/4板の遅相軸及び第二のλ/4板の遅相軸について、正面方向から見たときの模式図(上)と、方位0°の斜め方向から見たときの模式図(下)である。(b)は、正面方向で直交する第一のλ/4板の遅相軸及び第二のλ/4板の遅相軸について、正面方向から見たときの模式図(上)と、方位45°の斜め方向から見たときの模式図(下)である。(c)は、正面方向で直交する第一の偏光子の吸収軸及び第二の偏光子の吸収軸について、正面方向から見たときの模式図(上)と、方位45°の斜め方向から見たときの模式図(下)である。 図1の円偏光VAモード液晶表示装置について、正面方向から観察したときの、透過光の偏光状態が各部材を通過するごとに変化する様子をポアンカレ球のS1−S2平面に投影して示した図である。 図1の円偏光VAモード液晶表示装置について、方位0°,極60°の斜め方向から観察したときの、透過光の偏光状態が各部材を通過するごとに変化する様子をポアンカレ球のS1−S2平面に投影して示した図である。 第三種の複屈折層を含む円偏光VAモード液晶表示装置の構成を示す斜視分解図である。 図5の円偏光VAモード液晶表示装置(Nzq=1.6、Rlc=320nm、R3=−129nmの形態)について、正面方向から観察したときの、透過光の偏光状態が各部材を通過するごとに変化する様子をポアンカレ球のS1−S2平面に投影して示した図である。 図5の円偏光VAモード液晶表示装置(Nzq=1.6、Rlc=320nm、R3=−129nmの形態)について、方位0°,極60°の斜め方向から観察したときの、透過光の偏光状態が各部材を通過するごとに変化する様子をポアンカレ球のS1−S2平面に投影して示した図である。 図5の円偏光VAモード液晶表示装置(Nzq=2.0、Rlc=320nm、R3=−61nmの形態)について、方位0°,極60°の斜め方向から観察したときの、透過光の偏光状態が各部材を通過するごとに変化する様子をポアンカレ球のS1−S2平面に投影して示した図である。 図5の円偏光VAモード液晶表示装置(Nzq=2.35、Rlc=320nm、R3=−61nmの形態)について、方位0°,極60°の斜め方向から観察したときの、透過光の偏光状態が各部材を通過するごとに変化する様子をポアンカレ球のS1−S2平面に投影して示した図である。 図5の円偏光VAモード液晶表示装置について、第一及び第二のλ/4板のNz係数Nzqと、第三種の複屈折層の厚み方向位相差R3の最適値との関係を示したグラフである。 図5の円偏光VAモード液晶表示装置について、方位45°,極60°の斜め方向から観察したときの、透過光の偏光状態が各部材を通過するごとに変化する様子をポアンカレ球のS1−S2平面に投影して示した図である。 第二種及び第三種の複屈折層を含む円偏光VAモード液晶表示装置の構成を示す斜視分解図である。 図12の円偏光VAモード液晶表示装置(Nzq=1.6、Rlc=320nm、R3=−129nm、Nz2=−0.30、R2=118nmの形態)について、正面方向から観察したときの、透過光の偏光状態が各部材を通過するごとに変化する様子をポアンカレ球のS1−S2平面に投影して示した図である。 図12の円偏光VAモード液晶表示装置(Nzq=1.6、Rlc=320nm、R3=−129nm、Nz2=−0.30、R2=118nmの形態)について、方位45°,極60°の斜め方向から観察したときの、透過光の偏光状態が各部材を通過するごとに変化する様子をポアンカレ球のS1−S2平面に投影して示した図である。 図12の円偏光VAモード液晶表示装置(Nzq=1.6、Rlc=320nm、R3=−129nm、Nz2=−0.30、R2=118nmの形態)について、方位0°,極60°の斜め方向から観察したときの、透過光の偏光状態が各部材を通過するごとに変化する様子をポアンカレ球のS1−S2平面に投影して示した図である。 図12の円偏光VAモード液晶表示装置(Nzq=2.0、Rlc=320nm、R3=−61nm、Nz2=−1.00、R2=94nmの形態)について、方位45°,極60°の斜め方向から観察したときの、透過光の偏光状態が各部材を通過するごとに変化する様子をポアンカレ球のS1−S2平面に投影して示した図である。 図12の円偏光VAモード液晶表示装置(Nzq=2.35、Rlc=320nm、R3=0nm、Nz2=−1.80、R2=90nmの形態)について、方位45°,極60°の斜め方向から観察したときの、透過光の偏光状態が各部材を通過するごとに変化する様子をポアンカレ球のS1−S2平面に投影して示した図である。 図12の円偏光VAモード液晶表示装置について、第一及び第二のλ/4板のNz係数Nzqと、第二種の複屈折層のNz係数Nz2の最適値との関係を示したグラフである。 図12の円偏光VAモード液晶表示装置について、第一及び第二のλ/4板のNz係数Nzqと、第二種の複屈折層の面内位相差R2の最適値との関係を示したグラフである。 第二種の複屈折層を含む円偏光VAモード液晶表示装置の構成を示す斜視分解図である。 (a)は、モスアイフィルムの断面の拡大模式図を示し、(b)は、モスアイフィルムと空気層との界面における屈折率の変化を示す説明図である。 図12の円偏光VAモード液晶表示装置にモスアイフィルムを付加した構成を示す斜視分解図である。
(複屈折層)
本発明に用いられる複屈折層としては、材料や光学的性能について特に限定されず、例えば、ポリマーフィルムを延伸したもの、液晶性材料の配向を固定したもの、無機材料から構成される薄板等を用いることができる。複屈折層の形成方法としては特に限定されない。ポリマーフィルムから形成される複屈折層の場合、例えば溶剤キャスト法、溶融押出し法等を用いることができる。共押出し法により、複数の複屈折層を同時に形成する方法を用いてもよい。所望の位相差が発現しさえすれば、無延伸であってもよいし、延伸が施されてもよい。延伸方法も特に限定されず、ロール間引張り延伸法、ロール間圧縮延伸法、テンター横一軸延伸法、斜め延伸法、縦横二軸延伸法の他、熱収縮性フィルムの収縮力の作用下に延伸を行う特殊延伸法等を用いることができる。特に、λ/4板については、円偏光板を構成するために偏光子と略45°の相対角度を成して積層するため、ロールフィルムの流れ方向に対して斜め方向に延伸配向させる斜め延伸法を用いることが特に好ましい。また、液晶性材料から形成される複屈折層の場合、例えば、配向処理を施した基材フィルムの上に液晶性材料を塗布し、配向固定する方法等を用いることができる。所望の位相差が発現しさえすれば、基材フィルムに特別な配向処理を行わない方法や、配向固定した後、基材フィルムから剥がして別のフィルムに転写加工する方法等であってもよい。さらに、液晶性材料の配向を固定しない方法を用いてもよい。また、非液晶性材料から形成される複屈折層の場合も、液晶性材料から形成される複屈折層と同様の形成方法を用いてもよい。以下、複屈折層の種類別にさらに具体的に説明する。
(第一種の複屈折層:第一及び第二のλ/4板)
第一種の複屈折層としては、固有複屈折が正の材料を成分として含むフィルムを延伸加工したもの等を適宜用いることができる。固有複屈折が正の材料としては、例えば、ポリカーボネート、ポリサルフォン、ポリエーテルサルフォン、ポリエチレンテレフタレート、ポリエチレン、ポリビニルアルコール、ノルボルネン、トリアセチルセルロース、ジアチルセルロース等が挙げられる。
(第二種の複屈折層)
第二種の複屈折層としては、固有複屈折が負の材料を成分として含むフィルムを延伸加工したもの、固有複屈折が正の材料を成分として含むフィルムを熱収縮性フィルムの収縮力の作用下で延伸加工したもの等を適宜用いることができる。なかでも、製造方法の簡便化の観点からは、固有複屈折が負の材料を成分として含むフィルムを延伸加工したものが好ましい。固有複屈折が負の材料としては、例えば、アクリル系樹脂及びスチレン系樹脂を含む樹脂組成物、ポリスチレン、ポリビニルナフタレン、ポリビニルビフェニル、ポリビニルピリジン、ポリメチルメタクリレート、ポリメチルアクリレート、N置換マレイミド共重合体、フルオレン骨格を有するポリカーボネート、トリアセチルセルロース(特にアセチル化度の小さいもの)等が挙げられる。なかでも、光学特性、生産性及び耐熱性の観点からは、アクリル系樹脂及びスチレン系樹脂を含む樹脂組成物が好適である。このような樹脂組成物を成分として含むフィルムの製造方法については、例えば、特開2008−146003号公報に開示がある。
(第三種の複屈折層)
第三種の複屈折層としては、固有複屈折が正の材料を成分として含むフィルムを縦横二軸延伸加工したもの、コレステリック(カイラルネマチック)液晶やディスコチック液晶等の液晶性材料を塗布したもの、ポリイミドやポリアミド等を含む非液晶性材料を塗布したもの等を適宜用いることができる。
(偏光子)
偏光子としては、例えば、ポリビニルアルコール(PVA)フィルムに二色性を有するヨウ素錯体等の異方性材料を吸着配向させたもの等を適宜用いることができる。
(液晶セル)
液晶セルとしては、液晶層中の液晶分子を基板面に垂直に配向させることで黒表示を行うものでさえあればよく、そのような液晶セルの表示モードとしては、例えば、VAモードには、Multi−domain VA(MVA)モード、Continuous Pinwheel Alignment(CPA)モード、Patterned VA(PVA)モード、Biased VA(BVA)モード、Reverse TN(RTN)モード、In Plane Switching−VA(IPS−VA)モード等が挙げられる。また、液晶セルの駆動形式としては、TFT方式(アクティブマトリクス方式)のほか、単純マトリクス方式(パッシブマトリクス方式)、プラズマアドレス方式等であってもよい。液晶セルの構成としては、例えば、それぞれに電極が形成された一対の基板間に液晶層を狭持し、それぞれの電極間に電圧を印加することで表示を行うものが挙げられる。
(R、Rth、Nz係数、nx、ny、nzの測定方法)
デュアル・リターダー・ローテート方式のポーラリメータ(Axometrics社製、商品名:Axo−scan)を用いて測定した。面内位相差Rは複屈折層の法線方向から実測した。主屈折率nx、ny、nz、厚み方向位相差Rth及びNz係数は、複屈折層の法線方向、法線方向から−50°〜50°傾斜した各斜め方向から位相差を測定し、公知の屈折率楕円体式のカーブフィッティングにより算出した。傾斜方位は面内遅相軸と直交する方位とした。また、nx、ny、nz、Rxz及びNzは、カーブフィッティングの計算条件として与える平均屈折率=(nx+ny+nz)/3に依存するが、各複屈折層の平均屈折率を1.5に統一して計算した。実際の平均屈折率が1.5と異なる複屈折層についても平均屈折率1.5を想定して換算した。
(液晶表示装置のコントラスト比−視野角特性の測定方法)
視野角測定装置(ELDIM社製、商品名:EZContrast160)を用いて測定した。光源にはシャープ社製液晶テレビ(商品名:LC37−GH1)搭載のバックライトを用いた。方位45°、極60°の斜め方向における白表示と黒表示の輝度を測定し、その比をCR(45、60)とした。また、方位0°、極60°の斜め方向における白表示と黒表示の輝度を測定し、その比をCR(0、60)とした。
以下に実施例を掲げ、本発明をさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
本発明に係る実施例1〜13及び参考例1〜22の液晶表示装置は、図12に示すように、第一の偏光子310、第一のλ/4板(第一種の複屈折層)320、VAモード液晶セル330、第三種の複屈折層335、第二のλ/4板340、第二種の複屈折層345及び第二の偏光子350をこの順に積層して得られた円偏光VAモード液晶表示装置300である。
本発明に係る実施例14〜18及び参考例23〜52の液晶表示装置は、図20に示すように、第一の偏光子410、第一のλ/4板(第一種の複屈折層)420、VAモード液晶セル430、第二のλ/4板440、第二種の複屈折層445及び第二の偏光子450をこの順に積層して得られた円偏光VAモード液晶表示装置400である。すなわち、図20の液晶表示装置400は、第三種の複屈折層を含まない点で、図12の液晶表示装置400と異なる。なお、図20中、第一及び第二の偏光子410、450に描かれた矢印は、その吸収軸の方位を表し、第一及び第二のλ/4板420、440に描かれた矢印は、その遅相軸の方位を表し、第二種の複屈折層445に描かれた矢印は、その進相軸の方位を表し、VAモード液晶セル430に描かれた楕円体は、その屈折率楕円体の形状を表している。
比較例1の液晶表示装置は、第一の偏光子、TAC、第一のλ/4板(第一種の複屈折層)、VAモード液晶セル、第二のλ/4板、TAC及び第二の偏光子をこの順に積層して得られたVAモードの液晶表示装置である。比較例2の液晶表示装置は、第一の偏光子、TAC、第一のλ/4板(第一種の複屈折層)、VAモード液晶セル、第三種の複屈折層、第二のλ/4板、TAC及び第二の偏光子をこの順に積層して得られたVAモードの液晶表示装置である。
各例の偏光子、複屈折層及び液晶セルに関し、材料名、軸角度、面内位相差R、厚み方向位相差Rth又はRlc、及び、Nz係数については、下記の表4(実施例1〜8)、表5(実施例9〜13)、表6(実施例14〜18)、表7(参考例1〜8)、表8(参考例9〜14)、表9(参考例15〜22)、表10(参考例23〜32)、表11(参考例33〜42)及び表12(参考例43〜52)、表13(比較例1、2)に示す通りである。表中、各複屈折層の軸は面内遅相軸の方位角で定義し、偏光子の軸は吸収軸の方位角で定義してある。なお、第二種の複屈折層については面内進相軸が設計上重要であるが、表中では、他の複屈折層と同様に、第二種の複屈折層の軸は面内遅相軸の方位角で定義してある。第二種の複屈折層の面内進相軸は、第二種の複屈折層の面内遅相軸に直交している。また、表中、各複屈折層の材料名については、以下の略号を用いて示してある。
NB:ノルボルネン
ChLC:コレステリック液晶
PI:ポリイミド
TAC:トリアセチルセルロース
A:アクリル系樹脂及びスチレン系樹脂を含む樹脂組成物
(評価結果)
各例の液晶表示装置のコントラスト比−視野角特性を測定し、CR(0、60)及びCR(45、60)を下記の表4〜13に整理した。
本発明に係る実施例1〜18の液晶表示装置のCR(0、60)及びCR(45、60)は、いずれも比較例1、2のCR(0、60)及びCR(45、60)よりも非常に高い値が得られ、目視評価においても比較例1、2よりも非常に優れたコントラスト比−視野角特性を有していた。
本発明に係る参考例1〜8及び23〜32の液晶表示装置のCR(0、60)及びCR(45、60)は、いずれも比較例1、2のCR(0、60)及びCR(45、60)よりも高い値が得られ、目視評価においても比較例1、2よりも優れたコントラスト比−視野角特性を有していた。
本発明に係る参考例9〜22及び33〜52の液晶表示装置のCR(0、60)及びCR(45、60)は、いずれも比較例1、2のCR(0、60)及びCR(45、60)よりも高い値が得られ、特にCR(0、60)が非常に高かった。また、目視評価においても比較例1、2よりも優れたコントラスト比−視野角特性を有していた。
Figure 2010256900
Figure 2010256900
Figure 2010256900
Figure 2010256900
Figure 2010256900
Figure 2010256900
Figure 2010256900
Figure 2010256900
Figure 2010256900
Figure 2010256900
なお、各実施例及び各参考例の液晶表示装置は、直線偏光板(偏光子)とλ/4板との組み合わせからなる円偏光板を液晶セルの両側に備えることから、いずれも円偏光VAモードで表示を行っている。円偏光VAモードは、透過率改善効果のほかに、反射防止効果を得ることができることから、コントラスト比の向上に有効である。円偏光VAモードによる反射防止機能は、液晶表示装置の周囲から一旦液晶表示装置内に入射して液晶表示装置内で反射する光、いわゆる内部反射による反射光を円偏光板の働きによって液晶表示装置外に出射させないようにするものである。したがって、円偏光VAモードによれば、液晶セル内のブラックマトリックス、配線、電極等の表面で反射した光が、液晶表示装置外へ出射しにくくなり、特に、周囲が明るい状況(明環境)において液晶表示装置のコントラスト比が低下することを防止できる。
一方、明環境における液晶表示装置のコントラスト比を低下させる反射光としては、上記の内部反射による反射光のほかに、液晶表示装置の周囲から液晶表示装置内に入射することなく液晶表示装置の表面で反射する光、いわゆる表面反射による反射光が挙げられる。円偏光VAモードの液晶表示装置は、内部反射による反射光が抑制される結果、表面反射による反射光の量が、表示画面の視認性に顕著な影響を及ぼすことになる。したがって、円偏光VAモードの液晶表示装置に対して表面反射による反射光を低減する対策を施すことによって、明環境において非常に高いコントラスト比が得られ、表示画面を見る者は、表示品位の顕著な向上を実感することができる。
表面反射の抑制に用いられる反射防止膜としては、屈折率が異なる複数の膜を積層して形成した反射防止膜、微細な突起及び窪みが表面に形成された反射防止膜が挙げられる。なかでも、後者の反射防止膜の一種である「モスアイ(蛾の目)フィルム」は、可視光の波長(380〜780nm)よりも小さな突起が表面に多数設けられた構造を有し、表面反射の抑制において非常に優れた効果を奏することができる。図21(a)に示すように、モスアイフィルムに入射する光は、表面に設けられた微細な突起361を介してフィルム基材部362に至るため、空気層とフィルム基材部との間にある突起と空気層とが混在する領域(図中のA−B間領域)は、フィルムを構成する材料の屈折率(樹脂膜の場合、1.5程度)と空気の屈折率(1.0)との中間的な屈折率をもつ領域とみなすことができる。すなわち、この領域の屈折率は、図21(b)に示すように、突起及び空気層の体積比の変化に対応して、フィルムの表面に接する空気の屈折率から、フィルムを構成する材料の屈折率まで、可視光の波長よりも短い距離内で連続的に徐々に大きくなる。その結果、モスアイフィルムに入射する光は、空気−フィルム間の界面を屈折率の異なる界面として認識しなくなり、界面で生じる光の反射を大幅に抑制できる。モスアイフィルムによれば、例えば、可視光の表面反射率を0.15%程度にすることが可能である。
モスアイフィルムは、屈折率が異なる界面に配置すれば反射率を低減する効果を奏することができるが、図12に示す構成では、第二の偏光子350よりも内部で生じた内部反射は、第二の偏光子350及び第二のλ/4板340の組み合わせからなる円偏光板によって、抑制することができる。したがって、図12の構成にモスアイフィルムを付加する場合には、図22に示すモスアイフィルム360のように、第二の偏光子350よりも表示面側に配置される。第二の偏光子350よりも表示面側に、保護板等の部材が配置されて複数の界面がある場合には、界面ごとにモスアイフィルムを設けてもよく、少なくとも液晶表示装置の外部に露出される面に配置されることが好ましい。
モスアイフィルムの具体例としては、高さ約200nmの略円錐形状の突起が、頂点間の距離約200nmで多数表面に形成された樹脂膜が挙げられる。
モスアイフィルムの製造方法としては、金型に刻み込んだナノメートルサイズ(1〜1000μm)の凹凸を、基板上に塗布した樹脂材料に押し付けて形状を転写する技術、いわゆるナノインプリント技術が挙げられる。ナノインプリント技術において樹脂材料を硬化させる方法としては、熱ナノインプリント技術、UVナノインプリント技術等が挙げられる。UVナノインプリント技術は、透明基板上に紫外線硬化樹脂の薄膜を成膜し、該薄膜上に金型を押し付けて、その後に紫外線を照射することにより、透明基板上に金型の反転形状のモスアイ構造を有する薄膜を形成するものである。
ナノインプリント技術により、大量に安く、モスアイ構造を有する薄膜を製造するためには、バッチ処理よりもロール・ツー・ロール処理を用いる方が好適である。ロール・ツー・ロール処理によれば、金型ロールを用いて連続的にモスアイ構造を有する薄膜を製造することができる。そのような金型ロールとしては、研磨された円柱状又は円筒状のアルミニウム管の外周面に、陽極酸化法によりナノメートルサイズの窪みを形成したものが挙げられる。陽極酸化法によれば、ナノメートルサイズの窪みを表面に、ランダムに、ほぼ均一に形成することが可能であり、金型ロールの表面に、連続生産に好適な継ぎ目のない(シームレスな)モスアイ構造を形成することができる。
なお、本願は、2009年1月27日に出願された日本国特許出願2009−015927号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
100 円偏光VAモード液晶表示装置
110 第一の偏光子
111 第一の偏光子の吸収軸
120 第一のλ/4板
121 第一のλ/4板の遅相軸
130 VAモード液晶セル
140 第二のλ/4板
141 第二のλ/4板の遅相軸
150 第二の偏光子
151 第二の偏光子の吸収軸
200 円偏光VAモード液晶表示装置
210 第一の偏光子
220 第一のλ/4板
230 VAモード液晶セル
235 第三種の複屈折層
240 第二のλ/4板
250 第二の偏光子
300 円偏光VAモード液晶表示装置
310 第一の偏光子
320 第一のλ/4板
330 VAモード液晶セル
335 第三種の複屈折層
340 第二のλ/4板
345 第二種の複屈折層
350 第二の偏光子
400 円偏光VAモード液晶表示装置
410 第一の偏光子
420 第一のλ/4板
430 VAモード液晶セル
440 第二のλ/4板
445 第二種の複屈折層
450 第二の偏光子

Claims (6)

  1. nx>ny≧nzの関係を満たす複屈折層を第一種の複屈折層、
    nx<ny≦nzの関係を満たす複屈折層を第二種の複屈折層、と定義するとき、
    第一の偏光子、
    面内位相差がλ/4に調整された第一の第一種の複屈折層、
    一対の対向する基板間に液晶層を備える液晶セル、
    該第一の第一種の複屈折層と略同じNz係数を有し、面内位相差がλ/4に調整された第二の第一種の複屈折層、
    第二種の複屈折層、及び、
    第二の偏光子
    をこの順に有する液晶表示装置であって、
    該第一の第一種の複屈折層の面内遅相軸は、該第一の偏光子の吸収軸に対して略45°の角度をなし、
    該第二の第一種の複屈折層の面内遅相軸は、該第一の第一種の複屈折層の面内遅相軸に対して略直交し、
    該第二の偏光子の吸収軸は、該第一の偏光子の吸収軸に対して略直交し、
    該第二種の複屈折層の面内進相軸は、該第二の偏光子の吸収軸に対して略直交し、
    液晶層中の液晶分子を基板面に略垂直に配向させることで黒表示を行う
    ことを特徴とする液晶表示装置。
  2. nx≒ny≧nzの関係を満たす複屈折層を第三種の複屈折層、と定義するとき、
    該第一の第一種の複屈折層と該液晶セルとの間、及び、該液晶セルと該第二の第一種の複屈折層との間の少なくとも一方に、第三種の複屈折層を少なくとも一層有することを特徴とする、請求項1に記載の液晶表示装置。
  3. 前記第一及び第二の第一種の複屈折層のNz係数をNzq、
    前記第二種の複屈折層のNz係数をNz2、面内位相差をR2、と定義するとき、
    Nzq<1.40を満たし、−0.35≦Nz2≦0を満たし、かつ108nm≦R2≦168nmを満たすことを特徴とする、請求項2に記載の液晶表示装置。
  4. nx≒ny≧nzの関係を満たす複屈折層を第三種の複屈折層、と定義するとき、
    該第一の第一種の複屈折層と該液晶セルとの間、及び、該液晶セルと該第二の第一種の複屈折層との間に、第三種の複屈折層を有しないことを特徴とする、請求項1に記載の液晶表示装置。
  5. 前記第一及び第二の第一種の複屈折層のNz係数をNzq、
    前記第二種の複屈折層のNz係数をNz2、面内位相差をR2、と定義するとき、
    Nzq<1.40を満たし、−0.35≦Nz2≦0を満たし、かつ108nm≦R2≦168nmを満たすことを特徴とする、請求項4に記載の液晶表示装置。
  6. 更に、前記第二の偏光子よりも表示面側にモスアイフィルムを備え、
    該モスアイフィルムは、可視光の波長よりも小さな突起が表面に多数設けられていることを特徴とする、請求項1〜5のいずれかに記載の液晶表示装置。
JP2010094302A 2009-01-27 2010-04-15 液晶表示装置 Expired - Fee Related JP5248546B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094302A JP5248546B2 (ja) 2009-01-27 2010-04-15 液晶表示装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009015927 2009-01-27
JP2009015927 2009-01-27
JP2010094302A JP5248546B2 (ja) 2009-01-27 2010-04-15 液晶表示装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010514735A Division JP4669909B2 (ja) 2009-01-27 2009-10-09 液晶表示装置

Publications (2)

Publication Number Publication Date
JP2010256900A true JP2010256900A (ja) 2010-11-11
JP5248546B2 JP5248546B2 (ja) 2013-07-31

Family

ID=42395326

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010514735A Expired - Fee Related JP4669909B2 (ja) 2009-01-27 2009-10-09 液晶表示装置
JP2010094302A Expired - Fee Related JP5248546B2 (ja) 2009-01-27 2010-04-15 液晶表示装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010514735A Expired - Fee Related JP4669909B2 (ja) 2009-01-27 2009-10-09 液晶表示装置

Country Status (7)

Country Link
US (3) US8194212B2 (ja)
EP (1) EP2383604B1 (ja)
JP (2) JP4669909B2 (ja)
CN (1) CN102246091B (ja)
BR (1) BRPI0923744A2 (ja)
RU (2) RU2445664C1 (ja)
WO (1) WO2010087058A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527198A (ja) * 2011-08-05 2014-10-09 エルジー・ケム・リミテッド 光学フィルム
JP2014232292A (ja) * 2013-05-02 2014-12-11 富士フイルム株式会社 液晶表示装置
JP2015184629A (ja) * 2014-03-26 2015-10-22 セイコーエプソン株式会社 液晶装置、及び電子機器
WO2016043124A1 (ja) * 2014-09-17 2016-03-24 日本ゼオン株式会社 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246091B (zh) 2009-01-27 2014-03-26 夏普株式会社 液晶显示装置
CN102124401B (zh) * 2009-05-27 2013-08-07 夏普株式会社 液晶显示装置
JP5259824B2 (ja) 2009-07-30 2013-08-07 シャープ株式会社 液晶表示装置
JP5503985B2 (ja) * 2010-01-29 2014-05-28 日東電工株式会社 広視野角円偏光板を備えた液晶表示装置
JP5497546B2 (ja) * 2010-06-14 2014-05-21 日東電工株式会社 液晶パネルおよび液晶表示装置
JP2012042665A (ja) * 2010-08-18 2012-03-01 Sony Corp 光学機能素子および撮像装置
US20130148053A1 (en) * 2010-08-23 2013-06-13 Sharp Kabushiki Kaisha Liquid crystal display panel
US9481452B2 (en) 2010-11-22 2016-11-01 The Boeing Company Hydraulic actuator for semi levered landing gear
US8939400B2 (en) 2011-02-21 2015-01-27 The Boeing Company Air-ground detection system for semi-levered landing gear
WO2012117897A1 (ja) * 2011-02-28 2012-09-07 日本ゼオン株式会社 複層フィルム及び複層フィルムの製造方法
US9274376B2 (en) 2011-03-31 2016-03-01 Sharp Kabushiki Kaisha Liquid crystal display device
US8998133B2 (en) 2011-04-01 2015-04-07 The Boeing Company Landing gear system
KR101916948B1 (ko) * 2011-12-12 2018-11-08 엘지디스플레이 주식회사 표시장치
KR101683940B1 (ko) 2011-12-19 2016-12-08 주식회사 엘지화학 편광판
WO2013111867A1 (ja) * 2012-01-27 2013-08-01 シャープ株式会社 液晶表示装置
JP2013235272A (ja) * 2012-05-10 2013-11-21 Samsung Electronics Co Ltd 多層型光学フィルム、その製造方法及び表示装置
EP2662712B1 (en) * 2012-05-10 2014-11-05 Samsung Electronics Co., Ltd Multilayered optical film, manufacturing method thereof, and display device
FR2999736B1 (fr) * 2012-12-13 2015-01-16 Commissariat Energie Atomique Rotateur de polarisation a faible ellipticite induite
JP2015055680A (ja) * 2013-09-10 2015-03-23 大日本印刷株式会社 偏光板、偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法
JP6897562B2 (ja) * 2015-02-26 2021-06-30 日本ゼオン株式会社 光学フィルム、有機エレクトロルミネッセンス表示装置、及び光学フィルムの製造方法
KR102548297B1 (ko) * 2015-07-27 2023-06-27 삼성전자주식회사 광학 필름 및 표시 장치
US10302828B2 (en) * 2015-07-27 2019-05-28 Samsung Electronics Co., Ltd. Optical film and display device
CN108490675A (zh) * 2018-03-20 2018-09-04 惠州市华星光电技术有限公司 一种液晶显示器及其制备方法
US20190293996A1 (en) * 2018-03-20 2019-09-26 Huizhou China Star Optoelectronics Technology Co., Ltd. Liquid crystal display and mobile terminal
CN110231731B (zh) * 2019-05-16 2021-07-23 武汉华星光电技术有限公司 薄膜晶体管液晶显示器及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099467A (ja) * 2003-09-25 2005-04-14 Seiko Epson Corp 電気光学装置
JP2006251050A (ja) * 2005-03-08 2006-09-21 Toshiba Matsushita Display Technology Co Ltd 液晶表示素子
WO2008001582A1 (fr) * 2006-06-28 2008-01-03 Sharp Kabushiki Kaisha support biréfringent complexe, plaque de polarisation, et dispositif à cristaux liquides

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2092883C1 (ru) * 1995-06-07 1997-10-10 Физический институт им.П.Н.Лебедева РАН Жидкокристаллическая сегнетоэлектрическая дисплейная ячейка
JP2002040428A (ja) 1999-09-28 2002-02-06 Stanley Electric Co Ltd 液晶表示装置
JP3763401B2 (ja) * 2000-05-31 2006-04-05 シャープ株式会社 液晶表示装置
AU2001284825A1 (en) * 2000-08-15 2002-02-25 Reflexite Corporation A light polarizer
JP4080245B2 (ja) 2001-10-12 2008-04-23 シャープ株式会社 液晶表示装置
TW588171B (en) * 2001-10-12 2004-05-21 Fujitsu Display Tech Liquid crystal display device
JP4105437B2 (ja) 2002-01-11 2008-06-25 スタンレー電気株式会社 垂直配向型液晶表示装置
JP2003302532A (ja) * 2002-04-12 2003-10-24 Mitsubishi Chemicals Corp 偏光板およびその製造方法
US7400371B2 (en) * 2004-02-03 2008-07-15 Sumitomo Chemical Company, Limited Liquid crystal display having particular retardation plate
JP3841306B2 (ja) * 2004-08-05 2006-11-01 日東電工株式会社 位相差フィルムの製造方法
WO2007132618A1 (ja) * 2006-05-11 2007-11-22 Nitto Denko Corporation 液晶パネルおよび液晶表示装置
JP5131510B2 (ja) * 2006-07-18 2013-01-30 Nltテクノロジー株式会社 液晶表示装置、及び端末装置
TW200821691A (en) * 2006-07-26 2008-05-16 Toshiba Matsushita Display Tec Liquid crystal display device
JP2008046003A (ja) 2006-08-17 2008-02-28 National Institute For Materials Science Nmrにおける磁場揺動除去方法
JP5057807B2 (ja) 2006-09-14 2012-10-24 旭化成イーマテリアルズ株式会社 アクリル系樹脂およびスチレン系樹脂を含む位相差フィルム
JP4692464B2 (ja) 2006-10-16 2011-06-01 株式会社デンソー 車両用交流発電機
US8199283B2 (en) * 2008-02-27 2012-06-12 Stanley Electric Co., Ltd. Vertical alignment type liquid crystal display device with viewing angle characteristics improved by disposing optical plates
WO2009125515A1 (ja) * 2008-04-07 2009-10-15 シャープ株式会社 液晶表示装置
CN102246091B (zh) * 2009-01-27 2014-03-26 夏普株式会社 液晶显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099467A (ja) * 2003-09-25 2005-04-14 Seiko Epson Corp 電気光学装置
JP2006251050A (ja) * 2005-03-08 2006-09-21 Toshiba Matsushita Display Technology Co Ltd 液晶表示素子
WO2008001582A1 (fr) * 2006-06-28 2008-01-03 Sharp Kabushiki Kaisha support biréfringent complexe, plaque de polarisation, et dispositif à cristaux liquides

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527198A (ja) * 2011-08-05 2014-10-09 エルジー・ケム・リミテッド 光学フィルム
JP2014232292A (ja) * 2013-05-02 2014-12-11 富士フイルム株式会社 液晶表示装置
JP2015184629A (ja) * 2014-03-26 2015-10-22 セイコーエプソン株式会社 液晶装置、及び電子機器
WO2016043124A1 (ja) * 2014-09-17 2016-03-24 日本ゼオン株式会社 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置
JPWO2016043124A1 (ja) * 2014-09-17 2017-06-29 日本ゼオン株式会社 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置
CN107076904A (zh) * 2014-09-17 2017-08-18 日本瑞翁株式会社 圆偏振片、宽频带λ/4波片、以及有机电致发光显示装置
US10254459B2 (en) 2014-09-17 2019-04-09 Zeon Corporation Circular polarizing plate, wideband lambda/4 plate, and organic electroluminescence display device
CN107076904B (zh) * 2014-09-17 2019-11-12 日本瑞翁株式会社 圆偏振片、宽频带λ/4波片、以及有机电致发光显示装置
JP2021005098A (ja) * 2014-09-17 2021-01-14 日本ゼオン株式会社 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置

Also Published As

Publication number Publication date
US20110025966A1 (en) 2011-02-03
US20110181814A1 (en) 2011-07-28
RU2011117146A (ru) 2012-08-20
EP2383604A1 (en) 2011-11-02
US20120188492A1 (en) 2012-07-26
CN102246091A (zh) 2011-11-16
WO2010087058A1 (ja) 2010-08-05
CN102246091B (zh) 2014-03-26
RU2460107C1 (ru) 2012-08-27
JPWO2010087058A1 (ja) 2012-07-26
US8314908B2 (en) 2012-11-20
EP2383604A4 (en) 2012-07-11
RU2445664C1 (ru) 2012-03-20
JP4669909B2 (ja) 2011-04-13
BRPI0923744A2 (pt) 2019-09-24
JP5248546B2 (ja) 2013-07-31
US8194212B2 (en) 2012-06-05
EP2383604B1 (en) 2016-02-24
US8416377B2 (en) 2013-04-09

Similar Documents

Publication Publication Date Title
JP5248546B2 (ja) 液晶表示装置
JP4792545B2 (ja) 液晶表示装置
JP5330529B2 (ja) 液晶表示装置
JP4538096B2 (ja) 液晶表示装置
JP5259824B2 (ja) 液晶表示装置
WO2012133137A1 (ja) 液晶表示装置
WO2012090769A1 (ja) 光学素子、及び、液晶表示装置
WO2013111867A1 (ja) 液晶表示装置
WO2012133155A1 (ja) 液晶表示装置
WO2012133140A1 (ja) 液晶表示装置
WO2012105428A1 (ja) 液晶表示装置
WO2012133141A1 (ja) 液晶表示装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130410

R150 Certificate of patent or registration of utility model

Ref document number: 5248546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees