WO2016031056A1 - 熱収縮性多層フィルム及び熱収縮性ラベル - Google Patents
熱収縮性多層フィルム及び熱収縮性ラベル Download PDFInfo
- Publication number
- WO2016031056A1 WO2016031056A1 PCT/JP2014/072767 JP2014072767W WO2016031056A1 WO 2016031056 A1 WO2016031056 A1 WO 2016031056A1 JP 2014072767 W JP2014072767 W JP 2014072767W WO 2016031056 A1 WO2016031056 A1 WO 2016031056A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- resin
- multilayer film
- adhesive layer
- shrinkable multilayer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F3/00—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
- G09F3/04—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps to be fastened or secured by the material of the label itself, e.g. by thermo-adhesion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/05—5 or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/40—Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2274/00—Thermoplastic elastomer material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/542—Shear strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/546—Flexural strength; Flexion stiffness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/558—Impact strength, toughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
- B32B2307/736—Shrinkable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/738—Thermoformability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/748—Releasability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/75—Printability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2325/00—Polymers of vinyl-aromatic compounds, e.g. polystyrene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2367/00—Polyesters, e.g. PET, i.e. polyethylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2405/00—Adhesive articles, e.g. adhesive tapes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2519/00—Labels, badges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/10—Transparent films; Clear coatings; Transparent materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/08—Copolymers of styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/08—Copolymers of styrene
- C08L25/10—Copolymers of styrene with conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08L67/025—Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08L67/03—Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J125/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
- C09J125/02—Homopolymers or copolymers of hydrocarbons
- C09J125/04—Homopolymers or copolymers of styrene
- C09J125/08—Copolymers of styrene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J125/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
- C09J125/02—Homopolymers or copolymers of hydrocarbons
- C09J125/04—Homopolymers or copolymers of styrene
- C09J125/08—Copolymers of styrene
- C09J125/10—Copolymers of styrene with conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J167/00—Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
- C09J167/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J167/00—Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
- C09J167/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C09J167/025—Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J167/00—Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
- C09J167/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C09J167/03—Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl - and the hydroxy groups directly linked to aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2425/00—Presence of styrenic polymer
- C09J2425/006—Presence of styrenic polymer in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2467/00—Presence of polyester
- C09J2467/006—Presence of polyester in the substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1328—Shrinkable or shrunk [e.g., due to heat, solvent, volatile agent, restraint removal, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
- Y10T428/31797—Next to addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
- Y10T428/31913—Monoolefin polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
- Y10T428/31913—Monoolefin polymer
- Y10T428/31917—Next to polyene polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
- Y10T428/31924—Including polyene monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31931—Polyene monomer-containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31938—Polymer of monoethylenically unsaturated hydrocarbon
Definitions
- the present invention is a heat-shrinkable multilayer that has excellent adhesion between the front and back layers and the intermediate layer not only at room temperature but also at low temperatures, can effectively prevent delamination, and is less likely to leave white streaks at the folds.
- the present invention also relates to a heat-shrinkable label using the heat-shrinkable multilayer film.
- a multilayer film having front and back layers containing a polyester resin and an intermediate layer containing a polystyrene resin has been studied. Preventing peeling is an important issue.
- Patent Document 1 discloses that a polyester resin and a polystyrene resin are used as the adhesive resin of the adhesive layer.
- a heat-shrinkable multilayer film using a mixture of such a heat-shrinkable multilayer film has a problem that the adhesive strength between the front and back layers and the intermediate layer is low, and the adhesive strength between the layers is not sufficient.
- Patent Document 2 discloses that the adhesive resin for the adhesive layer has a high affinity and is compatible with a soft polystyrene resin having a styrene content of 10 to 50%, a modified styrene resin containing a large amount of an elastomer component, or polyester. A heat-shrinkable laminated film using a resin or a mixture thereof is described.
- Patent Document 3 discloses a heat-shrinkable multilayer film using a polyester-based elastomer as a component constituting the adhesive layer.
- a heat-shrinkable multilayer film for example, when the film is strongly folded in the center sealing step when producing a heat-shrinkable label, the heat-shrinkable label is put on a container and thermally shrunk.
- the appearance of the film may be impaired by white streaks remaining in the folds.
- the present invention has excellent adhesion between the front and back layers and the intermediate layer not only at room temperature but also at low temperatures, can effectively prevent delamination, and white stripes remain in the crease after heat shrinking.
- An object is to provide a heat-shrinkable multilayer film that is difficult to heat.
- Another object of the present invention is to provide a heat-shrinkable label using the heat-shrinkable multilayer film.
- the present invention is a heat-shrinkable multilayer film in which a front and back layer containing a polyester-based resin and an intermediate layer containing a polystyrene-based resin are laminated via an adhesive layer, and the adhesive layer is a polystyrene-based film
- the present inventors laminate the front and back layers containing a polyester resin and the intermediate layer containing a polystyrene resin via an adhesive layer containing a polystyrene resin and a polyester elastomer in a predetermined mixing ratio.
- a heat-shrinkable multilayer film that can increase the adhesive strength between the layers (hereinafter also referred to as interlayer strength) not only at room temperature but also in a low-temperature environment and that hardly causes white stripes to remain in the crease portion is obtained.
- interlayer strength a heat-shrinkable multilayer film excellent in adhesiveness and crease whitening-preventing property is also suitably used when used for heat-shrinkable labels of containers such as PET bottles.
- normal temperature means 18 to 28 ° C.
- low temperature means 0 to 10 ° C.
- the heat-shrinkable multilayer film of the present invention has front and back layers and an intermediate layer.
- a front and back layer means both a surface layer and a back surface layer. Therefore, the heat-shrinkable multilayer film of the present invention has a structure in which the intermediate layer is sandwiched between the front surface layer and the back surface layer.
- the front and back layers contain a polyester resin.
- the polyester-based resin include those obtained by polycondensation of a dicarboxylic acid component and a diol component.
- the dicarboxylic acid component is preferably an aromatic polyester resin in which terephthalic acid is 55 mol% or more of 100 mol% of the dicarboxylic acid component.
- the dicarboxylic acid component includes o-phthalic acid, isophthalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, octyl succinic acid, cyclohexanedicarboxylic acid, naphthalenedicarboxylic acid, fumaric acid, maleic acid. , Itaconic acid, decamethylene carboxylic acid, their anhydrides and lower alkyl esters.
- the diol component is not particularly limited.
- Aliphatic diols 2,2-bis (4-hydroxysic Hexyl) propane, 2,2-bis (4-hydroxycyclohexyl) alkylene oxide adducts of propane, 1,4-cyclohexane diol, alicyclic diols such as 1,4-cyclohexanedimethanol.
- polyester resins those containing a component derived from terephthalic acid as the dicarboxylic acid component and those derived from ethylene glycol and / or 1,4-cyclohexanedimethanol as the diol component are among others. preferable.
- aromatic polyester random copolymer resin By using such an aromatic polyester random copolymer resin, excellent shrinkage can be imparted to the heat-shrinkable multilayer film.
- the content of the component derived from ethylene glycol is 60 to 80 mol% and the content of the component derived from 1,4-cyclohexanedimethanol is 10% out of 100 mol% of the diol component. It is preferable to use one that is ⁇ 40 mol%.
- Such an aromatic polyester random copolymer resin may further contain a component derived from diethylene glycol in an amount of 0 to 30 mol%, preferably 1 to 25 mol%, more preferably 2 to 20 mol%.
- diethylene glycol By using diethylene glycol, the tensile elongation at break in the main shrinkage direction of the heat-shrinkable multilayer film is increased, and delamination occurs when the perforation is broken, preventing only the front and back layers on the inner surface from remaining in the container. can do.
- the component derived from diethylene glycol exceeds 30 mol%, the low-temperature shrinkability of the heat-shrinkable multilayer film becomes too high, and wrinkles tend to occur when it is attached to a container.
- the polyester resin containing a component derived from terephthalic acid as the dicarboxylic acid component may be one containing a component derived from 1,4-butanediol as the diol component.
- a polyester resin is generally called a polybutylene terephthalate resin.
- the polybutylene terephthalate resin contains an aromatic polyester random resin containing a component derived from terephthalic acid as the dicarboxylic acid component and a component derived from ethylene glycol and 1,4-cyclohexanedimethanol as the diol component. It is preferably used in combination with a copolymer resin. By using such a mixed resin, more excellent finish can be imparted.
- polybutylene terephthalate-based resin examples include polybutylene terephthalate-based resins composed only of components derived from terephthalic acid and components derived from 1,4-butanediol, dicarboxylic acid components other than components derived from terephthalic acid, and / or Alternatively, it may be a polybutylene terephthalate resin containing a diol component other than the component derived from 1,4-butanediol. In addition, it is preferable that content of dicarboxylic acid components other than the component originating in the said terephthalic acid is 10 mol% or less among 100 mol% of dicarboxylic acid components.
- the content of the diol component other than the component derived from 1,4-butanediol is preferably 10 mol% or less in 100 mol% of the diol component. When it exceeds 10 mol%, the heat resistance of the polybutylene terephthalate resin is lowered, which may be economically disadvantageous.
- the addition amount of the polybutylene terephthalate resin is not particularly limited, but is preferably 30% by weight or less. If it exceeds 30% by weight, the natural shrinkage rate may increase or the rigidity of the film may decrease. *
- the minimum with a preferable glass transition temperature of the polyester-type resin which comprises the said front and back layer is 55 degreeC, and a preferable upper limit is 95 degreeC.
- a preferable glass transition temperature of the polyester-type resin which comprises the said front and back layer is 55 degreeC, and a preferable upper limit is 95 degreeC.
- the glass transition temperature is less than 55 ° C.
- the shrinkage start temperature of the heat-shrinkable multilayer film may become too low, the natural shrinkage rate may increase, or blocking may easily occur.
- the glass transition temperature exceeds 95 ° C. the low temperature shrinkability and shrink finish of the heat shrinkable multilayer film are reduced, the decrease in low temperature shrinkage over time is increased, and resin whitening is likely to occur during stretching. Sometimes it becomes.
- a more preferable lower limit of the glass transition temperature is 60 ° C.
- a more preferable upper limit is 90 ° C.
- a more preferred lower limit is 65 ° C.
- a more preferred upper limit is 85 ° C.
- the preferable lower limit of the tensile elastic modulus of the polyester resin constituting the front and back layers exceeds 1000 MPa, and the preferable upper limit is 4000 MPa.
- the tensile elastic modulus is 1000 MPa or less, the shrinkage start temperature of the heat-shrinkable film may be too low, or the natural shrinkage rate may be increased.
- the tensile elastic modulus exceeds 4000 MPa, the low-temperature shrinkability and shrink finish of the heat-shrinkable multilayer film may decrease, or the decrease in low-temperature shrinkability over time may increase.
- a more preferable lower limit of the tensile elastic modulus is 1500 MPa, and a more preferable upper limit is 3700 MPa.
- the tensile elastic modulus can be measured by a method based on ASTM-D882 (Test A).
- polyester resins constituting the front and back layers include “Easter”, “EmbraceLv” (Eastman Chemical), “Belpet” (Bell Polyester Products), “Nova Duran” (Mitsubishi Engineering). Plastics).
- the polyester-type resin which has the composition mentioned above may be used independently, and 2 or more types of polyester-type resins which have the composition mentioned above may be used together.
- the polyester resin may be a polyester resin having a composition different between the front surface layer and the back surface layer, but is a polyester resin having the same composition in order to suppress troubles caused by curling of the film. It is preferable.
- the above front and back layers are, as necessary, antioxidants, heat stabilizers, ultraviolet absorbers, light stabilizers, lubricants, antistatic agents, antiblocking agents, flame retardants, antibacterial agents, fluorescent whitening agents, colorants, etc.
- the additive may be contained.
- the intermediate layer contains a polystyrene resin.
- the polystyrene resins include aromatic vinyl hydrocarbon-conjugated diene copolymers, aromatic vinyl hydrocarbon-conjugated diene copolymers, and aromatic vinyl hydrocarbon-aliphatic unsaturated carboxylic acid ester copolymers.
- an aromatic vinyl hydrocarbon-conjugated diene copolymer refers to a copolymer containing a component derived from an aromatic vinyl hydrocarbon and a component derived from a conjugated diene.
- the aromatic vinyl hydrocarbon is not particularly limited, and examples thereof include styrene, o-methylstyrene, and p-methylstyrene. These may be used independently and 2 or more types may be used together.
- the conjugated diene is not particularly limited. For example, 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene Etc. These may be used independently and 2 or more types may be used together.
- the aromatic vinyl hydrocarbon-conjugated diene copolymer is particularly excellent in heat shrinkability, it preferably contains a styrene-butadiene copolymer (SBS resin).
- SBS resin styrene-butadiene copolymer
- the aromatic vinyl hydrocarbon-conjugated diene copolymer is prepared by using 2-methyl-1,3-butadiene (isoprene) as the conjugated diene in order to produce a heat-shrinkable multilayer film with less fish eye.
- the styrene-isoprene copolymer (SIS resin) and styrene-isoprene-butadiene copolymer (SIBS) used are preferably contained.
- the aromatic vinyl hydrocarbon-conjugated diene copolymer may contain any one of SBS resin, SIS resin, and SIBS resin alone, or may contain a plurality of them in combination. Moreover, when using two or more of SBS resin, SIS resin, and SIBS resin, each resin may be dry-blended, and each resin is kneaded with a specific composition using an extruder and a compounded resin is used. May be.
- the aromatic vinyl hydrocarbon-conjugated diene copolymer contains SBS resin, SIS resin and SIBS resin alone or in combination
- a heat-shrinkable multilayer film excellent in heat shrinkability can be obtained.
- the styrene content in 100% by weight of the aromatic vinyl hydrocarbon-conjugated diene copolymer is preferably 65 to 90% by weight, and the conjugated diene content is preferably 10 to 35% by weight.
- the styrene content exceeds 90% by weight or the conjugated diene content is less than 10% by weight, it becomes easy to break when tension is applied to the heat-shrinkable multilayer film, It may break without depending on it.
- the styrene content is less than 65% by weight or the conjugated diene content exceeds 35% by weight, foreign matters such as gels are likely to be generated during molding, and the heat-shrinkable multilayer film becomes weak. The handleability may deteriorate.
- the aromatic vinyl hydrocarbon-aliphatic unsaturated carboxylic acid ester copolymer includes a component derived from an aromatic vinyl hydrocarbon and a component derived from an aliphatic unsaturated carboxylic acid ester. It refers to a copolymer.
- the aromatic vinyl hydrocarbon is not particularly limited, and an aromatic vinyl hydrocarbon similar to the aromatic vinyl hydrocarbon exemplified in the aromatic vinyl hydrocarbon-conjugated diene copolymer can be used.
- the aliphatic unsaturated carboxylic acid ester is not particularly limited, and examples thereof include methyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and the like. It is done.
- (meth) acrylate refers to both acrylate and methacrylate.
- the styrene content in 100% by weight of the styrene-butyl acrylate copolymer is 60%. It is preferable that the content is ⁇ 90 wt% and the butyl acrylate content is 10 ⁇ 40 wt%.
- the mixed resin of the aromatic vinyl hydrocarbon-conjugated diene copolymer and the aromatic vinyl hydrocarbon-aliphatic unsaturated carboxylic ester copolymer is not particularly limited, but the aromatic vinyl hydrocarbon-aliphatic It is preferably a mixed resin having a saturated carboxylic acid ester copolymer content of 80% by weight or less.
- the rubber-modified impact-resistant polystyrene is composed of a continuous phase composed of a terpolymer of styrene, alkyl methacrylate and alkyl acrylate, and a dispersed phase composed of a rubber component mainly composed of conjugated diene. Basic.
- Examples of the alkyl methacrylate forming the continuous phase include methyl methacrylate and ethyl methacrylate, and examples of the alkyl acrylate include methyl acrylate, ethyl acrylate, propyl acrylate and butyl acrylate.
- the proportion of styrene in the copolymer forming the continuous phase is preferably 20 to 80% by weight, more preferably 30 to 70% by weight.
- the proportion of alkyl methacrylate is preferably 10 to 50% by weight, more preferably 15 to 40% by weight.
- the proportion of alkyl acrylate is preferably 1 to 30% by weight, and more preferably 5 to 20% by weight.
- the rubber component mainly composed of conjugated diene forming the dispersed phase is preferably polybutadiene or a styrene-butadiene copolymer having a styrene content of 5 to 30% by weight.
- the particle size of the rubber component mainly composed of conjugated diene forming the dispersed phase is preferably 0.1 to 1.2 ⁇ m, more preferably 0.3 to 0.8 ⁇ m. When the particle diameter is less than 0.1 ⁇ m, the impact resistance of the rubber-modified impact-resistant polystyrene may be insufficient, and when it exceeds 1.2 ⁇ m, the transparency of the intermediate layer may be lowered.
- the ratio of the continuous phase composed of a terpolymer of styrene, alkyl methacrylate and alkyl acrylate is 70 to 95% by weight, and the dispersed phase composed of a rubber component mainly composed of conjugated diene.
- the proportion is preferably 5 to 20% by weight.
- the proportion of the dispersed phase is less than 5% by weight, the impact resistance of the rubber-modified impact-resistant polystyrene may be insufficient, and when it exceeds 20% by weight, the transparency of the intermediate layer is lowered. There is.
- the preferable lower limit of the Vicat softening temperature of the polystyrene resin is 60 ° C, and the preferable upper limit is 85 ° C.
- the Vicat softening temperature is less than 60 ° C., the low-temperature shrinkability of the heat-shrinkable multilayer film becomes too high, and wrinkles are likely to occur when it is attached to a container.
- the Vicat softening temperature exceeds 85 ° C., the low-temperature shrinkability of the heat-shrinkable multilayer film is lowered, and an unshrinked portion is likely to be generated when it is attached to a container.
- a more preferable lower limit of the Vicat softening temperature is 65 ° C., and a more preferable upper limit is 80 ° C.
- the Vicat softening temperature can be measured by a method based on JIS K 7206 (1999).
- the preferable lower limit of MFR (melt flow rate) at 200 ° C. of the polystyrene resin is 2 g / 10 minutes, and the preferable upper limit is 15 g / 10 minutes.
- MFR at 200 ° C. is less than 2 g / 10 minutes, film formation becomes difficult. If the MFR at 200 ° C. exceeds 15 g / 10 min, the mechanical strength of the film will be low and it will not be practical.
- the more preferable lower limit of MFR at 200 ° C. is 4 g / 10 minutes, and the more preferable upper limit is 12 g / 10 minutes.
- MFR can be measured by the method based on ISO1133.
- Examples of commercially available polystyrene resins constituting the intermediate layer include “Clearen” (manufactured by Denki Kagaku Kogyo Co., Ltd.), “Asaflex” (manufactured by Asahi Kasei Chemicals), “Styrolux” (manufactured by BASF), “PSJ”. -Polystyrene "(manufactured by PS Japan) and the like.
- the intermediate layer may contain an antioxidant, a heat stabilizer, an ultraviolet absorber, a light stabilizer, a lubricant, an antistatic agent, an antiblocking agent, a flame retardant, an antibacterial agent, a fluorescent whitening agent, a colorant, and the like as necessary.
- the additive may be contained.
- the front and back layers and the intermediate layer are laminated via an adhesive layer containing 20 to 65% by weight of a polystyrene resin and 35 to 80% by weight of a polyester elastomer. It will be.
- an adhesive layer containing 20 to 65% by weight of a polystyrene resin and 35 to 80% by weight of a polyester elastomer.
- polystyrene-type resin used for the said adhesive layer As a polystyrene-type resin used for the said adhesive layer, the thing similar to the polystyrene-type resin used for the intermediate
- the polystyrene resin used for the adhesive layer preferably contains an aromatic vinyl hydrocarbon-conjugated diene copolymer because it is particularly excellent in adhesion, and in particular, a styrene-butadiene copolymer (SBS resin). It is preferable to contain.
- SBS resin styrene-butadiene copolymer
- a higher butadiene content is preferable from the viewpoint of excellent adhesiveness as compared with the styrene-butadiene copolymer used in the intermediate layer.
- 2-methyl-1,3-butadiene was used as the conjugated diene of the aromatic vinyl hydrocarbon-conjugated diene copolymer. It preferably contains a styrene-isoprene copolymer (SIS resin), a styrene-isoprene-butadiene copolymer (SIBS), or the like.
- SIS resin styrene-isoprene copolymer
- SIBS styrene-isoprene-butadiene copolymer
- hydrogenated styrene resins such as styrene-butadiene-butylene copolymer (SBBS resin) and styrene-ethylene-butylene copolymer (SEBS resin) obtained by hydrogenating an aromatic vinyl hydrocarbon-conjugated diene copolymer. May be contained in a range that does not become a main component of the polystyrene-based resin.
- the hydrogenated styrene resin becomes the main component in the polystyrene resin, the transparency tends to be lowered.
- the said polystyrene-type resin may contain any one of SBS resin, SIS resin, and SIBS resin individually, and may contain it combining plurality.
- each resin when using two or more of SBS resin, SIS resin, SIBS resin, SBBS resin, or SEBS resin, each resin may be dry blended, and each resin is kneaded using an extruder with a specific composition.
- a pelletized compound resin may be used.
- the above-mentioned polystyrene resin is an aromatic vinyl hydrocarbon-conjugated diene copolymer and contains SBS resin, SIS resin, and SIBS resin alone or in combination, heat shrinkability particularly excellent in adhesive strength between the respective layers Since a multilayer film can be obtained, it is preferable that the styrene content in the aromatic vinyl hydrocarbon-conjugated diene copolymer 100% by weight is 50 to 90% by weight and the conjugated diene content is 10 to 50% by weight. . If the styrene content is less than 50% by weight or the conjugated diene content exceeds 50% by weight, foreign substances such as gel may be easily generated during the molding process. When the styrene content exceeds 90% by weight or the conjugated diene content is less than 10% by weight, the adhesive strength between the layers tends to decrease.
- the styrene content of the hydrogenated styrene resin is 20 to 80. It is preferable that the content of butadiene-butylene or ethylene-butylene is 20 to 80% by weight. When the styrene content is less than 20% by weight, the adhesive strength between the layers tends to decrease. When the styrene content exceeds 80% by weight, the heat resistance is lowered.
- the preferable lower limit of the Vicat softening temperature of the polystyrene resin used for the adhesive layer is 50 ° C., and the preferable upper limit is 85 ° C.
- the Vicat softening temperature is less than 50 ° C.
- the heat-shrinkable multilayer film is likely to delaminate between layers due to heating when it is attached to a container.
- the Vicat softening temperature exceeds 85 ° C., the adhesive strength of the heat-shrinkable multilayer film tends to decrease.
- the more preferable lower limit of the Vicat softening temperature is 55 ° C
- the further preferable lower limit is 60 ° C
- the particularly preferable lower limit is 65 ° C
- the more preferable upper limit is 80 ° C.
- the Vicat softening temperature can be measured by a method based on JIS K 7206 (1999).
- the preferable lower limit of MFR (melt flow rate) at 200 ° C. of the polystyrene resin used for the adhesive layer is 2 g / 10 minutes, and the preferable upper limit is 15 g / 10 minutes.
- MFR at 200 ° C. is less than 2 g / 10 minutes, the resin stays in the extruder in the continuous production process, and foreign matters such as gels are easily generated.
- the MFR at 200 ° C. exceeds 15 g / 10 minutes, the pressure is not sufficiently applied in the film forming process, and the thickness variation tends to increase.
- the more preferable lower limit of MFR at 200 ° C. is 4 g / 10 minutes, and the more preferable upper limit is 12 g / 10 minutes.
- MFR can be measured by the method based on ISO1133.
- the polyester-based elastomer used in the adhesive layer is composed of polyester as a hard segment and polyether or polyester as a soft segment rich in rubber elasticity.
- a hard segment examples include a block copolymer composed of an aromatic polyester and an aliphatic polyether as a soft segment, or an aromatic polyester as a hard segment and a block copolymer composed of an aliphatic polyester as a soft segment, and the like.
- a saturated polyester elastomer is preferable, and a saturated polyester elastomer containing a polyalkylene ether glycol segment as a soft segment is particularly preferable.
- the saturated polyester elastomer containing the polyalkylene ether glycol segment for example, a block copolymer comprising an aromatic polyester as a hard segment and a polyalkylene ether glycol as a soft segment is preferable.
- the proportion of the segment composed of the polyalkylene ether glycol is preferably 5% by weight, and preferably 90% by weight. is there. If it is less than 5% by weight, the adhesion to the intermediate layer is lowered, and if it exceeds 90% by weight, the adhesion to the front and back layers is lowered.
- a more preferred lower limit is 30% by weight, a more preferred upper limit is 80% by weight, and a still more preferred lower limit is 55% by weight.
- polyalkylene ether glycol examples include polyethylene glycol, poly (propylene ether) glycol, poly (tetramethylene ether) glycol, poly (hexamethylene ether) glycol, and the like.
- the preferable lower limit of the number average molecular weight of the polyalkylene ether glycol is 400, and the preferable upper limit is 6000.
- a more preferred lower limit is 600, a more preferred upper limit is 4000, a still more preferred lower limit is 1000, and a more preferred upper limit is 3000.
- Use of a polyalkylene ether glycol having a number average molecular weight within the above range is preferable because good interlayer strength can be obtained.
- the number average molecular weight refers to that measured by gel permeation chromatography (GPC).
- the method for producing the polyester elastomer is not particularly limited.
- an aliphatic and / or alicyclic diol having 2 to 12 carbon atoms and (ii) an aromatic dicarboxylic acid and / or alicyclic.
- a dicarboxylic acid or an ester thereof and (iii) a polyalkylene ether glycol having a number average molecular weight of 400 to 6000 are used as raw materials to obtain an oligomer by an esterification reaction or a transesterification reaction, and then the oligomer is further polycondensed. Can be produced.
- Examples of the aliphatic and / or alicyclic diol having 2 to 12 carbon atoms include those commonly used as raw materials for polyesters, particularly polyester-based thermoplastic elastomers. Specific examples include ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and the like. Of these, ethylene glycol and 1,4-butanediol are preferable, and 1,4-butanediol is more preferable. These may be used alone or in combination of two or more.
- aromatic dicarboxylic acid and / or alicyclic dicarboxylic acid what is conventionally used as a raw material of polyester, especially as a raw material of a polyester-type thermoplastic elastomer can be used, for example.
- Specific examples include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, cyclohexanedicarboxylic acid, and the like. Of these, terephthalic acid and 2,6-naphthalenedicarboxylic acid are preferable, and terephthalic acid is more preferable. These may be used alone or in combination of two or more.
- polyester elastomers for example, the product name “Primalloy” (manufactured by Mitsubishi Chemical Corporation), the product name “Perprene” (manufactured by Toyobo Co., Ltd.), and the product name “Hytrel” (Toray DuPont) Manufactured) and the like.
- the melting point of the polyester elastomer is preferably 120 to 200 ° C. When the temperature is lower than 120 ° C., the heat resistance is lowered, and when the container is coated as a heat-shrinkable label, peeling easily occurs from the solvent seal portion. When the temperature exceeds 200 ° C., sufficient adhesive strength may not be obtained. . A more preferred lower limit is 130 ° C, and a more preferred upper limit is 190 ° C.
- the melting point can be measured by a method based on JIS-K 7121 (1987) using a differential scanning calorimeter (DSC-60, manufactured by Shimadzu Corporation).
- the melting point of the polyester-based elastomer is caused by the copolymerization ratio or structure of the polyester that is the hard segment and the polyether or polyester that is the soft segment.
- the melting point of a polyester-based elastomer is likely to depend on the copolymerization amount of polyether or polyester, which is a soft segment, and the melting point is low when the copolymerization amount of polyether or polyester is large, and the melting point is high when it is small.
- the melting point of the polyester, which is a hard segment constituting the polyester elastomer can be adjusted by changing the copolymerization component to adjust the melting point of the entire polyester elastomer.
- the preferred lower limit of the JIS-D hardness of the polyester elastomer is 10, and the preferred upper limit is 80.
- the mechanical strength of the adhesive layer is improved.
- the JIS-D hardness is 80 or less, the flexibility and impact resistance of the adhesive layer are improved.
- a more preferred lower limit of JIS-D hardness is 15, a more preferred upper limit is 70, a still more preferred lower limit is 20, and a still more preferred upper limit is 60.
- the JIS-D hardness can be measured by using a durometer type D by a method based on JIS K 6253 (2012).
- the preferable lower limit of the specific gravity of the polyester elastomer is 0.95, and the preferable upper limit is 1.20.
- the specific gravity is 0.95 or more, heat resistance can be imparted, and peeling from the solvent seal portion can be suppressed when the container is coated as a heat-shrinkable label.
- middle layer can be raised by making specific gravity 1.20 or less.
- the more preferable lower limit of the specific gravity is 0.98, and the more preferable upper limit is 1.18.
- the said specific gravity can be measured using the underwater substitution method by the method based on JISK7112 (1999).
- the preferable lower limit of the tensile elastic modulus of the polyester elastomer constituting the adhesive layer is 1 MPa, and the preferable upper limit is 1000 MPa.
- the tensile elastic modulus is less than 1 MPa, the mechanical strength of the adhesive layer tends to decrease. If the tensile modulus exceeds 1000 MPa, the adhesive strength between the front and back layers and the intermediate layer tends to decrease.
- a more preferable lower limit of the tensile elastic modulus is 5 MPa, and a more preferable upper limit is 900 MPa.
- the tensile elastic modulus can be measured by a method based on ASTM-882 (Test A).
- the preferred lower limit of the glass transition temperature of the polyester elastomer constituting the adhesive layer is -70 ° C, and the preferred upper limit is 0 ° C. If the glass transition temperature is less than -70 ° C, resin blocking occurs and handling tends to be poor. When the said glass transition temperature exceeds 0 degreeC, the adhesive strength of a front and back layer and an intermediate
- a more preferable lower limit of the glass transition temperature is ⁇ 60 ° C., and a more preferable upper limit is ⁇ 5 ° C.
- the glass transition temperature of the polyester elastomer can be calculated from a tan ⁇ peak obtained by a method based on JIS K 7244 (1999).
- the polyester elastomer may be a modified product.
- the modified product include a polyester elastomer modified by grafting an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid onto the polyester elastomer.
- the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid include unsaturated carboxylic acids such as acrylic acid, maleic acid, fumaric acid, tetrahydrofumaric acid, itaconic acid, citraconic acid, crotonic acid, and isocrotonic acid; succinic acid 2 -Octen-1-yl anhydride, 2-dodecen-1-yl anhydride, succinic acid 2-octadecene-1-yl anhydride, maleic anhydride, 2,3-dimethylmaleic anhydride, bromomalein Acid anhydride, dichloromaleic acid anhydride, citraconic acid anhydride, itaconic acid anhydride, 1-butene
- the content of the polystyrene resin has a lower limit of 20% by weight and an upper limit of 65% by weight.
- the content of the polystyrene-based resin is less than 20% by weight, when the film is strongly folded to produce a heat-shrinkable label, white streaks remain in the fold portion, and the appearance of the film is impaired. If the content of the polystyrene resin exceeds 65% by weight, sufficient interlayer strength cannot be obtained at low temperatures, and delamination tends to occur during actual use.
- a preferred lower limit for the content of the polystyrene resin is 25% by weight, a more preferred lower limit is 30% by weight, a preferred upper limit is 60% by weight, a more preferred upper limit is 55% by weight, and a particularly preferred upper limit is 49% by weight.
- the content of the polyester elastomer has a lower limit of 35% by weight and an upper limit of 80% by weight.
- the content of the polyester elastomer is less than 35% by weight, sufficient interlayer strength cannot be obtained at low temperatures, and delamination phenomenon tends to occur during actual use.
- the content of the polyester elastomer exceeds 80% by weight, when the film is strongly folded, white streaks remain in the fold portion, and the appearance of the film is impaired.
- a preferred lower limit for the content of the polyester elastomer is 40% by weight, a more preferred lower limit is 45% by weight, a particularly preferred lower limit is 51% by weight, a preferred upper limit is 75% by weight, and a more preferred upper limit is 70% by weight.
- polystyrene resins include styrene-butadiene copolymer (SBS resin), styrene-isoprene copolymer (SIS resin) using 2-methyl-1,3-butadiene (isoprene), styrene- It preferably contains an isoprene-butadiene copolymer (SIBS).
- SIBS isoprene-butadiene copolymer
- the polyester-based elastomer preferably contains a block copolymer composed of polyester as a hard segment and polyalkylene ether glycol as a soft segment, and may be a modified product.
- the adhesive layer may contain an antioxidant, a heat stabilizer, an ultraviolet absorber, a light stabilizer, a lubricant, an antistatic agent, an antiblocking agent, a flame retardant, an antibacterial agent, a fluorescent whitening agent, a colorant and the like as necessary.
- An additive may be contained.
- a preferred lower limit is 10 ⁇ m
- a preferred upper limit is 100 ⁇ m
- a more preferred lower limit is 15 ⁇ m
- a more preferred upper limit is 80 ⁇ m
- a further preferred lower limit is 20 ⁇ m
- a more preferred upper limit is 70 ⁇ m.
- the thickness of the front and back layers is preferably 5% and preferably 25% with respect to the total thickness of the heat-shrinkable multilayer film, and the thickness of the intermediate layer is
- the preferable lower limit for the thickness of the entire heat-shrinkable multilayer film is 50%, and the preferable upper limit is 90%.
- the adhesive layer has a preferable lower limit of 0.3 ⁇ m and a preferable upper limit of 3.0 ⁇ m.
- the thickness of the adhesive layer is less than 0.3 ⁇ m, the adhesive layer may not have sufficient adhesiveness.
- the thickness of the adhesive layer exceeds 3.0 ⁇ m, the heat shrink property and the optical property of the heat shrinkable multilayer film may be deteriorated.
- a more preferable lower limit of the thickness of the adhesive layer is 0.5 ⁇ m, and a more preferable upper limit is 2.0 ⁇ m.
- the thickness of the entire heat-shrinkable multilayer film can be adjusted by subtracting the thickness of the adhesive layer to adjust the thicknesses of the front and back layers and the intermediate layer.
- the heat-shrinkable multilayer film of the present invention has a five-layer structure of surface layer (A) / adhesive layer (E) / intermediate layer (B) / adhesive layer (E) / back surface layer (C),
- the thicknesses of the surface layer (A) and the back surface layer (C) are each preferably 2.0 to 10.0 ⁇ m, More preferably, it is ⁇ 8.0 ⁇ m.
- the thickness of the adhesive layer (E) is preferably 0.3 to 3.0 ⁇ m, and more preferably 0.5 to 2.0 ⁇ m.
- the thickness of the intermediate layer (B) is preferably 19.0 to 35.4 ⁇ m, and more preferably 20.0 to 33.0 ⁇ m.
- the heat-shrinkable multilayer film of the present invention comprises a surface layer (A) / adhesive layer (E) / intermediate layer (B) / adhesive layer (E) / intermediate layer (B) / adhesive layer (E) / intermediate layer (B ) / Adhesive layer (E) / back surface layer (C), adhesive layer (E) / intermediate layer (C) / adhesive layer (E) unit is repeated between the surface layer (A) and the back surface layer (C). It may be configured.
- the thickness of the surface layer (A) and the back layer (C) is preferably 2.0 to 10.0 ⁇ m, respectively. More preferably, it is 0 to 8.0.
- the total thickness of the adhesive layer (E) is preferably 1.0 to 10.0 ⁇ m, and more preferably 1.5 to 8.0 ⁇ m.
- the total thickness of the intermediate layer (B) is preferably 18.0 to 34.0 ⁇ m, and more preferably 19.0 to 31.0 ⁇ m.
- the stress is dispersed and peeled off when an impact is applied to the label. Can be suppressed.
- the shrinkage in the main shrink direction is preferably 5 to 50%, more preferably 8 to 47%, further preferably 10 to 45%, particularly preferably 15 to 10 seconds at 70 ° C. 45% at 80 ° C. for 10 seconds, preferably 35 to 70%, more preferably 38 to 69%, still more preferably 41 to 68%, particularly preferably 43 to 67%, and boiling water for 10 seconds preferably 65 to 85% More preferably 68 to 83%, still more preferably 70 to 82%.
- the outstanding shrinkage finishing property can be provided in a hot wind tunnel and a steam tunnel.
- the interlayer strength at room temperature in the direction (MD direction) orthogonal to the main shrink direction (TD direction) is preferably 0.50 to 2.00 N / 10 mm. If the interlayer strength is less than 0.50 N / 10 mm, delamination may occur when the container is covered with a heat-shrinkable label.
- a more preferable lower limit of the interlayer strength is 0.60 N / 10 mm, and a more preferable lower limit is 0.70 N / 10 mm.
- the heat-shrinkable multilayer film of the present invention preferably has an interlayer strength in the main shrink direction (TD direction) of 0.50 to 2.00 N / 10 mm.
- interlayer strength When the interlayer strength is less than 0.50 N / 10 mm, delamination may occur due to wear when the container is covered with a label and transported by cardboard.
- a more preferable lower limit of the interlayer strength is 0.60 N / 10 mm, and a more preferable lower limit is 0.70 N / 10 mm.
- the heat-shrinkable multilayer film of the present invention preferably has an interlayer strength at a low temperature in the main shrink direction (TD direction) of 0.50 to 2.00 N / 10 mm.
- the interlayer strength is less than 0.50 N / 10 mm, delamination occurs when the label is placed on the mounting machine at low temperature, or delamination occurs due to wear when the container is covered with the label and transported by cardboard at low temperature. May occur.
- a more preferable lower limit of the interlayer strength is 0.60 N / 10 mm, and a more preferable lower limit is 0.70 N / 10 mm.
- the said interlayer strength can measure the interlayer strength when a layer is peeled 180 degree direction in MD direction and TD direction about a measurement sample, for example using a peeling tester or an autograph.
- the method for producing the heat-shrinkable multilayer film of the present invention is not particularly limited, but a method of simultaneously forming each layer by a coextrusion method is preferable.
- the co-extrusion method is T-die co-extrusion
- the lamination method may be any of a feed block method, a multi-manifold method, or a method using these in combination.
- the raw materials constituting the front and back layers, the intermediate layer and the adhesive layer are respectively put into an extruder, and are formed into a sheet shape by a multilayer die.
- a method of stretching uniaxially or biaxially after extruding, cooling and solidifying with a take-up roll for example, a roll stretching method, a tenter stretching method, or a combination thereof can be used.
- the stretching temperature is changed according to the softening temperature of the resin constituting the film, the shrinkage properties required for the heat-shrinkable multilayer film, etc., but the preferred lower limit is 65 ° C., the preferred upper limit is 120 ° C., and the more preferred lower limit is 70 ° C. A more preferred upper limit is 115 ° C.
- the stretching ratio in the main shrinkage direction is changed according to the resin constituting the film, stretching means, stretching temperature, etc., but is preferably 3 times or more, more preferably 4 times or more, preferably 7 times or less, more Preferably it is 6.5 times or less.
- the use of the heat-shrinkable multilayer film of the present invention is not particularly limited, but the heat-shrinkable multilayer film of the present invention has high interlayer strength, and when the overlapping portion is scratched after the container is mounted and when the perforation is torn. Since it suppresses delamination and is excellent in transparency, it is suitably used as a base film for heat-shrinkable labels that are mounted on containers such as PET bottles and metal bottles.
- a heat-shrinkable label using the heat-shrinkable multilayer film of the present invention is also one aspect of the present invention.
- the present invention it is possible to provide a heat-shrinkable multilayer film that has excellent adhesion between the front and back layers and the intermediate layer, can effectively prevent delamination, and is less likely to leave white stripes at the crease portion. it can. Moreover, the heat-shrinkable multilayer film of the present invention does not cause zipping because there is no unevenness in interlayer strength even if delamination occurs. Furthermore, the heat-shrinkable multilayer film of the present invention has a feature that the heat-shrinkable label is hardly peeled off because delamination does not occur at the interface between the front and back layers and the adhesive layer.
- the heat-shrinkable multilayer film of the present invention has an advantage that it is excellent in transparency and can maintain transparency even after being mounted. Furthermore, according to this invention, the heat-shrinkable label which uses this heat-shrinkable multilayer film can be provided. In the heat-shrinkable label of the present invention, delamination hardly occurs at the solvent seal portion, and the heat-shrinkable label can be effectively prevented from peeling off.
- PET-1 100 mol% of terephthalic acid is used as the dicarboxylic acid component, 65 mol% of the component derived from ethylene glycol is used as the diol component, 12 mol% of the component derived from diethylene glycol is derived from 1,4-cyclohexanedimethanol
- Aromatic polyester random copolymer resin (glass transition temperature of 69 ° C.) containing 23 mol% of the component and tensile modulus of 2000 MPa
- PET-2 100 mol% of terephthalic acid is used as the dicarboxylic acid component, 68 mol% of the component derived from ethylene glycol is used as the diol component, 2 mol% of the component derived from diethylene glycol is derived from 1,4-cyclohexanedimethanol
- Aromatic polyester random copolymer resin (glass transition temperature 85 ° C.) containing 30 mol% of components and having a tensile modulus of 1950 MPa (Polystyrene
- TPE-2 A polyester elastomer composed of polyester as a hard segment and polyalkylene ether glycol as a soft segment and modified with maleic acid (melting point 183 ° C., specific gravity 1.07, JIS-D hardness 39, (Glass transition temperature -47 ° C, tensile modulus 35MPa)
- the glass transition temperature of each polyester resin was measured with a differential scanning calorimeter (manufactured by Shimadzu Corporation, DSC-60) by a method based on JIS K 7121 (1987). Vicat softening temperature is a method according to JIS K 7206 (1999). After collecting a test piece from each polystyrene resin, a speed of 120 ° C./h is applied while applying a 10 N load to the needle-shaped indenter placed on the test piece. The temperature was measured by checking the temperature when the needle-like indenter entered 1 mm. The MFR was measured by melting each polystyrene resin at 200 ° C.
- the JIS-D hardness was measured with a durometer for each polyester elastomer by a method based on JIS-K 6235 (2012) (Asker Rubber Hardness Tester D type, manufactured by Kobunshi Keiki Co., Ltd.).
- the glass transition temperature of each polyester-based elastomer was measured in a tensile mode using a dynamic viscoelasticity measuring apparatus (Q800 manufactured by TA Instruments Japan Co., Ltd.) in accordance with JIS K 7244 (1999).
- the tensile modulus was measured by a method based on ASTM-D882, using a non-stretched sheet of a polyester resin and a polyester elastomer using a strograph VE10 manufactured by Toyo Seiki Seisakusho.
- Example 1 A polyester resin (PET-1) was used as the resin constituting the front and back layers.
- Polystyrene resin (PS-1) was used as the resin constituting the intermediate layer.
- As the resin constituting the adhesive layer polystyrene resin (PS-5) 60% by weight (60 parts by weight) and polyester elastomer (TPE-1) 40% by weight (40 parts by weight) were used. These were put into an extruder having a barrel temperature of 160 to 250 ° C., extruded from a multilayer die at 250 ° C. into a sheet having a five-layer structure, and cooled and solidified by a take-up roll at 30 ° C.
- a heat-shrinkable multilayer film having a main shrinkage direction of TD was obtained.
- the obtained heat-shrinkable multilayer film has a total thickness of 35 ⁇ m, and has a front and back layer (4.0 ⁇ m) / adhesive layer (0.8 ⁇ m) / intermediate layer (25.4 ⁇ m) / adhesive layer (0.8 ⁇ m) / front and back It was a 5-layer structure of layers (4.0 ⁇ m).
- Example 2 As the resin constituting the adhesive layer, 60% by weight of a polystyrene resin (PS-6) and 40% by weight of a polyester elastomer (TPE-1) were used. Others are the same as in Example 1, and the total thickness is 35 ⁇ m, and the front and back layers (3.7 ⁇ m) / adhesive layer (0.7 ⁇ m) / intermediate layer (26.2 ⁇ m) / adhesive layer (0.7 ⁇ m) / front and back A five-layer film having a layer (3.7 ⁇ m) was obtained.
- PS-6 polystyrene resin
- TPE-1 polyester elastomer
- Example 3 Polystyrene resin (PS-2) was used as the resin constituting the intermediate layer.
- resin constituting the adhesive layer polystyrene resin (PS-5) 50% by weight and polyester elastomer (TPE-2) 50% by weight were used. Others were the same as in Example 1, and the total thickness was 35 ⁇ m.
- Example 4 Polystyrene resin (PS-2) was used as the resin constituting the intermediate layer.
- As the resin constituting the adhesive layer 40% by weight of a polystyrene resin (PS-5) and 60% by weight of a polyester elastomer (TPE-1) were used. Others were the same as in Example 1, and the total thickness was 35 ⁇ m, and the front and back layers (4.0 ⁇ m) / adhesive layer (0.8 ⁇ m) / intermediate layer (25.4 ⁇ m) / adhesive layer (0.8 ⁇ m) / front and back A five-layer film having a layer (4.0 ⁇ m) was obtained.
- Example 5 Polystyrene resin (PS-3) was used as the resin constituting the intermediate layer.
- As the resin constituting the adhesive layer 40% by weight of polystyrene resin (PS-5) and 60% by weight of polyester elastomer (TPE-2) were used. Others were the same as in Example 1, and the total thickness was 35 ⁇ m. Front and back layers (5.0 ⁇ m) / adhesive layer (0.8 ⁇ m) / intermediate layer (23.4 ⁇ m) / adhesive layer (0.8 ⁇ m) / front and back A film having a five-layer structure (5.0 ⁇ m) was obtained.
- Example 6 A polyester resin (PET-2) was used as the resin constituting the front and back layers.
- Polystyrene resin (PS-4) was used as the resin constituting the intermediate layer.
- As the resin constituting the adhesive layer 20% by weight of a polystyrene resin (PS-5) and 80% by weight of a polyester elastomer (TPE-2) were used. Others were the same as in Example 1, and the total thickness was 35 ⁇ m.
- Front and back layers (3.5 ⁇ m) / adhesive layer (0.8 ⁇ m) / intermediate layer (26.4 ⁇ m) / adhesive layer (0.8 ⁇ m) / front and back
- a film having a five-layer structure of layers (3.5 ⁇ m) was obtained.
- Example 7 A polyester resin (PET-2) was used as the resin constituting the front and back layers. Polystyrene resin (PS-3) was used as the resin constituting the intermediate layer. As the resin constituting the adhesive layer, 50% by weight of a polystyrene resin (PS-6) and 50% by weight of a polyester elastomer (TPE-1) were used. Others were the same as in Example 1, and the total thickness was 35 ⁇ m, and the front and back layers (4.0 ⁇ m) / adhesive layer (0.8 ⁇ m) / intermediate layer (25.4 ⁇ m) / adhesive layer (0.8 ⁇ m) / front and back A five-layer film having a layer (4.0 ⁇ m) was obtained.
- Example 8 A polyester resin (PET-2) was used as the resin constituting the front and back layers.
- Polystyrene resin (PS-2) was used as the resin constituting the intermediate layer.
- As the resin constituting the adhesive layer 25% by weight of polystyrene resin (PS-7) and 75% by weight of polyester elastomer (TPE-2) were used. Others were the same as in Example 1, and the total thickness was 35 ⁇ m.
- Front and back layers (3.5 ⁇ m) / adhesive layer (0.8 ⁇ m) / intermediate layer (26.4 ⁇ m) / adhesive layer (0.8 ⁇ m) / front and back
- a film having a five-layer structure of layers (3.5 ⁇ m) was obtained.
- Example 9 A polyester resin (PET-1) was used as the resin constituting the front and back layers.
- Polystyrene resin (PS-1) was used as the resin constituting the intermediate layer.
- As the resin constituting the adhesive layer 20% by weight of polystyrene resin (PS-5), 15% by weight of polystyrene resin (PS-8) and 65% by weight of polyester elastomer (TPE-1) were used. Others were the same as in Example 1, and the total thickness was 40 ⁇ m.
- Front and back layers (4.5 ⁇ m) / adhesive layer (0.9 ⁇ m) / intermediate layer (29.2 ⁇ m) / adhesive layer (0.9 ⁇ m) / front and back
- a film having a five-layer structure (4.5 ⁇ m) was obtained.
- Comparative Example 1 As the resin constituting the adhesive layer, 75% by weight of polystyrene resin (PS-5) and 25% by weight of polyester elastomer (TPE-1) were used. Others were the same as in Example 1, and the total thickness was 40 ⁇ m, and the front and back layers (5.5 ⁇ m) / adhesive layer (0.8 ⁇ m) / intermediate layer (27.4 ⁇ m) / adhesive layer (0.8 ⁇ m) / front and back A film having a five-layer structure of layers (5.5 ⁇ m) was obtained.
- PS-5 polystyrene resin
- TPE-1 polyester elastomer
- Example 3 A polyester resin (PET-2) was used as the resin constituting the front and back layers. Polystyrene resin (PS-2) was used as the resin constituting the intermediate layer. Polyester elastomer (TPE-2) was used as the resin constituting the adhesive layer. Others were the same as in Example 1, and the total thickness was 35 ⁇ m. Front and back layers (5.0 ⁇ m) / adhesive layer (0.7 ⁇ m) / intermediate layer (23.6 ⁇ m) / adhesive layer (0.7 ⁇ m) / front and back A film having a five-layer structure of layers (5.0 ⁇ m) was obtained.
- Comparative Example 4 As the resin constituting the adhesive layer, 25% by weight of polystyrene resin (PS-5) and 75% by weight of polyester resin (PET-1) were used. Others were the same as in Example 1, and the total thickness was 40 ⁇ m. Front and back layers (5.0 ⁇ m) / adhesive layer (0.8 ⁇ m) / intermediate layer (28.4 ⁇ m) / adhesive layer (0.8 ⁇ m) / front and back A film having a five-layer structure of layers (5.0 ⁇ m) was obtained.
- PS-5 polystyrene resin
- PET-1 polyester resin
- FIG. 3 is a schematic diagram of a heat-shrinkable multilayer film when peeling occurs at the interface between the intermediate layer and the adhesive layer
- FIG. 4 shows a heat-shrinkable multilayer film when peeling occurs at the interface between the surface layer and the adhesive layer.
- FIG. 3 it is a schematic diagram of a film.
- FIG. 4 when delamination occurs at the interface between the intermediate layer and the adhesive layer, even if there is a scratch by the mounting machine, the scratch must not penetrate the surface layer and the adhesive layer. Further, delamination does not proceed and label peeling hardly occurs.
- FIG. 4 when delamination occurs at the interface between the surface layer and the adhesive layer, delamination proceeds only by scratching the surface layer, causing label peeling.
- Stepped traces are made on the peeled front and back layers. None: Stepped traces do not appear on the peeled front and back layers.
- the resistance to delamination when the load is applied in the TD direction of the heat-shrinkable label with a mounting machine or the like in a low-temperature environment can be understood.
- the magnitude of the variation in the delamination strength in a low temperature environment can be understood.
- Presence of zipping at low temperature A heat shrinkable multilayer film was cut into a size of 100 mm length ⁇ 10 mm width, left at low temperature (5 ° C.) for 10 minutes, and then a part of the film edge as in the measurement of interlayer strength was delaminated. The presence or absence of zipping was evaluated according to the same criteria as the presence or absence of zipping at room temperature.
- the obtained heat-shrinkable multilayer film was cut into a width of 227 mm in the TD direction, and a solvent prepared by mixing 30 parts by weight of cyclohexane with 100 parts by weight of 1,4-dioxolane was used as an MD. It was applied with a width of 3 mm so as to be parallel to the direction, and was flatly folded and bonded so as to have a width in the TD direction of 108 mm to form a cylinder. As shown in FIG. 5, the cylindrical heat-shrinkable multilayer film was cut into a width of 100 mm in the MD direction to obtain a heat-shrinkable label.
- FIG. 5 the cylindrical heat-shrinkable multilayer film was cut into a width of 100 mm in the MD direction to obtain a heat-shrinkable label.
- FIG. 5 is a schematic diagram of a heat-shrinkable label used for label bending evaluation.
- a portion where both ends of the label are bonded with a solvent is also referred to as a “solvent seal portion”.
- both ends of the seal portion of the heat-shrinkable label were held with fingers in a low temperature (5 ° C.) atmosphere, and the label was bent 20 times so that a force was applied in the TD direction.
- the label was bent at six locations on the heat-shrinkable label to obtain a heat-shrinkable label after bending.
- the heat-shrinkable label after bending was immersed in boiling water for 10 seconds in a 275 g bottle can container having a round shape of about 66 mm in diameter, and the appearance of the bonded part when heat-shrinked and coated on the container was evaluated according to the following criteria.
- ⁇ No delamination occurred in the solvent seal portion in all 10 labels. ⁇ : delamination occurred at the solvent seal portion in 1 to 2 labels out of 10 labels. X: In three or more labels out of 10 labels, delamination occurs at the solvent seal portion.
- the cut sample was creased by pressing the rubber roller twice at a speed of 2 seconds / 100 mm with a load of 2 kg in parallel with the MD direction at room temperature (23 ° C.) so that the printing surface was inside. Thereafter, the cut sample was developed, and the crease was restored by pressing the rubber roller once at a speed of 2 seconds / 100 mm with a 2 kg load. After that, using a jig that can regulate the shrinkage rate in the TD direction, the sample was immersed in warm water at 75 ° C. for 7 seconds and shrunk by 5% in the TD direction. The appearance of the folds at that time was evaluated according to the following criteria. The appearance was evaluated by irradiating fluorescent light from an angle of 45 degrees on the sample, and 10 persons visually observing the position at an angle of 45 degrees opposite to the fluorescent lamp. An example when the whitening of the folds cannot be observed is shown in FIG.
- the adhesiveness between the front and back layers and the intermediate layer is excellent not only at room temperature but also at low temperatures, the delamination can be effectively prevented, and the white stripes are formed on the crease portion after heat shrinkage.
- the heat-shrinkable label which uses this heat-shrinkable multilayer film can be provided.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Laminated Bodies (AREA)
Abstract
Description
熱収縮性ラベルには、低温収縮性に優れることからポリスチレン系樹脂フィルムが多用されている。しかしながら、ポリスチレン系樹脂フィルムには、耐熱性及び耐溶剤性が不充分であるという問題がある。そこで、耐熱性及び耐溶剤性に優れたポリエステル系樹脂フィルムを用いる試みもなされているが、ポリエステル系樹脂フィルムは低温収縮性が悪く急激に収縮することから、容器に装着する際には皺が発生しやすい。また、熱収縮性ラベルには、容器をリサイクルするために使用後の容器から容易に熱収縮性ラベルを引き剥がせるようにミシン目が設けられていることが多いが、ポリエステル系樹脂フィルムはこのミシン目におけるカット性が悪い。
しかしながら、このような熱収縮性多層フィルムでは、例えば、熱収縮性ラベルを作製する時のセンターシール工程においてフィルムが強く折られた際に、熱収縮性ラベルを容器に被せ、熱収縮させた後にも、折り目部分に白色スジが残ることで、フィルムの外観が損なわれることがあった。
以下、本発明を詳述する。
本明細書中において、「常温」とは18~28℃をいい、「低温」とは0~10℃をいう。
なお、本明細書中、表裏層とは、表面層と裏面層との両方を意味する。従って、本発明の熱収縮性多層フィルムは、中間層が表面層と裏面層とに挟まれた構造を有する。
上記ポリエステル系樹脂としては、例えば、ジカルボン酸成分とジオール成分とを縮重合させることにより得られるものが挙げられる。特に上記ジカルボン酸成分として、ジカルボン酸成分100モル%のうち、テレフタル酸が55モル%以上である芳香族ポリエステル系樹脂が好ましい。さらに上記ジカルボン酸成分として、上記テレフタル酸以外に、o-フタル酸、イソフタル酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、オクチルコハク酸、シクロヘキサンジカルボン酸、ナフタレンジカルボン酸、フマル酸、マレイン酸、イタコン酸、デカメチレンカルボン酸、これらの無水物及び低級アルキルエステル等を含むことができる。
収縮性をより高めたい場合には、ジオール成分100モル%のうち、エチレングリコールに由来する成分の含有量が60~80モル%、1,4-シクロヘキサンジメタノールに由来する成分の含有量が10~40モル%であるものを用いることが好ましい。
上記ポリブチレンテレフタレート系樹脂は、上記ジカルボン酸成分としてテレフタル酸に由来する成分を含有し、かつ、ジオール成分としてエチレングリコール及び1,4-シクロヘキサンジメタノールに由来する成分を含有する芳香族ポリエステル系ランダム共重合樹脂と、併用されることが好ましい。このような混合樹脂を用いることでより優れた仕上り性を付与することができる。
なお、上記テレフタル酸に由来する成分以外のジカルボン酸成分の含有量は、ジカルボン酸成分100モル%のうち、10モル%以下であることが好ましい。10モル%を超えると、上記ポリブチレンテレフタレート系樹脂の耐熱性が低下し、経済的にも不利となることがある。また、上記1,4-ブタンジオールに由来する成分以外のジオール成分の含有量は、ジオール成分100モル%のうち、10モル%以下であることが好ましい。10モル%を超えると、上記ポリブチレンテレフタレート系樹脂の耐熱性が低下し、経済的にも不利となることがある。
なお、上記ポリエステル系樹脂のガラス転移温度は、JIS K 7121(1987)に準拠した方法で測定することができる。
なお、上記引張弾性率は、ASTM-D882(TestA)に準拠した方法で測定することができる。
上記ポリスチレン系樹脂としては、例えば、芳香族ビニル炭化水素-共役ジエン共重合体、芳香族ビニル炭化水素-共役ジエン共重合体と芳香族ビニル炭化水素-脂肪族不飽和カルボン酸エステル共重合体との混合樹脂、ゴム変性耐衝撃性ポリスチレン等が挙げられる。上記ポリスチレン系樹脂を用いることで、本発明の熱収縮性多層フィルムは低温から収縮を開始することができ、また、高収縮性を有する。
上記芳香族ビニル炭化水素は特に限定されず、例えば、スチレン、o-メチルスチレン、p-メチルスチレン等が挙げられる。これらは単独で用いられてもよく、2種以上が併用されてもよい。上記共役ジエンは特に限定されず、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等が挙げられる。これらは単独で用いられてもよく、2種以上が併用されてもよい。
なお、上記芳香族ビニル炭化水素-共役ジエン共重合体は、SBS樹脂、SIS樹脂及びSIBS樹脂のうちのいずれか1つを単独で含有してもよく、複数を組み合わせて含有してもよい。また、SBS樹脂、SIS樹脂及びSIBS樹脂のうちの複数を用いる場合には、各樹脂をドライブレンドしてもよく、各樹脂を特定の組成にて押出機を用いて練り上げペレタイズしたコンパウンド樹脂を用いてもよい。
上記芳香族ビニル炭化水素は特に限定されず、上記芳香族ビニル炭化水素-共役ジエン共重合体において例示した芳香族ビニル炭化水素と同様の芳香族ビニル炭化水素を用いることができる。上記脂肪族不飽和カルボン酸エステルは特に限定されず、例えば、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。ここで、(メタ)アクリレートとは、アクリレートとメタクリレートとの両方を示す。
上記連続相を形成する共重合体中のスチレンの割合は20~80重量%が好ましく、30~70重量%がより好ましい。メタクリル酸アルキルの割合は10~50重量%が好ましく、15~40重量%がより好ましい。アクリル酸アルキルの割合は1~30重量%が好ましく、5~20重量%がより好ましい。
上記分散相を形成する共役ジエンを主体とするゴム成分の粒子径は0.1~1.2μmであることが好ましく、更に好ましくは0.3~0.8μmである。粒子径が0.1μmを下回ると、上記ゴム変性耐衝撃性ポリスチレンの耐衝撃性が不充分となることがあり、1.2μmを上回ると、上記中間層の透明性が低下することがある。
このような接着層を用いることで、常温のみならず低温においても、熱収縮性多層フィルムの各層間の接着強度を高めることができるとともに、熱収縮性多層フィルムを折り曲げたときに折り目部分に生じる白色スジを抑制することができる。
なお、上記ポリスチレン系樹脂は、SBS樹脂、SIS樹脂及びSIBS樹脂のうちのいずれか1つを単独で含有してもよく、複数を組み合わせて含有してもよい。また、SBS樹脂、SIS樹脂、SIBS樹脂、SBBS樹脂又はSEBS樹脂のうちの複数を用いる場合には、各樹脂をドライブレンドしてもよく、各樹脂を特定の組成にて押出機を用いて練り上げペレタイズしたコンパウンド樹脂を用いてもよい。
上記ポリアルキレンエーテルグリコールセグメントを含有する飽和ポリエステル系エラストマーとしては、例えば、ハードセグメントとしての芳香族ポリエステルと、ソフトセグメントとしてのポリアルキレンエーテルグリコールとからなるブロック共重合体が好ましい。
なお、上記融点はJIS-K 7121(1987)に準拠した方法で、示差走査熱量計(島津製作所社製、DSC-60)を用いて測定することが出来る。
また、ポリエステル系エラストマーを構成するハードセグメントであるポリエステルの融点を共重合成分の変更により調整し、ポリエステル系エラストマー全体の融点を調整することが出来る。
また、ソフトセグメントであるポリエーテル又はポリエステルの分子量が小さくなると得られるポリエステル系エラストマーのブロック性が低下するため融点が低下しやすくなる。
なお、上記JIS-D硬度は、JIS K 6253(2012)に準拠した方法でデュロメータ タイプDを用いることにより測定することができる。
上記比重のより好ましい下限は0.98、より好ましい上限は1.18である。
なお、上記比重はJIS K 7112(1999)に準拠した方法で水中置換法を用いて測定することが出来る。
上記α,β-エチレン性不飽和カルボン酸としては、例えば、アクリル酸、マレイン酸、フマル酸、テトラヒドロフマル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸等の不飽和カルボン酸;コハク酸2-オクテン-1-イル無水物、コハク酸2-ドデセン-1-イル無水物、コハク酸2-オクタデセン-1-イル無水物、マレイン酸無水物、2,3-ジメチルマレイン酸無水物、ブロモマレイン酸無水物、ジクロロマレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、1-ブテン-3,4-ジカルボン酸無水物、1-シクロペンテン-1,2-ジカルボン酸無水物、1,2,3,6-テトラヒドロフタル酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、exo-3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、メチル-5-ノルボルネン-2,3-ジカルボン酸無水物、endo-ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸無水物等の不飽和カルボン酸無水物が挙げられる。これらのなかでは、反応性が高いことから、酸無水物が好ましい。
上記ポリスチレン系樹脂の含有量が20重量%未満であると、熱収縮性ラベルを作製するためにフィルムが強く折られた場合に、折り目部分に白色スジが残り、フィルムの外観が損なわれる。上記ポリスチレン系樹脂の含有量が65重量%を超えると、低温で充分な層間強度が得られず、実使用時において層間剥離が発生しやすくなる。上記ポリスチレン系樹脂の含有量の好ましい下限は25重量%、より好ましい下限は30重量%、好ましい上限は60重量%、より好ましい上限は55重量%、特に好ましい上限は49重量%である。
上記ポリエステル系エラストマーの含有量が35重量%未満であると、低温で十分な層間強度が得られず、実使用時において層間剥離現象が発生しやすくなる。上記ポリエステル系エラストマーの含有量が80重量%を超えると、フィルムが強く折られた際に、折り目部分に白色スジが残り、フィルムの外観が損なわれる。上記ポリエステル系エラストマーの含有量の好ましい下限は40重量%、更に好ましい下限は45重量%、特に好ましい下限は51重量%、好ましい上限は75重量%、更に好ましい上限は70重量%である。
また、本発明の熱収縮性多層フィルムにおいて、上記表裏層の厚さは、熱収縮性多層フィルム全体の厚みに対する好ましい下限が5%、好ましい上限が25%であり、上記中間層の厚さは、熱収縮性多層フィルム全体の厚みに対する好ましい下限が50%、好ましい上限が90%である。上記表裏層及び上記中間層の厚さが上記範囲内であると、高い層間強度、高い透明性等が得られる。
なお、上記接着層の厚さ分を差し引いて上記表裏層及び上記中間層の厚さを調整することにより、熱収縮性多層フィルム全体の厚さを調整することができる。
また、本発明の熱収縮性多層フィルムは、主収縮方向(TD方向)の層間強度が0.50~2.00N/10mmであることが好ましい。上記層間強度が0.50N/10mm未満であると、容器にラベルを被覆しダンボール輸送をした際に磨耗により層間剥離が発生することがある。上記層間強度のより好ましい下限は0.60N/10mm、更に好ましい下限は0.70N/10mmである。
なお、上記層間強度は、例えば、測定サンプルについて、MD方向、TD方向に層間を180度方向に剥離させたときの層間強度を剥離試験機やオートグラフを用いて測定することができる。
上記延伸の方法としては、例えば、ロール延伸法、テンター延伸法又はこれらの組み合わせを用いることができる。延伸温度はフィルムを構成する樹脂の軟化温度、熱収縮性多層フィルムに要求される収縮特性等に応じて変更されるが、好ましい下限は65℃、好ましい上限は120℃、より好ましい下限は70℃、より好ましい上限は115℃である。主収縮方向の延伸倍率はフィルムを構成する樹脂、延伸手段、延伸温度等に応じて変更されるが、好ましくは3倍以上、より好ましくは4倍以上であって、好ましくは7倍以下、より好ましくは6.5倍以下である。このような延伸温度及び延伸倍率とすることにより、優れた厚み精度を達成することができ、また、ミシン目を裂いたときに層間剥離が生じて内面側の表裏層のみが容器に残ってしまうことを防止することができる。
また、本発明の熱収縮性多層フィルムは、仮に層間剥離が発生した場合でも、層間強度にムラがないことからジッピングが発生しない。更に、本発明の熱収縮性多層フィルムは、表裏層と接着層との界面での層間剥離が生じないため、熱収縮性ラベルの剥がれには至り難いという特徴を有する。加えて、本発明の熱収縮性多層フィルムは、透明性に優れ、装着後も透明性を維持できるという利点を有する。
更に、本発明によれば、該熱収縮性多層フィルムを用いてなる熱収縮性ラベルを提供することができる。本発明の熱収縮性ラベルは、溶剤シール部分において、層間剥離が生じ難く、熱収縮性ラベルの剥がれを効果的に防止することができる。
実施例及び比較例においては、以下の原料を用いた。
・PET-1:ジカルボン酸成分としてテレフタル酸100モル%を用い、ジオール成分としてエチレングリコールに由来する成分を65モル%、ジエチレングリコールに由来する成分を12モル%、1,4-シクロヘキサンジメタノールに由来する成分を23モル%含有し、引張弾性率が2000MPaである芳香族ポリエステル系ランダム共重合樹脂(ガラス転移温度69℃)
・PET-2:ジカルボン酸成分としてテレフタル酸100モル%を用い、ジオール成分としてエチレングリコールに由来する成分を68モル%、ジエチレングリコールに由来する成分を2モル%、1,4-シクロヘキサンジメタノールに由来する成分を30モル%含有し、引張弾性率が1950MPaである芳香族ポリエステル系ランダム共重合樹脂(ガラス転移温度85℃)
(ポリスチレン系樹脂)
・PS-1:スチレン-ブタジエン共重合体(スチレン78重量%、ブタジエン22重量%:ビカット軟化温度72℃、MFR5.6g/10分)
・PS-2:スチレン-ブタジエン共重合体(スチレン80重量%、ブタジエン20重量%:ビカット軟化温度75℃、MFR5.5g/10分)
・PS-3:スチレン-ブタジエン共重合体(スチレン84重量%、ブタジエン16重量%:ビカット軟化温度75℃、MFR6.2g/10分)
・PS-4:スチレン-ブタジエン共重合体(スチレン80重量%、ブタジエン20重量%:ビカット軟化温度76℃、MFR9.7g/10分)
・PS-5:スチレン-ブタジエン共重合体(スチレン71重量%、ブタジエン29重量%:ビカット軟化温度72℃、MFR6.1g/10分)
・PS-6:スチレン-ブタジエン共重合体(スチレン72重量%、ブタジエン28重量%:ビカット軟化温度78℃、MFR7.2g/10分)
・PS-7:スチレン-ブタジエン共重合体(スチレン76重量%、ブタジエン24重量%:ビカット軟化温度80℃、MFR8.4g/10分)
・PS-8:スチレン-エチレン-ブチレン共重合体(スチレン67重量%、エチレン-ブチレン33重量%:MFR5.3g/10分、JIS-D硬度71)
(ポリエステル系エラストマー)
・TPE-1:ハードセグメントとしてのポリエステルと、ソフトセグメントとしてのポリアルキレンエーテルグリコールとから構成されたポリエステル系エラストマー(融点163℃、比重1.15、JIS-D硬度40、ガラス転移温度-35℃、引張弾性率38MPa)
・TPE-2:ハードセグメントとしてのポリエステルと、ソフトセグメントとしてのポリアルキレンエーテルグリコールとから構成され、マレイン酸変性されているポリエステル系エラストマー(融点183℃、比重1.07、JIS-D硬度39、ガラス転移温度-47℃、引張弾性率35MPa)
ビカット軟化温度は、JIS K 7206(1999)に準拠した方法で、各ポリスチレン系樹脂から試験片を採取した後、試験片に置いた針状圧子に10Nの荷重を加えながら120℃/hの速度で昇温し、針状圧子が1mm進入したときの温度を確認することにより測定した。
MFRは、ISO1133に準拠した方法で、各ポリスチレン系樹脂を200℃にて溶融し5kg荷重条件下での10分換算での樹脂の吐出量を計測することにより測定した。
融点は、JIS-K 7121(1987)に準拠した方法で、各ポリエステル系エラストマーを示差走査熱量計(島津製作所社製、DSC-60)にて、昇温速度10℃/分の条件で測定した。
比重は、JIS K 7112(1999)に準拠した方法で、各ポリエステル系エラストマーを浸漬液にエタノールを用いて水中置換法にて測定した(アルファーミラージュ社製、電子比重計MD-300S)。
JIS-D硬度は、JIS-K 6235(2012)に準拠した方法で、各ポリエステル系エラストマーをデュロメーターにて測定した(高分子計器社製、アスカーゴム硬度計D型)。
各ポリエステル系エラストマーのガラス転移温度はJIS K 7244(1999)に準拠した方法で、動的粘弾性測定装置(ティー・エイ・インスツルメント・ジャパン社製 Q800を用いて、引張りモードで測定した。
引張弾性率は、ASTM-D882に準拠した方法で、ポリエステル系樹脂とポリエステル系エラストマーの各無延伸シートを東洋精機製作所製、ストログラフVE10を用いて測定した。
表裏層を構成する樹脂として、ポリエステル系樹脂(PET-1)を用いた。
中間層を構成する樹脂として、ポリスチレン系樹脂(PS-1)を用いた。
接着層を構成する樹脂として、ポリスチレン系樹脂(PS-5)60重量%(60重量部)とポリエステル系エラストマー(TPE-1)40重量%(40重量部)とを用いた。
これらをバレル温度が160~250℃の押出機に投入し、250℃の多層ダイスから5層構造のシート状に押出し、30℃の引き取りロールにて冷却固化した。次いで、予熱ゾーン105℃、延伸ゾーン90℃、熱固定ゾーン85℃のテンター延伸機内で延伸倍率6倍にて延伸した後、巻き取り機で巻き取ることにより、主収縮方向と直交する方向がMD、主収縮方向がTDとなる熱収縮性多層フィルムを得た。
得られた熱収縮性多層フィルムは、総厚みが35μmであり、表裏層(4.0μm)/接着層(0.8μm)/中間層(25.4μm)/接着層(0.8μm)/表裏層(4.0μm)の5層構造であった。
接着層を構成する樹脂として、ポリスチレン系樹脂(PS-6)60重量%とポリエステル系エラストマー(TPE-1)40重量%とを用いた。
その他は実施例1と同様にして、総厚みが35μmであり、表裏層(3.7μm)/接着層(0.7μm)/中間層(26.2μm)/接着層(0.7μm)/表裏層(3.7μm)の5層構造のフィルムを得た。
中間層を構成する樹脂として、ポリスチレン系樹脂(PS-2)を用いた。
接着層を構成する樹脂として、ポリスチレン系樹脂(PS-5)50重量%とポリエステル系エラストマー(TPE-2)50重量%とを用いた。
その他は実施例1と同様にして、総厚みが35μmであり、表裏層(5.0μm)/接着層(0.7μm)/中間層(23.6μm)/接着層(0.7μm)/表裏層(5.0μm)の5層構造のフィルムを得た。
中間層を構成する樹脂として、ポリスチレン系樹脂(PS-2)を用いた。
接着層を構成する樹脂として、ポリスチレン系樹脂(PS-5)40重量%とポリエステル系エラストマー(TPE-1)60重量%とを用いた。
その他は実施例1と同様にして、総厚みが35μmであり、表裏層(4.0μm)/接着層(0.8μm)/中間層(25.4μm)/接着層(0.8μm)/表裏層(4.0μm)の5層構造のフィルムを得た。
中間層を構成する樹脂として、ポリスチレン系樹脂(PS-3)を用いた。
接着層を構成する樹脂として、ポリスチレン系樹脂(PS-5)40重量%とポリエステル系エラストマー(TPE-2)60重量%とを用いた。
その他は実施例1と同様にして、総厚みが35μmであり、表裏層(5.0μm)/接着層(0.8μm)/中間層(23.4μm)/接着層(0.8μm)/表裏層(5.0μm)5層構造のフィルムを得た。
表裏層を構成する樹脂として、ポリエステル系樹脂(PET-2)を用いた。
中間層を構成する樹脂として、ポリスチレン系樹脂(PS-4)を用いた。
接着層を構成する樹脂として、ポリスチレン系樹脂(PS-5)20重量%とポリエステル系エラストマー(TPE-2)80重量%とを用いた。
その他は実施例1と同様にして、総厚みが35μmであり、表裏層(3.5μm)/接着層(0.8μm)/中間層(26.4μm)/接着層(0.8μm)/表裏層(3.5μm)5層構造のフィルムを得た。
表裏層を構成する樹脂として、ポリエステル系樹脂(PET-2)を用いた。
中間層を構成する樹脂として、ポリスチレン系樹脂(PS-3)を用いた。
接着層を構成する樹脂として、ポリスチレン系樹脂(PS-6)50重量%とポリエステル系エラストマー(TPE-1)50重量%とを用いた。
その他は実施例1と同様にして、総厚みが35μmであり、表裏層(4.0μm)/接着層(0.8μm)/中間層(25.4μm)/接着層(0.8μm)/表裏層(4.0μm)の5層構造のフィルムを得た。
表裏層を構成する樹脂として、ポリエステル系樹脂(PET-2)を用いた。
中間層を構成する樹脂として、ポリスチレン系樹脂(PS-2)を用いた。
接着層を構成する樹脂として、ポリスチレン系樹脂(PS-7)25重量%とポリエステル系エラストマー(TPE-2)75重量%とを用いた。
その他は実施例1と同様にして、総厚みが35μmであり、表裏層(3.5μm)/接着層(0.8μm)/中間層(26.4μm)/接着層(0.8μm)/表裏層(3.5μm)5層構造のフィルムを得た。
表裏層を構成する樹脂として、ポリエステル系樹脂(PET-1)を用いた。
中間層を構成する樹脂として、ポリスチレン系樹脂(PS-1)を用いた。
接着層を構成する樹脂として、ポリスチレン系樹脂(PS-5)20重量%とポリスチレン系樹脂(PS-8)15重量%とポリエステル系エラストマー(TPE-1)65重量%とを用いた。
その他は実施例1と同様にして、総厚みが40μmであり、表裏層(4.5μm)/接着層(0.9μm)/中間層(29.2μm)/接着層(0.9μm)/表裏層(4.5μm)5層構造のフィルムを得た。
接着層を構成する樹脂として、ポリスチレン系樹脂(PS-5)75重量%とポリエステル系エラストマー(TPE-1)25重量%とを用いた。
その他は実施例1と同様にして、総厚みが40μmであり、表裏層(5.5μm)/接着層(0.8μm)/中間層(27.4μm)/接着層(0.8μm)/表裏層(5.5μm)の5層構造のフィルムを得た。
中間層を構成する樹脂として、ポリスチレン系樹脂(PS-2)を用いた。
接着層を構成する樹脂として、ポリスチレン系樹脂(PS-6)15重量%とポリエステル系エラストマー(TPE-2)85重量%とを用いた。
その他は実施例1と同様にして、総厚みが35μmであり、表裏層(5.0μm)/接着層(0.7μm)/中間層(23.6μm)/接着層(0.7μm)/表裏層(5.0μm)の5層構造のフィルムを得た。
表裏層を構成する樹脂として、ポリエステル系樹脂(PET-2)を用いた。
中間層を構成する樹脂として、ポリスチレン系樹脂(PS-2)を用いた。
接着層を構成する樹脂として、ポリエステル系エラストマー(TPE-2)を用いた。
その他は実施例1と同様にして、総厚みが35μmであり、表裏層(5.0μm)/接着層(0.7μm)/中間層(23.6μm)/接着層(0.7μm)/表裏層(5.0μm)の5層構造のフィルムを得た。
接着層を構成する樹脂として、ポリスチレン系樹脂(PS-5)25重量%とポリエステル系樹脂(PET-1)75重量%とを用いた。
その他は実施例1と同様にして、総厚みが40μmであり、表裏層(5.0μm)/接着層(0.8μm)/中間層(28.4μm)/接着層(0.8μm)/表裏層(5.0μm)の5層構造のフィルムを得た。
接着層を構成する樹脂として、ポリスチレン系樹脂(PS-1)25重量%とポリエステル系樹脂(PET-1)75重量%とを用いた。
その他は実施例1と同様にして、総厚みが40μmであり、表裏層(5.0μm)/接着層(0.8μm)/中間層(28.4μm)/接着層(0.8μm)/表裏層(5.0μm)の5層構造のフィルムを得た。
接着層を構成する樹脂として、ポリスチレン系樹脂(PS-1)75重量%とポリエステル系樹脂(PET-1)25重量%とを用いた。
その他は実施例1と同様にして、総厚みが40μmであり、表裏層(5.0μm)/接着層(0.8μm)/中間層(28.4μm)/接着層(0.8μm)/表裏層(5.0μm)の5層構造のフィルムを得た。
実施例及び比較例で得られた熱収縮性多層フィルムについて、以下の評価を行った。熱収縮性多層フィルムの構成及び評価結果を表1に示した。
熱収縮性多層フィルムを主収縮方向(TD)100mm×主収縮方向と直行する方向(MD)100mmの大きさにカットし、70℃の温水に10秒間浸漬させた後、熱収縮性多層フィルムを取り出し、すぐに水道水に10秒間浸漬させた。この熱収縮性多層フィルムのTDの1辺の長さ(L)をそれぞれ測定して、下記式(1)に従いTD方向の熱収縮率を求めた。
熱収縮率(%)={(100-L)/100}×100 (1)
熱収縮性多層フィルムを長さ100mm×幅10mmのサイズにカットし、図1に示すようにフィルム端部の一部分を層間剥離した。サンプルの長さ方向に引張速度500mm/minで、図2に示すように180度方向に剥離させたときの常温(23℃)での強度(N/10mm)を、剥離試験機(Peeling TESTER HEIDON-17、新東科学社製)を用いて測定した。図1及び2は、層間強度評価におけるフィルムの剥離方法を示す模式図である。
長さ方向が、主収縮方向(TD)又は主収縮方向と直交する方向(MD)となるように試験を行った。
なお、MD及びTDの両方向に対し10回試験を行い、MD及びTDの各方向の層間強度の平均値を求めた。
平均層間強度が0.50N/10mm以上を「○」、0.50N/10mm未満を「×」とした。
(TD方向の層間強度)
平均層間強度が0.50N/10mm以上を「○」、0.50N/10mm未満を「×」とした。
常温での層間剥離強度測定において、TD方向測定時の層間剥離界面を観察し、以下の基準で評価した。
層間剥離が中間層と接着層の界面である場合を「○」、層間剥離が表裏層と接着層の界面である場合を「×」とした。
図3に示すように、層間剥離が中間層と接着層の界面で発生している場合には、装着機により傷が入ったとしても、その傷が表層と接着層とを貫通していなければ、層間剥離は進行せず、ラベルの剥がれは起こりにくい。一方、図4に示すように、層間剥離が表層と接着層の界面で発生している場合には、表層に傷が入るだけで層間剥離が進行し、ラベルの剥がれを引き起こす。
熱収縮性多層フィルムを長さ100mm×幅10mmのサイズにカットし、常温(23℃)で10分間放置した後、層間強度測定と同様にフィルム端部の一部分を層間剥離した。ジッピングの発生の有無は、以下の基準で評価した。これらの評価が「有り」であれば、層間強度にムラが生じていることが分かる。
ジッピングとは、熱収縮性多層フィルムを剥離した際に、層間強度のムラにより、層間強度が高い部分では剥離抵抗力が高く、層間強度が低い部分では剥離抵抗力が低いことから剥離抵抗力が一定とならず、剥離進行が止まる部分と、一気に剥離が進む部分とが規則的にあるいは不規則に現れる状態をいう。
有り:剥離した表裏層に段々模様の跡がつく。
無し:剥離した表裏層に段々模様の跡がつかない。
熱収縮性多層フィルムを長さ100mm×幅10mmのサイズにカットし、低温(5℃)で10分間放置した後、層間強度(N/10mm)を測定した。測定温度を5℃とした点以外は、常温での層間強度評価と同様の方法で測定を行った。
各測定毎にTD方向の層間強度と最小値を測定し、10回試験を行った中で、各測定のTD方向の層間強度の平均をTD方向平均値とし、各測定の最小値の平均をTD方向最小値とした。低温での評価では、特にTD方向の層間強度を測定することで、低温環境下において装着機等で熱収縮性ラベルのTD方向に荷重がかかったときの層間の剥離に対する抵抗力が分かる。また、TD方向の層間強度の平均値と最小値とを求めることで、低温環境下での層間剥離強度のバラツキの大きさが分かる。
平均層間強度が0.50N/10mm以上を「○」、0.50N/10mm未満を「×」とした。
低温での層間剥離強度測定において、TD方向測定時の層間剥離界面を観察し、常温での剥離面判定と同様の基準で評価した。
熱収縮性多層フィルムを長さ100mm×幅10mmのサイズにカットし、低温(5℃)で10分間放置した後、層間強度測定と同様にフィルム端部の一部分を層間剥離した。ジッピングの発生の有無は、常温でのジッピング有無と同様の基準で評価した。
得られた熱収縮性多層フィルムをTD方向の幅227mmに切断し、1,4-ジオキソラン100重量部に対してシクロヘキサンを30重量部混合した溶剤を、MD方向と平行となるように幅3mmで塗布し、TD方向の幅が108mmとなるように扁平に折り畳んで接着して筒状とした。筒状とした熱収縮性多層フィルムを、図5に示すように、MD方向の幅100mmにカットし熱収縮性ラベルとした。図5は、ラベル屈曲評価に用いた熱収縮性ラベルの模式図である。ラベルの両端が溶剤により接着された部分を、「溶剤シール部分」ともいう。
次いで、低温(5℃)雰囲気下で熱収縮性ラベルのシール部両端を指で担持し、TD方向に力が加わるようにラベルを20回屈曲した。ラベルを屈曲する作業を熱収縮性ラベルの6ヵ所で行い、屈曲後熱収縮性ラベルを得た。
該屈曲後熱収縮性ラベルを直径約66mm丸型の275gのボトル缶容器に沸騰水中に10秒間浸漬し、熱収縮させ容器に被覆させた際の接着部分の外観について以下の基準で評価した。
△:ラベル10枚中1~2枚のラベルにおいて、溶剤シール部分での層間剥離が発生している。
×:ラベル10枚中3枚以上のラベルにおいて、溶剤シール部分での層間剥離が発生している。
熱収縮性多層フィルム(フィルム幅:500mm)に対して、グラビア印刷法により、ファインスター黒(東洋インキ社製)を用いて印刷を行った後、ファインスター白(東洋インキ社製)を用いて印刷を行った。これにより、黒色と白色の2色裏面印刷の施された熱収縮性多層フィルムを得た。印刷版としては、版深度30μm、線数175線のダイレクトレーザー製版により作製した版を用いた。
次いで、熱収縮性多層フィルムを黒色印刷部分からMD方向100mm×TD方向200mmの長方形にカットした。このカットサンプルを印刷面が内側になるように、常温(23℃)でMD方向と平行にゴムローラーを2kg荷重で2秒/100mmの速度で2回押しつけることでカットサンプルに折目を付けた後、カットサンプルを展開し、更にゴムローラーを2kg荷重で2秒/100mmの速度で1回押しつけることで折目を元に戻した。その後、TD方向の収縮率が規制できるような冶具を用いて、サンプルを75℃の温水に7秒間浸漬させ、TD方向に5%収縮させた。その際の折目の外観を以下の基準で評価した。
なお、外観の評価は、サンプルの斜め45度の角度から蛍光灯の光を照射し、蛍光灯と反対の斜め45度の角度の位置から10人が目視にて行った。折目白化が観察できない場合の一例を図6に、折目白化が観察できる場合の一例を図7に示す。
○:10人全員が折目白化を観察できない。
△:10人のうち2人以下が折目白化を観察できる。
×:10人のうち3人以上が折目白化を観察できる。
熱収縮性多層フィルムの熱処理前後のヘイズ値を測定し、変化率を求めた。熱処理は熱収縮率を測定するのと同様の方法で、沸騰水に10秒間浸漬させる条件で行った。また、ヘイズは、ASTM D-1003に準拠し、ヘイズ測定器NDH5000(日本電色工業社製)を用いて測定した。
変化率は以下の式を用いて求めた。
変化率=(熱処理後のヘイズ値/熱処理前のヘイズ値)×100
×:変化率が400%以上
○:上記(1)~(10)の評価において、「×」が1つもない。
×:上記(1)~(10)の評価において、「×」が1つ以上ある。
これに対し、比較例1~6のように接着層を構成する樹脂の混合比が本発明で規定する範囲を満たさない場合には、低温での層間強度が低下したり、溶剤シール工程においてフィルムが強く折られた際に折目が白化し、外観不良が生じたり、容器に装着する際の衝撃で層間剥離した。また、低温においては、ジッピングが発生した。
2 中間層
3 接着層
Claims (6)
- ポリエステル系樹脂を含有する表裏層と、ポリスチレン系樹脂を含有する中間層とが、接着層を介して積層されてなる熱収縮性多層フィルムであって、
前記接着層は、ポリスチレン系樹脂を20~65重量%、及び、ポリエステル系エラストマーを35~80重量%含有する
ことを特徴とする熱収縮性多層フィルム。 - 接着層を構成するポリスチレン系樹脂は、芳香族ビニル炭化水素-共役ジエン共重合体であることを特徴とする請求項1記載の熱収縮性多層フィルム。
- 接着層を構成するポリエステル系エラストマーは、融点が120~200℃であることを特徴とする請求項1又は2記載の熱収縮性多層フィルム。
- 接着層を構成するポリエステル系エラストマーは、比重が0.95~1.20であることを特徴とする請求項1、2又は3記載の熱収縮性多層フィルム。
- 接着層を構成するポリエステル系エラストマーがα,β-エチレン性不飽和カルボン酸により変性されたことを特徴とする請求項1、2、3又は4記載の熱収縮性多層フィルム。
- 請求項1、2、3、4又は5記載の熱収縮性多層フィルムを用いてなることを特徴とする熱収縮性ラベル。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL14900878T PL3187334T3 (pl) | 2014-08-29 | 2014-08-29 | Termokurczliwa wielowarstwowa folia i termokurczliwa etykieta |
US15/325,298 US10773502B2 (en) | 2014-08-29 | 2014-08-29 | Heat-shrinkable multilayer film and heat-shrinkable label |
MX2017001782A MX2017001782A (es) | 2014-08-29 | 2014-08-29 | Pelicula de capas multiples encogible por calor y etiqueta encogible por calor. |
EP14900878.1A EP3187334B1 (en) | 2014-08-29 | 2014-08-29 | Heat-shrinkable multilayer film and heat-shrinkable label |
PCT/JP2014/072767 WO2016031056A1 (ja) | 2014-08-29 | 2014-08-29 | 熱収縮性多層フィルム及び熱収縮性ラベル |
CN201480081615.XA CN106604817B (zh) | 2014-08-29 | 2014-08-29 | 热收缩性多层膜和热收缩性标签 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/072767 WO2016031056A1 (ja) | 2014-08-29 | 2014-08-29 | 熱収縮性多層フィルム及び熱収縮性ラベル |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016031056A1 true WO2016031056A1 (ja) | 2016-03-03 |
Family
ID=55398991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/072767 WO2016031056A1 (ja) | 2014-08-29 | 2014-08-29 | 熱収縮性多層フィルム及び熱収縮性ラベル |
Country Status (6)
Country | Link |
---|---|
US (1) | US10773502B2 (ja) |
EP (1) | EP3187334B1 (ja) |
CN (1) | CN106604817B (ja) |
MX (1) | MX2017001782A (ja) |
PL (1) | PL3187334T3 (ja) |
WO (1) | WO2016031056A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI827621B (zh) * | 2018-07-05 | 2024-01-01 | 日商郡是股份有限公司 | 熱收縮性多層膜及熱收縮性標籤 |
JP7410867B2 (ja) | 2018-10-16 | 2024-01-10 | グンゼ株式会社 | 熱収縮性多層フィルム |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6657715B2 (ja) * | 2015-09-29 | 2020-03-04 | 横浜ゴム株式会社 | パンク修理液収容容器 |
JP6898276B2 (ja) | 2017-06-16 | 2021-07-07 | 日東電工株式会社 | 多層フィルム、積層体、エアバッグ、及び積層体の製造方法 |
WO2018230724A1 (ja) * | 2017-06-16 | 2018-12-20 | 日東電工株式会社 | 積層体、及びエアバッグ |
EP3753731A4 (en) * | 2018-07-25 | 2021-04-21 | Gunze Limited | HEAT-SHRINK MULTI-LAYER FILM AND HEAT-SHRINK LABEL |
JP7177839B2 (ja) * | 2018-08-08 | 2022-11-24 | 旭化成株式会社 | エアバッグ用多層フィルム及びエアバッグ |
KR20210017635A (ko) * | 2019-08-09 | 2021-02-17 | 삼성전자주식회사 | 전원공급 보조장치를 구비한 인쇄회로기판, 및 이를 구비한 전자기기 |
WO2021039072A1 (ja) * | 2019-08-30 | 2021-03-04 | グンゼ株式会社 | 熱収縮性多層フィルム及び熱収縮性ラベル |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008007710A1 (en) * | 2006-07-12 | 2008-01-17 | Gunze Limited | Heat shrinkable multilayer film and heat shrinkable label |
JP2009241457A (ja) * | 2008-03-31 | 2009-10-22 | Gunze Ltd | 熱収縮性多層フィルム及び熱収縮性ラベル |
JP2010241055A (ja) * | 2009-04-08 | 2010-10-28 | Mitsubishi Plastics Inc | 熱収縮性積層フィルム、該フィルムを用いた成形品、熱収縮性ラベル及び容器 |
JP2010264657A (ja) * | 2009-05-14 | 2010-11-25 | Mitsubishi Plastics Inc | 熱収縮性積層フィルム、該フィルムを用いた成形品、熱収縮性ラベル及び容器 |
WO2013035706A1 (ja) * | 2011-09-05 | 2013-03-14 | グンゼ株式会社 | 熱収縮性多層フィルム及び熱収縮性ラベル |
JP2014172214A (ja) * | 2013-03-06 | 2014-09-22 | Gunze Ltd | 熱収縮性多層フィルム及び熱収縮性ラベル |
Family Cites Families (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6141543A (ja) | 1984-08-06 | 1986-02-27 | 旭化成株式会社 | 硬質多層収縮性フイルム及びその製造方法 |
JP2698992B2 (ja) * | 1989-02-07 | 1998-01-19 | 三菱樹脂株式会社 | ポリスチレン系熱収縮性フィルム |
US5300563A (en) | 1990-07-30 | 1994-04-05 | Quantum Chemical Corporation | Polyester-based adhesives and composite structures |
TW203079B (ja) | 1991-03-27 | 1993-04-01 | Japan Synthetic Rubber Co Ltd | |
JP3192731B2 (ja) | 1992-03-04 | 2001-07-30 | 三井・デュポンポリケミカル株式会社 | 樹脂組成物およびそれを用いた接着剤 |
US5543474A (en) | 1993-02-17 | 1996-08-06 | Mitsubishi Gas Company, Inc. | Resin composition |
US5936037A (en) | 1996-05-28 | 1999-08-10 | Riken Vinyl Industry Co., Ltd. | Thermoplastic elastomeric resin composition and a process for the preparation thereof |
JPH1080977A (ja) | 1996-07-16 | 1998-03-31 | Mitsubishi Chem Corp | 複合成形体及びその製造方法 |
JPH10130451A (ja) | 1996-10-29 | 1998-05-19 | Mitsubishi Chem Corp | 熱可塑性エラストマー組成物及びその複合成形体 |
JPH11236457A (ja) * | 1998-02-24 | 1999-08-31 | Dainippon Ink & Chem Inc | シュリンクフィルム及びその製造方法 |
JP2000289137A (ja) | 1998-11-19 | 2000-10-17 | Kanegafuchi Chem Ind Co Ltd | 自動車内装材用積層発泡シート |
US6777082B2 (en) | 1999-07-28 | 2004-08-17 | The Dow Chemical Company | Hydrogenated block copolymers having elasticity and articles made therefrom |
DE10103548A1 (de) | 2000-01-28 | 2001-09-06 | Asahi Chemical Ind | Thermoplastische Elastomerzusammensetzung |
EP1170319A1 (en) * | 2000-07-03 | 2002-01-09 | Unichema Chemie B.V. | Block copolyester |
JP3934314B2 (ja) | 2000-08-01 | 2007-06-20 | グンゼ株式会社 | 多層熱収縮性ポリスチレン系フィルム |
JP4053264B2 (ja) * | 2000-08-30 | 2008-02-27 | 三菱化学株式会社 | 積層成形体 |
JP3806323B2 (ja) | 2000-08-30 | 2006-08-09 | 三菱化学株式会社 | 接着性重合体組成物及びその製造方法 |
JP2002351332A (ja) | 2001-05-23 | 2002-12-06 | Fuji Seal Inc | シュリンクラベル |
KR100985092B1 (ko) | 2002-04-15 | 2010-10-04 | 미쓰비시 가가꾸 가부시키가이샤 | 열가소성수지 조성물 및 다층적층체 |
WO2003095499A1 (fr) * | 2002-05-10 | 2003-11-20 | Ps Japan Corporation | Resine de polymere styrenique et composition obtenue a partir de cette resine |
JP2004001252A (ja) | 2002-05-31 | 2004-01-08 | Mitsubishi Chemicals Corp | 延伸積層体 |
US20040171766A1 (en) | 2003-01-07 | 2004-09-02 | Agrawal Purushottam Das | Polymeric blends that adhere to polyester |
JP2004276600A (ja) * | 2003-02-24 | 2004-10-07 | Mitsubishi Chemicals Corp | 接着用樹脂積層体および積層成形体 |
JP4403771B2 (ja) | 2003-10-10 | 2010-01-27 | 三菱化学株式会社 | 樹脂成形体 |
JP2005111926A (ja) | 2003-10-10 | 2005-04-28 | Mitsubishi Chemicals Corp | 多層積層体およびそれから成る成形体 |
JP3867095B2 (ja) | 2004-06-03 | 2007-01-10 | 三菱樹脂株式会社 | 熱収縮性積層フィルム、該フィルムを用いた成形品、熱収縮性ラベル及び容器 |
CN100503234C (zh) * | 2004-06-03 | 2009-06-24 | 三菱树脂株式会社 | 热收缩性叠层薄膜、使用该薄膜的成型品、热收缩性标签及容器 |
JP4688750B2 (ja) | 2004-06-03 | 2011-05-25 | 三菱樹脂株式会社 | 熱収縮性積層フィルム、該フィルムを用いた成形品、熱収縮性ラベル及び容器 |
KR101437682B1 (ko) | 2004-06-03 | 2014-09-03 | 미쓰비시 쥬시 가부시끼가이샤 | 열수축성 적층 필름, 그 필름을 이용한 성형품, 열수축성라벨 및 용기 |
TW200619023A (en) * | 2004-08-06 | 2006-06-16 | Mitsubishi Plastics Inc | Multilayer heat-shrinkable polystyrene film, heat-shrinkable label and container using the film |
US20080057236A1 (en) * | 2004-11-10 | 2008-03-06 | Mitsubishi Plastics, Inc. | Heat-Shrinkable Laminated Film, Molded Product and Heat-Shrinkable Label Employing the Film, and Container |
JP2006159903A (ja) * | 2004-11-10 | 2006-06-22 | Mitsubishi Plastics Ind Ltd | 熱収縮性積層フィルム、該フィルムを用いた成形品、熱収縮性ラベル及び容器 |
US20080090036A1 (en) * | 2004-11-11 | 2008-04-17 | Mitsubishi Plastics, Inc. | Heat-Shrinkable Laminate Film, and Molded Product and Container Using the Film |
TWI393637B (zh) * | 2004-11-11 | 2013-04-21 | Mitsubishi Plastics Inc | 熱收縮性積層薄膜,使用該薄膜之成形品,熱收縮性標籤及容器 |
DE102005001637A1 (de) * | 2005-01-12 | 2006-07-20 | Basf Ag | Styrol-Butadien-Blockcopolymermischungen für Schrumpffolien |
US10011376B2 (en) * | 2005-03-14 | 2018-07-03 | Kabushiki Kaisha Yakult Honsha | Packaging container |
CN101163828B (zh) | 2005-04-19 | 2011-06-08 | 帝人株式会社 | 碳纤维复合片材、其传热体用途及其中所使用的沥青类碳纤维毡用片 |
WO2006114931A1 (ja) * | 2005-04-20 | 2006-11-02 | Gunze Limited | シュリンクラベル |
EP1767348B1 (en) | 2005-09-21 | 2009-01-07 | Mitsubishi Gas Chemical Company, Inc. | Stretched polyamide films |
JP4866584B2 (ja) | 2005-09-21 | 2012-02-01 | 三菱瓦斯化学株式会社 | ガスバリア性を有する積層体 |
JP4568743B2 (ja) * | 2006-07-12 | 2010-10-27 | グンゼ株式会社 | 熱収縮性多層フィルム及び熱収縮性ラベル |
AU2007277814B2 (en) * | 2006-07-26 | 2012-09-27 | Gunze Limited | Multilayer heat-shrinkable styrene-based film and method for producing the same |
JP5059780B2 (ja) | 2006-11-27 | 2012-10-31 | Psジャパン株式会社 | 熱収縮性多層フィルム |
JP5235494B2 (ja) * | 2007-05-15 | 2013-07-10 | 三菱樹脂株式会社 | 積層フィルム、並びに該フィルムを用いた成形品、熱収縮性ラベル及び該ラベルを装着した容器 |
JP5134294B2 (ja) * | 2007-06-21 | 2013-01-30 | グンゼ株式会社 | 熱収縮性多層フィルム及び熱収縮性ラベル |
JP5172241B2 (ja) * | 2007-08-09 | 2013-03-27 | グンゼ株式会社 | 熱収縮性電池用ジャケットフィルム及び包装電池 |
JP2009154500A (ja) * | 2007-12-28 | 2009-07-16 | Gunze Ltd | 熱収縮性多層フィルム及び熱収縮性多層ラベル |
JP4922973B2 (ja) | 2008-03-18 | 2012-04-25 | グンゼ株式会社 | 熱収縮性多層フィルム及び熱収縮性ラベル |
JP5292196B2 (ja) | 2009-06-15 | 2013-09-18 | グンゼ株式会社 | 熱収縮性多層フィルム及び熱収縮性ラベル |
US20110041772A1 (en) * | 2009-08-24 | 2011-02-24 | Drake Hargrove | Stabilized pet dish and method therefor |
JP5700920B2 (ja) | 2009-09-09 | 2015-04-15 | 三菱樹脂株式会社 | 熱収縮性積層フィルム、該フィルムを用いた成形品、熱収縮性ラベル及び容器 |
JP5632631B2 (ja) * | 2010-03-26 | 2014-11-26 | グンゼ株式会社 | 熱収縮性多層フィルム及び熱収縮性ラベル |
US9840067B2 (en) * | 2010-11-24 | 2017-12-12 | Mitsubishi Chemical Corporation | Heat-shrinkable laminated film, molded product and heat-shrinkable label comprising the film, and container |
JP2012131169A (ja) * | 2010-12-22 | 2012-07-12 | Gunze Ltd | 熱収縮性多層フィルム及び熱収縮性ラベル |
US9267008B2 (en) * | 2012-03-27 | 2016-02-23 | C.I. Kasei Company, Limited | Heat-shrinkable white film |
US20160284248A1 (en) * | 2013-03-19 | 2016-09-29 | Fuji Seal International, Inc. | Shrink label and method for producing same |
JP6122799B2 (ja) | 2014-03-03 | 2017-04-26 | グンゼ株式会社 | 熱収縮性多層フィルム及び熱収縮性ラベル |
WO2015182451A1 (ja) * | 2014-05-27 | 2015-12-03 | グンゼ株式会社 | 熱収縮性多層フィルム、熱収縮性多層フィルムの製造方法、及び、熱収縮性ラベル |
-
2014
- 2014-08-29 MX MX2017001782A patent/MX2017001782A/es unknown
- 2014-08-29 CN CN201480081615.XA patent/CN106604817B/zh active Active
- 2014-08-29 PL PL14900878T patent/PL3187334T3/pl unknown
- 2014-08-29 US US15/325,298 patent/US10773502B2/en active Active
- 2014-08-29 WO PCT/JP2014/072767 patent/WO2016031056A1/ja active Application Filing
- 2014-08-29 EP EP14900878.1A patent/EP3187334B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008007710A1 (en) * | 2006-07-12 | 2008-01-17 | Gunze Limited | Heat shrinkable multilayer film and heat shrinkable label |
JP2009241457A (ja) * | 2008-03-31 | 2009-10-22 | Gunze Ltd | 熱収縮性多層フィルム及び熱収縮性ラベル |
JP2010241055A (ja) * | 2009-04-08 | 2010-10-28 | Mitsubishi Plastics Inc | 熱収縮性積層フィルム、該フィルムを用いた成形品、熱収縮性ラベル及び容器 |
JP2010264657A (ja) * | 2009-05-14 | 2010-11-25 | Mitsubishi Plastics Inc | 熱収縮性積層フィルム、該フィルムを用いた成形品、熱収縮性ラベル及び容器 |
WO2013035706A1 (ja) * | 2011-09-05 | 2013-03-14 | グンゼ株式会社 | 熱収縮性多層フィルム及び熱収縮性ラベル |
JP2014172214A (ja) * | 2013-03-06 | 2014-09-22 | Gunze Ltd | 熱収縮性多層フィルム及び熱収縮性ラベル |
Non-Patent Citations (1)
Title |
---|
See also references of EP3187334A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI827621B (zh) * | 2018-07-05 | 2024-01-01 | 日商郡是股份有限公司 | 熱收縮性多層膜及熱收縮性標籤 |
JP7410867B2 (ja) | 2018-10-16 | 2024-01-10 | グンゼ株式会社 | 熱収縮性多層フィルム |
Also Published As
Publication number | Publication date |
---|---|
EP3187334B1 (en) | 2020-02-26 |
PL3187334T3 (pl) | 2020-09-07 |
MX2017001782A (es) | 2017-06-29 |
US20170190158A1 (en) | 2017-07-06 |
CN106604817A (zh) | 2017-04-26 |
EP3187334A1 (en) | 2017-07-05 |
CN106604817B (zh) | 2020-03-03 |
US10773502B2 (en) | 2020-09-15 |
EP3187334A4 (en) | 2018-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6051160B2 (ja) | 熱収縮性多層フィルム及び熱収縮性ラベル | |
WO2016031056A1 (ja) | 熱収縮性多層フィルム及び熱収縮性ラベル | |
JP6077891B2 (ja) | 熱収縮性多層フィルム及び熱収縮性ラベル | |
WO2012086704A1 (ja) | 熱収縮性多層フィルム及び熱収縮性ラベル | |
JP6122799B2 (ja) | 熱収縮性多層フィルム及び熱収縮性ラベル | |
EP3815895B1 (en) | Heat-shrinkable multi-layered film | |
TWI805796B (zh) | 熱收縮性多層膜及熱收縮性標籤 | |
JP2012210717A (ja) | 熱収縮性多層フィルム及び熱収縮性ラベル | |
JP6154706B2 (ja) | 熱収縮性多層フィルム及び熱収縮性ラベル | |
US11958272B2 (en) | Heat-shrinkable multilayer film and heat-shrinkable label | |
JP6154765B2 (ja) | 熱収縮性多層フィルム及び熱収縮性ラベル | |
JP6608574B1 (ja) | 熱収縮性多層フィルム及び熱収縮性ラベル | |
TWI632069B (zh) | Heat shrinkable multilayer film and heat shrinkable label | |
WO2020008811A1 (ja) | 熱収縮性多層フィルム及び熱収縮性ラベル | |
JP7273230B2 (ja) | 熱収縮性多層フィルム | |
JP7143180B2 (ja) | 熱収縮性多層フィルム | |
JP2020049895A (ja) | 熱収縮性多層フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14900878 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15325298 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2017/001782 Country of ref document: MX |
|
REEP | Request for entry into the european phase |
Ref document number: 2014900878 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014900878 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |