WO2015111189A1 - 電気デバイス - Google Patents

電気デバイス Download PDF

Info

Publication number
WO2015111189A1
WO2015111189A1 PCT/JP2014/051529 JP2014051529W WO2015111189A1 WO 2015111189 A1 WO2015111189 A1 WO 2015111189A1 JP 2014051529 W JP2014051529 W JP 2014051529W WO 2015111189 A1 WO2015111189 A1 WO 2015111189A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
positive electrode
negative electrode
solid solution
Prior art date
Application number
PCT/JP2014/051529
Other languages
English (en)
French (fr)
Inventor
ちひろ 本田
山本 伸司
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US15/112,725 priority Critical patent/US10535870B2/en
Priority to EP14879656.8A priority patent/EP3098891A4/en
Priority to CN201480073880.3A priority patent/CN105934846B/zh
Priority to KR1020167019739A priority patent/KR20160102026A/ko
Priority to PCT/JP2014/051529 priority patent/WO2015111189A1/ja
Priority to JP2015558666A priority patent/JP6202106B2/ja
Publication of WO2015111189A1 publication Critical patent/WO2015111189A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrical device.
  • the electric device according to the present invention is used, for example, as a secondary battery, a capacitor or the like as a driving power source or auxiliary power source for motors of vehicles such as electric vehicles, fuel cell vehicles, and hybrid electric vehicles.
  • Motor drive secondary batteries are required to have extremely high output characteristics and high energy compared to consumer lithium ion secondary batteries used in mobile phones and notebook computers. Therefore, lithium ion secondary batteries having the highest theoretical energy among all the batteries are attracting attention, and are currently being developed rapidly.
  • a lithium ion secondary battery includes a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder.
  • a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder
  • a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder.
  • it has the structure connected through an electrolyte layer and accommodated in a battery case.
  • a battery using a SiO x (0 ⁇ x ⁇ 2) material that forms a compound with Li in the negative electrode has an improved energy density as compared with a conventional carbon / graphite negative electrode material.
  • a SiO x (0 ⁇ x ⁇ 2) material that forms a compound with Li in the negative electrode
  • SiO x a material that forms a compound with Li in the negative electrode
  • a conventional carbon / graphite negative electrode material expected to bed as a material.
  • SiO x single crystal nanoparticles
  • amorphous SiO 2 exist in phase separation.
  • Silicon oxide has a tetrahedral structure as a unit structure, and silicon oxides (intermediate oxides) other than SiO 2 correspond to the number of oxygen at the apex of the tetrahedron, 1, 2 and 3, respectively. Although they can be expressed as 2 O, SiO and Si 2 O 3 , these intermediate oxides are thermodynamically unstable and are extremely difficult to exist as single crystals. Therefore, SiO x is composed of an amorphous structure in which unit structures are irregularly arranged, and this amorphous structure is an amorphous structure in which a plurality of amorphous compounds are formed without forming an interface. The structure is mainly composed of a homogeneous amorphous structure portion. Therefore, SiO x has a structure in which Si nanoparticles are dispersed in amorphous SiO 2 .
  • Li y SiO x such as Li 4 SiO 4 , Li 2 SiO 3 , Li 2 Si 2 O 5 , Li 2 Si 3 O 8 , Li 6 Si 4 O 11, etc. (0 ⁇ y, 0 ⁇ x ⁇ 2)
  • Li y SiO x has extremely low electron conductivity, and furthermore, since SiO 2 does not have electron conductivity, the resistance of the negative electrode increases. There is. As a result, it is extremely difficult to desorb and insert lithium ions into the negative electrode active material.
  • a lithium ion secondary battery using a material that is alloyed with Li for the negative electrode has a large expansion and contraction in the negative electrode during charge and discharge.
  • the volume expansion when lithium ions are occluded is about 1.2 times in graphite materials, whereas in Si materials, when Si and Li are alloyed, the amorphous state transitions to the crystalline state, resulting in a large volume change. (Approximately 4 times), there was a problem of reducing the cycle life of the electrode.
  • the Si negative electrode active material the battery capacity and the cycle durability are in a trade-off relationship, and there is a problem that it is difficult to improve the high cycle durability while exhibiting a high capacity.
  • Patent Document 1 a negative electrode for a lithium ion secondary battery containing SiO x and a graphite material has been proposed (see, for example, Patent Document 1).
  • paragraph “0018” describes that, by minimizing the content of SiO x , good cycle life is exhibited in addition to high capacity.
  • the present invention is satisfactory in rate characteristics while fully utilizing the high capacity characteristics that are characteristic of solid solution positive electrode active materials in electrical devices such as lithium ion secondary batteries having positive electrodes using solid solution positive electrode active materials.
  • the object is to provide a means to achieve the desired performance.
  • the present inventors have conducted intensive research to solve the above problems. As a result, a negative electrode containing a negative electrode active material obtained by mixing an Si-containing alloy and a carbon material and a positive electrode containing a solid solution positive electrode active material coated with a predetermined metal oxide are used. The inventors have found that the above problem can be solved by controlling the coating amount (weight per unit area) of the layer to a predetermined value, and have completed the present invention.
  • the present invention includes a positive electrode in which a positive electrode active material layer including a positive electrode active material is formed on the surface of a positive electrode current collector, and a negative electrode active material layer including a negative electrode active material on the surface of the negative electrode current collector.
  • the present invention relates to an electric device having a power generation element including a negative electrode and a separator.
  • the coating amount of the negative electrode active material layer is 4 to 11 mg / cm 2 .
  • the said negative electrode active material layer contains the negative electrode active material represented by following formula (1).
  • ⁇ and ⁇ represent the weight percent of each component in the negative electrode active material layer, and 80 ⁇ ⁇ + ⁇ ⁇ 98, 3 ⁇ ⁇ ⁇ 40, and 40 ⁇ ⁇ ⁇ 95.
  • the positive electrode active material layer contains a positive electrode active material represented by the following formula (2).
  • e represents weight% of each component in the positive electrode active material layer, and 80 ⁇ e ⁇ 98.
  • the solid solution positive electrode active material is represented by the following formula (3).
  • z represents the number of oxygen satisfying the valence
  • a + b + c + d 1.5, 0.1 ⁇ d ⁇ 0.4, 1.1 ⁇ [a + b + c] ⁇ 1.4.
  • a coating layer made of a metal oxide or composite oxide selected from the group consisting of Al, Zr and Ti is formed on the particle surface of the solid solution positive electrode active material, and the solid solution positive electrode active material in the solid solution positive electrode active material
  • the content of the oxide or composite oxide is characterized by 0.1 to 3.0% by weight in terms of oxide.
  • the positive electrode active material by making the positive electrode active material a solid solution material coated with a predetermined metal oxide, there is an effect that the reduction of the initial discharge capacity due to the initial irreversible capacity of the negative electrode active material can be greatly reduced. can get.
  • the electrical device according to the present invention can achieve satisfactory performance in terms of rate characteristics while fully utilizing the high capacity characteristics that are characteristic of the solid solution positive electrode active material.
  • FIG. 1 is a schematic cross-sectional view showing the basic configuration of a non-aqueous electrolyte lithium ion secondary battery that is not a flat type (stacked type) bipolar type, which is an embodiment of the electrical device according to the present invention. It is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of an electric device according to the present invention.
  • a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of a positive electrode current collector, and a negative electrode active material layer containing a negative electrode active material on the surface of the negative electrode current collector are provided.
  • the negative electrode active material layer has the following formula (1):
  • ⁇ and ⁇ represent the weight percentage of each component in the negative electrode active material layer, and 80 ⁇ ⁇ + ⁇ ⁇ 98, 3 ⁇ ⁇ ⁇ 40, and 40 ⁇ ⁇ ⁇ 95.
  • Containing a negative electrode active material represented by The positive electrode active material layer has the following formula (2):
  • e represents the weight% of each component in the positive electrode active material layer, and 80 ⁇ e ⁇ 98.
  • the solid solution positive electrode active material is represented by the following formula (3):
  • z represents the number of oxygen satisfying the valence
  • a + b + c + d 1.5, 0.1 ⁇ d ⁇ 0.4, 1.1 ⁇ [a + b + c] ⁇ 1.4.
  • a coating layer made of a metal oxide or composite oxide selected from the group consisting of Al, Zr and Ti is formed on the particle surface of the solid solution positive electrode active material, and the solid solution positive electrode An electric device is provided in which the content of the oxide or composite oxide in the active material is 0.1 to 3.0% by weight in terms of oxide.
  • a lithium ion secondary battery will be described as an example of an electric device.
  • the lithium ion secondary battery using the electric device according to the present invention the voltage of the cell (single cell layer) is large, and high energy density and high output density can be achieved. Therefore, the lithium ion secondary battery of the present embodiment is excellent as a vehicle driving power source or an auxiliary power source. As a result, it can be suitably used as a lithium ion secondary battery for a vehicle driving power source or the like. In addition to this, the present invention can be sufficiently applied to lithium ion secondary batteries for portable devices such as mobile phones.
  • the lithium ion secondary battery When the lithium ion secondary battery is distinguished by its form / structure, it can be applied to any conventionally known form / structure such as a stacked (flat) battery or a wound (cylindrical) battery. Is. By adopting a stacked (flat) battery structure, long-term reliability can be secured by a sealing technique such as simple thermocompression bonding, which is advantageous in terms of cost and workability.
  • a solution electrolyte type battery using a solution electrolyte such as a nonaqueous electrolyte solution for the electrolyte layer, a polymer battery using a polymer electrolyte for the electrolyte layer, etc. It can be applied to any conventionally known electrolyte layer type.
  • the polymer battery is further divided into a gel electrolyte type battery using a polymer gel electrolyte (also simply referred to as gel electrolyte) and a solid polymer (all solid) type battery using a polymer solid electrolyte (also simply referred to as polymer electrolyte). It is done.
  • FIG. 1 schematically shows the overall structure of a flat (stacked) lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”), which is a typical embodiment of the electrical device of the present invention.
  • stacked battery a flat (stacked) lithium ion secondary battery
  • the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 29 that is an exterior body.
  • the positive electrode in which the positive electrode active material layer 13 is disposed on both surfaces of the positive electrode current collector 11, the electrolyte layer 17, and the negative electrode active material layer 15 is disposed on both surfaces of the negative electrode current collector 12. It has a configuration in which a negative electrode is laminated. Specifically, the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 13 and the negative electrode active material layer 15 adjacent thereto face each other with the electrolyte layer 17 therebetween. .
  • the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.
  • the positive electrode current collector 13 on the outermost layer located on both outermost layers of the power generating element 21 is provided with the positive electrode active material layer 13 only on one side, but the active material layer may be provided on both sides. . That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector.
  • the outermost negative electrode current collector is positioned on both outermost layers of the power generation element 21, and one side of the outermost negative electrode current collector or A negative electrode active material layer may be disposed on both sides.
  • the positive electrode current collector 11 and the negative electrode current collector 12 are attached to a positive electrode current collector plate 25 and a negative electrode current collector plate 27 that are electrically connected to the respective electrodes (positive electrode and negative electrode), and are sandwiched between end portions of the laminate sheet 29. Thus, it has a structure led out of the laminate sheet 29.
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 are ultrasonically welded to the positive electrode current collector 11 and the negative electrode current collector 12 of each electrode via a positive electrode lead and a negative electrode lead (not shown), respectively, as necessary. Or resistance welding or the like.
  • the lithium ion secondary battery according to this embodiment is characterized by the configuration of the positive electrode and the negative electrode.
  • main components of the battery including the positive electrode and the negative electrode will be described.
  • the active material layers (13, 15) contain an active material, and further contain other additives as necessary.
  • the positive electrode active material layer 13 includes at least a positive electrode active material (also referred to as “solid solution positive electrode active material” in the present specification) made of a solid solution material.
  • Solid solution positive electrode active material The solid solution positive electrode active material is represented by the following formula (3).
  • a coating layer made of an oxide or composite oxide of a metal selected from the group consisting of Al, Zr and Ti is formed on the particle surface of the solid solution cathode active material, and the solid solution cathode active material in the solid solution cathode active material
  • the content of the oxide or composite oxide is 0.1 to 3.0% by weight in terms of oxide.
  • the specific configuration of the metal oxide present on the particle surface of the solid solution positive electrode active material is not particularly limited, and any of the theoretically possible oxides or composite oxides containing the metal elements described above can be used.
  • Al 2 O 3 , ZrO 2 or TiO 2 is used.
  • a (composite) oxide containing one or more elements selected from the group consisting of Nb, Sn, W, Mo, and V may be further included in the coating layer.
  • a solid solution positive electrode active material has been studied as a positive electrode active material.
  • electrochemically inactive layered Li 2 MnO 3 and electrochemically active layered LiMO 2 (where [M] is a transition of Co, Ni, Mn, Fe, etc.) Layered lithium-containing transition metal oxides consisting of solid solutions with metals have been studied.
  • a solid solution positive electrode active material (Li 2 MnO 3 composition) is activated (a part of the crystal structure is changed into a spinel phase: phase transition). It is necessary to charge up to 4.4 to 4.8V).
  • the phase transition to this spinel phase (the LiMnO 2 system generated by the movement of Mn gradually changes into a spinel phase) is caused by the transition metal element (in the crystal structure of the positive electrode active material) constituting the transition metal layer ( It is considered that this is caused by oxidation (for example, Mn 3+ ⁇ Mn 4+ ) (irreversible phase transition by charging).
  • the transition metal element involved in the phase transition does not form a spinel phase (is not fixed) and is eluted out of the crystal structure. Further, along with the oxidation of the transition metal, part of the lattice oxygen is released and oxygen gas is also generated. However, the transition metal element is also eluted by the occurrence of oxygen defects in the crystal structure. Furthermore, the transition metal (Mn, etc.) constituting the solid solution active material can be obtained by repeating the charge / discharge cycle near the plateau potential (4.3 to 4.5 V) or by exposing it to a potential near the plateau potential for a long time. ) Elution accompanied by oxidation. Therefore, while the Li 2 MnO 3 composition electrochemically active state, must be suppressed transition metal elution stabilization and Mn or the like of rock salt type layered structure.
  • the overvoltage (resistance) at the end of charge and end of discharge of the layered Li 2 MnO 3 is higher than that of the layered LiMO 2 (for example, LiNi 1/2 Mn 1/2 O 2 ). It is known that charge / discharge capacity and rate characteristics are degraded. In addition, since the upper limit potential for use is high (4.3 V or higher), there is a problem that Ni and Mn are easily eluted.
  • a conventional solid solution active material needs to be charged at a plateau potential or higher (for example, 4.4 to 4.8 V) in order to be activated (a part of the crystal structure is changed to a spinel phase structure (phase transition)).
  • a plateau potential or higher for example, 4.4 to 4.8 V
  • transition metal elements (Mn, Ni, etc.) constituting the transition metal layer are oxidized in the crystal structure of the positive electrode active material (for example, Mn 3+ ⁇ Mn 4+ ; irreversible phase transition due to charging) and the process in which lattice oxygen is desorbed along with the above.
  • phase transition and oxygen desorption progress gradually.
  • the average voltage, capacity, and rate characteristics decrease with changes in crystal structure (phase transition and oxygen desorption).
  • a part of the transition metal element involved in the phase transition does not form a spinel phase (is not fixed), and is eluted outside the crystal structure.
  • some of the lattice oxygen is released and oxygen gas is generated with the oxidation of the transition metal.
  • the transition metal element is also eluted by the occurrence of oxygen defects in the crystal structure.
  • the particle surface of the solid solution positive electrode active material is configured to have a coating layer made of a (composite) metal oxide such as Al 2 O 3 .
  • a high potential for example, 4.4 to 4.8 V
  • the charge / discharge cycle for example, 4.3 to 4.5 V
  • Transition metal (Mn) eluted out of the crystal structure without forming a spinel phase is reduced, and performance and durability can be improved.
  • a part of the metal element of the coating layer penetrates into the surface layer of particles of the solid solution positive electrode active material (has an existing region).
  • the covalent bond with oxygen is strengthened.
  • the release of lattice oxygen accompanying the oxidation of other transition metals is reduced, so that the generation of oxygen gas is reduced and the generation of oxygen defects in the crystal structure is also reduced.
  • the charge / discharge cycle is repeated near the plateau potential (4.3 to 4.5 V), or even when exposed to a potential near the plateau potential for a long time, the crystal structure is stabilized and oxygen desorption is reduced.
  • the presence of the coating layer can suppress the elution of transition metals (Mn 4+ , Ni 2+ ) from the crystal structure of the surface layer and the suppression of the detachment of oxygen.
  • transition metals Mn 4+ , Ni 2+
  • the Li diffusibility Li conductivity
  • Battery performance can be improved by reducing the resistance and improving the Li diffusibility.
  • a high-resolution measuring device is used to confirm that there is a region where the metal element constituting the coating layer exists on the solid solution positive electrode active material side of the interface between the solid solution positive electrode active material particles and the coating layer. For example, it can be qualitatively confirmed that a metal element is present on the surface layer of the active material particles.
  • the analyzer includes XPS (X-ray photoelectron spectroscopy), TEM-EDX (transmission electron microscope-energy dispersive X-ray spectroscopy), STEM-EDX / EELS (scanning transmission electron microscope-energy dispersion). Type X-ray spectroscopy / electron energy loss spectrometer), HAADF-STEM (high angle scattering dark field-scanning transmission electron microscope image), and the like can be used.
  • the thickness (average thickness) of the coating layer is not particularly limited, but is preferably 2 to 20 nm from the viewpoint of improving the characteristics of the solid solution positive electrode active material as described above.
  • the measurement method of the average thickness of a coating layer can be performed with the observation image of SEM or TEM, for example.
  • the average particle size of the solid solution active material described above, the average particle size of the positive electrode active material provided with the alumina layer, and the particle size distribution measuring device of the laser diffraction / scattering method are measured, and the difference between them is the average of the alumina layer It is good also as thickness.
  • the ratio of the coating layer existing on the particle surface of the solid solution positive electrode active material is not particularly limited, and is most preferably 100 area%. However, from the viewpoint of expressing the effect of the present embodiment, it is 20 area% or more. What is necessary is just 50 area% or more.
  • the step of coating the surface of the solid solution active material with the metal oxide includes the solid solution active material, a salt of a metal element constituting the coating layer (nitrate (aluminum nitrate, which is an aluminum salt)), carbonate (zirconium A step of mixing a solution of carbonate ammonium carbonate (a carbonate), a metal alkoxide (such as tetraisopropoxy titanium which is a metal alkoxide of titanium) at a pH of 7 to 8, and a step of drying the obtained solid solution active material precursor And a step of calcining the obtained solid solution active material precursor after drying at a temperature of 450 ° C. ⁇ 50 ° C.
  • a salt of a metal element constituting the coating layer nitrate (aluminum nitrate, which is an aluminum salt)
  • carbonate zirconium
  • the coating layer formed on part or all of the particle surface of the solid solution active material through these steps is desired to have a high Li ion mobility and a high effect of suppressing the elution of transition metals. Further, by performing a precipitation reaction of metal hydroxide in the range of pH 7 to 8, and setting the firing temperature to 450 ° C. ⁇ 50 ° C., preferably 420 ° C. to 480 ° C., a part of the surface of the solid solution active material particles. Alternatively, the coating layer can be present entirely (20 to 100%). Moreover, a solid solution active material in which a metal element has penetrated into the surface layer of the solid solution active material particles can be produced. As a result, a battery excellent in performance and durability can be provided.
  • each step will be described by taking the case where the coating layer is formed of alumina as an example.
  • a solid solution active material and an aluminum nitrate solution are mixed at pH 7-8. Thereby, a solid solution active material precursor can be obtained.
  • Aluminum nitrate is suitable as the aluminum raw material. This is because the nitrate radical can be decomposed and removed in the firing step, and the performance of the battery using this positive electrode active material is good. In aluminum sulfate and aluminum chloride, sulfate radicals and hydrochloric acid radicals remain, and the performance of a battery using this positive electrode active material is lowered. Aluminum acetate is not suitable for this method (precipitation reaction).
  • the amount of aluminum nitrate as the raw material of aluminum (Al 2 O 3 layer), such that the content of Al 2 O 3 of the positive electrode active material described above may be appropriately adjusted.
  • a precipitant is further used.
  • ammonium water is suitable. This is because the ammonium root can be decomposed and removed in the firing step, so that the performance of the battery using this positive electrode active material is good.
  • Na remains as an impurity of the positive electrode active material, and the performance of a battery using the positive electrode active material is deteriorated.
  • the pH of the solid solution active material, the aluminum nitrate solution and the ammonium water of the precipitant is less than pH 7, the reaction between the aluminum nitrate and the ammonium water is insufficient, the precipitation of aluminum hydroxide is poor, The desired coating amount cannot be obtained.
  • the pH exceeds 8 aluminum hydroxide is re-dissolved, and a desired coating amount cannot be obtained with respect to the charged amount.
  • the reaction between the aluminum nitrate and the aqueous ammonium is sufficiently performed by the mixing operation, and the desired solid solution active material precursor (the aluminum hydroxide is precipitated on the surface of the solid solution active material).
  • the mixing temperature reaction system solution temperature
  • the mixing time is in the range of 30 minutes to 3 hours.
  • the obtained solid solution active material precursor may be immersed in the solution for up to about 3 hours after mixing. Thereby, the coating of a suitable alumina layer can be performed and the improvement effect of charging / discharging characteristics and cycle durability can be obtained.
  • the mixing means is not particularly limited, and conventionally known mixing / stirring means (apparatus) can be used.
  • the filtering means is not particularly limited, and conventionally known filtering means (apparatus) can be used.
  • the filtered solid solution active material precursor is dried. Drying conditions are not particularly limited as long as the solid solution active material precursor can be sufficiently dried. That is, when the process from drying to baking is performed continuously, it is not necessary to strictly distinguish the drying process from the baking process, and the process may be performed from drying to baking at a predetermined baking temperature. From the above, the drying conditions may be a drying temperature in the range of 80 to 200 ° C. and a drying time in the range of 30 minutes to 12 hours, preferably 1 to 6 hours. Further, the atmosphere during drying is not particularly limited, and can be performed in an air atmosphere or the like.
  • the drying means (apparatus) is not particularly limited, and a conventionally known drying means (apparatus) can be used. Specifically, for example, vacuum drying, hot air drying, infrared (IR) drying, natural drying, and the like can be used in appropriate combination.
  • the solid solution active material precursor dried as described above is fired at a temperature of 450 ° C. ⁇ 50 ° C.
  • the firing temperature is in the range of 450 ° C. ⁇ 50 ° C., preferably in the range of 420 to 480 ° C. for 1 to 12 hours, preferably in the range of 2 to 6 hours.
  • An Al 2 O 3 layer is present on part or all of the surface of the solid solution active material particles.
  • the solid solution active material quality in which Al element penetrates into the surface layer of the solid solution active material particles can be produced.
  • the firing temperature is less than 400 ° C., the decomposition of aluminum hydroxide is insufficient and a desired Al 2 O 3 coat layer cannot be formed, and the battery using this positive electrode active material has poor durability.
  • the firing temperature exceeds 500 ° C., the Al 2 O 3 layer becomes dense and the mobility of Li ions decreases, and the battery using this positive electrode active material has poor performance.
  • the atmosphere during firing is not particularly limited, and can be performed in an air atmosphere or the like.
  • the baking means (apparatus) is not particularly limited, and conventionally known baking means (apparatus) can be used.
  • a positive electrode active material other than the solid solution positive electrode active material described above may be used in combination.
  • a lithium-transition metal composite oxide is used in combination as the positive electrode active material from the viewpoint of capacity and output characteristics.
  • other positive electrode active materials may be used.
  • the optimum particle size is different for expressing the unique effect of each active material, the optimum particle size may be blended and used for expressing each unique effect. It is not always necessary to make the particle diameter uniform.
  • the average particle diameter of the positive electrode active material contained in the positive electrode active material layer 13 is not particularly limited, but is preferably 1 to 30 ⁇ m and more preferably 5 to 20 ⁇ m from the viewpoint of increasing the output.
  • the “particle diameter” refers to the outline of the active material particles (observation surface) observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It means the maximum distance among any two points.
  • the value of “average particle diameter” is the value of particles observed in several to several tens of fields using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The value calculated as the average value of the particle diameter shall be adopted.
  • the particle diameters and average particle diameters of other components can be defined in the same manner.
  • the positive electrode active material layer contains a positive electrode active material (solid solution positive electrode active material) represented by the following formula (2).
  • e represents the weight% of each component in the positive electrode active material layer, and 80 ⁇ e ⁇ 98.
  • the content of the solid solution positive electrode active material in the positive electrode active material layer is indispensable to be 80 to 98% by weight, preferably 84 to 98% by weight.
  • the positive electrode active material layer preferably contains a binder and a conductive aid in addition to the solid solution positive electrode active material described above. Further, if necessary, it further contains other additives such as an electrolyte (polymer matrix, ion-conductive polymer, electrolyte solution, etc.) and a lithium salt for increasing the ion conductivity.
  • a binder and a conductive aid in addition to the solid solution positive electrode active material described above. Further, if necessary, it further contains other additives such as an electrolyte (polymer matrix, ion-conductive polymer, electrolyte solution, etc.) and a lithium salt for increasing the ion conductivity.
  • Binder Although it does not specifically limit as a binder used for a positive electrode active material layer, for example, the following materials are mentioned. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC) and its salts, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR) ), Isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and hydrogenated product thereof.
  • Thermoplastic polymers such as products, polyvinylidene fluoride (P
  • the binder content in the positive electrode active material layer is preferably 1 to 10% by weight, more preferably 1 to 8% by weight.
  • the conductive assistant refers to an additive that is blended in order to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer.
  • Examples of the conductive assistant include carbon black such as ketjen black and acetylene black.
  • the content of the conductive auxiliary in the positive electrode active material layer is preferably 1 to 10% by weight, more preferably 1 to 8% by weight.
  • electrolyte salt examples include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
  • Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
  • the positive electrode (positive electrode active material layer) can be applied by any one of a kneading method, a sputtering method, a vapor deposition method, a CVD method, a PVD method, an ion plating method, and a thermal spraying method in addition to a method of applying (coating) a normal slurry. Can be formed.
  • the negative electrode active material layer 15 essentially contains a Si-containing alloy and a carbon material as a negative electrode active material.
  • Si-containing alloy is not particularly limited as long as it is an alloy with another metal containing Si, and conventionally known knowledge can be appropriately referred to.
  • Si-containing alloy Si x Ti y Ge z A a , Si x Ti y Zn z A a , Si x Ti y Sn z A a , Si x Sn y Al z A a , and Si x Sn y V z A a , Si x Sn y C z A a , Si x Zn y V z A a , Si x Zn y Sn z A a , Si x Zn y Al z A a , Si x Zn y C zA a, Si x Al y C z a a and Si x Al y Nb z a a ( wherein, a is unavoidable impurities.
  • the average particle size of the Si-containing alloy is not particularly limited as long as it is approximately the same as the average particle size of the negative electrode active material included in the existing negative electrode active material layer 15. From the viewpoint of higher output, it is preferably in the range of 1 to 20 ⁇ m. However, it is not limited at all to the above range, and it goes without saying that it may be outside the above range as long as the effects of the present embodiment can be effectively expressed.
  • the shape of the Si-containing alloy is not particularly limited, and may be spherical, elliptical, cylindrical, polygonal, flaky, indefinite, or the like.
  • the carbon material that can be used in the present invention is not particularly limited, but graphite (graphite), which is a highly crystalline carbon such as natural graphite or artificial graphite; low crystalline carbon such as soft carbon or hard carbon; ketjen black, acetylene Carbon black such as black, channel black, lamp black, oil furnace black, and thermal black; and carbon materials such as fullerene, carbon nanotube, carbon nanofiber, carbon nanohorn, and carbon fibril. Of these, graphite is preferably used.
  • the average particle diameter of the carbon material is not particularly limited, but is preferably 5 to 25 ⁇ m, and more preferably 5 to 10 ⁇ m.
  • the average particle size of the carbon material may be the same as or different from the average particle size of the Si-containing alloy. Is preferred.
  • the average particle size of the Si-containing alloy is more preferably smaller than the average particle size of the carbon material.
  • negative electrode active materials other than the two types of negative electrode active materials described above may be used in combination.
  • the negative electrode active material that can be used in combination include SiO x , a lithium-transition metal composite oxide (eg, Li 4 Ti 5 O 12 ), a metal material, and a lithium alloy negative electrode material.
  • SiO x SiO x
  • Li 4 Ti 5 O 12 lithium-transition metal composite oxide
  • metal material e.g., Li 4 Ti 5 O 12
  • lithium alloy negative electrode material e.g, Li 4 Ti 5 O 12
  • other negative electrode active materials may be used.
  • the negative electrode active material layer contains a negative electrode active material represented by the following formula (1).
  • ⁇ and ⁇ represent the weight percentage of each component in the negative electrode active material layer, and 80 ⁇ ⁇ + ⁇ ⁇ 98, 3 ⁇ ⁇ ⁇ 40, and 40 ⁇ ⁇ ⁇ 95.
  • the content of the negative electrode active material made of the Si-containing alloy in the negative electrode active material layer is 3 to 40% by weight.
  • the content of the carbon material negative electrode active material is 40 to 95% by weight. Furthermore, the total content thereof is 80 to 98% by weight.
  • the mixing ratio of the Si-containing alloy and the carbon material of the negative electrode active material is not particularly limited as long as the above-described content specification is satisfied, and can be appropriately selected according to a desired application.
  • the content of the Si-containing alloy in the negative electrode active material is preferably 3 to 40% by weight.
  • the content of the Si-containing alloy in the negative electrode active material is more preferably 4 to 30% by weight.
  • the content of the Si-containing alloy in the negative electrode active material is more preferably 5 to 20% by weight.
  • the content of the Si-containing alloy is 3% by weight or more because a high initial capacity can be obtained.
  • the content of the Si-containing alloy is 40% by weight or less, it is preferable because high cycle characteristics can be obtained.
  • the negative electrode active material layer preferably contains a binder and a conductive additive in addition to the negative electrode active material described above. Further, if necessary, it further contains other additives such as an electrolyte (polymer matrix, ion conductive polymer, electrolytic solution, etc.) and a lithium salt for increasing the ion conductivity.
  • an electrolyte polymer matrix, ion conductive polymer, electrolytic solution, etc.
  • a lithium salt for increasing the ion conductivity.
  • the present embodiment is characterized in that the coating amount (weight per unit area) of the negative electrode active material layer is 4 to 11 mg / cm 2 .
  • the coating amount (weight per unit area) of the negative electrode active material layer exceeds 11 mg / cm 2 , there is a problem that the rate characteristics of the battery are remarkably deteriorated.
  • the coating amount (weight per unit area) of the negative electrode active material layer is less than 4 mg / cm 2 , the content of the active material in the negative electrode active material layer is reduced in the first place. A load will be applied, and cycle durability will deteriorate.
  • the coating amount (weight per unit area) of the negative electrode active material layer is a value within the above-described range, both rate characteristics and cycle characteristics can be achieved.
  • a predetermined negative electrode active material is used in combination, and the content thereof is adjusted to achieve the coating amount (weight per unit area) within the above range.
  • each active material layer (active material layer on one side of the current collector) is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to.
  • the thickness of each active material layer is usually about 1 to 500 ⁇ m, preferably 2 to 100 ⁇ m, taking into consideration the intended use of the battery (emphasis on output, energy, etc.) and ion conductivity.
  • the current collectors (11, 12) are made of a conductive material.
  • the size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used.
  • the thickness of the current collector is usually about 1 to 100 ⁇ m.
  • the shape of the current collector is not particularly limited.
  • a mesh shape (such as an expanded grid) can be used.
  • the negative electrode active material is formed directly on the negative electrode current collector 12 by sputtering or the like, it is preferable to use a current collector foil.
  • a metal or a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material can be employed.
  • examples of the metal include aluminum, nickel, iron, stainless steel, titanium, and copper.
  • a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used.
  • covered on the metal surface may be sufficient.
  • aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electronic conductivity, battery operating potential, and adhesion of the negative electrode active material by sputtering to the current collector.
  • examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.
  • Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), or polystyrene (PS).
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PI polyimide
  • PAI polyamideimide
  • PA polyamide
  • PTFE polytetraflu
  • a conductive filler may be added to the conductive polymer material or the non-conductive polymer material as necessary.
  • a conductive filler is inevitably necessary to impart conductivity to the resin.
  • the conductive filler can be used without particular limitation as long as it has a conductivity.
  • metals, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion barrier
  • the metal is not particularly limited, but at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, Sb, and K, or these metals It is preferable to contain an alloy or metal oxide containing.
  • it includes at least one selected from the group consisting of acetylene black, vulcan, black pearl, carbon nanofiber, ketjen black, carbon nanotube, carbon nanohorn, carbon nanoballoon, and fullerene.
  • the amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by weight.
  • the separator has a function of holding an electrolyte and ensuring lithium ion conductivity between the positive electrode and the negative electrode, and a function as a partition wall between the positive electrode and the negative electrode.
  • separator examples include a separator made of a porous sheet made of a polymer or fiber that absorbs and holds the electrolyte and a nonwoven fabric separator.
  • a microporous (microporous film) can be used as the separator of the porous sheet made of polymer or fiber.
  • the porous sheet made of the polymer or fiber include polyolefins such as polyethylene (PE) and polypropylene (PP); a laminate in which a plurality of these are laminated (for example, three layers of PP / PE / PP) And a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • PE polyethylene
  • PP polypropylene
  • a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • the thickness of the microporous (microporous membrane) separator cannot be uniquely defined because it varies depending on the intended use. For example, in applications such as secondary batteries for driving motors such as electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV), it is 4 to 60 ⁇ m in a single layer or multiple layers. Is desirable.
  • the fine pore diameter of the microporous (microporous membrane) separator is desirably 1 ⁇ m or less (usually a pore diameter of about several tens of nm).
  • nonwoven fabric separator cotton, rayon, acetate, nylon, polyester; polyolefins such as PP and PE; conventionally known ones such as polyimide and aramid are used alone or in combination.
  • the bulk density of the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated polymer gel electrolyte.
  • the thickness of the nonwoven fabric separator may be the same as that of the electrolyte layer, and is preferably 5 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • the separator includes an electrolyte.
  • the electrolyte is not particularly limited as long as it can exhibit such a function, but a liquid electrolyte or a gel polymer electrolyte is used.
  • a gel polymer electrolyte By using the gel polymer electrolyte, the distance between the electrodes is stabilized, the occurrence of polarization is suppressed, and the durability (cycle characteristics) is improved.
  • the liquid electrolyte functions as a lithium ion carrier.
  • the liquid electrolyte constituting the electrolytic solution layer has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer.
  • organic solvent include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • ethyl methyl carbonate ethyl methyl carbonate.
  • Li (CF 3 SO 2) 2 N Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF such 6, LiCF 3 SO 3
  • a compound that can be added to the active material layer of the electrode can be similarly employed.
  • the liquid electrolyte may further contain additives other than the components described above.
  • additives include, for example, vinylene carbonate, methyl vinylene carbonate, dimethyl vinylene carbonate, phenyl vinylene carbonate, diphenyl vinylene carbonate, ethyl vinylene carbonate, diethyl vinylene carbonate, vinyl ethylene carbonate, 1,2-divinyl ethylene carbonate.
  • vinylene carbonate, methyl vinylene carbonate, and vinyl ethylene carbonate are preferable, and vinylene carbonate and vinyl ethylene carbonate are more preferable.
  • These cyclic carbonates may be used alone or in combination of two or more.
  • the gel polymer electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer.
  • a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and the ion conductivity between the layers is easily cut off.
  • ion conductive polymer used as the matrix polymer (host polymer) examples include polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene glycol (PEG), polyacrylonitrile (PAN), polyvinylidene fluoride-hexafluoropropylene ( PVdF-HEP), poly (methyl methacrylate (PMMA), and copolymers thereof.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • PEG polyethylene glycol
  • PAN polyacrylonitrile
  • PVdF-HEP polyvinylidene fluoride-hexafluoropropylene
  • PMMA methyl methacrylate
  • the matrix polymer of gel electrolyte can express excellent mechanical strength by forming a crosslinked structure.
  • thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator.
  • a polymerization treatment may be performed.
  • the separator is preferably a separator in which a heat-resistant insulating layer is laminated on a porous substrate (a separator with a heat-resistant insulating layer).
  • the heat resistant insulating layer is a ceramic layer containing inorganic particles and a binder.
  • a highly heat-resistant separator having a melting point or a heat softening point of 150 ° C. or higher, preferably 200 ° C. or higher is used.
  • the separator is less likely to curl in the battery manufacturing process due to the effect of suppressing thermal shrinkage and high mechanical strength.
  • the inorganic particles in the heat resistant insulating layer contribute to the mechanical strength and heat shrinkage suppressing effect of the heat resistant insulating layer.
  • the material used as the inorganic particles is not particularly limited. Examples thereof include silicon, aluminum, zirconium, titanium oxides (SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 ), hydroxides and nitrides, and composites thereof. These inorganic particles may be derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine and mica, or may be artificially produced. Moreover, only 1 type may be used individually for these inorganic particles, and 2 or more types may be used together. Of these, silica (SiO 2 ) or alumina (Al 2 O 3 ) is preferably used, and alumina (Al 2 O 3 ) is more preferably used from the viewpoint of cost.
  • the basis weight of the heat-resistant particles is not particularly limited, but is preferably 5 to 15 g / m 2 . If it is this range, sufficient ion conductivity will be acquired and it is preferable at the point which maintains heat resistant strength.
  • the binder in the heat-resistant insulating layer has a role of adhering the inorganic particles and the inorganic particles to the resin porous substrate layer.
  • the heat resistant insulating layer is stably formed, and peeling between the porous substrate layer and the heat resistant insulating layer is prevented.
  • the binder used for the heat-resistant insulating layer is not particularly limited.
  • a compound such as butadiene rubber, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), or methyl acrylate can be used as the binder.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVF polyvinyl fluoride
  • methyl acrylate methyl acrylate
  • PVDF polyvinylidene fluoride
  • these compounds only 1 type may be used independently and 2 or more types may be used together.
  • the binder content in the heat-resistant insulating layer is preferably 2 to 20% by weight with respect to 100% by weight of the heat-resistant insulating layer.
  • the binder content is 2% by weight or more, the peel strength between the heat-resistant insulating layer and the porous substrate layer can be increased, and the vibration resistance of the separator can be improved.
  • the binder content is 20% by weight or less, the gap between the inorganic particles is appropriately maintained, so that sufficient lithium ion conductivity can be ensured.
  • the thermal contraction rate of the separator with a heat-resistant insulating layer is preferably 10% or less for both MD and TD after holding for 1 hour at 150 ° C. and 2 gf / cm 2 .
  • a current collector plate (tab) electrically connected to a current collector is taken out of a laminate film as an exterior material for the purpose of taking out current outside the battery.
  • the material constituting the current collector plate is not particularly limited, and a known highly conductive material conventionally used as a current collector plate for a lithium ion secondary battery can be used.
  • a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable. Note that the same material may be used for the positive electrode current collector plate (positive electrode tab) and the negative electrode current collector plate (negative electrode tab), or different materials may be used.
  • the tabs 58 and 59 shown in FIG. 2 are not particularly limited.
  • the positive electrode tab 58 and the negative electrode tab 59 may be drawn out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be divided into a plurality of parts and taken out from each side, as shown in FIG. It is not limited to.
  • a terminal may be formed using a cylindrical can (metal can).
  • the seal portion is a member unique to the serially stacked battery and has a function of preventing leakage of the electrolyte layer. In addition to this, it is possible to prevent current collectors adjacent in the battery from coming into contact with each other and a short circuit due to a slight unevenness at the end of the laminated electrode.
  • the constituent material of the seal part is not particularly limited, but polyolefin resin such as polyethylene and polypropylene, epoxy resin, rubber, polyimide and the like can be used. Among these, it is preferable to use a polyolefin resin from the viewpoints of corrosion resistance, chemical resistance, film-forming property, economy, and the like.
  • ⁇ Positive terminal lead and negative terminal lead> As a material for the negative electrode and the positive electrode terminal lead, a lead used in a known laminated secondary battery can be used.
  • the parts removed from the battery exterior material should be heat-insulating so that they do not affect products (for example, automobile parts, especially electronic devices) by touching peripheral devices or wiring and causing leakage. It is preferable to coat with a heat shrinkable tube or the like.
  • Laminate film A conventionally known metal can case can be used as the exterior material.
  • the power generation element 17 may be packed using a laminate film 22 as shown in FIG.
  • the laminate film can be configured as a three-layer structure in which, for example, polypropylene, aluminum, and nylon are laminated in this order.
  • the manufacturing method in particular of a lithium ion secondary battery is not restrict
  • a lithium ion secondary battery is not limited to this.
  • the electrode (positive electrode and negative electrode) is prepared, for example, by preparing an active material slurry (positive electrode active material slurry or negative electrode active material slurry) and applying the active material slurry onto a current collector. It can be made by drying, then pressing.
  • the active material slurry includes the above-described active material (positive electrode active material or negative electrode active material), a binder, a conductive additive, and a solvent.
  • the solvent is not particularly limited, and N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylformamide, cyclohexane, hexane, water and the like can be used.
  • NMP N-methyl-2-pyrrolidone
  • the method for applying the active material slurry to the current collector is not particularly limited, and examples thereof include a screen printing method, a spray coating method, an electrostatic spray coating method, an ink jet method, and a doctor blade method.
  • the method for drying the coating film formed on the surface of the current collector is not particularly limited as long as at least a part of the solvent in the coating film is removed.
  • An example of the drying method is heating. Drying conditions (drying time, drying temperature, etc.) can be appropriately set according to the volatilization rate of the solvent contained in the applied active material slurry, the coating amount of the active material slurry, and the like. A part of the solvent may remain. The remaining solvent can be removed by a press process described later.
  • the pressing means is not particularly limited, and for example, a calendar roll, a flat plate press, or the like can be used.
  • the single cell layer can be produced by laminating the electrodes (positive electrode and negative electrode) produced in (1) via an electrolyte layer.
  • the power generation element can be produced by laminating the single cell layers in consideration of the output and capacity of the single cell layer, the output and capacity required for the battery, and the like.
  • the structure of the battery various shapes such as a square, a paper, a laminated, a cylindrical, and a coin can be adopted.
  • the current collector and insulating plate of the component parts are not particularly limited, and may be selected according to the above shape.
  • a stacked battery is preferable.
  • a lead is joined to the current collector of the power generation element obtained above, and the positive electrode lead or the negative electrode lead is joined to the positive electrode tab or the negative electrode tab.
  • a power generation element is placed in a laminate sheet so that the positive electrode tab and the negative electrode tab are exposed to the outside of the battery, and an electrolytic solution is injected with a liquid injector and then sealed in a vacuum to produce a stacked battery. sell.
  • the initial charge treatment, gas removal treatment and activation treatment are further performed under the following conditions.
  • it is done (see Example 1).
  • the three sides of the laminate sheet (exterior material) are completely sealed in a rectangular shape by thermocompression when sealing in the production of the laminated battery of (4) so that the gas removal treatment can be performed. Stop (main sealing), and the remaining one side is temporarily sealed by thermocompression bonding.
  • the remaining one side may be freely opened and closed by, for example, clip fastening, but from the viewpoint of mass production (production efficiency), it is preferable to temporarily seal the side by thermocompression bonding.
  • thermocompression it is only necessary to adjust the temperature and pressure for pressure bonding.
  • it can be opened by lightly applying force, and after degassing, it may be sealed again by thermocompression, or finally completely sealed by thermocompression ( Main sealing).
  • the battery aging treatment is preferably performed as follows. At 25 ° C., a constant current charging method is used for 0.05 C for 4 hours (SOC approximately 20%). Next, after charging to 4.45 V at a 0.1 C rate at 25 ° C., the charging is stopped, and the state (SOC is about 70%) is maintained for about 2 days (48 hours).
  • thermocompression bonding Next, the following process is performed as the first (first) gas removal process. First, one side temporarily sealed by thermocompression bonding is opened, gas is removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding is performed again to perform temporary sealing. Further, pressurization with a roller (surface pressure 0.5 ⁇ 0.1 MPa) is performed, and the electrode and the separator are sufficiently adhered.
  • the battery is charged at 25 ° C. by a constant current charging method until the voltage reaches 4.45 V at 0.1 C, and then discharged twice to 2.0 V at 0.1 C.
  • a cycle of discharging to 2.0 V at 0.1 C once is 4.65 V at 0.1 C.
  • the battery is charged until it reaches 0, and then discharged once at 0.1 C to 2.0 V.
  • a cycle of charging at 0.1 C to 4.75 V by a constant current charging method at 25 ° C. and then discharging to 0.1 V at 0.1 C may be performed once.
  • the constant current charging method is used as the activation processing method, and the electrochemical pretreatment method when the voltage is set as the termination condition is described as an example, but the charging method is a constant current constant voltage charging method. You may use. Further, as the termination condition, a charge amount or time may be used in addition to the voltage.
  • thermocompression bonding Next, the following process is performed as the first (first) gas removal process. First, one side temporarily sealed by thermocompression bonding is opened, gas is removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding is performed again to perform main sealing. Further, pressurization with a roller (surface pressure 0.5 ⁇ 0.1 MPa) is performed, and the electrode and the separator are sufficiently adhered.
  • the performance and durability of the obtained battery can be improved by performing the initial charging process, the gas removal process, and the activation process described above.
  • the assembled battery is configured by connecting a plurality of batteries. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series.
  • a small assembled battery that can be attached and detached by connecting a plurality of batteries in series or in parallel. Then, a plurality of small assembled batteries that can be attached and detached are connected in series or in parallel to provide a large capacity and large capacity suitable for vehicle drive power supplies and auxiliary power supplies that require high volume energy density and high volume output density.
  • An assembled battery having an output can also be formed. How many batteries are connected to make an assembled battery, and how many small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the mounted vehicle (electric vehicle) It may be determined according to the output.
  • the electric device of the present invention including the lithium ion secondary battery according to the present embodiment maintains a discharge capacity even when used for a long time, and has good cycle characteristics. Furthermore, the volume energy density is high. Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles require higher capacity, larger size, and longer life than electric and portable electronic devices. . Therefore, the lithium ion secondary battery (electric device) can be suitably used as a vehicle power source, for example, as a vehicle driving power source or an auxiliary power source.
  • a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle.
  • a plug-in hybrid electric vehicle having a long EV mileage or an electric vehicle having a long charge mileage can be formed by mounting such a battery.
  • a car a hybrid car, a fuel cell car, an electric car (four-wheeled vehicles (passenger cars, trucks, buses, commercial vehicles, light cars, etc.) This is because it can be used for motorcycles (including motorcycles) and tricycles) to provide a long-life and highly reliable automobile.
  • the application is not limited to automobiles.
  • it can be applied to various power sources for moving vehicles such as other vehicles, for example, trains, and power sources for mounting such as uninterruptible power supplies. It is also possible to use as.
  • Example 1 (Preparation of solid solution positive electrode active material C1) 1.
  • Manganese sulfate monohydrate (molecular weight 223.06 g / mol) 28.61 g, Nickel sulfate hexahydrate (molecular weight 262.85 g / mol) 17.74 g, was added to 200 g of pure water and dissolved by stirring to prepare a mixed solution.
  • the dried powder was pulverized in a mortar and then calcined at 500 ° C. for 5 hours.
  • Lithium hydroxide monohydrate (molecular weight 41.96 g / mol) 10.67 g was mixed with the calcined powder and pulverized and mixed for 30 minutes.
  • This powder was calcined at 500 ° C. for 2 hours and then calcined at 900 ° C. for 12 hours to obtain a solid solution positive electrode active material C1.
  • composition of the solid solution positive electrode active material C1 thus obtained was as follows.
  • composition C1 Li 1.5 [Ni 0.45 Mn 0.85 [Li] 0.20 ] O 3
  • the dried powder was pulverized in a mortar and then baked at 450 ° C. for 5 hours to obtain a solid solution positive electrode active material C1.
  • the solid solution positive electrode active material C1 thus obtained was 0 on the particle surface of the solid solution positive electrode active material C1 obtained in “Preparation of the solid solution positive electrode active material C1” with respect to the total amount (100 wt%) of the solid solution positive electrode active material C1. It was a powder formed with a coating layer made of 5 wt% Al 2 O 3 .
  • the average particle size of the obtained solid solution positive electrode active material C1 was 8 ⁇ m.
  • the average particle diameters of the solid solution positive electrode active materials obtained in other examples and comparative examples were also the same average particle diameter.
  • composition of slurry for positive electrode had the following composition.
  • Cathode active material Al 2 O 3 coated solid solution cathode active material C1 obtained above 9.4 parts by weight
  • Conductive aid flake graphite 0.15 parts by weight
  • Acetylene black 0.15 parts by weight
  • Binder Polyvinylidene fluoride ( PVDF) 0.3 part by weight
  • Solvent 8.2 parts by weight of N-methyl-2-pyrrolidone (NMP).
  • a positive electrode slurry having the above composition was prepared as follows. First, 4.0 parts by weight of a solvent (NMP) is added to 2.0 parts by weight of a 20% binder solution obtained by dissolving a binder in a solvent (NMP) into a 50 ml disposable cup, and a stirring defoaming machine (spinning revolving mixer: Awatori) A binder diluted solution was prepared by stirring for 1 minute with Rentaro AR-100).
  • NMP solvent
  • NMP spinning revolving mixer
  • the positive electrode slurry was applied to one side of an aluminum current collector with a thickness of 20 ⁇ m using an automatic coating apparatus (Doctor blade manufactured by Tester Sangyo: PI-1210 automatic coating apparatus). Subsequently, the current collector coated with the positive electrode slurry was dried on a hot plate (100 ° C. to 110 ° C., drying time 30 minutes), and the amount of NMP remaining in the positive electrode active material layer was 0.02 wt%.
  • a sheet-like positive electrode was formed as follows.
  • the sheet-like positive electrode was compression-molded by applying a roller press and cut to prepare a positive electrode having a weight of about 17.1 mg / cm 2 and a density of 2.65 g / cm 3 of the positive electrode active material layer on one side.
  • Si 29 Ti 62 Ge 9 was used as the Si-containing alloy as the negative electrode active material.
  • the Si-containing alloy was produced by a mechanical alloy method. Specifically, using a planetary ball mill device P-6 manufactured by Fricht, Germany, zirconia pulverized balls and alloy raw material powders were charged into a zirconia pulverized pot and alloyed at 600 rpm for 48 hours.
  • Si-containing alloy Si 29 Ti 62 Ge 9
  • other alloys that can be used in the present invention Si x Ti y Ge z A a , Si x Ti y Zn z A a , and Si this of x Ti y Sn z a, Si 29 Ti 62 Ge 9 except one
  • Si x Ti y Ge z A a Si x Ti y Zn z A a
  • Si this of x Ti y Sn z a, Si 29 Ti 62 Ge 9 except one also, since those having the same characteristics as Si 29 Ti 62 Ge 9, using Si 29 Ti 62 Ge 9 The same or similar results as in the examples are obtained.
  • composition of slurry for negative electrode The negative electrode slurry had the following composition.
  • Negative electrode active material Si-containing alloy (Si 29 Ti 62 Ge 9 ) 1.38 parts by weight Carbon material (manufactured by Hitachi Chemical, graphite) 7.82 parts by weight Conductive aid: SuperP 0.40 part by weight Binder: Polyimide 0.40 Part by weight Solvent: 10.0 parts by weight of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • a negative electrode slurry having the above composition was prepared as follows. First, 5.0 parts by weight of a solvent (NMP) was added to 2.0 parts by weight of a 20% binder solution obtained by dissolving a binder in a solvent (NMP), and the mixture was stirred for 1 minute with a stirring deaerator to prepare a diluted binder solution. To this binder diluted solution, 0.4 parts by weight of conductive additive, 9.2 parts by weight of negative electrode active material powder, and 3.4 parts by weight of solvent (NMP) are added, and stirred for 3 minutes with a stirring defoamer for the negative electrode. A slurry (solid content concentration 50 wt%) was obtained.
  • NMP solvent
  • the negative electrode slurry was applied to one side of a 10 ⁇ m thick electrolytic copper current collector using an automatic coating apparatus. Subsequently, the current collector coated with the negative electrode slurry was dried on a hot plate (100 ° C. to 110 ° C., drying time 30 minutes), and the amount of NMP remaining in the negative electrode active material layer was 0.02 wt% or less. A sheet-like negative electrode was formed.
  • the obtained sheet-like negative electrode was compression-molded using a roller press and cut to prepare a negative electrode having a weight of about 8.48 mg / cm 2 and a density of 1.60 g / cm 3 of the negative electrode active material layer on one side. When the surface of this negative electrode was observed, no cracks were observed.
  • ethylene carbonate (EC) and diethyl carbonate (DEC) 1 in a mixed nonaqueous solvent were mixed at a volume ratio, the concentration of LiPF 6 a (lithium hexafluorophosphate) 1M What was dissolved so that it might become was used.
  • LiPF 6 a lithium hexafluorophosphate
  • the battery is evaluated by the constant current constant voltage charging method in which the battery is charged at a 0.1 C rate until the maximum voltage reaches 4.5 V and then held for about 1 to 1.5 hours.
  • the constant current discharge method was used in which discharge was performed at a 0.1 C rate until the minimum voltage reached 2.0V.
  • the discharge capacity at the 0.1 C rate at this time was defined as “0.1 C discharge capacity (mAh / g)”.
  • the discharge capacity per active material of the positive electrode C1 was 226 mAh / g, and the discharge capacity per electrode unit area was 3.61 mAh / cm 2 .
  • ethylene carbonate (EC) and diethyl carbonate (DEC) 1 in a mixed nonaqueous solvent were mixed at a volume ratio, the concentration of LiPF 6 a (lithium hexafluorophosphate) 1M What was dissolved so that it might become was used.
  • LiPF 6 a lithium hexafluorophosphate
  • the battery is evaluated by a constant current / constant voltage charging method in which charging (the Li insertion process into the negative electrode to be evaluated) is charged from 2 V to 10 mV at a 0.1 C rate and then held for about 1 to 1.5 hours.
  • the constant current mode was used, and a constant current discharge method was performed in which discharge was performed from 10 mV to 2 V at a 0.1 C rate.
  • the discharge capacity at the 0.1 C rate at this time was defined as “0.1 C discharge capacity (mAh / g)”.
  • the discharge capacity per active material of the negative electrode A1 was 481 mAh / g, and the discharge capacity per electrode unit area was 4.08 mAh / cm 2 .
  • the positive electrode C1 obtained above was cut out so as to have an active material layer area of 2.5 cm in length and 2.0 cm in width, and the two current collectors faced each other, so that the uncoated surface (aluminum current collector)
  • the current collector portion was spot welded together with the surface not coated with the foil slurry.
  • an aluminum positive electrode tab positive electrode current collector plate
  • the negative electrode A1 obtained above was cut out so as to have an active material layer area of 2.7 cm in length and 2.2 cm in width, and then a negative electrode tab of electrolytic copper was further welded to the current collector portion to form a negative electrode A11.
  • the negative electrode A11 has a structure in which a negative electrode active material layer is formed on one surface of a current collector.
  • a porous polypropylene separator (S) (length 3.0 cm ⁇ width 2.5 cm, thickness 25 ⁇ m, porosity 55%) is sandwiched between the negative electrode A11 to which these tabs are welded and the positive electrode C11.
  • a laminated power generation element was produced.
  • the structure of the stacked type power generation element is the structure of negative electrode (single side) / separator / positive electrode (both sides) / separator / negative electrode (single side), that is, A11- (S) -C11- (S) -A11. The configuration.
  • both sides of the power generation element were sandwiched with an aluminum laminate film exterior material (length 3.5 cm ⁇ width 3.5 cm), and the above power generation element was accommodated by thermocompression sealing at three sides.
  • LiPF 6 electrolyzed ethylene carbonate
  • DEC diethyl carbonate
  • lithium lithium fluorophosphate LiPO 2 F 2
  • MMDS methylenemethane disulfonic acid
  • active materials were prepared according to Example 1. That is, an active material was prepared in the same manner as in Example 1 described above, except as otherwise noted below.
  • Solid solution positive electrode active material C2 Li 1.5 [Ni 0.525 Mn 0.825 [Li] 0.15] O 3 was produced.
  • the coating amount of the coating layer made of Al 2 O 3 was 0.5% by weight with respect to the total amount (100% by weight) of the solid solution positive electrode active material C2 coated with the coating layer.
  • Solid solution positive electrode active material C3 Li 1.5 [Ni 0.375 Mn 0.875 [Li] 0.25] O 3 was produced.
  • the coating amount of the coating layer made of Al 2 O 3 was 0.5% by weight with respect to the total amount (100% by weight) of the solid solution positive electrode active material C3 coated with the coating layer.
  • Solid solution positive electrode active material C4 Li 1.5 [Ni 0.600 Mn 0.800 [Li] 0.10] O 3 was produced.
  • the coating amount of the coating layer made of Al 2 O 3 was set to 0.5% by weight with respect to the total amount (100% by weight) of the solid solution positive electrode active material C4 coated with the coating layer.
  • Solid solution positive electrode active material C5 Li 1.5 [Ni 0.300 Mn 0.900 [Li] 0.30] O 3 was produced.
  • the coating amount of the coating layer made of Al 2 O 3 was 0.5% by weight with respect to the total amount (100% by weight) of the solid solution positive electrode active material C5 coated with the coating layer.
  • Solid solution positive electrode active material C6 Li 1.5 [Ni 0.225 Mn 0.925 [Li] 0.35] O 3 was produced.
  • the coating amount of the coating layer made of Al 2 O 3 was 0.5% by weight with respect to the total amount (100% by weight) of the solid solution positive electrode active material C6 coated with the coating layer.
  • Solid solution positive electrode active material C7 According to Example 1, a solid solution positive electrode active material C1 before metal oxide coating was produced. Subsequently, Al 2 O 3 coating was performed in the same manner as in Example 1. At this time, the coating amount of the coating layer made of Al 2 O 3 was set to 2.0% by weight with respect to the total amount (100% by weight) of the solid solution positive electrode active material C7 coated with the coating layer.
  • Solid solution positive electrode active material C8 According to Example 1, a solid solution positive electrode active material C1 before metal oxide coating was produced. Next, using zirconium ammonium carbonate (Zr (OH) 2 (CO 3 ) 2 ⁇ 2NH 4 molecular weight 281.33 g / mol) instead of aluminum nitrate, a coating layer made of zirconium oxide on the particle surface of the solid solution positive electrode active material C1 To obtain a solid solution positive electrode active material C8. At this time, according to Example 1, the coating amount of the coating layer made of Al 2 O 3 was 0.5% by weight with respect to the total amount (100% by weight) of the solid solution positive electrode active material C6 coated with the coating layer. did.
  • zirconium ammonium carbonate Zr (OH) 2 (CO 3 ) 2 ⁇ 2NH 4 molecular weight 281.33 g / mol
  • Solid solution positive electrode active material C9 According to Example 1, a solid solution positive electrode active material C1 before metal oxide coating was produced. Next, a coating layer made of titanium oxide is formed on the particle surface of the solid solution positive electrode active material C1 using tetraisopropoxy titanium (C 14 H 28 O 4 Ti molecular weight 284.22 g / mol), and the solid solution positive electrode active material C9 is formed. Got. At this time, the coating layer was formed as follows.
  • Solid solution positive electrode active material C10 A solid solution positive electrode active material C1 Li 1.5 [Ni 0.45 Mn 0.85 [Li] 0.20 ] O 3 in which a coating layer made of a metal oxide was not formed was used as the solid solution positive electrode active material C10.
  • positive electrodes C2 to C10 were produced according to Example 1. At this time, the coating amount was adjusted in consideration of the discharge capacity of the solid solution positive electrode active material and the positive electrode slurry composition so that the discharge capacities of the positive electrodes C2 to C10 were 3.61 mAh / cm 2 .
  • the compositions of the positive electrodes C1 to C10 obtained and the measured values of the charge capacity and discharge capacity are summarized in Table 1 below.
  • Negative electrode A2 A negative electrode A2 was produced in the same manner as in Example 1 except that the composition of the negative electrode slurry was as follows.
  • Negative electrode active material Si-containing alloy (Si 49 Ti 32 Sn 19 ) 1.38 parts by weight Carbon material (made by Hitachi Chemical, graphite) 7.82 parts by weight Conductive aid: SuperP 0.40 part by weight Binder: Polyimide 0.40 Part by weight Solvent: 10.0 parts by weight of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • Negative electrode A3 A negative electrode A3 was produced in the same manner as in Example 1 except that the composition of the negative electrode slurry was as follows.
  • Negative electrode active material Si-containing alloy (Si 53 Ti 21 Sn 26 ) 1.38 parts by weight Carbon material (manufactured by Hitachi Chemical, graphite) 7.82 parts by weight Conductive aid: SuperP 0.40 part by weight Binder: Polyimide 0.40 Part by weight Solvent: 10.0 parts by weight of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • Negative electrode A4 A negative electrode A4 was produced in the same manner as in Example 1 except that the composition of the negative electrode slurry was as follows.
  • Negative electrode active material Si-containing alloy (Si 41 Ti 15 Al 43 ) 1.38 parts by weight Carbon material (made by Hitachi Chemical, graphite) 7.82 parts by weight Conductive aid: SuperP 0.40 part by weight Binder: Polyimide 0.40 Part by weight Solvent: 10.0 parts by weight of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • Negative electrode A5 A negative electrode A5 was produced in the same manner as in Example 1 except that the composition of the negative electrode slurry was as follows.
  • Negative electrode active material Si-containing alloy (Si 34 Sn 13 V 53 ) 1.38 parts by weight Carbon material (manufactured by Hitachi Chemical, graphite) 7.82 parts by weight Conductive aid: SuperP 0.40 parts by weight Binder: Polyimide 0.40 Part by weight Solvent: 10.0 parts by weight of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • Negative electrode A6 A negative electrode A6 was produced in the same manner as in Example 1 except that the composition of the negative electrode slurry was as follows.
  • Negative electrode active material Si-containing alloy (Si 34 Sn 41 C 25 ) 1.38 parts by weight Carbon material (made by Hitachi Chemical, graphite) 7.82 parts by weight Conductive aid: SuperP 0.40 part by weight Binder: Polyimide 0.40 Part by weight Solvent: 10.0 parts by weight of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • Negative electrode A7 A negative electrode A7 was produced in the same manner as in Example 1 except that the composition of the negative electrode slurry was as follows.
  • Negative electrode active material Si-containing alloy (Si 34 Zn 23 V 43 ) 1.38 parts by weight Carbon material (made by Hitachi Chemical, graphite) 7.82 parts by weight Conductive aid: SuperP 0.40 part by weight Binder: Polyimide 0.40 Part by weight Solvent: 10.0 parts by weight of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • Negative electrode A8 was produced in the same manner as in Example 1 except that the composition of the negative electrode slurry was as follows.
  • Negative electrode active material Si-containing alloy (Si 42 Zn 53 Sn 5 ) 1.38 parts by weight Carbon material (manufactured by Hitachi Chemical, graphite) 7.82 parts by weight Conductive aid: SuperP 0.40 part by weight Binder: Polyimide 0.40 Part by weight Solvent: 10.0 parts by weight of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • Negative electrode A9 was produced according to Example 1 except that the composition of the negative electrode slurry was as follows.
  • Negative electrode active material Si-containing alloy (Si 31 Zn 40 Al 29 ) 1.38 parts by weight Carbon material (made by Hitachi Chemical, graphite) 7.82 parts by weight Conductive aid: SuperP 0.40 part by weight Binder: Polyimide 0.40 Part by weight Solvent: 10.0 parts by weight of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • Negative electrode A10 A negative electrode A10 was produced in the same manner as in Example 1 except that the composition of the negative electrode slurry was as follows.
  • Negative electrode active material Si-containing alloy (Si 53 Zn 44 C 3 ) 1.38 parts by weight Carbon material (manufactured by Hitachi Chemical, graphite) 7.82 parts by weight Conductive aid: SuperP 0.40 part by weight Binder: Polyimide 0.40 Part by weight Solvent: 10.0 parts by weight of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • a negative electrode A11 was produced according to Example 1 except that the composition of the negative electrode slurry was as follows.
  • Negative electrode active material Si-containing alloy (Si 50 Al 47 C 3 ) 1.38 parts by weight Carbon material (made by Hitachi Chemical, graphite) 7.82 parts by weight Conductive aid: SuperP 0.40 part by weight Binder: Polyimide 0.40 Part by weight Solvent: 10.0 parts by weight of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • Negative electrode A12 A negative electrode A12 was produced according to Example 1 except that the composition of the negative electrode slurry was as follows.
  • Negative electrode active material Si-containing alloy (Si 67 Al 22 Nb 11 ) 1.38 parts by weight Carbon material (manufactured by Hitachi Chemical, graphite) 7.82 parts by weight Conductive aid: SuperP 0.40 part by weight Binder: Polyimide 0.40 Part by weight Solvent: 10.0 parts by weight of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • a negative electrode A13 was produced in the same manner as in Example 1 except that the composition of the negative electrode slurry was as follows.
  • Negative electrode active material carbon material (manufactured by Hitachi Chemical, graphite) 9.2 parts by weight
  • Conductive aid SuperP 0.40 part by weight
  • Binder polyimide 0.40 part by weight
  • Solvent N-methyl-2-pyrrolidone (NMP) 10. 0 parts by weight.
  • a negative electrode A4 was produced in the same manner as in Example 1 except that the composition of the negative electrode slurry was as follows.
  • Negative electrode active material Si-containing alloy (Si 29 Ti 62 Ge 9 ) 9.2 parts by weight
  • Conductive aid SuperP 0.40 parts by weight
  • Binder Polyimide 0.40 parts by weight
  • Solvent N-methyl-2-pyrrolidone (NMP) 10.0 parts by weight.
  • the coating amount was set so that the discharge capacities of the negative electrodes A2 to A12 were 4.08 mAh / cm 2. It was adjusted.
  • Table 2 The compositions of the obtained negative electrodes A1 to A14 and the measured values of the charge capacity and discharge capacity are summarized in Table 2 below.
  • “ ⁇ ” and “ ⁇ ” mean the respective weight percentages of the binder and the conductive additive in the negative electrode active material layer.
  • the power generation element of each battery obtained above was set on an evaluation cell mounting jig, and a positive electrode lead and a negative electrode lead were attached to each tab end of the power generation element, and a test was performed.
  • the battery aging treatment was performed as follows. At 25 ° C., the battery was charged at a constant current charging method of 0.05 C for 4 hours (SOC approximately 20%). Next, after charging to 4.45 V at a 0.1 C rate at 25 ° C., the charging was stopped and the state (SOC about 70%) was maintained for about 2 days (48 hours).
  • thermocompression bonding One side temporarily sealed by thermocompression bonding was opened, gas was removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding was performed again to perform temporary sealing. Further, pressurization with a roller (surface pressure 0.5 ⁇ 0.1 MPa) was performed, and the electrode and the separator were sufficiently adhered.
  • thermocompression bonding One side temporarily sealed by thermocompression bonding was opened, gas was removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding was performed again to perform main sealing. Further, pressurization with a roller (surface pressure 0.5 ⁇ 0.1 MPa) was performed, and the electrode and the separator were sufficiently adhered.
  • Rate performance evaluation The rate performance of the battery is evaluated by a constant current / constant voltage charging method in which the battery is charged at a 0.1 C rate until the maximum voltage reaches 4.5 V and then held for about 1 hour to 1.5 hours. This was carried out by a constant current discharge method in which discharge was performed at a 0.1 C rate or a 2.5 C rate until the minimum voltage of 2.0 V became 2.0 V. All were performed at room temperature. The rate characteristics were evaluated as the ratio of the capacity at 2.5 C discharge to the capacity at 0.1 C discharge. The results are shown in Table 3 below.
  • the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the 1st cycle was evaluated as “capacity maintenance rate (%)”. The results are shown in Table 3 below.
  • Capacity retention rate (%) 100th cycle discharge capacity / 1st cycle discharge capacity ⁇ 100

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】固溶体正極活物質を用いた正極を有するリチウムイオン二次電池等の電気デバイスにおいて、固溶体正極活物質の特徴である高い容量特性を十分に活かしつつ、レート特性についても満足のいく性能を達成しうる手段を提供する。 【解決手段】正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、セパレータとを含む発電要素を有する電気デバイスにおいて、負極活物質層の塗布量を4~11mg/cmとし、負極活物質層が式(1)で表される負極活物質を含有し、さらに、正極活物質層が式(2)で表される正極活物質(固溶体正極活物質)を含有し、この際、正極活物質層に含まれる固溶体正極活物質として、式(3)で表され、かつ、粒子表面にAl、ZrおよびTiからなる群から選択される金属の酸化物または複合酸化物からなる所定量の被覆層が形成されているものを用いる。

Description

電気デバイス
 本発明は、電気デバイスに関する。本発明に係る電気デバイスは、例えば、二次電池やキャパシタ等として電気自動車、燃料電池車およびハイブリッド電気自動車等の車両のモータ等の駆動用電源や補助電源に用いられる。
 近年、地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池などの電気デバイスの開発が盛んに行われている。
 モータ駆動用二次電池としては、携帯電話やノートパソコン等に使用される民生用リチウムイオン二次電池と比較して極めて高い出力特性、および高いエネルギーを有することが求められている。従って、全ての電池の中で最も高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。
 リチウムイオン二次電池は、一般に、バインダを用いて正極活物質等を正極集電体の両面に塗布した正極と、バインダを用いて負極活物質等を負極集電体の両面に塗布した負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。
 従来、リチウムイオン二次電池の負極には充放電サイクルの寿命やコスト面で有利な炭素・黒鉛系材料が用いられてきた。しかし、炭素・黒鉛系の負極材料ではリチウムイオンの黒鉛結晶中への吸蔵・放出により充放電がなされるため、最大リチウム導入化合物であるLiCから得られる理論容量372mAh/g以上の充放電容量が得られないという欠点がある。このため、炭素・黒鉛系負極材料で車両用途の実用化レベルを満足する容量、エネルギー密度を得るのは困難である。
 これに対し、負極にLiと化合物を形成するSiO(0<x<2)材料を用いた電池は、従来の炭素・黒鉛系負極材料と比較しエネルギー密度が向上するため、車両用途における負極材料として期待されている。例えば、SiOで表される化学組成を有するケイ素酸化物は、微視的にみると、Si(単結晶のナノ粒子)と非晶質(アモルファス)SiOとが相分離して存在する。
 ケイ素酸化物は、四面体構造を単位構造として有し、SiO以外のケイ素酸化物(中間酸化物)は、四面体の頂点の酸素数1個、2個及び3個に対応して、SiO、SiOおよびSiと表すことができるが、これらの中間酸化物は熱力学的に不安定で単結晶として存在することは極めて難しい。よって、SiOは、単位構造が不規則に配列した非晶質構造で構成され、さらに、この非晶質構造は、複数の非晶質化合物が界面を形成せずに構成される非晶質構造であり、主として均質な非晶質構造部分で構成されている。したがって、SiOでは、Siナノ粒子が非晶質のSiOに分散した構造を有している。
 このSiOの場合、充放電に関与できるのはSiのみであり、SiOは充放電に関与しない。したがって、SiOは、これらの平均組成を表すものである。SiOでは、Siが反応式(A)のように1molあたり4.4molのリチウムイオンを吸蔵放出し、Li22Si(=Li4.4Si)という理論容量4200mAh/gの可逆容量成分を生成する一方で、SiOが反応式(B)のように1molあたり4.3molのリチウムイオンを吸蔵放出し、初回のLi吸蔵時にLi4.4Siとともに不可逆容量を生じる原因となるLiSiOを生成する点が大きな問題である。
Figure JPOXMLDOC01-appb-C000004
 ところで、Liを含有するリチウムシリケート化合物として、例えば、LiSiO、LiSiO、LiSi、LiSi、LiSi11などの、LiSiO(0<y、0<x<2)が挙げられるが、これらLiSiOは電子伝導性が極めて小さく、さらに、SiOが電子伝導性を有しないため、負極の抵抗が上昇するという問題がある。その結果、リチウムイオンを負極活物質に脱離および挿入させることが、極めて困難になる。
 とは言え、負極にLiと合金化する材料を用いたリチウムイオン二次電池は、充放電時の負極での膨張収縮が大きい。例えば、リチウムイオンを吸蔵した場合の体積膨張は、黒鉛材料では約1.2倍であるのに対し、Si材料ではSiとLiが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起こすため、電極のサイクル寿命を低下させる問題があった。また、Si負極活物質の場合、電池の容量とサイクル耐久性とはトレードオフの関係にあり、高容量を示しつつ高サイクル耐久性を向上させることが困難であるといった問題があった。
 こうした問題を解決すべく、SiOと黒鉛材料とを含む、リチウムイオン二次電池用の負極が提案されている(例えば、特許文献1を参照)。かかる特許文献1に記載の発明では、段落「0018」にSiOの含有量を最小限にすることで、高容量の他に、良好なサイクル寿命を示すことが記載されている。
特表2009-517850号公報
 上記特許文献1に記載のSiOと炭素材料とを含む負極を用いたリチウムイオン二次電池の場合、良好なサイクル特性を示すことができるとされている。しかしながら、本発明者らの検討によれば、固溶体正極活物質を用いた正極に、このような負極を組み合わせた場合には、固溶体正極活物質の特徴である高い容量特性を十分に活かしきれず、レート特性についても十分な性能を達成することが難しいことが判明した。
 そこで、本発明は、固溶体正極活物質を用いた正極を有するリチウムイオン二次電池等の電気デバイスにおいて、固溶体正極活物質の特徴である高い容量特性を十分に活かしつつ、レート特性についても満足のいく性能を達成しうる手段を提供することを目的とする。
 本発明者らは、上記課題を解決するため、鋭意研究を行った。その結果、Si含有合金と炭素材料とを混合してなる負極活物質を含有する負極と、所定の金属酸化物で被覆されてなる固溶体正極活物質を含有する正極とを使用し、負極活物質層の塗布量(目付量)を所定の値に制御することによって、上記課題が解決されうることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、セパレータとを含む発電要素を有する電気デバイスに関するものである。
 そして、前記負極活物質層の塗布量は4~11mg/cmである。また、前記負極活物質層は、下記式(1)で表される負極活物質を含有する。
Figure JPOXMLDOC01-appb-M000005
 式中、αおよびβは負極活物質層における各成分の重量%を表し、80≦α+β≦98、3≦α≦40、40≦β≦95である。
 さらに、前記正極活物質層は、下記式(2)で表される正極活物質を含有する。
Figure JPOXMLDOC01-appb-M000006
 式中、eは正極活物質層における各成分の重量%を表し、80≦e≦98である。
 この際、前記固溶体正極活物質は、下記式(3)で表される。
Figure JPOXMLDOC01-appb-M000007
 式中、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である。
 そして、前記固溶体正極活物質の粒子表面には、Al、ZrおよびTiからなる群から選択される金属の酸化物または複合酸化物からなる被覆層が形成されており、前記固溶体正極活物質における前記酸化物または複合酸化物の含有量は酸化物換算で0.1~3.0重量%である点に特徴がある。
 本発明によれば、正極活物質を所定の金属酸化物で被覆されてなる固溶体材料とすることで、負極活物質の初回不可逆容量に起因する初期放電容量の減少を大幅に低減できるという作用が得られる。その結果、本発明に係る電気デバイスは、固溶体正極活物質の特徴である高い容量特性を十分に活かしつつ、レート特性についても満足のいく性能を達成することが可能となる。
本発明に係る電気デバイスの一実施形態である、扁平型(積層型)の双極型でない非水電解質リチウムイオン二次電池の基本構成を示す断面概略図である。 本発明に係る電気デバイスの代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。
 本発明の一形態によれば、正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、セパレータとを含む発電要素を有する電気デバイスであって、
 前記負極活物質層の塗布量が4~11mg/cmであり、
 前記負極活物質層が、下記式(1):
Figure JPOXMLDOC01-appb-M000008
 式中、αおよびβは負極活物質層における各成分の重量%を表し、80≦α+β≦98、3≦α≦40、40≦β≦95である、
で表される負極活物質を含有し、
 前記正極活物質層が、下記式(2):
Figure JPOXMLDOC01-appb-M000009
 式中、eは正極活物質層における各成分の重量%を表し、80≦e≦98である、
で表される正極活物質を含有し、この際、前記固溶体正極活物質は、下記式(3):
Figure JPOXMLDOC01-appb-M000010
 式中、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である、
で表され、かつ、前記固溶体正極活物質の粒子表面には、Al、ZrおよびTiからなる群から選択される金属の酸化物または複合酸化物からなる被覆層が形成されており、前記固溶体正極活物質における前記酸化物または複合酸化物の含有量は酸化物換算で0.1~3.0重量%である、電気デバイスが提供される。
 以下、本発明に係る電気デバイスの基本的な構成を説明する。本実施形態では、電気デバイスとしてリチウムイオン二次電池を例示して説明する。
 まず、本発明に係る電気デバイスを用いてなるリチウムイオン二次電池では、セル(単電池層)の電圧が大きく、高エネルギー密度、高出力密度が達成できる。そのため本実施形態のリチウムイオン二次電池は、車両の駆動電源用や補助電源用として優れている。その結果、車両の駆動電源用等のリチウムイオン二次電池として好適に利用できる。このほかにも、携帯電話などの携帯機器向けのリチウムイオン二次電池にも十分に適用可能である。
 上記リチウムイオン二次電池を形態・構造で区別した場合には、例えば、積層型(扁平型)電池、巻回型(円筒型)電池など、従来公知のいずれの形態・構造にも適用し得るものである。積層型(扁平型)電池構造を採用することで簡単な熱圧着などのシール技術により長期信頼性を確保でき、コスト面や作業性の点では有利である。
 また、リチウムイオン二次電池内の電気的な接続形態(電極構造)で見た場合、非双極型(内部並列接続タイプ)電池および双極型(内部直列接続タイプ)電池のいずれにも適用しうるものである。
 リチウムイオン二次電池内の電解質層の種類で区別した場合には、電解質層に非水系の電解液等の溶液電解質を用いた溶液電解質型電池、電解質層に高分子電解質を用いたポリマー電池など従来公知のいずれの電解質層のタイプにも適用しうるものである。該ポリマー電池は、さらに高分子ゲル電解質(単にゲル電解質ともいう)を用いたゲル電解質型電池、高分子固体電解質(単にポリマー電解質ともいう)を用いた固体高分子(全固体)型電池に分けられる。
 したがって、以下の説明では、本実施形態のリチウムイオン二次電池の例として、非双極型(内部並列接続タイプ)リチウムイオン二次電池について図面を用いてごく簡単に説明する。ただし、本発明に係る電気デバイスおよび本実施形態に係るリチウムイオン二次電池の技術的範囲が、これらに制限されるべきではない。
 <電池の全体構造>
 図1は、本発明の電気デバイスの代表的な一実施形態である、扁平型(積層型)のリチウムイオン二次電池(以下、単に「積層型電池」ともいう)の全体構造を模式的に表した断面概略図である。
 図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体であるラミネートシート29の内部に封止された構造を有する。ここで、発電要素21は、正極集電体11の両面に正極活物質層13が配置された正極と、電解質層17と、負極集電体12の両面に負極活物質層15が配置された負極とを積層した構成を有している。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、電解質層17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。
 これにより、隣接する正極、電解質層、および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、発電要素21の両最外層に位置する最外層の正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層の負極集電体が位置するようにし、該最外層の負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。
 正極集電体11および負極集電体12は、各電極(正極および負極)と導通される正極集電板25および負極集電板27がそれぞれ取り付けられ、ラミネートシート29の端部に挟まれるようにしてラミネートシート29の外部に導出される構造を有している。正極集電板25および負極集電板27は、それぞれ必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体11および負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。
 本実施形態に係るリチウムイオン二次電池は、正極および負極の構成に特徴を有する。以下、当該正極および負極を含めた電池の主要な構成部材について説明する。
 <活物質層>
 活物質層(13、15)は活物質を含み、必要に応じてその他の添加剤をさらに含む。
 [正極活物質層]
 正極活物質層13は、少なくとも固溶体材料からなる正極活物質(本明細書中、「固溶体正極活物質」とも称する)を含む。
 (固溶体正極活物質)
 固溶体正極活物質は、下記式(3)で表される。
 式(3)において、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である。
 さらに、この固溶体正極活物質の粒子表面には、Al、ZrおよびTiからなる群から選択される金属の酸化物または複合酸化物からなる被覆層が形成されており、前記固溶体正極活物質における前記酸化物または複合酸化物の含有量は酸化物換算で0.1~3.0重量%である。固溶体正極活物質の粒子表面に存在する金属酸化物の具体的な構成は特に制限されず、上述した金属元素を含む理論上可能な酸化物または複合酸化物のいずれも用いられうる。好ましくは、Al、ZrOまたはTiOが用いられる。なお、Nb、Sn、W、MoおよびVからなる群から選択される1種または2種以上のような他の元素を含む(複合)酸化物が被覆層にさらに含まれていてもよい。
 従来、高エネルギー密度の二次電池を得るには、正極と負極に用いられる活物質材料の単位質量当たりに蓄えられる電気量を大きくする必要がある。このうち、正極活物質材料としては、固溶体正極活物質が研究されている。固溶体正極活物質としては、電気化学的に不活性な層状のLiMnOと、電気化学的に活性な層状のLiMO(ここで[M]は、Co、Ni、Mn、Feなどの遷移金属)との固溶体からなる層状系のリチウム含有遷移金属酸化物が研究されている。固溶体正極活物質を用いた電池では、固溶体正極活物質(LiMnO組成)を活性化する(結晶構造の一部をスピネル相に構造変化させる:相転移させる)ため、プラトー電位以上(例えば、4.4~4.8V)まで充電する必要がある。このスピネル相(Mnが移動することで生成するLiMnO系が徐々にスピネル相に変化)への相転移は、正極活物質の結晶構造内において、遷移金属層を構成している遷移金属元素(Mnなど)が酸化(例えば、Mn3+⇒Mn4+)(充電による非可逆的相転移)されることによって起こると考えられている。しかしながら、相転移に関与する遷移金属元素の一部は、スピネル相を形成せず(固定化されず)に結晶構造外への溶出が起こる。また、遷移金属の酸化に伴い、格子酸素の一部が離脱し酸素ガスも発生するが、結晶構造内に酸素欠陥ができることによっても、遷移金属元素の溶出が起こる。さらに、プラトー電位付近(4.3~4.5V)で充放電のサイクルを繰り返したり、プラトー電位付近の電位に長期間曝露されることでも、固溶体活物質を構成している遷移金属(Mnなど)の酸化に伴う溶出が起こる。このため、LiMnO組成を電気化学的に活性な状態にする一方で、岩塩型層状構造の安定化及びMn等の遷移金属溶出を抑制しなければならない。
 固溶体正極活物質を用いた正極では、層状LiMO(例えば、LiNi1/2Mn1/2等)に対し、層状LiMnOの充電末期や放電末期の過電圧(抵抗)が高いため、充放電容量やレート特性が低下することが知られている。また、使用上限電位が高い(4.3V以上)ため、NiやMnが溶出し易いという問題があった。
 固溶体活物質を用いた正極を使用して電池にした場合、正極および負極活物質の劣化、電解液の劣化(液枯れ)、Li-副産物生成等により電池性能(充放電特性、C-レート特性)や寿命特性(容量維持率)が低下する問題があった。また、堆積物蓄積やガス発生により電極間に間隔が発生することでインピーダンス(DCR)が増加する問題があった。また過電圧が増大することで、さらに充放電容量、C-レート特性や容量維持率が低下するという問題もあった。従来の固溶体活物質は、活性化するためプラトー電位以上(例えば、4.4~4.8V)の充電(結晶構造の一部がスピネル相構造に変化(相転移)を伴う)が必要である。スピネル相(LiMnO系)への部分相転移は、正極活物質の結晶構造内において、遷移金属層を構成している遷移金属元素(MnやNiなど)が酸化される(例えば、Mn3+⇒Mn4+;充電による非可逆的相転移)過程と、上記に伴い格子酸素が脱離する過程で起こると考えられている。よって、高容量を得るためプラトー電位付近(4.4~4.5V)で充放電サイクルを繰り返すと、部分相転移と酸素脱離が徐々に進行する。その結果、結晶構造の変化(相転移と酸素脱離)に伴って、平均電圧,容量やレート特性が低下する。また、相転移に関与する遷移金属元素の一部は、スピネル相を形成せず(固定化されず)に結晶構造外への溶出を起こす。また、遷移金属の酸化に伴い格子酸素の一部が離脱し酸素ガスが発生するが、結晶構造内に酸素欠陥ができることによっても、遷移金属元素の溶出が起こる。さらに、プラトー電位付近で充放電サイクルを繰り返すだけでなく、満充電状態(プラトー電位付近の電位)に長期間暴露されることでも、固溶体活物質を構成している遷移金属(MnやNiなど)の酸化に伴う溶出が起こる。その結果、表層の結晶構造の変化に伴う遷移金属の溶出が、耐久性低下の要因にもなる。
 これらの問題に対し、本発明に係る実施形態では、固溶体正極活物質の粒子表面がAlなどの(複合)金属酸化物からなる被覆層を有する構成とされている。こうした構成の正極活物質を用いることで、プラトー電位以上の高電位(例えば、4.4~4.8V)で活性化処理した後、充放電サイクル(例えば、4.3~4.5V)を繰り返すことによる結晶構造の変化が抑制できる。また、固溶体正極活物質の粒子表面に所定の被覆層を形成することで、活性化に伴い、遷移金属層内のMnがLi層に移動して一部がスピネル相へ相転移する際に、スピネル相を形成せず(固定化されず)に結晶構造外へ溶出する遷移金属(Mn)が減少し、性能および耐久性の向上が図れる。
 さらに、本実施形態では、被覆層の金属元素の一部が固溶体正極活物質の粒子の表層に侵入する(存在する領域を有する)ことが好ましい。これにより、酸素との共有結合が強まる結果、その他の遷移金属の酸化に伴う格子酸素の離脱が減少するため、酸素ガスの発生が減少し、結晶構造内に酸素欠陥の生成も減少する。また、プラトー電位付近(4.3~4.5V)で充放電のサイクルを繰り返したり、プラトー電位付近の電位に長期間曝露されても、結晶構造が安定化され、酸素離脱が減少するため、固溶体活物質を構成している遷移金属(Mnなど)の酸化に伴う溶出が抑制され、性能および耐久性の向上が図れる。さらに、最も不安定になる固溶体正極活物質の粒子表層(~20nm、さらには30nmまで)が、(複合)酸化物による被覆と金属元素の侵入により安定化するため、よりいっそうの性能および耐久性の向上が図れる。また被覆層の金属元素が粒子(バルク)内に侵入および置換されないため、バルク内におけるNiやMnの酸化還元に伴うLi挿入脱離が阻害されないので、高容量を得ることができる。
 本実施形態では、被覆層の存在により、表層の結晶構造からの遷移金属(Mn4+、Ni2+)の溶出および酸素の離脱の抑制を図ることができる。さらに、被覆層-固溶体正極活物質の界面で(金属-Li)化合物を形成させる(活物質側に金属元素が存在する領域を設ける)ことで、Li拡散性(Li伝導性)の向上を図ることができる。その結果、界面抵抗が減少するだけでなく、粒子内Li拡散抵抗も減少させることができる。こうした抵抗の減少とLi拡散性の向上により、電池性能(容量、レート特性、サイクル特性)を向上させることができる。また、遷移金属の溶出を抑制することで、固溶体活物質(粒子)表層-電解液間の反応を抑制することができると共に、サイクル経過に伴う平均電圧の低下を抑制することができる。
 本実施形態において、固溶体正極活物質の粒子と被覆層との界面の該固溶体正極活物質側に被覆層を構成する金属元素が存在する領域を有することの確認は、高分解能の測定装置を用いれば、定性的には、活物質粒子表層に金属元素が存在していることを確認できる。分析装置(分析法)としては、XPS(X線光電子分光法)、TEM-EDX(透過型電子顕微鏡-エネルギー分散型X線分光法)、STEM-EDX/EELS(走査透過型電子顕微鏡-エネルギー分散型X線分光法/電子エネルギー損失分光分析器)、HAADF-STEM(高角度散乱暗視野-走査透過電子顕微鏡像)などを使用することができる。
 なお、被覆層の厚み(平均厚み)について特に制限はないが、上述したような固溶体正極活物質の特性向上の観点からは、好ましくは2~20nmである。被覆層の平均厚みの測定方法は、例えば、SEMやTEMの観察像により行うことができる。この他にも、上記した固溶体活物質の平均粒径と、アルミナ層を設けた正極活物質の平均粒径、レーザー回折・散乱法の粒度分布測定装置により計測し、その差をアルミナ層の平均厚みとしてもよい。
 また、固溶体正極活物質の粒子表面における被覆層の存在割合についても特に制限はなく、最も好ましくは100面積%であるが、本実施形態の効果を発現させるという観点からは、20面積%以上であればよく、好ましくは50面積%以上である。
 上述したような被覆層を有する固溶体正極活物質は、例えば、組成式(1):Li1.5[NiMnCo[Li][X]]O(ここで、Xは、Ti、ZrおよびNbからなる少なくとも1種であり、0≦e≦0.5、a+b+c+d+e=1.5、0.1≦d≦0.4、1.1≦[a+b+c+e]≦1.4であり、zは、原子価を満足する酸素数である)で表される固溶体活物質の表面に金属酸化物をコーティングする工程を含む方法により調製されうる。この際、固溶体活物質の表面に金属酸化物をコーティングする工程は、固溶体活物質と、被覆層を構成する金属元素の塩(硝酸塩(アルミニウムの塩である硝酸アルミニウム等)、炭酸塩(ジルコニウムの炭酸塩である炭酸ジルコニウムアンモニウム)、金属アルコキシド(チタンの金属アルコキシドであるテトライソプロポキシチタン等)など)の溶液をpH7~8で混合する工程と、得られた固溶体活物質前駆体を乾燥する工程と、得られた乾燥後の固溶体活物質前駆体を温度450℃±50℃で焼成する工程とを含むことができる。これらの工程を経て上記固溶体活物質の粒子表面の一部ないし全部に形成される被覆層は、Liイオンの移動性が高く、さらに、遷移金属の溶出を抑制する効果が高いことが望まれる。さらに、金属の水酸化物の沈殿反応をpH7~8の範囲で行い、焼成温度を450℃±50℃、好ましくは420℃~480℃とすることで、固溶体活物質の粒子の表面の一部または全部(20~100%)に被覆層が存在するようにできる。また、該固溶体活物質粒子の表層に金属元素が侵入した固溶体活物質を製造することができる。この結果、性能と耐久性に優れた電池を提供できる。以下、被覆層をアルミナから形成する場合を例に挙げて、各工程について説明する。
 まず、固溶体活物質と、硝酸アルミニウム溶液をpH7~8で混合する。これにより、固溶体活物質前駆体を得ることができる。
 アルミニウムの原料は、硝酸アルミニウムが好適である。これは、硝酸根が焼成工程で分解除去できるので、この正極活物質を使用した電池の性能が良いためである。硫酸アルミニウムや塩化アルミニウムでは硫酸根や塩酸根が残留し、この正極活物質を使用した電池の性能が低下する。なお、酢酸アルミニウムは、本法(沈殿反応)に適さない。
 アルミニウム(Al層)の原料である硝酸アルミニウムの配合量は、上記した正極活物質のAlの含有量となるように、適宜調整すればよい。
 本工程では、さらに沈殿剤を用いる。該沈殿剤としては、アンモニウム水が好適である。これは、アンモニウム根が焼成工程で分解除去できるので、この正極活物質を使用した電池の性能が良いためである。水酸化ナトリウムでは、正極活物質の不純物としてNaが残存し、この正極活物質を使用した電池の性能が低下する。
 上記固溶体活物質と硝酸アルミニウム溶液と沈殿剤のアンモニウム水の混合時のpHがpH7未満では、硝酸アルミニウムとアンモニウム水との反応が不十分で、水酸化アルミニウムの沈殿生成が悪く、仕込み量に対し、所望のコート量を得ることができない。一方、pH8超では、水酸化アルミニウムが再溶解し、仕込み量に対し、所望のコート量を得ることができない。
 混合温度および混合時間としては、混合操作により、硝酸アルミニウムとアンモニウム水との反応が十分になされ、所望の固溶体活物質前駆体(上記固溶体活物質表面に水酸化アルミニウムの沈殿生成がなされたもの)が形成されればよく、特に制限されるものではない。目安としては、混合温度(反応系の溶液温度)が20~50℃の範囲で、混合時間が30分~3時間の範囲であればよい。なお、混合した後、3時間程度までであれば、得られた固溶体活物質前駆体を溶液中に浸漬しておいてもよい。これにより、好適なアルミナ層のコートができ、充放電特性とサイクル耐久性の改善効果が得られる。また、混合手段(装置)としては、特に制限されるものではなく、従来公知の混合・撹拌手段(装置)を用いることができる。
 次いで、上記で得られた固溶体活物質前駆体を乾燥する。まずは、上記の混合溶液から固溶体活物質前駆体をろ過する。ろ過手段(装置)としては、特に制限されるものではなく、従来公知のろ過手段(装置)を用いることができる。
 次に、ろ別された固溶体活物質前駆体を乾燥する。乾燥条件としては、固溶体活物質前駆体を十分に乾燥できれば特に制限されるものではない。即ち、乾燥から焼成までを連続して行う場合には、厳密に乾燥工程と焼成工程とを区別しなくてもよく、所定の焼成温度下で、乾燥から焼成まで行ってもよいためである。以上のことから、乾燥条件としては、乾燥温度が80~200℃の範囲で、乾燥時間が30分~12時間、好ましくは1~6時間の範囲であればよい。また、乾燥時の雰囲気としては、特に制限されるものではなく、大気雰囲気等で行うことができる。また、乾燥手段(装置)としては、特に制限されるものではなく、従来公知の乾燥手段(装置)を用いることができる。具体的には、例えば、真空乾燥、熱風乾燥、赤外線(IR)乾燥、自然乾燥等を適宜組み合わせて使用できる。
 さらに、上記で乾燥された固溶体活物質前駆体を温度450℃±50℃で焼成する。固溶体活物質前駆体の焼成条件としては、焼成温度450℃±50℃の範囲で、好ましくは420~480℃の範囲で、1~12時間、好ましくは2~6時間の範囲とすることで、固溶体活物質の粒子の表面の一部または全部にAl層が存在するようになる。また、該固溶体活物質粒子の表層にAl元素が侵入した該固溶体活物質質を製造できる。焼成温度が400℃未満では、水酸化アルミニウムの分解が不十分で、所望のAlコート層が形成できず、この正極活物質を使用した電池は耐久性が悪い。一方、焼成温度が500℃超では、Al層が密になり、Liイオンの移動性が低下し、この正極活物質を使用した電池は性能が悪い。また、焼成時の雰囲気としては、特に制限されるものではなく、大気雰囲気等で行うことができる。また、焼成手段(装置)としては、特に制限されるものではなく、従来公知の焼成手段(装置)を用いることができる。
 場合によっては、上述した固溶体正極活物質以外の正極活物質が併用されてもよい。この場合、好ましくは、容量、出力特性の観点から、リチウム-遷移金属複合酸化物が正極活物質として併用される。これ以外の正極活物質が用いられてもよいことは勿論である。活物質それぞれの固有の効果を発現する上で最適な粒子径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒子径同士をブレンドして用いればよく、全ての活物質の粒子径を必ずしも均一化させる必要はない。
 正極活物質層13に含まれる正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1~30μmであり、より好ましくは5~20μmである。なお、本明細書において、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される活物質粒子(観察面)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。また、本明細書において、「平均粒子径」の値は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の粒子径や平均粒子径も同様に定義することができる。
 上述したように、正極活物質層は、下記式(2)で表される正極活物質(固溶体正極活物質)を含有する。
Figure JPOXMLDOC01-appb-M000012
 式(2)において、eは正極活物質層における各成分の重量%を表し、80≦e≦98である。
 式(2)から明らかなように、正極活物質層における固溶体正極活物質の含有量は、80~98重量%であることが必須であるが、好ましくは84~98重量%である。
 また、正極活物質層は上述した固溶体正極活物質のほか、バインダおよび導電助剤を含むことが好ましい。さらに、必要に応じて、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。
 (バインダ)
 正極活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)およびその塩、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。これらのバインダは、単独で用いてもよいし、2種以上を併用してもよい。
 正極活物質層におけるバインダの含有量は、好ましくは1~10重量%であり、より好ましくは1~8重量%である。
 (導電助剤)
 導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、ケッチェンブラック、アセチレンブラック等のカーボンブラックが挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
 正極活物質層における導電助剤の含有量は、好ましくは1~10重量%であり、より好ましくは1~8重量%である。導電助剤の配合比(含有量)を上記範囲内に規定することで以下の効果が発現される。すなわち、電極反応を阻害することなく、電子伝導性を十分に担保することができ、電極密度の低下によるエネルギー密度の低下を抑制でき、ひいては電極密度の向上によるエネルギー密度の向上を図ることができるのである。
 (その他の成分)
 電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
 イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
 正極(正極活物質層)は、通常のスラリーを塗布(コーティング)する方法のほか、混練法、スパッタ法、蒸着法、CVD法、PVD法、イオンプレーティング法および溶射法のいずれかの方法によって形成することができる。
 [負極活物質層]
 負極活物質層15は、負極活物質として、Si含有合金および炭素材料を必須に含む。
 (Si含有合金)
 Si含有合金は、Siを含有する他の金属との合金であれば特に制限されず、従来公知の知見が適宜参照されうる。ここでは、Si含有合金の好ましい実施形態として、SiTiGe、SiTiZn、SiTiSn、SiSnAl、SiSn、SiSn、SiZn、SiZnSn、SiZnAl、SiZn、SiAlおよびSiAlNb(式中、Aは、不可避不純物である。さらに、x、y、z、およびaは、重量%の値を表し、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である)が挙げられる。これらのSi含有合金を負極活物質として用いることで、所定の第1添加元素および所定の第2添加元素を適切に選択することによって、Li合金化の際に、アモルファス-結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
 上記Si含有合金の平均粒子径は、既存の負極活物質層15に含まれる負極活物質の平均粒子径と同程度であればよく、特に制限されない。高出力化の観点からは、好ましくは1~20μmの範囲であればよい。ただし、上記範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、上記範囲を外れていてもよいことは言うまでもない。また、Si含有合金の形状としては、特に制限はなく、球状、楕円状、円柱状、多角柱状、鱗片状、不定形などでありうる。
 (炭素材料)
 本発明に用いられうる炭素材料は、特に制限されないが、天然黒鉛、人造黒鉛等の高結晶性カーボンである黒鉛(グラファイト);ソフトカーボン、ハードカーボン等の低結晶性カーボン;ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラック等のカーボンブラック;フラーレン、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボンフィブリル等の炭素材料が挙げられる。これらのうち、黒鉛を用いることが好ましい。
 本実施形態では、負極活物質として、上記Si含有合金とともに炭素材料が併用されることにより、より高いサイクル特性およびレート特性を維持しつつ、かつ、初期容量も高くバランスよい特性を示すことができる。
 また、炭素材料の平均粒子径としては、特に制限されないが、5~25μmであることが好ましく、5~10μmであることがより好ましい。この際、上述のSi含有合金との平均粒子径との対比については、炭素材料の平均粒子径は、Si含有合金の平均粒子径と同一であっても、異なっていてもよいが、異なることが好ましい。特に、前記Si含有合金の平均粒子径が、前記炭素材料の平均粒子径よりも小さいことがより好ましい。炭素材料の平均粒子径がSi含有合金の平均粒子径よりも相対的に大きいと、均一に炭素材料の粒子が配置され、当該炭素材料の粒子間にSi含有合金が配置した構成を有するため、負極活物質層内においてSi含有合金が均一に配置されうる。
 場合によっては、上述した2種の負極活物質以外の負極活物質が併用されてもよい。併用可能な負極活物質としては、例えば、SiO、リチウム-遷移金属複合酸化物(例えば、LiTi12)、金属材料、リチウム合金系負極材料などが挙げられる。これ以外の負極活物質が用いられてもよいことは勿論である。
 負極活物質層は、下記式(1)で表される負極活物質を含有する。
Figure JPOXMLDOC01-appb-M000013
 式(1)において、αおよびβは負極活物質層における各成分の重量%を表し、80≦α+β≦98、3≦α≦40、40≦β≦95である。
 式(1)から明らかなように、負極活物質層におけるSi含有合金からなる負極活物質の含有量は3~40重量%である。また、炭素材料負極活物質の含有量は40~95重量%である。さらに、これらの合計含有量は80~98重量%である。
 なお、負極活物質のSi含有合金および炭素材料の混合比は、上記の含有量の規定を満足する限り特に制限はなく、所望の用途等に応じて適宜選択できる。なかでも、前記負極活物質中のSi含有合金の含有率は、3~40重量%であることが好ましい。一実施形態において、前記負極活物質中のSi含有合金の含有率は、4~30重量%であることがより好ましい。また、別の一実施形態においては、前記負極活物質中のSi含有合金の含有率は、5~20重量%であることがより好ましい。
 前記Si含有合金の含有率が3重量%以上であると、高い初期容量が得られうることから好ましい。一方、前記Si含有合金の含有量が40重量%以下であると、高いサイクル特性が得られうることから好ましい。
 本実施形態において、負極活物質層は上述した負極活物質のほか、バインダおよび導電助剤を含むことが好ましい。また、必要に応じて、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。これらの具体的な種類や負極活物質層における好ましい含有量については、正極活物質層の説明の欄において上述した形態が同様に採用されうるため、ここでは詳細な説明を省略する。
 本実施形態において、負極活物質層の塗布量(目付量)は、4~11mg/cmである点に特徴がある。負極活物質層の塗布量(目付量)が11mg/cmを超えると、電池のレート特性が著しく低下してしまうという問題がある。一方、負極活物質層の塗布量(目付量)が4mg/cm未満では、そもそも負極活物質層における活物質の含有量が少なくなり、十分な容量を確保するには負極活物質に過度の負荷を掛けることになり、サイクル耐久性が悪化してしまう。これに対し、負極活物質層の塗布量(目付量)が上述した範囲内の値であれば、レート特性およびサイクル特性の両立が図れる。そして、本発明では、所定の負極活物質を併用し、さらにその含有量を調整することで、上記のような範囲内の塗布量(目付量)の達成を可能としたのである。
 各活物質層(集電体片面の活物質層)の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1~500μm程度、好ましくは2~100μmである。
 <集電体>
 集電体(11、12)は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。
 集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。
 集電体の形状についても特に制限されない。図1に示す積層型電池10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。
 なお、負極活物質をスパッタ法等により薄膜合金を負極集電体12上に直接形成する場合には、集電箔を用いることが好ましい。
 集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料または非導電性高分子材料に導電性フィラーが添加された樹脂が採用されうる。
 具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。
 また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。
 非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
 上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。
 導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、およびKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むものである。
 導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5~35重量%程度である。
 <セパレータ(電解質層)>
 セパレータは、電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。
 セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。
 ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。
 微多孔質(微多孔膜)セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。1例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途においては、単層あるいは多層で4~60μmであることが望ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。
 不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独または混合して用いる。また、不織布のかさ密度は、含浸させた高分子ゲル電解質により十分な電池特性が得られるものであればよく、特に制限されるべきものではない。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5~200μmであり、特に好ましくは10~100μmである。
 また、上述したように、セパレータは、電解質を含む。電解質としては、かような機能を発揮できるものであれば特に制限されないが、液体電解質またはゲルポリマー電解質が用いられる。ゲルポリマー電解質を用いることにより、電極間距離の安定化が図られ、分極の発生が抑制され、耐久性(サイクル特性)が向上する。
 液体電解質は、リチウムイオンのキャリヤーとしての機能を有する。電解液層を構成する液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート等のカーボネート類が例示される。また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiCFSO等の電極の活物質層に添加されうる化合物が同様に採用されうる。液体電解質は、上述した成分以外の添加剤をさらに含んでもよい。かような化合物の具体例としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2-ジビニルエチレンカーボネート、1-メチル-1-ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1-エチル-1-ビニルエチレンカーボネート、1-エチル-2-ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1-ジメチル-2-メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの環式炭酸エステルは、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
 ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することで容易になる点で優れている。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HEP)、ポリ(メチルメタクリレート(PMMA)およびこれらの共重合体等が挙げられる。
 ゲル電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
 また、セパレータとしては多孔質基体に耐熱絶縁層が積層されたセパレータ(耐熱絶縁層付セパレータ)であることが好ましい。耐熱絶縁層は、無機粒子およびバインダを含むセラミック層である。耐熱絶縁層付セパレータは融点または熱軟化点が150℃以上、好ましくは200℃以上である耐熱性の高いものを用いる。耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果が得られうる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破膜が起こりにくい。さらに、熱収縮抑制効果および機械的強度の高さから、電池の製造工程でセパレータがカールしにくくなる。
 耐熱絶縁層における無機粒子は、耐熱絶縁層の機械的強度や熱収縮抑制効果に寄与する。無機粒子として使用される材料は特に制限されない。例えば、ケイ素、アルミニウム、ジルコニウム、チタンの酸化物(SiO、Al、ZrO、TiO)、水酸化物、および窒化物、ならびにこれらの複合体が挙げられる。これらの無機粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来のものであってもよいし、人工的に製造されたものであってもよい。また、これらの無機粒子は1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。これらのうち、コストの観点から、シリカ(SiO)またはアルミナ(Al)を用いることが好ましく、アルミナ(Al)を用いることがより好ましい。
 耐熱性粒子の目付けは、特に限定されるものではないが、5~15g/mであることが好ましい。この範囲であれば、十分なイオン伝導性が得られ、また、耐熱強度を維持する点で好ましい。
 耐熱絶縁層におけるバインダは、無機粒子どうしや、無機粒子と樹脂多孔質基体層とを接着させる役割を有する。当該バインダによって、耐熱絶縁層が安定に形成され、また多孔質基体層および耐熱絶縁層の間の剥離を防止される。
 耐熱絶縁層に使用されるバインダは、特に制限はなく、例えば、カルボキシメチルセルロース(CMC)、ポリアクリロニトリル、セルロース、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン-ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、アクリル酸メチルなどの化合物がバインダとして用いられうる。このうち、カルボキシメチルセルロース(CMC)、アクリル酸メチル、またはポリフッ化ビニリデン(PVDF)を用いることが好ましい。これらの化合物は、1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。
 耐熱絶縁層におけるバインダの含有量は、耐熱絶縁層100重量%に対して、2~20重量%であることが好ましい。バインダの含有量が2重量%以上であると、耐熱絶縁層と多孔質基体層との間の剥離強度を高めることができ、セパレータの耐振動性を向上させることができる。一方、バインダの含有量が20重量%以下であると、無機粒子の隙間が適度に保たれるため、十分なリチウムイオン伝導性を確保することができる。
 耐熱絶縁層付セパレータの熱収縮率は、150℃、2gf/cm条件下、1時間保持後にMD、TDともに10%以下であることが好ましい。このような耐熱性の高い材質を用いることで、正極発熱量が高くなり電池内部温度が150℃に達してもセパレータの収縮を有効に防止することができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。
 <集電板(タブ)>
 リチウムイオン二次電池においては、電池外部に電流を取り出す目的で、集電体に電気的に接続された集電板(タブ)が外装材であるラミネートフィルムの外部に取り出されている。
 集電板を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板(正極タブ)と負極集電板(負極タブ)とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
 また、図2に示すタブ58、59の取り出しに関しても、特に制限されるものではない。正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図2に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、タブに変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。
 <シール部>
 シール部は、直列積層型電池に特有の部材であり、電解質層の漏れを防止する機能を有する。このほかにも、電池内で隣り合う集電体同士が接触したり、積層電極の端部の僅かな不ぞろいなどによる短絡が起こったりするのを防止することもできる。
 シール部の構成材料としては、特に制限されないが、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、エポキシ樹脂、ゴム、ポリイミド等が用いられうる。これらのうち、耐蝕性、耐薬品性、製膜性、経済性などの観点からは、ポリオレフィン樹脂を用いることが好ましい。
 <正極端子リードおよび負極端子リード>
 負極および正極端子リードの材料は、公知の積層型二次電池で用いられるリードを用いることができる。なお、電池外装材から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆するのが好ましい。
 <外装材;ラミネートフィルム>
 外装材としては、従来公知の金属缶ケースを用いることができる。そのほか、図1に示すようなラミネートフィルム22を外装材として用いて、発電要素17をパックしてもよい。ラミネートフィルムは、例えば、ポリプロピレン、アルミニウム、ナイロンがこの順に積層されてなる3層構造として構成されうる。このようなラミネートフィルムを用いることにより、外装材の開封、容量回復材の添加、外装材の再封止を容易に行うことができる。
 <リチウムイオン二次電池の製造方法>
 リチウムイオン二次電池の製造方法は特に制限されず、公知の方法により製造されうる。具体的には、(1)電極の作製、(2)単電池層の作製、(3)発電要素の作製、および(4)積層型電池の製造を含む。以下、リチウムイオン二次電池の製造方法について一例を挙げて説明するが、これに限定されるものではない。
 (1)電極(正極および負極)の作製
 電極(正極または負極)は、例えば、活物質スラリー(正極活物質スラリーまたは負極活物質スラリー)を調製し、当該活物質スラリーを集電体上に塗布、乾燥し、次いでプレスすることにより作製されうる。前記活物質スラリーは、上述した活物質(正極活物質または負極活物質)、バインダ、導電助剤および溶媒を含む。
 前記溶媒としては、特に制限されず、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、シクロヘキサン、ヘキサン、水等が用いられうる。
 活物質スラリーの集電体への塗布方法としては、特に制限されず、スクリーン印刷法、スプレーコート法、静電スプレーコート法、インクジェット法、ドクターブレード法等が挙げられる。
 集電体の表面に形成された塗膜の乾燥方法としては、特に制限されず、塗膜中の溶媒の少なくとも一部が除去されればよい。当該乾燥方法としては、加熱が挙げられる。乾燥条件(乾燥時間、乾燥温度など)は、適用する活物質スラリーに含有される溶媒の揮発速度、活物質スラリーの塗布量等に応じて適宜設定されうる。なお、溶媒は一部が残存していてもよい。残存した溶媒は、後述のプレス工程等で除去されうる。
 プレス手段としては、特に限定されず、例えば、カレンダーロール、平板プレス等が用いられうる。
 (2)単電池層の作製
 単電池層は、(1)で作製した電極(正極および負極)を、電解質層を介して積層させることにより作製されうる。
 (3)発電要素の作製
 発電要素は、単電池層の出力および容量、電池として必要とする出力および容量等を適宜考慮し、前記単電池層を積層して作製されうる。
 (4)積層型電池の製造
 電池の構成としては、角形、ペーパー型、積層型、円筒型、コイン型等、種々の形状を採用することができる。また構成部品の集電体や絶縁板等は特に限定されるものではなく、上記の形状に応じて選定すればよい。しかし、本実施形態では積層型電池が好ましい。積層型電池は、上記で得られた発電要素の集電体にリードを接合し、これらの正極リードまたは負極リードを、正極タブまたは負極タブに接合する。そして、正極タブおよび負極タブが電池外部に露出するように、発電要素をラミネートシート中に入れ、注液機により電解液を注液してから真空に封止することにより積層型電池が製造されうる。
 (5)活性化処理など
 さらに、本実施形態では、上記により得られた積層型電池の性能および耐久性を高める観点から、さらに、以下の条件で初充電処理、ガス除去処理および活性化処理を行うことが好ましい(実施例1参照)。この場合には、ガス除去処理ができるように、上記(4)の積層型電池の製造において、封止する際に、矩形形状にラミネートシート(外装材)の3辺を熱圧着により完全に封止(本封止)し、残る1辺は、熱圧着で仮封止しておく。残る1辺は、例えば、クリップ留め等により開閉自在にしてもよいが、量産化(生産効率)の観点からは、熱圧着で仮封止するのがよい。この場合には、圧着する温度、圧力を調整するだけでよいためである。熱圧着で仮封止した場合には、軽く力を加えることで開封でき、ガス抜き後、再度、熱圧着で仮封止してもよいし、最後的には熱圧着で完全に封止(本封止)すればよい。
 (初充電処理)
 電池のエージング処理は、以下のように実施することが好ましい。25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行う。次いで、25℃にて0.1Cレートで4.45Vまで充電した後、充電を止め、その状態(SOC約70%)で約2日間(48時間)保持する。
 (最初(1回目)のガス除去処理)
 次に、最初(1回目)のガス除去処理として、以下の処理を行う。まず、熱圧着で仮封止した1辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行って仮封止を行う。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させる。
 (活性化処理)
 次に、活性化処理法として、以下の電気化学前処理法を行う。
 まず、25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを2回行う。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回、0.1Cで4.65Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行う。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行えばよい。
 なお、ここでは、活性化処理法として、定電流充電法を用い、電圧を終止条件とした場合の電気化学前処理法を例として記載しているが、充電方式は定電流定電圧充電法を用いても構わない。また、終止条件は電圧以外にも電荷量や時間を用いても構わない。
 (最後(2回目)のガス除去処理)
 次に、最初(1回目)のガス除去処理として、以下の処理を行う。まず、熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行って本封止を行う。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させる。
 本実施形態では、上記した初充電処理、ガス除去処理及び活性化処理を行うことにより、得られた電池の性能および耐久性を高めることができる。
 [組電池]
 組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
 電池が複数、直列にまたは並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。
 [車両]
 本実施形態に係るリチウムイオン二次電池をはじめとした本発明の電気デバイスは、長期使用しても放電容量が維持され、サイクル特性が良好である。さらに、体積エネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記リチウムイオン二次電池(電気デバイス)は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
 具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。
 以下、実施例および比較例を用いてさらに詳細に説明するが、本発明は以下の実施例のみに何ら限定されるわけではない。
 [実施例1]
 (固溶体正極活物質C1の調製)
 1.硫酸マンガン・1水和物(分子量223.06g/mol)28.61g、
   硫酸ニッケル・6水和物(分子量262.85g/mol)17.74g、
   を純水200gに加え、攪拌溶解し、混合溶液を調製した。
 2.次に、この混合溶液にアンモニア水をpH7になるまで滴下して、さらに、NaCO溶液を滴下して、複合炭酸塩を沈殿させた(NaCO溶液を滴下している間、アンモニア水でpH7を保持する)。
 3.その後、沈殿物を吸引濾過し、さらに、十分に水洗した後、乾燥オーブンにて120℃、5時間乾燥した。
 4.乾燥した粉末を乳鉢で粉砕した後、500℃、5時間仮焼成を行った。
 5.仮焼成した粉末に、水酸化リチウム・1水和物(分子量41.96g/mol)10.67gを混合し、30分間粉砕混合した。
 6.この粉末を500℃で2時間仮焼成した後、900℃で12時間焼成して固溶体正極活物質C1を得た。
 こうして得られた固溶体正極活物質C1の組成は以下の通りであった。
 組成:C1 Li1.5[Ni0.45Mn0.85[Li]0.20]O
 固溶体正極活物質C1の組成を式(3)に当てはめると、a+b+c+d=1.5、d=0.20、a+b+c=1.3、z;原子価を満足する酸素数となり、式(3)の要件を満足する。
 (固溶体正極活物質C1表面へのAlコーティング)
 1.上記「固溶体正極活物質C1の調製」で得た固溶体正極活物質C1 10.0g、および硝酸アルミニウム・9水和物(分子量375.13g/mol)0.37gを純水100gに加え、攪拌混合し、混合溶液を調製した。
 2.次に、この混合溶液を攪拌しながら5%アンモニア水をpH7~8になるまで徐々に滴下し、固溶体正極活物質C1の粒子表面に水酸化アルミニウムを沈殿させた。さらに、5時間攪拌混合を続けた。
 3.その後、沈殿物を吸引濾過し、さらに、十分に水洗した後、乾燥オーブンにて100℃、1時間乾燥した。
 4.乾燥した粉末を乳鉢で粉砕した後、450℃、5時間焼成を行って、固溶体正極活物質C1を得た。
 こうして得られた固溶体正極活物質C1は、上記「固溶体正極活物質C1の調製」で得られた固溶体正極活物質C1の粒子表面に、固溶体正極活物質C1全量(100重量%)に対して0.5重量%のAlからなる被覆層が形成されてなる粉末であった。得られた固溶体正極活物質C1の平均粒径は8μmであった。なお、他の実施例および比較例で得られた固溶体正極活物質の平均粒径もこれと同じ平均粒径であった。
 (集電体の片面に正極活物質層を形成した正極C1の作製)
 (正極用スラリーの組成)
 正極用スラリーは下記組成とした。
 正極活物質:上記で得られたAlコーティング固溶体正極活物質C1 9.4重量部
 導電助剤: 燐片状黒鉛 0.15重量部
       アセチレンブラック 0.15重量部
 バインダ: ポリフッ化ビニリデン(PVDF) 0.3重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 8.2重量部。
 この組成を式(2)に当てはめると、e=94となり、式(2)の要件を満足する。
 (正極用スラリーの製造)
 上記組成の正極用スラリーを次のように調製した。まず、50mlのディスポカップに、溶媒(NMP)にバインダを溶解した20%バインダ溶液2.0重量部に溶媒(NMP)4.0重量部を加え、攪拌脱泡機(自転公転ミキサー:あわとり錬太郎AR-100)で1分間攪拌してバインダ希釈溶液を作製した。次に、このバインダ希釈液に、導電助剤0.4重量部と固溶体正極活物質C1 9.2重量部、および溶媒(NMP)2.6重量部を加え、攪拌脱泡機で3分間攪拌して正極用スラリー(固形分濃度55重量%)とした。
 (正極用スラリーの塗布・乾燥)
 20μm厚のアルミニウム集電体の片面に、上記正極用スラリーを自動塗工装置(テスター産業製ドクターブレード:PI-1210自動塗工装置)により塗布した。続いて、この正極用スラリーを塗布した集電体について、ホットプレートにて乾燥(100℃~110℃、乾燥時間30分)を行い、正極活物質層に残留するNMP量を0.02重量%以下として、シート状正極を形成した。
 (正極のプレス)
 上記シート状正極を、ローラープレスをかけて圧縮成形し、切断して、片面の正極活物質層の重量約17.1mg/cm、密度2.65g/cmの正極を作製した。
 (正極の乾燥)
 次に、上記手順で作製した正極を用い真空乾燥炉にて乾燥処理を行った。乾燥炉内部に正極を設置した後、室温(25℃)にて減圧(100mmHg(1.33×10Pa))し乾燥炉内の空気を除去した。続いて、窒素ガスを流通(100cm/分)しながら、10℃/分で120℃まで昇温し、120℃で再度減圧して炉内の窒素を排気したまま12時間保持した後、室温まで降温した。こうして正極表面の水分を除去した正極C1を得た。
 (集電体の片面に負極活物質層を形成した負極A1の作製)
 負極活物質であるSi含有合金として、Si29Ti62Geを用いた。なお、上記Si含有合金は、メカニカルアロイ法により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置P-6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールおよび合金の各原料粉末を投入し、600rpmで48時間かけて合金化させた。
 また、上記で調製したSi含有合金(Si29Ti62Ge)と、それ以外の本発明に用いられうる合金(SiTiGe、SiTiZn、およびSiTiSnAのうち、Si29Ti62Ge以外のもの)もまた、Si29Ti62Geと同様の特性を有するものであることから、Si29Ti62Geを用いた本実施例と同一または類似する結果が得られる。
 (負極用スラリーの組成)
 負極用スラリーは下記組成とした。
 負極活物質:Si含有合金(Si29Ti62Ge) 1.38重量部
       炭素材料(日立化成製、黒鉛) 7.82重量部
 導電助剤: SuperP 0.40重量部
 バインダ: ポリイミド 0.40重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部。
 この組成を式(1)に当てはめると、α+β=92.0、α=2.8、β=78.2となり、式(1)の要件を満足する。なお、炭素材料の平均粒子径は22μmであり、Si含有合金の平均粒子径は0.3μmであった。
 (負極用スラリーの製造)
 上記組成の負極用スラリーを次のように調製した。まず、溶媒(NMP)にバインダを溶解した20%バインダ溶液2.0重量部に溶媒(NMP)5.0重量部を加えて、攪拌脱泡機1分間攪拌してバインダ希釈溶液を作製した。このバインダ希釈液に、導電助剤0.4重量部、負極活物質粉末9.2重量部、および溶媒(NMP)3.4重量部を加え、攪拌脱泡機で3分間攪拌して負極用スラリー(固形分濃度50重量%)とした。
 (負極用スラリーの塗布・乾燥)
 10μm厚の電解銅集電体の片面に、上記負極用スラリーを自動塗工装置により塗布した。続いて、この負極スラリーを塗布した集電体について、ホットプレートにて乾燥(100℃~110℃、乾燥時間30分)を行い、負極活物質層に残留するNMP量を0.02重量%以下として、シート状負極を形成した。
 (負極のプレス)
 得られたシート状負極を、ローラープレスをかけて圧縮成形し、切断して、片面の負極活物質層の重量約8.48mg/cm、密度1.60g/cmの負極を作製した。この負極の表面を観察したところ、クラックの発生は見られなかった。
 (電極の乾燥)
 次に、上記手順で作製した負極を用い真空乾燥炉にて乾燥処理を行った。乾燥炉内部に負極を設置した後、室温(25℃)にて減圧(100mmHg(1.33×10Pa))し乾燥炉内の空気を除去した。続いて、窒素ガスを流通(100cm/分)しながら、10℃/分で325℃まで昇温し、325℃で再度減圧して炉内の窒素を排気したまま24時間保持した後、室温まで降温した。こうして負極表面の水分を除去して、負極A1を得た。
 [正極C1の容量確認]
 [コインセルの作製]
 上記により得られた正極C1(直径15mmに打抜き)とリチウム箔(本城金属株式会社製、直径16mm、厚さ200μm)からなる対極とをセパレータ(直径17mm、セルガード社製セルガード2400)を介して対向させたのち、電解液を注入することによってCR2032型コインセルを作製した。
 なお、上記電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を1:1の容積比で混合した混合非水溶媒中に、LiPF(六フッ化リン酸リチウム)を1Mの濃度となるように溶解させたものを用いた。
 充放電試験機(北斗電工株式会社製HJ0501SM8A)を使用し、298K(25℃)の温度に設定された恒温槽(エスペック株式会社製PFU-3K)中で、活性化処理および性能評価を行った。
 [活性化処理]
 25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを2回行った。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回、0.1Cで4.65Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。
 [性能評価]
 電池の評価は、充電は、0.1Cレートにて最高電圧が4.5Vとなるまで充電した後、約1時間~1.5時間保持する定電流定電圧充電法とし、放電は、電池の最低電圧が2.0Vとなるまで0.1Cレートで放電する定電流放電法で行った。このときの0.1Cレートでの放電容量を「0.1C放電容量(mAh/g)」とした。
 この結果、正極C1の活物質当たりの放電容量は226mAh/gであり、電極単位面積当たりの放電容量は3.61mAh/cmであった。
 [負極A1の容量確認]
 [コインセルの作製]
 上記により得られた負極A1(直径15mmに打抜き)とリチウム箔(本城金属株式会社製、直径16mm、厚さ200μm)からなる対極とをセパレータ(直径17mm、セルガード社製セルガード2400)を介して対向させたのち、電解液を注入することによってCR2032型コインセルを作製した。
 なお、上記電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を1:1の容積比で混合した混合非水溶媒中に、LiPF(六フッ化リン酸リチウム)を1Mの濃度となるように溶解させたものを用いた。
 充放電試験機(北斗電工株式会社製HJ0501SM8A)を使用し、298K(25℃)の温度に設定された恒温槽(エスペック株式会社製PFU-3K)中で、性能評価を行った。
 [性能評価]
 電池の評価は、充電(評価対象である負極へのLi挿入過程)は、0.1Cレートにて2Vから10mVまで充電した後、約1時間~1.5時間保持する定電流定電圧充電法とし、放電過程(上記負極からのLi脱離過程)では、定電流モードとし、0.1Cレートにて、10mVから2Vまで放電する定電流放電法で行った。このときの0.1Cレートでの放電容量を「0.1C放電容量(mAh/g)」とした。
 この結果、負極A1の活物質当たりの放電容量は481mAh/gであり、電極単位面積当たりの放電容量は4.08mAh/cmであった。
 [ラミネートセルの作製]
 上記で得られた正極C1を、活物質層面積;縦2.5cm×横2.0cmになるように切り出し、これら2枚を集電体同士が向き合うようにして、未塗工面(アルミニウム集電箔のスラリーを塗工していない面)を合わせて集電体部分をスポット溶接した。これにより、外周部をスポット溶接により一体化された2枚重ねの集電箔の両面に正極活物質層を有する正極を形成した。その後、さらに集電体部分にアルミニウムの正極タブ(正極集電板)を溶接して正極C11を形成した。すなわち、正極C11は、集電箔の両面に正極活物質層が形成された構成である。
 一方、上記で得られた負極A1を、活物質層面積;縦2.7cm×横2.2cmになるように切り出し、その後、さらに集電体部分に電解銅の負極タブを溶接して負極A11を形成した。すなわち、負極A11は、集電体の片面に負極活物質層が形成された構成である。
 これらタブを溶接した負極A11と、正極C11との間に多孔質ポリプロピレン製セパレータ(S)(縦3.0cm×横2.5cm、厚さ25μm、空孔率55%)を挟んで5層からなる積層型の発電要素を作製した。積層型の発電要素の構成は、負極(片面)/セパレータ/正極(両面)/セパレータ/負極(片面)の構成、すなわち、A11-(S)-C11-(S)-A11の順に積層された構成とした。次いで、アルミラミネートフィルム製外装材(縦3.5cm×横3.5cm)で発電要素の両側を挟み込み、3辺を熱圧着封止して上記発電要素を収納した。この発電要素に、電解液0.8cm(上記5層構成の場合、2セル構成となり、1セル当たたりの注液量0.4cm)を注入した後、残りの1辺を熱圧着で仮封止し、ラミネート型電池を作製した。電解液を電極細孔内に十分に浸透させるため、面圧0.5Mpaで加圧しながら、25℃にて24時間保持した。
 なお、電解液の調製では、まず、エチレンカーボネート(EC)30体積%とジエチルカーボネート(DEC)70体積%の混合溶媒に、1.0MのLiPF(電解質)を溶解した。その後、添加剤として作用するフルオロリン酸リチウムとして、ジフルオロリン酸リチウム(LiPO)を1.8重量%、メチレンメタンジスルホン酸(MMDS)1.5重量%を溶解したものを、電解液として用いた。
 以下の実施例では、実施例1に準じて活物質を作製した。すなわち、以下に特記したこと以外は、上述した実施例1と同様にして活物質を作製した。
 (固溶体正極活物質C2)
 固溶体正極活物質C2 Li1.5[Ni0.525Mn0.825[Li]0.15]Oを作製した。固溶体正極活物質C2の組成を式(3)に当てはめると、a+b+c+d=1.5、d=0.15、a+b+c=1.35となり、式(3)の要件を満足する。実施例1に準じて、Alからなる被覆層の被覆量を、被覆層で被覆された固溶体正極活物質C2の全量(100重量%)に対して0.5重量%とした。
 (固溶体正極活物質C3)
 固溶体正極活物質C3 Li1.5[Ni0.375Mn0.875[Li]0.25]Oを作製した。固溶体正極活物質C3の組成を式(3)に当てはめると、a+b+c+d=1.5、d=0.25、a+b+c=1.2となり、式(3)の要件を満足する。実施例1に準じて、Alからなる被覆層の被覆量を、被覆層で被覆された固溶体正極活物質C3の全量(100重量%)に対して0.5重量%とした。
 (固溶体正極活物質C4)
 固溶体正極活物質C4 Li1.5[Ni0.600Mn0.800[Li]0.10]Oを作製した。固溶体正極活物質C4の組成を式(3)に当てはめると、a+b+c+d=1.5、d=0.10、a+b+c=1.40となり、式(3)の要件を満足する。実施例1に準じて、Alからなる被覆層の被覆量を、被覆層で被覆された固溶体正極活物質C4の全量(100重量%)に対して0.5重量%とした。
 (固溶体正極活物質C5)
 固溶体正極活物質C5 Li1.5[Ni0.300Mn0.900[Li]0.30]Oを作製した。固溶体正極活物質C5の組成を式(3)に当てはめると、a+b+c+d=1.5、d=0.30、a+b+c=1.20となり、式(3)の要件を満足する。実施例1に準じて、Alからなる被覆層の被覆量を、被覆層で被覆された固溶体正極活物質C5の全量(100重量%)に対して0.5重量%とした。
 (固溶体正極活物質C6)
 固溶体正極活物質C6 Li1.5[Ni0.225Mn0.925[Li]0.35]Oを作製した。固溶体正極活物質C6の組成を式(3)に当てはめると、a+b+c+d=1.5、d=0.35、a+b+c=1.15 となり、式(3)の要件を満足する。実施例1に準じて、Alからなる被覆層の被覆量を、被覆層で被覆された固溶体正極活物質C6の全量(100重量%)に対して0.5重量%とした。
 (固溶体正極活物質C7)
 実施例1に準じて、金属酸化物コーティング前の固溶体正極活物質C1を作製した。次いで、実施例1と同様にしてAlコーティングを行った。この際、Alからなる被覆層の被覆量を、被覆層で被覆された固溶体正極活物質C7の全量(100重量%)に対して2.0重量%とした。
 (固溶体正極活物質C8)
 実施例1に準じて、金属酸化物コーティング前の固溶体正極活物質C1を作製した。次いで、硝酸アルミニウムに代えて炭酸ジルコニウムアンモニウム(Zr(OH)(CO・2NH 分子量281.33g/mol)を用いて、固溶体正極活物質C1の粒子表面に酸化ジルコニウムからなる被覆層を形成して、固溶体正極活物質C8を得た。この際、実施例1に準じて、Alからなる被覆層の被覆量を、被覆層で被覆された固溶体正極活物質C6の全量(100重量%)に対して0.5重量%とした。
 (固溶体正極活物質C9)
 実施例1に準じて、金属酸化物コーティング前の固溶体正極活物質C1を作製した。次いで、テトライソプロポキシチタン(C1428Ti 分子量284.22g/mol)を用いて、固溶体正極活物質C1の粒子表面に酸化チタンからなる被覆層を形成して、固溶体正極活物質C9を得た。この際、被覆層の形成は以下のように行った。
 まず、固溶体正極活物質C1 10.0gを純水100gに加え、攪拌混合し、混合溶液を調製した。次いで、この混合溶液を攪拌しながらテトライソプロポキシチタン溶液を徐々に滴下し、固溶体正極活物質C1の粒子表面に水酸化チタニウムを沈殿させた。さらに、5時間攪拌混合を続けた。その後、沈殿物を吸引濾過し、さらに、十分に水洗した後、乾燥オーブンにて100℃、1時間乾燥した。乾燥した粉末を乳鉢で粉砕した後、450℃、5時間焼成を行って、粒子表面に酸化チタンからなる被覆層を形成した。
 (固溶体正極活物質C10)
 金属酸化物からなる被覆層が形成されていない固溶体正極活物質C1 Li1.5[Ni0.45Mn0.85[Li]0.20]Oを、固溶体正極活物質C10として用いた。
 上記で作製した固溶体正極活物質C2~C10をそれぞれ用い、実施例1に準じて、正極C2~C10を作製した。この際、正極C2~C10の放電容量が3.61mAh/cmとなるように、固溶体正極活物質の放電容量と正極スラリー組成とを考慮し、塗布量を調整した。得られた正極C1~C10の組成、並びに充電容量および放電容量の測定値について、下記の表1にまとめた。
Figure JPOXMLDOC01-appb-T000014
 (負極A2)
 負極スラリーの組成を以下のようにしたこと以外は、実施例1に準じて、負極A2を作製した。
 負極活物質:Si含有合金(Si49Ti32Sn19) 1.38重量部
       炭素材料(日立化成製、黒鉛) 7.82重量部
 導電助剤: SuperP 0.40重量部
 バインダ: ポリイミド 0.40重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部。
 この組成を式(1)に当てはめると、α+β=92.0、α=13.8、β=78.2となり、式(1)の要件を満足する。また、負極A2の片面の負極活物質層の重量は7.57mg/cmであり、密度は1.60g/cmであった。
 (負極A3)
 負極スラリーの組成を以下のようにしたこと以外は、実施例1に準じて、負極A3を作製した。
 負極活物質:Si含有合金(Si53Ti21Sn26) 1.38重量部
       炭素材料(日立化成製、黒鉛) 7.82重量部
 導電助剤: SuperP 0.40重量部
 バインダ: ポリイミド 0.40重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部。
 この組成を式(1)に当てはめると、α+β=92.0、α=13.8、β=78.2となり、式(1)の要件を満足する。また、負極A3の片面の負極活物質層の重量は8.31mg/cmであり、密度は1.60g/cmであった。
 (負極A4)
 負極スラリーの組成を以下のようにしたこと以外は、実施例1に準じて、負極A4を作製した。
 負極活物質:Si含有合金(Si41Ti15Al43) 1.38重量部
       炭素材料(日立化成製、黒鉛) 7.82重量部
 導電助剤: SuperP 0.40重量部
 バインダ: ポリイミド 0.40重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部。
 この組成を式(1)に当てはめると、α+β=92.0、α=13.8、β=78.2となり、式(1)の要件を満足する。また、負極A4の片面の負極活物質層の重量は7.27mg/cmであり、密度は1.60g/cmであった。
 (負極A5)
 負極スラリーの組成を以下のようにしたこと以外は、実施例1に準じて、負極A5を作製した。
 負極活物質:Si含有合金(Si34Sn1353) 1.38重量部
       炭素材料(日立化成製、黒鉛) 7.82重量部
 導電助剤: SuperP 0.40重量部
 バインダ: ポリイミド 0.40重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部。
 この組成を式(1)に当てはめると、α+β=92.0、α=13.8、β=78.2となり、式(1)の要件を満足する。また、負極A5の片面の負極活物質層の重量は9.10mg/cmであり、密度は1.60g/cmであった。
 (負極A6)
 負極スラリーの組成を以下のようにしたこと以外は、実施例1に準じて、負極A6を作製した。
 負極活物質:Si含有合金(Si34Sn4125) 1.38重量部
       炭素材料(日立化成製、黒鉛) 7.82重量部
 導電助剤: SuperP 0.40重量部
 バインダ: ポリイミド 0.40重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部。
 この組成を式(1)に当てはめると、α+β=92.0、α=13.8、β=78.2となり、式(1)の要件を満足する。また、負極A6の片面の負極活物質層の重量は7.72mg/cmであり、密度は1.60g/cmであった。
 (負極A7)
 負極スラリーの組成を以下のようにしたこと以外は、実施例1に準じて、負極A7を作製した。
 負極活物質:Si含有合金(Si34Zn2343) 1.38重量部
       炭素材料(日立化成製、黒鉛) 7.82重量部
 導電助剤: SuperP 0.40重量部
 バインダ: ポリイミド 0.40重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部。
 この組成を式(1)に当てはめると、α+β=92.0、α=13.8、β=78.2となり、式(1)の要件を満足する。また、負極A7の片面の負極活物質層の重量は9.16mg/cmであり、密度は1.60g/cmであった。
 (負極A8)
 負極スラリーの組成を以下のようにしたこと以外は、実施例1に準じて、負極A8を作製した。
 負極活物質:Si含有合金(Si42Zn53Sn) 1.38重量部
       炭素材料(日立化成製、黒鉛) 7.82重量部
 導電助剤: SuperP 0.40重量部
 バインダ: ポリイミド 0.40重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部。
 この組成を式(1)に当てはめると、α+β=92.0、α=13.8、β=78.2となり、式(1)の要件を満足する。また、負極A8の片面の負極活物質層の重量は6.51mg/cmであり、密度は1.60g/cmであった。
 (負極A9)
 負極スラリーの組成を以下のようにしたこと以外は、実施例1に準じて、負極A9を作製した。
 負極活物質:Si含有合金(Si31Zn40Al29) 1.38重量部
       炭素材料(日立化成製、黒鉛) 7.82重量部
 導電助剤: SuperP 0.40重量部
 バインダ: ポリイミド 0.40重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部。
 この組成を式(1)に当てはめると、α+β=92.0、α=13.8、β=78.2となり、式(1)の要件を満足する。また、負極A9の片面の負極活物質層の重量は8.18mg/cmであり、密度は1.60g/cmであった。
 (負極A10)
 負極スラリーの組成を以下のようにしたこと以外は、実施例1に準じて、負極A10を作製した。
 負極活物質:Si含有合金(Si53Zn44) 1.38重量部
       炭素材料(日立化成製、黒鉛) 7.82重量部
 導電助剤: SuperP 0.40重量部
 バインダ: ポリイミド 0.40重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部。
 この組成を式(1)に当てはめると、α+β=92.0、α=13.8、β=78.2となり、式(1)の要件を満足する。また、負極A10の片面の負極活物質層の重量は7.02mg/cmであり、密度は1.60g/cmであった。
 (負極A11)
 負極スラリーの組成を以下のようにしたこと以外は、実施例1に準じて、負極A11を作製した。
 負極活物質:Si含有合金(Si50Al47) 1.38重量部
       炭素材料(日立化成製、黒鉛) 7.82重量部
 導電助剤: SuperP 0.40重量部
 バインダ: ポリイミド 0.40重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部。
 この組成を式(1)に当てはめると、α+β=92.0、α=13.8、β=78.2となり、式(1)の要件を満足する。また、負極A11の片面の負極活物質層の重量は7.68mg/cmであり、密度は1.60g/cmであった。
 (負極A12)
 負極スラリーの組成を以下のようにしたこと以外は、実施例1に準じて、負極A12を作製した。
 負極活物質:Si含有合金(Si67Al22Nb11) 1.38重量部
       炭素材料(日立化成製、黒鉛) 7.82重量部
 導電助剤: SuperP 0.40重量部
 バインダ: ポリイミド 0.40重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部。
 この組成を式(1)に当てはめると、α+β=92.0、α=13.8、β=78.2となり、式(1)の要件を満足する。また、負極A12の片面の負極活物質層の重量は7.85mg/cmであり、密度は1.60g/cmであった。
 (負極A13)
 負極スラリーの組成を以下のようにしたこと以外は、実施例1に準じて、負極A13を作製した。
 負極活物質:炭素材料(日立化成製、黒鉛) 9.2重量部
 導電助剤: SuperP 0.40重量部
 バインダ: ポリイミド 0.40重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部。
 この組成を式(1)に当てはめると、α+β=92.0、α=0、β=92.0となり、式(1)の要件を満足しない。また、負極A13の片面の負極活物質層の重量は12.75mg/cmであり、密度は1.60g/cmであった。
 (負極A14)
 負極スラリーの組成を以下のようにしたこと以外は、実施例1に準じて、負極A4を作製した。
 負極活物質:Si含有合金(Si29Ti62Ge) 9.2重量部
 導電助剤: SuperP 0.40重量部
 バインダ: ポリイミド 0.40重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部。
 この組成を式(1)に当てはめると、α+β=92.0、α=92.0、β=0となり、式(1)の要件を満足しない。また、負極A14の片面の負極活物質層の重量は3.55mg/cmであり、密度は1.60g/cmであった。
 なお、上記負極A1~A12の作製にあたっては、負極活物質中の不可逆容量および負極スラリー組成等を考慮し、負極A2~A12の放電容量が4.08mAh/cmとなるように、塗布量を調整した。得られた負極A1~A14の組成、並びに充電容量および放電容量の測定値について、下記の表2にまとめた。表2において、「γ」および「η」は、負極活物質層におけるバインダおよび導電助剤のそれぞれの重量%を意味する。
Figure JPOXMLDOC01-appb-T000015
 次いで、上記で得られた正極C1~C10と、上記で得られた負極A1~A14とを、下記の表3に示すように組み合わせて、実施例1に準じて電池を作製した(実施例1~20および比較例1~5)。
 その後、上記で得られた各電池の発電要素を評価セル取り付け冶具にセットし、正極リードと負極リードを発電要素の各タブ端部に取り付け、試験を行った。
 [電池特性の評価]
 上記で作製したラミネート型電池に対して、以下の条件で初充電処理および活性化処理を行い、性能を評価した。
 [初充電処理]
 電池のエージング処理は、以下のように実施した。25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行った。次いで、25℃にて0.1Cレートで4.45Vまで充電した後、充電を止め、その状態(SOC約70%)で約2日間(48時間)保持した。
 [ガス除去処理1]
 熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い仮封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)成形し電極とセパレータとを十分に密着させた。
 [活性化処理]
 25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを2回行った。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回、0.1Cで4.65Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。
 [ガス除去処理2]
 熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い本封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)成形し電極とセパレータとを十分に密着させた。
 [レート性能評価]
 電池のレート性能評価は、充電は0.1Cレートにて最高電圧が4.5Vとなるまで充電した後、約1時間~1.5時間保持する定電流定電圧充電法とし、放電は、電池の最低電圧が2.0Vとなるまで0.1Cレートまたは2.5Cレートで放電する定電流放電法で行った。いずれも、室温下で行った。レート特性は0.1C放電時の容量に対する2.5C放電時の容量の比率として評価した。結果を下記の表3に示す。
 [寿命評価]
 電池の寿命試験は、上記1.0Cレートでの充放電を、25℃で100サイクルを繰り返した。電池の評価は、充電は、0.1Cレートにて最高電圧が4.5Vとなるまで充電した後、約1時間~1.5時間保持する定電流定電圧充電法とし、放電は、電池の最低電圧が2.0Vとなるまで0.1Cレートで放電する定電流放電法で行った。いずれも、室温下で行った。
 1サイクル目の放電容量に対する100サイクル目の放電容量の割合を「容量維持率(%)」として評価した。結果を下記の表3に示す。
 容量維持率(%)=100サイクル目の放電容量/1サイクル目の放電容量×100
Figure JPOXMLDOC01-appb-T000016
 表3に示す結果から明らかなように、本発明に係る電気デバイスである実施例1~20のリチウムイオン二次電池では、比較例1~5と比べて、サイクル特性(100サイクル目の容量維持率)およびレート特性(2.5C/0.1C容量維持率)ともに優れた特性を示した。
 なお、負極A13を用いた比較例1および比較例4では、負極活物質層の塗布量が大きくなりすぎたことに伴い、十分なレート特性を達成できていない。一方、負極A14を用いた比較例2および比較例5では、負極活物質層の塗布量が小さすぎて負極活物質に過度の負荷を掛けることになるために十分なサイクル耐久性を達成できていない。さらに、金属酸化物からなる被覆層が形成されていない固溶体正極活物質を含む正極C10を用いた場合には、負極A1を用いた場合であっても、サイクル耐久性およびレート特性ともに十分な性能を達成することができなかった。
  10、50 リチウムイオン二次電池、
  11 負極集電体、
  12 正極集電体、
  13 負極活物質層、
  15 正極活物質層、
  17 セパレータ、
  19 単電池層、
  21、57 発電要素、
  25 負極集電板、
  27 正極集電板、
  29、52 電池外装材、
  58  正極タブ、
  59  負極タブ。

Claims (4)

  1.  正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、
     負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、
     セパレータと、
    を含む発電要素を有する電気デバイスであって、
     前記負極活物質層の塗布量が4~11mg/cmであり、
     前記負極活物質層が、下記式(1):
    Figure JPOXMLDOC01-appb-M000001
     式中、αおよびβは負極活物質層における各成分の重量%を表し、80≦α+β≦98、3≦α≦40、40≦β≦95である、
    で表される負極活物質を含有し、
     前記正極活物質層が、下記式(2):
    Figure JPOXMLDOC01-appb-M000002
     式中、eは正極活物質層における各成分の重量%を表し、80≦e≦98である、
    で表される正極活物質を含有し、この際、前記固溶体正極活物質は、下記式(3):
    Figure JPOXMLDOC01-appb-M000003
     式中、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である、
    で表され、かつ、前記固溶体正極活物質の粒子表面には、Al、ZrおよびTiからなる群から選択される金属の酸化物または複合酸化物からなる被覆層が形成されており、前記固溶体正極活物質における前記酸化物または複合酸化物の含有量は酸化物換算で0.1~3.0重量%である、電気デバイス。
  2.  前記被覆層の厚みが2~20nmである、請求項1に記載の電気デバイス。
  3.  前記Si含有合金が、SiTiGe、SiTiZn、SiTiSn、SiSnAl、SiSn、SiSn、SiZn、SiZnSn、SiZnAl、SiZn、SiAlおよびSiAlNb(式中、Aは、不可避不純物である。さらに、x、y、z、およびaは、重量%の値を表し、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である)からなる群から選択される1種または2種以上である、請求項1または2に記載の電気デバイス。
  4.  リチウムイオン二次電池である、請求項1~3のいずれか1項に記載の電気デバイス。
PCT/JP2014/051529 2014-01-24 2014-01-24 電気デバイス WO2015111189A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/112,725 US10535870B2 (en) 2014-01-24 2014-01-24 Electrical device
EP14879656.8A EP3098891A4 (en) 2014-01-24 2014-01-24 ELECTRICAL DEVICE
CN201480073880.3A CN105934846B (zh) 2014-01-24 2014-01-24 电器件
KR1020167019739A KR20160102026A (ko) 2014-01-24 2014-01-24 전기 디바이스
PCT/JP2014/051529 WO2015111189A1 (ja) 2014-01-24 2014-01-24 電気デバイス
JP2015558666A JP6202106B2 (ja) 2014-01-24 2014-01-24 電気デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051529 WO2015111189A1 (ja) 2014-01-24 2014-01-24 電気デバイス

Publications (1)

Publication Number Publication Date
WO2015111189A1 true WO2015111189A1 (ja) 2015-07-30

Family

ID=53681018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051529 WO2015111189A1 (ja) 2014-01-24 2014-01-24 電気デバイス

Country Status (6)

Country Link
US (1) US10535870B2 (ja)
EP (1) EP3098891A4 (ja)
JP (1) JP6202106B2 (ja)
KR (1) KR20160102026A (ja)
CN (1) CN105934846B (ja)
WO (1) WO2015111189A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018654A (ja) * 2014-07-08 2016-02-01 株式会社日立製作所 リチウムイオン二次電池
US10276866B2 (en) * 2014-12-17 2019-04-30 Nissan Motor Co., Ltd. Electric device
US10748715B2 (en) 2016-04-26 2020-08-18 Gs Yuasa International Ltd. Energy storage device and method for manufacturing same
US11682766B2 (en) * 2017-01-27 2023-06-20 Nec Corporation Silicone ball containing electrode and lithium ion battery including the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6123807B2 (ja) 2012-11-22 2017-05-10 日産自動車株式会社 リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
KR20160102026A (ko) 2014-01-24 2016-08-26 닛산 지도우샤 가부시키가이샤 전기 디바이스
EP3098892B1 (en) * 2014-01-24 2018-11-14 Nissan Motor Co., Ltd Electrical device
JP6361599B2 (ja) * 2015-07-07 2018-07-25 株式会社豊田中央研究所 蓄電デバイス
US20190020000A1 (en) * 2017-07-11 2019-01-17 Apple Inc. Battery cell tabs with a unitary seal
WO2019021806A1 (ja) * 2017-07-27 2019-01-31 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
US10698456B1 (en) 2019-03-14 2020-06-30 Dell Products, L.P. Information handling system having a pressure plate for a solid state battery
KR20210032219A (ko) * 2019-09-16 2021-03-24 주식회사 엘지화학 이차전지 제조방법 및 이차전지
CN112820952A (zh) * 2019-11-15 2021-05-18 通用汽车环球科技运作有限责任公司 电容器辅助的电池模块和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517850A (ja) 2005-12-01 2009-04-30 スリーエム イノベイティブ プロパティズ カンパニー ケイ素含有量が高いアモルファス合金に基づく電極組成物
JP2009158099A (ja) * 2007-12-25 2009-07-16 Hitachi Vehicle Energy Ltd リチウムイオン二次電池
WO2012160866A1 (ja) * 2011-05-25 2012-11-29 日産自動車株式会社 電気デバイス用負極活物質
WO2012161190A1 (ja) * 2011-05-25 2012-11-29 日産自動車株式会社 電気デバイス用負極活物質、電気デバイス用負極及び電気デバイス
WO2013115390A1 (ja) * 2012-02-01 2013-08-08 日産自動車株式会社 固溶体リチウム含有遷移金属酸化物、非水電解質二次電池用正極及び非水電解質二次電池
JP2013229163A (ja) * 2012-04-25 2013-11-07 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極及び非水電解質二次電池

Family Cites Families (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560524A (en) 1983-04-15 1985-12-24 Smuckler Jack H Method of manufacturing a positive temperature coefficient resistive heating element
JPH08250117A (ja) 1995-03-09 1996-09-27 Shin Kobe Electric Mach Co Ltd リチウム二次電池負極用炭素材料及びその製造方法
JP4029235B2 (ja) 1998-10-02 2008-01-09 大阪瓦斯株式会社 リチウム二次電池用負極
CA2305837C (en) 1999-04-14 2011-05-31 Sony Corporation Material for negative electrode and nonaqueous-electrolyte battery incorporating the same
JP2000299108A (ja) 1999-04-14 2000-10-24 Sony Corp 非水電解質電池
EP1246278B1 (en) 1999-10-22 2011-05-18 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
WO2001031724A1 (fr) 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode pour pile au lithium et accumulateur au lithium
KR100487458B1 (ko) 1999-10-22 2005-05-06 산요덴키가부시키가이샤 리튬 2차 전지용 전극의 제조 방법
EP1244164A4 (en) 1999-10-22 2007-11-14 Sanyo Electric Co ELECTRODE FOR LITHIUM CENTRIC CELL AND LITHIUM CENTRIC CELL
AU7950900A (en) 1999-10-22 2001-05-08 Sanyo Electric Co., Ltd. Electrode for lithium secondary cell and lithium secondary cell
JP2002083594A (ja) 1999-10-22 2002-03-22 Sanyo Electric Co Ltd リチウム電池用電極並びにこれを用いたリチウム電池及びリチウム二次電池
JP2001196052A (ja) 2000-01-12 2001-07-19 Sony Corp 負極及び非水電解質電池
US6699336B2 (en) 2000-01-13 2004-03-02 3M Innovative Properties Company Amorphous electrode compositions
US6680143B2 (en) * 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP3848065B2 (ja) 2000-08-08 2006-11-22 キヤノン株式会社 画像形成装置
CN1278438C (zh) * 2000-09-25 2006-10-04 三星Sdi株式会社 用于可充电锂电池的正电极活性材料及其制备方法
EP1313158A3 (en) 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
JP4225727B2 (ja) 2001-12-28 2009-02-18 三洋電機株式会社 リチウム二次電池用負極及びリチウム二次電池
JP3744462B2 (ja) 2002-05-08 2006-02-08 ソニー株式会社 非水電解質電池
US8216720B2 (en) 2002-06-26 2012-07-10 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and lithium secondary cell
JP2004119199A (ja) 2002-09-26 2004-04-15 Japan Storage Battery Co Ltd 非水電解質二次電池
WO2004049473A2 (en) 2002-11-26 2004-06-10 Showa Denko K.K. Electrode material comprising silicon and/or tin particles and production method and use thereof
JP4385589B2 (ja) 2002-11-26 2009-12-16 昭和電工株式会社 負極材料及びそれを用いた二次電池
US7811709B2 (en) 2002-11-29 2010-10-12 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery, process of producing the negative electrode, and nonaqueous secondary battery
JP3750117B2 (ja) 2002-11-29 2006-03-01 三井金属鉱業株式会社 非水電解液二次電池用負極及びその製造方法並びに非水電解液二次電池
CN100365849C (zh) 2002-11-29 2008-01-30 三井金属矿业株式会社 非水电解液二次电池用负极及其制造方法以及非水电解液二次电池
JP3643108B2 (ja) 2003-07-23 2005-04-27 三井金属鉱業株式会社 非水電解液二次電池用負極及び非水電解液二次電池
JP4046601B2 (ja) 2002-12-03 2008-02-13 大阪瓦斯株式会社 リチウム二次電池用負極材及びそれを用いたリチウム二次電池
US20040137327A1 (en) * 2003-01-13 2004-07-15 Gross Karl J. Synthesis of carbon/silicon composites
JP2004296412A (ja) 2003-02-07 2004-10-21 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極活物質の製造方法
JP4464173B2 (ja) 2003-03-26 2010-05-19 キヤノン株式会社 リチウム二次電池用の電極材料、該電極材料を有する電極構造体、及び該電極構造体を有する二次電池
JP4366222B2 (ja) 2003-03-26 2009-11-18 キヤノン株式会社 リチウム二次電池用の電極材料、該電極材料を有する電極構造体、該電極構造体を有する二次電池
KR100721500B1 (ko) 2003-03-26 2007-05-23 캐논 가부시끼가이샤 리튬2차전지용의 전극재료 및 이 전극재료를 가진전극구조체
TWI254473B (en) 2003-03-26 2006-05-01 Canon Kk Electrode material for lithium secondary battery, electrode structure comprising the electrode material and secondary battery comprising the electrode structure
JP4366101B2 (ja) 2003-03-31 2009-11-18 キヤノン株式会社 リチウム二次電池
EP1617497A4 (en) 2003-04-23 2009-06-17 Mitsui Mining & Smelting Co NEGATIVE ELECTRODE FOR A WATER-FREE ELECTROLYTE SECONDARY BATTERY, METHOD FOR THE PRODUCTION THEREOF AND WATER-FREE ELECTROLYTE SECONDARY BACTERIA
JP2005011650A (ja) 2003-06-18 2005-01-13 Sony Corp 負極材料およびそれを用いた電池
JP2005011699A (ja) 2003-06-19 2005-01-13 Canon Inc リチウム二次電池
JP4029291B2 (ja) 2003-09-02 2008-01-09 福田金属箔粉工業株式会社 リチウム二次電池用負極材料及びその製造方法
JP3746501B2 (ja) 2003-10-09 2006-02-15 三星エスディアイ株式会社 リチウム二次電池用電極材料及びリチウム二次電池及びリチウム二次電池用電極材料の製造方法
US7479351B2 (en) 2003-10-09 2009-01-20 Samsung Sdi Co., Ltd. Electrode material for a lithium secondary battery, lithium secondary battery, and preparation method for the electrode material for a lithium secondary battery
JP4625672B2 (ja) 2003-10-30 2011-02-02 株式会社東芝 非水電解質二次電池
CN100413122C (zh) 2004-11-03 2008-08-20 深圳市比克电池有限公司 含锰的多元金属氧化物、锂离子二次电池的正极材料及其制备方法
US7635540B2 (en) * 2004-11-15 2009-12-22 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
CN101103475B (zh) 2005-01-14 2011-08-10 松下电器产业株式会社 用于锂离子二次电池的负极、其制备方法、锂离子二次电池及其制备方法
JP4877898B2 (ja) * 2005-01-21 2012-02-15 日立マクセルエナジー株式会社 非水電解質二次電池
JP2006216277A (ja) 2005-02-01 2006-08-17 Canon Inc リチウム二次電池用電極材料の製造方法、電極構造体および二次電池
JP4794893B2 (ja) 2005-04-12 2011-10-19 パナソニック株式会社 非水電解液二次電池
JP5076288B2 (ja) 2005-07-14 2012-11-21 日本電気株式会社 二次電池用負極およびそれを用いた二次電池
JP2007026926A (ja) 2005-07-19 2007-02-01 Nec Corp 二次電池用負極およびこれを用いた二次電池
KR20080032037A (ko) 2005-08-02 2008-04-14 쇼와 덴코 가부시키가이샤 리튬 이차 전지 음극용 합금
WO2007015508A1 (ja) 2005-08-02 2007-02-08 Showa Denko K.K. リチウム二次電池負極用合金
JP2007149604A (ja) 2005-11-30 2007-06-14 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP4599314B2 (ja) 2006-02-22 2010-12-15 株式会社東芝 非水電解質電池、電池パック及び自動車
JP2007305424A (ja) 2006-05-11 2007-11-22 Sony Corp 負極活物質およびそれを用いた電池
JP4573053B2 (ja) 2006-05-23 2010-11-04 ソニー株式会社 負極および電池
US8932761B2 (en) 2006-05-23 2015-01-13 Sony Corporation Anode and method of manufacturing the same, and battery and method of manufacturing the same
JP2008016446A (ja) 2006-06-09 2008-01-24 Canon Inc 粉末材料、粉末材料を用いた電極構造体及び該電極構造体を有する蓄電デバイス、並びに粉末材料の製造方法
US8080335B2 (en) 2006-06-09 2011-12-20 Canon Kabushiki Kaisha Powder material, electrode structure using the powder material, and energy storage device having the electrode structure
KR101375455B1 (ko) 2006-08-29 2014-03-26 강원대학교산학협력단 이차 전지용 전극 활물질
CN101501920B (zh) 2006-09-29 2011-04-13 三井金属矿业株式会社 非水电解液二次电池
WO2008086041A1 (en) * 2007-01-10 2008-07-17 Nanoexa, Inc. Lithium batteries with nano-composite positive electrode material
JP2010518581A (ja) 2007-02-06 2010-05-27 スリーエム イノベイティブ プロパティズ カンパニー 新規結合剤を含む電極、並びにその製造方法及び使用方法
US7875388B2 (en) 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
JP5256816B2 (ja) 2007-03-27 2013-08-07 学校法人神奈川大学 リチウムイオン電池用正極材料
JP4789274B2 (ja) 2007-06-06 2011-10-12 旭化成イーマテリアルズ株式会社 多層多孔膜
JP5343342B2 (ja) 2007-06-26 2013-11-13 大同特殊鋼株式会社 リチウム二次電池用負極活物質およびリチウム二次電池
US8753432B2 (en) 2007-08-31 2014-06-17 Stephen B. Maguire Tiltable vacuum loader and receiver with blow-back
JP5374851B2 (ja) 2007-10-15 2013-12-25 ソニー株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR101406013B1 (ko) 2008-03-17 2014-06-11 신에쓰 가가꾸 고교 가부시끼가이샤 비수 전해질 2차 전지용 부극재 및 그것의 제조 방법, 및 비수 전해질 2차 전지용 부극 및 비수 전해질 2차 전지
JP2009224239A (ja) 2008-03-18 2009-10-01 Nissan Motor Co Ltd 電池用電極
JP5046302B2 (ja) 2008-03-28 2012-10-10 日立マクセルエナジー株式会社 非水二次電池
JP5357565B2 (ja) 2008-05-27 2013-12-04 株式会社神戸製鋼所 リチウムイオン二次電池用負極材、および、その製造方法、ならびに、リチウムイオン二次電池
EP2357691A4 (en) 2008-11-04 2013-01-23 Nat University Iwate Univ Inc NON-ST-CHIOMETRIC TITANIUM COMPOUND, CARBON COMPOSITE THEREOF, PROCESS FOR PRODUCING THE COMPOUND, NEGATIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM-ION SECONDARY CELL CONTAINING THE COMPOUND, AND LITHIUM-ION SECONDARY CELL USING THE ACTIVE MATERIAL NEGATIVE ELECTRODE
US9012073B2 (en) 2008-11-11 2015-04-21 Envia Systems, Inc. Composite compositions, negative electrodes with composite compositions and corresponding batteries
JP2010205609A (ja) 2009-03-04 2010-09-16 Nissan Motor Co Ltd 電極およびこれを用いた電池
JPWO2010110205A1 (ja) 2009-03-24 2012-09-27 古河電気工業株式会社 リチウムイオン二次電池、該電池用電極、該電池電極用電解銅箔
EP2239803A1 (fr) 2009-04-10 2010-10-13 Saft Groupe Sa Composition de matiere active pour electrode negative d'accumulateur lithium-ion.
US20100288077A1 (en) 2009-05-14 2010-11-18 3M Innovative Properties Company Method of making an alloy
JPWO2010150513A1 (ja) 2009-06-23 2012-12-06 キヤノン株式会社 電極構造体及び蓄電デバイス
EP2458671A1 (en) 2009-07-21 2012-05-30 Panasonic Corporation Rectangular nonaqueous electrolyte secondary battery and method for manufacturing same
JP2011048969A (ja) 2009-08-26 2011-03-10 Toyobo Co Ltd リチウムイオン二次電池用負極及びこれを用いた二次電池
CN102484249A (zh) 2009-08-27 2012-05-30 安维亚系统公司 具有高比容量和优异循环的层层富含锂的复合金属氧化物
JP5673545B2 (ja) 2009-09-25 2015-02-18 日本ゼオン株式会社 リチウムイオン二次電池負極及びリチウムイオン二次電池
WO2011059251A2 (ko) * 2009-11-12 2011-05-19 주식회사 엘지화학 리튬 이차전지용 음극 활물질 및 이를 구비하는 리튬 이차전지
WO2011065503A1 (ja) 2009-11-27 2011-06-03 日産自動車株式会社 電気デバイス用Si合金負極活物質
EP2506348B1 (en) 2009-11-27 2019-01-09 Nissan Motor Co., Ltd Si ALLOY NEGATIVE ELECTRODE ACTIVE MATERIAL FOR ELECTRICAL DEVICE
US20110183209A1 (en) 2010-01-27 2011-07-28 3M Innovative Properties Company High capacity lithium-ion electrochemical cells
US9876221B2 (en) 2010-05-14 2018-01-23 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
US8568925B2 (en) 2010-05-18 2013-10-29 Panasonic Corporation Lithium secondary battery
JP5128695B2 (ja) 2010-06-28 2013-01-23 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を使用したリチウムイオン二次電池
WO2012000858A1 (en) 2010-06-29 2012-01-05 Umicore Submicron sized silicon powder with low oxygen content
WO2012000854A1 (en) 2010-06-29 2012-01-05 Umicore Negative electrode material for lithium-ion batteries
JP5472041B2 (ja) 2010-10-28 2014-04-16 三菱化学株式会社 非水系電解液およびそれを用いた非水系電解液二次電池
JP5850611B2 (ja) 2010-11-17 2016-02-03 三井金属鉱業株式会社 リチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法。
JP5652161B2 (ja) 2010-11-26 2015-01-14 日産自動車株式会社 電気デバイス用Si合金負極活物質
TWI466367B (zh) 2010-12-27 2014-12-21 Furukawa Electric Co Ltd A lithium ion secondary battery, an electrode for the secondary battery, an electrode for an electrolytic copper foil
JP2012142154A (ja) 2010-12-28 2012-07-26 Sony Corp リチウムイオン二次電池、電動工具、電動車両および電力貯蔵システム
KR20120090594A (ko) 2011-02-08 2012-08-17 삼성전자주식회사 고분자 전극의 제조방법 및 고분자 전극을 채용한 고분자 구동기
JP5614729B2 (ja) 2011-03-03 2014-10-29 日産自動車株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP5768968B2 (ja) 2011-03-08 2015-08-26 日産自動車株式会社 リチウムイオン二次電池用負極活物質
JP5741908B2 (ja) 2011-03-09 2015-07-01 日産自動車株式会社 リチウムイオン二次電池用正極活物質
JP2012238581A (ja) 2011-04-28 2012-12-06 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP5751448B2 (ja) 2011-05-25 2015-07-22 日産自動車株式会社 リチウムイオン二次電池用負極活物質
JP5751449B2 (ja) 2011-05-25 2015-07-22 日産自動車株式会社 リチウムイオン二次電池用負極活物質
JP5970978B2 (ja) * 2011-07-04 2016-08-17 日産自動車株式会社 電気デバイス用正極活物質、電気デバイス用正極及び電気デバイス
US9905838B2 (en) 2011-08-30 2018-02-27 Gs Yuasa International Ltd. Electrode and method of manufacturing the same
KR20130037091A (ko) 2011-10-05 2013-04-15 삼성에스디아이 주식회사 음극 활물질 및 이를 채용한 리튬 전지
KR20140083009A (ko) 2011-10-10 2014-07-03 쓰리엠 이노베이티브 프로퍼티즈 컴파니 리튬-이온 전기화학 전지용 비정질 합금 음극 조성물
JP5945903B2 (ja) 2011-12-16 2016-07-05 日産自動車株式会社 電気デバイス用負極活物質
KR101984810B1 (ko) 2011-12-19 2019-05-31 맥셀 홀딩스 가부시키가이샤 리튬 이차 전지
JP5903556B2 (ja) 2011-12-22 2016-04-13 パナソニックIpマネジメント株式会社 非水電解液二次電池
JP5904363B2 (ja) 2011-12-27 2016-04-13 日産自動車株式会社 電気デバイス用負極活物質
JP5904364B2 (ja) 2011-12-27 2016-04-13 日産自動車株式会社 電気デバイス用負極活物質
US20130202967A1 (en) 2012-02-07 2013-08-08 Jae-Hyuk Kim Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
JP6268729B2 (ja) * 2012-03-23 2018-01-31 三菱ケミカル株式会社 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
CN104205434B (zh) * 2012-03-26 2017-01-18 索尼公司 正极活性材料、正极、二次电池、电池组、电动车辆、电力存储系统、电动工具、以及电子设备
JP6085994B2 (ja) * 2012-04-27 2017-03-01 日産自動車株式会社 非水電解質二次電池の製造方法
JP5999968B2 (ja) 2012-05-02 2016-09-28 セイコーインスツル株式会社 扁平形一次電池、扁平形一次電池用負極合剤及びその製造方法
JP6040996B2 (ja) 2012-11-22 2016-12-07 日産自動車株式会社 リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
CN104813516B (zh) 2012-11-22 2017-12-01 日产自动车株式会社 电气设备用负极、及使用其的电气设备
JP6123807B2 (ja) 2012-11-22 2017-05-10 日産自動車株式会社 リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
EP3361532B1 (en) 2012-11-22 2020-07-29 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same
CN104813512B (zh) 2012-11-22 2018-04-24 日产自动车株式会社 电气设备用负极、和使用了其的电气设备
JP6052299B2 (ja) 2012-11-22 2016-12-27 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
US20150311500A1 (en) 2012-11-22 2015-10-29 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same
KR101823214B1 (ko) 2012-11-22 2018-01-29 닛산 지도우샤 가부시키가이샤 전기 디바이스용 부극, 및 이것을 사용한 전기 디바이스
KR101709027B1 (ko) 2012-11-22 2017-02-21 닛산 지도우샤 가부시키가이샤 전기 디바이스용 부극, 및 이것을 사용한 전기 디바이스
JP6015769B2 (ja) 2012-11-22 2016-10-26 日産自動車株式会社 リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP6032288B2 (ja) 2012-11-22 2016-11-24 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
CN104781955B (zh) 2012-11-22 2017-05-10 日产自动车株式会社 电气设备用负极、及使用其的电气设备
JP6252600B2 (ja) 2014-01-24 2017-12-27 日産自動車株式会社 電気デバイス
EP3098892B1 (en) 2014-01-24 2018-11-14 Nissan Motor Co., Ltd Electrical device
KR20160102026A (ko) 2014-01-24 2016-08-26 닛산 지도우샤 가부시키가이샤 전기 디바이스
KR101891013B1 (ko) 2014-01-24 2018-08-22 닛산 지도우샤 가부시키가이샤 전기 디바이스
JP6202107B2 (ja) 2014-01-24 2017-09-27 日産自動車株式会社 電気デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517850A (ja) 2005-12-01 2009-04-30 スリーエム イノベイティブ プロパティズ カンパニー ケイ素含有量が高いアモルファス合金に基づく電極組成物
JP2009158099A (ja) * 2007-12-25 2009-07-16 Hitachi Vehicle Energy Ltd リチウムイオン二次電池
WO2012160866A1 (ja) * 2011-05-25 2012-11-29 日産自動車株式会社 電気デバイス用負極活物質
WO2012161190A1 (ja) * 2011-05-25 2012-11-29 日産自動車株式会社 電気デバイス用負極活物質、電気デバイス用負極及び電気デバイス
WO2013115390A1 (ja) * 2012-02-01 2013-08-08 日産自動車株式会社 固溶体リチウム含有遷移金属酸化物、非水電解質二次電池用正極及び非水電解質二次電池
JP2013229163A (ja) * 2012-04-25 2013-11-07 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極及び非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3098891A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018654A (ja) * 2014-07-08 2016-02-01 株式会社日立製作所 リチウムイオン二次電池
US10276866B2 (en) * 2014-12-17 2019-04-30 Nissan Motor Co., Ltd. Electric device
US10748715B2 (en) 2016-04-26 2020-08-18 Gs Yuasa International Ltd. Energy storage device and method for manufacturing same
US11682766B2 (en) * 2017-01-27 2023-06-20 Nec Corporation Silicone ball containing electrode and lithium ion battery including the same

Also Published As

Publication number Publication date
US20160336593A1 (en) 2016-11-17
US10535870B2 (en) 2020-01-14
EP3098891A1 (en) 2016-11-30
JPWO2015111189A1 (ja) 2017-03-23
JP6202106B2 (ja) 2017-09-27
KR20160102026A (ko) 2016-08-26
CN105934846B (zh) 2019-06-28
EP3098891A4 (en) 2016-11-30
CN105934846A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
JP6202106B2 (ja) 電気デバイス
JP6252602B2 (ja) 電気デバイス
JP6187602B2 (ja) 電気デバイス
JP6327361B2 (ja) 電気デバイス
JP2018055952A (ja) 非水電解質二次電池、および負極ユニット
JP6252600B2 (ja) 電気デバイス
JP6202107B2 (ja) 電気デバイス
JP2018063920A (ja) 非水電解質二次電池用負極及びこれを用いた非水電解質二次電池
JP6252604B2 (ja) 電気デバイス
JP6380553B2 (ja) 電気デバイス
JP6380554B2 (ja) 電気デバイス
JP6252603B2 (ja) 電気デバイス
WO2015111195A1 (ja) 電気デバイス用負極およびこれを用いた電気デバイス
JP2018078052A (ja) 非水電解質二次電池
JP6252601B2 (ja) 電気デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167019739

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15112725

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015558666

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014879656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014879656

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE