WO2011065503A1 - 電気デバイス用Si合金負極活物質 - Google Patents

電気デバイス用Si合金負極活物質 Download PDF

Info

Publication number
WO2011065503A1
WO2011065503A1 PCT/JP2010/071168 JP2010071168W WO2011065503A1 WO 2011065503 A1 WO2011065503 A1 WO 2011065503A1 JP 2010071168 W JP2010071168 W JP 2010071168W WO 2011065503 A1 WO2011065503 A1 WO 2011065503A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
alloy
cycle
Prior art date
Application number
PCT/JP2010/071168
Other languages
English (en)
French (fr)
Inventor
渡邉 学
田中 修
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to RU2012107439/02A priority Critical patent/RU2509819C2/ru
Priority to EP10833348.5A priority patent/EP2506347B1/en
Priority to JP2011543333A priority patent/JP5333605B2/ja
Priority to CN201080041178.0A priority patent/CN102598369B/zh
Priority to KR1020127005904A priority patent/KR101389156B1/ko
Priority to BR112012005416A priority patent/BR112012005416A2/pt
Priority to US13/393,048 priority patent/US8835052B2/en
Priority to MX2012002805A priority patent/MX2012002805A/es
Publication of WO2011065503A1 publication Critical patent/WO2011065503A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a Si alloy negative electrode active material for electric devices and an electric device using the Si alloy negative electrode active material for electric devices.
  • the Si alloy negative electrode active material for an electric device of the present invention and an electric device using the same include, for example, a driving power source for a motor of a vehicle such as an electric vehicle, a fuel cell vehicle, and a hybrid electric vehicle as a secondary battery or a capacitor, Used for auxiliary power.
  • lithium ion secondary batteries As a secondary battery for driving a motor, it is required to have extremely high output characteristics and high energy as compared with a consumer lithium ion secondary battery used for a mobile phone, a notebook personal computer or the like. Therefore, lithium ion secondary batteries having the highest theoretical energy among all the batteries are attracting attention, and are currently being developed rapidly.
  • a lithium ion secondary battery includes a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder.
  • a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder
  • a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder.
  • it has the structure connected through an electrolyte layer and accommodated in a battery case.
  • a battery using a material that is alloyed with Li for the negative electrode is expected as a negative electrode material for vehicle use because the energy density is improved as compared with a conventional carbon / graphite negative electrode material.
  • a lithium ion secondary battery using a material that is alloyed with Li for the negative electrode has a large expansion and contraction in the negative electrode during charge and discharge.
  • the volume expansion is about 1.2 times in graphite materials
  • Si materials when Si and Li are alloyed, transition from the amorphous state to the crystalline state causes a large volume change. (About 4 times), there is a problem of reducing the cycle life of the electrode.
  • the capacity and the cycle durability are in a trade-off relationship, and there is a problem that it is difficult to improve the high cycle durability while exhibiting a high capacity.
  • a negative electrode active material for a lithium ion secondary battery including an amorphous alloy having the formula: Si x M y Al z has been proposed (see, for example, Patent Document 1).
  • M represents Mn, Mo, Nb, W, Ta, Fe, Cu, It is a metal composed of at least one of Ti, V, Cr, Ni, Co, Zr and Y.
  • paragraph “0018” describes that, by minimizing the content of metal M, a good cycle life is exhibited in addition to high capacity.
  • an object of the present invention is to provide a negative electrode active material (also simply referred to as a negative electrode active material) for an electric device such as a Li ion secondary battery that maintains a high cycle characteristic and has a high initial capacity and a well-balanced characteristic. There is to do.
  • the object of the present invention can be achieved by a negative electrode active material for an electric device containing an alloy having the composition formula Si x Ti y Zn z .
  • the alloy having the above composition formula contains the first additive element Ti within the above range, whereby an amorphous-crystalline phase is obtained. The effect of suppressing the transition and improving the cycle life is obtained. Further, when Si and Li are alloyed, the alloy having the above composition formula contains the second additive element Zn within the above range, so that the capacity as the electrode decreases even when the concentration of the first additive element increases. The effect of not doing is obtained. As a result of such a composite action, the negative electrode active material including the alloy having the above composition formula has a useful effect of having a high initial capacity and high capacity and high cycle durability.
  • FIG. 1 is a schematic cross-sectional view schematically showing an outline of a laminated flat non-bipolar lithium ion secondary battery which is a typical embodiment of an electric device according to the present invention.
  • FIG. 1 is a perspective view schematically showing the appearance of a stacked flat lithium ion secondary battery that is a representative embodiment of an electric device according to the present invention.
  • Si-Ti in which the discharge capacity (mAhg) of the first cycle of the battery using each sample (sample numbers 1 to 25) performed in Example 1 was plotted according to the size of the capacity (color added).
  • FIG. 3 is a composition diagram of a —Zn-based ternary alloy.
  • FIG. 4 is a composition diagram of a plotted Si—Ti—Zn ternary alloy.
  • FIG. 4 is a drawing in which the composition range of the Si—Ti—Zn ternary alloy of FIG. 3 is surrounded by color-coded (with light and shade) the composition range of the Si—Ti—Zn alloy sample of Example 1.
  • FIG. 4 is a composition diagram of a plotted Si—Ti—Zn ternary alloy.
  • FIG. 4 is a drawing in which the composition range of the Si—Ti—Zn ternary alloy of FIG. 3 is surrounded by color-coded (with light and shade) the composition range of the Si—Ti—Zn alloy sample of Example 1.
  • FIG. 4 is a drawing in which a preferred composition range of the Si—Ti—Zn alloy sample of Example 1 is color-coded (shaded) with the composition diagram of the Si—Ti—Zn ternary alloy of FIG. .
  • a more preferable composition range of the Si—Ti—Zn alloy sample of Example 1 is color-coded (shaded) and enclosed. is there.
  • Si + Ti + Zn (all units are wt% / 100) 1.00, (2) 0.38 ⁇ Si (wt% / 100) ⁇ 0.72, and (3) 0.08.
  • a particularly preferred composition range of the Si—Ti—Zn alloy sample of Example 1 is color-coded (with shading) and enclosed. is there.
  • Si + Ti + Zn (all units are wt% / 100) 1.00, (2) 0.38 ⁇ Si (wt% / 100) ⁇ 0.61, and (3) 0.19.
  • a negative electrode active material for a lithium ion secondary battery which is a typical embodiment of a negative electrode active material for an electric device according to the present invention
  • a negative electrode and a lithium ion secondary battery using the same a cell (single The voltage of the battery layer) is large, and high energy density and high power density can be achieved. Therefore, the negative electrode and the lithium ion secondary battery using the negative electrode active material for the lithium ion secondary battery of the present embodiment are excellent for use as a vehicle driving power source or an auxiliary power source. As a result, it can be suitably used as a lithium ion secondary battery for a vehicle driving power source or the like.
  • the present invention can be sufficiently applied to lithium ion secondary batteries for portable devices such as mobile phones.
  • the lithium ion secondary battery that is the subject of the present embodiment may be any one that uses the negative electrode active material for the lithium ion secondary battery of the present embodiment described below. It should not be restricted in particular.
  • the lithium ion secondary battery when distinguished by form / structure, it can be applied to any conventionally known form / structure such as a stacked (flat) battery or a wound (cylindrical) battery. Is.
  • a stacked (flat) battery structure By adopting a stacked (flat) battery structure, long-term reliability can be secured by a sealing technique such as simple thermocompression bonding, which is advantageous in terms of cost and workability.
  • a solution electrolyte type battery using a solution electrolyte such as a nonaqueous electrolyte solution for the electrolyte layer, a polymer battery using a polymer electrolyte for the electrolyte layer, etc. It can be applied to any conventionally known electrolyte layer type.
  • the polymer battery is further divided into a gel electrolyte type battery using a polymer gel electrolyte (also simply referred to as a gel electrolyte) and a solid polymer (all solid) type battery using a polymer solid electrolyte (also simply referred to as a polymer electrolyte). It is done.
  • the non-bipolar (internal parallel connection type) lithium ion secondary battery using the negative electrode active material for the lithium ion secondary battery of this embodiment will be described very simply with reference to the drawings.
  • the technical scope of the lithium ion secondary battery of the present embodiment should not be limited to these.
  • FIG. 1 schematically shows the overall structure of a flat (stacked) lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”), which is a typical embodiment of the electrical device of the present invention.
  • stacked battery a flat (stacked) lithium ion secondary battery
  • the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 29 that is an exterior body.
  • the positive electrode in which the positive electrode active material layer 13 is disposed on both surfaces of the positive electrode current collector 11, the electrolyte layer 17, and the negative electrode active material layer 15 is disposed on both surfaces of the negative electrode current collector 12. It has a configuration in which a negative electrode is laminated. Specifically, the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 13 and the negative electrode active material layer 15 adjacent thereto face each other with the electrolyte layer 17 therebetween. .
  • the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.
  • the positive electrode current collector 13 on the outermost layer located on both outermost layers of the power generating element 21 is provided with the positive electrode active material layer 13 only on one side, but the active material layer may be provided on both sides. . That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector. Further, by reversing the arrangement of the positive electrode and the negative electrode as compared with FIG. 1, the outermost negative electrode current collector is positioned on both outermost layers of the power generation element 21, and one side of the outermost negative electrode current collector or A negative electrode active material layer may be disposed on both sides.
  • the positive electrode current collector 11 and the negative electrode current collector 12 are attached to a positive electrode current collector plate 25 and a negative electrode current collector plate 27 that are electrically connected to the respective electrodes (positive electrode and negative electrode), and are sandwiched between end portions of the laminate sheet 29. Thus, it has a structure led out of the laminate sheet 29.
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 are ultrasonically welded to the positive electrode current collector 11 and the negative electrode current collector 12 of each electrode via a positive electrode lead and a negative electrode lead (not shown), respectively, as necessary. Or resistance welding or the like.
  • the lithium ion secondary battery described above is characterized by the composition of the negative electrode active material.
  • main components of the battery including the negative electrode active material will be described.
  • the active material layer 13 or 15 contains an active material, and further contains other additives as necessary.
  • the positive electrode active material layer 13 includes a positive electrode active material.
  • Examples of the positive electrode active material include lithium-transition metal composite oxides, lithium-transition metal phosphate compounds, lithium-transition metal sulfate compounds, solid solution systems, ternary systems, NiMn systems, NiCo systems, and spinel Mn systems. It is done.
  • Examples of the lithium-transition metal composite oxide include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni, Mn, Co) O 2 , Li (Li, Ni, Mn, Co) O 2 , LiFePO 4 and Examples include those in which some of these transition metals are substituted with other elements.
  • Examples of the ternary system include nickel / cobalt / manganese (composite) positive electrode materials.
  • Examples of the spinel Mn system include LiMn 2 O 4 .
  • Examples of the NiMn system include LiNi 0.5 Mn 1.5 O 4 .
  • Examples of the NiCo system include Li (NiCo) O 2 . In some cases, two or more positive electrode active materials may be used in combination.
  • a lithium-transition metal composite oxide is used as the positive electrode active material.
  • positive electrode active materials other than those described above may be used.
  • the optimum particle size for expressing the unique effect of each active material is different, the optimum particle size for expressing each unique effect may be blended and used. It is not always necessary to make the particle size uniform.
  • the average particle diameter of the positive electrode active material contained in the positive electrode active material layer 13 is not particularly limited, but is preferably 1 to 20 ⁇ m from the viewpoint of high output. In the present specification, between any two points on the contour line of the active material particles (observation surface) observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It means the maximum distance among the distances.
  • the value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
  • the particle diameters and average particle diameters of other components can be defined in the same manner.
  • the positive electrode (positive electrode active material layer) can be applied by any one of a kneading method, a sputtering method, a vapor deposition method, a CVD method, a PVD method, an ion plating method, and a thermal spraying method in addition to a method of applying (coating) a normal slurry. Can also be formed.
  • the negative electrode active material layer 15 has a negative electrode active material containing an alloy having the composition formula Si x Ti y Zn z of the present embodiment.
  • the negative electrode active material of this embodiment it becomes a favorable negative electrode for lithium ion secondary batteries which has high capacity
  • a lithium ion secondary battery having high battery capacity and excellent battery characteristics with excellent cycle durability can be obtained.
  • the first additive element Ti that suppresses the amorphous-crystal phase transition and improves the cycle life, and the capacity as the electrode does not decrease even when the concentration of the first additive element increases.
  • the second additive element species Zn is selected, and these additive element species and the high-capacity element Si are made to have an appropriate composition ratio.
  • the amorphous-crystal phase transition is suppressed because, in the Si material, when Si and Li are alloyed, the amorphous state transitions to the crystalline state, causing a large volume change (about 4 times). For this reason, the particles themselves are broken and the function as the active material is lost. Therefore, by suppressing the amorphous-crystal phase transition, it is possible to suppress the collapse of the particles themselves, maintain the function as the active material (high capacity), and improve the cycle life.
  • the first and second additive elements and setting the additive element species and the high capacity element Si to an appropriate composition ratio, it is possible to provide a Si alloy negative electrode active material having a high capacity and high cycle durability.
  • the composition ratio of the Si—Ti—Zn alloy is within the range surrounded by the thick solid line in FIG. 5 (inside the triangle), the composition ratio is extremely high that cannot be realized with an existing carbon-based negative electrode active material. High capacity can be realized. Similarly, a higher capacity (initial capacity of 690 mAh / g or more) can be realized than the existing Sn-based alloy negative electrode active material.
  • x + y + z 100, (2) 38 ⁇ x ⁇ 100, and (3) 0 ⁇ y ⁇ 42. (4) 0 ⁇ z ⁇ 39.
  • the composition ratio of Ti as the first additive element and Zn as the second additive element and the high-capacity element Si is within the appropriate range specified above, a Si alloy negative electrode active material having good characteristics is obtained.
  • the Si alloy negative electrode having better characteristics An active material can be provided. Specifically, even when the composition ratio of the Si—Ti—Zn alloy is within the range surrounded by the thick solid line in FIG. 7 (inside the hexagon), it is remarkably impossible with the existing carbon-based negative electrode active material.
  • the Si alloy negative electrode having particularly good characteristics when the composition ratio of the first additive element Ti and the second additive element Zn, and further the high-capacity element Si is within the appropriate range specified above.
  • An active material can be provided. Specifically, even in the case where the composition ratio of the Si—Ti—Zn alloy is within the range surrounded by the thick solid line in FIG.
  • the Si alloy negative electrode having the best characteristics when the composition ratio of the first additive element Ti and the second additive element Zn, and further the high-capacity element Si is within the appropriate range specified above.
  • An active material can be provided. Specifically, when the composition ratio of the Si—Ti—Zn alloy is within the range surrounded by the thick solid line in FIG. 9 (the inside of the small square), it is remarkably impossible with existing carbon-based negative electrode active materials. High capacity can be realized.
  • the negative electrode active material is a ternary amorphous alloy represented by the composition formula Si x Ti y Zn z having the above-described appropriate composition ratio in a manufactured state (uncharged state).
  • the initial capacity (discharge capacity at the first cycle) is much higher than the existing carbon-based negative electrode active material (theoretical capacity 372 mAh / g).
  • the capacity is higher than that of the Sn-based negative electrode active material (theoretical capacity is about 600 to 700 mAh / g).
  • the cycle characteristics are very poor and sufficient when compared with the discharge capacity retention ratio (about 60%) of the 50th cycle of the Sn-based negative electrode active material that can be increased in capacity to about 600 to 700 mAh / g. There wasn't. That is, the balance between the increase in capacity and the cycle durability, which are in a trade-off relationship, is poor and cannot be put into practical use.
  • the alloy composition of patent document 1 is described by atomic ratio, when converted into mass ratio like this embodiment, about 20 mass% of Fe is contained in the Example, and it becomes a 1st addition element. It can be said that the alloy composition is disclosed.
  • the negative electrode active material using the ternary alloy represented by Si x Ti y Zn z of the present embodiment has a high discharge capacity maintenance ratio at the 50th cycle as high cycle characteristics (see FIG. 4).
  • the initial capacity (discharge capacity at the first cycle) is much higher than that of the existing carbon-based negative electrode active material, and is equal to or higher than that of the existing Sn-based negative electrode active material (see FIG. 3).
  • the negative electrode active material shown can be provided.
  • the existing carbon-based and Sn-based negative electrode active materials and the ternary and quaternary alloys described in Patent Document 1 have both high capacity and cycle durability characteristics that could not be realized due to a trade-off relationship.
  • the present inventors have found a negative electrode active material using an alloy that can be balanced in a dimension. Specifically, two types of Ti and Zn are selected from the group consisting of one or two or more additive element species in which there are very various combinations, and these additive element species and the high-capacity element Si are further specified in a specific composition. It has been found that the intended purpose can be achieved by selecting the ratio (composition range). As a result, it is excellent in that a lithium ion secondary battery having a high capacity and good cycle durability can be provided.
  • the range of x in the formula (2) which is the mass% value of Si in the alloy having the composition formula Si x Ti y Zn z , is 38 ⁇ x ⁇ 100.
  • the high discharge capacity retention rate at the 50th cycle cannot be sufficiently maintained (see samples 13 to 24 in Table 1 and FIG. 4), and a great problem arises in that the cycle characteristics rapidly deteriorate (deteriorate).
  • x 100 (in the case of pure Si containing no metal elements Ti and Zn added to Si)
  • the increase in capacity and cycle durability are in a trade-off relationship, and high cycle durability while exhibiting high capacity. It can be seen that the property cannot be improved. That is, since it is only a high-capacity element Si, it has the highest capacity, but on the other hand, the deterioration as a negative electrode active material is remarkable due to the expansion and contraction phenomenon of Si accompanying charging and discharging, and the worst and extremely low discharge capacity is maintained. It can be seen that only a rate (only 47%) is obtained (see sample 19 in Table 1 and FIG. 4).
  • a negative electrode which maintains a high cycle characteristic (particularly, a high discharge capacity maintenance ratio at the 50th cycle) and a high initial capacity in a well-balanced manner.
  • a range of 38 ⁇ x ⁇ 72 is desirable.
  • the composition ratio of Ti, which is the first additive element and Zn, which is the second additive element described later is appropriate, good characteristics (high capacity that is in a trade-off relationship with existing alloy-based negative electrode active materials) And a Si alloy negative electrode active material having excellent characteristics in both cycle durability (see Table 1 and Samples 1 to 12 of Example 1 in FIG. 7).
  • the mass% value (x value) of the high-capacity element Si in the alloy is a negative electrode active material that maintains a high cycle characteristic (higher discharge capacity retention ratio) while maintaining a high initial capacity in a well-balanced manner. From the viewpoint of providing, it can be said that the range of 38 ⁇ x ⁇ 61 is more desirable.
  • an Si alloy negative electrode active material having better characteristics can be provided (Table 1 and FIG. (Internal reference enclosed by 8 thick solid lines).
  • a negative electrode active material that maintains a particularly high cycle characteristic (particularly a high discharge capacity retention ratio) and a high initial capacity in a well-balanced manner. From the viewpoint of providing, it can be said that the range of 47 ⁇ x ⁇ 53 is particularly desirable.
  • a high-performance Si alloy negative electrode active material having the best characteristics can be provided (Table 1). 1 and the internal reference surrounded by the thick solid line in FIG. 9).
  • the particularly preferable range of 47 ⁇ x ⁇ 53 is particularly excellent in that a high capacity (1129 mAh / g or more) and a particularly high discharge capacity maintenance rate (95% or more) in the 50th cycle can be maintained. (Internal reference enclosed in bold solid line in Table 1 and FIG. 9).
  • the Si material (x value) having the initial capacity of 3200 mAh / g, the first additive element Ti (y value), and the second additive element Zn (z value) can be in an optimum range (see the range surrounded by the thick solid line in FIGS. 5 to 9). Therefore, it is excellent in that the most favorable characteristics can be expressed and the increase in capacity at the vehicle application level can be stably and safely maintained over a long period of time.
  • the content ratio of the high capacity Si material having an initial capacity of 3200 mAh / g, the first additive element Ti, and the second additive element Zn (Balance) can be in an optimal range (see the range surrounded by the thick solid line in FIGS. 5 to 9). Therefore, when alloying Si and Li, the amorphous-crystal phase transition can be remarkably suppressed, and the cycle life can be greatly improved. That is, it is possible to achieve a discharge capacity maintenance ratio of 87% or more, particularly 90% or more, especially 96% or more in the 50th cycle.
  • Patent Document 1 it is disclosed in the above-mentioned embodiment of Patent Document 1 that the degradation of cycle characteristics due to a considerable capacity reduction is already exhibited in only about 5 to 6 cycles. That is, in the example of Patent Document 1, the discharge capacity maintenance rate at the 5th to 6th cycles has already been reduced to 90 to 95%, and the discharge capacity maintenance rate at the 50th cycle has been reduced to almost 50 to 0%. It will be.
  • the combination of the first additive element Ti and the second additive element Zn to the high-capacity Si material is in a mutually complementary relationship, so to speak, many trials and errors, and various additions (metal or nonmetal). It was possible to select through an excessive experiment with a combination of elements (only one combination).
  • the content of the high-capacity Si material is within the optimum range shown above, it is excellent in that the capacity can be increased and the reduction in the discharge capacity maintenance ratio at the 50th cycle can be greatly reduced. . That is, when Si and Li are alloyed, the crystal is crystallized from an amorphous state due to a particularly remarkable synergistic effect (effect) due to the optimum range of the first additive element Ti and the second additive element Zn mutually complementary to Ti. The transition to the state can be suppressed, and a large volume change can be prevented. Furthermore, it is also excellent in that the high cycle durability of the electrode can be improved while showing a high capacity (see Table 1 and FIGS. 5 to 9).
  • the range of y in the formula (3) which is the mass% value of Ti in the alloy having the composition formula Si x Ti y Zn z , is 0 ⁇ y ⁇ 62.
  • the content x value of the high-capacity Si material can be maintained at a certain level (38 ⁇ x ⁇ 100), and the existing carbon-based negative electrode active It is possible to achieve an extremely high capacity that cannot be realized by using a material, and to obtain an alloy having a higher capacity (initial capacity of 690 mAh / g or more) than that of an existing Sn-based alloy negative electrode active material. Yes (see Table 1 and FIG. 5).
  • the mass% value (y value) of the first additive element Ti in the alloy is preferably a good balance between the characteristics with a high initial capacity while maintaining a high cycle characteristic (particularly a high discharge capacity retention rate at the 50th cycle). From the viewpoint of providing the negative electrode active material shown, a range of 0 ⁇ y ⁇ 42 is desirable. When the content ratio of the first additive element Ti having an effect of suppressing the amorphous-crystal phase transition and improving the cycle life is appropriate at the time of forming the Li alloy, an Si alloy negative electrode active material having good characteristics is obtained. (See Table 1 and the composition range surrounded by the thick solid line in FIG. 6).
  • the cycle life of the amorphous-crystal phase transition is suppressed during alloying.
  • This is preferable in that the effect of improving the discharge capacity can be effectively expressed, and a high discharge capacity retention rate (87% or more) at the 50th cycle can be maintained (see Table 1 and FIG. 6).
  • a composition range in particular, 0 ⁇ y ⁇ 42 with respect to the Ti content
  • high capacity could be realized in the samples 1 to 12 of Example 1 was selected (enclosed by the thick solid line in FIG. 6).
  • a pentagon A pentagon).
  • the cycle durability is far superior to Sn-based negative electrode active materials and multi-component alloy negative electrode active materials described in Patent Document 1.
  • a Si alloy negative electrode active material realizing a discharge capacity retention rate of 87% or more can be provided (see Table 1 and FIG. 6).
  • the mass% value (y value) of the first additive element Ti in the alloy shows a high balance of the characteristics with high initial capacity while maintaining high cycle characteristics (high discharge capacity retention ratio at the 50th cycle). From the viewpoint of providing the negative electrode active material, it can be said that the range of 8 ⁇ y ⁇ 42 is desirable.
  • the content ratio of the first additive element Ti having an effect of suppressing the amorphous-crystal phase transition and improving the cycle life is appropriate at the time of forming the Li alloy, an Si alloy negative electrode active material having good characteristics is obtained. (See Table 1 and FIG. 7).
  • the capacity is increased and it is markedly superior to the Sn-based negative electrode active material and the multi-component alloy negative electrode active material described in Patent Document 1.
  • the mass% value (y value) of the first additive element Ti in the alloy while maintaining higher cycle characteristics (high discharge capacity retention rate at the 50th cycle), the characteristics of the initial capacity are also very high. From the viewpoint of providing a negative electrode active material that is well-balanced, a range of 19 ⁇ y ⁇ 42 is desirable.
  • the content ratio of the first additive element Ti which has the effect of suppressing the amorphous-crystal phase transition and improving the cycle life, is more appropriate when forming the Li alloy, the Si alloy negative electrode active material having even better characteristics can be obtained. Substances can be provided (see Table 1 and FIG. 8).
  • the mass% value (y value) of the first additive element Ti in the alloy is preferably the highest balance between the characteristics with high initial capacity while maintaining higher cycle characteristics (high discharge capacity retention rate at the 50th cycle).
  • the range of 19 ⁇ y ⁇ 21 is desirable from the viewpoint of providing a well-shown negative electrode active material.
  • the Si alloy negative electrode active material having the best characteristics is most suitable. Substances can be provided (see Table 1 and FIG. 9).
  • the negative electrode active material (negative electrode) is excellent in that it can exhibit the best characteristics and can maintain a high capacity at the vehicle application level stably and safely over a long period of time.
  • the inclusion of a high-capacity Si material having an initial capacity of about 3200 mAh / g and the first additive element Ti (and also the second additive element Zn) The ratio (balance) can be in an optimum range (see the range surrounded by the thick solid line in FIGS. 6 to 9). Therefore, when alloying Si and Li, the amorphous-crystal phase transition can be remarkably suppressed, and the cycle life can be greatly improved.
  • Patent Document 1 it is disclosed in the above-mentioned embodiment of Patent Document 1 that the degradation of cycle characteristics due to a considerable capacity reduction is already exhibited in only about 5 to 6 cycles. That is, in the example of Patent Document 1, the discharge capacity maintenance rate at the 5th to 6th cycles has already been reduced to 90 to 95%, and the discharge capacity maintenance rate at the 50th cycle has been reduced to almost 50 to 0%. It will be.
  • the first additive element Ti and the combination of the second additive element Zn, which is a mutually complementary relationship
  • the high-capacity Si material a number of trials and errors, and various additions ( It can be selected through undue experimentation with combinations of elements (metal or non-metal) (only one combination).
  • the range of z in the formula (4) which is the mass% value of Zn in the alloy having the composition formula Si x Ti y Zn z , is 0 ⁇ z ⁇ 62.
  • 0 ⁇ z ⁇ 39 more preferably 12 ⁇ z ⁇ 39, particularly preferably 12 ⁇ z ⁇ 35, and particularly preferably 26 ⁇ z ⁇ 35. This is because, when the concentration of the first additive element in the alloy increases, the capacity as an electrode does not decrease, and the mass% value (z value) of the second additive element species Zn is in the range of 0 ⁇ z ⁇ 62.
  • the amorphous-crystal phase transition of the high-capacity Si material can be effectively suppressed.
  • an effect excellent in cycle life (cycle durability), in particular, a high discharge capacity retention rate (87% or more) at the 50th cycle can be expressed (see Table 1 and FIG. 5).
  • the content x value of the high-capacity Si material can be maintained at a certain value (38 ⁇ x ⁇ 100), and the capacity can be significantly increased as compared with existing carbon-based negative electrode active materials.
  • a high-capacity alloy equivalent to or higher than the negative electrode active material can be obtained (see FIG. 5).
  • a binary alloy that does not contain any one of the additive metal elements (Ti, Zn) to Si of the ternary alloy represented by the composition formula Si x Ti y Zn z (particularly, z 0)
  • Si—Ti alloy high cycle characteristics cannot be maintained as compared with the present embodiment.
  • the high discharge capacity maintenance rate at the 50th cycle cannot be sufficiently maintained (see samples 13 to 25 in Table 1 and FIG. 4), and there is a serious problem that the cycle characteristics are rapidly deteriorated (deteriorated).
  • Zn does not function as an active material, alloying of Zn and Li is difficult, characteristics as a negative electrode active material cannot be sufficiently exhibited, and high capacity is also cycled. It is extremely difficult to develop durability.
  • the mass% value (z value) of the second additive element Zn in the alloy preferably maintains a high cycle characteristic (particularly, a high discharge capacity retention rate at the 50th cycle) and a high initial capacity characteristic in a well-balanced manner.
  • a range of 0 ⁇ z ⁇ 39 is desirable.
  • the capacity of the first additive element Ti which suppresses the amorphous-crystal phase transition and improves the cycle life, and the negative electrode active material (negative electrode) does not decrease even when the concentration of the first additive element increases. Selection of the second additive element Zn is extremely important and useful in the present embodiment.
  • first and second additive elements With such first and second additive elements, a known ternary alloy, a quaternary or higher alloy such as Patent Document 1, and a binary alloy such as a Si—Ti alloy or a Si—Zn alloy can be used. It was found that there was a significant difference in action and effect. When the content ratio of the second additive element Zn (and the first additive element Ti mutually complementary with Zn) is appropriate, the Si alloy negative electrode active material having good characteristics is obtained (Table 1 and FIG. 6). (See composition range surrounded by thick solid line).
  • a pentagon By selecting 0 ⁇ y ⁇ 39 with respect to the composition range, particularly Zn content, a Sn-based negative electrode active material or a multi-element system described in Patent Document 1 can be obtained due to a synergistic effect (mutual complementary characteristics) with the first additive element Ti. Compared with an alloy negative electrode active material, it is possible to realize a cycle durability that is remarkably superior. As a result, it is possible to provide a Si alloy negative electrode active material that achieves a discharge capacity retention ratio of 87% or more at the 50th cycle (see Table 1 and the composition range surrounded by a thick solid line in FIG. 6).
  • the mass% value (z value) of the second additive element Zn in the alloy balances the characteristics with high initial capacity while maintaining high cycle characteristics due to the synergistic effect (mutual complementary characteristics) with the first additive element Ti.
  • z value mass% value
  • the mass% value (z value) of the second additive element Zn in the alloy balances the characteristics with high initial capacity while maintaining high cycle characteristics due to the synergistic effect (mutual complementary characteristics) with the first additive element Ti.
  • a range of 12 ⁇ z ⁇ 39 is desirable.
  • Good when the content ratio of the second additive element Zn is appropriate, which can achieve the effect of suppressing the amorphous-crystal phase transition and improving the cycle life by synergistic effect (mutual complementarity) with Ti during Li alloying This is because a Si alloy negative electrode active material having excellent characteristics can be provided.
  • the effect of suppressing the amorphous-crystal phase transition and improving the cycle life when alloying due to the synergistic effect (mutual complementarity characteristic) with the first additive element. Can be effectively expressed.
  • a high discharge capacity maintenance rate of 87% or more at the 50th cycle can be maintained (see Table 1 and FIG. 7).
  • the composition range in which Samples 1 to 12 of Example 1 were able to achieve a high capacity and a high discharge capacity retention rate of 87% or more at the 50th cycle is selected (the hexagon surrounded by the thick solid line in FIG. 7).
  • the capacity is increased by synergistic properties with Ti and compared with the Sn-based negative electrode active material and the multi-component alloy negative electrode active material described in Patent Document 1. Even in this case, it is possible to provide a Si alloy negative electrode active material that realizes remarkably excellent cycle durability.
  • the mass% value (z value) of the second additive element Zn in the alloy has a very high initial capacity while maintaining a higher cycle characteristic (high discharge capacity retention rate at the 50th cycle). From the viewpoint of providing a negative electrode active material that is well-balanced, a range of 12 ⁇ z ⁇ 35 is desirable.
  • the content ratio of the second additive element Zn which can exhibit the effect of suppressing the amorphous-crystal phase transition and improving the cycle life due to the synergistic effect (mutual complementary characteristics) with Ti, is more appropriate during Li alloying This is because a Si alloy negative electrode active material having even better characteristics can be provided.
  • the effect of suppressing the amorphous-crystal phase transition and improving the cycle life is more effective when alloying due to the synergistic effect (mutual complementarity) with Ti. Can be expressed.
  • a higher discharge capacity maintenance rate of 90% or more at the 50th cycle can be maintained (see Table 1 and FIG. 8).
  • a composition range in which a high capacity and a high discharge capacity retention ratio of 50% or more at the 50th cycle could be realized is selected (small hexagons surrounded by thick solid lines in FIG. 8).
  • the mass% value (z value) of the second additive element Zn in the alloy is preferably the highest balance between the characteristics with high initial capacity while maintaining higher cycle characteristics (high discharge capacity retention rate at the 50th cycle).
  • the range of 26 ⁇ z ⁇ 35 is desirable from the viewpoint of providing a well-shown negative electrode active material.
  • the content ratio (balance) of the high-capacity Si material having an initial capacity of 3200 mAh / g and the first additive element Ti and the further second additive element Zn. Can be the optimum range (see the range surrounded by the thick solid line in FIGS. 7 to 9). Therefore, even if the Ti concentration that can suppress the phase transition of amorphous-crystal, which is a characteristic of Zn (synergistic effect with Ti; mutual complementarity characteristics), increases the capacity as the negative electrode active material (negative electrode). Therefore, the cycle life (particularly the discharge capacity maintenance rate) can be significantly improved.
  • the negative electrode active material (negative electrode) is excellent in that it can exhibit the best characteristics and can maintain a high capacity at the vehicle application level stably and safely over a long period of time.
  • the content ratio (balance) of the high-capacity Si material having an initial capacity of 3200 mAh / g and the first additive element Ti and the second additive element Zn is optimal. It can be a range (see the range surrounded by the thick solid line in FIGS. 6 to 9).
  • the amorphous-crystal phase transition can be remarkably suppressed, and the cycle life (especially the discharge capacity retention rate at the 50th cycle) can be greatly improved. That is, the discharge capacity maintenance rate at the 50th cycle can be 87% or more, particularly 90% or more, and particularly 96% or more.
  • the discharge capacity maintenance rate at the 50th cycle can be 87% or more, particularly 90% or more, and particularly 96% or more.
  • the above-described effects of the present embodiment are effectively expressed. Needless to say, it is included in the technical scope (right range) of the present invention as long as it can be performed.
  • Patent Document 1 it is disclosed in the above-mentioned embodiment of Patent Document 1 that the degradation of cycle characteristics due to a considerable capacity reduction is already exhibited in only about 5 to 6 cycles. That is, in the example of Patent Document 1, the discharge capacity maintenance rate at the 5th to 6th cycles has already been reduced to 90 to 95%, and the discharge capacity maintenance rate at the 50th cycle has been reduced to almost 50 to 0%. It will be.
  • the combination of the first additive element Ti and the second additive element Zn to the high-capacity Si material is in a mutually complementary relationship. It can be selected through an excessive experiment with combinations of elemental species (only one combination).
  • the reduction of the discharge capacity maintenance ratio at the 50th cycle can be greatly reduced by further making the Zn content within the optimum range shown above. That is, when Si and Li are alloyed, the crystal is crystallized from an amorphous state by a particularly remarkable synergistic effect (effect) due to the optimum range of the second additive element Zn (and the first additive element Ti mutually complementary to Zn). The transition to the state can be suppressed, and a large volume change can be prevented. Furthermore, it is also excellent in that the high cycle durability of the electrode can be improved while exhibiting a high capacity.
  • the composition formula of the alloy having a z Si x Ti y Zn z is not limited in particular, the production of conventionally known various It can be manufactured using. That is, since there is almost no difference in the alloy state and characteristics depending on the production method, various production methods can be applied.
  • a method for producing a thin film form of an alloy having the composition formula Si x Ti y Zn z includes, for example, a multi-element PVD method (a sputtering method (a method adopted in the examples), a resistance heating method, a laser, Ablation method), multi-source CVD method (chemical vapor deposition method) and the like can be used.
  • a method for producing a particulate form of alloys with (ii) the composition formula Si x Ti y Zn z for example, it can be utilized mechanical alloy method, the arc plasma melting method or the like.
  • the method for producing the alloy thin film of (i) for example, as a multi-element DC magnetron sputtering apparatus, an independently controlled ternary DC magnetron sputtering apparatus is used, and various alloy compositions and thicknesses are formed on the substrate (current collector) surface.
  • a Si x Ti y Zn z alloy thin film can be freely formed.
  • target 1 Si
  • target 2 Ti
  • target 3 Zn
  • sputtering time is fixed, and the power of the DC power source is changed to obtain various alloy samples (specifically, implementation) (See Samples 1-25 in Example 1).
  • ternary alloy samples having various composition formulas can be obtained by changing the power of the DC power source such as Si: 185 W, Ti: 50 W, and Zn: 50 W, respectively.
  • the sputtering conditions are different for each sputtering apparatus, it is desirable to grasp a suitable range for the sputtering conditions through preliminary experiments as appropriate for each sputtering apparatus. Specifically, see the sputtering conditions, target specifications, and electrode sample specifications in the sputtering apparatus shown in Example 1.
  • a suitable range of the power of the DC power source when the sputtering time is fixed as the sputtering conditions, target specifications, and electrode sample specifications in the sputtering apparatus shown in Example 1 is as described on the left.
  • preferable ranges of the power of the DC power source are Si: 185 W, Ti: 50 to 200 W, and Zn: 30 to 90 W. With such a range, the alloy having the above composition formula Si x Ti y Zn z in an amorphous state can be produced in the form of thin films.
  • these values are only suitable ranges (reference values) under the sputtering conditions, target specifications, and electrode sample specifications in the sputtering apparatus shown in the first embodiment, and are different for each sputtering apparatus as described above. Therefore, it is desirable that the suitable ranges of the sputtering conditions, target specifications, electrode sample specifications, and the like are appropriately determined through preliminary experiments for each sputtering apparatus.
  • a slurry in the method for producing particles in the form (ii), a slurry can be prepared by adding a binder, a conductive additive and a viscosity adjusting solvent to the particles, and a slurry electrode can be formed using the slurry. Therefore, compared with the above (i), it is easy to mass-produce (mass production) and is excellent in that it can be put into practical use as an actual battery electrode. In addition, since the influence of a binder and a conductive support agent is large, it can be said that the above (i) is more suitable for viewing the characteristics of the active material.
  • the average particle diameter of the alloy is the negative electrode included in the existing negative electrode active material layer 15.
  • the average particle diameter of the alloy is the negative electrode included in the existing negative electrode active material layer 15.
  • it is preferably in the range of 1 to 20 ⁇ m.
  • it is not limited at all to the above range, and it goes without saying that it may be outside the above range as long as the effects of the present embodiment can be effectively expressed.
  • the positive electrode active material layer 13 and the negative electrode active material layer 15 in the case of using the alloy in the form of the particles of (5) (ii) above include a binder.
  • a binder used for an active material layer For example, the following materials are mentioned. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile (PEN), polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC), ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR) ), Isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and hydrogenated product thereof
  • Thermoplastic polymers such as products, polyvinylidene fluoride (PVdF), polytetrafluoroethylene
  • polyvinylidene fluoride, polyimide, styrene / butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, and polyamide are more preferable.
  • These suitable binders are excellent in heat resistance, have a very wide potential window, are stable at both the positive electrode potential and the negative electrode potential, and can be used for the active material layer. These binders may be used alone or in combination of two.
  • the amount of the binder contained in the active material layer is not particularly limited as long as it is an amount capable of binding the active material, but is preferably 0.5 to 15% by mass with respect to the active material layer. More preferably, it is 1 to 10% by mass.
  • additives examples include a conductive additive, an electrolyte salt (lithium salt), and an ion conductive polymer.
  • the conductive assistant means an additive blended to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer.
  • Examples of the conductive assistant include carbon materials such as carbon black such as acetylene black, graphite, and vapor grown carbon fiber.
  • the conductive binder having the functions of the conductive assistant and the binder may be used in place of the conductive assistant and the binder, or may be used in combination with one or both of the conductive assistant and the binder.
  • Commercially available TAB-2 (manufactured by Hosen Co., Ltd.) can be used as the conductive binder.
  • electrolyte salt examples include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
  • Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
  • the compounding ratio of the components contained in the negative electrode active material layer in the case of using the positive electrode active material layer and the alloy in the form of particles of (5) (ii) above is not particularly limited.
  • the mixing ratio can be adjusted by appropriately referring to known knowledge about the non-aqueous solvent secondary battery.
  • each active material layer (active material layer on one side of the current collector) is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to.
  • the thickness of each active material layer is usually about 1 to 500 ⁇ m, preferably 2 to 100 ⁇ m, taking into consideration the intended use of the battery (emphasis on output, energy, etc.) and ion conductivity.
  • the current collectors 11 and 12 are made of a conductive material.
  • the size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used.
  • the thickness of the current collector is usually about 1 to 100 ⁇ m.
  • the shape of the current collector is not particularly limited. In the laminated battery 10 shown in FIG. 1, in addition to the current collector foil, a mesh shape (such as an expanded grid) can be used.
  • a mesh shape such as an expanded grid
  • a metal or a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material can be employed.
  • the metal include aluminum, nickel, iron, stainless steel, titanium, and copper.
  • a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used.
  • covered on the metal surface may be sufficient.
  • aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electronic conductivity, battery operating potential, and adhesion of the negative electrode active material by sputtering to the current collector.
  • examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.
  • Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), or polystyrene (PS).
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PI polyimide
  • PAI polyamideimide
  • PA polyamide
  • PTFE polytetraflu
  • a conductive filler may be added to the conductive polymer material or the non-conductive polymer material as necessary.
  • a conductive filler is inevitably necessary to impart conductivity to the resin.
  • the conductive filler can be used without particular limitation as long as it is a substance having conductivity.
  • metals, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion barrier
  • the metal is not particularly limited, but at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, Sb, and K, or these metals It is preferable to contain an alloy or metal oxide containing. Moreover, there is no restriction
  • the amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by mass.
  • a liquid electrolyte or a polymer electrolyte can be used as the electrolyte constituting the electrolyte layer 17.
  • the liquid electrolyte has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer.
  • organic solvent examples include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), and dimethyl carbonate (DMC).
  • the supporting salt lithium salt
  • a compound that can be added to the active material layer of the electrode such as LiBETI, can be similarly employed.
  • polymer electrolytes are classified into gel electrolytes containing an electrolytic solution and intrinsic polymer electrolytes not containing an electrolytic solution.
  • the gel electrolyte has a configuration in which the above liquid electrolyte (electrolytic solution) is injected into a matrix polymer made of an ion conductive polymer.
  • the ion conductive polymer used as the matrix polymer include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.
  • electrolyte salts such as lithium salts can be well dissolved.
  • the ratio of the liquid electrolyte (electrolytic solution) in the gel electrolyte is not particularly limited, but is preferably about several mass% to 98 mass% from the viewpoint of ionic conductivity.
  • the gel electrolyte having a large amount of electrolytic solution having a ratio of the electrolytic solution of 70% by mass or more is particularly effective.
  • a separator may be used for the electrolyte layer.
  • the separator include a microporous film made of polyolefin such as polyethylene and polypropylene, a porous flat plate, and a non-woven fabric.
  • the intrinsic polymer electrolyte has a structure in which a supporting salt (lithium salt) is dissolved in the above matrix polymer, and does not contain an organic solvent that is a plasticizer. Therefore, when the electrolyte layer is composed of an intrinsic polymer electrolyte, there is no fear of liquid leakage from the battery, and the reliability of the battery can be improved.
  • a supporting salt lithium salt
  • the matrix polymer of the gel electrolyte or the intrinsic polymer electrolyte can express excellent mechanical strength by forming a crosslinked structure.
  • thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator.
  • a polymerization treatment may be performed.
  • a current collecting plate may be used for the purpose of taking out the current outside the battery.
  • the current collector plate is electrically connected to the current collector and the lead, and is taken out of the laminate sheet that is a battery exterior material.
  • the material constituting the current collector plate is not particularly limited, and a known highly conductive material conventionally used as a current collector plate for a lithium ion secondary battery can be used.
  • a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable, and aluminum is more preferable from the viewpoint of light weight, corrosion resistance, and high conductivity. Copper or the like is preferable. Note that the same material may be used for the positive electrode current collector plate and the negative electrode current collector plate, or different materials may be used.
  • ⁇ Use positive terminal lead and negative terminal lead as required.
  • a terminal lead used in a known lithium ion secondary battery can be used.
  • the part taken out from the battery outer packaging material 29 has a heat insulating property so as not to affect the product (for example, automobile parts, particularly electronic devices) by contacting with peripheral devices or wiring and causing leakage. It is preferable to coat with a heat shrinkable tube or the like.
  • Battery exterior material As the battery exterior material 29, a known metal can case can be used, and a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used.
  • a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used as the laminate film, but the laminate film is not limited thereto.
  • a laminate film is desirable from the viewpoint that it is excellent in high output and cooling performance, and can be suitably used for a battery for large equipment for EV and HEV.
  • said lithium ion secondary battery can be manufactured with a conventionally well-known manufacturing method.
  • FIG. 2 is a perspective view showing the appearance of a stacked flat lithium ion secondary battery.
  • the stacked flat lithium ion secondary battery 50 has a rectangular flat shape, and a positive current collector 58 for taking out power from both sides thereof, a negative current collector, and the like.
  • the electric plate 59 is pulled out.
  • the power generation element 57 is wrapped by the battery outer packaging material 52 of the lithium ion secondary battery 50, and the periphery thereof is heat-sealed.
  • the power generation element 57 pulls out the positive electrode current collector plate 58 and the negative electrode current collector plate 59 to the outside. Sealed.
  • the power generation element 57 corresponds to the power generation element 21 of the lithium ion secondary battery (stacked battery) 10 shown in FIG.
  • the power generation element 57 is formed by laminating a plurality of single battery layers (single cells) 19 including a positive electrode (positive electrode active material layer) 13, an electrolyte layer 17, and a negative electrode (negative electrode active material layer) 15.
  • the lithium ion secondary battery is not limited to a laminated flat shape (laminate cell).
  • a cylindrical shape coin cell
  • a prismatic shape square cell
  • it may be a cylindrical cell, and is not particularly limited.
  • the cylindrical or prismatic shape is not particularly limited, for example, a laminate film or a conventional cylindrical can (metal can) may be used as the exterior material.
  • the power generation element is covered with an aluminum laminate film. With this configuration, weight reduction can be achieved.
  • the removal of the positive electrode current collector plate 58 and the negative electrode current collector plate 59 shown in FIG. 2 is not particularly limited.
  • the positive electrode current collector plate 58 and the negative electrode current collector plate 59 may be drawn from the same side, or the positive electrode current collector plate 58 and the negative electrode current collector plate 59 may be divided into a plurality of parts and taken out from each side. It is not limited to the one shown in FIG.
  • a terminal instead of the current collector plate, for example, a terminal may be formed using a cylindrical can (metal can).
  • the negative electrode and the lithium ion secondary battery using the negative electrode active material for the lithium ion secondary battery of the present embodiment are large vehicles such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles. It can be suitably used as a capacity power source. That is, it can be suitably used for a vehicle driving power source and an auxiliary power source that require high volume energy density and high volume output density.
  • the lithium ion battery is exemplified as the electric device.
  • the present invention is not limited to this, and can be applied to other types of secondary batteries and further to primary batteries. It can also be applied to capacitors as well as batteries.
  • Example 1 Samples 1 to 25
  • Production of Evaluation Cell (1) Production of Evaluation Electrode Thin film alloys having various alloy compositions obtained by sputtering were used for the evaluation electrode.
  • an independently controlled ternary DC magnetron sputtering apparatus (Daiwa Kikai Kogyo Co., Ltd., combinatorial sputter coating apparatus: gun-sample distance: about 100 mm) was used as the sputtering apparatus.
  • a ternary DC magnetron sputtering apparatus (Daiwa Kikai Kogyo Co., Ltd., combinatorial sputter coating apparatus: gun-sample distance: about 100 mm) was used as the sputtering apparatus.
  • thin film alloys (samples 1 to 25) having various alloy compositions were obtained under the following sputtering conditions, target specifications, and electrode sample specifications.
  • Si target (4N) 2 inches in diameter, 3 mm thick + oxygen-free copper backing plate, 2 mm thick
  • Zn target (4N) 2 inches in diameter and 5 mm in thickness.
  • the analysis of the obtained alloy samples 1 to 25 was performed using the following analysis method and analyzer.
  • the counter electrode includes a positive electrode slurry electrode (for example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li (Ni, Mn, Co) O 2 , Li (Li, Ni, Mn, Co) O 2 , LiRO 2 ⁇ .
  • an evaluation cell (CR2032 type coin cell) was constructed by combining the evaluation electrode with a Li foil (counter electrode), a separator, and an electrolytic solution.
  • Charge / Discharge Test Conditions / Evaluation Method (1) Charge / Discharge Test Conditions (i) The charge / discharge test conditions of the evaluation cell were as follows.
  • the evaluation cell is in a constant current / constant voltage mode in the charging process (referring to the Li insertion process to the evaluation electrode) in a thermostat set to the above evaluation temperature using a charge / discharge tester.
  • the battery was charged from 2 V to 10 mV at 0.1 mA.
  • a discharge process referring to a Li desorption process from the electrode for evaluation
  • a constant current mode was set and discharge was performed from 0.1 mA, 10 mV to 2 V.
  • the charge / discharge test was conducted from the initial cycle (1 cycle) to 50 cycles under the same charge / discharge conditions with the above charge / discharge cycle as one cycle.
  • (2) Evaluation method The charge / discharge capacity was calculated per alloy weight.
  • discharge capacity (mAh / g) in the table is based on the weight of pure Si or alloy, Li to Si—Ti—Zn alloy (Si—Zn alloy, pure Si or Si—Ti alloy). Indicates the capacity when reacts. In addition, what is described as “initial capacity” in the specification corresponds to “discharge capacity (mAh / g)” of the initial cycle (first cycle).
  • discharge capacity maintenance ratio (%) at the 50th cycle in the table represents an index of “how much capacity is maintained from the initial capacity”. The calculation formula of the discharge capacity retention rate (%) is as follows.
  • the initial capacity (the discharge capacity at the first cycle) is much higher than can be achieved with existing carbon-based negative electrode active materials (carbon / graphite-based negative electrode materials). It was confirmed that capacity could be realized. Similarly, it was confirmed that a higher capacity (initial capacity of 690 mAh / g or more) than that of the existing Sn-based alloy negative electrode active material can be realized. Furthermore, the cycle durability, which is in a trade-off relationship with the increase in capacity, is also compared with the existing Sn-based negative electrode active material having a high capacity but inferior in cycle durability and the multi-component alloy negative electrode active material described in Patent Document 1. However, it has been confirmed that the cycle durability can be remarkably improved.
  • the cycle durability excellent at a high discharge capacity retention rate of 87% or more, preferably 90% or more, more preferably 96% or more at the 50th cycle can be realized. Therefore, the batteries of Samples 1 to 12 have a higher discharge capacity maintenance ratio at the 50th cycle than the batteries of Samples 13 to 25, and the high capacity can be maintained more efficiently by suppressing the decrease in the high initial capacity. I found out.
  • the first additive element Ti that suppresses the amorphous-crystal phase transition and improves the cycle life, and the capacity as the electrode increases even when the concentration of the first additive element increases. It has been found that the selection of the second additive element species Zn that does not decrease is extremely useful and effective. By selecting the first and second additive elements, a Si alloy-based negative electrode active material having high capacity and high cycle durability can be provided. As a result, it was found that a lithium ion secondary battery with high capacity and good cycle durability can be provided.
  • the reference batteries of Samples 13 to 25 can achieve a high capacity, it has been found that the discharge capacity maintenance rate is not sufficient at 47 to 85% for the cycle durability that is in a trade-off relationship with the high capacity. . From this, it was found that the reference battery could not sufficiently suppress the decrease (deterioration) in cycle durability. In other words, it was confirmed that none of the Si metals or binary alloys of Samples 13 to 25 could exhibit a trade-off relationship between high capacity and cycle durability in a well-balanced manner.
  • Example 2 For the evaluation cell (CR2032 type coin cell) using the evaluation electrodes of Samples 4, 19, and 22, the initial cycle was performed under the same charge / discharge conditions as in Example 1.
  • FIG. 10 shows a dQ / dV curve with respect to voltage (V) in the discharge process of the initial cycle.
  • a sharp peak protruding downward in the vicinity of 0.4 V of sample 19 indicates a change due to the decomposition of the electrolytic solution.
  • the downwardly convex gentle peaks in the vicinity of 0.35 V, 0.2 V, and 0.05 V are changed from the amorphous state to the crystallized state, respectively.
  • Sample 4 Si—Ti—Zn ternary alloy thin film
  • Sample 22 Si—Ti binary alloy thin film to which elements (Ti, Zn) other than Si were added were 2.5 V and 2.5 V, respectively.
  • a downward and sharp peak indicating a change due to decomposition of the electrolytic solution was confirmed.
  • there was no gentle downward peak that showed a change from the amorphous state to the crystallized state, and it was confirmed that the crystallization of the Li—Si alloy could be suppressed.
  • Table 1 that the Si—Ti binary alloy thin film of Sample 22 could not be suppressed until the discharge capacity retention rate (%) decreased (deteriorated) after 50 cycles.
  • the ternary alloy of this example exhibits high cycle characteristics, in particular, high discharge capacity maintenance ratio at the 50th cycle, and high discharge capacity at the first cycle and high balance characteristics.
  • the mechanism (action mechanism) can be estimated (estimated) as follows.
  • Example 2 when the dQ / dV curve of the ternary alloy is observed, the peak in the low potential region ( ⁇ 0.6 V) is less than that of pure-Si that is not an alloy and is smooth. . This seems to mean that the decomposition of the electrolytic solution is suppressed and further that the phase transition of the Li—Si alloy to the crystal phase is suppressed (see FIG. 10).
  • Lithium ion secondary battery (stacked battery), 11 positive electrode current collector, 12 negative electrode current collector, 13 positive electrode active material layer, 15 negative electrode active material layer, 17 electrolyte layer, 19 cell layer, 21, 57 power generation element, 25, 58 positive current collector, 27, 59 negative electrode current collector plate, 29, 52 Battery exterior material (laminate film).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)

Abstract

【課題】高いサイクル特性を維持しつつ、かつ初期容量も高い特性をバランスよく示す電気デバイス用の負極活物質を提供する。 【解決手段】組成式SiTiZn(式中x、y、及びzは質量パーセント値を表し、(1)x+y+z=100であり、(2)38≦x<100であり、(3)0<y<62であり、(4)0<z<62である。)を有する合金を含む電気デバイス用の負極活物質。

Description

電気デバイス用Si合金負極活物質
 本発明は、電気デバイス用Si合金負極活物質、および該電気デバイス用Si合金負極活物質を用いた電気デバイスに関する。本発明の電気デバイス用Si合金負極活物質及びこれを用いた電気デバイスは、例えば、二次電池やキャパシタ等として電気自動車、燃料電池車及びハイブリッド電気自動車等の車両のモータ等の駆動用電源や補助電源に用いられる。
 近年、大気汚染や地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池などの電気デバイスの開発が盛んに行われている。
 モータ駆動用二次電池としては、携帯電話やノートパソコン等に使用される民生用リチウムイオン二次電池と比較して極めて高い出力特性、及び高いエネルギーを有することが求められている。従って、全ての電池の中で最も高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。
 リチウムイオン二次電池は、一般に、バインダを用いて正極活物質等を正極集電体の両面に塗布した正極と、バインダを用いて負極活物質等を負極集電体の両面に塗布した負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。
 従来、リチウムイオン二次電池の負極には充放電サイクルの寿命やコスト面で有利な炭素・黒鉛系材料が用いられてきた。しかし、炭素・黒鉛系の負極材料ではリチウムイオンの黒鉛結晶中への吸蔵・放出により充放電がなされるため、最大リチウム導入化合物であるLiCから得られる理論容量372mAh/g以上の充放電容量が得られないという欠点がある。このため、炭素・黒鉛系負極材料で車両用途の実用化レベルを満足する容量、エネルギー密度を得るのは困難である。
 これに対し、負極にLiと合金化する材料を用いた電池は、従来の炭素・黒鉛系負極材料と比較しエネルギー密度が向上するため、車両用途における負極材料として期待されている。例えば、Si材料は、充放電において下記の反応式(1)のように1molあたり4.4molのリチウムイオンを吸蔵放出し、Li22Si(=Li4.4Si)においては理論容量2100mAh/gである。さらに、Si重量当りで算出した場合、3200mAh/g(実施例1のサンプル19参照)もの初期容量を有する。
Figure JPOXMLDOC01-appb-C000001
 しかしながら、負極にLiと合金化する材料を用いたリチウムイオン二次電池は、充放電時の負極での膨張収縮が大きい。例えば、Liイオンを吸蔵した場合の体積膨張は、黒鉛材料では約1.2倍であるのに対し、Si材料ではSiとLiが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起すため、電極のサイクル寿命を低下させる問題があった。また、Si負極活物質の場合、容量とサイクル耐久性はトレードオフの関係であり、高容量を示しつつ高サイクル耐久性を向上させることが困難であるといった問題があった。
 こうした問題を解決すべく、式;SiAlを有するアモルファス合金を含む、リチウムイオン二次電池用の負極活物質が提案されている(例えば、特許文献1参照)。ここで、式中x、y、zは原子パーセント値を表し、x+y+z=100、x≧55、y<22、z>0、Mは、Mn、Mo、Nb、W、Ta、Fe、Cu、Ti、V、Cr、Ni、Co、Zr及びYの少なくとも1種からなる金属である。かかる特許文献1に記載の発明では、段落「0018」に金属Mの含有量を最小限にすることで、高容量の他に、良好なサイクル寿命を示すことが記載されている。
特表2009-517850号公報
 しかしながら、上記特許文献1に記載の式;SiAlを有するアモルファス合金を有する負極を用いたリチウムイオン二次電池の場合、良好なサイクル特性を示すことができるとされているものの、初期容量が十分とはいえなかった。またサイクル特性も十分なものとはいえなかった。
 そこで、本発明の目的は、高いサイクル特性を維持しつつ、かつ初期容量も高くバランスよい特性を示すLiイオン二次電池等の電気デバイス用の負極活物質(単に負極活物質ともいう)を提供することにある。
 本発明者らは、負極活物質材料として、3元系のSi-Ti-Zn系の合金のうち、Si-Ti-Znの組成比が特定の組成範囲に含まれる合金を適用することにより、上記課題を解決し得ることを見出し、かかる知見に基づき本発明に至ったものである。
 即ち本発明の目的は、組成式SiTiZnを有する合金を含む電気デバイス用の負極活物質により達成できる。ここで、上記組成式SiTiZnにおいて、式中x、y、及びzは質量パーセント値を表し、(1)x+y+z=100であり、(2)38≦x<100であり、(3)0<y<62であり、(4)0<z<62である。
 本発明の電気デバイス用の負極活物質によれば、SiとLiとが合金化する際、上記組成式を有する合金が第1添加元素Tiを上記範囲内で含むことにより、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させるという作用が得られる。さらに、SiとLiとが合金化する際、上記組成式を有する合金が第2添加元素Znを上記範囲内で含むことにより、前記第1添加元素濃度が増加しても電極としての容量が減少しないという作用が得られる。こうした複合的な作用の結果として、上記組成式を有する合金を含む負極活物質では、初期容量も高く、高容量・高サイクル耐久性を有するという有用な効果が得られる。
本発明に係る電気デバイスの代表的な一実施形態である積層型の扁平な非双極型リチウムイオン二次電池の概要を模式的に表した断面概略図である。 本発明に係る電気デバイスの代表的な実施形態である積層型の扁平なリチウムイオン二次電池の外観を模式的に表した斜視図である。 実施例1で行った各サンプル(サンプル番号1~25)を用いた電池の1サイクル目の放電容量(mAhg)を、容量の大きさにより色分けして(濃淡をつけて)プロットしたSi-Ti-Zn系の3元系合金の組成図である。 実施例1で行った各サンプル(サンプル番号1~25)を用いた電池の50サイクル目での放電容量維持率(%)を、放電容量維持率の大きさにより色分けして(濃淡をつけて)プロットしたSi-Ti-Zn系の3元系合金の組成図である。 図3のSi-Ti-Zn系の3元系合金の組成図に実施例1のSi-Ti-Zn合金サンプルの組成範囲を色分けして(濃淡をつけて)囲った図面である。図中、Si+Ti+Zn(いずれの単位もwt%/100である。)=1.00であり、(2)0.38≦Si(wt%/100)<1.00であり、(3)0<Ti(wt%/100)<0.62であり、(4)0<Zn(wt%/100)<0.62である。 図3のSi-Ti-Zn系の3元系合金の組成図に実施例1のSi-Ti-Zn合金サンプルのうち、好ましい組成範囲を色分けして(濃淡をつけて)囲った図面である。図中、Si+Ti+Zn(いずれの単位もwt%/100である。)=1.00であり、(2)0.38≦Si(wt%/100)<1.00であり、(3)0<Ti(wt%/100)≦0.42であり、(4)0<Zn(wt%/100)≦0.39である。 図4のSi-Ti-Zn系の3元系合金の組成図に実施例1のSi-Ti-Zn合金サンプルのうち、より好ましい組成範囲を色分けして(濃淡をつけて)囲った図面である。図中、Si+Ti+Zn(いずれの単位もwt%/100である)=1.00であり、(2)0.38≦Si(wt%/100)≦0.72であり、(3)0.08≦Ti(wt%/100)≦0.42であり、(4)0.12≦Zn(wt%/100)≦0.39である。 図4のSi-Ti-Zn系の3元系合金の組成図に実施例1のSi-Ti-Zn合金サンプルのうち、特に好ましい組成範囲を色分けして(濃淡をつけて)囲った図面である。図中、Si+Ti+Zn(いずれの単位もwt%/100である)=1.00であり、(2)0.38≦Si(wt%/100)≦0.61であり、(3)0.19≦Ti(wt%/100)≦0.42であり、(4)0.12≦Zn(wt%/100)≦0.35である。 図4のSi-Ti-Zn系の3元系合金の組成図に実施例1のSi-Ti-Zn合金サンプルのうち、とりわけ好ましい組成範囲を色分けして(濃淡をつけて)囲った図面である。図中、Si+Ti+Zn(いずれの単位もwt%/100である)=1.00であり、(2)0.47≦Si(wt%/100)≦0.53であり、(3)0.19≦Ti(wt%/100)≦0.21であり、(4)0.26≦Zn(wt%/100)≦0.35である。 実施例2で行った、pure Si、Si-Ti系の2元系合金、Si-Ti-Zn系の3元系合金の各サンプルを用いた電池での1サイクル目(初期サイクル)の放電過程でのdQ/dV曲線を表す図面である。
 以下、図面を参照しながら、本発明の電気デバイス用の負極活物質およびこれを用いてなる電気デバイスの実施形態を説明する。但し、本発明の技術的範囲は、特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみには制限されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 以下、本発明の電気デバイス用の負極活物質が適用され得る電気デバイスの基本的な構成を、図面を用いて説明する。本実施形態では、電気デバイスとしてリチウムイオン二次電池を例示して説明する。
 まず、本発明に係る電気デバイス用の負極活物質の代表的な一実施形態であるリチウムイオン二次電池用の負極活物質およびこれを用いてなる負極並びにリチウムイオン二次電池では、セル(単電池層)の電圧が大きく、高エネルギー密度、高出力密度が達成できる。そのため本実施形態のリチウムイオン二次電池用の負極活物質を用いてなる負極並びにリチウムイオン二次電池では、車両の駆動電源用や補助電源用として優れている。その結果、車両の駆動電源用等のリチウムイオン二次電池として好適に利用できる。このほかにも、携帯電話などの携帯機器向けのリチウムイオン二次電池にも十分に適用可能である。
 すなわち、本実施形態の対象となるリチウムイオン二次電池は、以下に説明する本実施形態のリチウムイオン二次電池用の負極活物質を用いてなるものであればよく、他の構成要件に関しては、特に制限されるべきものではない。
 例えば、上記リチウムイオン二次電池を形態・構造で区別した場合には、積層型(扁平型)電池、巻回型(円筒型)電池など、従来公知のいずれの形態・構造にも適用し得るものである。積層型(扁平型)電池構造を採用することで簡単な熱圧着などのシール技術により長期信頼性を確保でき、コスト面や作業性の点では有利である。
 また、リチウムイオン二次電池内の電気的な接続形態(電極構造)で見た場合、非双極型(内部並列接続タイプ)電池および双極型(内部直列接続タイプ)電池のいずれにも適用し得るものである。
 リチウムイオン二次電池内の電解質層の種類で区別した場合には、電解質層に非水系の電解液等の溶液電解質を用いた溶液電解質型電池、電解質層に高分子電解質を用いたポリマー電池など従来公知のいずれの電解質層のタイプにも適用し得るものである。該ポリマー電池は、更に高分子ゲル電解質(単にゲル電解質ともいう)を用いたゲル電解質型電池、高分子固体電解質(単にポリマー電解質ともいう)を用いた固体高分子(全固体)型電池に分けられる。
 したがって、以下の説明では、本実施形態のリチウムイオン二次電池用の負極活物質を用いてなる非双極型(内部並列接続タイプ)リチウムイオン二次電池につき図面を用いてごく簡単に説明する。但し、本実施形態のリチウムイオン二次電池の技術的範囲が、これらに制限されるべきものではない。
 <電池の全体構造>
 図1は、本発明の電気デバイスの代表的な一実施形態である、扁平型(積層型)のリチウムイオン二次電池(以下、単に「積層型電池」ともいう)の全体構造を模式的に表した断面概略図である。
 図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体であるラミネートシート29の内部に封止された構造を有する。ここで、発電要素21は、正極集電体11の両面に正極活物質層13が配置された正極と、電解質層17と、負極集電体12の両面に負極活物質層15が配置された負極とを積層した構成を有している。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、電解質層17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。
 これにより、隣接する正極、電解質層および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、発電要素21の両最外層に位置する最外層の正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層の負極集電体が位置するようにし、該最外層の負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。
 正極集電体11および負極集電体12は、各電極(正極および負極)と導通される正極集電板25および負極集電板27がそれぞれ取り付けられ、ラミネートシート29の端部に挟まれるようにしてラミネートシート29の外部に導出される構造を有している。正極集電板25および負極集電板27は、それぞれ必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体11および負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。
 上記で説明したリチウムイオン二次電池は、負極活物質の組成に特徴を有する。以下、当該負極活物質を含めた電池の主要な構成部材について説明する。
 (活物質層)
 活物質層13または15は活物質を含み、必要に応じてその他の添加剤をさらに含む。
 (正極活物質層)
 正極活物質層13は、正極活物質を含む。
  [正極活物質]
 正極活物質としては、例えば、リチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物、固溶体系、3元系、NiMn系、NiCo系、スピネルMn系などが挙げられる。リチウム-遷移金属複合酸化物としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni、Mn、Co)O、Li(Li、Ni、Mn、Co)O、LiFePO及びこれらの遷移金属の一部が他の元素により置換されたもの等が挙げられる。固溶体系としては、xLiMO・(1-x)LiNO(0<x<1、Mは平均酸化状態が3+、Nは平均酸化状態が4+である1種類以上の遷移金属)、LiRO-LiMn(R=Ni、Mn、Co、Fe等の遷移金属元素)等が挙げられる。3元系としては、ニッケル・コバルト・マンガン系(複合)正極材等が挙げられる。スピネルMn系としてはLiMn等が挙げられる。NiMn系としては、LiNi0.5Mn1.5等が挙げられる。NiCo系としては、Li(NiCo)O等が挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム-遷移金属複合酸化物が、正極活物質として用いられる。なお、上記以外の正極活物質が用いられてもよいことは勿論である。活物質それぞれの固有の効果を発現する上で最適な粒径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒径同士をブレンドして用いればよく、全ての活物質の粒径を必ずしも均一化させる必要はない。
 正極活物質層13に含まれる正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1~20μmである。なお、本明細書中において、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される活物質粒子(観察面)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の粒子径や平均粒子径も同様に定義することができる。
 正極(正極活物質層)は、通常のスラリーを塗布(コーティング)する方法のほか、混練法、スパッタ法、蒸着法、CVD法、PVD法、イオンプレーティング法および溶射法のいずれかの方法によっても形成することができる。
 (負極活物質層)
 負極活物質層15は、本実施形態の組成式SiTiZnを有する合金を含む負極活物質を有するものである。本実施形態の負極活物質を用いることで、高容量・高サイクル耐久性を有する良好なリチウムイオン二次電池用負極となる。また、本実施形態の負極活物質を用いてなるリチウムイオン二次電池用負極を用いることで、高容量でサイクル耐久性に優れる良好な電池特性を有するリチウムイオン二次電池となる。
  [負極活物質]
 本実施形態では、負極活物質として、組成式SiTiZn(式中x、y、及びzは質量パーセント値を表し、(1)x+y+z=100であり、(2)38≦x<100であり、(3)0<y<62であり、(4)0<z<62である。)を有する合金を含むことを特徴とする。本実施形態では、Li合金化の際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる第1添加元素Tiと、該第1添加元素濃度が増加しても電極としての容量が減少しない第2添加元素種Znを選定し、これら添加元素種と高容量元素Siを適切な組成比としてなるものである。ここでLi合金化の際、アモルファス-結晶の相転移を抑制するのは、Si材料ではSiとLiが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起すため、粒子自体が壊れてしまい活物質としての機能が失われるためである。そのためアモルファス-結晶の相転移を抑制することで、粒子自体の崩壊を抑制し活物質としての機能(高容量)を保持することができ、サイクル寿命も向上させることができるものである。かかる第1及び第2添加元素を選定し、これら添加元素種と高容量元素Siを適切な組成比とすることにより、高容量で高サイクル耐久性を有するSi合金負極活物質を提供できる。具体的にはSi-Ti-Zn合金の組成比が図5の太い実線で囲われた範囲内(三角形の内側)の場合には、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較しても同様以上の高容量(初期容量690mAh/g以上)を実現できる。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性の悪いSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較した場合には格段に優れたサイクル耐久性(特に、50サイクル目での高い放電容量維持率87%以上)を実現できるSi合金負極活物質を提供できる(表1及び図3、4、5参照のこと)。
 本実施形態の負極活物質として、好ましくは、組成式SiTiZnにおいて、(1)x+y+z=100であり、(2)38≦x<100であり、(3)0<y≦42であり、(4)0<z≦39であることを特徴とする。このように第1添加元素であるTiと第2添加元素のZn、更に高容量元素Siの組成比が上記に規定する適切な範囲である場合に、良好な特性を有するSi合金負極活物質を提供できる。具体的にはSi-Ti-Zn合金の組成比が図6の太い実線で囲われた範囲内(図6の5角形の内側=図5の三角形の底部の2つの頂点のカドを落とした形状の内側)の場合にも、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較しても同様以上の高容量(初期容量690mAh/g以上)を実現できる。特に、この場合には、実施例1のサンプル1~12で具体的に高容量化を実現できた組成範囲を選択した(=図6の太い実線で囲われた5角形とした)ものである。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性の悪いSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較した場合には格段に優れたサイクル耐久性を実現できる。具体的には、50サイクル目での高い放電容量維持率87%以上を実現できる。これにより優れたSi合金負極活物質を提供できる(表1及び図3、4、6参照のこと)。
 本実施形態の負極活物質として、より好ましくは、組成式SiTiZnにおいて、(1)x+y+z=100であり、(2)38≦x≦72であり、(3)8≦y≦42であり、(4)12≦z≦39であることを特徴とする。本実施形態では、第1添加元素であるTiと第2添加元素のZn、更に高容量元素Siの組成比が上記に規定する適切な範囲である場合に、より良好な特性を有するSi合金負極活物質を提供できる。具体的にはSi-Ti-Zn合金の組成比が図7の太い実線で囲われた範囲内(六角形の内側)の場合にも、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較しても同様以上の高容量(初期容量690mAh/g以上)を実現できる。更に更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性の悪いSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較した場合には格段に優れたサイクル耐久性を実現できる。具体的には、50サイクル目での高い放電容量維持率87%以上を実現できる。特に、この場合には、実施例1のサンプル1~12で具体的に高容量化と高サイクル耐久性をバランスよく実現できた組成範囲のみ選択した(=図7の太い実線で囲われた六角形とした)ものである。これにより、より優れたSi合金負極活物質を提供できる(表1及び図3、4、7参照のこと)。
 本実施形態の負極活物質として、特に好ましくは、組成式SiTiZnにおいて、(1)x+y+z=100であり、(2)38≦x≦61であり、(3)19≦y≦42であり、(4)12<z≦35であることを特徴とする。本実施形態では、第1添加元素であるTiと第2添加元素のZn、更に高容量元素Siの組成比が上記に規定する適切な範囲である場合に、特に良好な特性を有するSi合金負極活物質を提供できる。具体的にはSi-Ti-Zn合金の組成比が図8の太い実線で囲われた範囲内(小さい六角形の内側)の場合にも、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較しても同様以上の高容量(初期容量690mAh/g以上)を実現できる。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性の悪いSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較した場合には格段に優れた高サイクル耐久性を実現できる。具体的には、50サイクル目でのより高い放電容量維持率90%以上を実現できる。即ち、この場合には、実施例1のサンプル1~12のうち、高容量化とより一層高いサイクル耐久性を非常にバランスよく実現できた組成範囲を選択した(=図8の太い実線で囲われた小さな六角形とした)ものである。これにより、高性能なSi合金負極活物質を提供できる(表1及び図3、4、8参照のこと)。
 本実施形態の負極活物質として、中でも好ましくは、組成式SiTiZnにおいて、(1)x+y+z=100であり、(2)47≦x≦53であり、(3)19≦y≦21であり、(4)26≦z≦35であることを特徴とする。本実施形態では、第1添加元素であるTiと第2添加元素のZn、更に高容量元素Siの組成比が上記に規定する適切な範囲である場合に、最も良好な特性を有するSi合金負極活物質を提供できる。具体的にはSi-Ti-Zn合金の組成比が図9の太い実線で囲われた範囲内(小さい四角形の内側)の場合には、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較してもより高い高容量(初期容量1129mAh/g以上)を実現できる。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性の悪いSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較した場合には格段に優れた高サイクル耐久性を実現できる。具体的には、50サイクル目でのより一層高い放電容量維持率96%以上を実現できる。即ち、この場合には、実施例1のサンプル1~12のうち、より一層の高容量化とより一層高いサイクル耐久性を最もバランスよく実現できた組成範囲(ベストモード)のみを選択した(=図9の太い実線で囲われた小さな四角形とした)ものである。これにより極めて高性能なSi合金負極活物質を提供できる(表1及び図3、4、9参照のこと)。
 詳しくは、負極活物質は、製造された状態(未充電状態)において、上記した適切な組成比を有する組成式SiTiZnで表される3元系のアモルファス合金である。そして、本実施形態の負極活物質を用いたリチウムイオン二次電池では、充放電により、SiとLiが合金化する際にも、アモルファス状態から結晶状態へ転移し大きな体積変化を起すのを抑制し得る顕著な特性を有するものである。これは、SiTiZnで表される3元系合金でのSiへの添加金属元素のいずれか一方を含まない2元系合金(y=0のSi-Zn合金やz=0のSi-Ti系合金)では、高いサイクル特性、特に50サイクル目の高放電容量維持率の維持が困難である。そのため、サイクル特性が急激に低下(劣化)するという大きな問題が生じる(実施例1のサンプル1~12とサンプル13~25とを対比参照のこと。)。また特許文献1のSiAlで表される他の3元系や4元系の合金でも、やはり高いサイクル特性、特に50サイクル目の高放電容量維持率の維持が困難であるため、サイクル特性が急激に低下(劣化)するという大きな問題が生じる。即ち、特許文献1の3元系や4元系の合金では、初期容量(1サイクル目の放電容量)は、既存のカーボン系負極活物質(理論容量372mAh/g)に比して格段に高容量であり、Sn系負極活物質(理論容量600~700mAh/g程度)と比較しても高容量となっている。しかしながら、サイクル特性が、600~700mAh/g程度と高容量化し得るSn系負極活物質の50サイクル目の放電容量維持率(60%程度)と比較した場合に非常に悪く十分なものとはいえなかった。即ち、トレードオフの関係にある高容量化とサイクル耐久性とのバランスが悪く実用化し得ないものであった。具体的には、特許文献1の実施例1のSi62Al18Fe16Zrの4元系合金では、図2から初期容量は1150mAh/g程度と高容量であるが、僅か5~6サイクル後の循環容量で既に1090mAh/g程度しかないことが図示されている。即ち、特許文献1の実施例1では、5~6サイクル目の放電容量維持率が既に95%程度まで大幅に低下しており、1サイクルごとに放電容量維持率が概ね1%づつ低下していることが図示されている。このことから50サイクル目では、放電容量維持率がほぼ50%低下する(=放電容量維持率がほぼ50%まで低下してしまう)ことが推測される。同様に実施例2のSi55Al29.3Fe15.7の3元系合金では、図4から初期容量が1430mAh/g程度と高容量であるが、僅か5~6サイクル後の循環容量が既に1300mAh/g程度にまで大きく低下していることが図示されている。即ち、特許文献1の実施例2では、5~6サイクル目の放電容量維持率が既に90%程度まで急激に低下しており、1サイクルごとに放電容量維持率が概ね2%づつ低下していることが図示されている。このことから50サイクル目では、放電容量維持率がほぼ100%低下する(=放電容量維持率がほぼ0%まで低下してしまう)ことが推測される。実施例3のSi60Al20Fe12Tiの4元系合金及び実施例4のSi62Al16Fe14Tiの4元系合金では、初期容量の記載はないが、表2から僅か5~6サイクル後の循環容量で既に700~1200mAh/gの低い値になっていることが示されている。特許文献1の実施例3の5~6サイクル目の放電容量維持率は実施例1~2と同程度以下であり、50サイクル目の放電容量維持率も概ね50%~100%低下する(=放電容量維持率がほぼ50%~0%まで低下してしまう)ことが推測される)。なお、特許文献1の合金組成は原子比で記載されているため、本実施形態と同様に、質量比に換算すると、実施例ではFeが20質量%程度入っており、第一添加元素となっている合金組成が開示されていると言える。
 そのためこれら2元系合金や特許文献1記載の3元系や4元系合金を用いた電池では、車両用途のようにサイクル耐久性が強く求められる分野では実用化レベルを満足するサイクル特性が十分に得られない等、その信頼性・安全性に課題があり、実用化が困難である。一方、本実施形態のSiTiZnで表される3元系合金を用いた負極活物質では、高いサイクル特性として50サイクル目の高い放電容量維持率を有する(図4参照)。さらに初期容量(1サイクル目の放電容量)も既存のカーボン系負極活物質より格段に高く、また既存のSn系負極活物質と比べても同等以上と高く(図3参照)、バランスよい特性を示す負極活物質を提供できる。即ち、既存のカーボン系やSn系負極活物質や特許文献1記載の3元系や4元系合金ではトレードオフの関係にあり実現できていなかった高容量化とサイクル耐久性の両特性を高次元でバランスよく成立し得る合金を用いた負極活物質を見出したものである。詳しくは、非常に多種多様な組合せが存在する1又は2以上の添加元素種よりなる群から、Ti、Znの2種を選択し、更にこれら添加元素種と高容量元素Siとを特定の組成比(組成範囲)を選択することで、所期の目的が達成し得ることを見出したものである。その結果、高容量でサイクル耐久性がよいリチウムイオン二次電池を提供できる点で優れている。
 以下、負極活物質につき詳しく説明する。
 (1)合金の合計の質量%値について
 上記組成式SiTiZnを有する合金の合計の質量%値である、式中(1)のx+y+z=100である(ここで、x、y、及びzは質量%値を表す)。即ち、Si-Ti-Zn系の3元系の合金からなるものでなければならない。言い換えれば、2元系の合金、他の組成の3元系の合金、或いは別の金属を添加した4元系以上の合金は含まれないものと言える。但し、製造上、不可避的に混入する極微量な不純物の金属元素等(本実施形態の作用効果に影響しない程度の極微量の金属元素等)については、含まれていてもよい。なお、本実施形態の負極活物質層15には、少なくとも1種の組成式SiTiZnを有する合金が含まれていればよく、2種以上の組成の異なる当該合金を併用して用いてもよい。
 (2)合金中のSiの質量%値について
 上記組成式SiTiZnを有する合金中のSiの質量%値である、式中(2)のxの範囲は、38≦x<100であり、好ましくは38≦x≦72であり、より好ましくは38≦x≦61であり、特に好ましくは47≦x≦53である(表1、図5~図9参照)。これは、合金中の高容量元素Siの質量パーセント値(x値)の数値が高いほど高容量化でき、38≦x<100の範囲であれば、既存のカーボン系負極活物質では実現不可能な格段に高い高容量(690mAh/g以上)を実現できるためである。同様に、既存のSn系負極活物質と同等以上の高容量の合金を得ることができるためである(図5及び6参照)。さらに38≦x<100の範囲であれば、50サイクル目の放電容量維持率(サイクル耐久性)にも優れるためである(表1、図4~6参照)。一方、組成式SiTiZnで表される3元系の合金に比して高容量元素Siへの添加金属元素(Ti、Zn)のいずれか一方を含まない2元系の合金(y=0のSi-Zn合金やz=0のSi-Ti系合金)では、高いサイクル特性を維持することができない。特に、50サイクル目の高い放電容量維持率を十分に維持することができず(表1のサンプル13~24及び図4参照)、サイクル特性が急激に低下(劣化)するという大きな問題が生じる。また、x=100の場合(Siへの添加金属元素Ti、Znを全く含まないpure Siの場合)、高容量化とサイクル耐久性はトレードオフの関係であり、高容量を示しつつ高サイクル耐久性を向上させることはできないことがわかる。即ち、高容量元素であるSiのみであるため、最も高容量である反面、充放電に伴いSiの膨脹収縮現象により、負極活物質としての劣化が顕著であり、最も悪く格段に低い放電容量維持率(僅か47%)しか得られないことがわかる(表1のサンプル19及び図4参照)。
 合金中の高容量元素Siの質量%値(x値)として好ましくは、高いサイクル特性(特に、50サイクル目の高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、38≦x≦72の範囲が望ましい。加えて後述する第1添加元素であるTiと第2添加元素のZnの組成比が適切である場合に、良好な特性(既存の合金系負極活物質ではトレードオフの関係にあった高容量化とサイクル耐久性の双方に優れた特性)を有するSi合金負極活物質を提供ができる(表1及び図7の実施例1のサンプル1~12参照のこと)。即ち、合金中の高容量元素Siの質量%値(x値)の数値が高いほど高容量化できる反面、サイクル耐久性が低下する傾向にあるが、38≦x≦72の範囲内であれば、高容量化(690mAh/g以上)と共に高い放電容量維持率(87%以上)を維持できる点で好ましい(表1の実施例1のサンプル1~12及び図7参照)。
 合金中の高容量元素Siの質量%値(x値)としてより好ましくは、より高いサイクル特性(より高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、38≦x≦61の範囲がより望ましいと言える。加えて後述する第1添加元素であるTiと第2添加元素のZnの比がより適切である場合に、より良好な特性を有するSi合金負極活物質を提供することができる(表1及び図8の太い実線で囲われた内部参照)。即ち、より好ましい範囲の38≦x≦61であれば、高容量化(690mAh/g以上)と共に、50サイクル目のより高い放電容量維持率(90%以上)を維持できる点でより優れている(表1及び図8の太い実線で囲われた内部参照)。
 合金中の高容量元素Siの質量%値(x値)として特に好ましくは、特に高いサイクル特性(特に高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、47≦x≦53の範囲が特に望ましいと言える。加えて後述する第1添加元素であるTiと第2添加元素のZnの比がより適切である場合に、最も良好な特性を有する高性能なSi合金負極活物質を提供することができる(表1及び図9の太い実線で囲われた内部参照)。即ち、特に好ましい範囲の47≦x≦53であれば、高容量化(1129mAh/g以上)と共に、50サイクル目の特に高い放電容量維持率(95%以上)を維持できる点で特に優れている(表1及び図9の太い実線で囲われた内部参照)。
 ここで、x≧38、特にx≧47の場合には、3200mAh/gもの初期容量を有するSi材料(x値)と第1添加元素Ti(y値)と第2添加元素Zn(z値)の含有比率(バランス)が最適な範囲(図5~図9の太い実線で囲われた範囲参照)となり得る。そのため、最も良好な特性を発現することができ、車両用途レベルでの高容量化を長期間にわたって安定且つ安全に維持することができる点で優れている。一方、x≦72、特にx≦61、中でもx≦53の場合には、3200mAh/gもの初期容量を有する高容量Si材料と第1添加元素であるTiと第2添加元素のZnの含有比率(バランス)が最適な範囲(図5~図9の太い実線で囲われた範囲参照)となり得る。そのため、SiとLiとの合金化の際、アモルファス-結晶の相転移を格段に抑制し、サイクル寿命を大幅に向上させることができる。即ち、50サイクル目の放電容量維持率87%以上、特に90%以上、中でも96%以上を実現できる。但し、xが上記の最適な範囲(38≦x≦72、特に38≦x≦61、中でも47≦x≦53)を外れる場合であっても、上記した本実施形態の作用効果を有効に発現することができる範囲であれば、本発明の技術範囲(権利範囲)に含まれることはいうまでもない。
 また、上記した特許文献1の実施例では、僅か5~6サイクル程度で既にかなりの容量低下によるサイクル特性の劣化現象を示すことが開示されている。即ち、特許文献1の実施例では5~6サイクル目の放電容量維持率で既に90~95%にまで低下しており、50サイクル目の放電容量維持率はほぼ50~0%にまで低下することになる。一方、本実施形態では高容量Si材料への第1添加元素Tiと第2添加元素Znという相互補完関係にある組み合わせを、いわば幾多の試行錯誤、加えて多種多様な添加(金属ないし非金属)元素の組み合わせによる過度の実験を通じて(一通りの組み合わせのみを)選定し得たものである。そして、その組み合わせにおいて、更に高容量Si材料の含有量を上記に示す最適な範囲とするとで、高容量化と共に、50サイクル目の放電容量維持率の減少を大幅に低減できる点でも優れている。即ち、SiとLiが合金化する際、第1添加元素Tiと、このTiと相互補完関係にある第2添加元素Znとの最適範囲による格別顕著な相乗作用(効果)により、アモルファス状態から結晶状態へ転移を抑制し、大きな体積変化を防止できる。さらに、高容量を示しつつ電極の高いサイクル耐久性を向上させることができる点でも優れている(表1及び図5~図9参照)。
 (3)合金中のTiの質量%値について
 上記組成式SiTiZnを有する合金中のTiの質量%値である、式中(3)のyの範囲は、0<y<62であり、好ましくは0<y≦42であり、より好ましくは8≦y≦42であり、特に好ましくは19≦y≦42、中でも好ましくは19≦y≦21である。これは、合金中の第1添加元素Tiの質量パーセント値(y値)の数値が0<y<62の範囲であれば、Tiの持つ特性(更にZnとの相乗特性により、高容量Si材料のアモルファス-結晶の相転移を効果的に抑制することができる。その結果、サイクル寿命(サイクル耐久性)、特に50サイクル目での高い放電容量維持率(87%以上)に優れた効果を発現することができる(表1、図5参照)。また、高容量Si材料の含有量x値の数値を一定以上(38≦x<100)に保持し得ることができ、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較しても同様以上の高容量(初期容量690mAh/g以上)の合金を得ることができる(表1及び図5参照)。一方、組成式SiTiZnで表される3元系の合金に対して高容量元素Siへの添加金属元素(Ti、Zn)のいずれか一方を含まない2元系の合金(特に、y=0のSi-Zn合金)では、本実施形態に比して高いサイクル特性を維持することができない。特に、50サイクル目の高い放電容量維持率を十分に維持することができず(表1のサンプル13~25及び図4参照)、サイクル特性が急激に低下(劣化)するという大きな問題が生じる。また、y≧62の場合、Tiは活物質としての働きはなく、TiとLiとの合金化が困難であり、活物質でないTi含有量が62質量%を超える場合には、負極活物質としての特性を十分に発現することができず、高い容量もサイクル耐久性も発現させることが極めて困難である。
 合金中の第1添加元素Tiの質量%値(y値)として好ましくは、高いサイクル特性(特に、50サイクル目での高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、0<y≦42の範囲が望ましい。Li合金化の際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる作用効果を有する第1添加元素Tiの含有比率が適切である場合に、良好な特性を有するSi合金負極活物質を提供することができる(表1及び図6の太い実線で囲まれた組成範囲参照)。即ち、合金中の第1添加元素Tiの質量%値(y値)の数値が、好ましい範囲の0<y≦42であれば、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる作用効果を有効に発現させることができ、50サイクル目での高い放電容量維持率(87%以上)を維持できる点で好ましい(表1及び図6参照)。この場合には、実施例1のサンプル1~12で具体的に高容量化を実現できた組成範囲(特にTi含有量に関しては0<y≦42)を選択した(図6の太い実線で囲われた五角形とした)ものである。上記組成範囲、特にTi含有量に関しては0<y≦42を選択することで、Sn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性(放電容量維持率87%以上)を実現したSi合金負極活物質を提供できる(表1及び図6参照)。
 合金中の第1添加元素Tiの質量%値(y値)としてより好ましくは、高いサイクル特性(50サイクル目での高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、8≦y≦42の範囲が望ましいと言える。Li合金化の際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる作用効果を有する第1添加元素Tiの含有比率が適切である場合に、良好な特性を有するSi合金負極活物質を提供することができる(表1及び図7参照)。即ち、より好ましい範囲の8≦y≦42であれば、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果を有効に発現させることができ、50サイクル目での高い放電容量維持率87%以上を維持できる(表1及び図7参照)。特にこの場合には、実施例1のサンプル1~12で具体的に高容量化及び50サイクル目での高い放電容量維持率87%以上を実現できた組成範囲(特にTi含有量に関しては8≦y≦42)を選択した(図7の太い実線で囲われた六角形とした)ものである。上記組成範囲、特にTi含有量に関しては8≦y≦42を選択することで、高容量化と共にSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性(高い放電容量維持率)を実現したSi合金負極活物質を提供できる。
 合金中の第1添加元素Tiの質量%値(y値)として特に好ましくは、より高いサイクル特性(50サイクル目での高い放電容量維持率)を維持しつつ、初期容量も高い特性を非常にバランスよく示す負極活物質を提供する観点から19≦y≦42の範囲が望ましい。Li合金化の際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる作用効果を有する第1添加元素Tiの含有比率がより適切である場合に、さらに良好な特性を有するSi合金負極活物質を提供することができる(表1及び図8参照)。即ち、特に好ましい範囲の19≦y≦42であれば、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果をより有効に発現させることができ、50サイクル目での高い放電容量維持率90%以上を維持できる(表1及び図8参照)。特にこの場合には、実施例1のサンプル1~12のなかでも、高容量化及び50サイクル目での高い放電容量維持率90%以上を実現できた組成範囲(特にTi含有量に関しては19≦y≦42)を選択した(図8の太い実線で囲われた小さな六角形とした)ものである。上記組成範囲、特にTi含有量に関し19≦y≦42を選択することで高容量化と共にSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性(より高い放電容量維持率)を実現したSi合金負極活物質を提供できる。
 合金中の第1添加元素Tiの質量%値(y値)として中でも好ましくは、より高いサイクル特性(50サイクル目での高い放電容量維持率)を維持しつつ、初期容量も高い特性を最もバランスよく示す負極活物質を提供する観点から19≦y≦21の範囲が望ましい。Li合金化の際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる作用効果を有する第1添加元素Tiの含有比率が最も適切である場合に、最も良好な特性を有するSi合金負極活物質を提供することができる(表1及び図9参照)。即ち、特に好ましい範囲の19≦y≦21であれば、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果をより有効に発現させることができ、50サイクル目での高い放電容量維持率96%以上を維持できる(表1及び図9参照)。特にこの場合には、実施例1のサンプル1~12のなかでも、より一層の高容量化及び50サイクル目での高い放電容量維持率96%以上を実現できた組成範囲(特にTi含有量に関しては19≦y≦21)を選択した(図9の太い実線で囲われた小さな四角形とした)ものである。上記組成範囲、特にTi含有量に関し19≦y≦21を選択することで高容量化と共にSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性(より高い放電容量維持率)を実現したSi合金負極活物質を提供できる。
 ここで、y≧8、特にy≧19の場合には、3200mAh/gもの初期容量を有する高容量Si材料と第1添加元素Ti(更には残る第2添加元素Zn)との含有比率(バランス)が最適な範囲(図7~図9の太い実線で囲われた範囲参照)となり得る。そのため、Tiの持つ特性(更にはZnとの相乗特性)である、Si材料のアモルファス-結晶の相転移を効果的に抑制し、サイクル寿命(特に放電容量維持率)を格段に向上させることができる。即ち、50サイクル目の放電容量維持率87%以上、特に90%以上、中でも96%以上を実現できる。その結果、負極活物質(負極)としても、最も良好な特性を発現することができ、車両用途レベルでの高容量化を長期間にわたって安定且つ安全に維持することができる点で優れている。一方、y≦42、特にy≦21の場合には、3200mAh/g程度のもの初期容量を有する高容量Si材料と第1添加元素であるTi(更には第2添加元素のZn)との含有比率(バランス)が最適な範囲(図6~図9の太い実線で囲われた範囲参照)となり得る。そのため、SiとLiとの合金化の際、アモルファス-結晶の相転移を格段に抑制し、サイクル寿命を大幅に向上させることができる。即ち、50サイクル目の放電容量維持率87%以上、特に90%以上、中でも96%以上を実現できる。但し、yが上記の最適な範囲(8≦y≦42、特に19≦y≦42、中でも19≦y≦21)を外れる場合であっても、上記した本実施形態の作用効果を有効に発現することができる範囲であれば、本発明の技術範囲(権利範囲)に含まれることはいうまでもない。
 また、上記した特許文献1の実施例では、僅か5~6サイクル程度で既にかなりの容量低下によるサイクル特性の劣化現象を示すことが開示されている。即ち、特許文献1の実施例では5~6サイクル目の放電容量維持率で既に90~95%にまで低下しており、50サイクル目の放電容量維持率はほぼ50~0%にまで低下することになる。一方、本実施形態では高容量Si材料への第1添加元素のTi(更には第2添加元素のZnという相互補完関係にある組合せ)を、いわば幾多の試行錯誤、加えて多種多様な添加(金属ないし非金属)元素の組み合わせによる過度の実験を通じて(一通りの組み合わせのみを)選定し得たものである。そして、その組み合わせにおいて、更にTiの含有量を上記に示す最適な範囲とするとで、50サイクル目の放電容量維持率の減少を大幅に低減できる点でも優れている。即ち、SiとLiが合金化する際、第1添加元素Ti(更にはTiと相互補完関係にある第2添加元素Zn)の最適範囲による格別顕著な相乗作用(効果)により、アモルファス状態から結晶状態へ転移を抑制し、大きな体積変化を防止できる。さらに、高容量を示しつつ電極の高いサイクル耐久性を向上させることができる点でも優れている(表1及び図5~図9参照)。
 (4)合金中のZnの質量%値について
 上記組成式SiTiZnを有する合金中のZnの質量%値である、式中(4)のzの範囲は、0<z<62であり、好ましくは0<z≦39であり、より好ましくは12≦z≦39であり、特に好ましくは12≦z≦35であり、中でも好ましくは26≦z≦35である。これは、合金中の第1添加元素濃度が増加しても電極としての容量が減少しない第2添加元素種Znの質量%値(z値)の数値が0<z<62の範囲であれば、Tiの持つ特性とZnとの相乗特性により、高容量Si材料のアモルファス-結晶の相転移を効果的に抑制することができる。その結果、サイクル寿命(サイクル耐久性)、特に50サイクル目での高い放電容量維持率(87%以上)に優れた効果を発現することができる(表1、図5参照)。また、高容量Si材料の含有量x値の数値を一定以上(38≦x<100)に保持し得ることができ、既存のカーボン系負極活物質に比して格段に高容量化でき、Sn系負極活物質と同等以上の高容量の合金を得ることができる(図5参照)。一方、組成式SiTiZnで表される3元系の合金のSiへの添加金属元素(Ti、Zn)のいずれか一方を含まない2元系の合金(特に、z=0のSi-Ti合金)では、本実施形態に比して高いサイクル特性を維持することができない。特に、50サイクル目の高い放電容量維持率を十分に維持することができず(表1のサンプル13~25及び図4参照)、サイクル特性が急激に低下(劣化)するという大きな問題が生じる。また、z≧62の場合、Znは活物質としての働きはなく、ZnとLiとの合金化が困難であり、負極活物質としての特性を十分に発現することができず、高い容量もサイクル耐久性も発現させることが極めて困難である。
 合金中の第2添加元素Znの質量%値(z値)として好ましくは、高いサイクル特性(特に、50サイクル目の高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、0<z≦39の範囲が望ましい。Li合金化の際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる第1添加元素Tiと、その第1添加元素濃度が増加しても負極活物質(負極)としての容量が減少しない第2添加元素Znの選定が本実施形態においては極めて重要かつ有用である。かかる第1及び第2添加元素により、特許文献1等の従来公知の3元系合金や4元系以上の合金、更にSi-Ti系合金やSi-Zn系合金等の2元系合金との顕著な作用効果の差異が見られることがわかったものである。かかる第2添加元素Zn(更にはZnと相互補完関係にある第1添加元素Ti)の含有比率が適切である場合に、良好な特性を有するSi合金負極活物質となる(表1及び図6の太い実線で囲まれた組成範囲参照)。即ち、合金中の第2添加元素Znの質量%値(z値)の数値が、好ましい範囲の0<y≦39であれば、第1添加元素Tiとの相乗効果(相互補完特性)により、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果を有効に発現できる。その結果、50サイクル目での高い放電容量維持率(87%以上)を維持できる(表1及び図6参照)。この場合には、実施例1のサンプル1~12で具体的に高容量化を実現できた組成範囲(特にZn含有量に関しては0<y≦39)を選択した(図6の太い実線で囲われた五角形とした)ものである。上記組成範囲、特にZn含有量に関しては0<y≦39を選択することで、第1添加元素Tiとの相乗効果(相互補完特性)により、Sn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性を実現できる。その結果、50サイクル目での放電容量維持率87%以上を実現したSi合金負極活物質を提供できる(表1及び図6の太い実線で囲まれた組成範囲参照)。
 合金中の第2添加元素Znの質量%値(z値)としてより好ましくは、第1添加元素Tiとの相乗効果(相互補完特性)により高いサイクル特性を維持しつつ初期容量も高い特性をバランスよく示す負極活物質を提供する観点から、12≦z≦39の範囲が望ましい。Li合金化の際、Tiとの相乗効果(相互補完特性)によりアモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果を奏し得る第2添加元素Znの含有比率が適切である場合に良好な特性を有するSi合金負極活物質を提供することができるためである。即ち、より好ましい範囲の12≦z≦39であれば、第1添加元素との相乗効果(相互補完特性)により、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果を有効に発現させることができる。その結果、50サイクル目での高い放電容量維持率87%以上を維持できる(表1及び図7参照)。特にこの場合には、実施例1のサンプル1~12で具体的に高容量化及び50サイクル目での高い放電容量維持率87%以上を実現できた組成範囲(特にZn含有量に関しては12≦z≦39)を選択した(図7の太い実線で囲われた六角形とした)ものである。上記組成範囲、特にZn含有量に関しては12≦z≦39を選択することで、Tiとの相乗特性により高容量化と共にSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性を実現したSi合金負極活物質を提供できる。
 合金中の第2添加元素Znの質量%値(z値)として特に好ましくは、より高いサイクル特性(50サイクル目での高い放電容量維持率)を維持しつつ、初期容量も高い特性を非常にバランスよく示す負極活物質を提供する観点から12≦z≦35の範囲が望ましい。Li合金化の際、Tiとの相乗効果(相互補完特性)によりアモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果を奏し得る第2添加元素Znの含有比率がより適切である場合にさらに良好な特性を有するSi合金負極活物質を提供できるためである。即ち、特に好ましい範囲の12≦z≦35であれば、Tiとの相乗効果(相互補完特性)により、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果をより有効に発現させることができる。その結果、50サイクル目でのより高い放電容量維持率90%以上を維持できる(表1及び図8参照)。特にこの場合には、実施例1のサンプル1~12のなかでも、高容量化及び50サイクル目での高い放電容量維持率90%以上を実現できた組成範囲(特にZn含有量に関しては12≦z≦35)を選択した(図8の太い実線で囲われた小さな六角形とした)ものである。上記組成範囲、特にZn含有量に関し12≦z≦35を選択することで、Tiとの相乗特性により高容量化と共にSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性を実現したSi合金負極活物質を提供できる。
 合金中の第2添加元素Znの質量%値(z値)として中でも好ましくは、より高いサイクル特性(50サイクル目での高い放電容量維持率)を維持しつつ、初期容量も高い特性を最もバランスよく示す負極活物質を提供する観点から26≦z≦35の範囲が望ましい。Li合金化の際、Tiとの相乗効果(相互補完特性)によりアモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果を奏し得る第2添加元素Znの含有比率が最も適切である場合に最も良好な特性を有するSi合金負極活物質を提供できるためである。即ち、特に好ましい範囲の26≦z≦35であれば、Tiとの相乗効果(相互補完特性)により、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果をより有効に発現させることができる。その結果、50サイクル目でのより一層高い放電容量維持率96%以上を維持できる(表1及び図9参照)。特にこの場合には、実施例1のサンプル1~12のなかでも、より一層の高容量化及び50サイクル目での高い放電容量維持率96%以上を実現できた組成範囲(特にZn含有量に関しては26≦z≦35)を選択した(図9の太い実線で囲われた四角形とした)ものである。上記組成範囲、特にZn含有量に関し26≦z≦35を選択することで、Tiとの相乗特性により高容量化と共にSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性を実現したSi合金負極活物質を提供できる。
 ここで、z≧12、特にz≧26の場合には、3200mAh/gもの初期容量を有する高容量Si材料及び第1添加元素Tiと、更なる第2添加元素Znとの含有比率(バランス)が最適な範囲(図7~図9の太い実線で囲われた範囲参照)となり得る。そのため、Znの持つ特性(Tiとの相乗効果;相互補完特性)である、アモルファス-結晶の相転移を抑制し得るTi濃度が増加しても負極活物質(負極)としての容量の減少を効果的に抑制し、サイクル寿命(特に放電容量維持率)を格段に向上させることができる。即ち、50サイクル目の放電容量維持率87%以上、特に90%以上、中でも96%以上を実現できる。その結果、負極活物質(負極)としても、最も良好な特性を発現することができ、車両用途レベルでの高容量化を長期間にわたって安定且つ安全に維持することができる点で優れている。一方、z≦39、特にz≦35の場合には、3200mAh/gもの初期容量を有する高容量Si材料及び第1添加元素Tiと、第2添加元素Znとの含有比率(バランス)が最適な範囲(図6~図9の太い実線で囲われた範囲参照)となり得る。そのため、SiとLiとの合金化の際、アモルファス-結晶の相転移を格段に抑制し、更にサイクル寿命(特に50サイクル目の放電容量維持率)を大幅に向上させることができる。即ち、50サイクル目の放電容量維持率が87%以上、特に90%以上、中でも96%以上を実現できる。但し、zが上記の最適な範囲(12≦z≦39、特に12≦z≦35、中でも26≦z≦35)を外れる場合であっても、上記した本実施形態の作用効果を有効に発現することができる範囲であれば、本発明の技術範囲(権利範囲)に含まれることはいうまでもない。
 また、上記した特許文献1の実施例では、僅か5~6サイクル程度で既にかなりの容量低下によるサイクル特性の劣化現象を示すことが開示されている。即ち、特許文献1の実施例では5~6サイクル目の放電容量維持率で既に90~95%にまで低下しており、50サイクル目の放電容量維持率はほぼ50~0%にまで低下することになる。一方、本実施形態では高容量Si材料への第1添加元素Tiと第2添加元素Znという相互補完関係にある組み合わせを、いわば幾多の試行錯誤、加えて多種多様な添加(金属ないし非金属)元素種の組み合わせによる過度の実験を通じて(一通りの組み合わせのみを)選定し得たものである。そして、その組み合わせにおいて、更にZnの含有量を上記に示す最適な範囲とするとで、50サイクル目の放電容量維持率の減少を大幅に低減できる点でも優れている。即ち、SiとLiが合金化する際、第2添加元素Zn(更にはZnと相互補完関係にある第1添加元素Ti)の最適範囲による格別顕著な相乗作用(効果)により、アモルファス状態から結晶状態へ転移を抑制し、大きな体積変化を防止できる。さらに、高容量を示しつつ電極の高いサイクル耐久性を向上させることができる点でも優れている。
 (5)組成式SiTiZnを有する合金の製造方法
 上記組成式SiTiZnを有する合金の製造方法としては、特に制限されるものではなく、従来公知の各種の製造を利用して製造することができる。即ち、作製方法による合金状態・特性の違いはほとんどないので、ありとあらゆる作製方法が適用できる。
 具体的には、(i)組成式SiTiZnを有する合金の薄膜形態の製造方法としては、例えば、多元PVD法(スパッタ法(実施例で採用した方法)、抵抗加熱法、レーザーアブレーション法)、多元CVD法(化学気相成長法)等を利用することができる。
 また、(ii)組成式SiTiZnを有する合金の粒子形態の製造方法としては、例えば、メカニカルアロイ法、アークプラズマ溶融法等を利用することができる。
 上記(i)の合金薄膜の製造方法では、集電体上に直接上記合金薄膜を形成(成膜)して負極(電極)とすることができる。そのため、工程の簡略化・簡素化が図れる点で優れている。更には合金(負極活物質)以外のバインダや導電助剤などの他の負極活物質層(負極)を構成する成分を用いる必要がなく、合金(負極活物質)=薄膜電極のみでよい。そのため、車両用途の実用化レベルを満足する高容量及び高エネルギー密度化が図れる点
で優れている。また、活物質の電気化学特性を調べるのに適している。
 上記(i)の合金薄膜の製造方法として、例えば、多元DCマグネトロンスパッタ装置として、独立制御の3元DCマグネトロンスパッタ装置を用いて、基板(集電体)表面に種々の合金組成及び厚さのSiTiZn合金薄膜を自在に形成することができる。例えば、ターゲット1:Si、ターゲット2:Ti、ターゲット3:Znとし、スパッタ時間は固定し、DC電源のパワーをそれぞれ変化させることで種々の合金サンプルを得ることができる(具体的には、実施例1のサンプル1~25参照のこと)。例えば、DC電源のパワーをそれぞれSi:185W、Ti:50W、Zn:50Wなどのようにそれぞれ変化させることで種々の組成式を有する3元系の合金サンプルを得ることができる。ただし、スパッタ条件はスパッタ装置ごとに違うため、スパッタ条件についても、スパッタ装置ごとに適宜、予備実験などを通じて好適な範囲を把握しておくのが望ましい。具体的には、実施例1に示すスパッタ装置におけるスパッタ条件、ターゲット仕様、電極サンプル仕様を参照のこと。例えば、実施例1に示すスパッタ装置におけるスパッタ条件、ターゲット仕様、電極サンプル仕様としてスパッタ時間を固定した場合のDC電源のパワーの好適な範囲としては、左記の通りである。即ち、DC電源のパワーの好適な範囲としては、Si:185W、Ti:50~200W、Zn:30~90Wの範囲である。かかる範囲であれば、アモルファス状態の上記組成式SiTiZnを有する合金を薄膜の形態に製造することができる。但し、これらの値は、あくまで実施例1に示すスパッタ装置におけるスパッタ条件、ターゲット仕様、電極サンプル仕様のもとでの好適な範囲(参照値)であり、上記したようにスパッタ装置ごとに異なる。そのため、スパッタ条件、ターゲット仕様、電極サンプル仕様等については、スパッタ装置ごとに適宜、予備実験などを通じて好適な範囲を把握しておくのが望ましい。
 一方、上記(ii)の粒子の形態に製造する方法では、該粒子にバインダ、導電助剤、粘度調整溶剤を加えてスラリーを調整し、該スラリーを用いてスラリー電極を形成することができる。そのため、上記(i)に比して量産化(大量生産)し易く、実際の電池用電極として実用化しやすい点で優れている。なお、バインダ、導電助剤の影響が大きいので、活物質の特性を見るには、上記(i)の方が適していると言える。
 (6)粒子の形態の合金の平均粒子径
 なお、上記(5)(ii)の粒子の形態の合金を用いる場合、該合金の平均粒子径は、既存の負極活物質層15に含まれる負極活物質の平均粒子径と同程度であればよく、特に制限されない。高出力化の観点からは、好ましくは1~20μmの範囲であればよい。ただし、上記範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、上記範囲を外れていてもよいことは言うまでもない。
 (正極及び負極活物質層13、15に共通する要件)
 以下に、正極及び負極活物質層13、15に共通する要件につき、説明する。
 正極活物質層13および上記(5)(ii)の粒子の形態の合金を用いる場合の負極活物質層15は、バインダを含む。
 活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミドであることがより好ましい。これらの好適なバインダは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり活物質層に使用が可能となる。これらのバインダは、1種単独で用いてもよいし、2種併用してもよい。
 活物質層中に含まれるバインダ量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5~15質量%であり、より好ましくは1~10質量%である。
 活物質層に含まれうるその他の添加剤としては、例えば、導電助剤、電解質塩(リチウム塩)、イオン伝導性ポリマー等が挙げられる。
 導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、アセチレンブラック等のカーボンブラック、グラファイト、気相成長炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
 また、上記導電助剤とバインダの機能を併せ持つ導電性結着剤をこれら導電助剤とバインダに代えて用いてもよいし、あるいはこれら導電助剤とバインダの一方ないし双方と併用してもよい。導電性結着剤としては、既に市販のTAB-2(宝泉株式会社製)を用いることができる。
 電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
 イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
 正極活物質層および上記(5)(ii)の粒子の形態の合金を用いる場合の負極活物質層中に含まれる成分の配合比は、特に限定されない。配合比は、非水溶媒二次電池についての公知の知見を適宜参照することにより、調整されうる。
 各活物質層(集電体片面の活物質層)の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1~500μm程度、好ましくは2~100μmである。
 (集電体)
 集電体11、12は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。集電体の形状についても特に制限されない。図1に示す積層型電池10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。なお、負極活物質をスパッタ法等により薄膜合金を負極集電体12上に直接形成する場合には、集電箔を用いるのが望ましい。
 集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料または非導電性高分子材料に導電性フィラーが添加された樹脂が採用されうる。具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。
 また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。
 非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
 上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、およびKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むものである。導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5~35質量%程度である。
 (電解質層)
 電解質層17を構成する電解質としては、液体電解質またはポリマー電解質が用いられうる。
 液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。可塑剤として用いられうる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)等のカーボネート類が例示される。また、支持塩(リチウム塩)としては、LiBETI等の電極の活物質層に添加されうる化合物が同様に採用されうる。
 一方、ポリマー電解質は、電解液を含むゲル電解質と、電解液を含まない真性ポリマー電解質に分類される。
 ゲル電解質は、イオン伝導性ポリマーからなるマトリックスポリマーに、上記の液体電解質(電解液)が注入されてなる構成を有する。マトリックスポリマーとして用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、およびこれらの共重合体等が挙げられる。かようなポリアルキレンオキシド系ポリマーには、リチウム塩などの電解質塩がよく溶解しうる。
 ゲル電解質中の上記液体電解質(電解液)の割合としては、特に制限されるべきものではないが、イオン伝導度などの観点から、数質量%~98質量%程度とするのが望ましい。本実施形態では、電解液の割合が70質量%以上の、電解液が多いゲル電解質について、特に効果がある。
 なお、電解質層が液体電解質やゲル電解質や真性ポリマー電解質から構成される場合には、電解質層にセパレータを用いてもよい。セパレータ(不織布を含む)の具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜や多孔質の平板、更には不織布が挙げられる。
 真性ポリマー電解質は、上記のマトリックスポリマーに支持塩(リチウム塩)が溶解してなる構成を有し、可塑剤である有機溶媒を含まない。したがって、電解質層が真性ポリマー電解質から構成される場合には電池からの液漏れの心配がなく、電池の信頼性が向上しうる。
 ゲル電解質や真性ポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
 (集電板およびリード)
 電池外部に電流を取り出す目的で、集電板を用いてもよい。集電板は集電体やリードに電気的に接続され、電池外装材であるラミネートシートの外部に取り出される。
 集電板を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましく、より好ましくは軽量、耐食性、高導電性の観点からアルミニウム、銅などが好ましい。なお、正極集電板と負極集電板とでは、同一の材質が用いられてもよいし、異なる材質が用いられてもよい。
 正極端子リードおよび負極端子リードに関しても、必要に応じて使用する。正極端子リードおよび負極端子リードの材料は、公知のリチウムイオン二次電池で用いられる端子リードを用いることができる。なお、電池外装材29から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆するのが好ましい。
 (電池外装材)
 電池外装材29としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。
 なお、上記のリチウムイオン二次電池は、従来公知の製造方法により製造することができる。
 <リチウムイオン二次電池の外観構成>
 図2は、積層型の扁平なリチウムイオン二次電池の外観を表した斜視図である。
 図2に示すように、積層型の扁平なリチウムイオン二次電池50では、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極集電板58、負極集電板59が引き出されている。発電要素57は、リチウムイオン二次電池50の電池外装材52によって包まれ、その周囲は熱融着されており、発電要素57は、正極集電板58および負極集電板59を外部に引き出した状態で密封されている。ここで、発電要素57は、図1に示すリチウムイオン二次電池(積層型電池)10の発電要素21に相当するものである。発電要素57は、正極(正極活物質層)13、電解質層17および負極(負極活物質層)15で構成される単電池層(単セル)19が複数積層されたものである。
 なお、上記リチウムイオン二次電池は、積層型の扁平な形状のもの(ラミネートセル)に制限されるものではない。巻回型のリチウムイオン電池では、円筒型形状のもの(コインセル)や角柱型形状(角型セル)のもの、こうした円筒型形状のものを変形させて長方形状の扁平な形状にしたようなもの、更にシリンダー状セルであってもよいなど、特に制限されるものではない。上記円筒型や角柱型の形状のものでは、その外装材に、ラミネートフィルムを用いてもよいし、従来の円筒缶(金属缶)を用いてもよいなど、特に制限されるものではない。好ましくは、発電要素がアルミニウムラミネートフィルムで外装される。当該形態により、軽量化が達成されうる。
 また、図2に示す正極集電板58、負極集電板59の取り出しに関しても、特に制限されるものではない。正極集電板58と負極集電板59とを同じ辺から引き出すようにしてもよいし、正極集電板58と負極集電板59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図2に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、集電板に変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。
 上記したように、本実施形態のリチウムイオン二次電池用の負極活物質を用いてなる負極並びにリチウムイオン二次電池は、電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの大容量電源として、好適に利用することができる。即ち、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に好適に利用することができる。
 なお、上記実施形態では、電気デバイスとして、リチウムイオン電池を例示したが、これに制限されるわけではなく、他のタイプの二次電池、さらには一次電池にも適用できる。また電池だけではなくキャパシタにも適用できる。
 本発明を、以下の実施例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
 (実施例1;サンプル1~25)
1.評価用セルの作製
(1)評価用電極の作製
 評価用電極にはスパッタ法により得られた種々の合金組成の薄膜合金を用いた。
 詳しくは、スパッタ装置には、独立制御の3元DCマグネトロンスパッタ装置(大和機器工業株式会社製、コンビナトリアルスパッタコーティング装置:ガン-サンプル間距離:約100mm)を用いた。該スパッタ装置を用いて下記に示すスパッタ条件、ターゲット仕様、電極サンプル仕様にて種々の合金組成の薄膜合金(サンプル1~25)を得た。
 (i)詳しくは、スパッタ条件は下記条件にて行った。
  1)ベース圧力:~7×10-6Pa
  2)スパッタガス種:Ar(99.9999%以上)
  3)スパッタガス導入量:10sccm
  4)スパッタ圧力:30mTorr
  5)DC電源:Si(185W)、Ti(50~200W)、Zn(30~90W)
  6)プレスパッタ時間:1min.
  7)スパッタ時間:10min.
  8)基板加熱:室温。
 (ii)ターゲット仕様(製造元;株式会社高純度化学研究所)は以下の通りとした。
  1)Siターゲット(4N):直径2インチ、厚さ3mm+無酸素銅バッキングプレート、厚さ2mm
  2)Tiターゲット(5N):直径2インチ、厚さ5mm
  3)Znターゲット(4N):直径2インチ、厚さ5mm。
 (iii)電極サンプル仕様は以下の通りとした。
  1)基板(集電体):Ni箔(厚さ20μm)
  2)スパッタ膜厚:Siは常に100nmで添加元素(Ti、Zn)の分はスパッタパワーごとに適宜変化させた。詳しくは、添加元素(Ti、Zn)濃度の増加に伴い、添加元素濃度の分が厚くなるようにスパッタパワーごとにDC電源をそれぞれ変化させて行った。
  3)合金の組成比(質量%):下記表1を参照のこと。
 即ちSiターゲット、Tiターゲット及びZnターゲットを使用し、スパッタ時間は固定し、DC電源のパワーを上記の範囲でそれぞれ変化させることで、Ni基板上にアモルファス状態の合金薄膜を成膜し、評価用電極として種々の合金サンプル1~25を得た。ここで、サンプル作製の1例を示せば、サンプル5では、DC電源2(Siターゲット):185W、DC電源1(Tiターゲット):150W、DC電源3(Znターゲット):60Wとすることで、下記表1に示す合金組成の薄膜合金が得られた。
 得られた合金サンプル1~25の分析は、下記の分析法、分析装置を用いて行った。
  1)組成分析:SEM・EDX分析(JEOL社)、EPMA分析(JEOL社)
  2)膜厚測定(スパッタレート算出のため):膜厚計(東京インスツルメンツ)
  3)膜状態分析:ラマン分光測定(ブルカー社)。
(2)評価用セル(CR2032型コインセル)の作製
 上記(1)で得られた評価用電極を使用し、下記コインセル仕様にて評価用セルを作成した。
 (i)コインセル仕様は以下の通りとした。
  1)対極:Li箔(直径15mm、厚さ200μm、本城金属株式会社製)
 なお、対極には、正極スラリー電極(例えば、LiCoO、LiNiO、LiMn、Li(Ni、Mn、Co)O、Li(Li、Ni、Mn、Co)O、LiRO-LiMn(R=Ni、Mn、Co等の遷移金属元素)でも可能である。
  2)コインセル:CR2032型
  3)セパレータ:セルガード2400(セルガード社製)
  4)電解液:1M LiPF/EC+DEC(1:1(体積比))
  5)評価用電極:上記(1)で作製した合金サンプル1~25(表1参照)。
 即ち評価用電極をLi箔(対極)、セパレータおよび電解液と組み合わせることによって、評価用セル(CR2032型コインセル)を構築した。
2.充放電試験条件・評価方法
(1)充放電試験条件
 (i)評価用セルの充放電試験条件は以下の通りとした。
  1)充放電試験機:HJ0501SM8A(北斗電工株式会社製)
  2)充放電条件[充電過程]0.1mA、2V→10mV(定電流・定電圧モード)
         [放電過程]0.1mA、10mV→2V(定電流モード)
  3)恒温槽:PFU-3K(エスペック株式会社製)
  4)評価温度:300K(27℃)。
 評価用セルは、充放電試験機を使用して、上記評価温度に設定された恒温槽中にて、充電過程(評価用電極へのLi挿入過程を言う)では、定電流・定電圧モードとし、0.1mAにて2Vから10mVまで充電した。その後、放電過程(評価用電極からのLi脱離過程を言う)では、定電流モードとし、0.1mA、10mVから2Vまで放電した。以上の充放電サイクルを1サイクルとして、同じ充放電条件にて、初期サイクル(1サイクル)~50サイクルまで充放電試験をおこなった。
(2)評価方法
 充放電容量は、合金重量当りで算出した。
 長期サイクルの場合、電解液の劣化モードもサイクル特性に含まれる(逆に、高性能電解液を用いるとサイクル特性が良くなる)ことから、合金由来の成分が顕著な50サイクル目のデータを用いた。得られた結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000002
(1)表中の「放電容量(mAh/g)」は、pure Si又は合金重量当りのものであり、Si-Ti-Zn合金(Si-Zn合金、pure SiまたはSi-Ti合金)へLiが反応する時の容量を示す。なお、明細書中で「初期容量」と表記しているものが、初期サイクル(1サイクル目)の「放電容量(mAh/g)」に相当するものである。
(2)表中の50サイクル目の「放電容量維持率(%)」は、「初期容量からどれだけ容量を維持しているか」の指標を表す。放電容量維持率(%)の計算式は下記の通りである。
 [計算式]→50サイクル目の放電容量/最大放電容量×100
 なお初期サイクル~10サイクル、通常は5~10サイクルの間で最大放電容量を示す。
 表1の結果から、サンプル1~12の電池では、初期容量(1サイクル目の放電容量)が、既存のカーボン系負極活物質(炭素・黒鉛系負極材料)では実現不可能な格段に高い高容量化を実現できることが確認できた。同様に既存のSn系合金負極活物質と比較しても同様以上の高容量(初期容量690mAh/g以上)を実現できることが確認できた。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性に劣る既存のSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性を実現できることが確認できた。具体的には、50サイクル目での高い放電容量維持率87%以上、好ましくは90%以上、より好ましくは96%以上という格段に優れたサイクル耐久性を実現できることが確認できた。このことから、サンプル1~12の電池では、サンプル13~25の電池に比して50サイクル目の放電容量維持率が高く、高い初期容量の低下を抑えて高容量をより効率良く維持できていることがわかった。
 本実施例の結果から、Li合金化の際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる第1添加元素Tiと、その第1添加元素濃度が増加しても電極としての容量が減少しない第2添加元素種Znの選定が極めて有用かつ有効であることがわかった。かかる第1及び第2添加元素の選定により、高容量・高サイクル耐久性を有するSi合金系負極活物質を提供できる。その結果、高容量でサイクル耐久性がよいリチウムイオン二次電池を提供できることがわかった。なお、サンプル13~25の参照電池では高容量化は実現できるが、当該高容量化とトレードオフの関係にあるサイクル耐久性については放電容量維持率が47~85%と十分でないことがわかった。このことから参照電池では、サイクル耐久性の低下(劣化)が十分に抑制できないことがわかった。即ち、サンプル13~25のSi金属又は2元系合金では、トレードオフの関係にある高容量化とサイクル耐久性をバランスよく発現できるものは得られないことが確認できた。
 (実施例2)
 サンプル4、19、22の評価用電極を用いた評価用セル(CR2032型コインセル)につき、実施例1と同様の充放電条件で初期サイクルを実施した。初期サイクルの放電過程での電圧(V)に対するdQ/dV曲線を図10に示す。
 図10から、dQ/dVの解釈として、低電位(0.4V以下)の領域での下に凸のピーク本数が減少し、曲線が滑らかになっていることから、Si以外に元素(Ti、Zn)を添加することでLi-Si合金の結晶化を抑制していることが確認できた。ここで、Qは電池容量(放電容量)を示す。
 詳しくは、サンプル19(pure Siの金属薄膜)の0.4V近傍での下に凸の急峻なピークが電解液の分解による変化を示している。そして、0.35V、0.2V及び0.05V近傍での下に凸の緩やかなピークが、それぞれアモルファス状態から結晶化状態に変化していることを示している。
 一方、Si以外に元素(Ti、Zn)を添加したサンプル4(Si-Ti-Znの3元系合金薄膜)とサンプル22(Si-Tiの2元系合金薄膜)では、それぞれ2.5Vと5V近傍に、電解液の分解による変化を示す下に凸の急峻なピークが確認できた。但し、それ以外にアモルファス状態から結晶化状態に変化していることを示すような、下に凸の緩やかなピークはなく、Li-Si合金の結晶化を抑制できていることが確認できた。特に上記サンプル20からSi以外の添加元素としてTiのみでもLi-Si合金の結晶化を抑制できていることが確認できた。但し、上記表1より上記サンプル22のSi-Tiの2元系合金薄膜では、50サイクル後の放電容量維持率(%)の低下(劣化)までは抑制できないことも確認できた。
 以上の実験結果から、本実施例の3元系合金が高いサイクル特性、特に、50サイクル目での高い放電容量維持率を維持しつつ、かつ1サイクル目の放電容量も高くバランスよい特性を示すメカニズム(作用機序)につき以下のように推測(推定)することができる。
 1.実施例2にもあるように、三元系合金のdQ/dV曲線を見ると、低電位領域(~0.6V)でのピークが合金でないpure-Siのものと比べて少なく、滑らかである。これは、電解液の分解を抑制し、さらにLi-Si合金の結晶相への相転移を抑制することを意味していると思われる(図10参照)。
 2.電解液の分解については、この分解によってサイクル数が進むにつれて、全てのサンプル1~25で放電容量の減少がおきることがわかる(表1参照)。しかしながら、放電容量維持率で比較した場合、三元系合金の放電容量維持率は、サンプル19の合金でないpure-Siと比べて格段に高い放電容量維持率を実現できていることがわかる。更に既存の高容量のSn系負極活物質や特許文献1記載の多元系合金負極活物質、更には参照用の二元系合金負極活物質と比べても高い放電容量維持率を実現できていることがわかる。その結果、放電容量維持率が高い状態を実現することで、サイクル特性が向上する傾向があることがわかる(表1の50サイクル目の放電容量維持率を参照のこと)。
 3.Li-Si合金の結晶相への相転移については、この相転移が起きると活物質の体積変化が大きくなる。それらによって、活物質自身の破壊、電極の破壊と連鎖が始まることになる。実施例2の図10のdQ/dV曲線をみると、本実施形態のサンプル4では、相転移に起因したピークが少なく、滑らかになっていることから、相転移を抑制できると判断できる。
10、50  リチウムイオン二次電池(積層型電池)、
11  正極集電体、
12  負極集電体、
13  正極活物質層、
15  負極活物質層、
17  電解質層、
19  単電池層、
21、57  発電要素、
25、58  正極集電板、
27、59  負極集電板、
29、52  電池外装材(ラミネートフィルム)。

Claims (8)

  1.  組成式SiTiZn(式中x、y、及びzは質量パーセント値を表し、(1)x+y+z=100であり、(2)38≦x<100であり、(3)0<y<62であり、(4)0<z<62である。)を有する合金を含む電気デバイス用の負極活物質。
  2.  (1)x+y+z=100であり、(2)38≦x<100であり、(3)0<y≦42であり、(4)0<z≦39であることを特徴とする請求項1に記載の電気デバイス用の負極活物質。
  3.  (1)x+y+z=100であり、(2)38≦x≦72であり、(3)8≦y≦42であり、(4)12≦z≦39であることを特徴とする請求項1または2に記載の電気デバイス用の負極活物質。
  4.  (1)x+y+z=100であり、(2)38≦x≦61であり、(3)19≦y≦42であり、(4)12≦z≦35であることを特徴とする請求項1~3のいずれかに記載の電気デバイス用の負極活物質。
  5.  (1)x+y+z=100であり、(2)47≦x≦53であり、(3)19≦y≦21であり、(4)26≦z≦35であることを特徴とする請求項1~4のいずれかに記載の電気デバイス用の負極活物質。
  6.  請求項1~5のいずれかに記載の負極活物質を用いてなることを特徴とする電気デバイス用の負極。
  7.  請求項1~5のいずれかに記載の負極活物質、または請求項6に記載の負極を用いてなることを特徴とする電気デバイス。
  8.  リチウムイオン二次電池である、請求項7に記載の電気デバイス。
PCT/JP2010/071168 2009-11-27 2010-11-26 電気デバイス用Si合金負極活物質 WO2011065503A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2012107439/02A RU2509819C2 (ru) 2009-11-27 2010-11-26 Активный материал отрицательного электрода на основе кремниевого сплава для электрического устройства
EP10833348.5A EP2506347B1 (en) 2009-11-27 2010-11-26 Si alloy negative electrode active material for electrical device
JP2011543333A JP5333605B2 (ja) 2009-11-27 2010-11-26 電気デバイス用Si合金負極活物質
CN201080041178.0A CN102598369B (zh) 2009-11-27 2010-11-26 电气器件用Si合金负极活性材料
KR1020127005904A KR101389156B1 (ko) 2009-11-27 2010-11-26 전기 디바이스용 Si 합금 부극 활물질
BR112012005416A BR112012005416A2 (pt) 2009-11-27 2010-11-26 material ativo de liga de eletrodo negativo para dispositivo elétrico
US13/393,048 US8835052B2 (en) 2009-11-27 2010-11-26 Si alloy negative electrode active material for electric device
MX2012002805A MX2012002805A (es) 2009-11-27 2010-11-26 Material activo del electrodo negativo, de aleacion de si, para dispositivos electricos.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009270344 2009-11-27
JP2009-270344 2009-11-27

Publications (1)

Publication Number Publication Date
WO2011065503A1 true WO2011065503A1 (ja) 2011-06-03

Family

ID=44066607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071168 WO2011065503A1 (ja) 2009-11-27 2010-11-26 電気デバイス用Si合金負極活物質

Country Status (9)

Country Link
US (1) US8835052B2 (ja)
EP (1) EP2506347B1 (ja)
JP (1) JP5333605B2 (ja)
KR (1) KR101389156B1 (ja)
CN (1) CN102598369B (ja)
BR (1) BR112012005416A2 (ja)
MX (1) MX2012002805A (ja)
RU (1) RU2509819C2 (ja)
WO (1) WO2011065503A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130056349A1 (en) * 2011-09-01 2013-03-07 Eiji Kitagawa Sputtering target and method of manufacturing magnetic memory using the same
WO2014080891A1 (ja) * 2012-11-22 2014-05-30 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
WO2014080890A1 (ja) * 2012-11-22 2014-05-30 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
WO2014080893A1 (ja) * 2012-11-22 2014-05-30 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
WO2014080888A1 (ja) * 2012-11-22 2014-05-30 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
WO2015060443A1 (ja) * 2013-10-25 2015-04-30 日立マクセル株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池
WO2017013718A1 (ja) * 2015-07-17 2017-01-26 株式会社 東芝 非水電解質電池および電池パック
US10290855B2 (en) 2012-11-22 2019-05-14 Nissan Motor Co., Ltd. Negative electrode for electrical device, and electrical device using the same
US10367198B2 (en) 2011-05-25 2019-07-30 Nissan Motor Co., Ltd. Negative electrode active material for electric device
US10476101B2 (en) 2014-01-24 2019-11-12 Nissan Motor Co., Ltd. Electrical device
US10535870B2 (en) 2014-01-24 2020-01-14 Nissan Motor Co., Ltd. Electrical device
US10566608B2 (en) 2012-11-22 2020-02-18 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474635B (zh) * 2013-09-06 2016-04-13 广东精进能源有限公司 碳包覆氮化硅钛合金高容量负极材料的制备方法及应用
CN109346713B (zh) * 2018-10-08 2021-03-26 北京理工大学 钠离子电池硅负极材料
US11228032B1 (en) * 2021-04-06 2022-01-18 ZAF Energy Systems, Incorporated Secondary electrode including styrene-butadiene rubber
US11404696B1 (en) 2022-01-05 2022-08-02 ZAF Energy Systems, Incorporated Secondary aqueous battery electrodes including vinyl acetate-ethylene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311429A (ja) * 2003-03-26 2004-11-04 Canon Inc リチウム二次電池用の電極材料、該電極材料を有する電極構造体、及び該電極構造体を有する二次電池
JP2005032733A (ja) * 1996-07-19 2005-02-03 Sony Corp 非水電解液二次電池用負極材料及び非水電解液二次電池
JP2009517850A (ja) 2005-12-01 2009-04-30 スリーエム イノベイティブ プロパティズ カンパニー ケイ素含有量が高いアモルファス合金に基づく電極組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3713900B2 (ja) 1996-07-19 2005-11-09 ソニー株式会社 負極材料及びこれを用いた非水電解液二次電池
EP2219253B1 (en) * 1998-09-18 2015-06-10 Canon Kabushiki Kaisha Electrode material
KR100721500B1 (ko) 2003-03-26 2007-05-23 캐논 가부시끼가이샤 리튬2차전지용의 전극재료 및 이 전극재료를 가진전극구조체
KR100595896B1 (ko) 2003-07-29 2006-07-03 주식회사 엘지화학 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
KR100859687B1 (ko) * 2007-03-21 2008-09-23 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032733A (ja) * 1996-07-19 2005-02-03 Sony Corp 非水電解液二次電池用負極材料及び非水電解液二次電池
JP2004311429A (ja) * 2003-03-26 2004-11-04 Canon Inc リチウム二次電池用の電極材料、該電極材料を有する電極構造体、及び該電極構造体を有する二次電池
JP2009517850A (ja) 2005-12-01 2009-04-30 スリーエム イノベイティブ プロパティズ カンパニー ケイ素含有量が高いアモルファス合金に基づく電極組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAKI HASEGAWA ET AL.: "Lithium Niji Denchi yo Ti-Si Gokin Fukyoku Zairyo no Kento", MATSUSHITA TECHNICAL JOURNAL, vol. 52, no. 4, 18 August 2006 (2006-08-18), pages 251 - 255, XP008153892 *
T.D.HATCHARD ET AL.: "Electrochemical Reaction of the Si1-xZnx Binary System with Li", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 152, no. 12, 24 October 2005 (2005-10-24), pages A2335 - A2344, XP008153900 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10367198B2 (en) 2011-05-25 2019-07-30 Nissan Motor Co., Ltd. Negative electrode active material for electric device
US20130056349A1 (en) * 2011-09-01 2013-03-07 Eiji Kitagawa Sputtering target and method of manufacturing magnetic memory using the same
JP6024760B2 (ja) * 2012-11-22 2016-11-16 日産自動車株式会社 リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JPWO2014080891A1 (ja) * 2012-11-22 2017-01-05 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
WO2014080888A1 (ja) * 2012-11-22 2014-05-30 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
US10566608B2 (en) 2012-11-22 2020-02-18 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same
JP6015769B2 (ja) * 2012-11-22 2016-10-26 日産自動車株式会社 リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP6020591B2 (ja) * 2012-11-22 2016-11-02 日産自動車株式会社 リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
WO2014080890A1 (ja) * 2012-11-22 2014-05-30 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
JP6032288B2 (ja) * 2012-11-22 2016-11-24 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
JPWO2014080888A1 (ja) * 2012-11-22 2017-01-05 日産自動車株式会社 リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
WO2014080893A1 (ja) * 2012-11-22 2014-05-30 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
WO2014080891A1 (ja) * 2012-11-22 2014-05-30 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
US10290855B2 (en) 2012-11-22 2019-05-14 Nissan Motor Co., Ltd. Negative electrode for electrical device, and electrical device using the same
WO2015060443A1 (ja) * 2013-10-25 2015-04-30 日立マクセル株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池
US10476101B2 (en) 2014-01-24 2019-11-12 Nissan Motor Co., Ltd. Electrical device
US10535870B2 (en) 2014-01-24 2020-01-14 Nissan Motor Co., Ltd. Electrical device
JP6151431B1 (ja) * 2015-07-17 2017-06-21 株式会社東芝 非水電解質電池および電池パック
WO2017013718A1 (ja) * 2015-07-17 2017-01-26 株式会社 東芝 非水電解質電池および電池パック

Also Published As

Publication number Publication date
BR112012005416A2 (pt) 2016-04-12
CN102598369B (zh) 2015-04-15
MX2012002805A (es) 2012-04-02
RU2012107439A (ru) 2014-01-10
JP5333605B2 (ja) 2013-11-06
CN102598369A (zh) 2012-07-18
EP2506347A1 (en) 2012-10-03
EP2506347A4 (en) 2014-08-06
US20120153220A1 (en) 2012-06-21
JPWO2011065503A1 (ja) 2013-04-18
RU2509819C2 (ru) 2014-03-20
US8835052B2 (en) 2014-09-16
EP2506347B1 (en) 2018-04-25
KR101389156B1 (ko) 2014-04-24
KR20120054619A (ko) 2012-05-30

Similar Documents

Publication Publication Date Title
JP5387690B2 (ja) 電気デバイス用Si合金負極活物質
JP5333605B2 (ja) 電気デバイス用Si合金負極活物質
JP6020591B2 (ja) リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP5652161B2 (ja) 電気デバイス用Si合金負極活物質
JP6032288B2 (ja) 電気デバイス用負極、及びこれを用いた電気デバイス
JP6024760B2 (ja) リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP6052299B2 (ja) 電気デバイス用負極、及びこれを用いた電気デバイス
JP6098719B2 (ja) 電気デバイス用負極活物質、およびこれを用いた電気デバイス
JP6028811B2 (ja) リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP6040997B2 (ja) リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP6015769B2 (ja) リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP6052298B2 (ja) 電気デバイス用負極、及びこれを用いた電気デバイス
JP6040994B2 (ja) リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
WO2014080900A1 (ja) 電気デバイス用負極、及びこれを用いた電気デバイス
WO2014080898A1 (ja) 電気デバイス用負極、及びこれを用いた電気デバイス
WO2014080903A1 (ja) 電気デバイス用負極、及びこれを用いた電気デバイス
WO2014080902A1 (ja) 電気デバイス用負極、及びこれを用いた電気デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080041178.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833348

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543333

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13393048

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127005904

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/002805

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2010833348

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 565/KOLNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012107439

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012005416

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012005416

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120309