WO2014080888A1 - 電気デバイス用負極、及びこれを用いた電気デバイス - Google Patents

電気デバイス用負極、及びこれを用いた電気デバイス Download PDF

Info

Publication number
WO2014080888A1
WO2014080888A1 PCT/JP2013/081121 JP2013081121W WO2014080888A1 WO 2014080888 A1 WO2014080888 A1 WO 2014080888A1 JP 2013081121 W JP2013081121 W JP 2013081121W WO 2014080888 A1 WO2014080888 A1 WO 2014080888A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
alloy
electrode active
cycle
Prior art date
Application number
PCT/JP2013/081121
Other languages
English (en)
French (fr)
Inventor
渡邉 学
文博 三木
貴志 真田
千葉 啓貴
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP13857013.0A priority Critical patent/EP2924777B1/en
Priority to KR1020157012650A priority patent/KR101709027B1/ko
Priority to US14/646,218 priority patent/US20150303465A1/en
Priority to JP2014548567A priority patent/JP6020591B2/ja
Priority to CN201380061071.6A priority patent/CN104813511B/zh
Publication of WO2014080888A1 publication Critical patent/WO2014080888A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a negative electrode for an electric device and an electric device using the same.
  • the negative electrode for an electric device and the electric device using the same according to the present invention are used as, for example, a driving power source or an auxiliary power source for a motor of a vehicle such as an electric vehicle, a fuel cell vehicle, and a hybrid electric vehicle as a secondary battery or a capacitor. It is done.
  • lithium ion secondary batteries As a secondary battery for driving a motor, it is required to have extremely high output characteristics and high energy as compared with a consumer lithium ion secondary battery used for a mobile phone, a notebook personal computer or the like. Therefore, lithium ion secondary batteries having the highest theoretical energy among all the batteries are attracting attention, and are currently being developed rapidly.
  • a lithium ion secondary battery includes a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder.
  • a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder
  • a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder.
  • it has the structure connected through an electrolyte layer and accommodated in a battery case.
  • a battery using a material that is alloyed with Li for the negative electrode is expected as a negative electrode material for vehicle use because the energy density is improved as compared with a conventional carbon / graphite negative electrode material.
  • a lithium ion secondary battery using a material that is alloyed with Li for the negative electrode has a large expansion and contraction in the negative electrode during charge and discharge.
  • the volume expansion is about 1.2 times in graphite materials
  • Si materials when Si and Li are alloyed, transition from the amorphous state to the crystalline state causes a large volume change. (Approximately 4 times), there was a problem of reducing the cycle life of the electrode.
  • the capacity and the cycle durability are in a trade-off relationship, and there is a problem that it is difficult to improve the high cycle durability while exhibiting a high capacity.
  • a negative electrode active material for a lithium ion secondary battery including an amorphous alloy having the formula: Si x M y Al z has been proposed (see, for example, Patent Document 1).
  • M represents Mn, Mo, Nb, W, Ta, Fe, Cu, It is a metal composed of at least one of Ti, V, Cr, Ni, Co, Zr, and Y.
  • paragraph “0018” describes that, by minimizing the content of metal M, a good cycle life is exhibited in addition to high capacity.
  • an object of the present invention is to provide a negative electrode for an electric device such as a Li ion secondary battery that maintains a high cycle characteristic and has a high initial capacity and a well-balanced characteristic.
  • the present inventors have conducted intensive research to solve the above problems. As a result, the inventors have found that the above problem can be solved by using a predetermined ternary Si alloy and a resin having an E elastic modulus in a predetermined range as a binder, and have completed the present invention.
  • the present invention relates to a negative electrode for an electric device having a current collector and an electrode layer including a negative electrode active material, a conductive additive, and a binder disposed on the surface of the current collector.
  • the negative electrode active material has the following formula (1):
  • the binder is also characterized in that it includes a resin having an E elastic modulus of more than 1.00 GPa and less than 7.40 GPa.
  • FIG. 1 is a schematic cross-sectional view schematically showing an outline of a laminated flat non-bipolar lithium ion secondary battery which is a typical embodiment of an electric device according to the present invention.
  • FIG. 1 is a perspective view schematically showing the appearance of a stacked flat lithium ion secondary battery that is a representative embodiment of an electric device according to the present invention.
  • FIG. 4 is a ternary composition diagram plotting and showing the alloy components formed in Reference Example A together with the composition range of the Si—Ti—Ge alloy constituting the negative electrode active material included in the negative electrode for an electrical device of the present invention.
  • FIG. 1 is a schematic cross-sectional view schematically showing an outline of a laminated flat non-bipolar lithium ion secondary battery which is a typical embodiment of an electric device according to the present invention.
  • FIG. 1 is a perspective view schematically showing the appearance of a stacked flat lithium ion secondary battery that is a representative embodiment of an electric device according to the present invention.
  • FIG. 4
  • FIG. 3 is a ternary composition diagram showing a preferred composition range of a Si—Ti—Ge alloy constituting the negative electrode active material of the negative electrode for an electric device of the present invention.
  • FIG. 3 is a ternary composition diagram showing a more preferable composition range of a Si—Ti—Ge based alloy constituting a negative electrode active material included in a negative electrode for an electric device of the present invention.
  • FIG. 3 is a ternary composition diagram showing a more preferable composition range of a Si—Ti—Ge based alloy constituting a negative electrode active material included in a negative electrode for an electric device of the present invention.
  • FIG. 3 is a ternary composition diagram showing a more preferable composition range of a Si—Ti—Ge based alloy constituting a negative electrode active material included in a negative electrode for an electric device of the present invention.
  • FIG. 3 is a ternary composition diagram showing an even more preferable composition range of a Si—Ti—Ge based alloy constituting the negative electrode active material included in the negative electrode for an electric device of the present invention.
  • FIG. 3 is a ternary composition diagram plotting and showing the alloy components formed in Reference Example B together with the composition range of the Si—Ti—Sn alloy constituting the negative electrode active material included in the negative electrode for an electrical device of the present invention.
  • FIG. 3 is a ternary composition diagram showing a preferred composition range of a Si—Ti—Sn based alloy constituting a negative electrode active material included in a negative electrode for an electric device of the present invention.
  • FIG. 3 is a ternary composition diagram showing a more preferable composition range of a Si—Ti—Sn based alloy constituting the negative electrode active material included in the negative electrode for an electric device of the present invention.
  • FIG. 3 is a ternary composition diagram showing a more preferable composition range of a Si—Ti—Sn based alloy constituting the negative electrode active material included in the negative electrode for an electric device of the present invention.
  • Reference Example B it is a diagram showing the influence of the negative electrode active material alloy composition on the initial discharge capacity of the batteries obtained in Reference Examples 19 to 44 and Comparative Reference Examples 14 to 27.
  • Reference Example B it is a diagram showing the influence of the negative electrode active material alloy composition on the discharge capacity retention ratio at the 50th cycle of the batteries obtained in Reference Examples 19 to 44 and Comparative Reference Examples 14 to 27.
  • Reference Example B it is a diagram showing the influence of the negative electrode active material alloy composition on the discharge capacity retention ratio at the 100th cycle of the batteries obtained in Reference Examples 19 to 44 and Comparative Reference Examples 14 to 27.
  • Reference Example C the discharge capacity (mAhg) of the first cycle of the batteries using the negative electrodes in Reference Examples 45 to 56 and Reference Comparative Examples 28 to 40 is plotted according to the color of the capacity (with light and shade).
  • 2 is a composition diagram of a ternary alloy of Si—Ti—Zn system.
  • FIG. 2 is a composition diagram of a Si—Ti—Zn ternary alloy plotted with light and shade.
  • the composition range of the Si—Ti—Zn ternary alloy in FIG. 15 is color-coded for the composition ranges of the Si—Ti—Zn alloy samples in Reference Examples 45 to 56 and Reference Comparative Examples 28 to 40. It is the enclosed drawing (with light and shade).
  • the composition diagram of the Si—Ti—Zn ternary alloy in FIG. 15 shows the preferred composition range among the Si—Ti—Zn alloy samples of Reference Examples 45 to 56 and Reference Comparative Examples 28 to 40. It is a drawing surrounded by color (with shading).
  • the composition diagram of the Si—Ti—Zn ternary alloy in FIG. 16 shows a more preferable composition range among the Si—Ti—Zn alloy samples of Reference Examples 45 to 56 and Reference Comparative Examples 28 to 40. It is a drawing surrounded by color-coded (with shading). In the figure, 0.38 ⁇ Si (wt% / 100) ⁇ 0.72, 0.08 ⁇ Ti (wt% / 100) ⁇ 0.42, and 0.12 ⁇ Zn (wt% / 100). ⁇ 0.39.
  • the composition diagram of the Si—Ti—Zn ternary alloy shown in FIG. 16 shows a particularly preferable composition range among the Si—Ti—Zn alloy samples of Reference Examples 45 to 56 and Reference Comparative Examples 28 to 40. It is a drawing surrounded by color-coded (with shading). In the figure, 0.38 ⁇ Si (wt% / 100) ⁇ 0.61, 0.19 ⁇ Ti (wt% / 100) ⁇ 0.42, and 0.12 ⁇ Zn (wt% / 100). ⁇ 0.35.
  • the composition diagram of the Si—Ti—Zn ternary alloy shown in FIG. 16 shows a particularly preferable composition range among the Si—Ti—Zn alloy samples of Reference Examples 45 to 56 and Reference Comparative Examples 28 to 40. It is a drawing surrounded by color-coded (with shading).
  • the present invention uses a predetermined ternary Si alloy (ternary Si-Ti-M alloy) as a negative electrode active material, and uses a resin having a predetermined range of E elastic modulus as a binder. It is characterized in that it constitutes a negative electrode for electric devices.
  • ternary Si alloy ternary Si-Ti-M alloy
  • the present invention by applying a ternary Si-Ti-M alloy and applying a resin having a predetermined range of elastic modulus as a binder material used for the electrode layer (negative electrode active material layer), The effect of suppressing the amorphous-crystal phase transition during the alloying of Si and Li and improving the cycle life can be obtained. Furthermore, since the resin used as the binder material has a predetermined range of elastic modulus, the binder material follows the volume change due to expansion / contraction of the negative electrode active material due to charge / discharge, thereby suppressing the volume change of the entire electrode. can do. In addition, due to the high elastic modulus (mechanical strength) of the binder material, the reaction of lithium ions to the negative electrode active material accompanying charge / discharge can sufficiently proceed. As a result of such combined action, the negative electrode according to the present invention has a high initial capacity, and has a useful effect of having high capacity and high cycle durability.
  • the “electrode layer” means a mixture layer containing a negative electrode active material, a conductive additive, and a binder, but may be referred to as a “negative electrode active material layer” in the description of this specification.
  • the electrode layer on the positive electrode side is also referred to as a “positive electrode active material layer”.
  • the voltage of the cell is large. High energy density and high power density can be achieved. Therefore, the lithium ion secondary battery using the negative electrode for the lithium ion secondary battery of the present embodiment is excellent as a vehicle driving power source or an auxiliary power source. As a result, it can be suitably used as a lithium ion secondary battery for a vehicle driving power source or the like.
  • the present invention can be sufficiently applied to lithium ion secondary batteries for portable devices such as mobile phones.
  • the lithium ion secondary battery that is the subject of the present embodiment only needs to use the negative electrode for the lithium ion secondary battery of the present embodiment described below. It should not be restricted.
  • the lithium ion secondary battery when distinguished by form / structure, it can be applied to any conventionally known form / structure such as a stacked (flat) battery or a wound (cylindrical) battery. Is.
  • a stacked (flat) battery structure By adopting a stacked (flat) battery structure, long-term reliability can be secured by a sealing technique such as simple thermocompression bonding, which is advantageous in terms of cost and workability.
  • a solution electrolyte type battery using a solution electrolyte such as a nonaqueous electrolyte solution for the electrolyte layer, a polymer battery using a polymer electrolyte for the electrolyte layer, etc. It can be applied to any conventionally known electrolyte layer type.
  • the polymer battery is further divided into a gel electrolyte type battery using a polymer gel electrolyte (also simply referred to as a gel electrolyte) and a solid polymer (all solid) type battery using a polymer solid electrolyte (also simply referred to as a polymer electrolyte). It is done.
  • the non-bipolar (internal parallel connection type) lithium ion secondary battery using the negative electrode for the lithium ion secondary battery of this embodiment will be described very simply with reference to the drawings.
  • the technical scope of the lithium ion secondary battery of the present embodiment should not be limited to these.
  • FIG. 1 schematically shows the overall structure of a flat (stacked) lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”), which is a typical embodiment of the electrical device of the present invention.
  • stacked battery a flat (stacked) lithium ion secondary battery
  • the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 29 that is an exterior body.
  • the positive electrode in which the positive electrode active material layer 13 is disposed on both surfaces of the positive electrode current collector 11, the electrolyte layer 17, and the negative electrode active material layer 15 is disposed on both surfaces of the negative electrode current collector 12. It has a configuration in which a negative electrode is laminated. Specifically, the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 13 and the negative electrode active material layer 15 adjacent thereto face each other with the electrolyte layer 17 therebetween. .
  • the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.
  • the positive electrode current collector 13 on the outermost layer located on both outermost layers of the power generating element 21 is provided with the positive electrode active material layer 13 only on one side, but the active material layer may be provided on both sides. . That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector.
  • the outermost negative electrode current collector is positioned on both outermost layers of the power generation element 21, and one side of the outermost negative electrode current collector or A negative electrode active material layer may be disposed on both sides.
  • the positive electrode current collector 11 and the negative electrode current collector 12 are attached to a positive electrode current collector plate 25 and a negative electrode current collector plate 27 that are electrically connected to the respective electrodes (positive electrode and negative electrode), and are sandwiched between end portions of the laminate sheet 29. Thus, it has a structure led out of the laminate sheet 29.
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 are ultrasonically welded to the positive electrode current collector 11 and the negative electrode current collector 12 of each electrode via a positive electrode lead and a negative electrode lead (not shown), respectively, as necessary. Or resistance welding or the like.
  • the lithium ion secondary battery described above is characterized by a negative electrode.
  • main components of the battery including the negative electrode will be described.
  • the active material layer 13 or 15 contains an active material, and further contains other additives as necessary.
  • the positive electrode active material layer 13 includes a positive electrode active material.
  • Positive electrode active material examples include lithium-transition metal composite oxides, lithium-transition metal phosphate compounds, lithium-transition metal sulfate compounds, solid solution systems, ternary systems, NiMn systems, NiCo systems, and spinel Mn systems. It is done.
  • lithium-transition metal composite oxide examples include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni, Mn, Co) O 2 , Li (Li, Ni, Mn, Co) O 2 , LiFePO 4 and Examples include those in which some of these transition metals are substituted with other elements.
  • Examples of the ternary system include nickel / cobalt / manganese (composite) cathode materials.
  • NiMn system examples include LiNi 0.5 Mn 1.5 O 4 .
  • NiCo system examples include Li (NiCo) O 2 .
  • Examples of the spinel Mn system include LiMn 2 O 4 .
  • two or more positive electrode active materials may be used in combination.
  • a lithium-transition metal composite oxide is used as the positive electrode active material.
  • positive electrode active materials other than those described above may be used.
  • the optimum particle size may be blended and used for expressing each unique effect. It is not always necessary to make the particle diameter uniform.
  • the average particle diameter of the positive electrode active material contained in the positive electrode active material layer 13 is not particularly limited, but is preferably 1 to 30 ⁇ m and more preferably 5 to 20 ⁇ m from the viewpoint of increasing the output.
  • the “particle diameter” refers to the outline of the active material particles (observation surface) observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It means the maximum distance among any two points.
  • the value of “average particle diameter” is the value of particles observed in several to several tens of fields using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The value calculated as the average value of the particle diameter shall be adopted.
  • the particle diameters and average particle diameters of other components can be defined in the same manner.
  • the positive electrode active material layer 13 may contain a binder.
  • the binder is added for the purpose of maintaining the electrode structure by binding the active materials or the active material and the current collector.
  • a binder used for a positive electrode active material layer For example, the following materials are mentioned.
  • polyvinylidene fluoride, polyimide, styrene / butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, polyamide, and polyamideimide are more preferable.
  • These suitable binders are excellent in heat resistance, have a very wide potential window, are stable at both the positive electrode potential and the negative electrode potential, and can be used for the active material layer. These binders may be used alone or in combination of two.
  • the amount of the binder contained in the positive electrode active material layer is not particularly limited as long as it can bind the active material, but it is preferably 0.5 to 15% by mass with respect to the active material layer. More preferably, it is 1 to 10% by mass.
  • the positive electrode (positive electrode active material layer) can be applied by any one of a kneading method, a sputtering method, a vapor deposition method, a CVD method, a PVD method, an ion plating method, and a thermal spraying method in addition to a method of applying (coating) a normal slurry. Can be formed.
  • the negative electrode active material layer 15 includes a negative electrode active material.
  • the negative electrode active material essentially contains a predetermined alloy.
  • alloy is represented by the following chemical formula (1).
  • M is at least one metal selected from the group consisting of Ge, Sn, Zn, and combinations thereof.
  • A is an inevitable impurity.
  • x, y, z, and a represent mass% values, where 0 ⁇ x ⁇ 100, 0 ⁇ y ⁇ 100, 0 ⁇ z ⁇ 100, and 0 ⁇ a ⁇ 0.5.
  • X + y + z + a 100.
  • the “inevitable impurity” means an Si alloy that is present in a raw material or inevitably mixed in a manufacturing process. The inevitable impurities are originally unnecessary impurities, but are a very small amount and do not affect the characteristics of the Si alloy.
  • the first additive element Ti and the second additive element M are used as the negative electrode active material.
  • the selection it is possible to improve the cycle life by suppressing the amorphous-crystal phase transition during Li alloying. This also makes the capacity higher than that of a conventional negative electrode active material, for example, a carbon-based negative electrode active material.
  • the amorphous-crystal phase transition is suppressed because, in the Si material, when Si and Li are alloyed, the amorphous state transitions to the crystalline state, causing a large volume change (about 4 times). For this reason, the particles themselves are broken and the function as the active material is lost. Therefore, by suppressing the amorphous-crystal phase transition, it is possible to suppress the collapse of the particles themselves, maintain the function as the active material (high capacity), and improve the cycle life.
  • a Si alloy negative electrode active material having a high capacity and high cycle durability can be provided.
  • M is at least one metal selected from the group consisting of Ge, Sn, Zn, and combinations thereof. Accordingly, the Si alloys of Si x Ti y Ge z A a , Si x Ti y Sn z A a , and Si x Ti yZnz A a will be described below.
  • the Si x Ti y Ge z A a is selected from the first additive element Ti and the second additive element Ge, so that the amorphous-crystalline phase is formed during the Li alloying.
  • the cycle life can be improved by suppressing the transition. This also makes the capacity higher than that of a conventional negative electrode active material, for example, a carbon-based negative electrode active material.
  • x is 17 or more and less than 90
  • y is more than 10 and less than 83
  • z is more than 0 and less than 73.
  • the x is 17 to 77, the y is 20 to 80, and the z is 3 to 63 as shown by the shaded portion in FIG. It is preferable to be in the range. Further, as shown in the shaded portion of FIG. 5, more preferably, y is set to a range of 68 or less. Then, as shown in the shaded portion of FIG. 6, it is more preferable that x is in the range of 50 or less. Further, as shown in the shaded portion of FIG. 7, most preferably, the y is further set to a range of 51% or more.
  • A is an impurity (unavoidable impurity) other than the above three components derived from the raw materials and the manufacturing method.
  • the a is 0 ⁇ a ⁇ 0.5, and preferably 0 ⁇ a ⁇ 0.1.
  • the Si x Ti y Sn z A a is selected from the first additive element Ti and the second additive element Sn, so that an amorphous-crystalline phase is formed during Li alloying.
  • the cycle life can be improved by suppressing the transition. This also makes the capacity higher than that of a conventional negative electrode active material, for example, a carbon-based negative electrode active material.
  • x, y, and z are the following formulas (1) or (2):
  • the titanium content is in the range of 7% by mass or more. That is, as indicated by reference C in FIG. 9, the first region has a silicon (Si) content of 35% to 78% by mass, tin (Sn) of 7% to 30% by mass, and 7% by mass or more. A region containing 37 mass% or less of titanium (Ti) is preferable. Moreover, as shown by the code
  • the discharge capacity retention rate after 50 cycles can be 45% or more.
  • the first region includes 35 mass% to 68 mass% Si, 7 mass% to 30 mass% Sn.
  • the region containing Ti of 18% by mass or more and 37% by mass or less is preferable.
  • the second region includes 39% by mass to 52% by mass Si, 30% by mass to 51% by mass Sn, and 7% by mass to 20% by mass Ti. It is desirable that the region includes That is, the x, y, and z are represented by the following formula (5) or (6):
  • the negative electrode active material of the present embodiment includes an alloy containing the components in the region indicated by symbol G in FIG. 11 and the balance being inevitable impurities.
  • symbol G is an area
  • a is 0 ⁇ a ⁇ 0.5, and preferably 0 ⁇ a ⁇ 0.1.
  • the Si x Ti y Zn z A a is selected from the first additive element Ti and the second additive element Zn.
  • the cycle life can be improved by suppressing the transition. This also makes the capacity higher than that of a conventional negative electrode active material, for example, a carbon-based negative electrode active material.
  • the x, y, and z are represented by the following formula (8):
  • the composition ratio of the Si—Ti—Zn alloy is within the range surrounded by the thick solid line in FIG. 17 (inside the triangle), the composition ratio is extremely high, which cannot be achieved with existing carbon-based negative electrode active materials. Capacitance can be realized. Similarly, a higher capacity (initial capacity of 690 mAh / g or more) can be realized than the existing Sn-based alloy negative electrode active material.
  • the x, y, and z are represented by the following formula (9):
  • the Si alloy negative electrode active material having good characteristics is obtained.
  • a higher capacity (initial capacity of 690 mAh / g or more) can be realized than the existing Sn-based alloy negative electrode active material.
  • the cycle durability that is in a trade-off relationship with the increase in capacity, when compared with the Sn-based negative electrode active material having a high capacity but poor cycle durability and the multi-component alloy negative electrode active material described in Patent Document 1, Can realize extremely excellent cycle durability. Specifically, a high discharge capacity retention ratio of 87% or more at the 50th cycle can be realized. Thereby, an excellent Si alloy negative electrode active material can be provided (see Table 3 and FIGS. 15, 16, and 18).
  • the x, y, and z are represented by the following formula (10):
  • the Si alloy negative electrode having better characteristics An active material can be provided. Specifically, even when the composition ratio of the Si—Ti—Zn alloy is within the range surrounded by the thick solid line in FIG. 19 (inside the hexagon), it is remarkably impossible with the existing carbon-based negative electrode active material. High capacity can be realized. Similarly, a higher capacity (initial capacity of 690 mAh / g or more) can be realized than the existing Sn-based alloy negative electrode active material.
  • the x, y, and z are represented by the following formula (11):
  • the Si alloy negative electrode having particularly good characteristics when the composition ratio of the first additive element Ti and the second additive element Zn, and further the high-capacity element Si is within the appropriate range specified above.
  • An active material can be provided. Specifically, even when the composition ratio of the Si—Ti—Zn alloy is within the range surrounded by the thick solid line in FIG. 20 (the inside of the small hexagon), it is not possible with the existing carbon-based negative electrode active material. High capacity can be realized. Similarly, a higher capacity (initial capacity of 690 mAh / g or more) can be realized than the existing Sn-based alloy negative electrode active material.
  • the x, y, and z are represented by the following formula (12):
  • the Si alloy negative electrode having the best characteristics when the composition ratio of the first additive element Ti and the second additive element Zn, and further the high-capacity element Si is within the appropriate range specified above.
  • An active material can be provided. Specifically, when the composition ratio of the Si—Ti—Zn alloy is within the range surrounded by the thick solid line in FIG. 21 (the inside of the small square), it is remarkably impossible with existing carbon-based negative electrode active materials. High capacity can be realized. Similarly, higher capacity (initial capacity of 1129 mAh / g or more) can be realized even when compared with existing Sn-based alloy negative electrode active materials.
  • the initial capacity (discharge capacity at the first cycle) is much higher than the existing carbon-based negative electrode active material (theoretical capacity 372 mAh / g).
  • the capacity is higher than that of the Sn-based negative electrode active material (theoretical capacity is about 600 to 700 mAh / g).
  • the cycle characteristics are very poor and sufficient when compared with the discharge capacity retention ratio (about 60%) of the 50th cycle of the Sn-based negative electrode active material that can be increased in capacity to about 600 to 700 mAh / g. There wasn't. That is, the balance between the increase in capacity and the cycle durability, which are in a trade-off relationship, is poor and cannot be put into practical use.
  • the alloy composition of patent document 1 is described by atomic ratio, when converted into mass ratio like this embodiment, about 20 mass% of Fe is contained in the Example, and it becomes a 1st addition element. It can be said that the alloy composition is disclosed.
  • the negative electrode active material using the ternary alloy represented by Si x Ti y Zn z (A a ) of the present embodiment has a high discharge capacity maintenance ratio at the 50th cycle as high cycle characteristics (FIG. 16). reference). Furthermore, the initial capacity (the discharge capacity at the first cycle) is much higher than that of the existing carbon-based negative electrode active material, and is equal to or higher than that of the existing Sn-based negative electrode active material (see FIG. 15).
  • the negative electrode active material shown can be provided. That is, both the characteristics of high capacity and cycle durability, which could not be realized due to a trade-off relationship with existing carbon-based and Sn-based negative electrode active materials and ternary and quaternary alloys described in Patent Document 1,
  • the present inventors have found a negative electrode active material using an alloy that can be formed in a high-dimensional and well-balanced manner. Specifically, it has been found that the intended purpose can be achieved by selecting two types of Ti and Zn from the group consisting of one or more additive element species in which there are very various combinations. It is. As a result, it is excellent in that a lithium ion secondary battery having a high capacity and good cycle durability can be provided.
  • the range of x in the formula (2) which is the mass% value of Si in the alloy having the composition formula Si x Ti y Zn z A a , is preferably 38. ⁇ x ⁇ 100, more preferably 38 ⁇ x ⁇ 72, still more preferably 38 ⁇ x ⁇ 61, and particularly preferably 47 ⁇ x ⁇ 53 (see Table 3, FIGS. 17 to 21). .
  • a negative electrode which maintains a high cycle characteristic (particularly, a high discharge capacity maintenance ratio at the 50th cycle) and a high initial capacity in a well-balanced manner.
  • a range of 38 ⁇ x ⁇ 72 is desirable.
  • the composition ratio of Ti, which is the first additive element and Zn, which is the second additive element described later is appropriate, good characteristics (high capacity that is in a trade-off relationship with existing alloy-based negative electrode active materials) And a Si alloy negative electrode active material having characteristics excellent in both cycle durability) (see Reference Examples 45 to 56 of Reference Example C in Table 3 and FIG. 19).
  • the mass% value (x value) of the high-capacity element Si in the alloy is a negative electrode active material that maintains a high cycle characteristic (higher discharge capacity retention ratio) while maintaining a high initial capacity in a well-balanced manner. From the viewpoint of providing, it can be said that the range of 38 ⁇ x ⁇ 61 is more desirable.
  • a Si alloy negative electrode active material having better characteristics can be provided (Table 3 and FIG. (Internal reference surrounded by 20 thick solid lines).
  • a negative electrode active material that maintains a particularly high cycle characteristic (particularly a high discharge capacity retention ratio) and a high initial capacity in a well-balanced manner. From the viewpoint of providing, it can be said that the range of 47 ⁇ x ⁇ 53 is particularly desirable.
  • a high-performance Si alloy negative electrode active material having the best characteristics can be provided (Table 1). 3 and the internal reference surrounded by the thick solid line in FIG. 21).
  • the particularly preferable range of 47 ⁇ x ⁇ 53 is particularly excellent in that a high capacity (1129 mAh / g or more) and a particularly high discharge capacity maintenance rate (95% or more) in the 50th cycle can be maintained. (Internal reference enclosed in thick solid line in Table 3 and FIG. 21).
  • the Si material (x value) having the initial capacity of 3200 mAh / g, the first additive element Ti (y value), and the second additive element Zn (z value) can be in an optimal range (see the range surrounded by the thick solid line in FIGS. 17 to 21). Therefore, it is excellent in that the most favorable characteristics can be expressed and the increase in capacity at the vehicle application level can be stably and safely maintained over a long period of time.
  • the content ratio of the high capacity Si material having an initial capacity of 3200 mAh / g, the first additive element Ti, and the second additive element Zn can be an optimum range (see the range surrounded by the thick solid line in FIGS. 17 to 21). Therefore, when alloying Si and Li, the amorphous-crystal phase transition can be remarkably suppressed, and the cycle life can be greatly improved. That is, it is possible to achieve a discharge capacity maintenance ratio of 87% or more, particularly 90% or more, especially 96% or more in the 50th cycle.
  • Patent Document 1 it is disclosed in the above-mentioned embodiment of Patent Document 1 that the degradation of cycle characteristics due to a considerable capacity reduction is already exhibited in only about 5 to 6 cycles. That is, in the example of Patent Document 1, the discharge capacity maintenance rate at the 5th to 6th cycles has already been reduced to 90 to 95%, and the discharge capacity maintenance rate at the 50th cycle has been reduced to almost 50 to 0%. It will be.
  • the combination of the first additive element Ti and the second additive element Zn to the high-capacity Si material is in a mutually complementary relationship, so to speak, many trials and errors, and various additions (metal or nonmetal). It can be selected through undue experimentation with combinations of elements.
  • the range of y in the formula (3) which is the mass% value of Ti in the alloy having the composition formula Si x Ti y Zn z A a , is preferably 0. ⁇ Y ⁇ 62, more preferably 0 ⁇ y ⁇ 42, still more preferably 8 ⁇ y ⁇ 42, particularly preferably 19 ⁇ y ⁇ 42, and most preferably 19 ⁇ y ⁇ 21. .
  • the numerical value of the mass percentage (y value) of the first additive element Ti in the alloy is in the range of 0 ⁇ y ⁇ 62, the high capacity Si is obtained due to the characteristics of Ti (and the synergistic characteristics with Zn).
  • the amorphous-crystal phase transition of the material can be effectively suppressed.
  • an effect excellent in cycle life (cycle durability), in particular, a high discharge capacity retention rate (87% or more) at the 50th cycle can be expressed (see Table 3 and FIG. 17).
  • the content x value of the high-capacity Si material can be kept above a certain value (38 ⁇ x ⁇ 100), and a much higher capacity that cannot be realized with existing carbon-based negative electrode active materials can be achieved. realizable.
  • an alloy having the same or higher capacity (initial capacity of 690 mAh / g or more) can be obtained even when compared with an existing Sn-based alloy negative electrode active material (see Table 3 and FIG. 17).
  • the mass% value (y value) of the first additive element Ti in the alloy is preferably a good balance between the characteristics with a high initial capacity while maintaining a high cycle characteristic (particularly a high discharge capacity retention rate at the 50th cycle). From the viewpoint of providing the negative electrode active material shown, a range of 0 ⁇ y ⁇ 42 is desirable. When the content ratio of the first additive element Ti having an effect of suppressing the amorphous-crystal phase transition and improving the cycle life is appropriate at the time of forming the Li alloy, an Si alloy negative electrode active material having good characteristics is obtained. (See Table 3 and the composition range surrounded by the thick solid line in FIG. 18).
  • the cycle durability is far superior to Sn-based negative electrode active materials and multi-component alloy negative electrode active materials described in Patent Document 1.
  • a Si alloy negative electrode active material realizing a discharge capacity retention rate of 87% or more can be provided (see Table 3 and FIG. 18).
  • the mass% value (y value) of the first additive element Ti in the alloy shows a high balance of the characteristics with high initial capacity while maintaining high cycle characteristics (high discharge capacity retention ratio at the 50th cycle). From the viewpoint of providing the negative electrode active material, it can be said that the range of 8 ⁇ y ⁇ 42 is desirable.
  • the content ratio of the first additive element Ti having an effect of suppressing the amorphous-crystal phase transition and improving the cycle life is appropriate at the time of forming the Li alloy, an Si alloy negative electrode active material having good characteristics is obtained. (See Table 3 and FIG. 19).
  • the capacity is increased and it is markedly superior to the Sn-based negative electrode active material and the multi-component alloy negative electrode active material described in Patent Document 1.
  • the mass% value (y value) of the first additive element Ti in the alloy while maintaining higher cycle characteristics (high discharge capacity retention rate at the 50th cycle), the characteristics of the initial capacity are also very high. From the viewpoint of providing a negative electrode active material that is well-balanced, a range of 19 ⁇ y ⁇ 42 is desirable.
  • the content ratio of the first additive element Ti which has the effect of suppressing the amorphous-crystal phase transition and improving the cycle life, is more appropriate when forming the Li alloy, the Si alloy negative electrode active material having even better characteristics can be obtained. Substances can be provided (see Table 3 and FIG. 20).
  • the mass% value (y value) of the first additive element Ti in the alloy is preferably the highest balance between the characteristics with high initial capacity while maintaining higher cycle characteristics (high discharge capacity retention rate at the 50th cycle).
  • the range of 19 ⁇ y ⁇ 21 is desirable from the viewpoint of providing a well-shown negative electrode active material.
  • the Si alloy negative electrode active material having the best characteristics is most suitable. Substances can be provided (see Table 3 and FIG. 21).
  • the negative electrode active material (negative electrode) is excellent in that it can exhibit the best characteristics and can maintain a high capacity at the vehicle application level stably and safely over a long period of time.
  • the inclusion of a high-capacity Si material having an initial capacity of about 3200 mAh / g and the first additive element Ti (and also the second additive element Zn) The ratio (balance) can be in an optimum range (see the range surrounded by the thick solid line in FIGS. 18 to 21). Therefore, when alloying Si and Li, the amorphous-crystal phase transition can be remarkably suppressed, and the cycle life can be greatly improved.
  • Patent Document 1 it is disclosed in the above-mentioned embodiment of Patent Document 1 that the degradation of cycle characteristics due to a considerable capacity reduction is already exhibited in only about 5 to 6 cycles. That is, in the example of Patent Document 1, the discharge capacity maintenance rate at the 5th to 6th cycles has already been reduced to 90 to 95%, and the discharge capacity maintenance rate at the 50th cycle has been reduced to almost 50 to 0%. It will be.
  • the first additive element Ti and the combination of the second additive element Zn, which is a mutually complementary relationship
  • the high-capacity Si material a number of trials and errors, and various additions ( It can be selected through undue experimentation with combinations of elements (metal or non-metal) (only one combination).
  • the range of z in the formula (4) which is the mass% value of Zn in the alloy having the composition formula Si x Ti y Zn z A a , is preferably 0. ⁇ Z ⁇ 62, more preferably 0 ⁇ z ⁇ 39, still more preferably 12 ⁇ z ⁇ 39, particularly preferably 12 ⁇ z ⁇ 35, and particularly preferably 26 ⁇ z ⁇ 35. . This is because, when the concentration of the first additive element in the alloy increases, the capacity as an electrode does not decrease, and the mass% value (z value) of the second additive element species Zn is in the range of 0 ⁇ z ⁇ 62.
  • the amorphous-crystal phase transition of the high-capacity Si material can be effectively suppressed.
  • an effect excellent in cycle life (cycle durability), in particular, a high discharge capacity retention rate (87% or more) at the 50th cycle can be expressed (see Table 3 and FIG. 17).
  • the content x value of the high-capacity Si material can be maintained at a certain value (38 ⁇ x ⁇ 100), and the capacity can be significantly increased as compared with existing carbon-based negative electrode active materials.
  • An alloy having a high capacity equal to or higher than that of the negative electrode active material can be obtained (see FIG. 17).
  • the high discharge capacity maintenance ratio at the 50th cycle cannot be sufficiently maintained (see Comparative Reference Examples 28 to 40 in FIG. 3 and FIG. 16), and the major problem is that the cycle characteristics rapidly deteriorate (deteriorate). Arise.
  • y ⁇ 62 the characteristics as the negative electrode active material can be sufficiently exhibited, which can contribute to the development of high capacity and cycle durability.
  • the mass% value (z value) of the second additive element Zn in the alloy preferably maintains a high cycle characteristic (particularly, a high discharge capacity retention rate at the 50th cycle) and a high initial capacity characteristic in a well-balanced manner.
  • a range of 0 ⁇ z ⁇ 39 is desirable.
  • the capacity of the first additive element Ti which suppresses the amorphous-crystal phase transition and improves the cycle life, and the negative electrode active material (negative electrode) does not decrease even when the concentration of the first additive element increases. Selection of the second additive element Zn is extremely important and useful in the present embodiment.
  • first and second additive elements With such first and second additive elements, a known ternary alloy, a quaternary or higher alloy such as Patent Document 1, and a binary alloy such as a Si—Ti alloy or a Si—Zn alloy can be used. It was found that there was a significant difference in action and effect. When the content ratio of the second additive element Zn (and the first additive element Ti mutually complementary to Zn) is appropriate, a Si alloy negative electrode active material having good characteristics is obtained (Table 3 and FIG. 18). (See composition range surrounded by thick solid line).
  • the mass% value (z value) of the second additive element Zn in the alloy balances the characteristics with high initial capacity while maintaining high cycle characteristics due to the synergistic effect (mutual complementary characteristics) with the first additive element Ti.
  • z value mass% value
  • the mass% value (z value) of the second additive element Zn in the alloy balances the characteristics with high initial capacity while maintaining high cycle characteristics due to the synergistic effect (mutual complementary characteristics) with the first additive element Ti.
  • a range of 12 ⁇ z ⁇ 39 is desirable.
  • Good when the content ratio of the second additive element Zn is appropriate, which can achieve the effect of suppressing the amorphous-crystal phase transition and improving the cycle life by synergistic effect (mutual complementarity) with Ti during Li alloying This is because a Si alloy negative electrode active material having excellent characteristics can be provided.
  • the capacity is increased by synergistic properties with Ti and compared with the Sn-based negative electrode active material and the multi-component alloy negative electrode active material described in Patent Document 1. Even in this case, it is possible to provide a Si alloy negative electrode active material that realizes remarkably excellent cycle durability.
  • the mass% value (z value) of the second additive element Zn in the alloy has a very high initial capacity while maintaining a higher cycle characteristic (high discharge capacity retention rate at the 50th cycle). From the viewpoint of providing a negative electrode active material that is well-balanced, a range of 12 ⁇ z ⁇ 35 is desirable.
  • the content ratio of the second additive element Zn which can exhibit the effect of suppressing the amorphous-crystal phase transition and improving the cycle life due to the synergistic effect (mutual complementary characteristics) with Ti, is more appropriate during Li alloying This is because a Si alloy negative electrode active material having even better characteristics can be provided.
  • the effect of suppressing the amorphous-crystal phase transition and improving the cycle life is more effective when alloying due to the synergistic effect (mutual complementarity) with Ti. Can be expressed.
  • it is possible to maintain a higher discharge capacity maintenance rate of 90% or more at the 50th cycle see Table 3 and FIG. 20.
  • a composition range in which a high capacity and a high discharge capacity retention ratio of 90% or more at the 50th cycle can be realized is particularly, the Zn content is 12%).
  • ⁇ z ⁇ 35) is selected (small hexagons surrounded by thick solid lines in FIG. 20).
  • the mass% value (z value) of the second additive element Zn in the alloy is preferably the highest balance between the characteristics with high initial capacity while maintaining higher cycle characteristics (high discharge capacity retention rate at the 50th cycle).
  • the range of 26 ⁇ z ⁇ 35 is desirable from the viewpoint of providing a well-shown negative electrode active material.
  • the effect of suppressing the amorphous-crystal phase transition and improving the cycle life is more effective when alloying due to the synergistic effect (mutual complementarity) with Ti. Can be expressed.
  • an even higher discharge capacity retention rate of 96% or more at the 50th cycle can be maintained (see Table 3 and FIG. 21).
  • a composition range (particularly Zn content) in which a further higher capacity and a high discharge capacity retention rate of 96% or more at the 50th cycle were realized. Is selected (26 ⁇ z ⁇ 35) (a square surrounded by a thick solid line in FIG. 21).
  • the content ratio (balance) of the high-capacity Si material having an initial capacity of 3200 mAh / g and the first additive element Ti and the further second additive element Zn. Can be the optimum range (see the range surrounded by the thick solid line in FIGS. 19 to 21). Therefore, even if the Ti concentration that can suppress the phase transition of amorphous-crystal, which is a characteristic of Zn (synergistic effect with Ti; mutual complementarity characteristics), increases the capacity as the negative electrode active material (negative electrode). Therefore, the cycle life (particularly the discharge capacity maintenance rate) can be significantly improved.
  • the negative electrode active material (negative electrode) is excellent in that it can exhibit the best characteristics and can maintain a high capacity at the vehicle application level stably and safely over a long period of time.
  • the content ratio (balance) of the high-capacity Si material having an initial capacity of 3200 mAh / g and the first additive element Ti and the second additive element Zn is optimal. It can be a range (see the range surrounded by the thick solid line in FIGS. 18 to 21).
  • the amorphous-crystal phase transition can be remarkably suppressed, and the cycle life (especially the discharge capacity retention rate at the 50th cycle) can be greatly improved. That is, the discharge capacity maintenance rate at the 50th cycle can be 87% or more, particularly 90% or more, and particularly 96% or more.
  • the discharge capacity maintenance rate at the 50th cycle can be 87% or more, particularly 90% or more, and particularly 96% or more.
  • the above-described effects of the present embodiment are effectively expressed. Needless to say, it is included in the technical scope (right range) of the present invention as long as it can be performed.
  • Patent Document 1 it is disclosed in the above-mentioned embodiment of Patent Document 1 that the degradation of cycle characteristics due to a considerable capacity reduction is already exhibited in only about 5 to 6 cycles. That is, in the example of Patent Document 1, the discharge capacity maintenance rate at the 5th to 6th cycles has already been reduced to 90 to 95%, and the discharge capacity maintenance rate at the 50th cycle has been reduced to almost 50 to 0%. It will be.
  • the combination of the first additive element Ti and the second additive element Zn to the high-capacity Si material is in a mutually complementary relationship, so to speak, many trials and errors, and various additions (metal or nonmetal). It can be selected through an excessive experiment with combinations of elemental species (only one combination).
  • the reduction of the discharge capacity maintenance ratio at the 50th cycle can be greatly reduced by further making the Zn content within the optimum range shown above. That is, when Si and Li are alloyed, the crystal is crystallized from an amorphous state by a particularly remarkable synergistic effect (effect) due to the optimum range of the second additive element Zn (and the first additive element Ti mutually complementary to Zn). The transition to the state can be suppressed, and a large volume change can be prevented. Furthermore, it is excellent also in that the high cycle durability of the electrode can be improved while showing a high capacity.
  • Mass% value of A in the alloy The range of a in the formula (5), which is the mass% value of A in the alloy having the composition formula Si x Ti y Zn z A a , is 0 ⁇ a ⁇ 0.5, preferably 0 ⁇ x ⁇ 0.1.
  • A is present in the raw material in the Si alloy or is inevitably mixed in the manufacturing process, and is originally unnecessary, but it is a trace amount and affects the characteristics of the Si alloy. Therefore, it is allowed to be contained in the alloy.
  • the average particle diameter of the Si alloy is not particularly limited as long as it is approximately the same as the average particle diameter of the negative electrode active material contained in the existing negative electrode active material layer 15. From the viewpoint of higher output, it is preferably in the range of 1 to 20 ⁇ m. However, it is not limited at all to the above range, and it goes without saying that it may be outside the above range as long as the effects of the present embodiment can be effectively expressed.
  • the shape of the Si alloy is not particularly limited, and may be spherical, elliptical, cylindrical, polygonal, flaky, indeterminate, or the like.
  • a method for producing an alloy having a composition formula Si x Ti y M z A a according to the manufacturing method according to this embodiment of the alloy is not limited in particular, can be produced by utilizing the production of conventionally known various . That is, since there is almost no difference in the alloy state and characteristics depending on the production method, various production methods can be applied.
  • the slurry can be prepared by adding a binder, a conductive additive and a viscosity adjusting solvent to the particles, and a slurry electrode can be formed using the slurry. Therefore, it is excellent in that it is easy to mass-produce (mass production) and to be practically used as an actual battery electrode.
  • the predetermined alloy included in the negative electrode active material layer has been described, but the negative electrode active material layer may contain other negative electrode active materials.
  • the negative electrode active material other than the predetermined alloy include natural graphite, artificial graphite, carbon black, activated carbon, carbon fiber, coke, soft carbon, carbon such as hard carbon, pure metal such as Si and Sn, and the predetermined composition. Alloy-based active material out of ratio, or metal oxide such as TiO, Ti 2 O 3 , TiO 2 , SiO 2 , SiO, SnO 2 , lithium such as Li 4/3 Ti 5/3 O 4 or Li 7 MnN And transition metal complex oxides, Li—Pb alloys, Li—Al alloys, Li and the like.
  • the content of the predetermined alloy in the total amount of 100% by mass of the negative electrode active material is preferably It is 50 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, particularly preferably 95 to 100% by mass, and most preferably 100% by mass.
  • the negative electrode active material layer 15 includes a binder.
  • the binder essentially includes a resin having an E elastic modulus of more than 1.00 GPa and less than 7.40 GPa.
  • the binder is added for the purpose of maintaining the electrode structure by binding the active materials or the active material and the current collector.
  • the kind of binder used for a negative electrode active material layer What was mentioned above as a binder used for a positive electrode active material layer can be used similarly.
  • the binder used for the negative electrode active material layer essentially includes a resin having an E elastic modulus of more than 1.00 GPa and less than 7.40 GPa. Even if the E elastic modulus of the binder is 1.00 GPa or less or 7.40 or more, the binder cannot follow the volume change of the Si alloy, and a sufficient discharge capacity can be achieved. It is because there is a possibility that it cannot be done.
  • the binder has a function of adhering the Si alloy, but when the E elastic modulus of the binder is 1.00 GPa or less, the binder is soft, so that it can withstand the pressure applied to the binder during the expansion of the Si alloy. I can't.
  • the E elastic modulus of the binder is 7.40 GPa or more, since the binder is hard, the expansion of the Si alloy during insertion and removal of Li ions is suppressed, and sufficient Li ions cannot be introduced into the Si alloy.
  • the resin having the E elastic modulus in the predetermined range is preferably one or more selected from the group consisting of polyimide, polyamideimide, and polyamide, and particularly preferably polyimide.
  • regulated to JISK 7163 shall be employ
  • the value of the E elastic modulus of the binder depends on the material of the binder, the concentration of the slurry (solid-liquid ratio), the degree of crosslinking, and the thermal history such as the drying temperature, drying speed and drying time. In the present embodiment, by adjusting these, the E elastic modulus of the binder can be adjusted to the desired range described above.
  • the resin having the predetermined E elastic modulus occupying 100% by mass of the total amount of the binder.
  • the content of is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, particularly preferably 95 to 100% by mass, and most preferably. Is 100% by mass.
  • the amount of the binder contained in the negative electrode active material layer is not particularly limited as long as it is an amount capable of binding the active material, but is preferably 0.5 to 15 with respect to the active material layer. % By mass, more preferably 1 to 10% by mass.
  • the positive electrode active material layer 13 and the negative electrode active material layer 15 contain a conductive additive, an electrolyte salt (lithium salt), an ion conductive polymer, and the like as necessary.
  • the negative electrode active material layer 15 essentially includes a conductive additive.
  • Conductive auxiliary agent means the additive mix
  • Examples of the conductive assistant include carbon materials such as carbon black such as acetylene black, graphite, and vapor grown carbon fiber.
  • the content of the conductive additive mixed into the active material layer is in the range of 1% by mass or more, more preferably 3% by mass or more, and further preferably 5% by mass or more with respect to the total amount of the active material layer.
  • the content of the conductive additive mixed in the active material layer is 15% by mass or less, more preferably 10% by mass or less, and further preferably 7% by mass or less with respect to the total amount of the active material layer. is there.
  • the conductive binder having the functions of the conductive assistant and the binder may be used in place of the conductive assistant and the binder, or may be used in combination with one or both of the conductive assistant and the binder.
  • Commercially available TAB-2 (manufactured by Hosen Co., Ltd.) can be used as the conductive binder.
  • Electrolyte salt lithium salt
  • Examples of the electrolyte salt (lithium salt) include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
  • Ion conductive polymer examples include polyethylene oxide (PEO) -based and polypropylene oxide (PPO) -based polymers.
  • the compounding ratio of the components contained in the negative electrode active material layer in the case of using the positive electrode active material layer and the alloy in the form of particles of (5) (ii) above is not particularly limited.
  • the mixing ratio can be adjusted by appropriately referring to known knowledge about the non-aqueous solvent secondary battery.
  • each active material layer (active material layer on one side of the current collector) is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to.
  • the thickness of each active material layer is usually about 1 to 500 ⁇ m, preferably 2 to 100 ⁇ m, taking into consideration the intended use of the battery (emphasis on output, energy, etc.) and ion conductivity.
  • the current collectors 11 and 12 are made of a conductive material.
  • the size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used.
  • the thickness of the current collector is usually about 1 to 100 ⁇ m.
  • the shape of the current collector is not particularly limited.
  • a mesh shape (such as an expanded grid) can be used.
  • the negative electrode active material is formed directly on the negative electrode current collector 12 by sputtering or the like, it is desirable to use a current collector foil.
  • a metal or a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material can be employed.
  • examples of the metal include aluminum, nickel, iron, stainless steel, titanium, and copper.
  • a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used.
  • covered on the metal surface may be sufficient.
  • aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electronic conductivity, battery operating potential, and adhesion of the negative electrode active material by sputtering to the current collector.
  • examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.
  • Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), or polystyrene (PS).
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PI polyimide
  • PAI polyamideimide
  • PA polyamide
  • PTFE polytetraflu
  • a conductive filler may be added to the conductive polymer material or the non-conductive polymer material as necessary.
  • a conductive filler is inevitably necessary to impart conductivity to the resin.
  • the conductive filler can be used without particular limitation as long as it has a conductivity.
  • metals, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion barrier
  • the metal is not particularly limited, but at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, Sb, and K, or these metals It is preferable to contain an alloy or metal oxide containing.
  • it includes at least one selected from the group consisting of acetylene black, vulcan, black pearl, carbon nanofiber, ketjen black, carbon nanotube, carbon nanohorn, carbon nanoballoon, and fullerene.
  • the amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by mass.
  • a liquid electrolyte or a polymer electrolyte can be used as the electrolyte constituting the electrolyte layer 17.
  • the liquid electrolyte has a form in which a lithium salt (electrolyte salt) is dissolved in an organic solvent.
  • organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), Examples include carbonates such as methylpropyl carbonate (MPC).
  • Li (CF 3 SO 2) 2 N Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiAsF 6, LiTaF 6, LiClO 4, LiCF 3 SO 3 , etc.
  • a compound that can be added to the active material layer of the electrode can be employed.
  • polymer electrolytes are classified into gel electrolytes containing an electrolytic solution and intrinsic polymer electrolytes not containing an electrolytic solution.
  • the gel electrolyte has a configuration in which the above liquid electrolyte (electrolytic solution) is injected into a matrix polymer made of an ion conductive polymer.
  • the use of a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and it is easy to block ion conduction between the layers.
  • Examples of the ion conductive polymer used as the matrix polymer include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • electrolyte salts such as lithium salts can be well dissolved.
  • the ratio of the liquid electrolyte (electrolytic solution) in the gel electrolyte is not particularly limited, but is preferably about several mass% to 98 mass% from the viewpoint of ionic conductivity.
  • the gel electrolyte having a large amount of electrolytic solution having a ratio of the electrolytic solution of 70% by mass or more is particularly effective.
  • a separator may be used for the electrolyte layer.
  • the separator include a microporous film made of polyolefin such as polyethylene and polypropylene, a porous flat plate, and a non-woven fabric.
  • the intrinsic polymer electrolyte has a structure in which a supporting salt (lithium salt) is dissolved in the above matrix polymer, and does not contain an organic solvent that is a plasticizer. Therefore, when the electrolyte layer is composed of an intrinsic polymer electrolyte, there is no fear of liquid leakage from the battery, and the reliability of the battery can be improved.
  • a supporting salt lithium salt
  • the matrix polymer of the gel electrolyte or the intrinsic polymer electrolyte can express excellent mechanical strength by forming a crosslinked structure.
  • thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator.
  • a polymerization treatment may be performed.
  • a current collecting plate may be used for the purpose of taking out the current outside the battery.
  • the current collector plate is electrically connected to the current collector and the lead, and is taken out of the laminate sheet that is a battery exterior material.
  • the material constituting the current collector plate is not particularly limited, and a known highly conductive material conventionally used as a current collector plate for a lithium ion secondary battery can be used.
  • a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable, and aluminum is more preferable from the viewpoint of light weight, corrosion resistance, and high conductivity. Copper or the like is preferable. Note that the same material may be used for the positive electrode current collector plate and the negative electrode current collector plate, or different materials may be used.
  • ⁇ Use positive terminal lead and negative terminal lead as required.
  • a terminal lead used in a known lithium ion secondary battery can be used.
  • the part taken out from the battery outer packaging material 29 has a heat insulating property so as not to affect the product (for example, automobile parts, particularly electronic devices) by contacting with peripheral devices or wiring and causing leakage. It is preferable to coat with a heat shrinkable tube or the like.
  • ⁇ Battery exterior material> As the battery exterior material 29, a known metal can case can be used, and a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used.
  • a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used as the laminate film, but the laminate film is not limited thereto.
  • a laminate film is desirable from the viewpoint that it is excellent in high output and cooling performance, and can be suitably used for a battery for large equipment for EV and HEV.
  • said lithium ion secondary battery can be manufactured with a conventionally well-known manufacturing method.
  • FIG. 2 is a perspective view showing the appearance of a stacked flat lithium ion secondary battery.
  • the stacked flat lithium ion secondary battery 50 has a rectangular flat shape, and a positive current collector 58 for taking out power from both sides thereof, a negative current collector, and the like.
  • the electric plate 59 is pulled out.
  • the power generation element 57 is wrapped by the battery outer packaging material 52 of the lithium ion secondary battery 50, and the periphery thereof is heat-sealed.
  • the power generation element 57 pulls out the positive electrode current collector plate 58 and the negative electrode current collector plate 59 to the outside. Sealed.
  • the power generation element 57 corresponds to the power generation element 21 of the lithium ion secondary battery (stacked battery) 10 shown in FIG.
  • the power generation element 57 is formed by laminating a plurality of single battery layers (single cells) 19 including a positive electrode (positive electrode active material layer) 13, an electrolyte layer 17, and a negative electrode (negative electrode active material layer) 15.
  • the lithium ion secondary battery is not limited to a laminated flat shape (laminate cell).
  • a cylindrical shape coin cell
  • a prismatic shape square cell
  • it may be a cylindrical cell, and is not particularly limited.
  • the cylindrical or prismatic shape is not particularly limited, for example, a laminate film or a conventional cylindrical can (metal can) may be used as the exterior material.
  • the power generation element is covered with an aluminum laminate film. With this configuration, weight reduction can be achieved.
  • the removal of the positive electrode current collector plate 58 and the negative electrode current collector plate 59 shown in FIG. 2 is not particularly limited.
  • the positive electrode current collector plate 58 and the negative electrode current collector plate 59 may be drawn out from the same side, or the positive electrode current collector plate 58 and the negative electrode current collector plate 59 may be divided into a plurality of parts and taken out from each side. It is not limited to the one shown in FIG.
  • a terminal instead of the current collector plate, for example, a terminal may be formed using a cylindrical can (metal can).
  • the negative electrode and the lithium ion secondary battery using the negative electrode active material for the lithium ion secondary battery of the present embodiment are large vehicles such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles. It can be suitably used as a capacity power source. That is, it can be suitably used for a vehicle driving power source and an auxiliary power source that require high volume energy density and high volume output density.
  • the lithium ion battery is exemplified as the electric device.
  • the present invention is not limited to this, and can be applied to other types of secondary batteries and further to primary batteries. It can also be applied to capacitors as well as batteries.
  • Target manufactured by Kojundo Chemical Laboratory Co., Ltd., purity: 4N
  • Si 50.8 mm diameter, 3 mm thickness (with 2 mm thick oxygen-free copper backing plate)
  • Ti 50.8 mm diameter, 5 mm thickness Ge: 50.8 mm diameter, 3 mm thickness (with an oxygen-free copper backing plate having a thickness of 2 mm).
  • the sputtering time is fixed to 10 minutes, and the power of the DC power source is changed within the above range, whereby an amorphous alloy is formed on the Ni substrate.
  • a thin film was formed, and negative electrode samples provided with alloy thin films having various compositions were obtained.
  • the component compositions of these alloy thin films are shown in Table 1 and FIGS.
  • the obtained alloy thin film was analyzed by the following analysis method and analyzer.
  • ethylene carbonate (EC) and diethyl carbonate (DEC) 1 in a mixed nonaqueous solvent were mixed at a volume ratio, the concentration of LiPF 6 a (lithium hexafluorophosphate) 1M What was dissolved so that it might become was used.
  • LiPF 6 a lithium hexafluorophosphate
  • discharge capacity indicates a value calculated per alloy weight.
  • the “discharge capacity (mAh / g)” is per pure Si or alloy weight, and when Li reacts with a Si—Ti—M alloy (Si—M alloy, pure Si or Si—Ti alloy). Indicates capacity.
  • “initial capacity” in this specification corresponds to “discharge capacity (mAh / g)” of the initial cycle (first cycle).
  • discharge capacity maintenance rate (%) at the 50th cycle or the 100th cycle represents an index of “how much capacity is maintained from the initial capacity”.
  • the calculation formula of the discharge capacity retention rate (%) is as follows.
  • a battery of a reference example including a negative electrode active material having an alloy including Si of 17% or more and less than 90%, Ti of more than 10% and less than 83%, and Ge of more than 0% and less than 73% is 749 mAh. It was found to have an initial capacity of at least / g. And it turned out that the battery of these reference examples shows the high discharge capacity maintenance factor of 83% or more in 50th cycle, and 40% or more also in 100th cycle. Furthermore, from the viewpoint of further improving the capacity and cycle durability, the negative electrode active material includes 17% or more and less than 90% Si, more than 10% and less than 83% Ti, and more than 0% and less than 73% Ge.
  • the battery of the comparative reference example was found to have a significant decrease in the discharge capacity retention rate even though the discharge capacity at the first cycle was larger than the battery of the example. Thus, it was confirmed that the battery provided with the negative electrode active material of the reference example is excellent in capacity and cycle durability.
  • FIG. 12 shows the relationship between the discharge capacity at the first cycle and the alloy composition.
  • FIGS. 13 and 14 show the relationship between the discharge capacity retention ratio and the alloy composition at the 50th and 100th cycles, respectively.
  • the discharge capacity indicates a value calculated per alloy weight.
  • the battery of the reference example had an initial capacity of at least 1000 mAh / g and exhibited a discharge capacity maintenance rate of 91% or more after 50 cycles and 43% or more after 100 cycles.
  • DC power supply Si (185 W), Ti (50 to 200 W), Zn (30 to 90 W)
  • the DC power source 2 Si target
  • the DC power source 1 Ti target
  • the DC power source 3 Zn target
  • the initial capacity (the discharge capacity at the first cycle) is remarkably high that cannot be realized with the existing carbon-based negative electrode active material (carbon / graphite-based negative electrode material). It was confirmed that high capacity could be realized. Similarly, it was confirmed that a higher capacity (initial capacity of 690 mAh / g or more) than that of the existing Sn-based alloy negative electrode active material can be realized. Furthermore, the cycle durability, which is in a trade-off relationship with the increase in capacity, is also compared with the existing Sn-based negative electrode active material having a high capacity but inferior in cycle durability and the multi-component alloy negative electrode active material described in Patent Document 1. However, it has been confirmed that the cycle durability can be remarkably improved.
  • the cycle durability with a high discharge capacity maintenance rate at the 50th cycle of 87% or more, preferably 90% or more, more preferably 96% or more can be realized. Therefore, the batteries of Reference Examples 45 to 56 have a higher discharge capacity maintenance ratio at the 50th cycle than the batteries of Comparative Reference Examples 28 to 40, and the high capacity is more efficiently suppressed by suppressing the decrease in the high initial capacity. I found that it was maintained.
  • FIG. 22 shows a dQ / dV curve with respect to voltage (V) in the discharge process of the initial cycle.
  • Comparative Reference Example 37 Si—Ti binary alloy thin film was 2 respectively.
  • a downward and sharp peak indicating a change due to the decomposition of the electrolytic solution was confirmed.
  • there was no gentle downward peak that showed a change from the amorphous state to the crystallized state and it was confirmed that the crystallization of the Li—Si alloy could be suppressed.
  • Table 3 the Si—Ti binary alloy thin film of Comparative Reference Example 37 could not be suppressed until the discharge capacity retention rate (%) decreased (deteriorated) after 50 cycles.
  • the ternary alloy of this example exhibits high cycle characteristics, in particular, high discharge capacity maintenance ratio at the 50th cycle, and high discharge capacity at the first cycle and high balance characteristics.
  • the mechanism (action mechanism) can be estimated (estimated) as follows.
  • the selection of the first additive element Ti and the second additive element species M is extremely useful and effective during Li alloying.
  • the first and second additive elements it is possible to provide a Si alloy-based negative electrode active material having high capacity and high cycle durability by suppressing the amorphous-crystal phase transition during Li alloying.
  • a lithium ion secondary battery with high capacity and good cycle durability can be provided.
  • the reference batteries of Comparative Reference Examples 28 to 40 can achieve a high capacity, but for the cycle durability that is in a trade-off relationship with the high capacity, the discharge capacity maintenance rate is 47 to It was found that 85% was not sufficient. From this, it was found that the reference battery could not sufficiently suppress the decrease (deterioration) in cycle durability. In other words, it has been confirmed that no Si metal or binary alloy can be obtained in a balance between high capacity and cycle durability in a trade-off relationship.
  • performance evaluation was performed on a negative electrode for an electric device having a negative electrode active material layer containing Si 42 Ti 7 Sn 51 as a negative electrode active material in the Si alloy and including various binders.
  • Si 42 Ti 7 Sn 51 In addition to the Si 42 Ti 7 Sn 51 , other alloys used in the present invention (Si x Ti y Ge z A a , Si x Ti y Zn z A a , and Si x Ti y Sn z A, Si 42 Ti 7 Sn 51 except one) also Si 42 Ti 7 Sn 51 example the same as or similar to the results below with the is obtained. This is because, as shown in the reference example, the other alloys used in the present invention have the same characteristics as Si 42 Ti 7 Sn 51 . That is, when an alloy having the same characteristics is used, the same result can be obtained even if the type of the alloy is changed.
  • the Si alloy was manufactured by a mechanical alloy method (or arc plasma melting method). Specifically, using a planetary ball mill device P-6 manufactured by Fricht, Germany, zirconia pulverized balls and raw material powders of each alloy were charged into a zirconia pulverized pot and alloyed at 600 rpm for 48 hours.
  • Li 1.85 Ni 0.18 Co 0.10 Mn 0.87 O 3 which is a positive electrode active material was produced by the method described in Example 1 (paragraph 0046) of JP2012-185913. Then, 90 parts by mass of this positive electrode active material, 5 parts by mass of acetylene black as a conductive auxiliary agent, and 5 parts by mass of polyvinylidene fluoride as a binder are mixed and dispersed in N-methylpyrrolidone to obtain a positive electrode slurry. It was. Next, the obtained positive electrode slurry was uniformly applied to both surfaces of a positive electrode current collector made of aluminum foil so that the thickness of the positive electrode active material layer was 30 ⁇ m, and dried to obtain a positive electrode.
  • the positive electrode produced above and the negative electrode were made to face each other, and a separator (polyolefin, film thickness: 20 ⁇ m) was disposed therebetween.
  • a separator polyolefin, film thickness: 20 ⁇ m
  • the laminate of the negative electrode, the separator, and the positive electrode was disposed on the bottom side of a coin cell (CR2032, material: stainless steel (SUS316)).
  • a gasket is attached, the following electrolyte is injected with a syringe, a spring and a spacer are stacked, the upper side of the coin cell is overlapped, and sealed by caulking.
  • a lithium ion secondary battery was obtained.
  • lithium (LiPF 6) was used as the concentration was such that 1 mol / L.
  • Example 2 A negative electrode and a battery were produced in the same manner as in Example 1 except that polyimide (E elastic modulus 2.10 GPa) was used instead of polyamideimide (E elastic modulus 2.00 GPa) as the binder.
  • polyimide E elastic modulus 2.10 GPa
  • polyamideimide E elastic modulus 2.00 GPa
  • Example 3 A negative electrode and a battery were produced in the same manner as in Example 1 except that polyimide (E elastic modulus 3.30 GPa) was used instead of polyamideimide (E elastic modulus 2.00 GPa) as the binder.
  • polyimide E elastic modulus 3.30 GPa
  • polyamideimide E elastic modulus 2.00 GPa
  • Example 4 A negative electrode and a battery were produced in the same manner as in Example 1 except that polyimide (E elastic modulus 3.73 GPa) was used instead of polyamideimide (E elastic modulus 2.00 GPa) as the binder.
  • polyimide E elastic modulus 3.73 GPa
  • polyamideimide E elastic modulus 2.00 GPa
  • Example 5 A negative electrode and a battery were produced in the same manner as in Example 1 except that polyimide (E elastic modulus 7.00 GPa) was used instead of polyamideimide (E elastic modulus 2.00 GPa) as the binder.
  • polyimide E elastic modulus 7.00 GPa
  • polyamideimide E elastic modulus 2.00 GPa
  • Example 1 The negative electrode and the battery were prepared in the same manner as in Example 1 except that polyvinylidene fluoride (PVdF) (E elastic modulus 1.00 GPa) was used instead of polyamideimide (E elastic modulus 2.00 GPa) as the binder.
  • PVdF polyvinylidene fluoride
  • E elastic modulus 2.00 GPa polyamideimide
  • Example 2 A negative electrode and a battery were produced in the same manner as in Example 1 except that polyimide (E elastic modulus 7.40 GPa) was used instead of polyamideimide (E elastic modulus 2.00 GPa) as the binder.
  • polyimide E elastic modulus 7.40 GPa
  • polyamideimide E elastic modulus 2.00 GPa
  • Example 3 A negative electrode and a battery were produced in the same manner as in Example 4 except that pure Si was used instead of the Si alloy as the negative electrode active material.
  • Comparative Example 4 A negative electrode and a battery were produced in the same manner as in Comparative Example 1 except that pure Si was used instead of the Si alloy as the negative electrode active material.
  • Lithium ion secondary battery (stacked battery), 11 positive electrode current collector, 12 negative electrode current collector, 13 positive electrode active material layer, 15 negative electrode active material layer, 17 electrolyte layer, 19 cell layer, 21, 57 power generation element, 25, 58 positive current collector, 27, 59 negative electrode current collector plate, 29, 52 Battery exterior material (laminate film).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】高いサイクル特性を維持しつつ、かつ、初期容量も高くバランスよい特性を示すLiイオン二次電池等の電気デバイス用負極を提供する。 【解決手段】集電体と、前記集電体の表面に配置された負極活物質、導電助剤、およびバインダを含む電極層と、を有する電気デバイス用負極であって、 前記負極活物質が、下記式(1):SiTi(上記式(1)において、 Mは、Ge、Sn、Zn、およびこれらの組み合わせからなる群から選択される少なくとも1つの金属であり、 Aは、不可避不純物であり、 x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。) で表される合金を含み、 前記バインダが、1.00GPa超7.40GPa未満のE弾性率を有する樹脂を含む、電気デバイス用負極。

Description

電気デバイス用負極、及びこれを用いた電気デバイス
 本発明は、電気デバイス用負極、及びこれを用いた電気デバイスに関する。本発明の電気デバイス用負極及びこれを用いた電気デバイスは、例えば、二次電池やキャパシタ等として電気自動車、燃料電池車及びハイブリッド電気自動車等の車両のモータ等の駆動用電源や補助電源に用いられる。
 近年、大気汚染や地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池などの電気デバイスの開発が盛んに行われている。
 モータ駆動用二次電池としては、携帯電話やノートパソコン等に使用される民生用リチウムイオン二次電池と比較して極めて高い出力特性、及び高いエネルギーを有することが求められている。従って、全ての電池の中で最も高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。
 リチウムイオン二次電池は、一般に、バインダを用いて正極活物質等を正極集電体の両面に塗布した正極と、バインダを用いて負極活物質等を負極集電体の両面に塗布した負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。
 従来、リチウムイオン二次電池の負極には充放電サイクルの寿命やコスト面で有利な炭素・黒鉛系材料が用いられてきた。しかし、炭素・黒鉛系の負極材料ではリチウムイオンの黒鉛結晶中への吸蔵・放出により充放電がなされるため、最大リチウム導入化合物であるLiCから得られる理論容量372mAh/g以上の充放電容量が得られないという欠点がある。このため、炭素・黒鉛系負極材料で車両用途の実用化レベルを満足する容量、エネルギー密度を得るのは困難である。
 これに対し、負極にLiと合金化する材料を用いた電池は、従来の炭素・黒鉛系負極材料と比較しエネルギー密度が向上するため、車両用途における負極材料として期待されている。例えば、Si材料は、充放電において下記の反応式(A)のように1molあたり4.4molのリチウムイオンを吸蔵放出し、Li22Si(=Li4.4Si)においては理論容量2100mAh/gである。さらに、Si重量当りで算出した場合、3200mAh/g(参考例Cの比較参考例34参照)もの初期容量を有する。
Figure JPOXMLDOC01-appb-C000011
 しかしながら、負極にLiと合金化する材料を用いたリチウムイオン二次電池は、充放電時の負極での膨張収縮が大きい。例えば、Liイオンを吸蔵した場合の体積膨張は、黒鉛材料では約1.2倍であるのに対し、Si材料ではSiとLiが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起こすため、電極のサイクル寿命を低下させる問題があった。また、Si負極活物質の場合、容量とサイクル耐久性はトレードオフの関係であり、高容量を示しつつ高サイクル耐久性を向上させることが困難であるといった問題があった。
 こうした問題を解決すべく、式;SiAlを有するアモルファス合金を含む、リチウムイオン二次電池用の負極活物質が提案されている(例えば、特許文献1参照)。ここで、式中x、y、zは原子パーセント値を表し、x+y+z=100、x≧55、y<22、z>0、Mは、Mn、Mo、Nb、W、Ta、Fe、Cu、Ti、V、Cr、Ni、Co、Zr、及びYの少なくとも1種からなる金属である。かかる特許文献1に記載の発明では、段落「0018」に金属Mの含有量を最小限にすることで、高容量の他に、良好なサイクル寿命を示すことが記載されている。
特表2009-517850号公報
 しかしながら、上記特許文献1に記載の式;SiAlを有するアモルファス合金を有する負極を用いたリチウムイオン二次電池の場合、良好なサイクル特性を示すことができるとされているものの、初期容量が十分とはいえなかった。またサイクル特性も十分なものとはいえなかった。
 そこで、本発明の目的は、高いサイクル特性を維持しつつ、かつ、初期容量も高くバランスよい特性を示すLiイオン二次電池等の電気デバイス用負極を提供することにある。
 本発明者らは、上記課題を解決するため、鋭意研究を行った。その結果、所定の3元系Si合金と、所定範囲のE弾性率を有する樹脂をバインダとして用いることによって、上記課題が解決されうることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、集電体と、前記集電体の表面に配置された負極活物質、導電助剤、およびバインダを含む電極層と、を有する電気デバイス用負極に関する。この際、負極活物質が、下記式(1):
Figure JPOXMLDOC01-appb-C000012
(上記式(1)において、
 Mは、Ge、Sn、Zn、およびこれらの組み合わせからなる群から選択される少なくとも1つの金属であり、
 Aは、不可避不純物であり、
 x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。)
で表される合金を含む点に特徴がある。また、バインダが、1.00GPa超7.40GPa未満のE弾性率を有する樹脂を含む点にも特徴がある。
本発明に係る電気デバイスの代表的な一実施形態である積層型の扁平な非双極型リチウムイオン二次電池の概要を模式的に表した断面概略図である。 本発明に係る電気デバイスの代表的な実施形態である積層型の扁平なリチウムイオン二次電池の外観を模式的に表した斜視図である。 本発明の電気デバイス用負極が有する負極活物質を構成するSi-Ti-Ge系合金の組成範囲と共に、参考例Aで成膜した合金成分をプロットして示す3元組成図である。 本発明の電気デバイス用負極が有する負極活物質を構成するSi-Ti-Ge系合金の好適な組成範囲を示す3元組成図である。 本発明の電気デバイス用負極が有する負極活物質を構成するSi-Ti-Ge系合金のより好適な組成範囲を示す3元組成図である。 本発明の電気デバイス用負極が有する負極活物質を構成するSi-Ti-Ge系合金のさらに好適な組成範囲を示す3元組成図である。 本発明の電気デバイス用負極が有する負極活物質を構成するSi-Ti-Ge系合金のさらに一層好適な組成範囲を示す3元組成図である。 本発明の電気デバイス用負極が有する負極活物質を構成するSi-Ti-Sn系合金の組成範囲と共に、参考例Bで成膜した合金成分をプロットして示す3元組成図である。 本発明の電気デバイス用負極が有する負極活物質を構成するSi-Ti-Sn系合金の好適な組成範囲を示す3元組成図である。 本発明の電気デバイス用負極が有する負極活物質を構成するSi-Ti-Sn系合金のより好適な組成範囲を示す3元組成図である。 本発明の電気デバイス用負極が有する負極活物質を構成するSi-Ti-Sn系合金のさらに好適な組成範囲を示す3元組成図である。 参考例Bにおいて、参考例19~44及び比較参考例14~27で得られた電池の初期放電容量に及ぼす負極活物質合金組成の影響を示す図である。 参考例Bにおいて、参考例19~44及び比較参考例14~27で得られた電池の50サイクル目の放電容量維持率に及ぼす負極活物質合金組成の影響を示す図である。 参考例Bにおいて、参考例19~44及び比較参考例14~27で得られた電池の100サイクル目の放電容量維持率に及ぼす負極活物質合金組成の影響を示す図である。 参考例Cにおいて、参考例45~56および参考比較例28~40における負極を用いた電池の1サイクル目の放電容量(mAhg)を、容量の大きさにより色分けして(濃淡をつけて)プロットしたSi-Ti-Zn系の3元系合金の組成図である。 参考例Cにおいて、参考例45~56および参考比較例28~40における負極を用いた電池の50サイクル目での放電容量維持率(%)を、放電容量維持率の大きさにより色分けして(濃淡をつけて)プロットしたSi-Ti-Zn系の3元系合金の組成図である。 参考例Cにおいて、図15のSi-Ti-Zn系の3元系合金の組成図に参考例45~56および参考比較例28~40のSi-Ti-Zn合金サンプルの組成範囲を色分けして(濃淡をつけて)囲った図面である。図中、0.38≦Si(wt%/100)<1.00であり、0<Ti(wt%/100)<0.62であり、0<Zn(wt%/100)<0.62である。 参考例Cにおいて、図15のSi-Ti-Zn系の3元系合金の組成図に参考例45~56および参考比較例28~40のSi-Ti-Zn合金サンプルのうち、好ましい組成範囲を色分けして(濃淡をつけて)囲った図面である。図中、0.38≦Si(wt%/100)<1.00であり、0<Ti(wt%/100)≦0.42であり、0<Zn(wt%/100)≦0.39である。 参考例Cにおいて、図16のSi-Ti-Zn系の3元系合金の組成図に参考例45~56および参考比較例28~40のSi-Ti-Zn合金サンプルのうち、より好ましい組成範囲を色分けして(濃淡をつけて)囲った図面である。図中、0.38≦Si(wt%/100)≦0.72であり、0.08≦Ti(wt%/100)≦0.42であり、0.12≦Zn(wt%/100)≦0.39である。 参考例Cにおいて、図16のSi-Ti-Zn系の3元系合金の組成図に参考例45~56および参考比較例28~40のSi-Ti-Zn合金サンプルのうち、特に好ましい組成範囲を色分けして(濃淡をつけて)囲った図面である。図中、0.38≦Si(wt%/100)≦0.61であり、0.19≦Ti(wt%/100)≦0.42であり、0.12≦Zn(wt%/100)≦0.35である。 参考例Cにおいて、図16のSi-Ti-Zn系の3元系合金の組成図に参考例45~56および参考比較例28~40のSi-Ti-Zn合金サンプルのうち、とりわけ好ましい組成範囲を色分けして(濃淡をつけて)囲った図面である。図中、0.47≦Si(wt%/100)≦0.53であり、0.19≦Ti(wt%/100)≦0.21であり、0.26≦Zn(wt%/100)≦0.35である。 参考例Cで行った、pure Si、Si-Ti系の2元系合金、Si-Ti-Zn系の3元系合金の各サンプルを用いた電池での1サイクル目(初期サイクル)の放電過程でのdQ/dV曲線を表す図面である。 電極層に含まれるバインダのE弾性率と電池の放電容量との関係を示すグラフである。
 上述のように、本発明は、所定の3元系Si合金(3元系のSi-Ti-M系の合金)を負極活物質として用い、所定範囲のE弾性率を有する樹脂をバインダとして用いて電気デバイス用負極を構成する点に特徴を有する。
 本発明によれば、3元系のSi-Ti-Mの合金を適用し、かつ、電極層(負極活物質層)に用いるバインダ材料として所定範囲の弾性率を有する樹脂を適用することで、SiとLiとが合金化する際のアモルファス-結晶の相転移を抑制してサイクル寿命を向上させるという作用が得られる。さらに、バインダ材料として用いられる樹脂が所定範囲の弾性率を有することで、充放電による負極活物質の膨張・収縮による体積変化に対してバインダ材料が追随することで、電極全体の体積変化を抑制することができる。また、バインダ材料の有する高い弾性率(機械的強度)により、充放電に伴う負極活物質へのリチウムイオンの反応が十分に進行しうる。こうした複合的な作用の結果として、本発明に係る負極は、初期容量も高く、高容量・高サイクル耐久性を有するという有用な効果が得られるのである。
 以下、図面を参照しながら、本発明の電気デバイス用の負極及びこれを用いてなる電気デバイスの実施形態を説明する。但し、本発明の技術的範囲は、特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみには制限されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 以下、本発明の電気デバイス用の負極が適用され得る電気デバイスの基本的な構成を、図面を用いて説明する。本実施形態では、電気デバイスとしてリチウムイオン二次電池を例示して説明する。なお、本発明において「電極層」とは、負極活物質、導電助剤、およびバインダを含む合剤層を意味するが、本明細書の説明では「負極活物質層」とも称することがある。同様に、正極側の電極層を「正極活物質層」とも称する。
 まず、本発明に係る電気デバイス用負極の代表的な一実施形態であるリチウムイオン二次電池用の負極およびこれを用いてなるリチウムイオン二次電池では、セル(単電池層)の電圧が大きく、高エネルギー密度、高出力密度が達成できる。そのため本実施形態のリチウムイオン二次電池用の負極を用いてなるリチウムイオン二次電池では、車両の駆動電源用や補助電源用として優れている。その結果、車両の駆動電源用等のリチウムイオン二次電池として好適に利用できる。このほかにも、携帯電話などの携帯機器向けのリチウムイオン二次電池にも十分に適用可能である。
 すなわち、本実施形態の対象となるリチウムイオン二次電池は、以下に説明する本実施形態のリチウムイオン二次電池用の負極を用いてなるものであればよく、他の構成要件に関しては、特に制限されるべきものではない。
 例えば、上記リチウムイオン二次電池を形態・構造で区別した場合には、積層型(扁平型)電池、巻回型(円筒型)電池など、従来公知のいずれの形態・構造にも適用し得るものである。積層型(扁平型)電池構造を採用することで簡単な熱圧着などのシール技術により長期信頼性を確保でき、コスト面や作業性の点では有利である。
 また、リチウムイオン二次電池内の電気的な接続形態(電極構造)で見た場合、非双極型(内部並列接続タイプ)電池および双極型(内部直列接続タイプ)電池のいずれにも適用し得るものである。
 リチウムイオン二次電池内の電解質層の種類で区別した場合には、電解質層に非水系の電解液等の溶液電解質を用いた溶液電解質型電池、電解質層に高分子電解質を用いたポリマー電池など従来公知のいずれの電解質層のタイプにも適用し得るものである。該ポリマー電池は、更に高分子ゲル電解質(単にゲル電解質ともいう)を用いたゲル電解質型電池、高分子固体電解質(単にポリマー電解質ともいう)を用いた固体高分子(全固体)型電池に分けられる。
 したがって、以下の説明では、本実施形態のリチウムイオン二次電池用の負極を用いてなる非双極型(内部並列接続タイプ)リチウムイオン二次電池につき図面を用いてごく簡単に説明する。但し、本実施形態のリチウムイオン二次電池の技術的範囲が、これらに制限されるべきものではない。
 <電池の全体構造>
 図1は、本発明の電気デバイスの代表的な一実施形態である、扁平型(積層型)のリチウムイオン二次電池(以下、単に「積層型電池」ともいう)の全体構造を模式的に表した断面概略図である。
 図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体であるラミネートシート29の内部に封止された構造を有する。ここで、発電要素21は、正極集電体11の両面に正極活物質層13が配置された正極と、電解質層17と、負極集電体12の両面に負極活物質層15が配置された負極とを積層した構成を有している。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、電解質層17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。
 これにより、隣接する正極、電解質層、および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、発電要素21の両最外層に位置する最外層の正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層の負極集電体が位置するようにし、該最外層の負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。
 正極集電体11および負極集電体12は、各電極(正極および負極)と導通される正極集電板25および負極集電板27がそれぞれ取り付けられ、ラミネートシート29の端部に挟まれるようにしてラミネートシート29の外部に導出される構造を有している。正極集電板25および負極集電板27は、それぞれ必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体11および負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。
 上記で説明したリチウムイオン二次電池は、負極に特徴を有する。以下、当該負極を含めた電池の主要な構成部材について説明する。
 <活物質層>
 活物質層13または15は活物質を含み、必要に応じてその他の添加剤をさらに含む。
 [正極活物質層]
 正極活物質層13は、正極活物質を含む。
 (正極活物質)
 正極活物質としては、例えば、リチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物、固溶体系、3元系、NiMn系、NiCo系、スピネルMn系などが挙げられる。
 リチウム-遷移金属複合酸化物としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni、Mn、Co)O、Li(Li、Ni、Mn、Co)O、LiFePO及びこれらの遷移金属の一部が他の元素により置換されたもの等が挙げられる。
 固溶体系としては、xLiMO・(1-x)LiNO(0<x<1、Mは平均酸化状態が3+、Nは平均酸化状態が4+である1種類以上の遷移金属)、LiRO-LiMn(R=Ni、Mn、Co、Fe等の遷移金属元素)等が挙げられる。
 3元系としては、ニッケル・コバルト・マンガン系(複合)正極材等が挙げられる。
 NiMn系としては、LiNi0.5Mn1.5等が挙げられる。
 NiCo系としては、Li(NiCo)O等が挙げられる。
 スピネルMn系としてはLiMn等が挙げられる。
 場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム-遷移金属複合酸化物が、正極活物質として用いられる。なお、上記以外の正極活物質が用いられてもよいことは勿論である。活物質それぞれの固有の効果を発現する上で最適な粒子径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒子径同士をブレンドして用いればよく、全ての活物質の粒子径を必ずしも均一化させる必要はない。
 正極活物質層13に含まれる正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1~30μmであり、より好ましくは5~20μmである。なお、本明細書において、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される活物質粒子(観察面)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。また、本明細書において、「平均粒子径」の値は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の粒子径や平均粒子径も同様に定義することができる。
 正極活物質層13は、バインダを含みうる。
 (バインダ)
 バインダは、活物質同士または活物質と集電体とを結着させて電極構造を維持する目的で添加される。正極活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、セルロース、カルボキシメチルセルロース(CMC)、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミド、ポリアミドイミドであることがより好ましい。これらの好適なバインダは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり活物質層に使用が可能となる。これらのバインダは、1種単独で用いてもよいし、2種併用してもよい。
 正極活物質層中に含まれるバインダ量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5~15質量%であり、より好ましくは1~10質量%である。
 正極(正極活物質層)は、通常のスラリーを塗布(コーティング)する方法のほか、混練法、スパッタ法、蒸着法、CVD法、PVD法、イオンプレーティング法および溶射法のいずれかの方法によって形成することができる。
 [負極活物質層]
 負極活物質層15は、負極活物質を含む。
 (負極活物質)
 負極活物質は、所定の合金を必須に含む。
 合金
 本実施形態において、前記合金は、下記化学式(1)で表される。
Figure JPOXMLDOC01-appb-C000013
 上記式(1)において、Mは、Ge、Sn、Zn、およびこれらの組み合わせからなる群から選択される少なくとも1つの金属である。また、Aは、不可避不純物である。さらに、x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。また、本明細書において、前記「不可避不純物」とは、Si合金において、原料中に存在したり、製造工程において不可避的に混入するものを意味する。当該不可避不純物は、本来は不要なものであるが、微量であり、Si合金の特性に影響を及ぼさないため、許容されている不純物である。
 本実施形態では、負極活物質として、第1添加元素であるTiと、第2添加元素であるM(Ge、Sn、Zn、およびこれらの組み合わせからなる群から選択される少なくとも1つの金属)を選択したことによって、Li合金化の際に、アモルファス-結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
 ここでLi合金化の際、アモルファス-結晶の相転移を抑制するのは、Si材料ではSiとLiが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起こすため、粒子自体が壊れてしまい活物質としての機能が失われるためである。そのためアモルファス-結晶の相転移を抑制することで、粒子自体の崩壊を抑制し活物質としての機能(高容量)を保持することができ、サイクル寿命も向上させることができるものである。かかる第1及び第2添加元素を選定することにより、高容量で高サイクル耐久性を有するSi合金負極活物質を提供できる。
 上述のように、Mは、Ge、Sn、Zn、およびこれらの組み合わせからなる群から選択される少なくとも1つの金属である。よって、以下、SiTiGe、SiTiSn、およびSiTiyZnzのSi合金について、それぞれ説明する。
 SiTiGe
 上記SiTiGeは、上述のように、第1添加元素であるTiと、第2添加元素であるGeを選択したことによって、Li合金化の際に、アモルファス-結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
 上記合金の組成において、前記xが17以上90未満であり、前記yが10超83未満であり、zが0超73未満であることが好ましい。前記xが17以上であると、高い初期放電容量が得られる。また、上記yが10超であると良好なサイクル寿命を示す。
 なお、当該負極活物質の上記特性のさらなる向上を図る観点からは、図4の網掛け部分に示すように、前記xを17~77、前記yを20~80、前記zを3~63の範囲とすることが好ましい。また、図5の網掛け部分に示すように、より好ましくは、さらにyを68以下の範囲とする。そして、図6の網掛け部分に示すように、さらに好ましくは、さらに前記xを50以下の範囲とする。また、図7の網掛け部分に示すように、最も好ましくは、さらに前記yを51%の以上の範囲とする。
 なお、Aは上述のように、原料や製法に由来する上記3成分以外の不純物(不可避不純物)である。前記aは、0≦a<0.5であり、0≦a<0.1であることが好ましい。
 SiTiSn
 上記SiTiSnは、上述のように、第1添加元素であるTiと、第2添加元素であるSnを選択したことによって、Li合金化の際に、アモルファス-結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
 上記合金の組成において、前記x、y、およびzが、下記数式(1)または(2):
Figure JPOXMLDOC01-appb-M000014
を満たすことが好ましい。各成分含有量が上記範囲内にあると、1000mAh/gを超える初期放電容量を得ることができ、サイクル寿命についても90%(50サイクル)を超えうる。
 なお、当該負極活物質の上記特性の更なる向上を図る観点からは、チタンの含有量が7質量%以上の範囲とすることが望ましい。つまり、図9の符号Cで示すように、第1の領域は、35質量%以上78質量%以下のケイ素(Si)、7質量%以上30質量%以下の錫(Sn)、7質量%以上37質量%以下のチタン(Ti)を含む領域であることが好ましい。また、図9の符号Dで示すように、第2の領域は、35質量%以上52質量%以下のSi、30質量%以上51質量%以下のSn、7質量%以上35質量%以下のTiを含む領域であることが好ましい。すなわち、前記x、y、およびzが、下記数式(3)または(4):
Figure JPOXMLDOC01-appb-M000015
を満たすことが好ましい。これにより、後述の参考例で示すように、50サイクル後における放電容量維持率を45%以上とすることが可能となる。
 そして、より良好なサイクル特性を確保する観点から、図10の符号Eで示すように、第1の領域は、35質量%以上68質量%以下のSi、7質量%以上30質量%以下のSn、18質量%以上37質量%以下のTiを含む領域であることが好ましい。また、図10の符号Fで示すように、第2の領域は、39質量%以上52質量%以下のSi、30質量%以上51質量%以下のSn、7質量%以上20質量%以下のTiを含む領域であることが望ましい。すなわち、前記x、y、およびzが、下記数式(5)または(6):
Figure JPOXMLDOC01-appb-M000016
を満たすことが好ましい。
 そして、初期放電容量及びサイクル特性の観点から、本実施形態の負極活物質は、図11の符号Gで示す領域の成分を含有し、残部が不可避不純物である合金を有することが特に好ましい。なお、符号Gで示す領域は、46質量%以上58質量%以下のSi、7質量%以上21質量%以下のSn、24質量%以上37質量%以下のTiを含有する領域である。すなわち、前記x、y、およびzが、下記数式(7):
Figure JPOXMLDOC01-appb-M000017
を満たすことが好ましい。
 なお、前記aは、0≦a<0.5であり、0≦a<0.1であることが好ましい。
 SiTiZn
 上記SiTiZnは、上述のように、第1添加元素であるTiと、第2添加元素であるZnを選択したことによって、Li合金化の際に、アモルファス-結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
 一実施形態において、前記x、y、およびzが、下記数式(8):
Figure JPOXMLDOC01-appb-M000018
を満たすことが好ましい(図17参照)。具体的にはSi-Ti-Zn合金の組成比が図17の太い実線で囲われた範囲内(三角形の内側)にあると、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較しても同様以上の高容量(初期容量690mAh/g以上)を実現できる。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性の悪いSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較した場合には格段に優れたサイクル耐久性(特に、50サイクル目での高い放電容量維持率87%以上)を実現できる(表3及び図15、16、17参照のこと)。
 一実施形態において、前記x、y、およびzが、下記数式(9):
Figure JPOXMLDOC01-appb-M000019
を満たすことがより好ましい。本実施形態では、第1添加元素であるTiと第2添加元素のZn、更に高容量元素Siの組成比が上記に規定する適切な範囲である場合に、良好な特性を有するSi合金負極活物質を提供できる。具体的にはSi-Ti-Zn合金の組成比が図18の太い実線で囲われた範囲内(図18の5角形の内側=図17の三角形の底部の2つの頂点のカドを落とした形状の内側)の場合にも、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較しても同様以上の高容量(初期容量690mAh/g以上)を実現できる。特に、この場合には、参考例Cの参考例45~56で具体的に高容量化を実現できた組成範囲を選択した(=図18の太い実線で囲われた5角形とした)ものである。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性の悪いSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較した場合には格段に優れたサイクル耐久性を実現できる。具体的には、50サイクル目での高い放電容量維持率87%以上を実現できる。これにより優れたSi合金負極活物質を提供できる(表3及び図15、16、18参照のこと)。
 一実施形態において、前記x、y、およびzが、下記数式(10):
Figure JPOXMLDOC01-appb-M000020
を満たすことがさらに好ましい。本実施形態では、第1添加元素であるTiと第2添加元素のZn、更に高容量元素Siの組成比が上記に規定する適切な範囲である場合に、より良好な特性を有するSi合金負極活物質を提供できる。具体的にはSi-Ti-Zn合金の組成比が図19の太い実線で囲われた範囲内(六角形の内側)の場合にも、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較しても同様以上の高容量(初期容量690mAh/g以上)を実現できる。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性の悪いSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較した場合には格段に優れたサイクル耐久性を実現できる。具体的には、50サイクル目での高い放電容量維持率87%以上を実現できる。特に、この場合には、参考例Cの参考例45~56で具体的に高容量化と高サイクル耐久性をバランスよく実現できた組成範囲のみ選択した(=図19の太い実線で囲われた六角形とした)ものである。これにより、より優れたSi合金負極活物質を提供できる(表3及び図15、16、19参照のこと)。
 一実施形態において、前記x、y、およびzが、下記数式(11):
Figure JPOXMLDOC01-appb-M000021
を満たすことが特に好ましい。本実施形態では、第1添加元素であるTiと第2添加元素のZn、更に高容量元素Siの組成比が上記に規定する適切な範囲である場合に、特に良好な特性を有するSi合金負極活物質を提供できる。具体的にはSi-Ti-Zn合金の組成比が図20の太い実線で囲われた範囲内(小さい六角形の内側)の場合にも、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較しても同様以上の高容量(初期容量690mAh/g以上)を実現できる。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性の悪いSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較した場合には格段に優れた高サイクル耐久性を実現できる。具体的には、50サイクル目でのより高い放電容量維持率90%以上を実現できる。即ち、この場合には、参考例Cの参考例45~56のうち、高容量化とより一層高いサイクル耐久性を非常にバランスよく実現できた組成範囲を選択した(=図20の太い実線で囲われた小さな六角形とした)ものである。これにより、高性能なSi合金負極活物質を提供できる(表3及び図15、16、20参照のこと)。
 一実施形態において、前記x、y、およびzが、下記数式(12):
Figure JPOXMLDOC01-appb-M000022
を満たすことが最も好ましい。本実施形態では、第1添加元素であるTiと第2添加元素のZn、更に高容量元素Siの組成比が上記に規定する適切な範囲である場合に、最も良好な特性を有するSi合金負極活物質を提供できる。具体的にはSi-Ti-Zn合金の組成比が図21の太い実線で囲われた範囲内(小さい四角形の内側)の場合には、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較してもより高い高容量(初期容量1129mAh/g以上)を実現できる。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性の悪いSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較した場合には格段に優れた高サイクル耐久性を実現できる。具体的には、50サイクル目でのより一層高い放電容量維持率96%以上を実現できる。即ち、この場合には、参考例Cの参考例45~56のうち、より一層の高容量化とより一層高いサイクル耐久性を最もバランスよく実現できた組成範囲(ベストモード)のみを選択した(=図21の太い実線で囲われた小さな四角形とした)ものである。これにより極めて高性能なSi合金負極活物質を提供できる(表3及び図15、16、21参照のこと)。
 詳しくは、本形態に係る負極活物質は、製造された状態(未充電状態)において、上記した適切な組成比を有するSiTiZn(A)で表される3元系のアモルファス合金である。そして、本実施形態の負極活物質を用いたリチウムイオン二次電池では、充放電により、SiとLiが合金化する際にも、アモルファス状態から結晶状態へ転移し大きな体積変化を起こすのを抑制し得る顕著な特性を有するものである。これは、SiTiZnで表される3元系合金でのSiへの添加金属元素のいずれか一方を含まない2元系合金(y=0のSi-Zn合金やz=0のSi-Ti系合金)では、高いサイクル特性、特に50サイクル目の高放電容量維持率の維持が困難である。そのため、サイクル特性が急激に低下(劣化)するという大きな問題が生じる(参考例Cの参考例45~56と比較参考例28~40とを対比参照のこと)。また特許文献1のSiAlで表される他の3元系や4元系の合金でも、やはり高いサイクル特性、特に50サイクル目の高放電容量維持率の維持が困難であるため、サイクル特性が急激に低下(劣化)するという大きな問題が生じる。即ち、特許文献1の3元系や4元系の合金では、初期容量(1サイクル目の放電容量)は、既存のカーボン系負極活物質(理論容量372mAh/g)に比して格段に高容量であり、Sn系負極活物質(理論容量600~700mAh/g程度)と比較しても高容量となっている。しかしながら、サイクル特性が、600~700mAh/g程度と高容量化し得るSn系負極活物質の50サイクル目の放電容量維持率(60%程度)と比較した場合に非常に悪く十分なものとはいえなかった。即ち、トレードオフの関係にある高容量化とサイクル耐久性とのバランスが悪く実用化し得ないものであった。具体的には、特許文献1の実施例1のSi62Al18Fe16Zrの4元系合金では、図2から初期容量は1150mAh/g程度と高容量であるが、僅か5~6サイクル後の循環容量で既に1090mAh/g程度しかないことが図示されている。即ち、特許文献1の実施例1では、5~6サイクル目の放電容量維持率が既に95%程度まで大幅に低下しており、1サイクルごとに放電容量維持率が概ね1%ずつ低下していることが図示されている。このことから50サイクル目では、放電容量維持率がほぼ50%低下する(=放電容量維持率がほぼ50%まで低下してしまう)ことが推測される。同様に実施例2のSi55Al29.3Fe15.7の3元系合金では、図4から初期容量が1430mAh/g程度と高容量であるが、僅か5~6サイクル後の循環容量が既に1300mAh/g程度にまで大きく低下していることが図示されている。即ち、特許文献1の実施例2では、5~6サイクル目の放電容量維持率が既に90%程度まで急激に低下しており、1サイクルごとに放電容量維持率が概ね2%ずつ低下していることが図示されている。このことから50サイクル目では、放電容量維持率がほぼ100%低下する(=放電容量維持率がほぼ0%まで低下してしまう)ことが推測される。実施例3のSi60Al20Fe12Tiの4元系合金及び実施例4のSi62Al16Fe14Tiの4元系合金では、初期容量の記載はないが、表2から僅か5~6サイクル後の循環容量で既に700~1200mAh/gの低い値になっていることが示されている。特許文献1の実施例3の5~6サイクル目の放電容量維持率は実施例1~2と同程度以下であり、50サイクル目の放電容量維持率も概ね50%~100%低下する(=放電容量維持率がほぼ50%~0%まで低下してしまう)ことが推測される。なお、特許文献1の合金組成は原子比で記載されているため、本実施形態と同様に、質量比に換算すると、実施例ではFeが20質量%程度入っており、第一添加元素となっている合金組成が開示されていると言える。
 そのため、これら2元系合金や特許文献1記載の3元系や4元系合金を用いた電池では、車両用途のようにサイクル耐久性が強く求められる分野では実用化レベルを満足するサイクル特性が十分に得られない等、その信頼性・安全性に課題があり、実用化が困難である。一方、本実施形態のSiTiZn(A)で表される3元系合金を用いた負極活物質では、高いサイクル特性として50サイクル目の高い放電容量維持率を有する(図16参照)。さらに初期容量(1サイクル目の放電容量)も既存のカーボン系負極活物質より格段に高く、また既存のSn系負極活物質と比べても同等以上と高く(図15参照)、バランスよい特性を示す負極活物質を提供できる。即ち、既存のカーボン系やSn系負極活物質や特許文献1記載の3元系や4元系合金ではトレードオフの関係にあり実現できていなかった高容量化とサイクル耐久性の両特性を、高次元でバランスよく成立し得る合金を用いた負極活物質を見出したものである。詳しくは、非常に多種多様な組合せが存在する1又は2以上の添加元素種よりなる群から、Ti、Znの2種を選択することで、所期の目的が達成し得ることを見出したものである。その結果、高容量でサイクル耐久性がよいリチウムイオン二次電池を提供できる点で優れている。
 以下、負極活物質SiTiZnについてより詳しく説明する。
 (1)合金の合計の質量%値について
 上記組成式SiTiZnを有する合金の合計の質量%値である、式中(1)のx+y+z+a=100である(ここで、x、y、z、及びaは質量%値を表す)。即ち、Si-Ti-Zn系の3元系の合金からなるものでなければならない。言い換えれば、2元系の合金、他の組成の3元系の合金、あるいは別の金属を添加した4元系以上の合金は含まれないものと言える。但し、上述の不可避不純物Aについては含まれていてもよい。なお、本実施形態の負極活物質層15には、少なくとも1種の組成式SiTiZnを有する合金が含まれていればよく、2種以上の組成の異なる当該合金を併用して用いてもよい。
 (2)合金中のSiの質量%値について
 上記組成式SiTiZnを有する合金中のSiの質量%値である、式中(2)のxの範囲は、好ましくは38≦x<100であり、より好ましくは38≦x≦72であり、さらに好ましくは38≦x≦61であり、特に好ましくは47≦x≦53である(表3、図17~図21参照)。これは、合金中の高容量元素Siの質量パーセント値(x値)の数値が高いほど高容量化でき、38≦x<100の範囲であれば、既存のカーボン系負極活物質では実現不可能な格段に高い高容量(690mAh/g以上)を実現できるためである。同様に、既存のSn系負極活物質と同等以上の高容量の合金を得ることができるためである(図17及び18参照)。さらに38≦x<100の範囲であれば、50サイクル目の放電容量維持率(サイクル耐久性)にも優れるためである(表3、図16~18参照)。一方、組成式SiTiZnで表される3元系の合金に比して高容量元素Siへの添加金属元素(Ti、Zn)のいずれか一方を含まない2元系の合金(y=0のSi-Zn合金やz=0のSi-Ti系合金)では、高いサイクル特性を維持することができない。特に、50サイクル目の高い放電容量維持率を十分に維持することができず(表3の参考例28~36及び図16参照)、サイクル特性が急激に低下(劣化)するという大きな問題が生じる。また、x=100の場合(Siへの添加金属元素Ti、Znを全く含まないpure Siの場合)、高容量化とサイクル耐久性はトレードオフの関係であり、高容量を示しつつ高サイクル耐久性を向上させることはできないことがわかる。即ち、高容量元素であるSiのみであるため、最も高容量である反面、充放電に伴いSiの膨脹収縮現象により、負極活物質としての劣化が顕著であり、最も悪く格段に低い放電容量維持率(僅か47%)しか得られないことがわかる(表3の参考例34及び図16参照)。
 合金中の高容量元素Siの質量%値(x値)として好ましくは、高いサイクル特性(特に、50サイクル目の高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、38≦x≦72の範囲が望ましい。加えて後述する第1添加元素であるTiと第2添加元素のZnの組成比が適切である場合に、良好な特性(既存の合金系負極活物質ではトレードオフの関係にあった高容量化とサイクル耐久性の双方に優れた特性)を有するSi合金負極活物質を提供ができる(表3及び図19の参考例Cの参考例45~56参照のこと)。即ち、合金中の高容量元素Siの質量%値(x値)の数値が高いほど高容量化できる反面、サイクル耐久性が低下する傾向にあるが、38≦x≦72の範囲内であれば、高容量化(690mAh/g以上)と共に高い放電容量維持率(87%以上)を維持できる点で好ましい(表3の参考例Cの参考例45~56及び図19参照)。
 合金中の高容量元素Siの質量%値(x値)としてより好ましくは、より高いサイクル特性(より高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、38≦x≦61の範囲がより望ましいと言える。加えて後述する第1添加元素であるTiと第2添加元素のZnの比がより適切である場合に、より良好な特性を有するSi合金負極活物質を提供することができる(表3及び図20の太い実線で囲われた内部参照)。即ち、より好ましい範囲の38≦x≦61であれば、高容量化(690mAh/g以上)と共に、50サイクル目のより高い放電容量維持率(90%以上)を維持できる点でより優れている(表3及び図20の太い実線で囲われた内部参照)。
 合金中の高容量元素Siの質量%値(x値)として特に好ましくは、特に高いサイクル特性(特に高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、47≦x≦53の範囲が特に望ましいと言える。加えて後述する第1添加元素であるTiと第2添加元素のZnの比がより適切である場合に、最も良好な特性を有する高性能なSi合金負極活物質を提供することができる(表3及び図21の太い実線で囲われた内部参照)。即ち、特に好ましい範囲の47≦x≦53であれば、高容量化(1129mAh/g以上)と共に、50サイクル目の特に高い放電容量維持率(95%以上)を維持できる点で特に優れている(表3及び図21の太い実線で囲われた内部参照)。
 ここで、x≧38、特にx≧47の場合には、3200mAh/gもの初期容量を有するSi材料(x値)と第1添加元素Ti(y値)と第2添加元素Zn(z値)の含有比率(バランス)が最適な範囲(図17~図21の太い実線で囲われた範囲参照)となり得る。そのため、最も良好な特性を発現することができ、車両用途レベルでの高容量化を長期間にわたって安定且つ安全に維持することができる点で優れている。一方、x≦72、特にx≦61、中でもx≦53の場合には、3200mAh/gもの初期容量を有する高容量Si材料と第1添加元素であるTiと第2添加元素のZnの含有比率(バランス)が最適な範囲(図17~図21の太い実線で囲われた範囲参照)となり得る。そのため、SiとLiとの合金化の際、アモルファス-結晶の相転移を格段に抑制し、サイクル寿命を大幅に向上させることができる。即ち、50サイクル目の放電容量維持率87%以上、特に90%以上、中でも96%以上を実現できる。但し、xが上記の最適な範囲(38≦x≦72、特に38≦x≦61、中でも47≦x≦53)を外れる場合であっても、上記した本実施形態の作用効果を有効に発現することができる範囲であれば、本発明の技術範囲(権利範囲)に含まれることはいうまでもない。
 また、上記した特許文献1の実施例では、僅か5~6サイクル程度で既にかなりの容量低下によるサイクル特性の劣化現象を示すことが開示されている。即ち、特許文献1の実施例では5~6サイクル目の放電容量維持率で既に90~95%にまで低下しており、50サイクル目の放電容量維持率はほぼ50~0%にまで低下することになる。一方、本実施形態では高容量Si材料への第1添加元素Tiと第2添加元素Znという相互補完関係にある組み合わせを、いわば幾多の試行錯誤、加えて多種多様な添加(金属ないし非金属)元素の組み合わせによる過度の実験を通じて選定し得たものである。そして、その組み合わせにおいて、更に高容量Si材料の含有量を上記に示す最適な範囲とすることで、高容量化と共に、50サイクル目の放電容量維持率の減少を大幅に低減できる点でも優れている。即ち、SiとLiが合金化する際、第1添加元素Tiと、このTiと相互補完関係にある第2添加元素Znとの最適範囲による格別顕著な相乗作用(効果)により、アモルファス状態から結晶状態へ転移を抑制し、大きな体積変化を防止できる。さらに、高容量を示しつつ電極の高いサイクル耐久性を向上させることができる点でも優れている(表3及び図17~図21参照)。
 (3)合金中のTiの質量%値について
 上記組成式SiTiZnを有する合金中のTiの質量%値である、式中(3)のyの範囲は、好ましくは0<y<62であり、より好ましくは0<y≦42であり、さらに好ましくは8≦y≦42であり、特に好ましくは19≦y≦42であり、中でも好ましくは19≦y≦21である。これは、合金中の第1添加元素Tiの質量パーセント値(y値)の数値が0<y<62の範囲であれば、Tiの持つ特性(更にZnとの相乗特性)により、高容量Si材料のアモルファス-結晶の相転移を効果的に抑制することができる。その結果、サイクル寿命(サイクル耐久性)、特に50サイクル目での高い放電容量維持率(87%以上)に優れた効果を発現することができる(表3、図17参照)。また、高容量Si材料の含有量x値の数値を一定以上(38≦x<100)に保持し得ることができ、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較しても同様以上の高容量(初期容量690mAh/g以上)の合金を得ることができる(表3及び図17参照)。一方、組成式SiTiZn(A)で表される3元系の合金に対して高容量元素Siへの添加金属元素(Ti、Zn)のいずれか一方を含まない2元系の合金(特に、y=0のSi-Zn合金)では、本実施形態に比して高いサイクル特性を維持することができない。特に、50サイクル目の高い放電容量維持率を十分に維持することができず(表3の比較参考例28~40及び図16参照)、サイクル特性が急激に低下(劣化)するという大きな問題が生じる。また、y<62であれば、負極活物質としての特性を十分に発現することができることから、高い容量およびサイクル耐久性の発現に貢献しうる。
 合金中の第1添加元素Tiの質量%値(y値)として好ましくは、高いサイクル特性(特に、50サイクル目での高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、0<y≦42の範囲が望ましい。Li合金化の際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる作用効果を有する第1添加元素Tiの含有比率が適切である場合に、良好な特性を有するSi合金負極活物質を提供することができる(表3及び図18の太い実線で囲まれた組成範囲参照)。即ち、合金中の第1添加元素Tiの質量%値(y値)の数値が、好ましい範囲の0<y≦42であれば、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる作用効果を有効に発現させることができ、50サイクル目での高い放電容量維持率(87%以上)を維持できる点で好ましい(表3及び図18参照)。この場合には、参考例Cの参考例45~56で具体的に高容量化を実現できた組成範囲(特にTi含有量に関しては0<y≦42)を選択した(図18の太い実線で囲われた五角形とした)ものである。上記組成範囲、特にTi含有量に関しては0<y≦42を選択することで、Sn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性(放電容量維持率87%以上)を実現したSi合金負極活物質を提供できる(表3及び図18参照)。
 合金中の第1添加元素Tiの質量%値(y値)としてより好ましくは、高いサイクル特性(50サイクル目での高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、8≦y≦42の範囲が望ましいと言える。Li合金化の際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる作用効果を有する第1添加元素Tiの含有比率が適切である場合に、良好な特性を有するSi合金負極活物質を提供することができる(表3及び図19参照)。即ち、より好ましい範囲の8≦y≦42であれば、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果を有効に発現させることができ、50サイクル目での高い放電容量維持率87%以上を維持できる(表3及び図19参照)。特にこの場合には、参考例Cの参考例45~56で具体的に高容量化及び50サイクル目での高い放電容量維持率87%以上を実現できた組成範囲(特にTi含有量に関しては8≦y≦42)を選択した(図19の太い実線で囲われた六角形とした)ものである。上記組成範囲、特にTi含有量に関しては8≦y≦42を選択することで、高容量化と共にSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性(高い放電容量維持率)を実現したSi合金負極活物質を提供できる。
 合金中の第1添加元素Tiの質量%値(y値)として特に好ましくは、より高いサイクル特性(50サイクル目での高い放電容量維持率)を維持しつつ、初期容量も高い特性を非常にバランスよく示す負極活物質を提供する観点から19≦y≦42の範囲が望ましい。Li合金化の際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる作用効果を有する第1添加元素Tiの含有比率がより適切である場合に、さらに良好な特性を有するSi合金負極活物質を提供することができる(表3及び図20参照)。即ち、特に好ましい範囲の19≦y≦42であれば、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果をより有効に発現させることができ、50サイクル目での高い放電容量維持率90%以上を維持できる(表3及び図20参照)。特にこの場合には、参考例Cの参考例45~56のなかでも、高容量化及び50サイクル目での高い放電容量維持率90%以上を実現できた組成範囲(特にTi含有量に関しては19≦y≦42)を選択した(図20の太い実線で囲われた小さな六角形とした)ものである。上記組成範囲、特にTi含有量に関し19≦y≦42を選択することで高容量化と共にSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性(より高い放電容量維持率)を実現したSi合金負極活物質を提供できる。
 合金中の第1添加元素Tiの質量%値(y値)として中でも好ましくは、より高いサイクル特性(50サイクル目での高い放電容量維持率)を維持しつつ、初期容量も高い特性を最もバランスよく示す負極活物質を提供する観点から19≦y≦21の範囲が望ましい。Li合金化の際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる作用効果を有する第1添加元素Tiの含有比率が最も適切である場合に、最も良好な特性を有するSi合金負極活物質を提供することができる(表3及び図21参照)。即ち、特に好ましい範囲の19≦y≦21であれば、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果をより有効に発現させることができ、50サイクル目での高い放電容量維持率96%以上を維持できる(表3及び図21参照)。特にこの場合には、参考例Cの参考例45~56のなかでも、より一層の高容量化及び50サイクル目での高い放電容量維持率96%以上を実現できた組成範囲(特にTi含有量に関しては19≦y≦21)を選択した(図21の太い実線で囲われた小さな四角形とした)ものである。上記組成範囲、特にTi含有量に関し19≦y≦21を選択することで高容量化と共にSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性(より高い放電容量維持率)を実現したSi合金負極活物質を提供できる。
 ここで、y≧8、特にy≧19の場合には、3200mAh/gもの初期容量を有する高容量Si材料と第1添加元素Ti(更には残る第2添加元素Zn)との含有比率(バランス)が最適な範囲(図19~図21の太い実線で囲われた範囲参照)となり得る。そのため、Tiの持つ特性(更にはZnとの相乗特性)である、Si材料のアモルファス-結晶の相転移を効果的に抑制し、サイクル寿命(特に放電容量維持率)を格段に向上させることができる。即ち、50サイクル目の放電容量維持率87%以上、特に90%以上、中でも96%以上を実現できる。その結果、負極活物質(負極)としても、最も良好な特性を発現することができ、車両用途レベルでの高容量化を長期間にわたって安定且つ安全に維持することができる点で優れている。一方、y≦42、特にy≦21の場合には、3200mAh/g程度のもの初期容量を有する高容量Si材料と第1添加元素であるTi(更には第2添加元素のZn)との含有比率(バランス)が最適な範囲(図18~図21の太い実線で囲われた範囲参照)となり得る。そのため、SiとLiとの合金化の際、アモルファス-結晶の相転移を格段に抑制し、サイクル寿命を大幅に向上させることができる。即ち、50サイクル目の放電容量維持率87%以上、特に90%以上、中でも96%以上を実現できる。但し、yが上記の最適な範囲(8≦y≦42、特に19≦y≦42、中でも19≦y≦21)を外れる場合であっても、上記した本実施形態の作用効果を有効に発現することができる範囲であれば、本発明の技術範囲(権利範囲)に含まれることはいうまでもない。
 また、上記した特許文献1の実施例では、僅か5~6サイクル程度で既にかなりの容量低下によるサイクル特性の劣化現象を示すことが開示されている。即ち、特許文献1の実施例では5~6サイクル目の放電容量維持率で既に90~95%にまで低下しており、50サイクル目の放電容量維持率はほぼ50~0%にまで低下することになる。一方、本実施形態では高容量Si材料への第1添加元素のTi(更には第2添加元素のZnという相互補完関係にある組合せ)を、いわば幾多の試行錯誤、加えて多種多様な添加(金属ないし非金属)元素の組み合わせによる過度の実験を通じて(一通りの組み合わせのみを)選定し得たものである。そして、その組み合わせにおいて、更にTiの含有量を上記に示す最適な範囲とすることで、50サイクル目の放電容量維持率の減少を大幅に低減できる点でも優れている。即ち、SiとLiが合金化する際、第1添加元素Ti(更にはTiと相互補完関係にある第2添加元素Zn)の最適範囲による格別顕著な相乗作用(効果)により、アモルファス状態から結晶状態へ転移を抑制し、大きな体積変化を防止できる。さらに、高容量を示しつつ電極の高いサイクル耐久性を向上させることができる点でも優れている(表3及び図17~図21参照)。
 (4)合金中のZnの質量%値について
 上記組成式SiTiZnを有する合金中のZnの質量%値である、式中(4)のzの範囲は、好ましくは0<z<62であり、より好ましくは0<z≦39であり、さらに好ましくは12≦z≦39であり、特に好ましくは12≦z≦35であり、中でも好ましくは26≦z≦35である。これは、合金中の第1添加元素濃度が増加しても電極としての容量が減少しない第2添加元素種Znの質量%値(z値)の数値が0<z<62の範囲であれば、Tiの持つ特性とZnとの相乗特性により、高容量Si材料のアモルファス-結晶の相転移を効果的に抑制することができる。その結果、サイクル寿命(サイクル耐久性)、特に50サイクル目での高い放電容量維持率(87%以上)に優れた効果を発現することができる(表3、図17参照)。また、高容量Si材料の含有量x値の数値を一定以上(38≦x<100)に保持し得ることができ、既存のカーボン系負極活物質に比して格段に高容量化でき、Sn系負極活物質と同等以上の高容量の合金を得ることができる(図17参照)。一方、組成式SiTiZn(A)で表される3元系の合金のSiへの添加金属元素(Ti、Zn)のいずれか一方を含まない2元系の合金(特に、z=0のSi-Ti合金)では、本実施形態に比して高いサイクル特性を維持することができない。特に、50サイクル目の高い放電容量維持率を十分に維持することができず(表3の比較参考例28~40及び図16参照)、サイクル特性が急激に低下(劣化)するという大きな問題が生じる。また、y<62であれば、負極活物質としての特性を十分に発現することができることから、高い容量およびサイクル耐久性の発現に貢献しうる。
 合金中の第2添加元素Znの質量%値(z値)として好ましくは、高いサイクル特性(特に、50サイクル目の高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、0<z≦39の範囲が望ましい。Li合金化の際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる第1添加元素Tiと、その第1添加元素濃度が増加しても負極活物質(負極)としての容量が減少しない第2添加元素Znの選定が本実施形態においては極めて重要かつ有用である。かかる第1及び第2添加元素により、特許文献1等の従来公知の3元系合金や4元系以上の合金、更にSi-Ti系合金やSi-Zn系合金等の2元系合金との顕著な作用効果の差異が見られることがわかったものである。かかる第2添加元素Zn(更にはZnと相互補完関係にある第1添加元素Ti)の含有比率が適切である場合に、良好な特性を有するSi合金負極活物質となる(表3及び図18の太い実線で囲まれた組成範囲参照)。即ち、合金中の第2添加元素Znの質量%値(z値)の数値が、好ましい範囲の0<y≦39であれば、第1添加元素Tiとの相乗効果(相互補完特性)により、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果を有効に発現できる。その結果、50サイクル目での高い放電容量維持率(87%以上)を維持できる(表3及び図18参照)。この場合には、参考例Cの参考例45~56で具体的に高容量化を実現できた組成範囲(特にZn含有量に関しては0<y≦39)を選択した(図18の太い実線で囲われた五角形とした)ものである。上記組成範囲、特にZn含有量に関しては0<y≦39を選択することで、第1添加元素Tiとの相乗効果(相互補完特性)により、Sn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性を実現できる。その結果、50サイクル目での放電容量維持率87%以上を実現したSi合金負極活物質を提供できる(表3及び図18の太い実線で囲まれた組成範囲参照)。
 合金中の第2添加元素Znの質量%値(z値)としてより好ましくは、第1添加元素Tiとの相乗効果(相互補完特性)により高いサイクル特性を維持しつつ初期容量も高い特性をバランスよく示す負極活物質を提供する観点から、12≦z≦39の範囲が望ましい。Li合金化の際、Tiとの相乗効果(相互補完特性)によりアモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果を奏し得る第2添加元素Znの含有比率が適切である場合に良好な特性を有するSi合金負極活物質を提供することができるためである。即ち、より好ましい範囲の12≦z≦39であれば、第1添加元素との相乗効果(相互補完特性)により、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果を有効に発現させることができる。その結果、50サイクル目での高い放電容量維持率87%以上を維持できる(表3及び図19参照)。特にこの場合には、参考例Cの参考例45~56で具体的に高容量化及び50サイクル目での高い放電容量維持率87%以上を実現できた組成範囲(特にZn含有量に関しては12≦z≦39)を選択した(図19の太い実線で囲われた六角形とした)ものである。上記組成範囲、特にZn含有量に関しては12≦z≦39を選択することで、Tiとの相乗特性により高容量化と共にSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性を実現したSi合金負極活物質を提供できる。
 合金中の第2添加元素Znの質量%値(z値)として特に好ましくは、より高いサイクル特性(50サイクル目での高い放電容量維持率)を維持しつつ、初期容量も高い特性を非常にバランスよく示す負極活物質を提供する観点から12≦z≦35の範囲が望ましい。Li合金化の際、Tiとの相乗効果(相互補完特性)によりアモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果を奏し得る第2添加元素Znの含有比率がより適切である場合にさらに良好な特性を有するSi合金負極活物質を提供できるためである。即ち、特に好ましい範囲の12≦z≦35であれば、Tiとの相乗効果(相互補完特性)により、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果をより有効に発現させることができる。その結果、50サイクル目でのより高い放電容量維持率90%以上を維持できる(表3及び図20参照)。特にこの場合には、参考例Cの参考例45~56のなかでも、高容量化及び50サイクル目での高い放電容量維持率90%以上を実現できた組成範囲(特にZn含有量に関しては12≦z≦35)を選択した(図20の太い実線で囲われた小さな六角形とした)ものである。上記組成範囲、特にZn含有量に関し12≦z≦35を選択することで、Tiとの相乗特性により高容量化と共にSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性を実現したSi合金負極活物質を提供できる。
 合金中の第2添加元素Znの質量%値(z値)として中でも好ましくは、より高いサイクル特性(50サイクル目での高い放電容量維持率)を維持しつつ、初期容量も高い特性を最もバランスよく示す負極活物質を提供する観点から26≦z≦35の範囲が望ましい。Li合金化の際、Tiとの相乗効果(相互補完特性)によりアモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果を奏し得る第2添加元素Znの含有比率が最も適切である場合に最も良好な特性を有するSi合金負極活物質を提供できるためである。即ち、特に好ましい範囲の26≦z≦35であれば、Tiとの相乗効果(相互補完特性)により、合金化する際、アモルファス-結晶の相転移を抑制しサイクル寿命を向上させる効果をより有効に発現させることができる。その結果、50サイクル目でのより一層高い放電容量維持率96%以上を維持できる(表3及び図21参照)。特にこの場合には、参考例Cの参考例45~56のなかでも、より一層の高容量化及び50サイクル目での高い放電容量維持率96%以上を実現できた組成範囲(特にZn含有量に関しては26≦z≦35)を選択した(図21の太い実線で囲われた四角形とした)ものである。上記組成範囲、特にZn含有量に関し26≦z≦35を選択することで、Tiとの相乗特性により高容量化と共にSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性を実現したSi合金負極活物質を提供できる。
 ここで、z≧12、特にz≧26の場合には、3200mAh/gもの初期容量を有する高容量Si材料及び第1添加元素Tiと、更なる第2添加元素Znとの含有比率(バランス)が最適な範囲(図19~図21の太い実線で囲われた範囲参照)となり得る。そのため、Znの持つ特性(Tiとの相乗効果;相互補完特性)である、アモルファス-結晶の相転移を抑制し得るTi濃度が増加しても負極活物質(負極)としての容量の減少を効果的に抑制し、サイクル寿命(特に放電容量維持率)を格段に向上させることができる。即ち、50サイクル目の放電容量維持率87%以上、特に90%以上、中でも96%以上を実現できる。その結果、負極活物質(負極)としても、最も良好な特性を発現することができ、車両用途レベルでの高容量化を長期間にわたって安定且つ安全に維持することができる点で優れている。一方、z≦39、特にz≦35の場合には、3200mAh/gもの初期容量を有する高容量Si材料及び第1添加元素Tiと、第2添加元素Znとの含有比率(バランス)が最適な範囲(図18~図21の太い実線で囲われた範囲参照)となり得る。そのため、SiとLiとの合金化の際、アモルファス-結晶の相転移を格段に抑制し、更にサイクル寿命(特に50サイクル目の放電容量維持率)を大幅に向上させることができる。即ち、50サイクル目の放電容量維持率が87%以上、特に90%以上、中でも96%以上を実現できる。但し、zが上記の最適な範囲(12≦z≦39、特に12≦z≦35、中でも26≦z≦35)を外れる場合であっても、上記した本実施形態の作用効果を有効に発現することができる範囲であれば、本発明の技術範囲(権利範囲)に含まれることはいうまでもない。
 また、上記した特許文献1の実施例では、僅か5~6サイクル程度で既にかなりの容量低下によるサイクル特性の劣化現象を示すことが開示されている。即ち、特許文献1の実施例では5~6サイクル目の放電容量維持率で既に90~95%にまで低下しており、50サイクル目の放電容量維持率はほぼ50~0%にまで低下することになる。一方、本実施形態では高容量Si材料への第1添加元素Tiと第2添加元素Znという相互補完関係にある組み合わせを、いわば幾多の試行錯誤、加えて多種多様な添加(金属ないし非金属)元素種の組み合わせによる過度の実験を通じて(一通りの組み合わせのみを)選定し得たものである。そして、その組み合わせにおいて、更にZnの含有量を上記に示す最適な範囲とするとで、50サイクル目の放電容量維持率の減少を大幅に低減できる点でも優れている。即ち、SiとLiが合金化する際、第2添加元素Zn(更にはZnと相互補完関係にある第1添加元素Ti)の最適範囲による格別顕著な相乗作用(効果)により、アモルファス状態から結晶状態へ転移を抑制し、大きな体積変化を防止できる。さらに、高容量を示しつつ電極の高いサイクル耐久性を向上させることができる点でも優れている。
 (5)合金中のAの質量%値について
 上記組成式SiTiZnを有する合金中のAの質量%値である、式中(5)のaの範囲は、0≦a<0.5であり、好ましくは0<x<0.1である。Aは、上述のように、Si合金において、原料中に存在したり、製造工程において不可避的に混入するものであり、本来は不要なものであるが、微量であり、Si合金の特性に影響を及ぼさないため、合金中に含有されることが許容される。
 (Si合金の平均粒子径)
 上記Si合金の平均粒子径は、既存の負極活物質層15に含まれる負極活物質の平均粒子径と同程度であればよく、特に制限されない。高出力化の観点からは、好ましくは1~20μmの範囲であればよい。ただし、上記範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、上記範囲を外れていてもよいことは言うまでもない。なお、Si合金の形状としては、特に制限はなく、球状、楕円状、円柱状、多角柱状、鱗片状、不定形などでありうる。
 合金の製造方法
 本形態に係る組成式SiTiを有する合金の製造方法としては、特に制限されるものではなく、従来公知の各種の製造を利用して製造することができる。即ち、作製方法による合金状態・特性の違いはほとんどないので、ありとあらゆる作製方法が適用できる。
 具体的には、例えば、組成式SiTiを有する合金の粒子形態の製造方法としては固相法、液相法、気相法があるが、例えば、メカニカルアロイ法、アークプラズマ溶融法等を利用することができる。上記の粒子の形態に製造する方法では、該粒子にバインダ、導電助剤、粘度調整溶剤を加えてスラリーを調整し、該スラリーを用いてスラリー電極を形成することができる。そのため、量産化(大量生産)し易く、実際の電池用電極として実用化しやすい点で優れている。
 以上、負極活物質層に必須に含まれる所定の合金について説明したが、負極活物質層はその他の負極活物質を含んでいてもよい。上記所定の合金以外の負極活物質としては、天然黒鉛、人造黒鉛、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、もしくはハードカーボンなどのカーボン、SiやSnなどの純金属や上記所定の組成比を外れる合金系活物質、あるいはTiO、Ti、TiO、もしくはSiO、SiO、SnOなどの金属酸化物、Li4/3Ti5/3もしくはLiMnNなどのリチウムと遷移金属との複合酸化物、Li-Pb系合金、Li-Al系合金、Liなどが挙げられる。ただし、上記所定の合金を負極活物質として用いることにより奏される作用効果を十分に発揮させるという観点からは、負極活物質の全量100質量%に占める上記所定の合金の含有量は、好ましくは50~100質量%であり、より好ましくは80~100質量%であり、さらに好ましくは90~100質量%であり、特に好ましくは95~100質量%であり、最も好ましくは100質量%である。
 続いて、負極活物質層15は、バインダを含む。
 (バインダ)
 バインダは、1.00GPa超7.40GPa未満のE弾性率を有する樹脂を必須に含む。
 上述したように、バインダは、活物質同士または活物質と集電体とを結着させて電極構造を維持する目的で添加される。負極活物質層に用いられるバインダの種類についても特に制限はなく、正極活物質層に用いられるバインダとして上述したものが同様に用いられうる。ただし、負極活物質層に用いられるバインダは、1.00GPa超7.40GPa未満のE弾性率を有する樹脂を必須に含む。これは、バインダのE弾性率が1.00GPa以下であっても7.40以上であっても、Si合金の体積変化にバインダが追随することができず、十分な放電容量を達成することができない虞があるためである。すなわち、バインダは、Si合金を接着する機能を有するが、バインダのE弾性率が1.00GPa以下であると、バインダが柔らかいため、Si合金の膨張時にバインダに対して印加される圧力に耐えることができない。一方、バインダのE弾性率が7.40GPa以上であると、バインダが固いため、Liイオンの挿脱時におけるSi合金の膨張が抑制され、十分なLiイオンをSi合金に導入できない。ここで、上記所定の範囲のE弾性率を有する樹脂は、ポリイミド、ポリアミドイミド、およびポリアミドからなる群から選択される1種または2種以上であることが好ましく、ポリイミドであることが特に好ましい。なお、E弾性率の値は、JISK 7163に規定される引張試験方法に準じて測定した値を採用するものとする。また、複数のバインダが使用される場合には、上記所定のE弾性率を有する樹脂が少なくとも1つ含まれていればよい。
 ここで、バインダのE弾性率の値は、バインダの材質、スラリーの濃度(固液比)、架橋の程度、ならびに乾燥温度、乾燥速度および乾燥時間などの熱履歴に依存する。本実施形態では、これらを調整することにより、バインダのE弾性率を上述した所望の範囲に調節することができる。
 ここで、上記所定のE弾性率を有する樹脂をバインダとして用いることにより奏される作用効果を十分に発揮させるという観点からは、バインダの全量100質量%に占める上記所定のE弾性率を有する樹脂の含有量は、好ましくは50~100質量%であり、より好ましくは80~100質量%であり、さらに好ましくは90~100質量%であり、特に好ましくは95~100質量%であり、最も好ましくは100質量%である。
 なお、負極活物質層中に含まれるバインダ量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5~15質量%であり、より好ましくは1~10質量%である。
 (正極及び負極活物質層13、15に共通する要件)
 以下に、正極及び負極活物質層13、15に共通する要件につき、説明する。
 正極活物質層13および負極活物質層15は、必要に応じて、導電助剤、電解質塩(リチウム塩)、イオン伝導性ポリマー等を含む。特に、負極活物質層15は、導電助剤をも必須に含む。
 導電助剤
 導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、アセチレンブラック等のカーボンブラック、グラファイト、気相成長炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
 活物質層へ混入されてなる導電助剤の含有量は、活物質層の総量に対して、1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上の範囲である。また、活物質層へ混入されてなる導電助剤の含有量は、活物質層の総量に対して、15質量%以下、より好ましくは10質量%以下、さらに好ましくは7質量%以下の範囲である。活物質自体の電子導電性は低く導電助剤の量によって電極抵抗を低減できる活物質層での導電助剤の配合比(含有量)を上記範囲内に規定することで以下の効果が発現される。即ち、電極反応を阻害することなく、電子導電性を十分に担保することができ、電極密度の低下によるエネルギー密度の低下を抑制でき、ひいては電極密度の向上によるエネルギー密度の向上を図ることができる。
 また、上記導電助剤とバインダの機能を併せ持つ導電性結着剤をこれら導電助剤とバインダに代えて用いてもよいし、あるいはこれら導電助剤とバインダの一方ないし双方と併用してもよい。導電性結着剤としては、既に市販のTAB-2(宝泉株式会社製)を用いることができる。
 電解質塩(リチウム塩)
 電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
 イオン伝導性ポリマー
 イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
 正極活物質層および上記(5)(ii)の粒子の形態の合金を用いる場合の負極活物質層中に含まれる成分の配合比は、特に限定されない。配合比は、非水溶媒二次電池についての公知の知見を適宜参照することにより、調整されうる。
 各活物質層(集電体片面の活物質層)の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1~500μm程度、好ましくは2~100μmである。
 <集電体>
 集電体11、12は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。
 集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。
 集電体の形状についても特に制限されない。図1に示す積層型電池10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。
 なお、負極活物質をスパッタ法等により薄膜合金を負極集電体12上に直接形成する場合には、集電箔を用いるのが望ましい。
 集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料または非導電性高分子材料に導電性フィラーが添加された樹脂が採用されうる。
 具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。
 また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。
 非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
 上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。
 導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、およびKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むものである。
 導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5~35質量%程度である。
 <電解質層>
 電解質層17を構成する電解質としては、液体電解質またはポリマー電解質が用いられうる。
 液体電解質は、有機溶媒にリチウム塩(電解質塩)が溶解した形態を有する。有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)等のカーボネート類が例示される。
 また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiAsF、LiTaF、LiClO、LiCFSO等の電極の活物質層に添加され得る化合物を採用することができる。
 一方、ポリマー電解質は、電解液を含むゲル電解質と、電解液を含まない真性ポリマー電解質に分類される。
 ゲル電解質は、イオン伝導性ポリマーからなるマトリックスポリマーに、上記の液体電解質(電解液)が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導を遮断することが容易になる点で優れている。
 マトリックスポリマーとして用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、およびこれらの共重合体等が挙げられる。かようなポリアルキレンオキシド系ポリマーには、リチウム塩などの電解質塩がよく溶解しうる。
 ゲル電解質中の上記液体電解質(電解液)の割合としては、特に制限されるべきものではないが、イオン伝導度などの観点から、数質量%~98質量%程度とするのが望ましい。本実施形態では、電解液の割合が70質量%以上の、電解液が多いゲル電解質について、特に効果がある。
 なお、電解質層が液体電解質やゲル電解質や真性ポリマー電解質から構成される場合には、電解質層にセパレータを用いてもよい。セパレータ(不織布を含む)の具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜や多孔質の平板、更には不織布が挙げられる。
 真性ポリマー電解質は、上記のマトリックスポリマーに支持塩(リチウム塩)が溶解してなる構成を有し、可塑剤である有機溶媒を含まない。したがって、電解質層が真性ポリマー電解質から構成される場合には電池からの液漏れの心配がなく、電池の信頼性が向上しうる。
 ゲル電解質や真性ポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
 <集電板およびリード>
 電池外部に電流を取り出す目的で、集電板を用いてもよい。集電板は集電体やリードに電気的に接続され、電池外装材であるラミネートシートの外部に取り出される。
 集電板を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましく、より好ましくは軽量、耐食性、高導電性の観点からアルミニウム、銅などが好ましい。なお、正極集電板と負極集電板とでは、同一の材質が用いられてもよいし、異なる材質が用いられてもよい。
 正極端子リードおよび負極端子リードに関しても、必要に応じて使用する。正極端子リードおよび負極端子リードの材料は、公知のリチウムイオン二次電池で用いられる端子リードを用いることができる。なお、電池外装材29から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆するのが好ましい。
 <電池外装材>
 電池外装材29としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。
 なお、上記のリチウムイオン二次電池は、従来公知の製造方法により製造することができる。
 <リチウムイオン二次電池の外観構成>
 図2は、積層型の扁平なリチウムイオン二次電池の外観を表した斜視図である。
 図2に示すように、積層型の扁平なリチウムイオン二次電池50では、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極集電板58、負極集電板59が引き出されている。発電要素57は、リチウムイオン二次電池50の電池外装材52によって包まれ、その周囲は熱融着されており、発電要素57は、正極集電板58および負極集電板59を外部に引き出した状態で密封されている。ここで、発電要素57は、図1に示すリチウムイオン二次電池(積層型電池)10の発電要素21に相当するものである。発電要素57は、正極(正極活物質層)13、電解質層17および負極(負極活物質層)15で構成される単電池層(単セル)19が複数積層されたものである。
 なお、上記リチウムイオン二次電池は、積層型の扁平な形状のもの(ラミネートセル)に制限されるものではない。巻回型のリチウムイオン電池では、円筒型形状のもの(コインセル)や角柱型形状(角型セル)のもの、こうした円筒型形状のものを変形させて長方形状の扁平な形状にしたようなもの、更にシリンダー状セルであってもよいなど、特に制限されるものではない。上記円筒型や角柱型の形状のものでは、その外装材に、ラミネートフィルムを用いてもよいし、従来の円筒缶(金属缶)を用いてもよいなど、特に制限されるものではない。好ましくは、発電要素がアルミニウムラミネートフィルムで外装される。当該形態により、軽量化が達成されうる。
 また、図2に示す正極集電板58、負極集電板59の取り出しに関しても、特に制限されるものではない。正極集電板58と負極集電板59とを同じ辺から引き出すようにしてもよいし、正極集電板58と負極集電板59をそれぞれ複数に分けて、各辺から取り出すようにしてもよいなど、図2に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、集電板に変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。
 上記したように、本実施形態のリチウムイオン二次電池用の負極活物質を用いてなる負極並びにリチウムイオン二次電池は、電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの大容量電源として、好適に利用することができる。即ち、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に好適に利用することができる。
 なお、上記実施形態では、電気デバイスとして、リチウムイオン電池を例示したが、これに制限されるわけではなく、他のタイプの二次電池、さらには一次電池にも適用できる。また電池だけではなくキャパシタにも適用できる。
 本発明を、以下の実施例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
 はじめに、参考例として、本発明に係る電気デバイス用負極を構成する化学式(1)で表されるSi合金についての性能評価を行った。
 (参考例A):SiTiGeについての性能評価
 [1]負極の作製
 スパッタ装置として、独立制御方式の3元DCマグネトロンスパッタ装置(大和機器工業株式会社製、コンビナトリアルスパッタコーティング装置、ガン-サンプル間距離:約100mm)を使用し、厚さ20μmのニッケル箔から成る基板(集電体)上に、下記の条件のもとで、各組成を有する負極活物質合金の薄膜をそれぞれ成膜することによって、都合31種の負極サンプルを得た(参考例1~18および参考比較例1~13)。
 (1)ターゲット(株式会社高純度化学研究所製、純度:4N)
 Si:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製バッキングプレート付)
 Ti:50.8mm径、5mm厚さ
 Ge:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製バッキングプレート付)。
 (2)成膜条件
 ベース圧力:~7×10-6Pa
 スパッタガス種:Ar(99.9999%以上)
 スパッタガス導入量:10sccm
 スパッタ圧力:30mTorr
 DC電源:Si(185W)、Ti(0~150W)、Ge(0~120W)
 プレスパッタ時間:1min.
 スパッタ時間:10min.
 基板温度:室温(25℃)。
 すなわち、上記のようなSiターゲット、Geターゲット及びTiターゲットを使用し、スパッタ時間を10分に固定し、DC電源のパワーを上記の範囲でそれぞれ変化させることによって、Ni基板上にアモルファス状態の合金薄膜を成膜し、種々の組成の合金薄膜を備えた負極サンプルを得た。
 ここで、サンプル作製の数例を示せば、参考例14では、DC電源1(Siターゲット):185W、DC電源2(Geターゲット):100W、DC電源3(Tiターゲット):130Wとした。また、比較参考例2では、DC電源1(Siターゲット):185W、DC電源2(Geターゲット):100W、DC電源3(Tiターゲット):0Wとした。さらに、比較例9では、DC電源1(Siターゲット):185W、DC電源2(Geターゲット):0W、DC電源3(Tiターゲット):40Wとした。
 これら合金薄膜の成分組成を表1及び図3~7に示す。なお、得られた合金薄膜の分析は、下記の分析法、分析装置によった。
 (3)分析方法
 組成分析:SEM・EDX分析(JEOL社)、EPMA分析(JEOL社)
 膜厚測定(スパッタレート算出のため):膜厚計(東京インスツルメンツ)
 膜状態分析:ラマン分光測定(ブルカー社)。
 [2]電池の作製
 上記により得られた各負極サンプルとリチウム箔(本城金属株式会社製、直径15mm、厚さ200μm)から成る対極とをセパレータ(セルガード社製セルガード2400)を介して対向させたのち、電解液を注入することによってCR2032型コインセルをそれぞれ作製した。
 なお、上記電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を1:1の容積比で混合した混合非水溶媒中に、LiPF(六フッ化リン酸リチウム)を1Mの濃度となるように溶解させたものを用いた。
 [3]電池の充放電試験
 上記により得られたそれぞれの電池に対して下記の充放電試験を実施した。
 すなわち、充放電試験機(北斗電工株式会社製HJ0501SM8A)を使用し、300K(27℃)の温度に設定された恒温槽(エスペック株式会社製PFU-3K)中にて、充電過程(評価対象である負極へのLi挿入過程)では、定電流・定電圧モードとして、0.1mAにて2Vから10mVまで充電した。その後、放電過程(上記負極からのLi脱離過程)では、定電流モードとし、0.1mA、10mVから2Vまで放電した。以上の充放電サイクルを1サイクルとして、これを100回繰り返した。
 そして、50サイクル及び100サイクル目の放電容量を求め、1サイクル目の放電容量に対する維持率を算出した。この結果を表1に併せて示す。この際、放電容量は、合金重量当りで算出した値を示している。なお、「放電容量(mAh/g)」は、pureSi又は合金重量当りのものであり、Si-Ti-M合金(Si-M合金、pure SiまたはSi-Ti合金)へLiが反応する時の容量を示す。なお、本明細書中で「初期容量」と表記しているものが、初期サイクル(1サイクル目)の「放電容量(mAh/g)」に相当するものである。
 また、50サイクル目又は100サイクル目の「放電容量維持率(%)」は、「初期容量からどれだけ容量を維持しているか」の指標を表す。放電容量維持率(%)の計算式は下記の通りである。
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 表1より、17%以上90%未満のSiと、10%超83%未満のTiと、0%超73%未満のGeとを含む合金を有する負極活物質を備える参考例の電池は、749mAh/g以上の初期容量を有することがわかった。そして、これら参考例の電池は、50サイクル目で83%以上、100サイクル目でも40%以上の高い放電容量維持率を示すことがわかった。さらに、容量及びサイクル耐久性をより優れたものとする観点から、負極活物質は、17%以上90%未満のSiと、10%超83%未満のTiと、0%超73%未満のGeとを含む合金から構成されることが好ましいものと判明した。一方、比較参考例の電池は、実施例の電池に比べて、1サイクル目の放電容量が大きいことがあっても、放電容量維持率の低下が著しいことが判明した。このように、参考例の負極活物質を備える電池は、容量及びサイクル耐久性において優れていることが確認された。
 (参考例B):SiTiSnについての性能評価
 [1]負極の作製
 参考例1の(1)におけるターゲットの「Ge:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製バッキングプレート付)」を「Sn:50.8mm径、5mm厚さ」に変更し、(2)におけるDC電源の「Ge(0~120W)」を「Sn(0~40W)」に変更したことを除いては、参考例1と同様の方法で、都合40種の負極サンプルを作製した(参考例19~44および参考比較例14~27)。
 なお、前記(2)について、サンプル作製の数例を示せば、参考例35では、DC電源1(Siターゲット):185W、DC電源2(Snターゲット):30W、DC電源3(Tiターゲット):150Wとした。また、比較参考例15では、DC電源1(Siターゲット):185W、DC電源2(Snターゲット):22W、DC電源3(Tiターゲット):0Wとした。さらに、比較参考例20では、DC電源1(Siターゲット):185W、DC電源2(Snターゲット):0W、DC電源3(Tiターゲット):30Wとした。
 これら合金薄膜の成分組成を表2及び図8に示す。
 [2]電池の作製
 参考例1と同様の方法でCR2032型コインセルを作製した。
 [3]電池の充放電試験
 参考例1と同様の方法で電池の充放電試験を行った。この結果を表2に併せて示す。また、図12では1サイクル目の放電容量と合金組成の関係を示す。さらに、図13及び14では50サイクル及び100サイクル目の放電容量維持率と合金組成の関係をそれぞれ示す。なお、放電容量は、合金重量当りで算出した値を示している。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 以上の結果、参考例の電池においては、少なくとも1000mAh/gを超える初期容量を備え、50サイクル後では91%以上、100サイクル後でも43%以上の放電容量維持率を示すことが確認された。
 (参考例C):SiTiTiについての性能評価
 [1]負極の作製
 参考例1における(1)および(2)のDC電源の条件を下記のように変更したことを除いては、参考例1と同様の方法で、都合40種の負極サンプルを作製した(参考例45~56および参考比較例28~40)。
 (1)ターゲット(株式会社高純度化学研究所製)
 Si(純度:4N):直径2インチ、厚さ3mm(厚さ2mmの無酸素銅製バッキングプレート付)
 Ti(純度:5N):直径2インチ、厚さ5mm
 Zn(純度:4N):直径2インチ、厚さ5mm。
 (2)成膜条件(DC電源について)
 DC電源:Si(185W)、Ti(50~200W)、Zn(30~90W)
 ここで、サンプル作製の1例を示せば、参考例49では、DC電源2(Siターゲット):185W、DC電源1(Tiターゲット):150W、DC電源3(Znターゲット):60Wとした。
 [2]電池の作製
 参考例1と同様の方法でCR2032型コインセルを作製した。
 [3]電池の充放電試験
 50サイクル目の放電容量維持率を下記数式により算出したことを除いては、参考例1と同様の方法で電池の充放電試験を行った。この結果を表3に併せて示す。
Figure JPOXMLDOC01-appb-M000028
 なお、初期サイクル~10サイクル、通常は5~10サイクルの間で最大放電容量を示す。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 表3の結果から、参考例45~56の電池では、初期容量(1サイクル目の放電容量)が、既存のカーボン系負極活物質(炭素・黒鉛系負極材料)では実現不可能な格段に高い高容量化を実現できることが確認できた。同様に既存のSn系合金負極活物質と比較しても同様以上の高容量(初期容量690mAh/g以上)を実現できることが確認できた。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性に劣る既存のSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性を実現できることが確認できた。
 具体的には、50サイクル目での高い放電容量維持率87%以上、好ましくは90%以上、より好ましくは96%以上という格段に優れたサイクル耐久性を実現できることが確認できた。このことから、参考例45~56の電池では、比較参考例28~40の電池に比して50サイクル目の放電容量維持率が高く、高い初期容量の低下を抑えて高容量をより効率良く維持できていることがわかった。
 [4]電池の初期サイクル
 参考例48および参考比較例34、37の評価用電極を用いた評価用セル(CR2032型コインセル)につき、[3]と同様の充放電条件で初期サイクルを実施した。初期サイクルの放電過程での電圧(V)に対するdQ/dV曲線を図22に示す。
 図22から、dQ/dVの解釈として、低電位(0.4V以下)の領域での下に凸のピーク本数が減少し、曲線が滑らかになっていることから、Si以外に元素(Ti、Zn)を添加することでLi-Si合金の結晶化を抑制していることが確認できた。ここで、Qは電池容量(放電容量)を示す。
 詳しくは、比較参考例34(pureSiの金属薄膜)の0.4V近傍での下に凸の急峻なピークが電解液の分解による変化を示している。そして、0.35V、0.2V及び0.05V近傍での下に凸の緩やかなピークが、それぞれアモルファス状態から結晶化状態に変化していることを示している。
 一方、Si以外に元素(Ti、Zn)を添加した参考例48(Si-Ti-Znの3元系合金薄膜)と比較参考例37(Si-Tiの2元系合金薄膜)では、それぞれ2.5Vと5V近傍に、電解液の分解による変化を示す下に凸の急峻なピークが確認できた。但し、それ以外にアモルファス状態から結晶化状態に変化していることを示すような、下に凸の緩やかなピークはなく、Li-Si合金の結晶化を抑制できていることが確認できた。特に上記サンプル20からSi以外の添加元素としてTiのみでもLi-Si合金の結晶化を抑制できていることが確認できた。但し、上記表3より上記比較参考例37のSi-Tiの2元系合金薄膜では、50サイクル後の放電容量維持率(%)の低下(劣化)までは抑制できないことも確認できた。
 以上の実験結果から、本実施例の3元系合金が高いサイクル特性、特に、50サイクル目での高い放電容量維持率を維持しつつ、かつ1サイクル目の放電容量も高くバランスよい特性を示すメカニズム(作用機序)につき以下のように推測(推定)することができる。
 1.[4]にもあるように、三元系合金のdQ/dV曲線を見ると、低電位領域(~0.6V)でのピークが合金でないpure-Siのものと比べて少なく、滑らかである。これは、電解液の分解を抑制し、さらにLi-Si合金の結晶相への相転移を抑制することを意味していると思われる(図22参照)。
 2.電解液の分解については、この分解によってサイクル数が進むにつれて、全ての参考例45~56で放電容量の減少がおきることがわかる(表3参照)。しかしながら、放電容量維持率で比較した場合、三元系合金の放電容量維持率は、比較参考例34の合金でないpure-Siと比べて格段に高い放電容量維持率を実現できていることがわかる。更に既存の高容量のSn系負極活物質や特許文献1記載の多元系合金負極活物質、更には参照用の二元系合金負極活物質と比べても高い放電容量維持率を実現できていることがわかる。その結果、放電容量維持率が高い状態を実現することで、サイクル特性が向上する傾向があることがわかる(表3の50サイクル目の放電容量維持率を参照のこと)。
 3.Li-Si合金の結晶相への相転移については、この相転移が起きると活物質の体積変化が大きくなる。それらによって、活物質自身の破壊、電極の破壊と連鎖が始まることになる。[4]の図22のdQ/dV曲線をみると、本実施形態のサンプル4では、相転移に起因したピークが少なく、滑らかになっていることから、相転移を抑制できると判断できる。
 以上のように、参考例の結果から、Li合金化の際、第1添加元素Tiおよび第2添加元素種Mの選定が極めて有用かつ有効であることがわかった。かかる第1及び第2添加元素の選定により、Li合金化の際に、アモルファス-結晶の相転移を抑制することで、高容量・高サイクル耐久性を有するSi合金系負極活物質を提供できる。その結果、高容量でサイクル耐久性がよいリチウムイオン二次電池を提供できることがわかった。
 なお、例えば、参考例3において、比較参考例28~40の参照電池では高容量化は実現できるが、当該高容量化とトレードオフの関係にあるサイクル耐久性については放電容量維持率が47~85%と十分でないことがわかった。このことから参照電池では、サイクル耐久性の低下(劣化)が十分に抑制できないことがわかった。即ち、Si金属又は2元系合金では、トレードオフの関係にある高容量化とサイクル耐久性をバランスよく発現できるものは得られないことが確認できた。
 次に、実施例として、上記Si合金のうちSi42TiSn51を負極活物質として用い、これを各種のバインダとともに含む負極活物質層を有する電気デバイス用負極についての性能評価を行った。
 なお、前記Si42TiSn51と以外のその他の本発明に用いられる合金(SiTiGe、SiTiZn、およびSiTiSnAのうち、Si42TiSn51以外のもの)についてもSi42TiSn51を用いた下記の実施例と同一または類似する結果が得られる。この理由は、参考例に示されるように、前記その他の本発明に用いられる合金は、Si42TiSn51と同様の特性を有するためである。すなわち、同様の特性を有する合金を用いた場合には、合金の種類を変更したとしても同様の結果が得られうる。
 [Si合金の製造]
 Si合金は、メカニカルアロイ法(または、アークプラズマ溶融法)により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置P-6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールと各合金の各原料粉末を投入し、600rpm、48hかけて合金化させた。
 [負極の作製]
 負極活物質である上記で製造したSi合金(Si42TiSn51、粒子径0.3μm)80質量部と、導電助剤であるアセチレンブラック5質量部と、バインダであるポリアミドイミド(E弾性率2.00GPa)15質量部と、を混合し、N-メチルピロリドンに分散させて負極スラリーを得た。次いで、得られた負極スラリーを、銅箔よりなる負極集電体の両面にそれぞれ負極活物質層の厚さが30μmとなるように均一に塗布し、真空中で24時間乾燥させて、負極を得た。
 [正極の作製]
 正極活物質であるLi1.85Ni0.18Co0.10Mn0.87を、特開2012-185913号公報の実施例1(段落0046)に記載の手法により作製した。そして、この正極活物質90質量部と、導電助剤であるアセチレンブラック5質量部と、バインダであるポリフッ化ビニリデン5質量部と、を混合し、N-メチルピロリドンに分散させて正極スラリーを得た。次いで、得られた正極スラリーを、アルミニウム箔よりなる正極集電体の両面にそれぞれ正極活物質層の厚さが30μmとなるように均一に塗布し、乾燥させて、正極を得た。
 [電池の作製]
 上記で作製した正極と、負極とを対向させ、この間にセパレータ(ポリオレフィン、膜厚20μm)を配置した。次いで、負極、セパレータ、および正極の積層体をコインセル(CR2032、材質:ステンレス鋼(SUS316))の底部側に配置した。さらに、正極と負極との間の絶縁性を保つためガスケットを装着し、下記電解液をシリンジにより注入し、スプリングおよびスペーサを積層し、コインセルの上部側を重ねあわせ、かしこめることにより密閉して、リチウムイオン二次電池を得た。
 なお、上記電解液としては、エチレンカーボネート(EC)およびジエチルカーボネート(DEC)を、EC:DC=1:2(体積比)の割合で混合した有機溶媒に、支持塩である六フッ化リン酸リチウム(LiPF)を、濃度が1mol/Lとなるように溶解させたものを用いた。
 (実施例2)
 バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率2.10GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
 (実施例3)
 バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率3.30GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
 (実施例4)
 バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率3.73GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
 (実施例5)
 バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率7.00GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
 (比較例1)
 バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリフッ化ビニリデン(PVdF)(E弾性率1.00GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
 (比較例2)
 バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率7.40GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
 (比較例3)
 負極活物質として、Si合金に代えて純Siを用いたことを除いては、実施例4と同様の方法で負極および電池を作製した。
 (比較例4)
 負極活物質として、Si合金に代えて純Siを用いたことを除いては、比較例1と同様の方法で負極および電池を作製した。
 <性能評価>
 [サイクル特性の評価]
 上記で作製した各リチウムイオン二次電池について以下の方法でサイクル特性評価を行った。各電池について、30℃の雰囲気下、定電流方式(CC、電流:0.1C)で2.0Vまで充電し、10分間休止させた後、定電流(CC、電流:0.1C)で0.01Vまで放電し、放電後10分間休止させた。この充放電過程を1サイクルとし、50サイクルの充放電試験を行い、1サイクル目の放電容量に対する50サイクル目の放電容量の割合(放電容量維持率[%])を求めた。得られた放電容量維持率の結果を、比較例1の放電容量維持率を100としたときの相対値(放電容量維持率の向上率)として、下記の表4および図23に示す。
Figure JPOXMLDOC01-appb-T000031
 上記表4および図23の結果から、所定範囲のE弾性率を有するバインダを含む実施例1~5に係る電池は、高いサイクル特性を示すことが理解される。
 本出願は、2012年11月22日に出願された日本国特許出願第2012-256870号に基づいており、その開示内容は、参照により全体として引用されている。
 10、50 リチウムイオン二次電池(積層型電池)、
 11 正極集電体、
 12 負極集電体、
 13 正極活物質層、
 15 負極活物質層、
 17 電解質層、
 19 単電池層、
 21、57 発電要素、
 25、58 正極集電板、
 27、59 負極集電板、
 29、52 電池外装材(ラミネートフィルム)。

Claims (19)

  1.  集電体と、前記集電体の表面に配置された負極活物質、導電助剤、およびバインダを含む電極層と、を有する電気デバイス用負極であって、
     前記負極活物質が、下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)において、
     Mは、Ge、Sn、Zn、およびこれらの組み合わせからなる群から選択される少なくとも1つの金属であり、
     Aは、不可避不純物であり、
     x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。)
    で表される合金を含み、
     前記バインダが、1.00GPa超7.40GPa未満のE弾性率を有する樹脂を含む、電気デバイス用負極。
  2.  前記樹脂のE弾性率が2.10以上7.00以下である、請求項1に記載の電気デバイス用負極。
  3.  前記樹脂のE弾性率が3.30以上3.73以下である、請求項2に記載の電気デバイス用負極。
  4.  前記樹脂が、ポリイミド、ポリアミドイミドおよびポリアミドからなる群から選択される1種または2種以上である、請求項1~3のいずれか1項に記載の電気デバイス用負極。
  5.  前記Mが、Geであり、
     前記xが17以上90未満であり、前記yが10超83未満であり、zが0超73未満である、請求項1~4のいずれか1項に記載の電気デバイス用負極。
  6.  前記xが77以下であり、前記yが20以上であり、前記zが3以上63以下である、請求項5に記載の電気デバイス用負極。
  7.  前記yが68以下である、請求項6に記載の電気デバイス用負極。
  8.  前記xが50以下である、請求項7に記載の電気デバイス用負極。
  9.  前記xが46以下であり、前記yが51以上、前記zが32以下である、請求項8に記載の電気デバイス用負極。
  10.  前記MがSnであり、
     前記x、y、およびzが、下記数式(1)または(2):
    Figure JPOXMLDOC01-appb-M000002
    を満たす、請求項1~4のいずれか1項に記載の電気デバイス用負極。
  11.  前記MがSnであり、
     前記x、y、およびzが、下記数式(3)または(4):
    Figure JPOXMLDOC01-appb-M000003
    を満たす、請求項10に記載の電気デバイス用負極。
  12.  前記MがSnであり、
     前記x、y、およびzが、下記数式(5)または(6):
    Figure JPOXMLDOC01-appb-M000004
    を満たす、請求項11に記載の電気デバイス用負極。
  13.  前記MがSnであり、
     前記x、y、およびzが、下記数式(7):
    Figure JPOXMLDOC01-appb-M000005
    を満たす、請求項12に記載の電気デバイス用負極。
  14.  前記MがZnであり、
     前記x、y、およびzが、下記数式(8):
    Figure JPOXMLDOC01-appb-M000006
    を満たす、請求項1~4のいずれか1項に記載の電気デバイス用負極。
  15.  前記x、y、およびzが、下記数式(9):
    Figure JPOXMLDOC01-appb-M000007
    を満たす、請求項14に記載の電気デバイス用負極。
  16.  前記x、y、およびzが、下記数式(10):
    Figure JPOXMLDOC01-appb-M000008
    を満たす、請求項15に記載の電気デバイス用負極。
  17.  前記x、y、およびzが、下記数式(11):
    Figure JPOXMLDOC01-appb-M000009
    を満たす、請求項16に記載の電気デバイス用負極。
  18.  前記x、y、およびzが、下記数式(12):
    Figure JPOXMLDOC01-appb-M000010

    を満たす、請求項17に記載の電気デバイス用負極。
  19.  請求項1~18のいずれか1項に記載の電気デバイス用負極を含む、電気デバイス。
PCT/JP2013/081121 2012-11-22 2013-11-19 電気デバイス用負極、及びこれを用いた電気デバイス WO2014080888A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13857013.0A EP2924777B1 (en) 2012-11-22 2013-11-19 Negative electrode for electrical device and electrical device provided with same
KR1020157012650A KR101709027B1 (ko) 2012-11-22 2013-11-19 전기 디바이스용 부극, 및 이것을 사용한 전기 디바이스
US14/646,218 US20150303465A1 (en) 2012-11-22 2013-11-19 Negative electrode for electric device and electric device using the same
JP2014548567A JP6020591B2 (ja) 2012-11-22 2013-11-19 リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
CN201380061071.6A CN104813511B (zh) 2012-11-22 2013-11-19 电气设备用负极、及使用其的电气设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-256870 2012-11-22
JP2012256870 2012-11-22

Publications (1)

Publication Number Publication Date
WO2014080888A1 true WO2014080888A1 (ja) 2014-05-30

Family

ID=50776070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081121 WO2014080888A1 (ja) 2012-11-22 2013-11-19 電気デバイス用負極、及びこれを用いた電気デバイス

Country Status (6)

Country Link
US (1) US20150303465A1 (ja)
EP (1) EP2924777B1 (ja)
JP (1) JP6020591B2 (ja)
KR (1) KR101709027B1 (ja)
CN (1) CN104813511B (ja)
WO (1) WO2014080888A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098207A1 (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
JP2016115630A (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
WO2016098206A1 (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
WO2016098213A1 (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
JP2016115632A (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス用負極、およびこれを用いた電気デバイス
CN107112513A (zh) * 2014-12-17 2017-08-29 日产自动车株式会社 电气设备用负极活性物质和使用其的电气设备
CN107112514A (zh) * 2014-12-17 2017-08-29 日产自动车株式会社 电气设备用负极活性物质以及使用其的电气设备
JPWO2016098216A1 (ja) * 2014-12-17 2017-09-28 日産自動車株式会社 電気デバイス
JPWO2016098215A1 (ja) * 2014-12-17 2017-10-19 日産自動車株式会社 電気デバイス
JPWO2016098211A1 (ja) * 2014-12-17 2017-11-24 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751448B2 (ja) 2011-05-25 2015-07-22 日産自動車株式会社 リチウムイオン二次電池用負極活物質
CN104813515B (zh) 2012-11-22 2017-12-01 日产自动车株式会社 电气设备用负极、及使用其的电气设备
WO2014080895A1 (ja) 2012-11-22 2014-05-30 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
WO2015029829A1 (ja) * 2013-08-26 2015-03-05 日本ゼオン株式会社 電気化学素子用造粒粒子の製造方法、電気化学素子用電極及び電気化学素子
CN105934847B (zh) 2014-01-24 2019-11-05 日产自动车株式会社 电器件
WO2015111189A1 (ja) 2014-01-24 2015-07-30 日産自動車株式会社 電気デバイス
CN108352513B (zh) * 2015-11-10 2019-10-01 日产自动车株式会社 电气设备用负极活性物质和使用了其的电气设备
KR20180040334A (ko) * 2016-10-12 2018-04-20 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
CN111276668B (zh) * 2018-12-05 2023-03-10 丰田自动车株式会社 全固体电池用电极层叠体及其制造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004031A1 (ja) * 2002-06-26 2004-01-08 Sanyo Electric Co., Ltd. リチウム二次電池用負極及びリチウム二次電池
JP2004349016A (ja) * 2003-05-20 2004-12-09 Matsushita Electric Ind Co Ltd 非水電解質二次電池の充放電方法
JP2007149604A (ja) * 2005-11-30 2007-06-14 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
JP2007305424A (ja) * 2006-05-11 2007-11-22 Sony Corp 負極活物質およびそれを用いた電池
JP2009517850A (ja) 2005-12-01 2009-04-30 スリーエム イノベイティブ プロパティズ カンパニー ケイ素含有量が高いアモルファス合金に基づく電極組成物
JP2009224239A (ja) * 2008-03-18 2009-10-01 Nissan Motor Co Ltd 電池用電極
JP2010135336A (ja) * 2003-03-26 2010-06-17 Canon Inc リチウム二次電池用の電極材料、該電極材料を有する電極構造体、及び該電極構造体を有する二次電池
JP2010205609A (ja) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd 電極およびこれを用いた電池
WO2010150513A1 (ja) * 2009-06-23 2010-12-29 キヤノン株式会社 電極構造体及び蓄電デバイス
JP2011048969A (ja) * 2009-08-26 2011-03-10 Toyobo Co Ltd リチウムイオン二次電池用負極及びこれを用いた二次電池
WO2011065503A1 (ja) * 2009-11-27 2011-06-03 日産自動車株式会社 電気デバイス用Si合金負極活物質
JP2012185913A (ja) 2011-03-03 2012-09-27 Nissan Motor Co Ltd リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2012161190A1 (ja) * 2011-05-25 2012-11-29 日産自動車株式会社 電気デバイス用負極活物質、電気デバイス用負極及び電気デバイス
WO2013099441A1 (ja) * 2011-12-27 2013-07-04 日産自動車株式会社 電気デバイス用負極活物質

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906238B2 (en) * 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP5256816B2 (ja) * 2007-03-27 2013-08-07 学校法人神奈川大学 リチウムイオン電池用正極材料
US9876221B2 (en) * 2010-05-14 2018-01-23 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004031A1 (ja) * 2002-06-26 2004-01-08 Sanyo Electric Co., Ltd. リチウム二次電池用負極及びリチウム二次電池
JP2010135336A (ja) * 2003-03-26 2010-06-17 Canon Inc リチウム二次電池用の電極材料、該電極材料を有する電極構造体、及び該電極構造体を有する二次電池
JP2004349016A (ja) * 2003-05-20 2004-12-09 Matsushita Electric Ind Co Ltd 非水電解質二次電池の充放電方法
JP2007149604A (ja) * 2005-11-30 2007-06-14 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
JP2009517850A (ja) 2005-12-01 2009-04-30 スリーエム イノベイティブ プロパティズ カンパニー ケイ素含有量が高いアモルファス合金に基づく電極組成物
JP2007305424A (ja) * 2006-05-11 2007-11-22 Sony Corp 負極活物質およびそれを用いた電池
JP2009224239A (ja) * 2008-03-18 2009-10-01 Nissan Motor Co Ltd 電池用電極
JP2010205609A (ja) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd 電極およびこれを用いた電池
WO2010150513A1 (ja) * 2009-06-23 2010-12-29 キヤノン株式会社 電極構造体及び蓄電デバイス
JP2011048969A (ja) * 2009-08-26 2011-03-10 Toyobo Co Ltd リチウムイオン二次電池用負極及びこれを用いた二次電池
WO2011065503A1 (ja) * 2009-11-27 2011-06-03 日産自動車株式会社 電気デバイス用Si合金負極活物質
JP2012185913A (ja) 2011-03-03 2012-09-27 Nissan Motor Co Ltd リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2012161190A1 (ja) * 2011-05-25 2012-11-29 日産自動車株式会社 電気デバイス用負極活物質、電気デバイス用負極及び電気デバイス
WO2013099441A1 (ja) * 2011-12-27 2013-07-04 日産自動車株式会社 電気デバイス用負極活物質

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098207A1 (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
JP2016115630A (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
WO2016098206A1 (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
WO2016098213A1 (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
JP2016115632A (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス用負極、およびこれを用いた電気デバイス
CN107112513A (zh) * 2014-12-17 2017-08-29 日产自动车株式会社 电气设备用负极活性物质和使用其的电气设备
CN107112514A (zh) * 2014-12-17 2017-08-29 日产自动车株式会社 电气设备用负极活性物质以及使用其的电气设备
JPWO2016098216A1 (ja) * 2014-12-17 2017-09-28 日産自動車株式会社 電気デバイス
JPWO2016098207A1 (ja) * 2014-12-17 2017-09-28 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
JPWO2016098206A1 (ja) * 2014-12-17 2017-10-12 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
JPWO2016098215A1 (ja) * 2014-12-17 2017-10-19 日産自動車株式会社 電気デバイス
JPWO2016098213A1 (ja) * 2014-12-17 2017-11-02 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
JPWO2016098211A1 (ja) * 2014-12-17 2017-11-24 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
KR101913054B1 (ko) * 2014-12-17 2018-10-29 닛산 지도우샤 가부시키가이샤 전기 디바이스용 부극 활물질, 및 이것을 사용한 전기 디바이스
US10297360B2 (en) 2014-12-17 2019-05-21 Nissan Motor Co., Ltd. Negative electrode active material for electric device and electric device using the same
CN107112513B (zh) * 2014-12-17 2019-07-09 日产自动车株式会社 电气设备用负极活性物质和使用其的电气设备
US10516161B2 (en) 2014-12-17 2019-12-24 Nissan Motor Co., Ltd. Negative electrode active material for electric device and electric device using the same
CN107112514B (zh) * 2014-12-17 2020-02-28 日产自动车株式会社 电气设备用负极活性物质以及使用其的电气设备
EP3236516B1 (en) * 2014-12-17 2020-08-26 Nissan Motor Co., Ltd. Negative-electrode active material for electrical device, and electrical device using same
EP3236515B1 (en) * 2014-12-17 2020-09-16 Nissan Motor Co., Ltd. Negative electrode active material for electrical device, and electrical device using same

Also Published As

Publication number Publication date
JPWO2014080888A1 (ja) 2017-01-05
KR101709027B1 (ko) 2017-02-21
EP2924777A1 (en) 2015-09-30
JP6020591B2 (ja) 2016-11-02
EP2924777B1 (en) 2018-08-22
CN104813511A (zh) 2015-07-29
US20150303465A1 (en) 2015-10-22
CN104813511B (zh) 2017-03-22
EP2924777A4 (en) 2015-10-28
KR20150070323A (ko) 2015-06-24

Similar Documents

Publication Publication Date Title
JP6020591B2 (ja) リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP5333605B2 (ja) 電気デバイス用Si合金負極活物質
JP5387690B2 (ja) 電気デバイス用Si合金負極活物質
JP6040996B2 (ja) リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP6032288B2 (ja) 電気デバイス用負極、及びこれを用いた電気デバイス
JP6024760B2 (ja) リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP6052299B2 (ja) 電気デバイス用負極、及びこれを用いた電気デバイス
JP6098719B2 (ja) 電気デバイス用負極活物質、およびこれを用いた電気デバイス
WO2012070306A1 (ja) 電気デバイス用Si合金負極活物質
JPWO2014080895A1 (ja) リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP6028811B2 (ja) リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP6040997B2 (ja) リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP6015769B2 (ja) リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP6052298B2 (ja) 電気デバイス用負極、及びこれを用いた電気デバイス
JP6040994B2 (ja) リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
WO2014080900A1 (ja) 電気デバイス用負極、及びこれを用いた電気デバイス
JP2014241263A (ja) 電気デバイス用負極、およびこれを用いた電気デバイス
JP6112199B2 (ja) 電気デバイス用負極活物質、およびこれを用いた電気デバイス
WO2014199783A1 (ja) 電気デバイス用負極活物質、およびこれを用いた電気デバイス
WO2014080898A1 (ja) 電気デバイス用負極、及びこれを用いた電気デバイス
WO2014080903A1 (ja) 電気デバイス用負極、及びこれを用いた電気デバイス
WO2014080902A1 (ja) 電気デバイス用負極、及びこれを用いた電気デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857013

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20157012650

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013857013

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14646218

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014548567

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE