JP6252602B2 - 電気デバイス - Google Patents

電気デバイス Download PDF

Info

Publication number
JP6252602B2
JP6252602B2 JP2015558669A JP2015558669A JP6252602B2 JP 6252602 B2 JP6252602 B2 JP 6252602B2 JP 2015558669 A JP2015558669 A JP 2015558669A JP 2015558669 A JP2015558669 A JP 2015558669A JP 6252602 B2 JP6252602 B2 JP 6252602B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015558669A
Other languages
English (en)
Other versions
JPWO2015111192A1 (ja
Inventor
荻原 航
航 荻原
山本 伸司
伸司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of JPWO2015111192A1 publication Critical patent/JPWO2015111192A1/ja
Application granted granted Critical
Publication of JP6252602B2 publication Critical patent/JP6252602B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、電気デバイスに関する。本発明に係る電気デバイスは、例えば、二次電池やキャパシタ等として電気自動車、燃料電池車およびハイブリッド電気自動車等の車両のモータ等の駆動用電源や補助電源に用いられる。
近年、地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池などの電気デバイスの開発が盛んに行われている。
モータ駆動用二次電池としては、携帯電話やノートパソコン等に使用される民生用リチウムイオン二次電池と比較して極めて高い出力特性、および高いエネルギーを有することが求められている。従って、全ての電池の中で最も高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。
リチウムイオン二次電池は、一般に、バインダを用いて正極活物質等を正極集電体の両面に塗布した正極と、バインダを用いて負極活物質等を負極集電体の両面に塗布した負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。
従来、リチウムイオン二次電池の負極には充放電サイクルの寿命やコスト面で有利な炭素・黒鉛系材料が用いられてきた。しかし、炭素・黒鉛系の負極材料ではリチウムイオンの黒鉛結晶中への吸蔵・放出により充放電がなされるため、最大リチウム導入化合物であるLiCから得られる理論容量372mAh/g以上の充放電容量が得られないという欠点がある。このため、炭素・黒鉛系負極材料で車両用途の実用化レベルを満足する容量、エネルギー密度を得るのは困難である。
これに対し、負極にLiと化合物を形成するSiO(0<x<2)材料を用いた電池は、従来の炭素・黒鉛系負極材料と比較しエネルギー密度が向上するため、車両用途における負極材料として期待されている。例えば、SiOで表される化学組成を有するケイ素酸化物は、微視的にみると、Si(単結晶のナノ粒子)と非晶質(アモルファス)SiOとが相分離して存在する。
ケイ素酸化物は、四面体構造を単位構造として有し、SiO以外のケイ素酸化物(中間酸化物)は、四面体の頂点の酸素数1個、2個及び3個に対応して、SiO、SiOおよびSiと表すことができるが、これらの中間酸化物は熱力学的に不安定で単結晶として存在することは極めて難しい。よって、SiOは、単位構造が不規則に配列した非晶質構造で構成され、さらに、この非晶質構造は、複数の非晶質化合物が界面を形成せずに構成される非晶質構造であり、主として均質な非晶質構造部分で構成されている。したがって、SiOでは、Siナノ粒子が非晶質のSiOに分散した構造を有している。
このSiOの場合、充放電に関与できるのはSiのみであり、SiOは充放電に関与しない。したがって、SiOは、これらの平均組成を表すものである。SiOでは、Siが反応式(A)のように1molあたり4.4molのリチウムイオンを吸蔵放出し、Li22Si(=Li4.4Si)という理論容量4200mAh/gの可逆容量成分を生成する一方で、SiOが反応式(B)のように1molあたり4.3molのリチウムイオンを吸蔵放出し、初回のLi吸蔵時にLi4.4Siとともに不可逆容量を生じる原因となるLiSiOを生成する点が大きな問題である。
ところで、Liを含有するリチウムシリケート化合物として、例えば、LiSiO、LiSiO、LiSi、LiSi、LiSi11などの、LiSiO(0<y、0<x<2)が挙げられるが、これらLiSiOは電子伝導性が極めて小さく、さらに、SiOが電子伝導性を有しないため、負極の抵抗が上昇するという問題がある。その結果、リチウムイオンを負極活物質に脱離および挿入させることが、極めて困難になる。
とは言え、負極にLiと合金化する材料を用いたリチウムイオン二次電池は、充放電時の負極での膨張収縮が大きい。例えば、リチウムイオンを吸蔵した場合の体積膨張は、黒鉛材料では約1.2倍であるのに対し、Si材料ではSiとLiが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起こすため、電極のサイクル寿命を低下させる問題があった。また、Si負極活物質の場合、電池の容量とサイクル耐久性とはトレードオフの関係にあり、高容量を示しつつ高サイクル耐久性を向上させることが困難であるといった問題があった。
こうした問題を解決すべく、SiOと黒鉛材料とを含む、リチウムイオン二次電池用の負極が提案されている(例えば、特許文献1を参照)。かかる特許文献1に記載の発明では、段落「0018」にSiOの含有量を最小限にすることで、高容量の他に、良好なサイクル寿命を示すことが記載されている。
特表2009−517850号公報
上記特許文献1に記載のSiOと炭素材料とを含む負極を用いたリチウムイオン二次電池の場合、良好なサイクル特性を示すことができるとされている。しかしながら、本発明者らの検討によれば、固溶体正極活物質を用いた正極に、このような負極を組み合わせた場合には、必ずしも十分なサイクル耐久性を達成することが難しいことが判明した。
そこで、本発明は、固溶体正極活物質を用いた正極を有するリチウムイオン二次電池等の電気デバイスにおいて、サイクル耐久性をよりいっそう向上させうる手段を提供することを目的とする。
本発明者らは、上記課題を解決するため、鋭意研究を行った。その結果、Siを含有する負極と、固溶体正極活物質を含有する正極とを使用することによって、上記課題が解決されうることを見出し、本発明を完成させるに至った。
すなわち、本発明は、正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、電解液が含浸されてなるセパレータとを含む発電要素を有する電気デバイスに関するものである。
そして、前記負極活物質層は、下記式(1)で表される負極活物質を含有する。
式中、Si材料は、アモルファスSiO粒子とSi粒子との混合体であるSiO(xはSiの原子価を満足する酸素数を表す)およびSi含有合金からなる群から選択される1種または2種以上であり、α(Si材料)およびβ(炭素材料)は負極活物質層におけるSi材料および炭素材料の重量%をそれぞれ表し、80≦α(Si材料)+β(炭素材料)≦98、3≦α(Si材料)≦40、40≦β(炭素材料)≦95である。
さらに、前記正極活物質層は、下記式(2)で表される正極活物質を含有する。
式中、e(固溶体正極活物質)は正極活物質層における固溶体正極活物質の重量%を表し、80≦e(固溶体正極活物質)≦98である。
この際、前記固溶体正極活物質は、下記式(3)で表される組成を基本構造として有するものである。
式中、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である。
そして、前記電解液は、1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシド(DDTO)およびジフルオロリン酸リチウム(LiPO)を含有する点に特徴の1つがある。
本発明によれば、LiPOが電池電圧として2V以下の領域で先に正負極に作用してSEI被膜を形成する。続いて、DDTOが電池電圧として2〜3Vの領域で負極に作用することで、負極に良好なSEI被膜が形成される。その結果として、サイクル耐久性に優れる電気デバイスが提供されうる。
本発明に係る電気デバイスの一実施形態である、扁平型(積層型)の双極型でない非水電解質リチウムイオン二次電池の基本構成を示す断面概略図である。 本発明に係る電気デバイスの代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。 実施例1、比較例6および比較例8で作製された電池についてのdQ/dV挙動を示すグラフである。
本発明の一形態によれば、正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、電解液が含浸されてなるセパレータとを含む発電要素を有する電気デバイスであって、
前記負極活物質層が、下記式(1):
式中、Si材料は、アモルファスSiO粒子とSi粒子との混合体であるSiO(xはSiの原子価を満足する酸素数を表す)およびSi含有合金からなる群から選択される1種または2種以上であり、α(Si材料)およびβ(炭素材料)は負極活物質層におけるSi材料および炭素材料の重量%をそれぞれ表し、80≦α(Si材料)+β(炭素材料)≦98、3≦α(Si材料)≦40、40≦β(炭素材料)≦95である、
で表される負極活物質を含有し、
前記正極活物質層が、下記式(2):
式中、e(固溶体正極活物質)は正極活物質層における固溶体正極活物質の重量%を表し、80≦e(固溶体正極活物質)≦98である、
で表される正極活物質を含有し、この際、前記固溶体正極活物質は、下記式(3):
式中、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である、
で表される組成を基本構造として有し、
前記電解液は、1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシドおよびジフルオロリン酸リチウムを含有する、電気デバイスが提供される。
以下、本発明に係る電気デバイスの基本的な構成を説明する。本実施形態では、電気デバイスとしてリチウムイオン二次電池を例示して説明する。
まず、本発明に係る電気デバイスを用いてなるリチウムイオン二次電池では、セル(単電池層)の電圧が大きく、高エネルギー密度、高出力密度が達成できる。そのため本実施形態のリチウムイオン二次電池は、車両の駆動電源用や補助電源用として優れている。その結果、車両の駆動電源用等のリチウムイオン二次電池として好適に利用できる。このほかにも、携帯電話などの携帯機器向けのリチウムイオン二次電池にも十分に適用可能である。
上記リチウムイオン二次電池を形態・構造で区別した場合には、例えば、積層型(扁平型)電池、巻回型(円筒型)電池など、従来公知のいずれの形態・構造にも適用し得るものである。積層型(扁平型)電池構造を採用することで簡単な熱圧着などのシール技術により長期信頼性を確保でき、コスト面や作業性の点では有利である。
また、リチウムイオン二次電池内の電気的な接続形態(電極構造)で見た場合、非双極型(内部並列接続タイプ)電池および双極型(内部直列接続タイプ)電池のいずれにも適用しうるものである。
リチウムイオン二次電池内の電解質層の種類で区別した場合には、電解質層に非水系の電解液等の溶液電解質を用いた溶液電解質型電池、電解質層に高分子電解質を用いたポリマー電池など従来公知のいずれの電解質層のタイプにも適用しうるものである。該ポリマー電池は、さらに高分子ゲル電解質(単にゲル電解質ともいう)を用いたゲル電解質型電池、高分子固体電解質(単にポリマー電解質ともいう)を用いた固体高分子(全固体)型電池に分けられる。
したがって、以下の説明では、本実施形態のリチウムイオン二次電池の例として、非双極型(内部並列接続タイプ)リチウムイオン二次電池について図面を用いてごく簡単に説明する。ただし、本発明に係る電気デバイスおよび本実施形態に係るリチウムイオン二次電池の技術的範囲が、これらに制限されるべきではない。
<電池の全体構造>
図1は、本発明の電気デバイスの代表的な一実施形態である、扁平型(積層型)のリチウムイオン二次電池(以下、単に「積層型電池」ともいう)の全体構造を模式的に表した断面概略図である。
図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体であるラミネートシート29の内部に封止された構造を有する。ここで、発電要素21は、正極集電体11の両面に正極活物質層13が配置された正極と、電解質層17と、負極集電体12の両面に負極活物質層15が配置された負極とを積層した構成を有している。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、電解質層17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。
これにより、隣接する正極、電解質層、および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、発電要素21の両最外層に位置する最外層の正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層の負極集電体が位置するようにし、該最外層の負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。
正極集電体11および負極集電体12は、各電極(正極および負極)と導通される正極集電板25および負極集電板27がそれぞれ取り付けられ、ラミネートシート29の端部に挟まれるようにしてラミネートシート29の外部に導出される構造を有している。正極集電板25および負極集電板27は、それぞれ必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体11および負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。
本実施形態に係るリチウムイオン二次電池は、正極および負極の構成に特徴を有する。以下、当該正極および負極を含めた電池の主要な構成部材について説明する。
<活物質層>
活物質層(13、15)は活物質を含み、必要に応じてその他の添加剤をさらに含む。
[正極活物質層]
正極活物質層13は、少なくとも固溶体材料からなる正極活物質(本明細書中、「固溶体正極活物質」とも称する)を含む。
(固溶体正極活物質)
固溶体正極活物質は、下記式(3)で表される組成を基本構造として有する。
式(3)において、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である。
ここで、「固溶体正極活物質が式(3)で表される組成を基本構造として有する」とは、固溶体正極活物質として式(3)で表される組成を有する活物質それ自体が用いられる場合のほか、固溶体正極活物質として式(3)で表される組成を有する活物質が、当該組成を有する活物質を由来とするものであることが確認できる程度に適宜改変されてなる活物質が用いられる場合をも包含する概念である。ここで、後者の形態として、例えば以下の(A)〜(C)の3つの形態が例示される。
(A)式(3)で表される組成を有する固溶体正極活物質の粒子表面に、Al、Zr、Ti、Nb、B、S、Sn、W、MoおよびVからなる群から選択される1種または2種以上の元素Mが、当該元素Mの存在量を[M]としたときに0.002≦[M]/[a+b+c]≦0.05を満たす量で存在する形態。
形態(A)において、元素Mが存在する形態には特に制限はなく、酸化物の形態のほか、Liとの化合物の形態などが想定されうるが、酸化物の形態であることが好ましい。また、元素Mを含む材料(酸化物など)の粒子の平均粒子径は5〜50nmであることが好ましい。なお、元素Mが酸化物の形態で存在する場合、当該酸化物は、固溶体正極活物質の粒子表面に点在することになる。このように点在する酸化物の平均粒子径は上述したように5〜50nmであることが好ましいが、固溶体正極活物質の粒子表面で凝集して二次粒子を形成していてもよい。かような二次粒子の平均粒子径は、0.1μm(100nm)〜1μm(1000nm)であることが好ましい。
ここで、形態(A)のように元素Mを固溶体正極活物質の粒子表面にドープさせるには、例えば、ドープさせたい元素Mを含有する酸化物自体や当該酸化物のゾルを活物質と所定の割合で混合し、必要に応じて100〜150℃程度の温度で5〜20時間程度処理し、さらに200〜300℃程度の温度で3〜10時間程度処理するという方法が用いられうる。
(B)式(3)で表される組成を有する固溶体正極活物質の粒子表面に、Al、ZrおよびTiからなる群から選択される金属の酸化物または複合酸化物からなる被覆層が形成される形態(この際、被覆後の固溶体正極活物質における前記酸化物または複合酸化物の含有量は酸化物換算で0.1〜3.0重量%である);並びに、
形態(B)において、固溶体正極活物質の粒子表面に存在する金属酸化物の具体的な構成は特に制限されず、上述した金属元素を含む理論上可能な酸化物または複合酸化物のいずれも用いられうる。好ましくは、Al、ZrOまたはTiOが用いられる。なお、Nb、Sn、W、MoおよびVからなる群から選択される1種または2種以上のような他の元素を含む(複合)酸化物が被覆層にさらに含まれていてもよい。
(C)式(3)で表される組成を有する固溶体正極活物質に含まれるMn原子がTi、ZrおよびNbからなる群から選択される少なくとも1種によって置換されてなる結果、固溶体正極活物質がLi1.5[NiMnCo[Li][X]]Oで表される組成を有する形態(前記式中、Xは、Ti、ZrおよびNbからなる群から選択される少なくとも1種であり、0.01≦e≦0.4、a+b+c+d+e=1.5、0.1≦d≦0.4、1.1≦[a+b+c+e]≦1.4であり、zは、原子価を満足する酸素数を表す)。
形態(C)において、置換後の固溶体正極活物質は、X線回折(XRD)測定において、20−23°、35−40°(101)、42−45°(104)および64−65(108)/65−66(110)に、岩塩型層状構造を示す回折ピークを有するものであることが好ましい。この際、サイクル特性向上の効果を確実に得るためには、岩塩型層状構造の回折ピーク以外に帰属されるピークを実質的に有していないものが好ましい。より好ましくは、35−40°(101)に3つの回折ピークを有し、42−45°(104)に1つの回折ピークを有するものが好適である。しかしながら、岩塩型層状構造の回折ピークに帰属されるものであれば、必ずしもそれぞれが3つおよび1つのピークに数えられなくてもよい。X線回折測定は、後述する実施例で記載する測定方法を採用するものとする。なお、64−65(108)/65−66(110)の表記は、64−65と65−66に近接する2つのピークがあり、組成によっては明確に分離されずにブロードに一つのピークとなる場合も含むことを意味する。
また、形態(C)における置換後の固溶体正極活物質は、X線回折(XRD)測定において、特定の複数の回折ピークを有していることが好ましい。上記組成式の固溶体正極活物質は、LiMnOとLiMnOの固溶体系であり、上記で特定した複数の回折ピークのうち、20−23°の回折ピークは、LiMnOに特徴的な超格子回折ピークである。また、通常、36.5−37.5°(101)、44−45°(104)および64−65(108)/65−66(110)の回折ピークは、LiMnOの岩塩型層状構造に特徴的なものである。また、本実施形態では、岩塩型層状構造を示す回折ピークの一部として、35−40°(101)に3つ、42−45°(104)に1つの回折ピークを有することが好ましい。本実施形態の固溶体正極活物質には、これらの角度範囲に、岩塩型層状構造を示す回折ピーク以外のピーク、例えば不純物等に由来する他のピークが存在するものは含まれないことが好ましい。このような他のピークが存在する場合には、岩塩型層状構造以外の構造が正極活物質に含まれることを意味している。岩塩型層状構造以外の構造は含まれない方が、サイクル特性向上の効果を確実に得られる。
場合によっては、上述した固溶体正極活物質以外の正極活物質が併用されてもよい。この場合、好ましくは、容量、出力特性の観点から、リチウム−遷移金属複合酸化物が正極活物質として併用される。これ以外の正極活物質が用いられてもよいことは勿論である。活物質それぞれの固有の効果を発現する上で最適な粒子径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒子径同士をブレンドして用いればよく、全ての活物質の粒子径を必ずしも均一化させる必要はない。
正極活物質層13に含まれる正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1〜30μmであり、より好ましくは5〜20μmである。なお、本明細書において、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される活物質粒子(観察面)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。また、本明細書において、「平均粒子径」の値は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の粒子径や平均粒子径も同様に定義することができる。
上述したように、正極活物質層は、下記式(2)で表される正極活物質(固溶体正極活物質)を含有する。
式(2)において、e(固溶体正極活物質)は正極活物質層における固溶体正極活物質の重量%を表し、80≦e(固溶体正極活物質)≦98である。
式(2)から明らかなように、正極活物質層における固溶体正極活物質の含有量は、80〜98重量%であることが必須であるが、好ましくは84〜98重量%である。
また、正極活物質層は上述した固溶体正極活物質のほか、バインダおよび導電助剤を含むことが好ましい。さらに、必要に応じて、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。
(バインダ)
正極活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)およびその塩、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。これらのバインダは、単独で用いてもよいし、2種以上を併用してもよい。
正極活物質層におけるバインダの含有量は、好ましくは1〜10重量%であり、より好ましくは1〜8重量%である。
(導電助剤)
導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、ケッチェンブラック、アセチレンブラック等のカーボンブラックが挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
正極活物質層における導電助剤の含有量は、好ましくは1〜10重量%であり、より好ましくは1〜8重量%である。導電助剤の配合比(含有量)を上記範囲内に規定することで以下の効果が発現される。すなわち、電極反応を阻害することなく、電子伝導性を十分に担保することができ、電極密度の低下によるエネルギー密度の低下を抑制でき、ひいては電極密度の向上によるエネルギー密度の向上を図ることができるのである。
(その他の成分)
電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
正極(正極活物質層)は、通常のスラリーを塗布(コーティング)する方法のほか、混練法、スパッタ法、蒸着法、CVD法、PVD法、イオンプレーティング法および溶射法のいずれかの方法によって形成することができる。
[負極活物質層]
負極活物質層15は、負極活物質として、Si材料および炭素材料を必須に含む。
本明細書中、Si材料とは、アモルファスSiO粒子とSi粒子との混合体であるSiO(xはSiの原子価を満足する酸素数を表す)およびSi含有合金を意味する。これらのうちの1種のみがSi材料として用いられてもよいし、2種以上が併用されてもよい。以下、これらのSi材料について詳細に説明する。
(SiO
SiOは、アモルファスSiO粒子とSi粒子との混合体であり、xはSiの原子価を満足する酸素数を表す。xの具体的な値について特に制限はなく、適宜設定されうる。
また、上記SiOは、機械的表面融合処理によってSiO粒子の表面が導電性物質で被覆されてなる導電性SiO粒子であってもよい。かような構成とすることにより、SiO粒子内のSiがリチウムイオンの脱離および挿入をしやすくなり、活物質における反応がよりスムーズに進行することができるようになる。この場合、導電性SiO粒子における導電性物質の含有量は1〜30重量%であることが好ましく、2〜20重量%であることがより好ましい。
上記SiOの平均粒子径は、既存の負極活物質層15に含まれる負極活物質の平均粒子径と同程度であればよく、特に制限されない。高出力化の観点からは、好ましくは1〜20μmの範囲であればよい。ただし、上記範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、上記範囲を外れていてもよいことは言うまでもない。なお、SiOの形状としては、特に制限はなく、球状、楕円状、円柱状、多角柱状、鱗片状、不定形などでありうる。
SiOの製造方法
本形態に係るSiOの製造方法としては、特に制限されるものではなく、従来公知の各種の製造を利用して製造することができる。すなわち、作製方法によるアモルファス状態・特性の違いはほとんどないため、ありとあらゆる作製方法が適用できる。
SiOを調製する手法としては、以下の方法が挙げられる。まず、原料としてSi粉末とSiO粉末とを所定の割合で配合し、混合、造粒および乾燥した混合造粒原料を、不活性ガス雰囲気で加熱(830℃以上)または真空中で加熱(1,100℃以上1,600℃以下)してSiOを生成(昇華)させる。昇華により発生した気体状のSiOを析出基体上(基体の温度は450℃以上800℃以下)に蒸着させ、SiO析出物を析出させる。その後、析出基体からSiO析出物を取り外し、ボールミル等を使用して粉砕することによりSiO粉末が得られる。
xの値は蛍光X線分析により求めることができる。例えば、O−Kα線を用いた蛍光X線分析でのファンダメンタルパラメータ法を用いて求めることができる。蛍光X線分析には、例えば、理学電機工業(株)製RIX3000を用いることができる。蛍光X線分析の条件としては、例えば、ターゲットにロジウム(Rh)を用い、管電圧50kV、管電流50mAとすればよい。ここで得られるx値は、基板上の測定領域で検出されるO−Kα線の強度から算出されるため、測定領域の平均値となる。
(Si含有合金)
Si含有合金は、Siを含有する他の金属との合金であれば特に制限されず、従来公知の知見が適宜参照されうる。ここでは、Si含有合金の好ましい実施形態として、SiTiGe、SiTiZn、SiTiSn、SiSnAl、SiSn、SiSn、SiZn、SiZnSn、SiZnAl、SiZn、SiAlおよびSiAlNb(式中、Aは、不可避不純物である。さらに、x、y、z、およびaは、重量%の値を表し、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である)が挙げられる。これらのSi含有合金を負極活物質として用いることで、所定の第1添加元素および所定の第2添加元素を適切に選択することによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
(炭素材料)
本発明に用いられうる炭素材料は、特に制限されないが、天然黒鉛、人造黒鉛等の高結晶性カーボンである黒鉛(グラファイト);ソフトカーボン、ハードカーボン等の低結晶性カーボン;ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラック等のカーボンブラック;フラーレン、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボンフィブリル等の炭素材料が挙げられる。これらのうち、黒鉛を用いることが好ましい。
本実施形態では、負極活物質として、上記Si材料とともに炭素材料が併用されることにより、より高いサイクル耐久性を示しつつ、かつ、初期容量も高くバランスよい特性を示すことができる。
特に、SiOは、負極活物質層内において、均一に配置されない場合がある。このような場合、それぞれのSiOが発現する電位や容量は個別に異なる。その結果、負極活物質層内のSiOの中には、過度にリチウムイオンと反応するSiOと、リチウムイオンと反応しないSiOが生じる。すなわち、負極活物質層内のSiOのリチウムイオンとの反応の不均一性が発生する。そうすると、上記合金のうち、過度にリチウムイオンと反応するSiOが過度に作用することによって、電解液との著しい反応による電解液の分解や過剰な膨張によるSiOの構造の破壊が生じうる。その結果として、優れた特性を有するSiOを使用した場合であっても、均一にSiOが配置されていない等の場合には、電気デバイス用負極としてサイクル特性が低下しうる。
しかしながら、当該SiOを炭素材料と混合すると、上記問題が解決されうる。より詳細には、SiOを炭素材料と混合することにより、負極活物質層内にSiOを均一に配置することが可能となりうる。その結果、負極活物質層内におけるSiOはいずれも同等の反応性を示し、サイクル特性の低下を防止することができると考えられるのである。
なお、炭素材料が混合される結果、負極活物質層内におけるSiOの含有量が低下することによって、初期容量は低下しうる。しかしながら、炭素材料自体はリチウムイオンとの反応性を有するため、初期容量の低下の度合いは相対的に小さくなる。すなわち、本形態に係る負極活物質は、初期容量の低下の作用と比べて、サイクル特性の向上効果が大きいのである。
また、炭素材料は、SiOと対比すると、リチウムイオンと反応する際の体積変化が生じにくい。そのため、SiOの体積変化が大きい場合であっても、負極活物質を全体としてみると、リチウム反応に伴う負極活物質の体積変化の影響を相対的に軽微なものとすることができる。なお、このような効果は、炭素材料の含有率が大きいほど(SiOの含有率が小さいほど)、サイクル特性が高くなる実施例の結果からも理解することができる。
また、炭素材料を含有することによって、消費電気量(Wh)を向上させることができる。より詳細には、炭素材料は、SiOと対比して相対的に電位が低い。その結果、SiOが有する相対的に高い電位を低減することができる。そうすると、負極全体の電位が低下するため、消費電力量(Wh)を向上させることができるのである。このような作用は、電気デバイスの中でも、例えば、車両の用途に使用する際に特に有利である。
炭素材料の形状としては、特に制限はなく、球状、楕円状、円柱状、多角柱状、鱗片状、不定形などでありうる。
また、炭素材料の平均粒子径としては、特に制限されないが、5〜25μmであることが好ましく、5〜10μmであることがより好ましい。この際、上述のSiOとの平均粒子径との対比については、炭素材料の平均粒子径は、SiOの平均粒子径と同一であっても、異なっていてもよいが、異なることが好ましい。特に、前記SiOの平均粒子径が、前記炭素材料の平均粒子径よりも小さいことがより好ましい。炭素材料の平均粒子径がSiOの平均粒子径よりも相対的に大きいと、均一に炭素材料の粒子が配置され、当該炭素材料の粒子間にSiOが配置した構成を有するため、負極活物質層内においてSiOが均一に配置されうる。
炭素材料の平均粒子径とSiOの平均粒子径との粒子径の比(SiOの平均粒子径/炭素材料の平均粒子径)は、1/250〜1未満であることが好ましく、1/100〜1/4であることがより好ましい。
場合によっては、上述した2種の負極活物質(Si材料および炭素材料)以外の負極活物質が併用されてもよい。併用可能な負極活物質としては、例えば、リチウム−遷移金属複合酸化物(例えば、LiTi12)、金属材料、リチウム合金系負極材料などが挙げられる。これ以外の負極活物質が用いられてもよいことは勿論である。
負極活物質層は、下記式(1)で表される負極活物質を含有する。
式(1)において、Si材料は、アモルファスSiO粒子とSi粒子との混合体であるSiO(xはSiの原子価を満足する酸素数を表す)およびSi含有合金からなる群から選択される1種または2種以上であり、また、α(Si材料)およびβ(炭素材料)は負極活物質層におけるSi材料および炭素材料の重量%をそれぞれ表し、80≦α(Si材料)+β(炭素材料)≦98、3≦α(Si材料)≦40、40≦β(炭素材料)≦95である。
式()から明らかなように、負極活物質層における負極活物質としてのSi材料の含有量は3〜40重量%である。また、炭素材料負極活物質の含有量は40〜95重量%である。さらに、これらの合計含有量は80〜98重量%である。
なお、負極活物質のSi材料および炭素材料の混合比は、上記の含有量の規定を満足する限り特に制限はなく、所望の用途等に応じて適宜選択できる。なかでも、前記負極活物質中のSi材料の含有率は、3〜40重量%であることが好ましい。一実施形態において、前記負極活物質中のSi材料の含有率は、4〜30重量%であることがより好ましい。また、別の一実施形態においては、前記負極活物質中のSi材料の含有率は、5〜20重量%であることがより好ましい。
前記Si材料の含有率が3重量%以上であると、高い初期容量が得られうることから好ましい。一方、前記Si材料の含有量が40重量%以下であると、高いサイクル特性が得られうることから好ましい。
本実施形態において、負極活物質層は上述した負極活物質のほか、バインダおよび導電助剤を含むことが好ましい。また、必要に応じて、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。これらの具体的な種類や負極活物質層における好ましい含有量については、正極活物質層の説明の欄において上述した形態が同様に採用されうるため、ここでは詳細な説明を省略する。
各活物質層(集電体片面の活物質層)の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1〜500μm程度、好ましくは2〜100μmである。
<集電体>
集電体(11、12)は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。
集電体の厚さについても特に制限はない。集電体の厚さは、通常は1〜100μm程度である。
集電体の形状についても特に制限されない。図1に示す積層型電池10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。
なお、負極活物質をスパッタ法等により薄膜合金を負極集電体12上に直接形成する場合には、集電箔を用いることが好ましい。
集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料または非導電性高分子材料に導電性フィラーが添加された樹脂が採用されうる。
具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。
また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。
非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。
導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、およびKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むものである。
導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5〜35重量%程度である。
<セパレータ(電解質層)>
本実施形態において、セパレータは、電解液(液体電解質)を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。
セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。
ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。
微多孔質(微多孔膜)セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。1例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途においては、単層あるいは多層で4〜60μmであることが望ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。
不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独または混合して用いる。また、不織布のかさ密度は、含浸させた高分子ゲル電解質により十分な電池特性が得られるものであればよく、特に制限されるべきものではない。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5〜200μmであり、特に好ましくは10〜100μmである。
また、上述したように、セパレータは、電解液(液体電解質)を含む。液体電解質は、リチウムイオンのキャリヤーとしての機能を有し、有機溶媒にリチウム塩が溶解した形態を有する。用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート等のカーボネート類が例示される。また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiCFSO等の電極の活物質層に添加されうる化合物が同様に採用されうる。
本実施形態において、電解液(液体電解質)は、所定の添加剤を含有する点に特徴がある。具体的には、電解液は、1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシド(DDTO)およびジフルオロリン酸リチウム(LiPO)を含有する。なお、電解液における上記DDTOおよびLiPOの濃度は特に制限されない。ただし、電解液におけるDDTOの濃度は、好ましくは0.5〜2.5重量%であり、より好ましくは1.0〜2.0重量%である。また、電解液におけるLiPOの濃度は、好ましくは1.8〜3.0重量%であり、より好ましくは1.8〜2.5重量%である。
なお、電解液(液体電解質)は、上述した成分以外の添加剤をさらに含んでもよい。かような添加剤の具体例としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2−ジビニルエチレンカーボネート、1−メチル−1−ビニルエチレンカーボネート、1−メチル−2−ビニルエチレンカーボネート、1−エチル−1−ビニルエチレンカーボネート、1−エチル−2−ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1−ジメチル−2−メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの添加剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
また、セパレータとしては多孔質基体に耐熱絶縁層が積層されたセパレータ(耐熱絶縁層付セパレータ)であることが好ましい。耐熱絶縁層は、無機粒子およびバインダを含むセラミック層である。耐熱絶縁層付セパレータは融点または熱軟化点が150℃以上、好ましくは200℃以上である耐熱性の高いものを用いる。耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果が得られうる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破膜が起こりにくい。さらに、熱収縮抑制効果および機械的強度の高さから、電池の製造工程でセパレータがカールしにくくなる。
耐熱絶縁層における無機粒子は、耐熱絶縁層の機械的強度や熱収縮抑制効果に寄与する。無機粒子として使用される材料は特に制限されない。例えば、ケイ素、アルミニウム、ジルコニウム、チタンの酸化物(SiO、Al、ZrO、TiO)、水酸化物、および窒化物、ならびにこれらの複合体が挙げられる。これらの無機粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来のものであってもよいし、人工的に製造されたものであってもよい。また、これらの無機粒子は1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。これらのうち、コストの観点から、シリカ(SiO)またはアルミナ(Al)を用いることが好ましく、アルミナ(Al)を用いることがより好ましい。
耐熱性粒子の目付けは、特に限定されるものではないが、5〜15g/mであることが好ましい。この範囲であれば、十分なイオン伝導性が得られ、また、耐熱強度を維持する点で好ましい。
耐熱絶縁層におけるバインダは、無機粒子どうしや、無機粒子と樹脂多孔質基体層とを接着させる役割を有する。当該バインダによって、耐熱絶縁層が安定に形成され、また多孔質基体層および耐熱絶縁層の間の剥離を防止される。
耐熱絶縁層に使用されるバインダは、特に制限はなく、例えば、カルボキシメチルセルロース(CMC)、ポリアクリロニトリル、セルロース、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン−ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、アクリル酸メチルなどの化合物がバインダとして用いられうる。このうち、カルボキシメチルセルロース(CMC)、アクリル酸メチル、またはポリフッ化ビニリデン(PVDF)を用いることが好ましい。これらの化合物は、1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。
耐熱絶縁層におけるバインダの含有量は、耐熱絶縁層100重量%に対して、2〜20重量%であることが好ましい。バインダの含有量が2重量%以上であると、耐熱絶縁層と多孔質基体層との間の剥離強度を高めることができ、セパレータの耐振動性を向上させることができる。一方、バインダの含有量が20重量%以下であると、無機粒子の隙間が適度に保たれるため、十分なリチウムイオン伝導性を確保することができる。
耐熱絶縁層付セパレータの熱収縮率は、150℃、2gf/cm条件下、1時間保持後にMD、TDともに10%以下であることが好ましい。このような耐熱性の高い材質を用いることで、正極発熱量が高くなり電池内部温度が150℃に達してもセパレータの収縮を有効に防止することができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。
<集電板(タブ)>
リチウムイオン二次電池においては、電池外部に電流を取り出す目的で、集電体に電気的に接続された集電板(タブ)が外装材であるラミネートフィルムの外部に取り出されている。
集電板を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板(正極タブ)と負極集電板(負極タブ)とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
また、図2に示すタブ58、59の取り出しに関しても、特に制限されるものではない。正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図2に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、タブに変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。
<シール部>
シール部は、直列積層型電池に特有の部材であり、電解質層の漏れを防止する機能を有する。このほかにも、電池内で隣り合う集電体同士が接触したり、積層電極の端部の僅かな不ぞろいなどによる短絡が起こったりするのを防止することもできる。
シール部の構成材料としては、特に制限されないが、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、エポキシ樹脂、ゴム、ポリイミド等が用いられうる。これらのうち、耐蝕性、耐薬品性、製膜性、経済性などの観点からは、ポリオレフィン樹脂を用いることが好ましい。
<正極端子リードおよび負極端子リード>
負極および正極端子リードの材料は、公知の積層型二次電池で用いられるリードを用いることができる。なお、電池外装材から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆するのが好ましい。
<外装材;ラミネートフィルム>
外装材としては、従来公知の金属缶ケースを用いることができる。そのほか、図1に示すようなラミネートフィルム2を外装材として用いて、発電要素21をパックしてもよい。ラミネートフィルムは、例えば、ポリプロピレン、アルミニウム、ナイロンがこの順に積層されてなる3層構造として構成されうる。このようなラミネートフィルムを用いることにより、外装材の開封、容量回復材の添加、外装材の再封止を容易に行うことができる。
<リチウムイオン二次電池の製造方法>
リチウムイオン二次電池の製造方法は特に制限されず、公知の方法により製造されうる。具体的には、(1)電極の作製、(2)単電池層の作製、(3)発電要素の作製、および(4)積層型電池の製造を含む。以下、リチウムイオン二次電池の製造方法について一例を挙げて説明するが、これに限定されるものではない。
(1)電極(正極および負極)の作製
電極(正極または負極)は、例えば、活物質スラリー(正極活物質スラリーまたは負極活物質スラリー)を調製し、当該活物質スラリーを集電体上に塗布、乾燥し、次いでプレスすることにより作製されうる。前記活物質スラリーは、上述した活物質(正極活物質または負極活物質)、バインダ、導電助剤および溶媒を含む。
前記溶媒としては、特に制限されず、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、シクロヘキサン、ヘキサン、水等が用いられうる。
活物質スラリーの集電体への塗布方法としては、特に制限されず、スクリーン印刷法、スプレーコート法、静電スプレーコート法、インクジェット法、ドクターブレード法等が挙げられる。
集電体の表面に形成された塗膜の乾燥方法としては、特に制限されず、塗膜中の溶媒の少なくとも一部が除去されればよい。当該乾燥方法としては、加熱が挙げられる。乾燥条件(乾燥時間、乾燥温度など)は、適用する活物質スラリーに含有される溶媒の揮発速度、活物質スラリーの塗布量等に応じて適宜設定されうる。なお、溶媒は一部が残存していてもよい。残存した溶媒は、後述のプレス工程等で除去されうる。
プレス手段としては、特に限定されず、例えば、カレンダーロール、平板プレス等が用いられうる。
(2)単電池層の作製
単電池層は、(1)で作製した電極(正極および負極)を、電解質層を介して積層させることにより作製されうる。
(3)発電要素の作製
発電要素は、単電池層の出力および容量、電池として必要とする出力および容量等を適宜考慮し、前記単電池層を積層して作製されうる。
(4)積層型電池の製造
電池の構成としては、角形、ペーパー型、積層型、円筒型、コイン型等、種々の形状を採用することができる。また構成部品の集電体や絶縁板等は特に限定されるものではなく、上記の形状に応じて選定すればよい。しかし、本実施形態では積層型電池が好ましい。積層型電池は、上記で得られた発電要素の集電体にリードを接合し、これらの正極リードまたは負極リードを、正極タブまたは負極タブに接合する。そして、正極タブおよび負極タブが電池外部に露出するように、発電要素をラミネートシート中に入れ、注液機により電解液を注液してから真空に封止することにより積層型電池が製造されうる。
(5)活性化処理など
さらに、本実施形態では、上記により得られた積層型電池の性能および耐久性を高める観点から、さらに、以下の条件で初充電処理、ガス除去処理および活性化処理を行うことが好ましい(実施例1参照)。この場合には、ガス除去処理ができるように、上記(4)の積層型電池の製造において、封止する際に、矩形形状にラミネートシート(外装材)の3辺を熱圧着により完全に封止(本封止)し、残る1辺は、熱圧着で仮封止しておく。残る1辺は、例えば、クリップ留め等により開閉自在にしてもよいが、量産化(生産効率)の観点からは、熱圧着で仮封止するのがよい。この場合には、圧着する温度、圧力を調整するだけでよいためである。熱圧着で仮封止した場合には、軽く力を加えることで開封でき、ガス抜き後、再度、熱圧着で仮封止してもよいし、最後的には熱圧着で完全に封止(本封止)すればよい。
(初充電処理)
電池のエージング処理は、以下のように実施することが好ましい。25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行い、その状態で約1日間保持する。次いで、25℃にて0.1Cレートで4.45Vまで充電した後、充電を止め、その状態(SOC約70%)で約1日間保持したのち、0.1Cで2.0Vまで放電する。その状態のまま1時間放置したのち、0.05Cにて、2.0Vまで放電する。
(最初(1回目)のガス除去処理)
次に、最初(1回目)のガス除去処理として、以下の処理を行う。まず、熱圧着で仮封止した1辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行って仮封止を行う。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させる。
(活性化処理)
次に、活性化処理法として、例えば以下の電気化学前処理法を行う。
25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行う。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行う。同様に、0.1Cで4.65Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行う。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行う。
なお、ここでは、活性化処理法として、定電流充電法を用い、電圧を終止条件とした場合の電気化学前処理法を例として記載しているが、充電方式は定電流定電圧充電法を用いても構わない。また、終止条件は電圧以外にも電荷量や時間を用いても構わない。
(最後(2回目)のガス除去処理)
次に、最回目)のガス除去処理として、以下の処理を行う。まず、熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行って本封止を行う。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させる。
本実施形態では、上記した初充電処理、ガス除去処理及び活性化処理を行うことにより、得られた電池の性能および耐久性を高めることができる。
[組電池]
組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
電池が複数、直列にまたは並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。
[車両]
本実施形態に係るリチウムイオン二次電池をはじめとした本発明の電気デバイスは、長期使用しても放電容量が維持され、サイクル特性が良好である。さらに、体積エネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記リチウムイオン二次電池(電気デバイス)は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。
以下、実施例および比較例を用いてさらに詳細に説明するが、本発明は以下の実施例のみに何ら限定されるわけではない。
[実施例1]
(固溶体正極活物質C1の調製)
1.硫酸マンガン・1水和物(分子量223.06g/mol)28.61g、
硫酸ニッケル・6水和物(分子量262.85g/mol)17.74g、
を純水200gに加え、攪拌溶解し、混合溶液を調製した。
2.次に、この混合溶液にアンモニア水をpH7になるまで滴下して、さらに、NaCO溶液を滴下して、複合炭酸塩を沈殿させた(NaCO溶液を滴下している間、アンモニア水でpH7を保持する)。
3.その後、沈殿物を吸引濾過し、さらに、十分に水洗した後、乾燥オーブンにて120℃、5時間乾燥した。
4.乾燥した粉末を乳鉢で粉砕した後、500℃、5時間仮焼成を行った。
5.仮焼成した粉末に、水酸化リチウム・1水和物(分子量41.96g/mol)10.67gを混合し、30分間粉砕混合した。
6.この粉末を500℃で2時間仮焼成した後、900℃で12時間焼成して固溶体正極活物質C1を得た。
こうして得られた固溶体正極活物質C1の組成は以下の通りであった。
組成:C1 Li1.5[Ni0.45Mn0.85[Li]0.20]O
固溶体正極活物質C1の組成を式(3)に当てはめると、a+b+c+d=1.5、d=0.20、a+b+c=1.3、z;原子価を満足する酸素数となり、式(3)の要件を満足する。
(集電体の片面に正極活物質層を形成した正極C1の作製)
(正極用スラリーの組成)
正極用スラリーは下記組成とした。
正極活物質:上記で得られた固溶体正極活物質C1 9.4重量部
導電助剤: 燐片状黒鉛 0.15重量部
アセチレンブラック 0.15重量部
バインダ: ポリフッ化ビニリデン(PVDF) 0.3重量部
溶媒: N−メチル−2−ピロリドン(NMP) 8.2重量部。
この組成を式(2)に当てはめると、e(固溶体正極活物質)=94となり、式(2)の要件を満足する。
(正極用スラリーの製造)
上記組成の正極用スラリーを次のように調製した。まず、50mlのディスポカップに、溶媒(NMP)にバインダを溶解した20%バインダ溶液2.0重量部に溶媒(NMP)4.0重量部を加え、攪拌脱泡機(自転公転ミキサー:あわとり錬太郎AR−100)で1分間攪拌してバインダ希釈溶液を作製した。次に、このバインダ希釈液に、導電助剤0.4重量部と固溶体正極活物質C1 9.2重量部、および溶媒(NMP)2.6重量部を加え、攪拌脱泡機で3分間攪拌して正極用スラリー(固形分濃度55重量%)とした。
(正極用スラリーの塗布・乾燥)
20μm厚のアルミニウム集電体の片面に、上記正極用スラリーを自動塗工装置(テスター産業製ドクターブレード:PI−1210自動塗工装置)により塗布した。続いて、この正極用スラリーを塗布した集電体について、ホットプレートにて乾燥(100℃〜110℃、乾燥時間30分)を行い、正極活物質層に残留するNMP量を0.02重量%以下として、シート状正極を形成した。
(正極のプレス)
上記シート状正極を、ローラープレスをかけて圧縮成形し、切断して、密度2.65g/cmの正極を作製した。
(正極の乾燥)
次に、上記手順で作製した正極を用い真空乾燥炉にて乾燥処理を行った。乾燥炉内部に正極C1を設置した後、室温(25℃)にて減圧(100mmHg(1.33×10Pa))し乾燥炉内の空気を除去した。続いて、窒素ガスを流通(100cm/分)しながら、10℃/分で120℃まで昇温し、120℃で再度減圧して炉内の窒素を排気したまま12時間保持した後、室温まで降温した。こうして正極表面の水分を除去した正極C1を得た。
(集電箔の片面に活物質層を形成した負極A1の作製)
(負極用スラリーの組成)
負極用スラリーは下記組成とした。
負極活物質:SiO(日下レアメタル製、x=1) 1.00重量部
炭素材料(日立化成製、黒鉛) 8.45重量部
導電助剤: SuperP 0.20重量部
バインダ: ポリフッ化ビニリデン(PVDF) 0.35重量部
溶媒: N−メチル−2−ピロリドン(NMP) 10.0重量部。
この組成を式(1)に当てはめると、α(Si材料)+β(炭素材料)=94.5、α(Si材料)=10、β(炭素材料)=84.5となり、式(1)の要件を満足する。なお、炭素材料の平均粒子径は24μmであり、SiOの平均粒子径は0.5μmであった。
(負極用スラリーの製造)
上記組成の負極用スラリーを次のように調製した。まず、溶媒(NMP)にバインダを溶解した20%バインダ溶液1.75重量部に溶媒(NMP)5重量部を加えて、攪拌脱泡機1分間攪拌してバインダ希釈溶液を作製した。このバインダ希釈液に、導電助剤0.2重量部、負極活物質粉末9.45重量部、および溶媒(NMP)3.6重量部を加え、攪拌脱泡機で3分間攪拌して負極用スラリー(固形分濃度50重量%)とした。
(負極用スラリーの塗布・乾燥)
10μm厚の電解銅集電体の片面に、上記負極用スラリーを自動塗工装置により塗布した。続いて、この負極スラリーを塗布した集電体について、ホットプレートにて乾燥(100℃〜110℃、乾燥時間30分)を行い、負極活物質層に残留するNMP量を0.02重量%以下として、シート状負極を形成した。
(負極のプレス)
得られたシート状負極を、ローラープレスをかけて圧縮成形し、切断して、片面の負極活物質層の重量約8.54mg/cm、密度1.45g/cmの負極を作製した。この負極の表面を観察したところ、クラックの発生は見られなかった。
(電極の乾燥)
次に、上記手順で作製した負極を用い真空乾燥炉にて乾燥処理を行った。乾燥炉内部に負極を設置した後、室温(25℃)にて減圧(100mmHg(1.33×10Pa))し乾燥炉内の空気を除去した。続いて、窒素ガスを流通(100cm/分)しながら、10℃/分で135℃まで昇温し、135℃で再度減圧して炉内の窒素を排気したまま12時間保持した後、室温まで降温した。こうして負極表面の水分を除去して、負極A1を得た。
[ラミネートセルの作製]
上記で得られた正極C1を、活物質層面積;縦2.5cm×横2.0cmになるように切り出し、これら2枚を集電体同士が向き合うようにして、未塗工面(アルミニウム集電箔のスラリーを塗工していない面)を合わせて集電体部分をスポット溶接した。これにより、外周部をスポット溶接により一体化された2枚重ねの集電箔の両面に正極活物質層を有する正極を形成した。その後、さらに集電体部分にアルミニウムの正極タブ(正極集電板)を溶接して正極C11を形成した。すなわち、正極C11は、集電箔の両面に正極活物質層が形成された構成である。
一方、上記で得られた負極A1を、活物質層面積;縦2.7cm×横2.2cmになるように切り出し、その後、さらに集電体部分に電解銅の負極タブを溶接して負極A11を形成した。すなわち、負極A11は、集電体の片面に負極活物質層が形成された構成である。
これらタブを溶接した負極A11と、正極C11との間に多孔質ポリプロピレン製セパレータ(S)(縦3.0cm×横2.5cm、厚さ25μm、空孔率55%)を挟んで5層からなる積層型の発電要素を作製した。積層型の発電要素の構成は、負極(片面)/セパレータ/正極(両面)/セパレータ/負極(片面)の構成、すなわち、A11−(S)−C11−(S)−A11の順に積層された構成とした。次いで、アルミラミネートフィルム製外装材(縦3.5cm×横3.5cm)で発電要素の両側を挟み込み、3辺を熱圧着封止して上記発電要素を収納した。この発電要素に、電解液0.8cm(上記5層構成の場合、2セル構成となり、1セル当たりの注液量0.4cm)を注入した後、残りの1辺を熱圧着で仮封止し、ラミネート型電池を作製した。電解液を電極細孔内に十分に浸透させるため、面圧0.5Mpaで加圧しながら、25℃にて24時間保持した。
なお、電解液の調製では、まず、エチレンカーボネート(EC)30体積%とジエチルカーボネート(DEC)70体積%の混合溶媒に、1.0MのLiPF(電解質)を溶解した。その後、添加剤として作用するフルオロリン酸リチウムとして、ジフルオロリン酸リチウム(LiPO)を1.8重量%、1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシド(DDTO)1.5重量%を溶解したものを、電解液として用いた。
[実施例2]
負極用スラリーの調製に用いたSi材料として、SiOに代えてSi含有合金であるSi42TiSn51を用いたこと以外は、上述した実施例1と同様にして、電池を作製した。ここで、本実施例において作成された負極を負極A2とする。なお、上記Si含有合金は、メカニカルアロイ法により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置P−6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールおよび合金の各原料粉末を投入し、600rpmで48時間かけて合金化させた。
また、上記で調製したSi含有合金(Si42TiSn51)と、それ以外の本発明に用いられうる合金(SiTiGe、SiTiZn、およびSiTiSnAのうち、Si42TiSn51以外のもの)もまた、Si42TiSn51と同様の特性を有するものであることから、Si42TiSn51を用いた本実施例と同一または類似する結果が得られる。
[実施例3]
負極用スラリーの調製に用いたSi材料(Si含有合金)として、Si42TiSn51に代えてSi34Sn2145を用いたこと以外は、上述した実施例2と同様にして、電池を作製した。ここで、本実施例において作成された負極を負極A3とする。
また、上記で調製したSi含有合金(Si34Sn2145)と、それ以外の本発明に用いられうる合金(SiSnAl、SiSn、およびSiSnAのうち、Si34Sn2145以外のもの)もまた、Si34Sn2145と同様の特性を有するものであることから、Si34Sn2145を用いた本実施例と同一または類似する結果が得られる。
[実施例4]
負極用スラリーの調製に用いたSi材料(Si含有合金)として、Si42TiSn51に代えてSi53Zn44を用いたこと以外は、上述した実施例2と同様にして、電池を作製した。ここで、本実施例において作成された負極を負極A4とする。
また、上記で調製したSi含有合金(Si53Zn44)と、それ以外の本発明に用いられうる合金(SiZn、SiZnSn、SiZnAl、SiZnのうち、Si53Zn44以外のもの)もまた、Si53Zn44と同様の特性を有するものであることから、Si53Zn44を用いた本実施例と同一または類似する結果が得られる。
[実施例5]
負極用スラリーの調製に用いたSi材料(Si含有合金)として、Si42TiSn51に代えてSi67Al22Nb11を用いたこと以外は、上述した実施例2と同様にして、電池を作製した。ここで、本実施例において作成された負極を負極A5とする。
また、上記で調製したSi含有合金(Si67Al22Nb11)と、それ以外の本発明に用いられうる合金(SiAl、およびSiAlNbのうち、Si67Al22Nb11以外のもの)もまた、Si67Al22Nb11と同様の特性を有するものであることから、Si67Al22Nb11を用いた本実施例と同一または類似する結果が得られる。
[実施例6]
電解液の添加剤として、フルオロエチレンカーボネート(FEC)を1.0重量%の濃度でさらに添加したこと以外は、上述した実施例1と同様にして、電池を作製した。
[実施例7]
電解液の添加剤として、フルオロエチレンカーボネート(FEC)を1.0重量%の濃度でさらに添加したこと以外は、上述した実施例2と同様にして、電池を作製した。
[実施例8]
電解液を構成する溶媒として、ECに代えてFECを用いたこと以外は、上述した実施例1と同様にして、電池を作製した。
[実施例9]
電解液を構成する溶媒として、ECに代えてFECを用いたこと以外は、上述した実施例2と同様にして、電池を作製した。
[実施例10]
電解液の添加剤であるDDTOの濃度を2.5重量%に変えたこと以外は、上述した実施例1と同様にして、電池を作製した。
[実施例11]
電解液の添加剤であるDDTOの濃度を0.5重量%に変えたこと以外は、上述した実施例1と同様にして、電池を作製した。
[比較例1]
電解液の添加剤であるLiPOおよびDDTOを電解液に添加しなかったこと以外は、上述した実施例1と同様にして、電池を作製した。
[比較例2]
電解液の添加剤であるLiPOおよびDDTOを電解液に添加しなかったこと以外は、上述した実施例2と同様にして、電池を作製した。
[比較例3]
電解液の添加剤であるLiPOおよびDDTOを電解液に添加しなかったこと以外は、上述した実施例3と同様にして、電池を作製した。
[比較例4]
電解液の添加剤であるLiPOおよびDDTOを電解液に添加しなかったこと以外は、上述した実施例4と同様にして、電池を作製した。
[比較例5]
電解液の添加剤であるLiPOおよびDDTOを電解液に添加しなかったこと以外は、上述した実施例5と同様にして、電池を作製した。
[比較例6]
電解液の添加剤であるLiPOを電解液に添加しなかったこと以外は、上述した実施例1と同様にして、電池を作製した。
[比較例7]
電解液の添加剤であるLiPOを電解液に添加しなかったこと以外は、上述した実施例2と同様にして、電池を作製した。
[比較例8]
電解液の添加剤であるDDTOを電解液に添加しなかったこと以外は、上述した実施例1と同様にして、電池を作製した。
[比較例9]
電解液の添加剤であるDDTOを電解液に添加しなかったこと以外は、上述した実施例2と同様にして、電池を作製した。
[比較例10]
電解液の添加剤であるDDTOを電解液に添加せず、LiPOの濃度を3.0重量%に変えたこと以外は、上述した実施例1と同様にして、電池を作製した。
[比較例11]
電解液の添加剤であるDDTOを電解液に添加せず、LiPOの濃度を3.0重量%に変えたこと以外は、上述した実施例2と同様にして、電池を作製した。
[比較例12]
電解液の添加剤であるDDTOを電解液に添加せず、LiPOの濃度を0.8重量%に変えたこと以外は、上述した実施例1と同様にして、電池を作製した。
[比較例13]
電解液の添加剤であるDDTOを電解液に添加せず、LiPOの濃度を0.8重量%に変えたこと以外は、上述した実施例2と同様にして、電池を作製した。
[比較例14]
電解液の添加剤であるLiPOおよびDDTOを電解液に添加せず、ビニレンカーボネート(VC)を1.0重量%の濃度で電解液に添加したこと以外は、上述した実施例1と同様にして、電池を作製した。
[比較例15]
電解液の添加剤であるLiPOおよびDDTOを電解液に添加せず、ビニレンカーボネート(VC)を1.0重量%の濃度で電解液に添加したこと以外は、上述した実施例2と同様にして、電池を作製した。
[比較例16]
電解液の添加剤であるLiPOおよびDDTOを電解液に添加せず、FECを1.0重量%の濃度で電解液に添加したこと以外は、上述した実施例1と同様にして、電池を作製した。
[比較例17]
電解液の添加剤であるLiPOおよびDDTOを電解液に添加せず、FECを1.0重量%の濃度で電解液に添加したこと以外は、上述した実施例2と同様にして、電池を作製した。
その後、上記で得られた各電池の発電要素を評価セル取り付け冶具にセットし、正極リードと負極リードを発電要素の各タブ端部に取り付け、試験を行った。
[電池特性の評価]
上記で作製したラミネート型電池に対して、以下の条件で初充電処理および活性化処理を行い、性能を評価した。
[初充電処理]
電池のエージング処理は、以下のように実施した。25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行い、その状態で約1日間保持した。次いで、25℃にて0.1Cレートで4.45Vまで充電した後、充電を止め、その状態(SOC約70%)で約1日間保持したのち、0.1Cで2.0Vまで放電した。その状態のまま1時間放置したのち、0.05Cにて、2.0Vまで放電した。
なお、実施例1、比較例6および比較例8で作製された電池についてのdQ/dV挙動を図3に示す。図3に示すようなdQ/dV挙動からは、電解液に含有される添加剤が分解する電池電圧を読み取ることができる。具体的には、図3に示す結果から、電池内部において、ジフルオロリン酸リチウム(LiPO)はDDTOよりも先に(低い電池電圧で)分解することがわかる。
[ガス除去処理1]
熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い仮封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させた。
[活性化処理]
25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行った。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行った。同様に、0.1Cで4.65Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行った。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行った。
[ガス除去処理2]
熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い本封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させた。
[サイクル耐久性評価]
サイクル耐久性の評価では、1Cレートでの充放電を、25℃で100サイクル繰り返した。電池の評価の際、充電条件は、1Cレートにて最高電圧が4.5Vとなるまで充電した後、約1時間〜1.5時間保持する定電流定電圧充電法とした。また、放電条件は、電池の最低電圧が2.0Vとなるまで1Cレートで放電する定電流放電法で行った。いずれも、室温下で行った。
1サイクル目の放電容量に対する100サイクル目の放電容量の割合を「容量維持率(%)」として評価した。結果を下記の表1に示す。
容量維持率(%)=100サイクル目の放電容量/1サイクル目の放電容量×100
表1に示す結果から明らかなように、本発明に係る電気デバイスである実施例1〜11のリチウムイオン二次電池では、比較例1〜21と比べて、優れたサイクル耐久性(100サイクル目の容量維持率)を示した。
これに対し、添加剤としてLiPOやフルオロエチレンカーボネート(FEC)を単独で用いた場合には、添加剤を含まないものやDDTOを単独で用いた場合と比較すると良好なサイクル耐久性を示しているが、サイクル耐久性として満足できる性能ではない。
10、50 リチウムイオン二次電池、
11 負極集電体、
12 正極集電体、
13 負極活物質層、
15 正極活物質層、
17 セパレータ、
19 単電池層、
21、57 発電要素、
25 負極集電板、
27 正極集電板、
29、52 電池外装材、
58 正極タブ、
59 負極タブ。

Claims (4)

  1. 正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、
    負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、
    電解液が含浸されてなるセパレータと、
    を含む発電要素を有する電気デバイスであって、
    前記負極活物質層が、下記式(1):
    式中、Si材料は、アモルファスSiO2粒子とSi粒子との混合体であるSiOx(xはSiの原子価を満足する酸素数を表す)およびSi含有合金からなる群から選択される1種または2種以上であり、α(Si材料)およびβ(炭素材料)は負極活物質層における前記Si材料および炭素材料の重量%をそれぞれ表し、80≦α(Si材料)+β(炭素材料)≦98、3≦α(Si材料)≦40、40≦β(炭素材料)≦95である、
    で表される負極活物質を含有し、
    前記正極活物質層が、下記式(2):
    式中、e(固溶体正極活物質)は正極活物質層における固溶体正極活物質の重量%を表し、80≦e(固溶体正極活物質)≦98である、
    で表される正極活物質を含有し
    の際、前記固溶体正極活物質は、下記(A)〜(D)のいずれかを満たし、
    (A)前記固溶体正極活物質は、下記式(3):
    式中、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である、
    で表される組成を有する活物質である
    (B)前記固溶体正極活物質は、上記式(3)で表される組成を有する活物質の粒子表面に、Al、Zr、Ti、Nb、B、S、Sn、W、MoおよびVからなる群から選択される1種または2種以上の元素Mが、前記元素Mの存在量を[M]としたときに0.002≦[M]/[a+b+c]≦0.05を満たす量で存在するものである;
    (C)前記固溶体正極活物質は、上記式(3)で表される組成を有する活物質の粒子表面に、Al、ZrおよびTiからなる群から選択される金属の酸化物または複合酸化物からなる被覆層を有するものであって、この際、前記固溶体正極活物質における前記酸化物または複合酸化物の含有量は酸化物換算で0.1〜3.0重量%である;
    (D)前記固溶体正極活物質は、下記式(4):
    式中、Xは、Ti、ZrおよびNbからなる群から選択される少なくとも1種であり、
    0.01≦f≦0.4、a'+b'+c'+d'+f=1.5、0.1≦d'≦0.4、1.1≦[a'+b'+c'+f]≦1.4であり、z'は、原子価を満足する酸素数を表す、
    で表される組成を有する活物質である;
    前記電解液は、1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシドおよびジフルオロリン酸リチウムを含有する、電気デバイス。
  2. 前記電解液における前記1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシドの濃度が0.5〜2.5重量%であり、前記ジフルオロリン酸リチウムの濃度が1.8〜3.0重量%である、請求項1に記載の電気デバイス。
  3. 前記Si含有合金が、SixTiyGeza、SixTiyZnza、SixTiySnza、SixSnyAlza、SixSnyza、SixSnyza、SixZnyza、SixZnySnza、SixZnyAlza、SixZnyza、SixAlyzaおよびSixAlyNbza(式中、Aは、不可避不純物である。さらに、x、y、z、およびaは、重量%の値を表し、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である)からなる群から選択される1種または2種以上である、請求項1または2に記載の電気デバイス。
  4. リチウムイオン二次電池である、請求項1〜3のいずれか1項に記載の電気デバイス。
JP2015558669A 2014-01-24 2014-01-24 電気デバイス Expired - Fee Related JP6252602B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051535 WO2015111192A1 (ja) 2014-01-24 2014-01-24 電気デバイス

Publications (2)

Publication Number Publication Date
JPWO2015111192A1 JPWO2015111192A1 (ja) 2017-03-23
JP6252602B2 true JP6252602B2 (ja) 2017-12-27

Family

ID=53681021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015558669A Expired - Fee Related JP6252602B2 (ja) 2014-01-24 2014-01-24 電気デバイス

Country Status (6)

Country Link
US (1) US9954252B2 (ja)
EP (1) EP3098882B1 (ja)
JP (1) JP6252602B2 (ja)
KR (1) KR101891013B1 (ja)
CN (1) CN106415896B (ja)
WO (1) WO2015111192A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101841819B1 (ko) 2012-11-22 2018-03-23 닛산 지도우샤 가부시키가이샤 전기 디바이스용 부극, 및 이것을 사용한 전기 디바이스
CN105934846B (zh) 2014-01-24 2019-06-28 日产自动车株式会社 电器件
EP3098892B1 (en) * 2014-01-24 2018-11-14 Nissan Motor Co., Ltd Electrical device
JP6737091B2 (ja) * 2016-09-09 2020-08-05 日産自動車株式会社 非水電解質二次電池用負極及びこれを用いた非水電解質二次電池
US10196058B2 (en) 2016-11-28 2019-02-05 drive.ai Inc. Method for influencing entities at a roadway intersection
US10261513B2 (en) 2016-12-19 2019-04-16 drive.ai Inc. Methods for communicating state, intent, and context of an autonomous vehicle
CN108269970B (zh) * 2016-12-31 2020-01-03 北京当升材料科技股份有限公司 一种新型锂离子电池梯度正极材料及其制备方法
US11682766B2 (en) * 2017-01-27 2023-06-20 Nec Corporation Silicone ball containing electrode and lithium ion battery including the same
US11961959B2 (en) 2017-07-31 2024-04-16 Tesla, Inc. Battery systems based on lithium difluorophosphate
CN111149247A (zh) * 2017-07-31 2020-05-12 特斯拉汽车加拿大无限责任公司 基于二氟磷酸锂的新型电池系统
KR102264735B1 (ko) * 2017-09-21 2021-06-15 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
US20190280334A1 (en) * 2018-03-12 2019-09-12 Tesla Motors Canada ULC Novel battery systems based on two-additive electrolyte systems including 1,2,6-oxodithiane-2,2,6,6-tetraoxide
KR102265741B1 (ko) * 2018-03-21 2021-06-16 (주)엘지에너지솔루션 리튬 이차 전지의 제조방법 및 이에 의해 제조된 리튬 이차 전지
US20200001779A1 (en) 2018-06-27 2020-01-02 drive.ai Inc. Method for communicating intent of an autonomous vehicle
JP7093843B2 (ja) * 2018-10-30 2022-06-30 日本碍子株式会社 コイン形二次電池
WO2021061430A1 (en) 2019-09-24 2021-04-01 Apple Inc. Systems and methods for hedging for different gaps in an interaction zone

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62134243A (ja) * 1985-12-06 1987-06-17 Mitsui Toatsu Chem Inc アイソタクテイクポリスチレン成形体
JP5302003B2 (ja) 2005-12-01 2013-10-02 スリーエム イノベイティブ プロパティズ カンパニー ケイ素含有量が高いアモルファス合金に基づく電極組成物
JP5401035B2 (ja) * 2007-12-25 2014-01-29 日立ビークルエナジー株式会社 リチウムイオン二次電池
JP5046302B2 (ja) 2008-03-28 2012-10-10 日立マクセルエナジー株式会社 非水二次電池
EP2500966B1 (en) * 2009-11-12 2018-01-10 LG Chem, Ltd. Negative active material for lithium secondary battery and lithium secondary battery comprising same
JP5472041B2 (ja) * 2010-10-28 2014-04-16 三菱化学株式会社 非水系電解液およびそれを用いた非水系電解液二次電池
JP5741908B2 (ja) * 2011-03-09 2015-07-01 日産自動車株式会社 リチウムイオン二次電池用正極活物質
TW201330350A (zh) * 2011-11-01 2013-07-16 Hitachi Maxell Energy Ltd 鋰蓄電池
JP6465538B2 (ja) * 2012-02-01 2019-02-06 日産自動車株式会社 固溶体リチウム含有遷移金属酸化物の製造方法、非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法
US20150044513A1 (en) * 2012-03-26 2015-02-12 Sony Corporation Cathode active material, cathode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP5754855B2 (ja) * 2012-04-25 2015-07-29 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP6085994B2 (ja) * 2012-04-27 2017-03-01 日産自動車株式会社 非水電解質二次電池の製造方法

Also Published As

Publication number Publication date
EP3098882A1 (en) 2016-11-30
US9954252B2 (en) 2018-04-24
CN106415896A (zh) 2017-02-15
EP3098882A4 (en) 2016-11-30
KR101891013B1 (ko) 2018-08-22
JPWO2015111192A1 (ja) 2017-03-23
CN106415896B (zh) 2019-08-09
US20170012320A1 (en) 2017-01-12
KR20160102251A (ko) 2016-08-29
WO2015111192A1 (ja) 2015-07-30
EP3098882B1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6252602B2 (ja) 電気デバイス
JP6202106B2 (ja) 電気デバイス
JP6187602B2 (ja) 電気デバイス
JP2018055952A (ja) 非水電解質二次電池、および負極ユニット
JP6252600B2 (ja) 電気デバイス
JP6202107B2 (ja) 電気デバイス
JP6327361B2 (ja) 電気デバイス
JP6252604B2 (ja) 電気デバイス
JP6380553B2 (ja) 電気デバイス
JP6380554B2 (ja) 電気デバイス
JP6737091B2 (ja) 非水電解質二次電池用負極及びこれを用いた非水電解質二次電池
JP6252603B2 (ja) 電気デバイス
WO2015111195A1 (ja) 電気デバイス用負極およびこれを用いた電気デバイス
JP6252601B2 (ja) 電気デバイス
JP2018078052A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R151 Written notification of patent or utility model registration

Ref document number: 6252602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees