JP6327361B2 - 電気デバイス - Google Patents

電気デバイス Download PDF

Info

Publication number
JP6327361B2
JP6327361B2 JP2016564519A JP2016564519A JP6327361B2 JP 6327361 B2 JP6327361 B2 JP 6327361B2 JP 2016564519 A JP2016564519 A JP 2016564519A JP 2016564519 A JP2016564519 A JP 2016564519A JP 6327361 B2 JP6327361 B2 JP 6327361B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
negative electrode
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016564519A
Other languages
English (en)
Other versions
JPWO2016098212A1 (ja
Inventor
渡邉 学
学 渡邉
智裕 蕪木
智裕 蕪木
洋一 吉岡
洋一 吉岡
寛和 小松
寛和 小松
千葉 啓貴
啓貴 千葉
山本 伸司
伸司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of JPWO2016098212A1 publication Critical patent/JPWO2016098212A1/ja
Application granted granted Critical
Publication of JP6327361B2 publication Critical patent/JP6327361B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/18Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、電気デバイスに関する。本発明に係る電気デバイスは、例えば、二次電池やキャパシタ等として電気自動車、燃料電池車およびハイブリッド電気自動車等の車両のモータ等の駆動用電源や補助電源に用いられる。
近年、地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池などの電気デバイスの開発が盛んに行われている。
モータ駆動用二次電池としては、携帯電話やノートパソコン等に使用される民生用リチウムイオン二次電池と比較して極めて高い出力特性、および高いエネルギーを有することが求められている。したがって、全ての電池の中で最も高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。
リチウムイオン二次電池は、一般に、バインダを用いて正極活物質等を正極集電体の両面に塗布した正極と、バインダを用いて負極活物質等を負極集電体の両面に塗布した負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。
従来、リチウムイオン二次電池の負極には充放電サイクルの寿命やコスト面で有利な炭素・黒鉛系材料が用いられてきた。しかし、炭素・黒鉛系の負極材料ではリチウムイオンの黒鉛結晶中への吸蔵・放出により充放電がなされるため、最大リチウム導入化合物であるLiCから得られる理論容量372mAh/g以上の充放電容量が得られないという欠点がある。このため、炭素・黒鉛系負極材料で車両用途の実用化レベルを満足する容量、エネルギー密度を得るのは困難である。
これに対し、負極にLiと合金化する材料を用いた電池は、従来の炭素・黒鉛系負極材料と比較しエネルギー密度が向上するため、車両用途における負極材料として期待されている。例えば、Si材料は、充放電において下記の反応式(A)のように1molあたり3.75molのリチウムイオンを吸蔵放出し、Li15Si(=Li3.75Si)においては理論容量3600mAh/gである。
しかしながら、負極にLiと合金化する材料を用いたリチウムイオン二次電池は、充放電時の負極での膨張収縮が大きい。例えば、Liイオンを吸蔵した場合の体積膨張は、黒鉛材料では約1.2倍であるのに対し、Si材料ではSiとLiが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起こすため、電極のサイクル寿命を低下させる問題があった。また、Si負極活物質の場合、容量とサイクル耐久性とはトレードオフの関係であり、高容量を示しつつサイクル耐久性を向上させることが困難であるといった問題があった。
ここで、国際公開第2006/129415号パンフレットでは、高容量で、かつサイクル寿命に優れた負極ペレットを有する非水電解質二次電池を提供することを課題とした発明が開示されている。具体的には、ケイ素粉末とチタン粉末とをメカニカルアロイング法により混合し、湿式粉砕して得られるケイ素含有合金であって、ケイ素を主体とする第1相とチタンのケイ化物(TiSiなど)を含む第2相とを含むものを負極活物質として用いることが開示されている。この際、これらの2つの相の少なくとも一方を非晶質または低結晶性とすることも開示されている。
ここで、高い容量特性を有する固溶体正極活物質を用いた正極に、国際公開第2006/129415号パンフレットに記載されたような負極を組み合わると、負極も高容量であるために固溶体正極活物質の特徴である高い容量特性を活かすことができ、セルとしても優れた容量プロファイルを実現することが可能である。しかしながら、本発明者らの検討によれば、これらの正負極の組み合わせによると、十分なサイクル耐久性が得られないという問題があることが判明した。
そこで、本発明は、固溶体正極活物質を用いた正極を有するリチウムイオン二次電池等の電気デバイスにおいて、固溶体正極活物質の特徴である高い容量特性を十分に活かしつつ、十分なサイクル耐久性を実現することができる手段を提供することを目的とする。
本発明者らは、上記課題を解決するため、鋭意研究を行った。その結果、所定のSi含有合金を負極活物質として含有する負極と、所定の固溶体正極活物質を含有する正極とを組み合わせて用いることによって、上記課題が解決されうることを見出し、本発明を完成させるに至った。
すなわち、本発明は、正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、セパレータとを含む発電要素を有する電気デバイスに関するものである。
そして、前記負極活物質層は、下記式(1):
上記式(1)において、αは負極活物質層における各成分の重量%を表し、40<α≦98である、
で表される負極活物質を含有する。また、前記正極活物質層は、下記式(2):
上記式(2)において、eは正極活物質層における各成分の重量%を表し、80≦e≦98である、
で表される正極活物質を含有する。
この際、前記Si含有合金は、非晶質または低結晶性のケイ素を主成分とする母相中に、遷移金属のケイ化物を含むシリサイド相が分散されてなる構造を有し、下記化学式(I):
上記化学式(I)において、
Aは、不可避不純物であり、
Mは、1または2以上の遷移金属元素であり、
x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0≦y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。)で表される組成を有し、前記Si含有合金のCuKα1線を用いたX線回折測定において、2θ=24〜33°の範囲におけるSiの(111)面の回折ピーク強度Aに対する、2θ=37〜45°の範囲における遷移金属のケイ化物の回折ピーク強度Bの比の値(B/A)が0.41以上である点に特徴がある。
そして、前記固溶体正極活物質は、下記式(3):
上記式(3)において、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である、
で表される組成を有する固溶体からなるか、または、前記式(3)で表される組成を有する固溶体の粒子表面に、Al、ZrおよびTiからなる群から選択される金属の酸化物または複合酸化物からなる被覆層が形成されてなる酸化物被覆固溶体からなり、この際、前記固溶体正極活物質における前記酸化物または複合酸化物の含有量は酸化物換算で0.1〜3.0重量%である点に特徴がある。
本発明に係る電気デバイスの一実施形態である、扁平型(積層型)の双極型でない非水電解質リチウムイオン二次電池の基本構成を示す断面概略図である。 本発明に係る電気デバイスの代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。 実施例で作製された負極A1に用いられているSi含有合金(負極活物質)粉末についてのX線回折分析により得られた回折スペクトルである。 実施例で作製された負極A2に用いられているSi含有合金(負極活物質)粉末についてのX線回折分析により得られた回折スペクトルである。 実施例で作製された負極A3に用いられているSi含有合金(負極活物質)粉末についてのX線回折分析により得られた回折スペクトルである。 実施例で作製された負極A4に用いられているSi含有合金(負極活物質)粉末についてのX線回折分析により得られた回折スペクトルである。 実施例で作製された負極A5に用いられているSi含有合金(負極活物質)粉末についてのX線回折分析により得られた回折スペクトルである。
本発明の一形態によれば、正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、セパレータとを含む発電要素を有する電気デバイスであって、前記負極活物質層が、下記式(1):
上記式(1)において、αは負極活物質層における各成分の重量%を表し、40<α≦98である、
で表される負極活物質を含有し、前記正極活物質層が、下記式(2):
上記式(2)において、eは正極活物質層における各成分の重量%を表し、80≦e≦98である、
で表される正極活物質を含有し、この際、前記Si含有合金は、非晶質または低結晶性のケイ素を主成分とする母相中に、遷移金属のケイ化物を含むシリサイド相が分散されてなる構造を有し、下記化学式(I):
上記化学式(I)において、Aは、不可避不純物であり、Mは、1または2以上の遷移金属元素であり、x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0≦y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である、
で表される組成を有し、前記Si含有合金のCuKα1線を用いたX線回折測定において、2θ=24〜33°の範囲におけるSiの(111)面の回折ピーク強度Aに対する、2θ=37〜45°の範囲における遷移金属のケイ化物の回折ピーク強度Bの比の値(B/A)が0.41以上であり、
かつ、前記固溶体正極活物質は、下記式(3):
上記式(3)において、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である、
で表される組成を有する固溶体からなるか、または、前記式(3)で表される組成を有する固溶体の粒子表面に、Al、ZrおよびTiからなる群から選択される金属の酸化物または複合酸化物からなる被覆層が形成されてなる酸化物被覆固溶体からなり、この際、前記固溶体正極活物質における前記酸化物または複合酸化物の含有量は酸化物換算で0.1〜3.0重量%である、電気デバイスが提供される。かような構成を有する本発明によれば、負極活物質(Si含有合金)におけるB/Aの値が上述した範囲内の値であることで、SiとLiとが合金化する際のアモルファス−結晶の相転移(Li15Siへの結晶化)が抑制される。これにより、電気デバイスの充放電過程における負極活物質を構成するSi含有合金の膨張収縮が抑制される。その結果、本発明に係る電気デバイスは、固溶体正極活物質の特徴である高い容量特性を十分に活かしつつ、十分なサイクル耐久性を実現することが可能となる。
以下、本発明に係る電気デバイスの基本的な構成を説明する。本実施形態では、電気デバイスとしてリチウムイオン二次電池を例示して説明する。
まず、本発明に係る電気デバイスを用いてなるリチウムイオン二次電池では、セル(単電池層)の電圧が大きく、高エネルギー密度、高出力密度が達成できる。そのため本実施形態のリチウムイオン二次電池は、車両の駆動電源用や補助電源用として優れている。その結果、車両の駆動電源用等のリチウムイオン二次電池として好適に利用できる。このほかにも、携帯電話などの携帯機器向けのリチウムイオン二次電池にも十分に適用可能である。
上記リチウムイオン二次電池を形態・構造で区別した場合には、例えば、積層型(扁平型)電池、巻回型(円筒型)電池など、従来公知のいずれの形態・構造にも適用し得るものである。積層型(扁平型)電池構造を採用することで簡単な熱圧着などのシール技術により長期信頼性を確保でき、コスト面や作業性の点では有利である。
また、リチウムイオン二次電池内の電気的な接続形態(電極構造)で見た場合、非双極型(内部並列接続タイプ)電池および双極型(内部直列接続タイプ)電池のいずれにも適用しうるものである。
リチウムイオン二次電池内の電解質層の種類で区別した場合には、電解質層に非水系の電解液等の溶液電解質を用いた溶液電解質型電池、電解質層に高分子電解質を用いたポリマー電池など従来公知のいずれの電解質層のタイプにも適用しうるものである。該ポリマー電池は、さらに高分子ゲル電解質(単にゲル電解質ともいう)を用いたゲル電解質型電池、高分子固体電解質(単にポリマー電解質ともいう)を用いた固体高分子(全固体)型電池に分けられる。
したがって、以下の説明では、本実施形態のリチウムイオン二次電池の例として、非双極型(内部並列接続タイプ)リチウムイオン二次電池について図面を用いてごく簡単に説明する。ただし、本発明に係る電気デバイスおよび本実施形態に係るリチウムイオン二次電池の技術的範囲が、これらに制限されるべきではない。
<電池の全体構造>
図1は、本発明の電気デバイスの代表的な一実施形態である、扁平型(積層型)のリチウムイオン二次電池(以下、単に「積層型電池」ともいう)の全体構造を模式的に表した断面概略図である。
図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体であるラミネートシート29の内部に封止された構造を有する。ここで、発電要素21は、正極集電体12の両面に正極活物質層15が配置された正極と、電解質層17と、負極集電体11の両面に負極活物質層13が配置された負極とを積層した構成を有している。具体的には、1つの正極活物質層15とこれに隣接する負極活物質層13とが、電解質層17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。
これにより、隣接する正極、電解質層、および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、発電要素21の両最外層に位置する最外層の正極集電体には、いずれも片面のみに正極活物質層15が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層の負極集電体が位置するようにし、該最外層の負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。
正極集電体12および負極集電体11は、各電極(正極および負極)と導通される正極集電板25および負極集電板27がそれぞれ取り付けられ、ラミネートシート29の端部に挟まれるようにしてラミネートシート29の外部に導出される構造を有している。正極集電板25および負極集電板27は、それぞれ必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体12および負極集電体11に超音波溶接や抵抗溶接等により取り付けられていてもよい。
本実施形態に係るリチウムイオン二次電池は、正極および負極の構成に特徴を有する。以下、当該正極および負極を含めた電池の主要な構成部材について説明する。
<活物質層>
活物質層(13、15)は活物質を含み、必要に応じてその他の添加剤をさらに含む。
[正極活物質層]
正極活物質層15は、少なくとも固溶体材料からなる正極活物質(本明細書中、「固溶体正極活物質」とも称する)を含む。
(固溶体正極活物質)
固溶体正極活物質は、下記式(3)で表される組成を有する固溶体からなるか、または、前記式(3)で表される組成を有する固溶体の粒子表面に、Al、ZrおよびTiからなる群から選択される金属の酸化物または複合酸化物からなる被覆層が形成されてなる酸化物被覆固溶体からなる。
式(3)において、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である。
なお、固溶体正極活物質が上記酸化物被覆固溶体からなる場合、前記固溶体正極活物質における前記酸化物または複合酸化物の含有量は酸化物換算で0.1〜3.0重量%である。この際、固溶体正極活物質の粒子表面に存在する金属酸化物の具体的な構成は特に制限されず、上述した金属元素を含む理論上可能な酸化物または複合酸化物のいずれも用いられうる。好ましくは、Al、ZrOまたはTiOが用いられる。なお、Nb、Sn、W、MoおよびVからなる群から選択される1種または2種以上のような他の元素を含む(複合)酸化物が被覆層にさらに含まれていてもよい。なお、本発明において、固溶体正極活物質は、上記酸化物被覆固溶体からなるものであることが好ましい。このような構成の正極活物質を用いることで、プラトー電位以上の高電位(例えば、4.4〜4.8V)で活性化処理した後、充放電サイクル(例えば、4.3〜4.5V)を繰り返すことによる結晶構造の変化が特に抑制できる。また、固溶体正極活物質の粒子表面に所定の被覆層を形成することで、活性化に伴い、遷移金属層内のMnがLi層に移動して一部がスピネル相へ相転移する際に、スピネル相を形成せず(固定化されず)に結晶構造外へ溶出する遷移金属(Mn)が減少し、性能および耐久性のいっそうの向上が図れる。
さらに、本実施形態では、被覆層の金属元素の一部が固溶体正極活物質の粒子の表層に侵入する(存在する領域を有する)ことが好ましい。これにより、酸素との共有結合が強まる結果、その他の遷移金属の酸化に伴う格子酸素の離脱が減少するため、酸素ガスの発生が減少し、結晶構造内に酸素欠陥の生成も減少する。また、プラトー電位付近(4.3〜4.5V)で充放電のサイクルを繰り返したり、プラトー電位付近の電位に長期間曝露されても、結晶構造が安定化され、酸素離脱が減少するため、固溶体活物質を構成している遷移金属(Mnなど)の酸化に伴う溶出が抑制され、性能および耐久性の向上が図れる。さらに、最も不安定になる固溶体正極活物質の粒子表層(〜20nm、さらには30nmまで)が、(複合)酸化物による被覆と金属元素の侵入により安定化するため、よりいっそうの性能および耐久性の向上が図れる。また被覆層の金属元素が粒子(バルク)内に侵入および置換されないため、バルク内におけるNiやMnの酸化還元に伴うLi挿入脱離が阻害されないので、高容量を得ることができる。
本実施形態では、被覆層の存在により、表層の結晶構造からの遷移金属(Mn4+、Ni2+)の溶出および酸素の離脱の抑制を図ることができる。さらに、被覆層−固溶体正極活物質の界面で(金属−Li)化合物を形成させる(活物質側に金属元素が存在する領域を設ける)ことで、Li拡散性(Li伝導性)の向上を図ることができる。その結果、界面抵抗が減少するだけでなく、粒子内Li拡散抵抗も減少させることができる。こうした抵抗の減少とLi拡散性の向上により、電池性能(容量、レート特性、サイクル特性)を向上させることができる。また、遷移金属の溶出を抑制することで、固溶体活物質(粒子)表層−電解液間の反応を抑制することができると共に、サイクル経過に伴う平均電圧の低下を抑制することができる。
本実施形態において、固溶体正極活物質の粒子と被覆層との界面の該固溶体正極活物質側に被覆層を構成する金属元素が存在する領域を有することの確認は、高分解能の測定装置を用いれば、定性的には、活物質粒子表層に金属元素が存在していることを確認できる。分析装置(分析法)としては、XPS(X線光電子分光法)、TEM−EDX(透過型電子顕微鏡−エネルギー分散型X線分光法)、STEM−EDX/EELS(走査透過型電子顕微鏡−エネルギー分散型X線分光法/電子エネルギー損失分光分析器)、HAADF−STEM(高角度散乱暗視野−走査透過電子顕微鏡像)などを使用することができる。
なお、被覆層の厚み(平均厚み)について特に制限はないが、上述したような固溶体正極活物質の特性向上の観点からは、好ましくは2〜20nmである。被覆層の平均厚みの測定方法は、例えば、SEMやTEMの観察像により行うことができる。この他にも、上記した固溶体活物質の平均粒径と、アルミナ層を設けた正極活物質の平均粒径、レーザー回折・散乱法の粒度分布測定装置により計測し、その差をアルミナ層の平均厚みとしてもよい。
また、固溶体正極活物質の粒子表面における被覆層の存在割合についても特に制限はなく、最も好ましくは100面積%であるが、本実施形態の効果を発現させるという観点からは、20面積%以上であればよく、好ましくは50面積%以上である。
上述したような被覆層を有する固溶体正極活物質は、例えば、組成式(1):Li1.5[NiMnCo[Li][X]]O(ここで、Xは、Ti、ZrおよびNbの中の少なくとも1種であり、0≦e≦0.5、a+b+c+d+e=1.5、0.1≦d≦0.4、1.1≦[a+b+c+e]≦1.4であり、zは、原子価を満足する酸素数である)で表される固溶体活物質の表面に金属酸化物をコーティングする工程を含む方法により調製されうる。この際、固溶体活物質の表面に金属酸化物をコーティングする工程は、固溶体活物質と、被覆層を構成する金属元素の塩(硝酸塩(アルミニウムの塩である硝酸アルミニウム等)、炭酸塩(ジルコニウムの炭酸塩である炭酸ジルコニウムアンモニウム)、金属アルコキシド(チタンの金属アルコキシドであるテトライソプロポキシチタン等)など)の溶液をpH7〜8で混合する工程と、得られた固溶体活物質前駆体を乾燥する工程と、得られた乾燥後の固溶体活物質前駆体を温度450℃±50℃で焼成する工程とを含むことができる。これらの工程を経て上記固溶体活物質の粒子表面の一部ないし全部に形成される被覆層は、Liイオンの移動性が高く、さらに、遷移金属の溶出を抑制する効果が高いことが望まれる。さらに、金属の水酸化物の沈殿反応をpH7〜8の範囲で行い、焼成温度を450℃±50℃、好ましくは420℃〜480℃とすることで、固溶体活物質の粒子の表面の一部または全部(20〜100%)に被覆層が存在するようにできる。また、該固溶体活物質粒子の表層に金属元素が侵入した固溶体活物質を製造することができる。この結果、性能と耐久性に優れた電池を提供できる。以下、被覆層をアルミナから形成する場合を例に挙げて、各工程について説明する。
まず、固溶体活物質と、硝酸アルミニウム溶液をpH7〜8で混合する。これにより、固溶体活物質前駆体を得ることができる。
アルミニウムの原料は、硝酸アルミニウムが好適である。これは、硝酸根が焼成工程で分解除去できるので、この正極活物質を使用した電池の性能が良いためである。硫酸アルミニウムや塩化アルミニウムでは硫酸根や塩酸根が残留し、この正極活物質を使用した電池の性能が低下する。なお、酢酸アルミニウムは、本法(沈殿反応)に適さない。
アルミニウム(Al層)の原料である硝酸アルミニウムの配合量は、上記した正極活物質のAlの含有量となるように、適宜調整すればよい。
本工程では、さらに沈殿剤を用いる。該沈殿剤としては、アンモニウム水が好適である。これは、アンモニウム根が焼成工程で分解除去できるので、この正極活物質を使用した電池の性能が良いためである。水酸化ナトリウムでは、正極活物質の不純物としてNaが残存し、この正極活物質を使用した電池の性能が低下する。
上記固溶体活物質と硝酸アルミニウム溶液と沈殿剤のアンモニウム水の混合時のpHがpH7未満では、硝酸アルミニウムとアンモニウム水との反応が不十分で、水酸化アルミニウムの沈殿生成が悪く、仕込み量に対し、所望のコート量を得ることができない。一方、pH8超では、水酸化アルミニウムが再溶解し、仕込み量に対し、所望のコート量を得ることができない。
混合温度および混合時間としては、混合操作により、硝酸アルミニウムとアンモニウム水との反応が十分になされ、所望の固溶体活物質前駆体(上記固溶体活物質表面に水酸化アルミニウムの沈殿生成がなされたもの)が形成されればよく、特に制限されるものではない。目安としては、混合温度(反応系の溶液温度)が20〜50℃の範囲で、混合時間が30分〜3時間の範囲であればよい。なお、混合した後、3時間程度までであれば、得られた固溶体活物質前駆体を溶液中に浸漬しておいてもよい。これにより、好適なアルミナ層のコートができ、充放電特性とサイクル耐久性の改善効果が得られる。また、混合手段(装置)としては、特に制限されるものではなく、従来公知の混合・撹拌手段(装置)を用いることができる。
次いで、上記で得られた固溶体活物質前駆体を乾燥する。まずは、上記の混合溶液から固溶体活物質前駆体をろ過する。ろ過手段(装置)としては、特に制限されるものではなく、従来公知のろ過手段(装置)を用いることができる。
次に、ろ別された固溶体活物質前駆体を乾燥する。乾燥条件としては、固溶体活物質前駆体を十分に乾燥できれば特に制限されるものではない。即ち、乾燥から焼成までを連続して行う場合には、厳密に乾燥工程と焼成工程とを区別しなくてもよく、所定の焼成温度下で、乾燥から焼成まで行ってもよいためである。以上のことから、乾燥条件としては、乾燥温度が80〜200℃の範囲で、乾燥時間が30分〜12時間、好ましくは1〜6時間の範囲であればよい。また、乾燥時の雰囲気としては、特に制限されるものではなく、大気雰囲気等で行うことができる。また、乾燥手段(装置)としては、特に制限されるものではなく、従来公知の乾燥手段(装置)を用いることができる。具体的には、例えば、真空乾燥、熱風乾燥、赤外線(IR)乾燥、自然乾燥等を適宜組み合わせて使用できる。
さらに、上記で乾燥された固溶体活物質前駆体を温度450℃±50℃で焼成する。固溶体活物質前駆体の焼成条件としては、焼成温度450℃±50℃の範囲で、好ましくは420〜480℃の範囲で、1〜12時間、好ましくは2〜6時間の範囲とすることで、固溶体活物質の粒子の表面の一部または全部にAl層が存在するようになる。また、該固溶体活物質粒子の表層にAl元素が侵入した該固溶体活物質質を製造できる。焼成温度が400℃未満では、水酸化アルミニウムの分解が不十分で、所望のAlコート層が形成できず、この正極活物質を使用した電池は耐久性が悪い。一方、焼成温度が500℃超では、Al層が密になり、Liイオンの移動性が低下し、この正極活物質を使用した電池は性能が悪い。また、焼成時の雰囲気としては、特に制限されるものではなく、大気雰囲気等で行うことができる。また、焼成手段(装置)としては、特に制限されるものではなく、従来公知の焼成手段(装置)を用いることができる。
場合によっては、上述した固溶体正極活物質以外の正極活物質が併用されてもよい。この場合、好ましくは、容量、出力特性の観点から、リチウム−遷移金属複合酸化物が正極活物質として併用される。これ以外の正極活物質が用いられてもよいことは勿論である。活物質それぞれの固有の効果を発現する上で最適な粒子径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒子径同士をブレンドして用いればよく、全ての活物質の粒子径を必ずしも均一化させる必要はない。
正極活物質層15に含まれる正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1〜30μmであり、より好ましくは5〜20μmである。なお、本明細書において、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される活物質粒子(観察面)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。また、本明細書において、「平均粒子径」の値は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の粒子径や平均粒子径も同様に定義することができる。
上述したように、正極活物質層は、下記式(2)で表される正極活物質(固溶体正極活物質)を含有する。
式(2)において、eは正極活物質層における各成分の重量%を表し、80≦e≦98である。
式(2)から明らかなように、正極活物質層における固溶体正極活物質の含有量は、80〜98質量%であることが必須であるが、好ましくは84〜98質量%である。
また、正極活物質層は上述した固溶体正極活物質のほか、バインダおよび導電助剤を含むことが好ましい。さらに、必要に応じて、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。
(バインダ)
正極活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)およびその塩、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。これらのバインダは、単独で用いてもよいし、2種以上を併用してもよい。
正極活物質層におけるバインダの含有量は、好ましくは1〜10重量%であり、より好ましくは1〜8重量%である。
(導電助剤)
導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、ケッチェンブラック、アセチレンブラック等のカーボンブラックが挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
正極活物質層における導電助剤の含有量は、好ましくは1〜10質量%であり、より好ましくは1〜8質量%である。導電助剤の配合比(含有量)を上記範囲内に規定することで以下の効果が発現される。すなわち、電極反応を阻害することなく、電子伝導性を十分に担保することができ、電極密度の低下によるエネルギー密度の低下を抑制でき、ひいては電極密度の向上によるエネルギー密度の向上を図ることができるのである。
(その他の成分)
電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
正極(正極活物質層)は、通常のスラリーを塗布(コーティング)する方法のほか、混練法、スパッタ法、蒸着法、CVD法、PVD法、イオンプレーティング法および溶射法のいずれかの方法によって形成することができる。
[負極活物質層]
負極活物質層15は、負極活物質として、Si含有合金を必須に含む。
(Si含有合金)
本実施形態において、負極活物質としてのSi含有合金は、非晶質または低結晶性のケイ素を主成分とする母相中に、遷移金属のケイ化物を含むシリサイド相が分散されてなる構造を有し、所定の組成を有するものである。
上述したように、本実施形態における負極活物質を構成するSi含有合金は、まず、非晶質(アモルファス)または低結晶性のケイ素を主成分とする母相を備えている。このように、母相を構成するケイ素が非晶質または低結晶性であると、高容量でかつサイクル耐久性に優れた電気デバイスが提供されうる。
ケイ素含有合金を構成する母相は、ケイ素を主成分として含有する相であり、好ましくはSi単相(Siのみからなる相)である。この母相(Siを主成分とする相)は、本実施形態の電気デバイス(リチウムイオン二次電池)の作動時にリチウムイオンの吸蔵・放出に関与する相であり、電気化学的にLiと反応可能な相である。Si単相である場合、重量あたりおよび体積あたりに多量のLiを吸蔵・放出することが可能である。ただし、Siは電子伝導性に乏しいことから、母相にはリンやホウ素などの微量の添加元素や遷移金属などが含まれていてもよい。なお、この母相(Siを主成分とする相)は、後述するシリサイド相よりもアモルファス化していることが好ましい。かような構成とすることにより、負極活物質(ケイ素含有合金)をより高容量なものとすることができる。なお、母相がシリサイド相よりもアモルファス化しているか否かは、電子線回折分析により確認することができる。具体的には、電子線回折分析によると、単結晶相については二次元点配列のネットパターン(格子状のスポット)が得られ、多結晶相についてはデバイシェラーリング(回折環)が得られ、アモルファス相についてはハローパターンが得られる。これを利用することで、上記の確認が可能となるのである。
一方、本実施形態における負極活物質を構成するケイ素含有合金は、上記母相に加えて、当該母相中に分散されてなる遷移金属のケイ化物(シリサイドとも称する)を含むシリサイド相をも含んでいる。このシリサイド相は、遷移金属のケイ化物(例えばTiSi)を含むことで母相との親和性に優れ、特に充電時の体積膨張における結晶界面での割れを抑制することができる。さらに、シリサイド相は母相と比較して電子伝導性および硬度の観点で優れている。このため、シリサイド相は母相の低い電子伝導性を改善し、かつ膨張時の応力に対して活物質の形状を維持する役割をも担っている。
シリサイド相には複数の相が存在していてもよく、例えば遷移金属元素MとSiとの組成比が異なる2相以上(例えば、MSiおよびMSi)が存在していてもよい。また、異なる遷移金属元素とのケイ化物を含むことにより、2相以上が存在していてもよい。ここで、シリサイド相に含まれる遷移金属の種類について特に制限はないが、好ましくはTi、Zr、Ni、Cu、およびFeからなる群より選ばれる少なくとも1種であり、より好ましくはTiまたはZrであり、特に好ましくはTiである。これらの元素は、ケイ化物を形成した際に他の元素のケイ化物よりも高い電子伝導度を示し、かつ高い強度を有するものである。特に遷移金属元素がTiである場合のシリサイドであるTiSiは、非常に優れた電子伝導性を示すため、好ましい。
特に、遷移金属元素MがTiであり、シリサイド相に組成比が異なる2相以上(例えば、TiSiおよびTiSi)が存在する場合は、シリサイド相の50質量%以上、好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上、最も好ましくは100質量%がTiSi相である。
上記シリサイド相のサイズについて特に制限はないが、好ましい実施形態において、シリサイド相のサイズは50nm以下である。かような構成とすることにより、負極活物質(ケイ素含有合金)をより高容量なものとすることができる。
本発明において、負極活物質を構成するケイ素含有合金は、下記化学式(I)で表される組成を有するものである。
上記化学式(I)において、Aは、不可避不純物であり、Mは、1または2以上の遷移金属元素であり、x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0≦y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。
上記化学式(I)から明らかなように、本発明の好ましい実施形態に係るケイ素含有合金(SiSnの組成を有するもの)は、SiおよびM(遷移金属)の二元系であるか(y=0の場合)、Si、SnおよびM(遷移金属)の三元系である(y>0の場合)。なかでも、Si、SnおよびM(遷移金属)の三元系であることが、サイクル耐久性の観点からはより好ましい。また、本明細書において「不可避不純物」とは、Si含有合金において、原料中に存在したり、製造工程において不可避的に混入したりするものを意味する。当該不可避不純物は、本来は不要なものであるが、微量であり、Si合金の特性に影響を及ぼさないため、許容されている不純物である。
本実施形態において特に好ましくは、負極活物質(ケイ素含有合金)への添加元素(M;遷移金属)としてTiを選択し、さらに必要に応じて第2添加元素としてSnを添加することで、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質(例えば、炭素系負極活物質)よりも高容量のものとなる。したがって、本発明の好ましい実施形態によると、上記化学式(I)で表される組成において、Mがチタン(Ti)であることが好ましく、Mとしてチタンを含むSi−Sn−Tiの三元系であることがより好ましい。
ここでLi合金化の際、アモルファス−結晶の相転移を抑制するのは、Si材料ではSiとLiとが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起こすため、粒子自体が壊れてしまい活物質としての機能が失われるためである。そのためアモルファス−結晶の相転移を抑制することで、粒子自体の崩壊を抑制し活物質としての機能(高容量)を保持することができ、サイクル寿命も向上させることができるものである。かかる添加元素を選定することにより、高容量で高サイクル耐久性を有するSi合金負極活物質を提供できる。
上記化学式(I)の組成において、遷移金属M(特にTi)の組成比zは、7<z<100であることが好ましく、10<z<100であることがより好ましく、15<z<100であることがさらに好ましく、20≦z<100であることが特に好ましい。遷移金属M(特にTi)の組成比zをこのような範囲とすることにより、サイクル特性をより一層向上させることができる。
より好ましくは、化学式(I)における前記x、y、およびzは、下記数式(1)または(2):
を満たすことが好ましい。各成分含有量が上記範囲内にあると、1000Ah/gを超える初期放電容量を得ることができ、サイクル寿命についても90%(50サイクル)を超えうる。
なお、当該負極活物質の上記特性のさらなる向上を図る観点からは、遷移金属M(特にTi)の含有量は7質量%超の範囲とすることが望ましい。すなわち、前記x、y、およびzが、下記数式(3)または(4):
を満たすことが好ましい。これにより、サイクル特性をよりいっそう向上させることが可能となる。
そして、より良好なサイクル耐久性を確保する観点から、前記x、y、およびzが、下記数式(5)または(6):
を満たすことが好ましい。
そして、初期放電容量およびサイクル耐久性の観点から、本実施形態の負極活物質では、前記x、y、およびzが、下記数式(7):
を満たすことが好ましい。
なお、Aは上述のように、原料や製法に由来する上記3成分以外の不純物(不可避不純物)である。前記aは、0≦a<0.5であり、0≦a<0.1であることが好ましい。
本実施形態における負極活物質を構成するケイ素含有合金は、CuKα1線を用いたX線回折測定において、2θ=24〜33°の範囲におけるSiの(111)面の回折ピーク強度Aに対する、2θ=37〜45°の範囲における遷移金属のケイ化物の回折ピーク強度Bの比の値(B/A)が0.41以上である点に特徴を有している。この比の値(B/A)は、好ましくは0.89以上であり、さらに好ましくは2.55以上であり、特に好ましくは7.07以上である。なお、本願において、上記回折ピークの強度比を算出するためのX線回折分析は、後述する実施例の欄に記載の手法を用いて行うものとする。
ここで、2θ=24〜33°の範囲におけるSiの(111)面の回折ピーク強度Aは、以下のようにして求めることができる(後述する実施例で作製される負極A1の結果に対応する図3Aを参照)。
まず、X線回折分析により得られた回折スペクトルにおいて、2θ=24°における垂線と回折スペクトルとが交わる点をaとする。同様に、2θ=33°における垂線とX線路回折スペクトルとが交わる点をbとする。ここで、線分abをベースラインとし、Siの(111)面の回折ピーク(2θ=約28.5°)における垂線と当該ベースラインとが交わる点をcとする。そして、Siの(111)面の回折ピーク(2θ=約28.5°)の頂点dと点cとを結ぶ線分cdの長さとして、Siの(111)面の回折ピーク強度Aを求めることができる。
同様に、2θ=37〜45°の範囲における遷移金属のケイ化物の回折ピーク強度Bは、以下のようにして求めることができる。以下では、遷移金属のケイ化物がTiSiである場合を例に挙げて説明する。
まず、X線回折分析により得られた回折スペクトルにおいて、2θ=37°における垂線と回折スペクトルとが交わる点をeとする。同様に、2θ=45°における垂線とX線路回折スペクトルとが交わる点をfとする。ここで、線分efをベースラインとし、TiSiの回折ピーク(2θ=約39°)における垂線と当該ベースラインとが交わる点をgとする。そして、TiSiの回折ピーク(2θ=約39°)の頂点hと点gとを結ぶ線分ghの長さとして、TiSiの回折ピーク強度Bを求めることができる。
ここで、Siの(111)面の回折ピーク強度Aおよび遷移金属のケイ化物の回折ピーク強度Bそれぞれの具体的な値については特に制限はないが、Siの(111)面の回折ピーク強度Aは、好ましくは6000〜25000(cps)であり、より好ましくは6000〜15000である。また、遷移金属のケイ化物の回折ピーク強度Bは、好ましくは9000〜46000(cps)であり、より好ましくは25000〜46000(cps)である。AおよびBをこれらの範囲内の値に制御することによって、上述した回折ピークの強度比(B/A)を確実に達成しやすくなるという利点がある。
本実施形態における負極活物質を構成するケイ素含有合金の粒子径は特に制限されないが、平均粒子径として、好ましくは0.1〜20μmであり、より好ましくは0.2〜10μmである。
(負極活物質の製造方法)
本実施形態に係る負極活物質(Si含有合金)の製造方法について特に制限はなく、従来公知の知見が適宜参照されうるが、本願では、X線回折分析による回折ピークの強度比B/Aの値を上述したような範囲内のものとするための製造方法の一例として、以下のような工程を有する製造方法が提供される。
まず、ケイ素含有合金の原料を混合して混合粉末を得る工程を行う。この工程では、得られる負極活物質(ケイ素含有合金)の組成を考慮して、当該合金の原料を混合する。当該合金の原料としては、負極活物質として必要な元素の比率を実現できれば、その形態などは特に限定されない。例えば、負極活物質を構成する元素単体を、目的とする比率に混合したものや、目的とする元素比率を有する合金、固溶体、または金属間化合物を用いることができる。また、通常は粉末状態の原料を混合する。これにより、原料からなる混合粉末が得られる。なお、原料中のケイ素(Si)とチタン(Ti)との組成比を調節することにより、上記回折ピークの強度比(B/A)を制御可能である。例えば、Siに対するTiの組成比を大きくすると、強度比(B/A)を大きくすることができる。
続いて、上記で得られた混合粉末に対して合金化処理を行う。これにより、電気デバイス用負極活物質として用いることが可能なケイ素含有合金が得られる。
合金化処理の手法としては、固相法、液相法、気相法があるが、例えば、メカニカルアロイ法やアークプラズマ溶融法、鋳造法、ガスアトマイズ法、液体急冷法、イオンビームスパッタリング法、真空蒸着法、メッキ法、気相化学反応法などが挙げられる。なかでも、メカニカルアロイ法を用いて合金化処理を行うことが好ましい。メカニカルアロイ法により合金化処理を行うことで、相の状態の制御を容易に行うことができるため、好ましい。また、合金化処理を行う前に、原材料を溶融する工程や前記溶融した溶融物を急冷して凝固させる工程が含まれてもよい。
本形態に係る製造方法では、上述した合金化処理を行う。これにより、上述したような母相/シリサイド相からなる構造とすることができる。特に、合金化処理の時間が24時間以上であれば、所望のサイクル耐久性を発揮させうる負極活物質(Si含有合金)を得ることができる。なお、合金化処理の時間は、好ましくは30時間以上であり、より好ましくは36時間以上であり、さらに好ましくは42時間以上であり、特に好ましくは48時間以上である。このように、合金化処理に要する時間を長くすることによっても、回折ピークの強度比(B/A)を大きくすることができる。なお、合金化処理のための時間の上限値は特に設定されないが、通常は72時間以下であればよい。
上述した手法による合金化処理は、通常乾式雰囲気下で行われるが、合金化処理後の粒度分布は大小の幅が非常に大きい場合がある。このため、粒度を整えるための粉砕処理および/または分級処理を行うことが好ましい。
以上、負極活物質層に必須に含まれる所定の合金について説明したが、負極活物質層はその他の負極活物質を含んでいてもよい。上記所定の合金以外の負極活物質としては、天然黒鉛、人造黒鉛、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、もしくはハードカーボンなどのカーボン、SiやSnなどの純金属や上記所定の組成比を外れる合金系活物質、あるいはTiO、Ti、TiO、もしくはSiO、SiO、SnOなどの金属酸化物、Li4/3Ti5/3もしくはLiMnNなどのリチウムと遷移金属との複合酸化物(複合窒化物)、Li−Pb系合金、Li−Al系合金、Liなどが挙げられる。ただし、上記所定の合金を負極活物質として用いることにより奏される作用効果を十分に発揮させるという観点からは、負極活物質の全量100質量%に占める上記所定の合金の含有量は、好ましくは50〜100質量%であり、より好ましくは80〜100質量%であり、さらに好ましくは90〜100質量%であり、特に好ましくは95〜100質量%であり、最も好ましくは100質量%である。
負極活物質層は、下記式(1)で表される負極活物質を含有する。
式(1)において、αは負極活物質層における各成分の重量%を表し、40<α≦98である。
式(1)から明らかなように、負極活物質層におけるSi含有合金からなる負極活物質の含有量は40質量%超98質量%以下である。
本実施形態において、負極活物質層は上述した負極活物質のほか、バインダおよび導電助剤を含むことが好ましい。また、必要に応じて、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。これらの具体的な種類や負極活物質層における好ましい含有量については、正極活物質層の説明の欄において上述した形態が同様に採用されうるため、ここでは詳細な説明を省略する。
各活物質層(集電体片面の活物質層)の厚さについて特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1〜500μm程度、好ましくは2〜100μmである。
<集電体>
集電体(11、12)は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。
集電体の厚さについても特に制限はない。集電体の厚さは、通常は1〜100μm程度である。
集電体の形状についても特に制限されない。図1に示す積層型電池10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。
なお、負極活物質をスパッタ法等により薄膜合金を負極集電体11上に直接形成する場合には、集電箔を用いることが好ましい。
集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料または非導電性高分子材料に導電性フィラーが添加された樹脂が採用されうる。
具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。
また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。
非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。
導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、およびKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むものである。
導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5〜35重量%程度である。
<セパレータ(電解質層)>
セパレータは、電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。
セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。
ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。
微多孔質(微多孔膜)セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。1例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途においては、単層あるいは多層で4〜60μmであることが望ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。
不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独または混合して用いる。また、不織布のかさ密度は、含浸させた高分子ゲル電解質により十分な電池特性が得られるものであればよく、特に制限されるべきものではない。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5〜200μmであり、特に好ましくは10〜100μmである。
また、上述したように、セパレータは、電解質を含む。電解質としては、かような機能を発揮できるものであれば特に制限されないが、液体電解質またはゲルポリマー電解質が用いられる。ゲルポリマー電解質を用いることにより、電極間距離の安定化が図られ、分極の発生が抑制され、耐久性(サイクル特性)が向上する。
液体電解質は、リチウムイオンのキャリヤーとしての機能を有する。電解液層を構成する液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート等のカーボネート類が例示される。また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiCFSO等の電極の活物質層に添加されうる化合物が同様に採用されうる。液体電解質は、上述した成分以外の添加剤をさらに含んでもよい。かような化合物の具体例としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2−ジビニルエチレンカーボネート、1−メチル−1−ビニルエチレンカーボネート、1−メチル−2−ビニルエチレンカーボネート、1−エチル−1−ビニルエチレンカーボネート、1−エチル−2−ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1−ジメチル−2−メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの環式炭酸エステルは、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することで容易になる点で優れている。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HEP)、ポリ(メチルメタクリレート(PMMA)およびこれらの共重合体等が挙げられる。
ゲル電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
また、セパレータとしては多孔質基体に耐熱絶縁層が積層されたセパレータ(耐熱絶縁層付セパレータ)であることが好ましい。耐熱絶縁層は、無機粒子およびバインダを含むセラミック層である。耐熱絶縁層付セパレータは融点または熱軟化点が150℃以上、好ましくは200℃以上である耐熱性の高いものを用いる。耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果が得られうる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破膜が起こりにくい。さらに、熱収縮抑制効果および機械的強度の高さから、電池の製造工程でセパレータがカールしにくくなる。
耐熱絶縁層における無機粒子は、耐熱絶縁層の機械的強度や熱収縮抑制効果に寄与する。無機粒子として使用される材料は特に制限されない。例えば、ケイ素、アルミニウム、ジルコニウム、チタンの酸化物(SiO、Al、ZrO、TiO)、水酸化物、および窒化物、ならびにこれらの複合体が挙げられる。これらの無機粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来のものであってもよいし、人工的に製造されたものであってもよい。また、これらの無機粒子は1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。これらのうち、コストの観点から、シリカ(SiO)またはアルミナ(Al)を用いることが好ましく、アルミナ(Al)を用いることがより好ましい。
耐熱性粒子の目付けは、特に限定されるものではないが、5〜15g/mであることが好ましい。この範囲であれば、十分なイオン伝導性が得られ、また、耐熱強度を維持する点で好ましい。
耐熱絶縁層におけるバインダは、無機粒子どうしや、無機粒子と樹脂多孔質基体層とを接着させる役割を有する。当該バインダによって、耐熱絶縁層が安定に形成され、また多孔質基体層および耐熱絶縁層の間の剥離を防止される。
耐熱絶縁層に使用されるバインダは、特に制限はなく、例えば、カルボキシメチルセルロース(CMC)、ポリアクリロニトリル、セルロース、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン−ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、アクリル酸メチルなどの化合物がバインダとして用いられうる。このうち、カルボキシメチルセルロース(CMC)、アクリル酸メチル、またはポリフッ化ビニリデン(PVDF)を用いることが好ましい。これらの化合物は、1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。
耐熱絶縁層におけるバインダの含有量は、耐熱絶縁層100重量%に対して、2〜20重量%であることが好ましい。バインダの含有量が2重量%以上であると、耐熱絶縁層と多孔質基体層との間の剥離強度を高めることができ、セパレータの耐振動性を向上させることができる。一方、バインダの含有量が20重量%以下であると、無機粒子の隙間が適度に保たれるため、十分なリチウムイオン伝導性を確保することができる。
耐熱絶縁層付セパレータの熱収縮率は、150℃、2gf/cm条件下、1時間保持後にMD、TDともに10%以下であることが好ましい。このような耐熱性の高い材質を用いることで、正極発熱量が高くなり電池内部温度が150℃に達してもセパレータの収縮を有効に防止することができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。
<集電板(タブ)>
リチウムイオン二次電池においては、電池外部に電流を取り出す目的で、集電体に電気的に接続された集電板(タブ)が外装材であるラミネートフィルムの外部に取り出されている。
集電板を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板(正極タブ)と負極集電板(負極タブ)とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
また、図2に示すタブ58、59の取り出しに関しても、特に制限されるものではない。正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図2に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、タブに変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。
<シール部>
シール部は、直列積層型電池に特有の部材であり、電解質層の漏れを防止する機能を有する。このほかにも、電池内で隣り合う集電体同士が接触したり、積層電極の端部の僅かな不ぞろいなどによる短絡が起こったりするのを防止することもできる。
シール部の構成材料としては、特に制限されないが、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、エポキシ樹脂、ゴム、ポリイミド等が用いられうる。これらのうち、耐蝕性、耐薬品性、製膜性、経済性などの観点からは、ポリオレフィン樹脂を用いることが好ましい。
<正極端子リードおよび負極端子リード>
負極および正極端子リードの材料は、公知の積層型二次電池で用いられるリードを用いることができる。なお、電池外装材から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆するのが好ましい。
<外装材;ラミネートフィルム>
外装材としては、従来公知の金属缶ケースを用いることができる。そのほか、図1に示すようなラミネートフィルム22を外装材として用いて、発電要素17をパックしてもよい。ラミネートフィルムは、例えば、ポリプロピレン、アルミニウム、ナイロンがこの順に積層されてなる3層構造として構成されうる。このようなラミネートフィルムを用いることにより、外装材の開封、容量回復材の添加、外装材の再封止を容易に行うことができる。
<リチウムイオン二次電池の製造方法>
リチウムイオン二次電池の製造方法は特に制限されず、公知の方法により製造されうる。具体的には、(1)電極の作製、(2)単電池層の作製、(3)発電要素の作製、および(4)積層型電池の製造を含む。以下、リチウムイオン二次電池の製造方法について一例を挙げて説明するが、これに限定されるものではない。
(1)電極(正極および負極)の作製
電極(正極または負極)は、例えば、活物質スラリー(正極活物質スラリーまたは負極活物質スラリー)を調製し、当該活物質スラリーを集電体上に塗布、乾燥し、次いでプレスすることにより作製されうる。前記活物質スラリーは、上述した活物質(正極活物質または負極活物質)、バインダ、導電助剤および溶媒を含む。
前記溶媒としては、特に制限されず、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、シクロヘキサン、ヘキサン、水等が用いられうる。
活物質スラリーの集電体への塗布方法としては、特に制限されず、スクリーン印刷法、スプレーコート法、静電スプレーコート法、インクジェット法、ドクターブレード法等が挙げられる。
集電体の表面に形成された塗膜の乾燥方法としては、特に制限されず、塗膜中の溶媒の少なくとも一部が除去されればよい。当該乾燥方法としては、加熱が挙げられる。乾燥条件(乾燥時間、乾燥温度など)は、適用する活物質スラリーに含有される溶媒の揮発速度、活物質スラリーの塗布量等に応じて適宜設定されうる。なお、溶媒は一部が残存していてもよい。残存した溶媒は、後述のプレス工程等で除去されうる。
プレス手段としては、特に限定されず、例えば、カレンダーロール、平板プレス等が用いられうる。
(2)単電池層の作製
単電池層は、(1)で作製した電極(正極および負極)を、電解質層を介して積層させることにより作製されうる。
(3)発電要素の作製
発電要素は、単電池層の出力および容量、電池として必要とする出力および容量等を適宜考慮し、前記単電池層を積層して作製されうる。
(4)積層型電池の製造
電池の構成としては、角形、ペーパー型、積層型、円筒型、コイン型等、種々の形状を採用することができる。また構成部品の集電体や絶縁板等は特に限定されるものではなく、上記の形状に応じて選定すればよい。しかし、本実施形態では積層型電池が好ましい。積層型電池は、上記で得られた発電要素の集電体にリードを接合し、これらの正極リードまたは負極リードを、正極タブまたは負極タブに接合する。そして、正極タブおよび負極タブが電池外部に露出するように、発電要素をラミネートシート中に入れ、注液機により電解液を注液してから真空に封止することにより積層型電池が製造されうる。
(5)活性化処理など
さらに、本実施形態では、上記により得られた積層型電池の性能および耐久性を高める観点から、さらに、以下の条件で初充電処理、ガス除去処理および活性化処理を行うことが好ましい(実施例1参照)。この場合には、ガス除去処理ができるように、上記(4)の積層型電池の製造において、封止する際に、矩形形状にラミネートシート(外装材)の3辺を熱圧着により完全に封止(本封止)し、残る1辺は、熱圧着で仮封止しておく。残る1辺は、例えば、クリップ留め等により開閉自在にしてもよいが、量産化(生産効率)の観点からは、熱圧着で仮封止するのがよい。この場合には、圧着する温度、圧力を調整するだけでよいためである。熱圧着で仮封止した場合には、軽く力を加えることで開封でき、ガス抜き後、再度、熱圧着で仮封止してもよいし、最後的には熱圧着で完全に封止(本封止)すればよい。
(初充電処理)
電池のエージング処理は、以下のように実施することが好ましい。25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行う。次いで、25℃にて0.1Cレートで4.45Vまで充電した後、充電を止め、その状態(SOC約70%)で約2日間(48時間)保持する。
(最初(1回目)のガス除去処理)
次に、最初(1回目)のガス除去処理として、以下の処理を行う。まず、熱圧着で仮封止した1辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行って仮封止を行う。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させる。
(活性化処理)
次に、活性化処理法として、以下の電気化学前処理法を行う。
まず、25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを2回行う。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回、0.1Cで4.65Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行う。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行えばよい。
なお、ここでは、活性化処理法として、定電流充電法を用い、電圧を終止条件とした場合の電気化学前処理法を例として記載しているが、充電方式は定電流定電圧充電法を用いても構わない。また、終止条件は電圧以外にも電荷量や時間を用いても構わない。
(最後(2回目)のガス除去処理)
次に、最後(2回目)のガス除去処理として、以下の処理を行う。まず、熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行って本封止を行う。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させる。
本実施形態では、上記した初充電処理、ガス除去処理及び活性化処理を行うことにより、得られた電池の性能および耐久性を高めることができる。
[組電池]
組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
電池が複数、直列にまたは並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。
[車両]
本実施形態に係るリチウムイオン二次電池をはじめとした本発明の電気デバイスは、長期使用しても放電容量が維持され、サイクル特性が良好である。さらに、体積エネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記リチウムイオン二次電池(電気デバイス)は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。
以下、実施例および比較例を用いてさらに詳細に説明するが、本発明は以下の実施例のみに何ら限定されるわけではない。
[実施例1]
(固溶体正極活物質C1の調製)
1.硫酸マンガン・1水和物(分子量223.06g/mol)28.61g、
硫酸ニッケル・6水和物(分子量262.85g/mol)17.74g、
を純水200gに加え、攪拌溶解し、混合溶液を調製した。
2.次に、この混合溶液にアンモニア水をpH7になるまで滴下して、さらに、NaCO溶液を滴下して、複合炭酸塩を沈殿させた(NaCO溶液を滴下している間、アンモニア水でpH7を保持する)。
3.その後、沈殿物を吸引濾過し、さらに、十分に水洗した後、乾燥オーブンにて120℃、5時間乾燥した。
4.乾燥した粉末を乳鉢で粉砕した後、500℃、5時間仮焼成を行った。
5.仮焼成した粉末に、水酸化リチウム・1水和物(分子量41.96g/mol)10.67gを混合し、30分間粉砕混合した。
6.この粉末を500℃で2時間仮焼成した後、900℃で12時間焼成して固溶体正極活物質C1を得た。
こうして得られた固溶体正極活物質C1の組成は以下の通りであった。
組成:C1 Li1.5[Ni0.45Mn0.85[Li]0.20]O
固溶体正極活物質C1の組成を式(3)に当てはめると、a+b+c+d=1.5、d=0.20、a+b+c=1.3、z;原子価を満足する酸素数となり、式(3)の要件を満足する。
(固溶体正極活物質C1表面へのAlコーティング)
1.上記「固溶体正極活物質C1の調製」で得た固溶体正極活物質C1 10.0g、および硝酸アルミニウム・9水和物(分子量375.13g/mol)0.37gを純水100gに加え、攪拌混合し、混合溶液を調製した。
2.次に、この混合溶液を攪拌しながら5%アンモニア水をpH7〜8になるまで徐々に滴下し、固溶体正極活物質C1の粒子表面に水酸化アルミニウムを沈殿させた。さらに、5時間攪拌混合を続けた。
3.その後、沈殿物を吸引濾過し、さらに、十分に水洗した後、乾燥オーブンにて100℃、1時間乾燥した。
4.乾燥した粉末を乳鉢で粉砕した後、450℃、5時間焼成を行って、固溶体正極活物質C1を得た。
こうして得られた固溶体正極活物質C1は、上記「固溶体正極活物質C1の調製」で得られた固溶体正極活物質C1の粒子表面に、固溶体正極活物質C1全量(100重量%)に対して0.5重量%のAlからなる被覆層が形成されてなる粉末であった。得られた固溶体正極活物質C1の平均粒径は8μmであった。なお、他の実施例および比較例で得られた固溶体正極活物質の平均粒径もこれと同じ平均粒径であった。
(集電体の片面に正極活物質層を形成した正極C1の作製)
(正極用スラリーの組成)
正極用スラリーは下記組成とした。
正極活物質:上記で得られたAlコーティング固溶体正極活物質C1 9.4重量部
導電助剤: 燐片状黒鉛 0.15重量部
アセチレンブラック 0.15重量部
バインダ: ポリフッ化ビニリデン(PVDF) 0.3重量部
溶媒: N−メチル−2−ピロリドン(NMP) 8.2重量部。
この組成を式(2)に当てはめると、e=94となり、式(2)の要件を満足する。
(正極用スラリーの製造)
上記組成の正極用スラリーを次のように調製した。まず、50mlのディスポカップに、溶媒(NMP)にバインダを溶解した20%バインダ溶液2.0重量部に溶媒(NMP)4.0重量部を加え、攪拌脱泡機(自転公転ミキサー:あわとり錬太郎AR−100)で1分間攪拌してバインダ希釈溶液を作製した。次に、このバインダ希釈液に、導電助剤0.4重量部と固溶体正極活物質C1 9.2重量部、および溶媒(NMP)2.6重量部を加え、攪拌脱泡機で3分間攪拌して正極用スラリー(固形分濃度55重量%)とした。
(正極用スラリーの塗布・乾燥)
20μm厚のアルミニウム集電体の片面に、上記正極用スラリーを自動塗工装置(テスター産業製ドクターブレード:PI−1210自動塗工装置)により塗布した。続いて、この正極用スラリーを塗布した集電体について、ホットプレートにて乾燥(100℃〜110℃、乾燥時間30分)を行い、正極活物質層に残留するNMP量を0.02重量%以下として、シート状正極を形成した。
(正極のプレス)
上記シート状正極を、ローラープレスをかけて圧縮成形し、切断して、正極を作製した。この際、正極C1の放電容量が5.55mAh/cmとなるように、正極活物質の放電容量と正極スラリー組成とを考慮し、塗布量を調整した(以下の正極C2〜C10も同様)。
(正極の乾燥)
次に、上記手順で作製した正極を用い真空乾燥炉にて乾燥処理を行った。乾燥炉内部に正極を設置した後、室温(25℃)にて減圧(100mmHg(1.33×10Pa))し乾燥炉内の空気を除去した。続いて、窒素ガスを流通(100cm/分)しながら、10℃/分で120℃まで昇温し、120℃で再度減圧して炉内の窒素を排気したまま12時間保持した後、室温まで降温した。こうして正極表面の水分を除去した正極C1を得た。
(集電体の片面に負極活物質層を形成した負極A1の作製)
(Si含有合金の製造)
負極活物質であるSi含有合金として、Si80Sn10Ti10(単位は質量%、以下同じ)を用いた。なお、上記Si含有合金は、メカニカルアロイ法により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置P−6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールおよび合金の原料粉末を投入し、600rpm、24時間かけて合金化させ(合金化処理)、その後400rpmで1時間、粉砕処理を実施した。なお、得られたSi含有合金(負極活物質)粉末の平均粒子径は0.3μmであった。
(負極用スラリーの組成)
負極用スラリーは下記組成とした。
負極活物質:Si含有合金(Si80Sn10Ti10) 80重量部
導電助剤: SuperP 5重量部
バインダ: ポリイミド 15重量部
溶媒: N−メチル−2−ピロリドン(NMP) 適量。
この組成を式(1)に当てはめると、α=80となり、式(1)の要件を満足する。
(負極用スラリーの製造)
上記組成の負極用スラリーを次のように調製した。まず溶媒(NMP)に、バインダを溶解したバインダ溶液を加えて、攪拌脱泡機で1分間攪拌してバインダ希釈溶液を作製した。このバインダ希釈液に、導電助剤、負極活物質粉末、および溶媒(NMP)を加え、攪拌脱泡機で3分間攪拌して負極用スラリーとした。
(負極用スラリーの塗布・乾燥)
10μm厚の電解銅集電体の片面に、上記負極用スラリーを自動塗工装置により塗布した。続いて、この負極スラリーを塗布した集電体について、ホットプレートにて乾燥(100℃〜110℃、乾燥時間30分)を行い、負極活物質層に残留するNMP量を0.02重量%以下として、シート状負極を形成した。
(負極のプレス)
得られたシート状負極を、ローラープレスをかけて圧縮成形し、切断して、負極を作製した。この際、負極A1の放電容量が5.83mAh/cmとなるように、負極活物質の放電容量と負極スラリー組成とを考慮し、塗布量を調整した(以下の負極A2〜A5も同様)。この負極の表面を観察したところ、クラックの発生は見られなかった。
(電極の乾燥)
次に、上記手順で作製した負極を用い真空乾燥炉にて乾燥処理を行った。乾燥炉内部に負極を設置した後、室温(25℃)にて減圧(100mmHg(1.33×10Pa))し乾燥炉内の空気を除去した。続いて、窒素ガスを流通(100cm/分)しながら、10℃/分で325℃まで昇温し、325℃で再度減圧して炉内の窒素を排気したまま24時間保持した後、室温まで降温した。こうして負極表面の水分を除去して、負極A1を得た。
[正極C1の容量確認]
[コインセルの作製]
上記により得られた正極C1(直径15mmに打抜き)とリチウム箔(本城金属株式会社製、直径16mm、厚さ200μm)からなる対極とをセパレータ(直径17mm、セルガード社製セルガード2400)を介して対向させたのち、電解液を注入することによってCR2032型コインセルを作製した。
なお、上記電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を1:1の容積比で混合した混合非水溶媒中に、LiPF(六フッ化リン酸リチウム)を1Mの濃度となるように溶解させたものを用いた。
充放電試験機(北斗電工株式会社製HJ0501SM8A)を使用し、298K(25℃)の温度に設定された恒温槽(エスペック株式会社製PFU−3K)中で、活性化処理を行った。
[活性化処理]
25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを2回行った。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回、0.1Cで4.65Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。
[ラミネートセルの作製]
上記で得られた正極C1を、活物質層面積;縦2.5cm×横2.0cmになるように切り出し、これら2枚を集電体同士が向き合うようにして、未塗工面(アルミニウム集電箔のスラリーを塗工していない面)を合わせて集電体部分をスポット溶接した。これにより、外周部をスポット溶接により一体化された2枚重ねの集電箔の両面に正極活物質層を有する正極を形成した。その後、さらに集電体部分にアルミニウムの正極タブ(正極集電板)を溶接して正極C11を形成した。すなわち、正極C11は、集電箔の両面に正極活物質層が形成された構成である。
一方、上記で得られた負極A1を、活物質層面積;縦2.7cm×横2.2cmになるように切り出し、その後、さらに集電体部分に電解銅の負極タブを溶接して負極A11を形成した。すなわち、負極A11は、集電体の片面に負極活物質層が形成された構成である。
これらタブを溶接した負極A11と、正極C11との間に多孔質ポリプロピレン製セパレータ(S)(縦3.0cm×横2.5cm、厚さ25μm、空孔率55%)を挟んで5層からなる積層型の発電要素を作製した。積層型の発電要素の構成は、負極(片面)/セパレータ/正極(両面)/セパレータ/負極(片面)の構成、すなわち、A11−(S)−C11−(S)−A11の順に積層された構成とした。次いで、アルミラミネートフィルム製外装材(縦3.5cm×横3.5cm)で発電要素の両側を挟み込み、3辺を熱圧着封止して上記発電要素を収納した。この発電要素に、電解液0.8cm(上記5層構成の場合、2セル構成となり、1セル当たたりの注液量0.4cm)を注入した後、残りの1辺を熱圧着で仮封止し、ラミネート型電池を作製した。電解液を電極細孔内に十分に浸透させるため、面圧0.5Mpaで加圧しながら、25℃にて24時間保持した。
なお、電解液の調製では、まず、エチレンカーボネート(EC)30体積%とジエチルカーボネート(DEC)70体積%の混合溶媒に、1.0MのLiPF(電解質)を溶解した。その後、添加剤として作用するフルオロリン酸リチウムとして、ジフルオロリン酸リチウム(LiPO)を1.8重量%、メチレンメタンジスルホン酸(MMDS)1.5重量%を溶解したものを、電解液として用いた。
以下の実施例では、実施例1に準じて活物質を作製した。すなわち、以下に特記したこと以外は、上述した実施例1と同様にして活物質を作製した。
(固溶体正極活物質C2)
固溶体正極活物質C2 Li1.5[Ni0.525Mn0.825[Li]0.15]O を作製した。固溶体正極活物質C2の組成を式(3)に当てはめると、a+b+c+d=1.5、d=0.15、a+b+c=1.35となり、式(3)の要件を満足する。実施例1に準じて、Alからなる被覆層の被覆量を、被覆層で被覆された固溶体正極活物質C2の全量(100重量%)に対して0.5重量%とした。
(固溶体正極活物質C3)
固溶体正極活物質C3 Li1.5[Ni0.375Mn0.875[Li]0.25]O を作製した。固溶体正極活物質C3の組成を式(3)に当てはめると、a+b+c+d=1.5、d=0.25、a+b+c=1.2となり、式(3)の要件を満足する。実施例1に準じて、Alからなる被覆層の被覆量を、被覆層で被覆された固溶体正極活物質C3の全量(100重量%)に対して0.5重量%とした。
(固溶体正極活物質C4)
固溶体正極活物質C4 Li1.5[Ni0.600Mn0.800[Li]0.10]O を作製した。固溶体正極活物質C4の組成を式(3)に当てはめると、a+b+c+d=1.5、d=0.10、a+b+c=1.40となり、式(3)の要件を満足する。実施例1に準じて、Alからなる被覆層の被覆量を、被覆層で被覆された固溶体正極活物質C4の全量(100重量%)に対して0.5重量%とした。
(固溶体正極活物質C5)
固溶体正極活物質C5 Li1.5[Ni0.300Mn0.900[Li]0.30]O を作製した。固溶体正極活物質C5の組成を式(3)に当てはめると、a+b+c+d=1.5、d=0.30、a+b+c=1.20となり、式(3)の要件を満足する。実施例1に準じて、Alからなる被覆層の被覆量を、被覆層で被覆された固溶体正極活物質C5の全量(100重量%)に対して0.5重量%とした。
(固溶体正極活物質C6)
固溶体正極活物質C6 Li1.5[Ni0.225Mn0.925[Li]0.35]O を作製した。固溶体正極活物質C6の組成を式(3)に当てはめると、a+b+c+d=1.5、d=0.35、a+b+c=1.15 となり、式(3)の要件を満足する。実施例1に準じて、Alからなる被覆層の被覆量を、被覆層で被覆された固溶体正極活物質C6の全量(100重量%)に対して0.5重量%とした。
(固溶体正極活物質C7)
実施例1に準じて、金属酸化物コーティング前の固溶体正極活物質C1を作製した。次いで、実施例1と同様にしてAlコーティングを行った。この際、Alからなる被覆層の被覆量を、被覆層で被覆された固溶体正極活物質C7の全量(100重量%)に対して2.0重量%とした。
(固溶体正極活物質C8)
実施例1に準じて、金属酸化物コーティング前の固溶体正極活物質C1を作製した。次いで、硝酸アルミニウムに代えて炭酸ジルコニウムアンモニウム(Zr(OH)(CO・2NH 分子量281.33g/mol)を用いて、固溶体正極活物質C1の粒子表面に酸化ジルコニウムからなる被覆層を形成して、固溶体正極活物質C8を得た。この際、実施例1に準じて、ZrO からなる被覆層の被覆量を、被覆層で被覆された固溶体正極活物質Cの全量(100重量%)に対して0.5重量%とした。
(固溶体正極活物質C9)
実施例1に準じて、金属酸化物コーティング前の固溶体正極活物質C1を作製した。次いで、テトライソプロポキシチタン(C1428Ti 分子量284.22g/mol)を用いて、固溶体正極活物質C1の粒子表面に酸化チタンからなる被覆層を形成して、固溶体正極活物質C9を得た。この際、被覆層の形成は以下のように行った。
まず、固溶体正極活物質C1 10.0gを純水100gに加え、攪拌混合し、混合溶液を調製した。次いで、この混合溶液を攪拌しながらテトライソプロポキシチタン溶液を徐々に滴下し、固溶体正極活物質C1の粒子表面に水酸化チタニウムを沈殿させた。さらに、5時間攪拌混合を続けた。その後、沈殿物を吸引濾過し、さらに、十分に水洗した後、乾燥オーブンにて100℃、1時間乾燥した。乾燥した粉末を乳鉢で粉砕した後、450℃、5時間焼成を行って、粒子表面に酸化チタンからなる被覆層を形成した。
(固溶体正極活物質C10)
金属酸化物からなる被覆層が形成されていない固溶体正極活物質C1 Li1.5[Ni0.45Mn0.85[Li]0.20]Oを、固溶体正極活物質C10として用いた。
上記で作製した固溶体正極活物質C2〜C10をそれぞれ用い、実施例1に準じて、正極C2〜C10を作製した。得られた正極C1〜C10の組成について、下記の表1にまとめた。
(負極A2)
Si含有合金(負極活物質)の組成をSi70Sn15Ti15へと変更したこと以外は、上述した負極A1と同様の手法により、負極活物質および負極を作製した。なお、得られたSi含有合金(負極活物質)粉末の平均粒子径は0.3μmであった。
(負極A3)
Si含有合金(負極活物質)の組成をSi59Sn22Ti19へと変更し、ケイ素含有合金を作製する際の合金化処理の時間を25時間へと変更したこと以外は、上述した負極A1と同様の手法により、負極活物質および負極を作製した。なお、得られたSi含有合金(負極活物質)粉末の平均粒子径は0.3μmであった。
(負極A4)
Si含有合金(負極活物質)を作製する際の合金化処理の時間を50時間へと変更したこと以外は、上述した負極A3と同様の手法により、負極活物質および負極を作製した。なお、得られたSi含有合金(負極活物質)粉末の平均粒子径は0.3μmであった。
(負極A5)
Si含有合金の組成をSi90Ti10へと変更したこと以外は、上述した負極A1と同様の手法により、負極活物質および負極を作製した。なお、得られたケイ素含有合金(負極活物質)粉末の平均粒子径は0.3μmであった。
[負極活物質の組織構造の分析]
上述した負極A1〜A5の作製に用いたそれぞれの負極活物質(Si含有合金)の組織構造を電子回折法により分析した結果、負極A1〜A5のいずれについてもシリサイド相(TiSi)の結晶性を示す回折スポットおよびハローパターンが観察され、母相であるアモルファスSi相中に結晶性のシリサイド相が分散した組織構造を有することが確認された。
また、上述した負極A1〜A5の作製に用いたそれぞれの負極活物質(Si含有合金)の組織構造をX線回折測定法により分析した。X線回折測定法に用いた装置および条件は以下の通りである。
装置名:リガク社製、X線回折装置(SmartLab9kW)
電圧・電流:45kV・200mA
X線波長:CuKα1
ここで、それぞれの負極活物質(Si含有合金)について取得されたX線回折スペクトルを図3A〜図3Eに示す。また、これらのX線回折スペクトルから得られる2θ=24〜33°の範囲におけるSiの(111)面の回折ピーク強度Aに対する、2θ=37〜45°の範囲におけるTiSiの回折ピーク強度Bの比の値(B/A)を下記の表2〜6に示す。なお、このX線回折分析により、ケイ素含有合金に含まれるTiはすべてシリサイド(TiSi)相として存在していることも確認された。
次いで、上記で得られた正極C1〜C10と、上記で得られた負極A1〜A5とを、下記の表2〜6に示すように組み合わせて、実施例1に準じて電池を作製した(実施例1〜40および比較例1〜10)。
その後、上記で得られた各電池の発電要素を評価セル取り付け冶具にセットし、正極リードと負極リードを発電要素の各タブ端部に取り付け、試験を行った。
[電池特性の評価]
上記で作製したラミネート型電池に対して、以下の条件で初充電処理および活性化処理を行い、性能を評価した。
(初充電処理)
電池のエージング処理は、以下のように実施した。25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行った。次いで、25℃にて0.1Cレートで4.45Vまで充電した後、充電を止め、その状態(SOC約70%)で約2日間(48時間)保持した。
(ガス除去処理1)
熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い仮封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)成形し電極とセパレータとを十分に密着させた。
(活性化処理)
25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを2回行った。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回、0.1Cで4.65Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。
(ガス除去処理2)
熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い本封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)成形し電極とセパレータとを十分に密着させた。
(サイクル耐久性の評価)
上記で作製した各リチウムイオン二次電池(コインセル)について以下の充放電試験条件に従ってサイクル耐久性評価を行った。
(充放電試験条件)
1)充放電試験機:HJ0501SM8A(北斗電工株式会社製)
2)充放電条件[充電過程]0.3C、2V→10mV(定電流・定電圧モード)
[放電過程]0.3C、10mV→2V(定電流モード)
3)恒温槽:PFU−3K(エスペック株式会社製)
4)評価温度:300K(27℃)。
評価用セルは、充放電試験機を使用して、上記評価温度に設定された恒温槽中にて、充電過程(評価用電極へのLi挿入過程をいう)では、定電流・定電圧モードとし、0.1mAにて2Vから10mVまで充電した。その後、放電過程(評価用電極からのLi脱離過程をいう)では、定電流モードとし、0.3C、10mVから2Vまで放電した。以上の充放電サイクルを1サイクルとして、同じ充放電条件にて、初期サイクル(1サイクル)〜100サイクルまで充放電試験を行った。そして、1サイクル目の放電容量に対する100サイクル目の放電容量の割合(放電容量維持率[%])を求めた結果を、下記の表2〜6に示す。
表2〜6に示す結果から明らかなように、本発明に係る電気デバイスである実施例1〜40のリチウムイオン二次電池では、比較例1〜10と比べて、優れたサイクル特性(100サイクル目の容量維持率)が達成されていることがわかる。
10、50 リチウムイオン二次電池、
11 負極集電体、
12 正極集電体、
13 負極活物質層、
15 正極活物質層、
17 セパレータ、
19 単電池層、
21、57 発電要素、
25 負極集電板、
27 正極集電板、
29、52 電池外装材、
58 正極タブ、
59 負極タブ。

Claims (11)

  1. 正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、
    負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、
    セパレータと、
    を含む発電要素を有する電気デバイスであって、
    前記負極活物質層が、下記式(1):
    上記式(1)において、αは負極活物質層における各成分の重量%を表し、40<α≦98である、
    で表される負極活物質を含有し、
    前記正極活物質層が、下記式(2):
    上記式(2)において、eは正極活物質層における各成分の重量%を表し、80≦e≦98である、
    で表される正極活物質を含有し、
    この際、前記Si含有合金は、非晶質または低結晶性のケイ素を主成分とする母相中に、遷移金属のケイ化物を含むシリサイド相が分散されてなる構造を有し、下記化学式(I):
    上記化学式(I)において、Aは、不可避不純物であり、Mは、Tiであり、x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である、
    で表される組成を有し、前記Si含有合金のCuKα1線を用いたX線回折測定において、2θ=24〜33°の範囲におけるSiの(111)面の回折ピーク強度Aに対する、2θ=37〜45°の範囲における遷移金属のケイ化物の回折ピーク強度Bの比の値(B/A)が0.41以上であり、
    かつ、前記固溶体正極活物質は、下記式(3):
    上記式(3)において、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である、
    で表される組成を有する固溶体からなるか、または、前記式(3)で表される組成を有する固溶体の粒子表面に、Al、ZrおよびTiからなる群から選択される金属の酸化物または複合酸化物からなる被覆層が形成されてなる酸化物被覆固溶体からなり、この際、前記固溶体正極活物質における前記酸化物または複合酸化物の含有量は酸化物換算で0.1〜3.0重量%である、電気デバイス。
  2. 前記B/Aが0.89以上である、請求項1に記載の電気デバイス。
  3. 前記B/Aが2.55以上である、請求項2に記載の電気デバイス。
  4. 前記B/Aが7.07以上である、請求項3に記載の電気デバイス。
  5. Siの(111)面の回折ピーク強度A(cps)が6000〜25000であり、遷移金属のケイ化物の回折ピーク強度B(cps)が9000〜46000である、請求項1〜4のいずれか1項に記載の電気デバイス。
  6. Siの(111)面の回折ピーク強度A(cps)が6000〜15000であり、遷移金属のケイ化物の回折ピーク強度B(cps)が25000〜46000である、請求項1〜5のいずれか1項に記載の電気デバイス。
  7. 前記母相は、前記シリサイド相よりもアモルファス化している、請求項1〜6のいずれか1項に記載の電気デバイス。
  8. 前記シリサイド相のサイズが50nm以下である、請求項1〜7のいずれか1項に記載の電気デバイス。
  9. 前記化学式(I)において、7<z<100である、請求項1〜8のいずれか1項に記載の電気デバイス。
  10. 前記固溶体正極活物質が前記酸化物被覆固溶体からなり、前記被覆層の厚みが2〜20nmである、請求項1〜のいずれか1項に記載の電気デバイス。
  11. リチウムイオン二次電池である、請求項1〜10のいずれか1項に記載の電気デバイス。
JP2016564519A 2014-12-17 2014-12-17 電気デバイス Expired - Fee Related JP6327361B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/083478 WO2016098212A1 (ja) 2014-12-17 2014-12-17 電気デバイス

Publications (2)

Publication Number Publication Date
JPWO2016098212A1 JPWO2016098212A1 (ja) 2017-10-05
JP6327361B2 true JP6327361B2 (ja) 2018-05-23

Family

ID=56126135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016564519A Expired - Fee Related JP6327361B2 (ja) 2014-12-17 2014-12-17 電気デバイス

Country Status (6)

Country Link
US (1) US10276866B2 (ja)
EP (1) EP3236519B1 (ja)
JP (1) JP6327361B2 (ja)
KR (1) KR20170084307A (ja)
CN (1) CN107210479B (ja)
WO (1) WO2016098212A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078760A1 (ja) * 2016-10-27 2018-05-03 日産自動車株式会社 非水電解質二次電池
US11682766B2 (en) * 2017-01-27 2023-06-20 Nec Corporation Silicone ball containing electrode and lithium ion battery including the same
JP6939045B2 (ja) * 2017-04-24 2021-09-22 日産自動車株式会社 電気デバイス
JP7135773B2 (ja) * 2018-11-20 2022-09-13 株式会社豊田自動織機 表面にアルミニウム含有被膜が形成された金属酸化物とアルミニウム含有針状物質とを含有する正極材料、及び、その製造方法
CN111082020B (zh) * 2019-12-27 2022-03-11 中南大学 一种弥散分布金属硅化物/纳米硅复合材料及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4510468B2 (ja) 2002-03-20 2010-07-21 パナソニック株式会社 負極材料およびそれを用いた非水電解質二次電池
JP4464173B2 (ja) * 2003-03-26 2010-05-19 キヤノン株式会社 リチウム二次電池用の電極材料、該電極材料を有する電極構造体、及び該電極構造体を有する二次電池
EP1604415B1 (en) 2003-03-26 2012-11-21 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure comprising said electrode material
CN100533821C (zh) 2005-06-03 2009-08-26 松下电器产业株式会社 非水电解质二次电池及其负极的制备方法
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
KR101113480B1 (ko) * 2006-09-29 2012-04-17 미츠이 마이닝 & 스멜팅 콤파니 리미티드 비수전해액 이차전지
EP2634846A4 (en) 2010-10-29 2014-05-28 Asahi Glass Co Ltd POSITIVE ELECTRODE ACTIVE MATERIAL, POSITIVE ELECTRODE, BATTERY, AND PROCESS FOR PRODUCING LITHIUM ION SECONDARY BATTERY
JP5904363B2 (ja) 2011-12-27 2016-04-13 日産自動車株式会社 電気デバイス用負極活物質
JP6465538B2 (ja) * 2012-02-01 2019-02-06 日産自動車株式会社 固溶体リチウム含有遷移金属酸化物の製造方法、非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法
JP2014107132A (ja) * 2012-11-28 2014-06-09 Furukawa Electric Co Ltd:The リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、リチウムイオン二次電池、およびリチウムイオン二次電池用負極材料の製造方法
US10290867B2 (en) * 2013-06-12 2019-05-14 Nissan Motor Co., Ltd. Negative electrode active material for electric device and electric device using same
CN105934846B (zh) * 2014-01-24 2019-06-28 日产自动车株式会社 电器件
JP6147231B2 (ja) * 2014-07-10 2017-06-14 キヤノン株式会社 システム、画像形成装置、及びその方法

Also Published As

Publication number Publication date
EP3236519B1 (en) 2018-11-28
EP3236519A1 (en) 2017-10-25
WO2016098212A1 (ja) 2016-06-23
CN107210479B (zh) 2018-12-11
JPWO2016098212A1 (ja) 2017-10-05
CN107210479A (zh) 2017-09-26
EP3236519A4 (en) 2017-10-25
US10276866B2 (en) 2019-04-30
US20170346087A1 (en) 2017-11-30
KR20170084307A (ko) 2017-07-19

Similar Documents

Publication Publication Date Title
JP6202106B2 (ja) 電気デバイス
JP6252602B2 (ja) 電気デバイス
WO2017187637A1 (ja) 非水電解質二次電池
JP6187602B2 (ja) 電気デバイス
JP2018055952A (ja) 非水電解質二次電池、および負極ユニット
JP6327361B2 (ja) 電気デバイス
JP6252600B2 (ja) 電気デバイス
JP2018063920A (ja) 非水電解質二次電池用負極及びこれを用いた非水電解質二次電池
JP6202107B2 (ja) 電気デバイス
JP6252604B2 (ja) 電気デバイス
JP6380553B2 (ja) 電気デバイス
JP6380554B2 (ja) 電気デバイス
JP6737091B2 (ja) 非水電解質二次電池用負極及びこれを用いた非水電解質二次電池
JP6252603B2 (ja) 電気デバイス
JP2018078052A (ja) 非水電解質二次電池
WO2015111195A1 (ja) 電気デバイス用負極およびこれを用いた電気デバイス
JP6962015B2 (ja) 電気デバイス
JP6252601B2 (ja) 電気デバイス

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170619

A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20170619

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R151 Written notification of patent or utility model registration

Ref document number: 6327361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees