WO2018078760A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2018078760A1
WO2018078760A1 PCT/JP2016/081854 JP2016081854W WO2018078760A1 WO 2018078760 A1 WO2018078760 A1 WO 2018078760A1 JP 2016081854 W JP2016081854 W JP 2016081854W WO 2018078760 A1 WO2018078760 A1 WO 2018078760A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
active material
nonaqueous electrolyte
Prior art date
Application number
PCT/JP2016/081854
Other languages
English (en)
French (fr)
Inventor
智裕 蕪木
剣一 豊島
将太郎 土井
一生 大谷
小川 止
宮本 隆司
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2016/081854 priority Critical patent/WO2018078760A1/ja
Publication of WO2018078760A1 publication Critical patent/WO2018078760A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery. Specifically, the present invention relates to a large nonaqueous electrolyte secondary battery having excellent cycle characteristics.
  • non-aqueous electrolyte secondary batteries having excellent cycle characteristics that do not deteriorate in performance even when repeatedly charged and discharged have been developed as drive power sources for electronic devices and vehicle running.
  • Patent Document 1 discloses that a flat secondary battery is held down to suppress a problem that battery characteristics are deteriorated due to expansion by internally generated gas caused by repeated charge and discharge. Specifically, Patent Document 1 discloses that the magnitude of the internal pressure force for suppressing the flat secondary battery is 0.5 kgf / cm 2 and 1.0 kgf / cm 2 .
  • the present invention has been made in view of such problems of the conventional technology. And the objective is to provide the large nonaqueous electrolyte secondary battery excellent in cycling characteristics.
  • a nonaqueous electrolyte secondary battery includes a negative electrode current collector and a negative electrode active material layer that is disposed on at least one surface of the negative electrode current collector and includes a silicon-containing alloy having a silicon content of a predetermined amount or more. And comprising.
  • the non-aqueous electrolyte secondary battery has a rated capacity that is greater than or equal to a predetermined value, and a volume per rated capacity that is in a predetermined range.
  • the average surface pressure applied to the surface of the negative electrode active material layer is not less than a predetermined value, and the product of the tensile fracture stress and the tensile fracture strain of the negative electrode active material layer exceeds the predetermined value.
  • the product of the tensile fracture stress, thickness and tensile fracture strain of the negative electrode current collector exceeds a predetermined value.
  • FIG. 1 is a cross-sectional view schematically showing an example of the nonaqueous electrolyte secondary battery according to this embodiment.
  • FIG. 2A is a perspective view schematically illustrating an example of a pressurizing apparatus according to the present embodiment.
  • FIG. 2B is a front view schematically showing an example of a pressurizing apparatus according to the present embodiment.
  • FIG. 3 is a cross-sectional view schematically showing an example of an electrolyte layer including a porous substrate layer and a heat-resistant insulating layer.
  • the non-aqueous electrolyte secondary battery 10 of this embodiment is disposed on the negative electrode current collector 11 and at least one surface of the negative electrode current collector 11, and includes a negative electrode active material including a silicon-containing alloy having a silicon content of 20% by mass or more.
  • a material layer 12 includes a negative electrode active material layer 12 and a negative electrode current collector 11 as well as a positive electrode current collector 14 and a positive electrode active material as shown in FIG.
  • a layer 15, an electrolyte layer 17, a positive electrode tab 21, a negative electrode tab 23, an exterior body 25, and the like can be further provided. As shown in FIG.
  • the nonaqueous electrolyte secondary battery 10 can include an exterior body 25 and a battery element 30 accommodated in the exterior body 25.
  • the battery element 30 can be formed by stacking a plurality of single battery layers 20.
  • the unit cell layer 20 can include the negative electrode 13, the positive electrode 16, and the electrolyte layer 17 disposed between the negative electrode 13 and the positive electrode 16. That is, the nonaqueous electrolyte secondary battery 10 can include the negative electrode 13, the positive electrode 16, and the electrolyte layer 17 disposed between the negative electrode 13 and the positive electrode 16.
  • a plurality of unit cell layers 20 can be stacked and electrically arranged in parallel.
  • the negative electrode 13 can include a negative electrode current collector 11 and a negative electrode active material layer 12 disposed on at least one surface of the negative electrode current collector 11.
  • the positive electrode 16 can include a positive electrode current collector 14 and a positive electrode active material layer 15 disposed on at least one surface of the positive electrode current collector 14. Further, the positive electrode tab 21 and the negative electrode tab 23 can take out the current generated in the single battery layer 20 to the outside of the nonaqueous electrolyte secondary battery 10.
  • the nonaqueous electrolyte secondary battery 10 of the present embodiment is not limited to the form as shown in FIG. 1.
  • the negative electrode active material layer 12 is disposed on one surface of the current collector, and the current collector
  • a bipolar battery including a bipolar electrode in which the positive electrode active material layer 15 is disposed on one surface may be used.
  • the structure of the nonaqueous electrolyte secondary battery 10 is not limited to the stacked type, and may be a wound-type nonaqueous electrolyte secondary battery.
  • the nonaqueous electrolyte secondary battery 10 of this embodiment includes a negative electrode active material layer 12 including a silicon-containing alloy having a silicon content of 20% by mass or more. Since such a silicon-containing alloy is alloyed with lithium ions during charging, the rated capacity per mass of the negative electrode active material can be increased as compared with a carbon-based negative electrode active material or the like. That is, such a silicon-containing alloy can increase the rated capacity of the nonaqueous electrolyte secondary battery 10 as compared with a carbon-based negative electrode active material or the like.
  • the nonaqueous electrolyte secondary battery 10 of the present embodiment has a rated capacity of 3 Ah or more and a volume per rated capacity of 2 cm 3 / Ah or more and 10 cm 3 / Ah or less. That is, this embodiment relates to a large nonaqueous electrolyte secondary battery 10.
  • the rated capacity of the nonaqueous electrolyte secondary battery 10 can be increased, but the cycle characteristics tend to deteriorate.
  • the reason for this is considered that the silicon-containing alloy has a large volume change when the non-aqueous electrolyte secondary battery 10 is charged / discharged, and therefore the surface of the negative electrode active material layer 12 becomes uneven when charging / discharging is repeated. . It is considered that due to the unevenness, the negative electrode active material layer 12 and, for example, the negative electrode current collector 11 adjacent to the negative electrode active material layer 12 cannot be brought into surface contact uniformly, and cycle characteristics are deteriorated.
  • the nonaqueous electrolyte secondary battery 10 has an average surface pressure applied to the surface of the negative electrode active material layer 12 of 1.6 kgf / cm 2 or more.
  • the cycle characteristics are improved as the average surface pressure applied to the surface of the negative electrode active material layer 12 is increased.
  • the cycle characteristics are not improved simply by increasing the average surface pressure applied to the surface of the negative electrode active material layer 12. Specifically, it was found that the negative electrode active material layer 12 was ruptured and interface peeling between the negative electrode current collector 11 and the negative electrode active material layer 12 occurred, and the cycle characteristics were not improved.
  • the product of the tensile fracture stress (MPa) and the tensile fracture strain (%) of the negative electrode active material layer 12 exceeds 2.1 MPa, and the tensile strength of the negative electrode current collector 11 is The product of fracture stress (MPa), thickness (m) and tensile fracture strain (%) exceeds 45 N / m. Therefore, the nonaqueous electrolyte secondary battery 10 of this embodiment is excellent in cycle characteristics while being large.
  • the non-aqueous electrolyte secondary battery 10 of the present embodiment has a rated capacity of 3 Ah or more. When the rated capacity is less than 3 Ah, the electric capacity is small and does not correspond to the large non-aqueous electrolyte secondary battery 10 as in the present embodiment.
  • the rated capacity is preferably 5 Ah or more, and more preferably 10 Ah or more.
  • the rated capacity is more preferably 15 Ah or more, and particularly preferably 20 Ah or more.
  • the rated capacity is most preferably 25 Ah or more.
  • the rated capacity represents the electric capacity that can be supplied by the nonaqueous electrolyte secondary battery 10.
  • the rated capacity can be the discharge capacity when the nonaqueous electrolyte secondary battery 10 discharged to the discharge end condition is charged and then discharged to the discharge end condition.
  • the discharge termination condition can be appropriately changed depending on the voltage of the nonaqueous electrolyte secondary battery 10 and the like. For example, the time when a predetermined discharge end voltage is reached can be set as the discharge end condition. In addition, after the constant current discharge to a predetermined voltage at a predetermined discharge rate, a constant voltage discharge at a predetermined voltage for a predetermined time can be set as a discharge termination condition.
  • the total of the discharge capacity at the time of constant current discharge and the discharge capacity at the time of constant voltage discharge can be set as the rated capacity.
  • the discharge end voltage is not particularly limited, and can be 0.05 V to 3.0 V. Specifically, the end-of-discharge voltage can be 2.5V.
  • the predetermined discharge rate can be 0.05 C to 1.0 C. Specifically, the predetermined discharge rate can be 0.1C.
  • the predetermined voltage can be set to 0.05 V to 3.0 V, similarly to the discharge end voltage. Specifically, the predetermined voltage can be 2.5V.
  • the predetermined time can be 1.5 to 30 hours. Specifically, the predetermined voltage can be 2 hours.
  • the rated capacity is preferably measured at 25 ° C.
  • the rated capacity can be measured at 25 ° C. as follows. First, the nonaqueous electrolyte secondary battery 10 is charged at a constant current up to 4.15 V at 0.1 C, and then the charging is stopped and left for 5 minutes. Next, after charging at a constant voltage of 4.15 V for 1.5 hours, the charging is stopped and the mixture is left for 5 minutes. Next, a constant current discharge is performed at 0.1 C up to 2.5 V, then a constant voltage discharge is performed at 2.5 V for 2 hours, and then the discharge is stopped and left for 10 seconds. Next, the battery is charged with a constant current at 0.1 C to 4.1 V, then charged with a constant voltage at 4.1 V for 2.5 hours, and then the charging is stopped and left for 10 seconds. Next, after constant current discharge at 0.1 C to 2.5 V, constant voltage discharge is performed at 2.5 V for 2 hours. The sum of the discharge capacity from 4.1 V to 2.5 V in this last step and the discharge capacity for 2 hours at 2.5 V can be set as the rated capacity.
  • the nonaqueous electrolyte secondary battery 10 of the present embodiment has a volume per rated capacity of 2 cm 3 / Ah or more and 10 cm 3 / Ah or less. By setting the volume per rated capacity of the non-aqueous electrolyte secondary battery 10 in such a range, the volume and the electrical capacity density of the non-aqueous electrolyte secondary battery 10 are sufficiently large. Note that the volume per rated capacity of the nonaqueous electrolyte secondary battery 10 is preferably 3 cm 3 / Ah or more and 8 cm 3 / Ah or less. The volume per rated capacity can be obtained by dividing the value of the rated capacity of the nonaqueous electrolyte secondary battery 10 by the value of the volume of the nonaqueous electrolyte secondary battery 10.
  • the volume of the nonaqueous electrolyte secondary battery 10 can be the volume of the nonaqueous electrolyte secondary battery 10 including the outer package 25.
  • the volume of the nonaqueous electrolyte secondary battery 10 can be easily obtained by the product of the projected area and thickness of the nonaqueous electrolyte secondary battery 10 including the outer package 25.
  • the projected area of the nonaqueous electrolyte secondary battery 10 including the outer package 25 six projected areas of front, back, right side, left side, plane, and bottom are obtained, and among these, the projected area of the battery It is sufficient to use one that maximizes.
  • the non-aqueous electrolyte secondary battery 10 has a maximum projected area on the plane or bottom.
  • the thickness of the nonaqueous electrolyte secondary battery 10 including the outer package 25 can be an average value obtained by measuring, for example, eight or more locations.
  • the volume of the nonaqueous electrolyte secondary battery 10 is not particularly limited, but is preferably 18 cm 3 to 600 cm 3 , and more preferably 18 cm 3 to 100 cm 3 .
  • the rated capacity of the nonaqueous electrolyte secondary battery 10 can be further increased, and the volume per rated capacity is set to an optimal range. be able to.
  • the projected area of the nonaqueous electrolyte secondary battery 10 including the outer package 25 is preferably 100 cm 2 or more.
  • the rated capacity of the non-aqueous electrolyte secondary battery 10 can be increased, and the volume per rated capacity can be set to an optimal range. can do.
  • the projected area of the non-aqueous electrolyte secondary battery 10, including the outer body 25 is more preferably 180cm 2 ⁇ 6000 cm 2, and yet more preferably 180cm 2 ⁇ 600cm 2.
  • the thickness of the nonaqueous electrolyte secondary battery 10 is preferably 0.8 mm to 1.2 mm, more preferably 0.9 mm to 1.1 mm, and most preferably about 1.0 mm.
  • the rated capacity of the non-aqueous electrolyte secondary battery 10 can be further increased, and the volume per rated capacity is set to an optimum range. be able to.
  • the negative electrode active material layer 12 includes a silicon-containing alloy having a silicon content of 20% by mass or more. Since the silicon-containing alloy is alloyed with lithium ions during charging, the rated capacity per mass of the negative electrode active material can be increased as compared with a carbon-based negative electrode active material. Therefore, the non-aqueous electrolyte secondary battery 10 of this embodiment can increase the rated capacity of the non-aqueous electrolyte secondary battery 10 by including the negative electrode active material layer 12 including a silicon-containing alloy. Further, when the silicon content of the silicon-containing alloy is 20% by mass or more, the amorphous-crystal phase transition can be suppressed. Therefore, the cycle characteristics of the nonaqueous electrolyte secondary battery 10 can be improved.
  • the D90 of the silicon-containing alloy of this embodiment is not particularly limited, but is preferably 28 ⁇ m or less, and more preferably 22 ⁇ m or less. By setting D90 in such a range, even if the average surface pressure applied to the surface of the negative electrode active material layer 12 is increased, the intensive stress applied to the silicon-containing alloy is relatively reduced. Therefore, damage due to expansion of the silicon-containing alloy can be suppressed during charging, so that the cycle characteristics of the nonaqueous electrolyte secondary battery 10 can be improved.
  • D90 of a silicon containing alloy is 22 micrometers or less, It is more preferable that it is 17 micrometers or less, It is further more preferable that it is 12 micrometers or less.
  • D90 of a silicon containing alloy is not specifically limited, 0.1 micrometer or more is preferable.
  • the method for controlling D90 is not particularly limited, and for example, it can be pulverized using a planetary ball mill.
  • the rotation speed of the pedestal can be rotated at 200 rpm to 400 rpm for 30 minutes to 4 hours to pulverize the silicon-containing alloy.
  • D90 represents the particle diameter when the cumulative value of the particle size distribution on the volume basis is 90%, and can be measured by, for example, a laser diffraction / scattering method.
  • the cycle characteristics may be improved to some extent, but D50 is the particle diameter when the cumulative value of the particle size distribution on a volume basis is 50%, that is, Represents the median diameter. Therefore, for example, in a silicon-containing alloy having a wide particle size distribution, a large amount of silicon-containing alloy having a large particle size is contained, and damage to the silicon-containing alloy due to expansion during charging cannot be sufficiently suppressed. Therefore, in order to improve the cycle characteristics of the nonaqueous electrolyte secondary battery 10, it is preferable that the D90 of the silicon-containing alloy is 28 ⁇ m or less.
  • a silicon-containing alloy having a rated capacity per mass of 1500 mAh / g is alloyed with lithium ions at the time of charging and is about twice as large. Therefore, when the film thickness of the negative electrode active material layer 12 is L ( ⁇ m), D90 of the silicon-containing alloy is Y ( ⁇ m), and the rated capacity per mass of the silicon-containing alloy is X (mAh / g), L> Y It is preferable to satisfy the formula of x (1 + X / 1500). When satisfying such a relationship, damage to the silicon-containing alloy due to expansion during charging can be further suppressed, so that the cycle characteristics of the nonaqueous electrolyte secondary battery 10 can be improved.
  • the rated capacity per mass of the silicon-containing alloy is 800 mAh / g or more and 1500 mAh / g or less.
  • the nonaqueous electrolyte secondary battery 10 having an excellent energy density can be provided.
  • the rated capacity per mass of the silicon-containing alloy can be obtained by dividing the rated capacity of the non-aqueous electrolyte secondary battery 10 by the mass of the silicon-containing alloy contained in the non-aqueous electrolyte secondary battery 10.
  • the film thickness of the negative electrode active material layer 12 is preferably 20 ⁇ m to 80 ⁇ m, and more preferably 20 ⁇ m to 50 ⁇ m. By setting the film thickness of the negative electrode active material layer 12 in such a range, a large nonaqueous electrolyte secondary battery 10 having excellent cycle characteristics can be provided.
  • the silicon-containing alloy includes Si, Sn, and M elements, and M is at least one element selected from the group consisting of transition elements, B, C, Mg, Al, and Zn. preferable.
  • the transition element refers to an element between the Group 3 element and the Group 11 element.
  • the silicon-containing alloy includes a parent phase mainly composed of amorphous or low crystalline silicon, and a silicide phase including a transition metal silicide dispersed in the parent phase mainly composed of silicon. It is preferable to include.
  • M is at least one element selected from the group consisting of B, C, Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, and Ta. More preferably. M is more preferably at least one element selected from the group consisting of C, Al, Ti, V, and Zn. Furthermore, it is most preferable that it is at least any one of Al or Ti. When a silicon-containing alloy containing such an element is used in the non-aqueous electrolyte secondary battery 10, the cycle characteristics can be further improved while maintaining the rated capacity.
  • the silicon-containing alloy containing Si, Sn, and M elements may contain inevitable impurities.
  • An inevitable impurity means what exists in a raw material or is inevitably mixed in a manufacturing process. Inevitable impurities are essentially unnecessary impurities, but they are a very small amount and do not affect the characteristics of the silicon-containing alloy, so that they are acceptable impurities.
  • the content of inevitable impurities is preferably less than 0.5% by mass relative to the entire silicon-containing alloy, more preferably less than 0.1% by mass, and further preferably less than 0.01% by mass. preferable.
  • the general formula of the silicon-containing alloy is preferably Si—Sn—M, and more preferably Si—Sn—Ti.
  • the Sn content is 7% by mass or more and 30% by mass or less
  • the Ti content is more than 0% by mass and 37% by mass or less
  • the balance is Si and inevitable impurities.
  • the Sn content is preferably 30% by mass or more and 51% by mass or less
  • the Ti content is more than 0% by mass and 35% by mass or less
  • the balance is preferably Si and inevitable impurities. .
  • the Sn content is 7% by mass or more and 30% by mass or less, Ti is more than 7% by mass and 37% by mass or less, and the balance is Si and inevitable impurities.
  • the Sn content is 30% by mass or more and 51% by mass or less, the Ti content is more than 7% by mass and 35% by mass or less, and the balance is Si and inevitable impurities.
  • the Sn content is 7% by mass or more and 30% by mass or less, the Ti content is 18% by mass or more and 37% by mass or less, and the balance is Si and inevitable impurities. preferable.
  • the Sn content is 30% by mass or more and 51% by mass or less, the Ti content is more than 7% by mass and 20% by mass or less, and the balance is Si and inevitable impurities. preferable.
  • the Sn content is 7% by mass or more and 21% by mass or less, the Ti content is 24% by mass or more and 37% by mass or less, and the balance is Si and inevitable impurities. preferable.
  • the silicon-containing alloy includes a parent phase mainly composed of amorphous or low crystalline silicon, and a silicide phase having a silicide of a transition metal dispersed in the parent phase mainly composed of silicon. Is preferred.
  • the silicon-containing alloy includes such a parent phase and a silicide phase, it is possible to provide the nonaqueous electrolyte secondary battery 10 having excellent cycle characteristics and a large rated capacity.
  • the main component here means that 50 mass% or more of amorphous or low crystalline silicon is contained in the matrix.
  • the parent phase containing silicon as a main component is a phase involved in occlusion and release of lithium ions when the nonaqueous electrolyte secondary battery 10 is charged and discharged. Therefore, it is preferable that the parent phase containing silicon as a main component is a single phase consisting only of silicon, since many lithium ions can be occluded and released.
  • the parent phase mainly composed of silicon is more amorphous than the silicide phase.
  • the rated capacity of the nonaqueous electrolyte secondary battery 10 can be increased. It can be confirmed by an electron beam diffraction image obtained by electron beam diffraction analysis that the parent phase containing silicon as a main component is more amorphous than the silicide phase.
  • the electron diffraction pattern of the single crystal phase is a two-dimensional dot array net pattern (lattice spot), the electron diffraction pattern of the polycrystalline phase is Debye-Scherrer ring (diffraction ring), and the amorphous phase electrons
  • the line diffraction image is a halo pattern.
  • the silicide phase can improve the affinity with the parent phase containing silicon as a main component. Therefore, even when the silicon-containing alloy undergoes volume expansion due to the charging of the nonaqueous electrolyte secondary battery 10, it is possible to suppress the occurrence of cracks between the parent phase and the silicide phase. Furthermore, since the silicide phase tends to have higher electronic conductivity and hardness than the parent phase, it improves the electronic conductivity of the silicon-containing alloy and also suppresses the expansion of the silicon-containing alloy during charge / discharge. Have.
  • the silicide phase may include a plurality of phases having different composition ratios of silicon, such as MSi 2 and MSi, and a plurality of phases including silicides with different transition metal elements may exist.
  • the transition metal element contained in the silicide phase is preferably at least one element selected from the group consisting of Ti, Zr, Ni, Cu and Fe, more preferably at least one element of Ti and Zr, and further Ti. preferable. Since silicides with these transition metal elements have high electron conductivity and hardness, they can improve the electron conductivity of the silicon-containing alloy and suppress the expansion of the silicon-containing alloy during charging and discharging. In particular, TiSi 2 which is a silicide with Ti is preferable because of its very high electron conductivity.
  • the ratio of TiSi 2 to the entire silicide phase is preferably 50% by mass or more, 80 mass% or more is more preferable. Further, this ratio is more preferably 90% by mass or more, particularly preferably 95% by mass or more, and most preferably 100% by mass.
  • the size of the silicide phase is not particularly limited, but is preferably from 0 nm to 50 nm. It is preferable to set the size of the silicide phase in such a range because the rated capacity of the nonaqueous electrolyte secondary battery 10 is increased.
  • the average surface pressure applied to the surface of the negative electrode active material layer 12 is 1.6 kgf / cm 2 or more. Therefore, even when the rated capacity of the non-aqueous electrolyte secondary battery 10 is increased using a silicon-containing alloy, the surface irregularities of the negative electrode active material layer 12 are derived from the expansion and contraction of the silicon-containing alloy during charging and discharging. Can be suppressed. Thereby, the negative electrode active material layer 12 and the negative electrode current collector 11 adjacent to the negative electrode current collector 11 and the like can be brought into uniform surface contact, and the cycle characteristics of the nonaqueous electrolyte secondary battery 10 can be improved.
  • the average surface pressure applied to the surface of the negative electrode active material layer 12 is preferably 2.4 kgf / cm 2 or more.
  • such a decrease in cycle characteristics due to the unevenness of the surface of the negative electrode active material layer 12 is a problem peculiar to the large nonaqueous electrolyte secondary battery 10.
  • an average surface pressure applied to the surface of the negative electrode active material layer of 0.5 to 1.0 kgf / cm 2 is sufficient.
  • the average surface pressure applied to the surface of the negative electrode active material layer 12 can be measured using a film-type pressure distribution measurement system or the like.
  • a region having an average surface pressure of 1.6 kgf / cm 2 or more is larger on the surface of the negative electrode active material layer 12.
  • the region having an average surface pressure of 1.6 kgf / cm 2 or more is preferably 50% or more of the entire surface of the negative electrode active material layer 12, more preferably 70% or more, still more preferably 90% or more, and 99%. The above is particularly preferable.
  • the method for pressing the surface of the negative electrode active material layer is not particularly limited, and the surface of the negative electrode active material layer 12 can be pressed directly or indirectly.
  • the method for controlling the average surface pressure applied to the surface of the negative electrode active material layer 12 is not particularly limited.
  • the surface of the negative electrode active material layer 12 can be pressurized by the pressurizing device 40 or the like.
  • the surface of the negative electrode active material layer 12 is indirectly applied by pressurizing the nonaqueous electrolyte secondary battery 10 with the pressurizing device 40 from the outside of the outer package 25 that accommodates the negative electrode active material layer 12. Can be pressed.
  • the pressure device 40 can include a pressure member 42 disposed on both outer sides of the nonaqueous electrolyte secondary battery 10 and a fastener 44 that fastens the pressure members 42 disposed on both outer sides.
  • the material forming the pressure member 42 is not particularly limited, and examples thereof include rubbers such as urethane rubber and silicone rubber, metals such as aluminum and stainless steel, and resins such as polypropylene (PP) and polyethylene terephthalate (PET).
  • the size and shape of the pressure member 42 are not particularly limited, but the pressure member 42 is a pressure plate larger than the projected area of the nonaqueous electrolyte secondary battery 10 in order to uniformly press the entire surface of the negative electrode active material layer 12. It is preferable that
  • the fastener 44 can control the average surface pressure applied to the surface of the negative electrode active material layer 12 by fastening the pressure plates with the non-aqueous electrolyte secondary battery 10 sandwiched therebetween.
  • the fastener 44 can be, for example, a bolt as shown in FIGS. 2A and 2B, and the surface of the negative electrode active material layer 12 can be adjusted by adjusting the distance between the pressure members 42 according to the degree of tightening of the bolt. It is possible to control the average surface pressure applied to the.
  • the nonaqueous electrolyte secondary battery 10 includes a positive electrode tab 21 so that the nonaqueous electrolyte secondary battery 10 can be easily charged and discharged with the pressurizing member 42 provided. And a negative electrode tab 23.
  • the positive electrode tab 21 and the negative electrode tab 23 may be drawn from different directions as shown in FIGS. 2A and 2B or may be drawn from the same direction.
  • the product of the tensile fracture stress (MPa) and the tensile fracture strain (%) of the negative electrode active material layer 12 exceeds 2.1 MPa.
  • the product of the tensile fracture stress (MPa) and the tensile fracture strain (%) of the negative electrode active material layer 12 is also referred to as “tensile characteristics of the negative electrode active material layer 12”.
  • the product of the tensile fracture stress (MPa) and the tensile fracture strain (%) of the negative electrode active material layer 12 is preferably more than 2.5 MPa, more preferably more than 2.6 MPa and less than 3.5 MPa.
  • the tensile fracture stress and tensile fracture strain can be measured in accordance with the provisions of Japanese Industrial Standard JIS K7127: 1999 (Plastics-Test method for tensile properties-Part 3: Test conditions for films and sheets). Also, JIS K7127: 1999 quotes the provisions such as JIS K7161-1: 2014 (Plastics-Determination of tensile properties-Part 1: General rules).
  • the tensile fracture strain is a value obtained by dividing the increase in the distance between the marked lines after the test by the distance between the marked lines before the test. Moreover, the value of the tensile fracture stress and the tensile fracture strain of the negative electrode active material layer 12 may be reduced to half or less and converge depending on the charge / discharge conditions.
  • the values of tensile fracture stress and tensile fracture strain drop to less than half of those before charge / discharge. No longer. Therefore, the values of the tensile fracture stress and the tensile fracture strain of the negative electrode active material layer 12 described above are measured values before charging and discharging.
  • the tensile fracture stress of the negative electrode active material layer 12 is preferably more than 60 MPa, and more preferably more than 80 MPa. Moreover, it is most preferable that the tensile fracture stress of the negative electrode active material layer 12 exceeds 100 MPa.
  • the tensile fracture stress of the negative electrode active material layer 12 is preferably less than 200 MPa, and more preferably less than 150 MPa.
  • the tensile fracture stress of the negative electrode active material layer 12 is in such a range, the expansion of the silicon-containing alloy is not excessively suppressed, and thus the reduction in the rated capacity can be suppressed.
  • the tensile fracture strain of the negative electrode active material layer 12 is preferably over 1.9%, more preferably over 2.2%, and even more preferably over 2.5%.
  • the tensile fracture strain of the negative electrode active material layer 12 is preferably less than 4.0%, and more preferably less than 3.5%.
  • the negative electrode active material layer 12 can further contain a conductive additive depending on the application.
  • a conductive additive examples include carbon black such as acetylene black, and carbon materials such as graphite and carbon fiber. These conductive assistants may be used alone or in combination of two or more.
  • the content of the conductive auxiliary is preferably 1 to 10% by mass, and more preferably 2 to 8% by mass with respect to the entire negative electrode active material layer 12.
  • the negative electrode active material layer 12 can further contain a binder depending on the application.
  • the binder material used for the negative electrode active material layer 12 include polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyether nitrile (PEN), polyacrylonitrile (PAN), polyimide (PI), polyamide (PA), polyamideimide (PAI), carboxymethylcellulose (CMC), ethylene-vinyl acetate copolymer (EVA), polyvinyl chloride (PVC), polyfluoride Thermoplastic resins such as vinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and polyvinyl fluoride (PVF), thermosetting resins such as epoxy resins, styrene-butadiene rubber (SBR), isoprene rubber (IR), Elastomers such as die
  • binders may be used independently and may use 2 or more types together.
  • at least one selected from the group consisting of polyimide (PI), polyamide (PA), and polyamideimide (PAI) is preferable because of excellent adhesion and heat resistance as a binder.
  • the content of the binder contained in the negative electrode active material layer 12 is not particularly limited, but is preferably 0.5 to 15% by mass and more preferably 1 to 10% by mass with respect to 100% by mass of the negative electrode active material layer 12. preferable.
  • the tensile modulus of the binder is preferably more than 1.00 GPa and less than 7.40 GPa.
  • the tensile elastic modulus exceeds 1.00 GPa, since the binder breakage accompanying the expansion of the silicon-containing alloy is suppressed, cycle characteristics are improved.
  • the tensile elastic modulus is less than 7.40 GPa, the binder does not suppress the expansion of the silicon-containing alloy due to charging, so that the rated capacity of the nonaqueous electrolyte secondary battery 10 can be increased.
  • the tensile modulus can be measured, for example, according to JIS K7161-1 at a test temperature of 23 ⁇ 2 ° C. and a test speed of 1 mm / min.
  • E t ( ⁇ 2 ⁇ 1 ) / ( ⁇ 2 ⁇ 1 ).
  • Et represents the tensile modulus (Pa)
  • the nonaqueous electrolyte secondary battery 10 of this embodiment includes a negative electrode current collector 11.
  • the negative electrode current collector 11 collects electricity generated in the nonaqueous electrolyte secondary battery 10.
  • the product of the tensile fracture stress (MPa), thickness (m), and tensile fracture strain (%) of the negative electrode current collector 11 exceeds 45 N / m.
  • the product of the tensile fracture stress (MPa), the thickness (m), and the tensile fracture strain (%) of the negative electrode current collector 11 is also referred to as “tensile characteristics of the negative electrode current collector 11”.
  • the negative electrode current collector 11 can follow the expansion of the negative electrode active material layer 12 by setting the tensile property of the negative electrode current collector 11 in such a range.
  • the interface peeling between the negative electrode current collector 11 and the negative electrode active material layer 12 is suppressed, and the cycle characteristics of the nonaqueous electrolyte secondary battery 10 can be improved.
  • the product of the tensile fracture stress (MPa), thickness (m), and tensile fracture strain (%) of the negative electrode current collector 11 exceeds 70 N / m.
  • the product of the tensile fracture stress (MPa), thickness (m), and tensile fracture strain (%) of the negative electrode current collector 11 is not particularly limited, but is preferably less than 360 N / m.
  • the tensile fracture stress and tensile fracture strain of the negative electrode current collector 11 can be measured in accordance with the provisions of JIS K7127: 1999, which cites the provisions of JIS K7161-1: 2014, similarly to the tensile properties of the negative electrode active material layer 12. it can.
  • the material for forming the negative electrode current collector 11 is not particularly limited, and examples thereof include metals such as aluminum, nickel, iron, titanium, copper, and alloys thereof.
  • a material for forming the current collector the above-described simple metal, an alloy obtained by combining the above-described metals, a plating material obtained by combining the above-described metals, or the like can be used.
  • the material which forms the negative electrode collector 11 contains aluminum, stainless steel, and copper from a viewpoint of electronic conductivity or battery operating potential.
  • the negative electrode current collector 11 preferably uses at least one of a foil containing copper and a stainless steel foil.
  • the tensile fracture stress of the negative electrode current collector 11 is preferably 300 MPa or more, and more preferably 600 MPa or more. Even when the surface pressure applied to the surface of the negative electrode active material layer 12 is increased by setting the tensile fracture stress of the negative electrode current collector 11 in such a range, the negative electrode current collector accompanying the expansion of the silicon-containing alloy 11 breakage is suppressed. Therefore, the cycle characteristics of the nonaqueous electrolyte secondary battery 10 can be improved.
  • the tensile fracture strain of the negative electrode current collector 11 is preferably more than 0.7%. Further, it is more preferable that the tensile fracture strain of the negative electrode current collector 11 exceeds 0.8%. By setting the tensile fracture strain of the negative electrode current collector 11 in such a range, the negative electrode current collector 11 can follow the expansion of the negative electrode active material layer 12. Therefore, the interface peeling between the negative electrode current collector 11 and the negative electrode active material layer 12 is suppressed, and the cycle characteristics of the nonaqueous electrolyte secondary battery 10 can be improved. Further, the tensile fracture strain of the negative electrode current collector 11 is preferably less than 2.5%.
  • the thickness of the negative electrode current collector 11 is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 3 ⁇ m or more and 20 ⁇ m or less, and further preferably 5 ⁇ m or more and 14 ⁇ m or less.
  • the nonaqueous electrolyte secondary battery 10 of this embodiment can include a positive electrode current collector 14.
  • the positive electrode current collector 14 collects electricity generated in the nonaqueous electrolyte secondary battery 10.
  • the material which forms the positive electrode collector 14 is not specifically limited, Metals, such as aluminum, nickel, iron, titanium, and these alloys, are mentioned.
  • the above-described simple metal, an alloy obtained by combining the above-described metals, a plating material obtained by combining the above-described metals, or the like can be used.
  • the material which forms the positive electrode collector 14 contains aluminum from a viewpoint of electronic conductivity or battery operating potential.
  • the nonaqueous electrolyte secondary battery 10 of this embodiment can include a positive electrode current collector 14 and a positive electrode active material layer 15 disposed on at least one surface of the positive electrode current collector 14.
  • the positive electrode active material layer 15 can include a positive electrode active material, a conductive additive, a binder, and the like depending on the application.
  • the conductive auxiliary agent and binder used in the positive electrode active material layer 15 the conductive auxiliary agent and binder used in the negative electrode active material can be used, respectively.
  • the nonaqueous electrolyte secondary battery 10 can further include a positive electrode active material layer 15 including a positive electrode active material.
  • the positive electrode active material include lithium-transition metal composite oxides, lithium-transition metal phosphate compounds, and lithium-transition metal sulfate compounds.
  • the lithium-transition metal composite oxide include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni—Mn—Co) O 2 , Li (Li—Ni—Mn—Co) O 2, and transitions thereof. An example in which a part of the metal is substituted with another element can be given.
  • the lithium-transition metal phosphate compound include LiFePO 4 .
  • the lithium-transition metal sulfate compound include Li x Fe 2 (SO 4 ) 3 .
  • the positive electrode active material is preferably a lithium-transition metal composite oxide from the viewpoint of capacity and output characteristics.
  • the nonaqueous electrolyte secondary battery 10 further includes a positive electrode active material layer 15 including a positive electrode active material, and the positive electrode active material is Li 1.5 [Ni a Co b Mn c [Li] d ] O 3 . It is more preferable.
  • output characteristics such as rated capacity can be improved.
  • the composition of each element can be measured by, for example, inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • the average particle diameter (D50) of the positive electrode active material is not particularly limited, but is preferably 1 to 100 ⁇ m and more preferably 1 to 20 ⁇ m from the viewpoint of rated capacity.
  • the average particle diameter can be measured by, for example, a laser diffraction / scattering method.
  • the nonaqueous electrolyte secondary battery 10 of the present embodiment can further include an electrolyte layer 17 disposed between the negative electrode 13 and the positive electrode 16.
  • the electrolyte layer 17 isolates the negative electrode 13 and the positive electrode 16 and mediates the movement of lithium ions.
  • the thickness of the electrolyte layer 17 is preferably 1 to 100 ⁇ m, and more preferably 5 to 50 ⁇ m, from the viewpoint of reducing internal resistance.
  • the electrolyte layer 17 includes a nonaqueous electrolyte.
  • non-aqueous electrolyte a gel or solid polymer electrolyte in which a lithium salt is dissolved in an ion conductive polymer, and a liquid electrolyte in which a lithium salt is dissolved in an organic solvent can be used.
  • Examples of the ion conductive polymer used in the polymer electrolyte include polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinylidene fluoride (PVDF), hexafluoropropylene, polyethylene glycol (PEG), polyacrylonitrile (PAN), and polymethyl. Examples include methacrylate (PMMA) and copolymers thereof.
  • organic solvent used in the liquid electrolyte examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl.
  • carbonates such as carbonate (EMC) and methylpropyl carbonate (MPC).
  • Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiAsF 6, LiTaF 6, LiClO 4, LiCF 3 SO 3 etc. are mentioned.
  • the electrolyte layer 17 preferably includes a porous substrate layer 51 that holds the liquid electrolyte.
  • the porosity of the porous substrate layer 51 is preferably 40 to 85%. When the porosity is 40% or more, sufficient ion conductivity can be obtained. On the other hand, when the porosity is 85% or less, the strength of the porous substrate layer 51 can be maintained satisfactorily.
  • the material for forming the porous substrate layer 51 is not particularly limited, but it is preferable to use a thermoplastic resin having a melting point of 120 to 200 ° C. such as polyethylene, polypropylene, and ethylene-propylene copolymer. Since such a thermoplastic resin can melt and block the movement of lithium ions and stop charging and discharging when the nonaqueous electrolyte secondary battery 10 becomes high temperature due to the charging and discharging reaction, Is excellent.
  • the non-aqueous electrolyte secondary battery 10 of this embodiment can further include an electrolyte layer 17 disposed between the negative electrode 13 and the positive electrode 16.
  • the electrolyte layer 17 includes a porous base layer 51 and a heat-resistant insulating layer 53 that is formed on at least one surface of the porous base layer 51 and includes inorganic particles 55 and a binder 57. It is preferable to provide.
  • the electrolyte layer 17 further includes the heat-resistant insulating layer 53, the mechanical strength of the electrolyte layer 17 can be improved.
  • the electrolyte layer 17 further includes the heat-resistant insulating layer 53
  • the thermal contraction of the porous substrate layer 51 can be suppressed.
  • the heat shrinkage of the porous substrate layer 51 tends to be particularly large in the case of the large-sized nonaqueous electrolyte secondary battery 10 as in the present embodiment, and thus the effect of the heat resistant insulating layer 53 is great.
  • the material used for the inorganic particles 55 is not particularly limited, and examples thereof include silica, alumina, zirconia, and titania. Among these, it is preferable to use at least one of silica and alumina from the viewpoint of cost.
  • the binder 57 has a function of adhering the inorganic particles 55 and the porous substrate layer 51 between the inorganic particles 55.
  • the binder content is preferably 2 to 20 mass% with respect to the entire heat-resistant insulating layer 53.
  • the added amount of the binder is 2% by mass or more, the adhesion function of the binder 57 is increased, and thus the vibration resistance can be improved.
  • the addition amount of the binder 57 is 20% by mass or less, the bonding function of the binder 57 is maintained moderately, and the movement of lithium ions is hardly hindered.
  • a material used for the binder 57 is not particularly limited, and a binder used for the negative electrode active material layer 12 can be used. Among these, it is preferable that the material forming the binder 57 includes at least one selected from the group consisting of carboxymethyl cellulose (CMC), polymethyl acrylate (PMA), and polyvinylidene fluoride (PVDF).
  • the nonaqueous electrolyte secondary battery 10 can further include a positive electrode tab 21 that electrically connects the positive electrode current collector 14 and a device outside the nonaqueous electrolyte secondary battery 10.
  • the nonaqueous electrolyte secondary battery 10 may further include a negative electrode tab 23 that electrically connects the negative electrode current collector 11 and a device outside the nonaqueous electrolyte secondary battery 10.
  • the material which forms the positive electrode tab 21 and the negative electrode tab 23 is not specifically limited, For example, at least 1 selected from the group which consists of aluminum, copper, titanium, nickel can be used. In addition, the material which forms the positive electrode tab 21 and the negative electrode tab 23 may be the same, or may differ.
  • the nonaqueous electrolyte secondary battery 10 of this embodiment can further include an exterior body 25 that houses the battery element 30.
  • an exterior body 25 for example, a can or a film formed by a film can be used.
  • the shape of the exterior body 25 is not particularly limited, and can be a cylindrical shape, a square shape, or a sheet shape.
  • the exterior body 25 is formed of a film from the viewpoint of reduction in size and weight.
  • a film is a laminate film from a viewpoint of high output and cooling performance.
  • the outer package 25 is more preferably a laminate film containing aluminum.
  • the negative electrode current collector 11 and the negative electrode active material layer 12 are accommodated in an outer package 25 made of a laminate film containing aluminum, and the nonaqueous electrolyte secondary battery 10 is a flat laminated non-flat type.
  • a water electrolyte secondary battery is preferred.
  • Such a non-aqueous electrolyte secondary battery 10 can increase the rated capacity and heat dissipation performance, and is therefore optimal when mounted on a vehicle.
  • the laminate film containing aluminum there is a three-layer laminate film of PP / aluminum / nylon.
  • the nonaqueous electrolyte secondary battery 10 of the present embodiment is disposed on at least one surface of the negative electrode current collector 11 and the negative electrode current collector 11, and a silicon-containing alloy having a silicon content of 20% by mass or more.
  • a negative electrode active material layer 12 comprising: The nonaqueous electrolyte secondary battery 10 of the present embodiment has a rated capacity of 3 Ah or more and a volume per rated capacity of 2 cm 3 / Ah or more and 10 cm 3 / Ah or less on the surface of the negative electrode active material layer 12.
  • the applied average surface pressure is 1.6 kgf / cm 2 or more.
  • the product of the tensile fracture stress (MPa) and the tensile fracture strain (%) of the negative electrode active material layer 12 exceeds 2.1 MPa, and the tensile strength of the negative electrode current collector 11 is The product of fracture stress (MPa), thickness (m) and tensile fracture strain (%) exceeds 45 N / m. Therefore, the nonaqueous electrolyte secondary battery 10 of the present embodiment is a large nonaqueous electrolyte secondary battery and has excellent cycle characteristics.
  • the use of the nonaqueous electrolyte secondary battery 10 of the present embodiment is not particularly limited, as described above, since it is a large nonaqueous electrolyte secondary battery 10 having excellent cycle characteristics, it can be suitably used for vehicles. it can. Specifically, the nonaqueous electrolyte secondary battery 10 of the present embodiment can be suitably used for a drive power source for vehicles.
  • Example 1 (Preparation of positive electrode) A 2 mol / L aqueous solution of nickel acetate, cobalt acetate and manganese acetate was prepared. Next, a predetermined amount was weighed so that the positive electrode active material was Li 1.5 [Ni 0.20 Co 0.20 Mn 0.80 [Li 0.30 ]] O 3 to prepare a mixed solution. . Then, while stirring the mixed solution with a magnetic stirrer, ammonia water was added dropwise to the mixed solution until the pH reached 7. Further, a 2 mol / L sodium carbonate aqueous solution was dropped into the mixed solution to precipitate a nickel-cobalt-manganese composite carbonate.
  • the obtained precipitate was subjected to suction filtration, washed with water, and dried under conditions of about 120 ° C. and about 5 hours. And the obtained dried material was calcined under conditions of about 500 ° C. and about 5 hours. Lithium hydroxide was added to this at a predetermined molar ratio and kneaded for about 30 minutes in an automatic mortar. Further, heating was performed in the atmosphere at a heating rate of 50 ° C./hour, and then main firing was performed at 750 ° C. for about 12 hours. Thereafter, heat treatment was performed in a nitrogen atmosphere at about 600 ° C. for about 12 hours to obtain a solid solution lithium-containing transition metal oxide precursor.
  • the positive electrode slurry was uniformly applied to one surface of the positive electrode current collector so that the thickness of the positive electrode active material layer after drying was 50 ⁇ m, and dried in vacuum for 24 hours. Thereafter, similarly, on the other surface of the positive electrode current collector, the positive electrode slurry was uniformly applied so that the thickness of the positive electrode active material layer after drying was 50 ⁇ m, and dried in vacuum for 24 hours, A positive electrode was obtained.
  • the positive electrode current collector an aluminum foil having a thickness of 20 ⁇ m was used.
  • P-6 planetary ball mill
  • a negative electrode active material 80 parts by mass of the negative electrode active material thus obtained, 5 parts by mass of a conductive additive, and 15 parts by mass of a binder are dispersed in 100 parts by mass of N-methylpyrrolidone, and a defoaming kneader (AR manufactured by Thinky Co., Ltd.). -100) to obtain a negative electrode slurry.
  • acetylene black was used as the conductive auxiliary agent
  • polyimide U-vanish-A manufactured by Ube Industries, Ltd.
  • the negative electrode slurry was uniformly applied to one surface of the negative electrode current collector so that the thickness of the negative electrode active material layer after drying was 30 ⁇ m, and dried in vacuum for 24 hours. Thereafter, similarly, the negative electrode slurry was uniformly applied to the other surface of the negative electrode current collector so that the thickness of the dried negative electrode active material layer was 30 ⁇ m. And it was made to dry in vacuum for 24 hours, and also the negative electrode was obtained by performing drying baking at 300 degreeC in vacuum for 1 hour.
  • SUS304 foil having a thickness of 12 ⁇ m was used as the negative electrode current collector. The tensile fracture stress of the SUS304 foil was 900 MPa, and the tensile fracture strain was 0.91%.
  • the tensile fracture stress of the negative electrode active material layer was 100 MPa, and the tensile fracture strain was 2.5%.
  • the same conditions as described above were used.
  • the measured value of the formed negative electrode active material layer was adopted.
  • the tensile fracture stress and tensile fracture strain of the negative electrode current collector and the negative electrode active material layer are measured values before charge and discharge including electrochemical pretreatment.
  • a multilayer nonaqueous electrolyte secondary battery as shown in FIG. 1 was produced. Specifically, an electrolyte layer was disposed between the positive electrode and the negative electrode, and the positive electrode and the negative electrode were alternately laminated to produce a battery element.
  • the electrolyte layer polyolefin having a thickness of 40 ⁇ m was used. In this laminated body, two positive electrodes, three negative electrodes, and four electrolyte layers are laminated.
  • a positive electrode and a negative electrode tab were welded to the obtained battery element, respectively, and an electrolyte solution was injected into the exterior made of a laminate film containing aluminum with a syringe, followed by vacuum-sealing to obtain a nonaqueous electrolyte secondary battery.
  • the electrolyte concentration is such that 1 mol / L, was used by dissolving lithium hexafluorophosphate (LiPF 6) in an organic solvent.
  • LiPF 6 lithium hexafluorophosphate
  • the obtained nonaqueous electrolyte secondary battery had a plane size of 20 cm ⁇ 10 cm, the projected area was 200 cm 2 . Moreover, since the thickness of the obtained nonaqueous electrolyte secondary battery was 1 mm, the volume of the nonaqueous electrolyte secondary battery was 20 cm 3 . Furthermore, since the rated capacity of this non-aqueous electrolyte secondary battery was 3 Ah, the volume per rated capacity was 6.7 cm 3 / Ah.
  • the pressurizing member constituting the pressurizing apparatus has a projected area larger than the projected area of the nonaqueous electrolyte secondary battery, and a 3 mm thick urethane rubber sheet disposed on the nonaqueous electrolyte secondary battery side, It consists of a 5 mm thick aluminum plate arranged on the outside of the urethane rubber sheet.
  • the average surface pressure applied to the surface of the negative electrode active material layer was adjusted to be 3.0 kgf / cm 2 by fastening the pressure member with fastening bolts.
  • the average surface pressure applied to the surface of the negative electrode active material layer was measured using a film type pressure distribution measurement system manufactured by tekscan.
  • Example 2 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the average surface pressure was 2.4 kgf / cm 2 .
  • Example 3 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the average surface pressure was 1.6 kgf / cm 2 .
  • Example 4 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the thickness of the negative electrode current collector was 10 mm.
  • Example 5 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the thickness of the negative electrode current collector was 8 mm.
  • Example 6 A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the thickness of the negative electrode current collector was 6 mm.
  • Example 7 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the negative electrode current collector was replaced with a 12 ⁇ m thick SUS301 foil.
  • the SUS301 foil had a tensile fracture stress of 1300 MPa and a tensile fracture strain of 2.2%.
  • Example 8 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the negative electrode current collector was replaced with a 10 ⁇ m thick SUS301 foil.
  • the SUS301 foil had a tensile fracture stress of 1300 MPa and a tensile fracture strain of 2.2%.
  • Example 9 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the negative electrode binder was replaced with U-vanish-S made by Ube Industries, Ltd., and the firing time of the negative electrode binder was changed to 300 ° C. for 15 hours. did.
  • the negative electrode active material layer had a tensile fracture stress of 89.6 MPa and a tensile fracture strain of 3.0%.
  • Example 10 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the firing time of the negative electrode binder was changed to 300 ° C. and 15 hours.
  • the negative electrode active material layer had a tensile fracture stress of 100 MPa and a tensile fracture strain of 2.8%.
  • Example 11 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the negative electrode binder was replaced with U-vanish-S made by Ube Industries, Ltd., and the firing time of the negative electrode binder was changed to 320 ° C. for 1 hour. .
  • the tensile fracture stress of the negative electrode active material layer was 92.8 MPa, and the tensile fracture strain was 3.0%.
  • Example 12 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the firing time of the negative electrode binder was changed to 300 ° C. and 0.5 hour.
  • the negative electrode active material layer had a tensile fracture stress of 93 MPa and a tensile fracture strain of 2.5%.
  • Example 13 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the firing time of the negative electrode binder was changed to 280 ° C. and 1 hour.
  • the negative electrode active material layer had a tensile fracture stress of 100 MPa and a tensile fracture strain of 2.2%.
  • Example 1 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the negative electrode binder was replaced with U-vanish-S manufactured by Ube Industries, Ltd.
  • the negative electrode active material layer had a tensile fracture stress of 100 MPa and a tensile fracture strain of 1.9%.
  • Example 2 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the negative electrode current collector was an electrolytic copper foil having a thickness of 10 ⁇ m and the average surface pressure was 2.7 kgf / cm 2 .
  • the electrolytic copper foil had a tensile fracture stress of 120 MPa and a tensile fracture strain of 0.7%.
  • Example 3 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the negative electrode current collector was an electrolytic copper foil having a thickness of 10 ⁇ m and the average surface pressure was 1.6 kgf / cm 2 .
  • the electrolytic copper foil had a tensile fracture stress of 120 MPa and a tensile fracture strain of 0.7%.
  • Example 4 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that the negative electrode current collector was an electrolytic copper foil having a thickness of 10 ⁇ m and the average surface pressure was 1.0 kgf / cm 2 .
  • the electrolytic copper foil had a tensile fracture stress of 120 MPa and a tensile fracture strain of 0.7%.
  • Example 5 Example except that the negative electrode binder is U-vanish-S manufactured by Ube Industries, the negative electrode current collector is a Zr-added high strength rolled copper foil with a thickness of 10 ⁇ m, and the average surface pressure is 1.6 kgf / cm 2.
  • a non-aqueous electrolyte secondary battery was produced by the same method as in Example 1.
  • the negative electrode active material layer had a tensile fracture stress of 100 MPa and a tensile fracture strain of 1.9%.
  • the Zr-added high strength rolled copper foil had a tensile fracture stress of 280 MPa and a tensile fracture strain of 1.2%.
  • Example 6 The same method as in Example 1 except that the negative electrode binder was U-vanish-S manufactured by Ube Industries, Ltd., the negative electrode current collector was rolled copper foil having a thickness of 10 ⁇ m, and the average surface pressure was 1.6 kgf / cm 2. Thus, a non-aqueous electrolyte secondary battery was produced.
  • the negative electrode active material layer had a tensile fracture stress of 100 MPa and a tensile fracture strain of 1.9%.
  • the rolled copper foil had a tensile fracture stress of 150 MPa and a tensile fracture strain of 0.91%.
  • Example 7 The same method as in Example 1 except that the negative electrode binder is U-vanish-S made by Ube Industries, the negative electrode current collector is 10 ⁇ m thick electrolytic copper foil, and the average surface pressure is 1.6 kgf / cm 2. Thus, a non-aqueous electrolyte secondary battery was produced.
  • the negative electrode active material layer had a tensile fracture stress of 100 MPa and a tensile fracture strain of 1.9%.
  • the electrolytic copper foil had a tensile fracture stress of 120 MPa and a tensile fracture strain of 0.7%.
  • Example 8 The same method as in Example 1, except that the negative electrode binder was U-vanish-S manufactured by Ube Industries, Ltd., the negative electrode current collector was 10 ⁇ m thick electrolytic copper foil, and the average surface pressure was 2.7 kgf / cm 2. Thus, a non-aqueous electrolyte secondary battery was produced.
  • the negative electrode active material layer had a tensile fracture stress of 100 MPa and a tensile fracture strain of 1.9%.
  • the electrolytic copper foil had a tensile fracture stress of 120 MPa and a tensile fracture strain of 0.7%.
  • Example 9 The same method as in Example 1 except that the negative electrode binder is U-vanish-S made by Ube Industries, the negative electrode current collector is 10 ⁇ m thick electrolytic copper foil, and the average surface pressure is 1.0 kgf / cm 2. Thus, a non-aqueous electrolyte secondary battery was produced.
  • the negative electrode active material layer had a tensile fracture stress of 100 MPa and a tensile fracture strain of 1.9%.
  • the electrolytic copper foil had a tensile fracture stress of 120 MPa and a tensile fracture strain of 0.7%.
  • the projected area of the nonaqueous electrolyte secondary battery was 12 cm 2 , the thickness was 1 mm, and the volume was 1.2 cm 3 .
  • the negative electrode current collector was 10 ⁇ m thick electrolytic copper foil, the rated capacity was 0.06 Ah, the volume per rated capacity was 20 cm 3 / Ah, and the average surface pressure was 1.6 kgf / cm 2 .
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • the electrolytic copper foil had a tensile fracture stress of 120 MPa and a tensile fracture strain of 0.7%.
  • the projected area of the nonaqueous electrolyte secondary battery was 12 cm 2 , the thickness was 1 mm, and the volume was 1.2 cm 3 .
  • the negative electrode current collector was 10 ⁇ m thick electrolytic copper foil, the rated capacity was 0.06 Ah, the volume per rated capacity was 20 cm 3 / Ah, and the average surface pressure was 0.80 kgf / cm 2 .
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • the electrolytic copper foil had a tensile fracture stress of 120 MPa and a tensile fracture strain of 0.7%.
  • the projected area of the nonaqueous electrolyte secondary battery was 12 cm 2 , the thickness was 1 mm, and the volume was 1.2 cm 3 .
  • the negative electrode current collector was 10 ⁇ m thick electrolytic copper foil, the rated capacity was 0.06 Ah, the volume per rated capacity was 20 cm 3 / Ah, and the average surface pressure was 0.05 kgf / cm 2 .
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • the electrolytic copper foil had a tensile fracture stress of 120 MPa and a tensile fracture strain of 0.7%.
  • the tensile fracture stress was measured according to JIS K7127: 1999 at a test temperature of 23 ⁇ 2 ° C. and a test speed of 1 mm / min.
  • electrochemical pretreatment Before measuring the following rated capacity and discharge capacity retention rate, electrochemical pretreatment was performed. Specifically, first, after performing constant current charging at a 0.1 C rate until the maximum voltage reaches 4.45 V, two cycles of constant current discharging at a 0.1 C rate until the minimum voltage reaches 2.0 V are performed. It was. Next, after performing constant current charging at a 0.1 C rate until the maximum voltage reached 4.55 V, one cycle of constant current discharging at a 0.1 C rate until the minimum voltage reached 2.0 V was performed. Next, a constant current charge was performed at a 0.1 C rate until the maximum voltage was 4.65 V, and then a constant current discharge cycle was performed at a 0.1 C rate until the minimum voltage was 2.0 V.
  • the rated capacity is the following for each non-aqueous electrolyte secondary battery using a charge / discharge tester (TOSCAT Co., Ltd. TOSCAT) at 25 ° C. in a thermostat set at 25 ° C.
  • a charge / discharge tester TOSCAT Co., Ltd. TOSCAT
  • TOSCAT charge / discharge tester
  • the battery was charged at a constant voltage of 4.15 V for 1.5 hours, then stopped and left for 5 minutes.
  • the battery was discharged at a constant current of 0.1 C to 2.5 V, then discharged at a constant voltage of 2.5 V for 2 hours, and then stopped and left for 10 seconds.
  • the cycle characteristics were evaluated by measuring the discharge capacity maintenance rate of the nonaqueous electrolyte secondary battery.
  • the discharge capacity retention rate is determined by charging and discharging the nonaqueous electrolyte secondary battery in each case using a charge / discharge tester (TOSCAT Co., Ltd., TOSCAT) in a thermostat set at 25 ° C. Measured. That is, after charging at a constant current at a 0.1C rate until the maximum voltage reaches 4.6V, a charge / discharge cycle in which constant current discharge is performed at a 0.1C rate until the minimum voltage of the battery reaches 2.0V is defined as one cycle. This was repeated 50 cycles.
  • the discharge capacity when discharging from 4.6 V to 2.0 V was defined as the discharge capacity of the first cycle.
  • the discharge capacity when discharging from 4.6 V to 2.0 V was defined as the 50th cycle discharge capacity.
  • the ratio of the discharge capacity of the 50th cycle with respect to the discharge capacity of the 1st cycle of each example was each calculated as discharge capacity maintenance factor. The results are shown in Table 1.
  • the discharge capacity maintenance rates of the nonaqueous electrolyte secondary batteries of Examples 1 to 13 were higher than the discharge capacity maintenance rates of Comparative Examples 1 to 9.
  • the discharge capacity retention rate improves as the average surface pressure applied to the negative electrode active material layer increases, but the rated capacity is low and the Is also outside the predetermined range.
  • the non-aqueous electrolyte secondary battery has a predetermined rated capacity and a volume per rated capacity, and an average surface pressure applied to the surface of the negative electrode active material layer is a predetermined value or more.
  • the product of the tensile fracture stress and the tensile fracture strain of the negative electrode active material layer exceeds a predetermined value, and the product of the tensile fracture stress, the thickness and the tensile fracture strain of the negative electrode current collector exceeds a predetermined value. Therefore, a large nonaqueous electrolyte secondary battery having excellent cycle characteristics is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

負極集電体(11)と、負極集電体(11)の少なくとも一方の面に配置され、ケイ素含有量が20質量%以上のケイ素含有合金を含む負極活物質層(12)と、を備え、定格容量が3Ah以上、かつ、定格容量当たりの体積が2cm/Ah以上10cm/Ah以下であり、負極活物質層(12)の表面に加わる平均面圧が1.6kgf/cm以上であり、負極活物質層(12)の引張破壊応力(MPa)と引張破壊ひずみ(%)の積が2.1MPaを超え、負極集電体(11)の引張破壊応力(MPa)と厚み(m)と引張破壊ひずみ(%)の積が45N/mを超える非水電解質二次電池(10)。

Description

非水電解質二次電池
 本発明は、非水電解質二次電池に関する。詳細には、本発明は、サイクル特性に優れた大型の非水電解質二次電池に関する。
 近年、電子機器や車両走行用などの駆動電源として、繰りかえし充放電しても性能が低下しないようなサイクル特性に優れた非水電解質二次電池の開発が進められている。
 例えば、特許文献1には、扁平型二次電池を押さえることにより、繰り返し充放電によって生じる内部発生ガスで膨れてしまい電池特性を劣化させる問題を抑制することが開示されている。具体的には、特許文献1は、扁平型二次電池を抑える内部加圧力の大きさを、0.5kgf/cm及び1.0kgf/cmとすることを開示している。
特開2003-303579号公報
 しかしながら、定格容量をさらに向上させるため、負極活物質層としてケイ素含有合金を用いた場合、内部加圧力を特許文献1で開示されたような大きさとしても、サイクル特性が低下するという問題があった。また、このようなサイクル特性の低下は、非水電解質二次電池の体積が大きい場合に、さらに顕著になることが分かった。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、その目的は、サイクル特性に優れた大型の非水電解質二次電池を提供することにある。
 本発明の態様に係る非水電解質二次電池は、負極集電体と、負極集電体の少なくとも一方の面に配置され、ケイ素含有量が所定量以上のケイ素含有合金を含む負極活物質層と、を備える。そして、当該非水電解質二次電池は、定格容量が所定以上であり、かつ、定格容量当たりの体積が所定の範囲である。さらに、当該非水電解質二次電池は、負極活物質層の表面に加わる平均面圧が所定の値以上であり、負極活物質層の引張破壊応力と引張破壊ひずみの積が所定の値を超え、負極集電体の引張破壊応力と厚みと引張破壊ひずみの積が所定の値を超える。
図1は、本実施形態に係る非水電解質二次電池の一例を模式的に表す断面図である。 図2Aは、本実施形態に係る加圧装置の一例を模式的に表す斜視図である。 図2Bは、本実施形態に係る加圧装置の一例を模式的に表す正面図である。 図3は、多孔質基体層と耐熱絶縁層とを備えた電解質層の一例を模式的に表す断面図である。
 以下、図面を用いて本実施形態に係る非水電解質二次電池について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
 本実施形態の非水電解質二次電池10は、負極集電体11と、負極集電体11の少なくとも一方の面に配置され、ケイ素含有量が20質量%以上のケイ素含有合金を含む負極活物質層12と、を備える。ただし、本実施形態の非水電解質二次電池10は、負極活物質層12及び負極集電体11の他、必要に応じて、図1に示すように、正極集電体14、正極活物質層15、電解質層17、正極タブ21、負極タブ23及び外装体25などをさらに備えることができる。図1に示すように、非水電解質二次電池10は、外装体25と、外装体25に収容される電池素子30と、を備えることができる。電池素子30は、複数の単電池層20を積層することにより形成することができる。単電池層20は、負極13と、正極16と、負極13と正極16との間に配置される電解質層17と、を備えることができる。すなわち、非水電解質二次電池10は、負極13と、正極16と、負極13と正極16との間に配置される電解質層17と、を備えることができる。また、単電池層20は、図1に示すように、複数積層して電気的に並列に配置することもできる。
 負極13は、負極集電体11と、負極集電体11の少なくとも一方の面に配置される負極活物質層12と、を備えることができる。正極16は、正極集電体14と、正極集電体14の少なくとも一方の面に配置される正極活物質層15と、を備えることができる。また、正極タブ21と負極タブ23は、単電池層20で生成した電流を非水電解質二次電池10の外部に取り出すことができる。
 なお、本実施形態の非水電解質二次電池10は、図1のような形態に限定されず、例えば、集電体の一方の面に負極活物質層12を配置し、集電体のもう一方の面に正極活物質層15を配置したような双極型電極を含む双極型電池としてもよい。また、非水電解質二次電池10の構造は、積層型に限定されず、巻型回非水電解質二次電池としてもよい。
 本実施形態の非水電解質二次電池10は、ケイ素含有量が20質量%以上のケイ素含有合金を含む負極活物質層12を備える。このようなケイ素含有合金は、充電の際にリチウムイオンと合金化するため、炭素系の負極活物質などと比較して負極活物質の質量当たりの定格容量を大きくすることができる。すなわち、このようなケイ素含有合金は、炭素系の負極活物質などと比較して、非水電解質二次電池10の定格容量を大きくすることができる。
 本実施形態の非水電解質二次電池10は、定格容量が3Ah以上、かつ、定格容量当たりの体積が2cm/Ah以上10cm/Ah以下である。すなわち、本実施形態は、大型の非水電解質二次電池10に関するものである。
 しかしながら、負極活物質としてケイ素含有合金を用いた場合は、非水電解質二次電池10の定格容量を大きくすることができるものの、サイクル特性が低下する傾向にある。その理由は、ケイ素含有合金は非水電解質二次電池10を充放電した際の体積変化が大きいため、充放電を繰りかえすと、負極活物質層12の表面に凹凸が生じるためであると考えられる。この凹凸により、負極活物質層12と、例えば負極活物質層12に隣接する負極集電体11とが均一に面接触できず、サイクル特性が低下すると考えられる。
 そのため、本実施形態では、非水電解質二次電池10は、負極活物質層12の表面に加わる平均面圧が1.6kgf/cm以上としている。負極活物質層の表面に加わる平均面圧をこのような範囲とすることにより、負極活物質層12の表面の凹凸が抑制されると考えられる。
 ところで、小型の非水電解質二次電池10においては、負極活物質層12の表面に加わる平均面圧を大きくするほどサイクル特性が改善される。しかし、本実施形態のような大型の非水電解質二次電池10においては、単に負極活物質層12の表面に加わる平均面圧を大きくしただけでは、サイクル特性が改善しないことが分かった。具体的には、負極活物質層12の破断や、負極集電体11と負極活物質層12との界面剥離が生じ、サイクル特性が改善しないことが分かった。そのため、本実施形態の非水電解質二次電池10は、負極活物質層12の引張破壊応力(MPa)と引張破壊ひずみ(%)の積が2.1MPaを超え、負極集電体11の引張破壊応力(MPa)と厚み(m)と引張破壊ひずみ(%)の積が45N/mを超える。そのため、本実施形態の非水電解質二次電池10は、大型でありながら、サイクル特性にも優れている。
 (定格容量)
 本実施形態の非水電解質二次電池10は、定格容量が3Ah以上である。定格容量が3Ah未満の場合は電気容量が小さく、本実施形態のような大型の非水電解質二次電池10に該当しない。定格容量は、5Ah以上が好ましく、10Ah以上がより好ましい。また、定格容量は、15Ah以上がさらに好ましく、20Ah以上が特に好ましい。なお、定格容量は、25Ah以上が最も好ましい。
 定格容量は、非水電解質二次電池10が供給できる電気容量を表す。定格容量は、放電終止条件まで放電した非水電解質二次電池10を充電した後、放電終止条件まで放電した場合の放電容量とすることができる。放電終止条件は、非水電解質二次電池10の電圧などによって適宜変更することができる。例えば、所定の放電終止電圧に達した時点を放電終止条件とすることができる。また、所定の放電レートで所定の電圧まで定電流放電した後、所定の電圧で所定の時間定電圧放電することを放電終止条件とすることができる。この場合、定電流放電時の放電容量と定電圧放電時の放電容量との合計を定格容量とすることができる。放電終止電圧は、特に限定されず、0.05V~3.0Vとすることができる。具体的には、放電終止電圧は、2.5Vとすることができる。また、所定の放電レートは0.05C~1.0Cとすることができる。具体的には、所定の放電レートは、0.1Cとすることができる。また、所定の電圧は、放電終止電圧と同様に、0.05V~3.0Vとすることができる。具体的には、所定の電圧は、2.5Vとすることができる。また、所定の時間は、1.5時間~30時間とすることができる。具体的には、所定の電圧は、2時間とすることができる。なお、定格容量は、25℃で測定することが好ましい。
 より具体的には、定格容量は、25℃において、次のように測定することができる。まず、4.15Vまで0.1Cで非水電解質二次電池10を定電流充電した後、充電を止めて5分間放置する。次に、4.15Vで1.5時間定電圧充電した後、充電を止めて5分間放置する。次に、2.5Vまで0.1Cで定電流放電した後、2.5Vで2時間定電圧放電し、その後、放電を止めて10秒間放置する。次に、4.1Vまで0.1Cで定電流充電した後、4.1Vで2.5時間定電圧充電し、その後、充電を止めて10秒間放置する。次に、2.5Vまで0.1Cで定電流放電した後、2.5Vで2時間定電圧放電する。そして、この最後の工程における4.1Vから2.5Vまでの放電容量と、2.5Vでの2時間の放電容量との合計を、定格容量とすることができる。
 (定格容量当たりの体積)
 本実施形態の非水電解質二次電池10は、定格容量当たりの体積が2cm/Ah以上10cm/Ah以下である。非水電解質二次電池10の定格容量当たりの体積をこのような範囲とすることにより、非水電解質二次電池10の体積及び電気的な容量密度が十分大きい。なお、非水電解質二次電池10の定格容量当たりの体積は、3cm/Ah以上8cm/Ah以下が好ましい。なお、定格容量当たりの体積は、非水電解質二次電池10の定格容量の値を非水電解質二次電池10の体積の値で除することにより求めることができる。
 非水電解質二次電池10の体積は、外装体25を含めた非水電解質二次電池10の体積とすることができる。この場合、非水電解質二次電池10の体積は、外装体25を含めた非水電解質二次電池10の投影面積と厚みとの積により簡易的に求めることができる。外装体25を含めた非水電解質二次電池10の投影面積に関しては、正面、背面、右側面、左側面、平面、底面の6つの投影面積が得られるが、これらの内、電池の投影面積が最大となるものを用いればよい。通常は、非水電解質二次電池10を平面又は底面の投影面積が最大となる。なお、この場合、外装体25を含めた非水電解質二次電池10の厚みは、例えば、8カ所以上を測定した平均値とすることができる。
 非水電解質二次電池10の体積は、特に限定されないが、18cm~600cmであることがより好ましく、18cm~100cmであることがさらに好ましい。非水電解質二次電池10の体積をこのような範囲とすることにより、非水電解質二次電池10の定格容量をより大きくすることができ、かつ、定格容量当たりの体積を最適な範囲にすることができる。また、外装体25を含めた非水電解質二次電池10の投影面積は、100cm以上であることが好ましい。非水電解質二次電池10の投影面積をこのような範囲とすることにより、非水電解質二次電池10の定格容量をより大きくすることができ、かつ、定格容量当たりの体積を最適な範囲にすることができる。なお、外装体25を含めた非水電解質二次電池10の投影面積は、180cm~6000cmであることがより好ましく、180cm~600cmであることがさらに好ましい。さらに、非水電解質二次電池10の厚みは、0.8mm~1.2mmであることが好ましく、0.9mm~1.1mmであることがより好ましく、1.0mm程度が最も好ましい。非水電解質二次電池10の厚みをこのような範囲とすることにより、非水電解質二次電池10の定格容量をより大きくすることができ、かつ、定格容量当たりの体積を最適な範囲にすることができる。
 [負極活物質層12]
 (ケイ素含有合金)
 負極活物質層12は、ケイ素含有量が20質量%以上のケイ素含有合金を含む。ケイ素含有合金は、充電の際にリチウムイオンと合金化するため、炭素系の負極活物質などと比較して負極活物質の質量当たりの定格容量を大きくすることができる。そのため、本実施形態の非水電解質二次電池10は、ケイ素含有合金を含む負極活物質層12を備えることで、非水電解質二次電池10の定格容量を大きくすることができる。また、ケイ素含有合金のケイ素含有量を20質量%以上とすることにより、アモルファス-結晶の相転移を抑えることができる。そのため、非水電解質二次電池10のサイクル特性を向上させることができる。
 本実施形態のケイ素含有合金のD90は、特に限定されないが、28μm以下であることが好ましく、22μm以下であることがより好ましい。D90をこのような範囲とすることにより、負極活物質層12の表面に加わる平均面圧を大きくした場合であっても、ケイ素含有合金に加わる集中的な応力は比較的小さくなる。そのため、充電時において、ケイ素含有合金の膨張による破損が抑えられるため、非水電解質二次電池10のサイクル特性を向上させることができる。なお、ケイ素含有合金のD90が22μm以下であることが好ましく、17μm以下であることがより好ましく、12μm以下であることがさらに好ましい。ケイ素含有合金のD90の下限は特に限定されないが、0.1μm以上が好ましい。D90を制御する方法は特に限定されず、例えば遊星ボールミルを用いて粉砕することができる。遊星ボールミルを用いる場合、例えば台座の回転速度を200rpm~400rpmにて30分~4時間回転させ、ケイ素含有合金を粉砕することができる。なお、D90は、体積基準における粒度分布の累積値が90%の時の粒子径を表し、例えば、レーザー回折・散乱法により測定することができる。
 なお、ケイ素含有合金のD50を28μm以下にした場合であっても、ある程度サイクル特性を改善する可能性があるが、D50は体積基準における粒度分布の累積値が50%の時の粒子径、すなわちメジアン径を表す。そのため、例えば粒度分布が広いケイ素含有合金においては、粒子径の大きなケイ素含有合金が多く含まれることになり、充電時における膨張によるケイ素含有合金の破損を十分に抑えることができない。そのため、非水電解質二次電池10のサイクル特性を向上させるには、ケイ素含有合金のD90が28μm以下であることが好ましい。
 また、質量当たりの定格容量が1500mAh/gのケイ素含有合金は、充電時にリチウムイオンと合金化して約2倍の大きさになることが知られている。そのため、負極活物質層12の膜厚をL(μm)、ケイ素含有合金のD90をY(μm)、ケイ素含有合金の質量当たりの定格容量をX(mAh/g)とした時に、L>Y×(1+X/1500)の数式を満たすことが好ましい。このような関係を満たす場合、充電時における膨張によるケイ素含有合金の破損をより抑制することができるため、非水電解質二次電池10のサイクル特性を向上させることができる。
 ケイ素含有合金の質量当たりの定格容量が800mAh/g以上1500mAh/g以下であることが好ましい。ケイ素含有合金の質量当たりの定格容量をこのような範囲とすることにより、優れたエネルギー密度を有する非水電解質二次電池10を提供することができる。なお、ケイ素含有合金の質量当たりの定格容量は、非水電解質二次電池10の定格容量を、非水電解質二次電池10に含まれるケイ素含有合金の質量で除することにより求めることができる。
 負極活物質層12の膜厚は、20μm~80μmであることが好ましく、20μm~50μmであることがより好ましい。負極活物質層12の膜厚をこのような範囲とすることにより、サイクル特性に優れた大型の非水電解質二次電池10を提供することができる。
 本実施形態において、ケイ素含有合金は、Si、Sn及びMの元素を含み、Mは、遷移元素、B,C,Mg,Al及びZnからなる群より選択される少なくとも1つの元素であることが好ましい。なお、遷移元素は、第3族元素から第11族元素の間にある元素をいう。また、ケイ素含有合金は、非晶質又は低結晶性のケイ素を主成分とする母相と、ケイ素を主成分とする母相中に分散される遷移金属のケイ化物を含むシリサイド相と、を含むことが好ましい。ケイ素含有合金をこのようにすることで、サイクル特性に優れた定格容量の大きい非水電解質二次電池10を提供することができる。
 なお、Mは、B,C,Mg,Al,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Zr,Nb,Mo及びTaからなる群より選択される少なくとも1つの元素であることがより好ましい。また、Mは、C,Al,Ti,V及びZnからなる群より選択される少なくとも1つの元素であることがさらに好ましい。さらに、Al又はTiの少なくともいずれか一方であることが最も好ましい。このような元素を含むケイ素含有合金を非水電解質二次電池10に用いた場合、定格容量を維持しつつ、よりサイクル特性を向上させることができる。
 なお、Si、Sn及びMの元素を含むケイ素含有合金には、不可避不純物が含まれていてもよい。不可避不純物とは、原料中に存在したり、製造工程において不可避的に混入したりするものを意味する。不可避不純物は、本来は不要なものであるが、微量であり、ケイ素含有合金の特性に影響を及ぼさないため、許容されている不純物である。不可避不純物の含有量は、ケイ素含有合金全体に対して0.5質量%未満であることが好ましく、0.1質量%未満であることがより好ましく、0.01質量%未満であることがさらに好ましい。
 ケイ素含有合金の一般式は、Si-Sn-Mであることが好ましく、Si-Sn-Tiであることがより好ましい。ここで、一般式Si-Sn-Tiにおいて、Snの含有量が7質量%以上30質量%以下、Tiの含有量が0質量%超え37質量%以下、残部がSi及び不可避不純物であることが好ましい。又は、一般式Si-Sn-Tiにおいて、Snの含有量が30質量%以上51質量%以下、Tiの含有量が0質量%超え35質量%以下、残部がSi及び不可避不純物であることが好ましい。また、一般式Si-Sn-Tiにおいて、Snの含有量が7質量%以上30質量%以下、Tiが7質量%超え37質量%以下、残部がSi及び不可避不純物であることがより好ましい。又は、Snの含有量が30質量%以上51質量%以下、Tiの含有量が7質量%超え35質量%以下、残部がSi及び不可避不純物であることがより好ましい。また、一般式Si-Sn-Tiにおいて、Snの含有量が7質量%以上30質量%以下、Tiの含有量が18質量%以上37質量%以下、残部がSi及び不可避不純物であることがさらに好ましい。又は、一般式Si-Sn-Tiにおいて、Snの含有量が30質量%以上51質量%以下、Tiの含有量が7質量%超え20質量%以下、残部がSi及び不可避不純物であることがさらに好ましい。さらに、一般式Si-Sn-Tiにおいて、Snの含有量が7質量%以上21質量%以下、Tiの含有量が24質量%以上37質量%以下、残部がSi及び不可避不純物であることが最も好ましい。各元素の含有量を上記範囲内とすることで、サイクル特性に優れた大型の非水電解質二次電池10を提供することができる。
 ケイ素含有合金は、非晶質又は低結晶性のケイ素を主成分とする母相と、ケイ素を主成分とする母相中に分散される遷移金属のケイ化物を有するシリサイド相と、を含むことが好ましい。ケイ素含有合金がこのような母相とシリサイド相とを含むことで、サイクル特性に優れた定格容量の大きい非水電解質二次電池10を提供することができる。なお、ここでいう主成分は、母相中、非晶質又は低結晶性のケイ素を50質量%以上含むという意味である。
 ケイ素を主成分とする母相は、非水電解質二次電池10を充放電した際に、リチウムイオンの吸蔵及び放出に関与する相である。そのため、ケイ素を主成分とする母相が、ケイ素のみからなる単相である場合、多くのリチウムイオンを吸蔵・放出することが可能であるため好ましい。
 ケイ素を主成分とする母相は、シリサイド相よりもアモルファス化していることが好ましい。このようにすることで、非水電解質二次電池10の定格容量をより大きくすることができる。ケイ素を主成分とする母相が、シリサイド相よりもアモルファス化していることは、電子線回折分析により得られる電子線回折像で確認することができる。なお、単結晶相の電子線回折像は二次元点配列のネットパターン(格子状のスポット)であり、多結晶相の電子線回折像はデバイシェラーリング(回折環)であり、アモルファス相の電子線回折像はハローパターンである。
 シリサイド相は、例えばTiSiなどの遷移金属のケイ化物を含むことにより、ケイ素を主成分とする母相との親和性を向上させることができる。そのため、非水電解質二次電池10の充電により、ケイ素含有合金が体積膨張した場合であっても、母相とシリサイド相の間で割れが生じるのを抑制することができる。さらに、シリサイド相は、母相よりも電子伝導性及び硬度が高い傾向にあるため、ケイ素含有合金の電子伝導性を改善し、かつ、充放電時のケイ素含有合金の膨張を抑制する役割をも有する。
 シリサイド相は、例えばMSi及びMSiなど、ケイ素の組成比が異なる複数の相を有していてもよく、異なる遷移金属元素とのケイ化物を含む複数の相が存在していてもよい。シリサイド相に含まれる遷移金属元素は、Ti、Zr、Ni、Cu及びFeからなる群より選択される少なくとも1つの元素が好ましく、Ti及びZrの少なくともいずれか一方の元素がより好ましく、Tiがさらに好ましい。これらの遷移金属元素とのケイ化物は、電子伝導性及び硬度が高いため、ケイ素含有合金の電子伝導性を改善し、かつ、充放電時のケイ素含有合金の膨張を抑制することができる。特に、Tiとのケイ化物であるTiSiは、電子伝導性が非常に高いため好ましい。なお、シリサイド相が、TiSiを含むケイ素の組成比が異なる複数の相を有し、遷移金属元素MがTiである場合、シリサイド相全体に対するTiSiの割合は、50質量%以上が好ましく、80質量%以上がより好ましい。また、この割合は、90質量%以上がさらに好ましく、95質量%以上が特に好ましく、100質量%が最も好ましい。
 シリサイド相の大きさは、特に限定されないが、0nm超え50nm以下であることが好ましい。シリサイド相の大きさをこのような範囲とすると、非水電解質二次電池10の定格容量が大きくなるため好ましい。
 (平均面圧)
 本実施形態の非水電解質二次電池10は、負極活物質層12の表面に加わる平均面圧が1.6kgf/cm以上である。そのため、ケイ素含有合金を用いて非水電解質二次電池10の定格容量を大きくした場合であっても、充放電時のケイ素含有合金の膨張及び収縮に由来する負極活物質層12の表面の凹凸を抑制することができる。このことにより、負極活物質層12と隣接する負極集電体11などと均一に面接触することができ、非水電解質二次電池10のサイクル特性を向上させることができる。サイクル特性の向上という観点より、負極活物質層12の表面に加わる平均面圧は、2.4kgf/cm以上が好ましい。なお、このような負極活物質層12の表面の凹凸に起因するサイクル特性の低下は、大型の非水電解質二次電池10に特有の課題である。例えば、小型の非水電解質二次電池では負極活物質層の面積が小さいため、負極活物質層の表面に加わる平均面圧が0.5~1.0kgf/cmもあれば十分である。また、負極活物質層12の表面に加わる平均面圧は、フィルム式圧力分布計測システムなどを用いて測定することができる。
 サイクル特性向上の観点からは、負極活物質層12の表面において、平均面圧が1.6kgf/cm以上の領域は大きい方が好ましい。具体的には、平均面圧が1.6kgf/cm以上の領域は、負極活物質層12表面全体の50%以上が好ましく、70%以上がより好ましく、90%以上がさらに好ましく、99%以上が特に好ましい。
 負極活物質層の表面を加圧する方法は特に限定されず、直接的又は間接的に負極活物質層12の表面を加圧することができる。負極活物質層12の表面に加わる平均面圧を制御する方法は特に限定されず、例えば、加圧装置40などにより、負極活物質層12の表面を加圧することができる。具体的には、負極活物質層12を収容する外装体25の外側から、加圧装置40で非水電解質二次電池10を加圧することにより、間接的に負極活物質層12の表面を加圧することができる。
 図2Aに加圧装置40の一例を表す斜視図を、図2Bに正面図を示す。加圧装置40は、非水電解質二次電池10の両外側に配置される加圧部材42と、両外側に配置される加圧部材42同士を締結する締結具44を備えることができる。加圧部材42を形成する材料は、特に限定されず、ウレタンゴムやシリコーンゴムなどのゴム、アルミニウムやステンレス鋼などの金属、ポリプロピレン(PP)やポリエチレンテレフタレート(PET)などの樹脂が挙げられる。加圧部材42の大きさや形状は特に限定されないが、負極活物質層12の表面全体を均一に加圧するため、加圧部材42は、非水電解質二次電池10の投影面積より大きい加圧板などであることが好ましい。
 締結具44は、非水電解質二次電池10を挟んだ状態で加圧板同士を締結することにより、負極活物質層12の表面に加わる平均面圧を制御することができる。締結具44は、例えば、図2A及び図2Bに示すようなボルトとすることができ、ボルトの巻き締めの程度により加圧部材42間の距離を調節することで、負極活物質層12の表面に加わる平均面圧を制御することができる。
 また、加圧部材42を設けた状態で、非水電解質二次電池10の充放電を容易に行えるよう、図2A及び図2Bに示すように、非水電解質二次電池10は、正極タブ21と負極タブ23を備えることができる。なお、正極タブ21と負極タブ23は、図2A及び図2Bのように互いに異なる方向から引き出してもよく、同一の方向から引き出してもよい。
 (負極活物質層12の引張特性)
 本実施形態では、負極活物質層12の引張破壊応力(MPa)と引張破壊ひずみ(%)の積が2.1MPaを超える。なお、以降では、負極活物質層12の引張破壊応力(MPa)と引張破壊ひずみ(%)の積を「負極活物質層12の引張特性」ともいう。本実施形態では、負極活物質層12の引張特性を、このような範囲とすることにより、負極活物質層12の表面に加わる平均面圧を高くした場合であっても、ケイ素含有合金の膨張による負極活物質層12の破断を抑制することができる。そのため、非水電解質二次電池10のサイクル特性の低下を抑制することができる。なお、負極活物質層12の引張破壊応力(MPa)と引張破壊ひずみ(%)の積が2.5MPaを超えることが好ましく、2.6MPaを超え3.5MPa未満であることがさらに好ましい。負極活物質層12の引張特性を、このような範囲とすることにより、非水電解質二次電池10のサイクル特性の低下をより抑制することができる。
 なお、引張破壊応力及び引張破壊ひずみは、日本工業規格JIS K7127:1999(プラスチック-引張特性の試験方法-第3部:フィルム及びシートの試験条件)の規定に従い測定することができる。また、JIS K7127:1999は、JIS K7161-1:2014(プラスチック-引張特性の求め方-第1部:通則)などの規定も引用される。なお、引張破壊ひずみは、試験後の標線間距離の増加量を試験前の標線間距離で除した値である。また、負極活物質層12の引張破壊応力及び引張破壊ひずみの値は、充放電の条件によっては、半分以下に低下し、収束する可能性がある。一例を挙げると、1~3回の充放電サイクルにより引張破壊応力及び引張破壊ひずみの値は充放電前の半分以下にまで低下するが、3回を超えるとこれらの値は収束してほとんど低下しなくなる。そのため、上述した負極活物質層12の引張破壊応力及び引張破壊ひずみの値は、充放電前の測定値である。
 負極活物質層12の引張破壊応力は、60MPaを超えることが好ましく、80MPaを超えることがさらに好ましい。また、負極活物質層12の引張破壊応力は、100MPaを超えることが最も好ましい。負極活物質層12の引張破壊応力をこのような範囲とすることにより、負極活物質層12の表面に加わる面圧を大きくした場合であっても、ケイ素含有合金の膨張による負極活物質層12の破断を抑制することができる。そのため、非水電解質二次電池10のサイクル特性の低下を抑制することができる。なお、負極活物質層12の引張破壊応力は、200MPa未満であることが好ましく、150MPa未満であることがさらに好ましい。負極活物質層12の引張破壊応力がこのような範囲であることにより、ケイ素含有合金の膨張を過度に抑制しないため、定格容量の低下を抑制することができる。
 負極活物質層12の引張破壊ひずみは、1.9%を超えることが好ましく、2.2%を超えることがさらに好ましく、2.5%を超えることがさらに好ましい。負極活物質層12の引張破壊ひずみをこのような範囲とすることにより、ケイ素含有合金の膨張による負極活物質層12の破断を抑制することができる。そのため、非水電解質二次電池10のサイクル特性の低下を抑制することができる。一方、負極活物質層12の引張破壊ひずみは、4.0%未満であることが好ましく、3.5%未満であることがさらに好ましい。
 (導電助剤)
 負極活物質層12は、ケイ素含有合金の他、用途に応じて、導電助剤をさらに含有することができる。負極活物質層12に用いられる導電助剤を形成する材料としては、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料が挙げられる。これらの導電助剤は、単独で用いてもよいし、2種以上を併用してもよい。負極活物質層12に導電助剤が含まれることにより、負極活物質層12の内部における電子ネットワークが効果的に形成され、非水電解質二次電池10の定格容量の向上に寄与しうる。導電助剤の含有量は、負極活物質層12全体に対して、1~10質量%が好ましく、2~8質量%がより好ましい。導電助剤の含有量をこのような範囲とすることにより、負極活物質層12の導電性を向上させることができる。
 (バインダ)
 負極活物質層12は、ケイ素含有合金の他、用途に応じて、バインダをさらに含有することができる。負極活物質層12に用いられるバインダの材料としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル(PAN)、ポリイミド(PI)、ポリアミド(PA)、ポリアミドイミド(PAI)、カルボキシメチルセルロース(CMC)、エチレン-酢酸ビニル共重合体(EVA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂、スチレン・ブタジエンゴム(SBR)、イソプレンゴム(IR)、ブタジエンゴム(BR)などのエラストマーが挙げられる。これらのバインダは、単独で用いてもよいし、2種以上を併用してもよい。これらの中でも、バインダとしての接着性や耐熱性が優れていることから、ポリイミド(PI)、ポリアミド(PA)、ポリアミドイミド(PAI)からなる群より選択される少なくとも1つが好ましい。負極活物質層12中に含まれるバインダの含有量は、特に限定されないが、100質量%の負極活物質層12に対して、0.5~15質量%が好ましく、1~10質量%がより好ましい。
 バインダの引張弾性率は、1.00GPa超7.40GPa未満であることが好ましい。引張弾性率が1.00GPaを超えている場合、ケイ素含有合金の膨張に伴うバインダの破断が抑制されるため、サイクル特性が向上する。引張弾性率が7.40GPa未満である場合、充電によるケイ素含有合金の膨張をバインダが抑制しないため、非水電解質二次電池10の定格容量を大きくすることができる。なお、引張弾性率は、例えば、JIS K7161-1により、試験温度23±2℃、試験速度1mm/minで測定することができる。具体的には、E=(σ-σ)/(ε-ε)の数式に従って算出することができる。上記式において、Eは引張弾性率(Pa)、σはひずみε=0.0005における応力(Pa)、σはひずみε=0.0025における応力(Pa)を示す。
 [負極集電体11]
 本実施形態の非水電解質二次電池10は、負極集電体11を備える。負極集電体11は、非水電解質二次電池10で発生した電気を集める。
 (負極集電体11の引張特性)
 本実施形態では、負極集電体11の引張破壊応力(MPa)と厚み(m)と引張破壊ひずみ(%)の積が45N/mを超える。なお、以降では、負極集電体11の引張破壊応力(MPa)と厚み(m)と引張破壊ひずみ(%)の積を「負極集電体11の引張特性」ともいう。本実施形態では、負極集電体11の引張特性をこのような範囲とすることにより、負極集電体11が負極活物質層12の膨張に追従することができる。そのため、負極集電体11と負極活物質層12との界面剥離が抑制され、非水電解質二次電池10のサイクル特性を向上させることができる。なお、負極集電体11の引張破壊応力(MPa)と厚み(m)と引張破壊ひずみ(%)の積が70N/mを超えることが好ましい。負極集電体11の引張特性をこのような範囲とすることにより、非水電解質二次電池10のサイクル特性をより向上させることができる。なお、負極集電体11の引張破壊応力(MPa)と厚み(m)と引張破壊ひずみ(%)の積は特に限定されないが、360N/m未満であることが好ましい。また、負極集電体11の引張破壊応力及び引張破壊ひずみは、負極活物質層12の引張特性と同様、JIS K7161-1:2014の規定を引用するJIS K7127:1999の規定に従い測定することができる。
 負極集電体11を形成する材料は、特に限定されないが、アルミニウム、ニッケル、鉄、チタン、銅、及びこれらの合金などの金属が挙げられる。集電体を形成する材料は、上述した金属単体、上述した金属を組み合わせた合金、上述した金属の組み合わせのめっき材などを用いることができる。なかでも、負極集電体11を形成する材料は、電子伝導性や電池作動電位の観点から、アルミニウム、ステンレス鋼、銅を含むことが好ましい。具体的には、負極集電体11は、銅を含む箔及びステンレス鋼箔の少なくともいずれか一方を用いることが好ましい。
 負極集電体11の引張破壊応力は、300MPa以上であることが好ましく、600MPa以上であることがより好ましい。負極集電体11の引張破壊応力をこのような範囲とすることにより、負極活物質層12の表面に加わる面圧を大きくした場合であっても、ケイ素含有合金の膨張に伴う負極集電体11の破断が抑制される。そのため、非水電解質二次電池10のサイクル特性を向上させることができる。
 負極集電体11の引張破壊ひずみは、0.7%を超えることが好ましい。また、負極集電体11の引張破壊ひずみは、0.8%超えることがより好ましい。負極集電体11の引張破壊ひずみをこのような範囲とすることにより、負極集電体11が負極活物質層12の膨張に追従することができる。そのため、負極集電体11と負極活物質層12との界面剥離が抑制され、非水電解質二次電池10のサイクル特性を向上させることができる。また、負極集電体11の引張破壊ひずみは、2.5%未満であることが好ましい。
 負極集電体11の厚みは、1μm以上100μm以下であることが好ましく、3μm以上20μm以下であることがより好ましく、5μm以上14μm以下であることがさらに好ましい。
 [正極集電体14]
 本実施形態の非水電解質二次電池10は、正極集電体14を備えることができる。正極集電体14は、非水電解質二次電池10で発生した電気を集める。正極集電体14を形成する材料は、特に限定されないが、アルミニウム、ニッケル、鉄、チタン、及びこれらの合金などの金属が挙げられる。集電体を形成する材料は、上述した金属単体、上述した金属を組み合わせた合金、上述した金属の組み合わせのめっき材などを用いることができる。なかでも、正極集電体14を形成する材料は、電子伝導性や電池作動電位の観点から、アルミニウムを含むことが好ましい。
 [正極活物質層15]
 本実施形態の非水電解質二次電池10は、正極集電体14と、正極集電体14の少なくとも一方の面に配置される正極活物質層15と、を備えることができる。正極活物質層15は、用途に応じて、正極活物質、導電助剤、バインダなどを備えることができる。正極活物質層15で用いられる導電助剤及びバインダは、負極活物質で用いられた導電助剤及びバインダをそれぞれ用いることができる。
 非水電解質二次電池10は、正極活物質を含む正極活物質層15をさらに備えることができる。正極活物質としては、例えば、リチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物などが挙げられる。リチウム-遷移金属複合酸化物としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni-Mn-Co)O、Li(Li-Ni-Mn-Co)O及びこれらの遷移金属の一部が他の元素により置換されたもの等を挙げることができる。リチウム-遷移金属リン酸化合物としては、LiFePO等を挙げることができる。リチウム-遷移金属硫酸化合物としては、LiFe(SO等を挙げることができる。
 正極活物質は、容量、出力特性の観点から、リチウム-遷移金属複合酸化物が好ましい。また、非水電解質二次電池10は、正極活物質を含む正極活物質層15をさらに備え、正極活物質は、Li1.5[NiCoMn[Li]]Oであることがより好ましい。ここで、式中のa、b、c及びdは、0<a<1.4、0≦b<1.4、0<c<1.4、0<d≦0.5、a+b+c+d=1.5、1.0≦a+b+c<1.5を満足する。正極活物質をこのような組成を有する材料とすることにより、定格容量などの出力特性を向上させることができる。なお、各元素の組成は、例えば、誘導結合プラズマ(ICP)発光分析法により測定できる。
 正極活物質の平均粒子径(D50)は、特に制限されないが、定格容量の観点より、1~100μmが好ましく、1~20μmがより好ましい。なお、平均粒子径は、例えば、レーザー回折・散乱法により測定することができる。
 [電解質層17]
 本実施形態の非水電解質二次電池10は、負極13と正極16との間に配置される電解質層17をさらに備えることができる。電解質層17は、負極13と正極16とを隔離し、リチウムイオンの移動を仲介する。電解質層17の膜厚は、内部抵抗を低減させる観点から、1~100μmが好ましく、5~50μmであることがさらに好ましい。電解質層17は非水電解質を含む。非水電解質としては、イオン伝導性ポリマーにリチウム塩が溶解したゲル状又は固体状のポリマー電解質、並びに有機溶媒にリチウム塩が溶解した液体電解質を用いることができる。
 ポリマー電解質に用いられるイオン伝導性ポリマーとしては、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリフッ化ビニリデン(PVDF)、へキサフルオロプロピレン、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)及びこれらの共重合体等が挙げられる。
 液体電解質に用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)等のカーボネート類が挙げられる。また、液体電解質に用いられるリチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiAsF、LiTaF、LiClO、LiCFSO等の化合物が挙げられる。
 電解質層17として液体電解質を用いる場合には、電解質層17が液体電解質を保持する多孔質基体層51を含むことが好ましい。多孔質基体層51の空隙率は、40~85%であることが好ましい。空隙率を40%以上とする場合、十分なイオン伝導性を得ることができる。一方、空隙率を85%以下とする場合、多孔質基体層51の強度を良好に維持することができる。多孔質基体層51を形成する材料は、特に限定されないが、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体などの融点が120~200℃の熱可塑性樹脂を用いることが好ましい。このような熱可塑性樹脂は、充放電反応により非水電解質二次電池10が高温となった場合に、溶融してリチウムイオンの移動を遮断し、充放電を停止させることができるため、安全面で優れている。
 本実施形態の非水電解質二次電池10は、負極13と正極16との間に配置される電解質層17をさらに備えることができる。そして、図3に示すように、電解質層17は、多孔質基体層51と、多孔質基体層51の少なくとも一方の面に形成され、無機粒子55とバインダ57とを含む耐熱絶縁層53とを備えることが好ましい。電解質層17が耐熱絶縁層53をさらに含むことにより、電解質層17の機械的強度を向上させることができる。また、電解質層17が耐熱絶縁層53をさらに含むことにより、充放電反応により非水電解質二次電池10が高温となった場合に、多孔質基体層51の熱収縮を抑制することができる。なお、この多孔質基体層51の熱収縮は、本実施形態のような大型の非水電解質二次電池10の場合に特に大きくなる傾向にあるため、耐熱絶縁層53による効果が大きい。
 無機粒子55に用いられる材料は、特に限定されず、例えば、シリカ、アルミナ、ジルコニア、チタニアなどが挙げられる。これらの中でも、コストの観点から、シリカ及びアルミナの少なくともいずれか一方を用いることが好ましい。
 バインダ57は、無機粒子55間、並びに無機粒子55及び多孔質基体層51を接着する機能を有する。バインダの含有量は、耐熱絶縁層53全体に対して2~20質量%であることが好ましい。バインダの添加量が2質量%以上の場合、バインダ57の接着機能が高くなるため、耐振動性を向上させることができる。一方、バインダ57の添加量が20質量%以下の場合、バインダ57の接着機能が適度に保たれ、かつ、リチウムイオンの移動が妨げられにくい。バインダ57に用いられる材料としては、特に限定されず、負極活物質層12で用いられるバインダを用いることができる。これらの中でも、バインダ57を形成する材料は、カルボキシメチルセルロース(CMC)、ポリメチルアクリレート(PMA)及びポリフッ化ビニリデン(PVDF)からなる群より選択される少なくとも1つを含むことが好ましい。
 [正極タブ21及び負極タブ23]
 非水電解質二次電池10は、正極集電体14と、非水電解質二次電池10の外部の機器とを電気的に接続する正極タブ21をさらに備えることができる。また、非水電解質二次電池10は、負極集電体11と、非水電解質二次電池10の外部の機器とを電気的に接続する負極タブ23をさらに備えることができる。正極タブ21及び負極タブ23を形成する材料は、特に限定されず、例えば、アルミニウム、銅、チタン、ニッケルからなる群より選択される少なくとも1つを用いることができる。なお、正極タブ21及び負極タブ23を形成する材料は、同一でも異なっていてもよい。
 [外装体25]
 本実施形態の非水電解質二次電池10は、電池素子30を収容する外装体25をさらに備えることができる。外装体25は、例えば、缶や、フィルムにより形成されたものが挙げられる。また、外装体25の形状は、特に限定されず、円筒型、角型、シート型とすることができる。特に限定されないが、小型化及び軽量化などの観点より、外装体25はフィルムにより形成されていることが好ましい。なかでも、高出力化や冷却性能の観点からは、フィルムはラミネートフィルムであることが好ましい。また、負極活物質層12の表面に加わる平均面圧を、加圧装置40により容易に調整することができるため、外装体25はアルミニウムを含むラミネートフィルムであることがより好ましい。具体的には、負極集電体11と負極活物質層12は、アルミニウムを含むラミネートフィルムからなる外装体25に収容され、非水電解質二次電池10は、扁平積層型である扁平積層型非水電解質二次電池であることが好ましい。このような非水電解質二次電池10は、定格容量及び放熱性能を高くすることができるため、車両に搭載する場合に最適である。アルミニウムを含むラミネートフィルムの一例としては、PP/アルミニウム/ナイロンの3層ラミネートフィルムが挙げられる。
 以上の通り、本実施形態の非水電解質二次電池10は、負極集電体11と、負極集電体11の少なくとも一方の面に配置され、ケイ素含有量が20質量%以上のケイ素含有合金を含む負極活物質層12と、を備える。そして、本実施形態の非水電解質二次電池10は、定格容量が3Ah以上、かつ、定格容量当たりの体積が2cm/Ah以上10cm/Ah以下であり、負極活物質層12の表面に加わる平均面圧が1.6kgf/cm以上である。さらに、本実施形態の非水電解質二次電池10は、負極活物質層12の引張破壊応力(MPa)と引張破壊ひずみ(%)の積が2.1MPaを超え、負極集電体11の引張破壊応力(MPa)と厚み(m)と引張破壊ひずみ(%)の積が45N/mを超える。そのため、本実施形態の非水電解質二次電池10は、大型の非水電解質二次電池であって、サイクル特性に優れている。
 本実施形態の非水電解質二次電池10の用途は特に限定されないが、上述のように、サイクル特性に優れた大型の非水電解質二次電池10であるため、車両用として好適に用いることができる。具体的には、本実施形態の非水電解質二次電池10は、車両用の駆動電源などに好適に用いることができる。
 以下、本実施形態を実施例及び比較例によりさらに詳細に説明するが、本実施形態はこれらに限定されるものではない。
 [実施例1]
 (正極の作製)
 酢酸ニッケル、酢酸コバルト及び酢酸マンガンの2mol/Lの水溶液を調製した。次いで、正極活物質がLi1.5[Ni0.20Co0.20Mn0.80[Li0.30]]Oとなるように、これらを所定量秤量して、混合溶液を調製した。そして、マグネティックスターラーで混合溶液を攪拌しながら、混合溶液にアンモニア水をpH7になるまで滴下した。さらに、この混合溶液に、2mol/Lの炭酸ナトリウム水溶液を滴下し、ニッケル-コバルト-マンガンの複合炭酸塩を沈殿させた。得られた沈殿物を吸引ろ過した後、水洗して、120℃程度、5時間ほどの条件で乾燥を行った。そして、得られた乾燥物を500℃程度、5時間ほどの条件で仮焼成を行った。これに所定のモル比で水酸化リチウムを加え、自動乳鉢で30分間程度混練した。さらに、大気中、昇温速度50℃/時間で加熱し、その後750℃で12時間ほど本焼成を行った。その後、窒素雰囲気下、600℃程度、12時間ほど熱処理し、固溶体リチウム含有遷移金属酸化物前駆体を得た。
 このようにして得られた正極活物質95質量部と、導電助剤2.5質量部と、バインダ2.5質量部とをN-メチルピロリドン100質量部に分散させ、脱泡混練機(株式会社Thinky製 AR-100)内で混合し、正極スラリーを得た。なお、導電助剤はアセチレンブラック、バインダはポリフッ化ビニリデン(PVDF)を用いた。
 次に、正極集電体の一方の面に、乾燥後の正極活物質層の厚さが50μmとなるように、正極スラリーを均一に塗布し、真空中で24時間乾燥させた。その後、同様に、正極集電体のもう一方の面に、乾燥後の正極活物質層の厚さが50μmとなるように、正極スラリーを均一に塗布し、真空中で24時間乾燥させて、正極を得た。なお、正極集電体は、20μm厚のアルミニウム箔を用いた。
 (負極の作製)
 まず、遊星型ボールミル(ドイツ フリッチュ社製P-6)を用いて、メカニカルアロイ法により金属粉末を合金化処理及び粉砕処理した。具体的には、質量比で、Si:Sn:Ti=60:10:30となるように調製した金属粉末と、ジルコニア製粉砕ボールとを、ジルコニア製容器に投入した。その後、ジルコニア製容器を固定する台座を、600rpmで12.5時間回転させて、金属粉末を合金化した。その後、台座を200rpmで2時間回転させ、合金を粉砕処理した。
 このようにして得られた負極活物質80質量部と、導電助剤5質量部と、バインダ15質量部とをN-メチルピロリドン100質量部に分散させ、脱泡混練機(株式会社Thinky製 AR-100)内で混合し、負極スラリーを得た。なお、導電助剤はアセチレンブラック、バインダはポリイミド(宇部興産株式会社製 U-vanish-A)を用いた。
 次に、負極集電体の一方の面に、乾燥後の負極活物質層の厚さが30μmとなるように、負極スラリーを均一に塗布し、真空中で24時間乾燥させた。その後、同様に、負極集電体のもう一方の面に、乾燥後の負極活物質層の厚さが30μmとなるように、負極スラリーを均一に塗布した。そして、真空中で24時間乾燥させ、さらに真空中300℃で1時間乾燥焼成を行うことにより負極を得た。なお、負極集電体は、12μm厚のSUS304箔を用いた。SUS304箔の引張破壊応力は900MPa、引張破壊ひずみは0.91%であった。また、負極活物質層の引張破壊応力は100MPa、引張破壊ひずみは2.5%であった。ここで、負極活物質層の引張破壊応力及び引張破壊ひずみは直接測定することが困難であったため、測定値にほとんど影響を及ぼさない20μm厚のアルミニウム箔の上に、上記と同様の条件にて形成した負極活物質層の測定値を採用した。また、負極集電体及び負極活物質層の引張破壊応力及び引張破壊ひずみは、電気化学前処理を含む充放電前の測定値である。
 (電池の作製)
 上述のようにして得られた正極と負極を用いて、図1に示すような積層型非水電解質二次電池を作製した。具体的には、正極と負極との間に電解質層を配置し、正極と負極とを交互に積層させ、電池素子を作製した。電解質層は、40μm厚のポリオレフィンを用いた。なお、この積層体には、正極を2枚、負極を3枚及び電解質層を4枚積層させている。
 得られた電池素子に正極及び負極タブをそれぞれ溶接し、アルミニウムを含むラミネートフィルムからなる外装内に、電解液をシリンジで注入した後、真空密封し、非水電解質二次電池を得た。なお、電解液は、濃度が1mol/Lとなるように、六フッ化リン酸リチウム(LiPF)を有機溶媒に溶解させたものを用いた。有機溶媒は、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を、EC:DEC=3:7(体積比)の割合で混合したものを用いた。
 得られた非水電解質二次電池は、平面の大きさが20cm×10cmであるため、投影面積が200cmであった。また、得られた非水電解質二次電池の厚みは1mmであるため、非水電解質二次電池の体積は20cmであった。さらに、この非水電解質二次電池の定格容量は3Ahであったため、定格容量当たりの体積が6.7cm/Ahであった。
 その後、外装体の外側から、非水電解質二次電池を図2A及び図2Bで示すような加圧装置で挟み込み、非水電解質二次電池を両側から積層方向に適宜加圧した。なお、加圧装置を構成する加圧部材は、非水電解質二次電池の投影面積よりも大きい投影面積を有し、非水電解質二次電池側に配置される3mm厚のウレタンゴムシートと、ウレタンゴムシートの外側に配置される5mm厚のアルミニウム板とからなる。
 負極活物質層の表面に加わる平均面圧は、加圧部材を締結ボルトで締結し、3.0kgf/cmとなるように調節した。なお、負極活物質層の表面に加わる平均面圧は、tekscan社製フィルム式圧力分布計測システムを用いて測定した。
 [実施例2]
 平均面圧を2.4kgf/cmとした以外は、実施例1と同様の方法により非水電解質二次電池を作製した。
 [実施例3]
 平均面圧を1.6kgf/cmとした以外は、実施例1と同様の方法により非水電解質二次電池を作製した。
 [実施例4]
 負極集電体の厚みを10mmとした以外は、実施例1と同様の方法により非水電解質二次電池を作製した。
 [実施例5]
 負極集電体の厚みを8mmとした以外は、実施例1と同様の方法により非水電解質二次電池を作製した。
 [実施例6]
 負極集電体の厚みを6mmとした以外は、実施例1と同様の方法により非水電解質二次電池を作製した。
 [実施例7]
 負極集電体を12μm厚のSUS301箔に代えた以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、SUS301箔の引張破壊応力は1300MPa、引張破壊ひずみは2.2%であった。
 [実施例8]
 負極集電体を10μm厚のSUS301箔に代えた以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、SUS301箔の引張破壊応力は1300MPa、引張破壊ひずみは2.2%であった。
 [実施例9]
 負極バインダを宇部興産株式会社製のU-vanish-Sに代え、負極バインダの焼成時間を300℃、15時間に代えた以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、負極活物質層の引張破壊応力は89.6MPa、引張破壊ひずみは3.0%であった。
 [実施例10]
 負極バインダの焼成時間を300℃、15時間に代えた以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、負極活物質層の引張破壊応力は100MPa、引張破壊ひずみは2.8%であった。
 [実施例11]
 負極バインダを宇部興産株式会社製 U-vanish-Sに代え、負極バインダの焼成時間を320℃、1時間に代えた以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、負極活物質層の引張破壊応力は92.8MPa、引張破壊ひずみは3.0%であった。
 [実施例12]
 負極バインダの焼成時間を300℃、0.5時間に代えた以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、負極活物質層の引張破壊応力は93MPa、引張破壊ひずみは2.5%であった。
 [実施例13]
 負極バインダの焼成時間を280℃、1時間に代えた以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、負極活物質層の引張破壊応力は100MPa、引張破壊ひずみは2.2%であった。
 [比較例1]
 負極バインダを宇部興産株式会社製 U-vanish-Sに代えた以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、負極活物質層の引張破壊応力は100MPa、引張破壊ひずみは1.9%であった。
 [比較例2]
 負極集電体を10μm厚の電解銅箔に、平均面圧を2.7kgf/cmとした以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、電解銅箔の引張破壊応力は120MPa、引張破壊ひずみは0.7%であった。
 [比較例3]
 負極集電体を10μm厚の電解銅箔に、平均面圧を1.6kgf/cmとした以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、電解銅箔の引張破壊応力は120MPa、引張破壊ひずみは0.7%であった。
 [比較例4]
 負極集電体を10μm厚の電解銅箔に、平均面圧を1.0kgf/cmとした以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、電解銅箔の引張破壊応力は120MPa、引張破壊ひずみは0.7%であった。
 [比較例5]
 負極バインダを宇部興産株式会社製 U-vanish-Sに、負極集電体を10μm厚のZr添加型高強度圧延銅箔に、平均面圧を1.6kgf/cmとした以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、負極活物質層の引張破壊応力は100MPa、引張破壊ひずみは1.9%であった。また、Zr添加型高強度圧延銅箔の引張破壊応力は280MPa、引張破壊ひずみは1.2%であった。
 [比較例6]
 負極バインダを宇部興産株式会社製 U-vanish-Sに、負極集電体を10μm厚の圧延銅箔に、平均面圧を1.6kgf/cmとした以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、負極活物質層の引張破壊応力は100MPa、引張破壊ひずみは1.9%であった。また、圧延銅箔の引張破壊応力は150MPa、引張破壊ひずみは0.91%であった。
 [比較例7]
 負極バインダを宇部興産株式会社製 U-vanish-Sに、負極集電体を10μm厚の電解銅箔に、平均面圧を1.6kgf/cmとした以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、負極活物質層の引張破壊応力は100MPa、引張破壊ひずみは1.9%であった。また、電解銅箔の引張破壊応力は120MPa、引張破壊ひずみは0.7%であった。
 [比較例8]
 負極バインダを宇部興産株式会社製 U-vanish-Sに、負極集電体を10μm厚の電解銅箔に、平均面圧を2.7kgf/cmとした以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、負極活物質層の引張破壊応力は100MPa、引張破壊ひずみは1.9%であった。また、電解銅箔の引張破壊応力は120MPa、引張破壊ひずみは0.7%であった。
 [比較例9]
 負極バインダを宇部興産株式会社製 U-vanish-Sに、負極集電体を10μm厚の電解銅箔に、平均面圧を1.0kgf/cmとした以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、負極活物質層の引張破壊応力は100MPa、引張破壊ひずみは1.9%であった。また、電解銅箔の引張破壊応力は120MPa、引張破壊ひずみは0.7%であった。
 [比較例10]
 非水電解質二次電池の投影面積を12cm、厚みを1mm、体積を1.2cmとした。そして、負極集電体を10μm厚の電解銅箔に、定格容量を0.06Ahかつ定格容量当たりの体積を20cm/Ahに、平均面圧を1.6kgf/cmとした。それ以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、電解銅箔の引張破壊応力は120MPa、引張破壊ひずみは0.7%であった。
 [比較例11]
 非水電解質二次電池の投影面積を12cm、厚みを1mm、体積を1.2cmとした。そして、負極集電体を10μm厚の電解銅箔に、定格容量を0.06Ahかつ定格容量当たりの体積を20cm/Ahに、平均面圧を0.80kgf/cmとした。それ以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、電解銅箔の引張破壊応力は120MPa、引張破壊ひずみは0.7%であった。
 [比較例12]
 非水電解質二次電池の投影面積を12cm、厚みを1mm、体積を1.2cmとした。そして、負極集電体を10μm厚の電解銅箔に、定格容量を0.06Ahかつ定格容量当たりの体積を20cm/Ahに、平均面圧を0.05kgf/cmとした。それ以外は、実施例1と同様の方法により非水電解質二次電池を作製した。なお、電解銅箔の引張破壊応力は120MPa、引張破壊ひずみは0.7%であった。
 [評価]
 (引張破壊応力)
 引張破壊応力は、JIS K7127:1999に従い、試験温度23±2℃において、試験速度1mm/minで測定した。
 (引張破壊ひずみ)
 引張破壊応力は、JIS K7127:1999に従い、試験温度23±2℃において、試験速度1mm/minで測定した。
 (電気化学前処理)
 以下の定格容量及び放電容量維持率を測定する前に、電気化学前処理を行った。具体的には、まず、最高電圧が4.45Vとなるまで0.1Cレートで定電流充電した後、最低電圧が2.0Vとなるまで0.1Cレートで定電流放電するサイクルを2サイクル行った。次に、最高電圧が4.55Vとなるまで0.1Cレートで定電流充電した後、最低電圧が2.0Vとなるまで0.1Cレートで定電流放電するサイクルを1サイクル行った。次に、最高電圧が4.65Vとなるまで0.1Cレートで定電流充電した後、最低電圧が2.0Vとなるまで0.1Cレートで定電流放電するサイクルを1サイクル行った。次に、最高電圧が4.75Vとなるまで0.1Cレートで定電流充電した後、最低電圧が2.0Vとなるまで0.1Cレートで定電流放電するサイクルを1サイクル行った。なお、いずれの充放電も25℃で行った。
 (定格容量)
 定格容量は、各例の非水電解質二次電池に対して、充放電試験機(東洋システム株式会社TOSCAT)を使用し、25℃において、25℃に設定された恒温槽中にて、次のように測定した。まず、4.15Vまで0.1Cで非水電解質二次電池を定電流充電した後、充電を止めて5分間放置した。次に、4.15Vで1.5時間定電圧充電した後、充電を止めて5分間放置した。次に、2.5Vまで0.1Cで定電流放電した後、2.5Vで2時間定電圧放電し、その後、放電を止めて10秒間放置した。次に、4.1Vまで0.1Cで定電流充電した後、4.1Vで2.5時間定電圧充電し、その後、充電を止めて10秒間放置した。次に、2.5Vまで0.1Cで定電流放電した後、2.5Vで2時間定電圧放電した。そして、この最後の工程における4.1Vから2.5Vまでの放電容量と、2.5Vでの2時間の放電容量との合計を、定格容量とした。この結果を表1に示す。
 (サイクル特性)
 サイクル特性は、非水電解質二次電池の放電容量維持率を測定することにより評価した。放電容量維持率は、各例の非水電解質二次電池に対して、充放電試験機(東洋システム株式会社TOSCAT)を使用し、25℃に設定された恒温槽中にて、充電及び放電を行い測定した。すなわち、0.1Cレートにて最高電圧が4.6Vとなるまで定電流充電した後、電池の最低電圧が2.0Vとなるまで0.1Cレートで定電流放電する充放電サイクルを1サイクルとして、これを50サイクル繰り返した。そして、1サイクル目において、4.6Vから2.0Vまで放電した時の放電容量を1サイクル目の放電容量とした。また、50サイクル目において、4.6Vから2.0Vまで放電した時の放電容量を50サイクル目の放電容量とした。そして、各例の1サイクル目の放電容量に対する50サイクル目の放電容量の割合を放電容量維持率としてそれぞれ算出した。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~13の非水電解質二次電池は、負極活物質層及び集電体の引張特性が所定の値を超えており、負極活物質層に加わる平均面圧が1.6kgf/cm以上である。そのため、実施例1~13の非水電解質二次電池の放電容量維持率は、比較例1~9の放電容量維持率よりも高い値を示した。
 また、実施例1~3の比較より、本実施形態の非水電解質二次電池は、負極活物質層に加わる平均面圧を大きくするほど、放電容量維持率が大きくなることが分かった。ただし、単に負極活物質層に加わる平均面圧を大きくしただけでは放電容量維持率は大きくならず、比較例2~4及び比較例7~9の比較より、負極活物質層及び集電体の引張特性を所定の値としなければならないことが分かる。
 さらに、実施例4~13より、負極活物質層及び集電体の引張特性の値は大きい程、放電容量維持率を向上させることが分かる。
 なお、比較例10~12のような非水電解質二次電池においては、負極活物質層に加わる平均面圧を大きくする程、放電容量維持率が向上するが、定格容量が低く、定格容量当たりの体積も所定の範囲から外れている。
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 本発明によれば、非水電解質二次電池は、所定の定格容量、かつ、定格容量当たりの体積であり、負極活物質層の表面に加わる平均面圧が所定の値以上である。そして、負極活物質層の引張破壊応力と引張破壊ひずみの積が所定の値を超え、負極集電体の引張破壊応力と厚みと引張破壊ひずみの積が所定の値を超える。そのため、サイクル特性に優れた大型の非水電解質二次電池を提供する。
  10 非水電解質二次電池
  11 負極集電体
  12 負極活物質層
  14 正極集電体
  15 正極活物質層
  17 電解質層
  25 外装体

Claims (12)

  1.  負極集電体と、
     前記負極集電体の少なくとも一方の面に配置され、ケイ素含有量が20質量%以上のケイ素含有合金を含む負極活物質層と、を備え、
     定格容量が3Ah以上、かつ、定格容量当たりの体積が2cm/Ah以上10cm/Ah以下であり、
     前記負極活物質層の表面に加わる平均面圧が1.6kgf/cm以上であり、
     前記負極活物質層の引張破壊応力(MPa)と引張破壊ひずみ(%)の積が2.1MPaを超え、
     前記負極集電体の引張破壊応力(MPa)と厚み(m)と引張破壊ひずみ(%)の積が45N/mを超える非水電解質二次電池。
  2.  前記平均面圧が2.4kgf/cm以上である請求項1に記載の非水電解質二次電池。
  3.  前記負極集電体の引張破壊応力(MPa)と厚み(m)と引張破壊ひずみ(%)の積が70N/mを超える請求項1又は2に記載の非水電解質二次電池。
  4.  前記負極活物質層の引張破壊応力(MPa)と引張破壊ひずみ(%)の積が2.5MPaを超える請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記負極活物質層の引張破壊応力が100MPaを超える請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記負極集電体の引張破壊ひずみが0.7%を超える請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  前記非水電解質二次電池の投影面積が100cm以上である請求項1~6のいずれか1項に記載の非水電解質二次電池。
  8.  ケイ素含有合金は、非晶質又は低結晶性のケイ素を主成分とする母相と、ケイ素を主成分とする母相中に分散される遷移金属のケイ化物を含むシリサイド相と、を含み、
     ケイ素含有合金は、Si、Sn及びMの元素を含み、
     Mは、遷移元素、B,C,Mg,Al及びZnからなる群より選択される少なくとも1つの元素である請求項1~7のいずれか1項に記載の非水電解質二次電池。
  9.  ケイ素含有合金の質量当たりの定格容量が800mAh/g以上1500mAh/g以下である請求項1~8のいずれか1項に記載の非水電解質二次電池。
  10.  正極活物質を含む正極活物質層をさらに備え、
     前記正極活物質は、Li1.5[NiCoMn[Li]]O(ここで、式中のa、b、c及びdは、0<a<1.4、0≦b<1.4、0<c<1.4、0<d≦0.5、a+b+c+d=1.5、1.0≦a+b+c<1.5を満足する。)である請求項1~9のいずれか1項に記載の非水電解質二次電池。
  11.  正極集電体と、正極集電体の少なくとも一方の面に配置される正極活物質層と、を備える正極と、
     前記負極集電体と、前記負極活物質層と、を備える負極と、
     前記正極と前記負極との間に配置される電解質層と、を備え、
     前記電解質層は、多孔質基体層と、多孔質基体層の少なくとも一方の面に形成され、無機粒子とバインダとを含む耐熱絶縁層と、を備える請求項1~10のいずれか1項に記載の非水電解質二次電池。
  12.  前記負極集電体と前記負極活物質層は、アルミニウムを含むラミネートフィルムからなる外装体に収容され、
     請求項1~11のいずれか1項に記載の非水電解質二次電池は、扁平積層型である扁平積層型非水電解質二次電池。
PCT/JP2016/081854 2016-10-27 2016-10-27 非水電解質二次電池 WO2018078760A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/081854 WO2018078760A1 (ja) 2016-10-27 2016-10-27 非水電解質二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/081854 WO2018078760A1 (ja) 2016-10-27 2016-10-27 非水電解質二次電池

Publications (1)

Publication Number Publication Date
WO2018078760A1 true WO2018078760A1 (ja) 2018-05-03

Family

ID=62023235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081854 WO2018078760A1 (ja) 2016-10-27 2016-10-27 非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2018078760A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071438A (ja) * 2002-08-08 2004-03-04 Maxell Hokuriku Seiki Kk 非水二次電池
JP2010073571A (ja) * 2008-09-19 2010-04-02 Panasonic Corp リチウムイオン二次電池およびその製造方法
JP2015072849A (ja) * 2013-10-04 2015-04-16 国立大学法人鳥取大学 二次電池用負極材、二次電池用負極材の製造方法および二次電池用負極
JP2016027526A (ja) * 2012-11-22 2016-02-18 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
JP2016085895A (ja) * 2014-10-28 2016-05-19 株式会社日立製作所 リチウムイオン二次電池モジュール
JP2016091869A (ja) * 2014-11-07 2016-05-23 株式会社日立製作所 リチウム二次電池用負極材およびこれを用いたリチウム二次電池
WO2016098212A1 (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス
JP2016115632A (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス用負極、およびこれを用いた電気デバイス
JP2016139521A (ja) * 2015-01-27 2016-08-04 日産自動車株式会社 非水電解質二次電池
JP2016173875A (ja) * 2013-07-31 2016-09-29 日産自動車株式会社 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071438A (ja) * 2002-08-08 2004-03-04 Maxell Hokuriku Seiki Kk 非水二次電池
JP2010073571A (ja) * 2008-09-19 2010-04-02 Panasonic Corp リチウムイオン二次電池およびその製造方法
JP2016027526A (ja) * 2012-11-22 2016-02-18 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
JP2016173875A (ja) * 2013-07-31 2016-09-29 日産自動車株式会社 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
JP2015072849A (ja) * 2013-10-04 2015-04-16 国立大学法人鳥取大学 二次電池用負極材、二次電池用負極材の製造方法および二次電池用負極
JP2016085895A (ja) * 2014-10-28 2016-05-19 株式会社日立製作所 リチウムイオン二次電池モジュール
JP2016091869A (ja) * 2014-11-07 2016-05-23 株式会社日立製作所 リチウム二次電池用負極材およびこれを用いたリチウム二次電池
WO2016098212A1 (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス
JP2016115632A (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス用負極、およびこれを用いた電気デバイス
JP2016139521A (ja) * 2015-01-27 2016-08-04 日産自動車株式会社 非水電解質二次電池

Similar Documents

Publication Publication Date Title
EP2924777B1 (en) Negative electrode for electrical device and electrical device provided with same
EP2685530B1 (en) Negative electrode active material for electrical device, and electrical device
US7556881B2 (en) Lithium secondary battery
US10566608B2 (en) Negative electrode for electric device and electric device using the same
US10290855B2 (en) Negative electrode for electrical device, and electrical device using the same
US20150303464A1 (en) Negative electrode for electrical device, and electrical device using the same
KR101822355B1 (ko) 전기 디바이스용 부극 활물질 및 이것을 사용한 전기 디바이스
EP3236518B1 (en) Negative-electrode active material for lithium ion secondary battery, and lithium ion secondary battery using same
US10505184B2 (en) Negative electrode active material for electric device and electric device using the same
JP6015769B2 (ja) リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
US20150303466A1 (en) Negative electrode for electric device and electric device using the same
JP6969085B2 (ja) 非水電解質二次電池
JP6561461B2 (ja) 電気デバイス用負極、およびこれを用いた電気デバイス
JP6972671B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7149160B2 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP6485028B2 (ja) 電気デバイス用負極活物質、およびこれを用いた電気デバイス
JP6488689B2 (ja) 電気デバイス用負極活物質、およびこれを用いた電気デバイス
WO2018078760A1 (ja) 非水電解質二次電池
JP6736999B2 (ja) 電気デバイス用負極活物質、およびこれを用いた電気デバイス
JP6848981B2 (ja) 電気デバイス用負極及びそれを用いた電気デバイス
JP6819220B2 (ja) 電気デバイス用負極及びそれを用いた電気デバイス
JP6939045B2 (ja) 電気デバイス
WO2023223582A1 (ja) 電池および電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP