WO2015111195A1 - 電気デバイス用負極およびこれを用いた電気デバイス - Google Patents

電気デバイス用負極およびこれを用いた電気デバイス Download PDF

Info

Publication number
WO2015111195A1
WO2015111195A1 PCT/JP2014/051540 JP2014051540W WO2015111195A1 WO 2015111195 A1 WO2015111195 A1 WO 2015111195A1 JP 2014051540 W JP2014051540 W JP 2014051540W WO 2015111195 A1 WO2015111195 A1 WO 2015111195A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
positive electrode
material layer
Prior art date
Application number
PCT/JP2014/051540
Other languages
English (en)
French (fr)
Inventor
荻原 航
山本 伸司
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2014/051540 priority Critical patent/WO2015111195A1/ja
Publication of WO2015111195A1 publication Critical patent/WO2015111195A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for an electric device and an electric device using the same.
  • the electric device according to the present invention is used, for example, as a secondary battery, a capacitor or the like as a driving power source or auxiliary power source for motors of vehicles such as electric vehicles, fuel cell vehicles, and hybrid electric vehicles.
  • Motor drive secondary batteries are required to have extremely high output characteristics and high energy compared to consumer lithium ion secondary batteries used in mobile phones and notebook computers. Therefore, lithium ion secondary batteries having the highest theoretical energy among all the batteries are attracting attention, and are currently being developed rapidly.
  • a lithium ion secondary battery includes a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder.
  • a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder
  • a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder.
  • it has the structure connected through an electrolyte layer and accommodated in a battery case.
  • a battery using a SiO x (0 ⁇ x ⁇ 2) material that forms a compound with Li in the negative electrode has an improved energy density as compared with a conventional carbon / graphite negative electrode material.
  • a SiO x (0 ⁇ x ⁇ 2) material that forms a compound with Li in the negative electrode
  • SiO x a material that forms a compound with Li in the negative electrode
  • a conventional carbon / graphite negative electrode material expected to bed as a material.
  • SiO x single crystal nanoparticles
  • amorphous SiO 2 exist in phase separation.
  • Silicon oxide has a tetrahedral structure as a unit structure, and silicon oxides (intermediate oxides) other than SiO 2 correspond to the number of oxygen at the apex of the tetrahedron, 1, 2 and 3, respectively. Although they can be expressed as 2 O, SiO and Si 2 O 3 , these intermediate oxides are thermodynamically unstable and are extremely difficult to exist as single crystals. Therefore, SiO x is composed of an amorphous structure in which unit structures are irregularly arranged, and this amorphous structure is an amorphous structure in which a plurality of amorphous compounds are formed without forming an interface. The structure is mainly composed of a homogeneous amorphous structure portion. Therefore, SiO x has a structure in which Si nanoparticles are dispersed in amorphous SiO 2 .
  • Li y SiO x such as Li 4 SiO 4 , Li 2 SiO 3 , Li 2 Si 2 O 5 , Li 2 Si 3 O 8 , Li 6 Si 4 O 11, etc. (0 ⁇ y, 0 ⁇ x ⁇ 2)
  • Li y SiO x has extremely low electron conductivity, and furthermore, since SiO 2 does not have electron conductivity, the resistance of the negative electrode increases. There is. As a result, it is extremely difficult to desorb and insert lithium ions into the negative electrode active material.
  • a lithium ion secondary battery using a material that is alloyed with Li for the negative electrode has a large expansion and contraction in the negative electrode during charge and discharge.
  • the volume expansion when lithium ions are occluded is about 1.2 times in graphite materials, whereas in Si materials, when Si and Li are alloyed, the amorphous state transitions to the crystalline state, resulting in a large volume change. (Approximately 4 times), there was a problem of reducing the cycle life of the electrode.
  • the Si negative electrode active material the battery capacity and the cycle durability are in a trade-off relationship, and there is a problem that it is difficult to improve the high cycle durability while exhibiting a high capacity.
  • Patent Document 1 a negative electrode for a lithium ion secondary battery containing SiO x and a graphite material has been proposed (see, for example, Patent Document 1).
  • paragraph “0018” describes that, by minimizing the content of SiO x , good cycle life is exhibited in addition to high capacity.
  • an object of the present invention is to provide a means that can further improve cycle durability in an electric device such as a lithium ion secondary battery.
  • the present inventors have conducted intensive research to solve the above problems. As a result, it has been found that the above-mentioned problems can be solved by using a predetermined binder in the negative electrode for an electric device using Si material as the negative electrode active material, and the present invention has been completed.
  • the present invention relates to a negative electrode for an electric device in which a negative electrode active material layer is formed on the surface of a negative electrode current collector.
  • the said negative electrode active material layer contains the negative electrode active material represented by following formula (1).
  • the negative electrode active material layer may be one or more selected from the group consisting of polyvinylidene fluoride, styrene-butadiene rubber, polyimide and polyamideimide, and a high structure having at least one carboxylic acid group in the unit structure.
  • One of the features is that it contains molecules as a binder.
  • the predetermined binder polymer having a carboxylic acid group
  • sedimentation of the negative electrode active material component in the slurry prepared at the time of preparing the negative electrode active material layer is suppressed.
  • the dispersibility of the solid content in the slurry is improved, and uneven distribution of the negative electrode active material in the negative electrode active material layer is prevented.
  • the expansion of the negative electrode active material in the charge / discharge process is leveled, and an electric device having excellent cycle durability can be provided.
  • FIG. 1 is a schematic cross-sectional view showing the basic configuration of a non-aqueous electrolyte lithium ion secondary battery that is not a flat type (stacked type) bipolar type, which is an embodiment of the electrical device according to the present invention. It is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of an electric device according to the present invention.
  • a negative electrode for an electrical device in which a negative electrode active material layer is formed on the surface of a negative electrode current collector,
  • the negative electrode active material layer has the following formula (1):
  • the Si material is one selected from the group consisting of SiO x (x represents the number of oxygen satisfying the valence of Si), which is a mixture of amorphous SiO 2 particles and Si particles, and an Si-containing alloy. Or two or more, ⁇ and ⁇ represent the weight percent of each component in the negative electrode active material layer, and 80 ⁇ ⁇ + ⁇ ⁇ 98, 3 ⁇ ⁇ ⁇ 40, 40 ⁇ ⁇ ⁇ 95.
  • the negative electrode active material layer comprises one or more selected from the group consisting of polyvinylidene fluoride, styrene-butadiene rubber, polyimide and polyamideimide, and a polymer having at least one carboxylic acid group in the unit structure.
  • a negative electrode for an electric device which is contained as a binder.
  • a lithium ion secondary battery will be described as an example of an electric device.
  • the lithium ion secondary battery using the electrical device according to the present embodiment the voltage of the cell (single cell layer) is large, and high energy density and high output density can be achieved. Therefore, the lithium ion secondary battery of the present embodiment is excellent as a vehicle driving power source or an auxiliary power source. As a result, it can be suitably used as a lithium ion secondary battery for a vehicle driving power source or the like. In addition to this, the present invention can be sufficiently applied to lithium ion secondary batteries for portable devices such as mobile phones.
  • the lithium ion secondary battery When the lithium ion secondary battery is distinguished by its form / structure, it can be applied to any conventionally known form / structure such as a stacked (flat) battery or a wound (cylindrical) battery. Is. By adopting a stacked (flat) battery structure, long-term reliability can be secured by a sealing technique such as simple thermocompression bonding, which is advantageous in terms of cost and workability.
  • a solution electrolyte type battery using a solution electrolyte such as a nonaqueous electrolyte solution for the electrolyte layer, a polymer battery using a polymer electrolyte for the electrolyte layer, etc. It can be applied to any conventionally known electrolyte layer type.
  • the polymer battery is further divided into a gel electrolyte type battery using a polymer gel electrolyte (also simply referred to as gel electrolyte) and a solid polymer (all solid) type battery using a polymer solid electrolyte (also simply referred to as polymer electrolyte). It is done.
  • FIG. 1 is a cross-sectional view schematically showing the entire structure of a flat (stacked) lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”), which is a typical embodiment of an electric device.
  • stacked battery a flat (stacked) lithium ion secondary battery
  • the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 29 that is an exterior body.
  • the positive electrode in which the positive electrode active material layer 13 is disposed on both surfaces of the positive electrode current collector 11, the electrolyte layer 17, and the negative electrode active material layer 15 is disposed on both surfaces of the negative electrode current collector 12. It has a configuration in which a negative electrode is laminated. Specifically, the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 13 and the negative electrode active material layer 15 adjacent thereto face each other with the electrolyte layer 17 therebetween. .
  • the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.
  • the positive electrode current collector 13 on the outermost layer located on both outermost layers of the power generating element 21 is provided with the positive electrode active material layer 13 only on one side, but the active material layer may be provided on both sides. . That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector.
  • the outermost negative electrode current collector is positioned on both outermost layers of the power generation element 21, and one side of the outermost negative electrode current collector or A negative electrode active material layer may be disposed on both sides.
  • the positive electrode current collector 11 and the negative electrode current collector 12 are attached to a positive electrode current collector plate 25 and a negative electrode current collector plate 27 that are electrically connected to the respective electrodes (positive electrode and negative electrode), and are sandwiched between end portions of the laminate sheet 29. Thus, it has a structure led out of the laminate sheet 29.
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 are ultrasonically welded to the positive electrode current collector 11 and the negative electrode current collector 12 of each electrode via a positive electrode lead and a negative electrode lead (not shown), respectively, as necessary. Or resistance welding or the like.
  • the lithium ion secondary battery according to this embodiment is characterized by the configuration of the negative electrode.
  • main components of the battery including the negative electrode will be described.
  • the active material layers (13, 15) contain an active material, and further contain other additives as necessary.
  • the negative electrode active material layer 15 essentially includes a Si material and a carbon material as a negative electrode active material.
  • the Si material means SiO x (x represents the number of oxygen satisfying the valence of Si) and Si-containing alloy which are a mixture of amorphous SiO 2 particles and Si particles. Only 1 type of these may be used as Si material, and 2 or more types may be used together. Hereinafter, these Si materials will be described in detail.
  • SiO x is a mixture of amorphous SiO 2 particles and Si particles, and x represents the number of oxygen satisfying the valence of Si. There is no restriction
  • the SiO x may be an electrically conductive SiO x particles the surface of the SiO x particulate is coated with a conductive material by mechanical surface fusion treatment.
  • Si in the SiO x particles can easily desorb and insert lithium ions, and the reaction in the active material can proceed more smoothly.
  • the content of the conductive substance in the conductive SiO x particles is preferably 1 to 30% by weight, and more preferably 2 to 20% by weight.
  • the average particle diameter of the SiO x is not particularly limited as long as it is approximately the same as the average particle diameter of the negative electrode active material contained in the existing negative electrode active material layer 15. From the viewpoint of higher output, it is preferably in the range of 1 to 20 ⁇ m. However, it is not limited at all to the above range, and it goes without saying that it may be outside the above range as long as the effects of the present embodiment can be effectively expressed.
  • the “particle diameter” refers to the outline of the active material particles (observation surface) observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It means the maximum distance among any two points.
  • the value of “average particle diameter” is the value of particles observed in several to several tens of fields using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The value calculated as the average value of the particle diameter shall be adopted.
  • the particle diameters and average particle diameters of other components can be defined in the same manner.
  • the shape of SiO x is not particularly limited, and may be spherical, elliptical, cylindrical, polygonal, scaly, indefinite, or the like.
  • SiO x in accordance with the manufacturing method according to this embodiment of SiO x is not particularly limited, it can be produced by utilizing the production of conventionally known various. That is, since there is almost no difference in the amorphous state / characteristics depending on the manufacturing method, various manufacturing methods can be applied.
  • Si powder and SiO 2 powder are blended at a predetermined ratio as raw materials, and mixed, granulated and dried mixed granulated raw materials are heated in an inert gas atmosphere (830 ° C. or higher) or heated in vacuum (1 , 100 ° C. or higher and 1,600 ° C. or lower) to generate (sublimate) SiO.
  • Gaseous SiO generated by sublimation is vapor-deposited on the deposition substrate (substrate temperature is 450 ° C. or more and 800 ° C. or less) to deposit SiO precipitates.
  • the SiO x powder is obtained by removing the SiO deposit from the deposition substrate and pulverizing it using a ball mill or the like.
  • X value can be determined by X-ray fluorescence analysis. For example, it can be obtained by using a fundamental parameter method in fluorescent X-ray analysis using O-K ⁇ rays.
  • RIX3000 manufactured by Rigaku Corporation
  • conditions for the fluorescent X-ray analysis for example, rhodium (Rh) may be used as a target, the tube voltage may be 50 kV, and the tube current may be 50 mA. Since the x value obtained here is calculated from the intensity of the O-K ⁇ ray detected in the measurement region on the substrate, it becomes an average value in the measurement region.
  • Si-containing alloy is not particularly limited as long as it is an alloy with another metal containing Si, and conventionally known knowledge can be appropriately referred to.
  • Si-containing alloy Si x Ti y Ge z A a , Si x Ti y Zn z A a , Si x Ti y Sn z A a , Si x Sn y Al z A a , and Si x Sn y V z A a , Si x Sn y C z A a , Si x Zn y V z A a , Si x Zn y Sn z A a , Si x Zn y Al z A a , Si x Zn y C zA a, Si x Al y C z a a and Si x Al y Nb z a a ( wherein, a is unavoidable impurities.
  • the carbon material that can be used in the present invention is not particularly limited, but graphite (graphite), which is a highly crystalline carbon such as natural graphite or artificial graphite; low crystalline carbon such as soft carbon or hard carbon; ketjen black, acetylene Carbon black such as black, channel black, lamp black, oil furnace black, and thermal black; and carbon materials such as fullerene, carbon nanotube, carbon nanofiber, carbon nanohorn, and carbon fibril. Of these, graphite is preferably used.
  • SiO x may not be uniformly arranged in the negative electrode active material layer.
  • the potential and capacity that each SiO x develops are different.
  • SiO x of the negative electrode active material layer includes a SiO x that react excessively lithium ion, SiO x is produced that does not react with lithium ions. That is, non-uniformity of the reaction between SiO x and lithium ions in the negative electrode active material layer occurs.
  • SiO x that reacts with lithium ions excessively acts among the alloys described above, and the decomposition of the electrolytic solution due to a significant reaction with the electrolytic solution or the destruction of the structure of SiO x due to excessive expansion may occur.
  • the cycle characteristics can be deteriorated as a negative electrode for an electric device.
  • the SiO x when the SiO x is mixed with a carbon material, the above problem can be solved. More specifically, by mixing SiO x with a carbon material, it may be possible to uniformly dispose SiO x in the negative electrode active material layer. As a result, it is considered that any SiO x in the negative electrode active material layer exhibits the same reactivity and can prevent deterioration of cycle characteristics.
  • the initial capacity can be reduced by reducing the content of SiO x in the negative electrode active material layer.
  • the carbon material itself has reactivity with lithium ions, the degree of decrease in the initial capacity is relatively small. That is, the negative electrode active material according to the present embodiment has a large effect of improving the cycle characteristics as compared with the effect of reducing the initial capacity.
  • the carbon material is unlikely to undergo a volume change when reacting with lithium ions as compared with SiO x . Therefore, even when the volume change of SiO x is large, when the negative electrode active material is taken as a whole, the influence of the volume change of the negative electrode active material associated with the lithium reaction can be made relatively minor. Such an effect can also be understood from the results of Examples in which the cycle characteristics increase as the carbon material content rate increases (the SiO x content rate decreases).
  • the amount of electricity consumed (Wh) can be improved by containing a carbon material. More specifically, the carbon material has a relatively low potential compared with SiO x . As a result, the relatively high potential of SiO x can be reduced. Then, since the electric potential of the whole negative electrode falls, power consumption (Wh) can be improved. Such an action is particularly advantageous when used in, for example, a vehicle application among electric devices.
  • the shape of the carbon material is not particularly limited, and may be spherical, elliptical, cylindrical, polygonal, scaly, indefinite, or the like.
  • the average particle diameter of the carbon material is not particularly limited, but is preferably 5 to 25 ⁇ m, and more preferably 5 to 10 ⁇ m.
  • the average particle diameter of the carbon material may be the same as or different from the average particle diameter of SiO x , but is preferably different. .
  • the average particle diameter of the SiO x is more preferably smaller than the average particle diameter of the carbon material.
  • the ratio of the average particle diameter of the carbon material to the average particle diameter of SiO x is preferably 1/250 to less than 1, More preferably, it is 100 to 1/4.
  • negative electrode active materials other than the two types of negative electrode active materials (Si material and carbon material) described above may be used in combination.
  • examples of the negative electrode active material that can be used in combination include lithium-transition metal composite oxides (for example, Li 4 Ti 5 O 12 ), metal materials, lithium alloy negative electrode materials, and the like. Of course, other negative electrode active materials may be used.
  • the negative electrode active material layer contains a negative electrode active material represented by the following formula (1).
  • the Si material is selected from the group consisting of SiO x (x represents the number of oxygen satisfying the valence of Si), which is a mixture of amorphous SiO 2 particles and Si particles, and a Si-containing alloy.
  • ⁇ and ⁇ represent the weight percentage of each component in the negative electrode active material layer, and 80 ⁇ ⁇ + ⁇ ⁇ 98, 3 ⁇ ⁇ ⁇ 40, and 40 ⁇ ⁇ ⁇ 95.
  • the content of the Si material as the negative electrode active material in the negative electrode active material layer is 3 to 40% by weight.
  • the content of the carbon material negative electrode active material is 40 to 95% by weight. Furthermore, the total content thereof is 80 to 98% by weight.
  • the mixing ratio of the Si material and the carbon material of the negative electrode active material is not particularly limited as long as the above-described content specification is satisfied, and can be appropriately selected according to a desired application.
  • the content of the Si material in the negative electrode active material is preferably 3 to 40% by weight.
  • the content ratio of the Si material in the negative electrode active material is more preferably 4 to 30% by weight.
  • the Si material content in the negative electrode active material is more preferably 5 to 20% by weight.
  • the content of the Si material is 3% by weight or more because a high initial capacity can be obtained.
  • the content of the Si material is 40% by weight or less because high cycle characteristics can be obtained.
  • the negative electrode active material layer preferably contains a binder and preferably further contains a conductive additive. Furthermore, if necessary, other additives such as an electrolyte (polymer matrix, ion conductive polymer, electrolytic solution, etc.) and a lithium salt for increasing the ion conductivity may be further included.
  • a binder preferably further contains a conductive additive.
  • other additives such as an electrolyte (polymer matrix, ion conductive polymer, electrolytic solution, etc.) and a lithium salt for increasing the ion conductivity may be further included.
  • the negative electrode active material layer 15 is also characterized in that it contains a predetermined binder. That is, the negative electrode active material layer 15 is one or more selected from the group consisting of polyvinylidene fluoride (PVDF), styrene-butadiene rubber (SBR), polyimide (PI) and polyamideimide (PAI), and A polymer having at least one carboxylic acid group in the unit structure is contained as a binder.
  • PVDF polyvinylidene fluoride
  • SBR styrene-butadiene rubber
  • PI polyimide
  • PAI polyamideimide
  • the specific structure of the polymer having at least one carboxylic acid group in the unit structure is not particularly limited.
  • (meth) acrylic acid, fumaric acid, maleic acid, itaconic acid, acrylamide glycolic acid, and alkalis thereof examples thereof include polymers obtained by polymerizing one or more monomers selected from the group consisting of metal salts, alkaline earth metal salts, ammonium salts and amine salts in the presence of a radical initiator. These polymers are preferably homopolymers, random copolymers, block copolymers, or graft copolymers.
  • carboxymethyl cellulose (CMC) or a salt thereof may be used as the polymer.
  • poly (meth) acrylic acid is a preferred polymer from the viewpoint of more reliably expressing the effects of the present embodiment. Further, from the viewpoint of more surely expressing the effects of the present embodiment, the number average molecular weight of the polymer containing a carboxylic acid group is preferably 5000 to 2000000.
  • a binder other than the above may be used in combination. Although it does not specifically limit as binders other than the above, For example, the following materials are mentioned. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyamide, cellulose, ethylene-vinyl acetate copolymer, polyvinyl chloride, isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene Polymers, styrene / butadiene / styrene block copolymers and hydrogenated products thereof, thermoplastic polymers such as styrene / isoprene / styrene block copolymers and hydrogenated products thereof, polytetrafluoroethylene (PTFE), tetrafluoroethylene ⁇ Hexafluoropropylene copolymer (FEP), tetrafluoroethylene / perfluoro
  • the binder content in the negative electrode active material layer is preferably 1 to 10% by weight, more preferably 1 to 8% by weight. Further, from the viewpoint of more surely expressing the effect of the present embodiment, the above-mentioned “polyvinylidene fluoride (PVDF), styrene-butadiene rubber (SBR), which accounts for 100% by weight of the total amount of binder contained in the negative electrode active material layer,
  • PVDF polyvinylidene fluoride
  • SBR styrene-butadiene rubber
  • the ratio of the total amount of “one or more selected from the group consisting of polyimide (PI) and polyamideimide (PAI)” and the “polymer containing a carboxylic acid group” is preferably 50% by weight or more.
  • PVDF polyvinylidene fluoride
  • SBR styrene-butadiene rubber
  • PI polyimide
  • PAI polyamideimide
  • the conductive assistant refers to an additive that is blended in order to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer.
  • Examples of the conductive assistant include carbon black such as ketjen black and acetylene black.
  • the content of the conductive additive in the negative electrode active material layer is preferably 1 to 10% by weight, more preferably 1 to 8% by weight.
  • electrolyte salt examples include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
  • Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
  • the negative electrode (negative electrode active material layer) can be formed by a method of applying (coating) a normal slurry.
  • the positive electrode active material layer 13 includes a positive electrode active material.
  • the positive electrode active material layer 13 preferably includes at least a positive electrode active material (also referred to as “solid solution positive electrode active material” in the present specification) made of a solid solution material.
  • the solid solution positive electrode active material is a preferable material from the viewpoint of increasing the energy density of the electric device because it exhibits an extremely large electric capacity as compared with the conventional positive electrode active material. Therefore, the solid solution positive electrode active material will be described below.
  • Solid solution positive electrode active material has a composition represented by the following formula (3) as a basic structure.
  • the solid solution positive electrode active material has the composition represented by the formula (3) as a basic structure
  • the active material itself having the composition represented by the formula (3) is used as the solid solution positive electrode active material.
  • the latter form for example, the following three forms (A) to (C) are exemplified.
  • (A) 1 selected from the group consisting of Al, Zr, Ti, Nb, B, S, Sn, W, Mo and V on the particle surface of the solid solution positive electrode active material having the composition represented by formula (3)
  • the form in which the element M exists is not particularly limited, and in addition to the form of the oxide, a form of a compound with Li can be assumed, but the form of the oxide is preferable.
  • the average particle diameter of the material (such as oxide) containing the element M is preferably 5 to 50 nm.
  • the oxide is scattered on the particle surface of the solid solution positive electrode active material.
  • the average particle diameter of the oxides scattered in this manner is preferably 5 to 50 nm, but may be aggregated on the particle surface of the solid solution positive electrode active material to form secondary particles.
  • the average particle diameter of such secondary particles is preferably 0.1 ⁇ m (100 nm) to 1 ⁇ m (1000 nm).
  • the oxide itself containing the element M to be doped or a sol of the oxide is defined as the active material.
  • a method may be used in which the mixture is mixed at a temperature of about 100 to 150 ° C. for about 5 to 20 hours and further processed at a temperature of about 200 to 300 ° C. for about 3 to 10 hours.
  • a coating layer made of a metal oxide or composite oxide selected from the group consisting of Al, Zr and Ti is formed on the particle surface of the solid solution positive electrode active material having the composition represented by formula (3).
  • the content of the oxide or composite oxide in the solid solution positive electrode active material after coating is 0.1 to 3.0% by weight in terms of oxide
  • the specific configuration of the metal oxide present on the particle surface of the solid solution positive electrode active material is not particularly limited, and any of the theoretically possible oxides or composite oxides containing the metal elements described above is used. Can be.
  • Al 2 O 3 , ZrO 2 or TiO 2 is used.
  • a (composite) oxide containing one or more elements selected from the group consisting of Nb, Sn, W, Mo, and V may be further included in the coating layer.
  • the solid solution positive electrode active material after substitution is 20-23 °, 35-40 ° (101), 42-45 ° (104) and 64-65 (108) in X-ray diffraction (XRD) measurement.
  • XRD X-ray diffraction
  • ) / 65-66 (110) preferably has a diffraction peak indicating a rock salt type layered structure. At this time, in order to surely obtain the effect of improving the cycle characteristics, those having substantially no peak attributed to other than the diffraction peak of the rock salt type layered structure are preferable. More preferably, one having three diffraction peaks at 35-40 ° (101) and one diffraction peak at 42-45 ° (104) is suitable.
  • the X-ray diffraction measurement shall employ the measurement method described in the examples described later.
  • the notation of 64-65 (108) / 65-66 (110) has two peaks close to 64-65 and 65-66.
  • one peak is broadly separated without being clearly separated. It is meant to include.
  • the solid solution positive electrode active material after substitution in the form (C) has a plurality of specific diffraction peaks in the X-ray diffraction (XRD) measurement.
  • the solid solution positive electrode active material having the above composition formula is a solid solution system of Li 2 MnO 3 and LiMnO 2.
  • the diffraction peak at 20-23 ° is characteristic of Li 2 MnO 3 .
  • the diffraction peaks of 36.5-37.5 ° (101), 44-45 ° (104) and 64-65 (108) / 65-66 (110) are usually in the rock salt type layered structure of LiMnO 2. It is characteristic.
  • the solid solution positive electrode active material of the present embodiment does not include those having a peak other than a diffraction peak showing a rock salt type layered structure, for example, other peaks derived from impurities or the like, in these angular ranges.
  • a structure other than the rock salt type layered structure is included in the positive electrode active material. If the structure other than the rock salt type layered structure is not included, the effect of improving the cycle characteristics can be surely obtained.
  • a positive electrode active material other than the solid solution positive electrode active material described above may of course be used.
  • a lithium-transition metal composite oxide is preferably used as the positive electrode active material from the viewpoint of capacity and output characteristics.
  • other positive electrode active materials may be used.
  • the optimum particle size is different for expressing the unique effect of each active material, the optimum particle size may be blended and used for expressing each unique effect. It is not always necessary to make the particle diameter uniform.
  • the average particle diameter of the positive electrode active material contained in the positive electrode active material layer 13 is not particularly limited, but is preferably 1 to 30 ⁇ m and more preferably 5 to 20 ⁇ m from the viewpoint of increasing the output.
  • the positive electrode active material layer preferably contains a positive electrode active material (solid solution positive electrode active material) represented by the following formula (2).
  • e represents the weight% of each component in the positive electrode active material layer, and 80 ⁇ e ⁇ 98.
  • the content of the solid solution positive electrode active material in the positive electrode active material layer is 80 to 98% by weight, preferably 84 to 98% by weight.
  • the positive electrode active material layer preferably contains a binder and a conductive additive in addition to the above-described positive electrode active material (preferably a solid solution positive electrode active material). Further, if necessary, it further contains other additives such as an electrolyte (polymer matrix, ion-conductive polymer, electrolyte solution, etc.) and a lithium salt for increasing the ion conductivity.
  • a binder used for the positive electrode active material layer does not need to include a polymer containing a carboxylic acid group, and other binders exemplified above are preferably used.
  • each active material layer (active material layer on one side of the current collector) is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to.
  • the thickness of each active material layer is usually about 1 to 500 ⁇ m, preferably 2 to 100 ⁇ m, taking into consideration the intended use of the battery (emphasis on output, energy, etc.) and ion conductivity.
  • the current collectors (11, 12) are made of a conductive material.
  • the size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used.
  • the thickness of the current collector is usually about 1 to 100 ⁇ m.
  • the shape of the current collector is not particularly limited.
  • a mesh shape (such as an expanded grid) can be used.
  • the negative electrode active material is formed directly on the negative electrode current collector 12 by sputtering or the like, it is preferable to use a current collector foil.
  • a metal or a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material can be employed.
  • examples of the metal include aluminum, nickel, iron, stainless steel, titanium, and copper.
  • a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used.
  • covered on the metal surface may be sufficient.
  • aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electronic conductivity, battery operating potential, and adhesion of the negative electrode active material by sputtering to the current collector.
  • examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.
  • Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), or polystyrene (PS).
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PI polyimide
  • PAI polyamideimide
  • PA polyamide
  • PTFE polytetraflu
  • a conductive filler may be added to the conductive polymer material or the non-conductive polymer material as necessary.
  • a conductive filler is inevitably necessary to impart conductivity to the resin.
  • the conductive filler can be used without particular limitation as long as it has a conductivity.
  • metals, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion barrier
  • the metal is not particularly limited, but at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, Sb, and K, or these metals It is preferable to contain an alloy or metal oxide containing.
  • it includes at least one selected from the group consisting of acetylene black, vulcan, black pearl, carbon nanofiber, ketjen black, carbon nanotube, carbon nanohorn, carbon nanoballoon, and fullerene.
  • the amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by weight.
  • the separator has a function of holding an electrolytic solution (liquid electrolyte) to ensure lithium ion conductivity between the positive electrode and the negative electrode, and a function as a partition between the positive electrode and the negative electrode.
  • separator examples include a separator made of a porous sheet made of a polymer or fiber that absorbs and holds the electrolyte and a nonwoven fabric separator.
  • a microporous (microporous film) can be used as the separator of the porous sheet made of polymer or fiber.
  • the porous sheet made of the polymer or fiber include polyolefins such as polyethylene (PE) and polypropylene (PP); a laminate in which a plurality of these are laminated (for example, three layers of PP / PE / PP) And a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • PE polyethylene
  • PP polypropylene
  • a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • the thickness of the microporous (microporous membrane) separator cannot be uniquely defined because it varies depending on the intended use. For example, in applications such as secondary batteries for driving motors such as electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV), it is 4 to 60 ⁇ m in a single layer or multiple layers. Is desirable.
  • the fine pore diameter of the microporous (microporous membrane) separator is desirably 1 ⁇ m or less (usually a pore diameter of about several tens of nm).
  • nonwoven fabric separator cotton, rayon, acetate, nylon, polyester; polyolefins such as PP and PE; conventionally known ones such as polyimide and aramid are used alone or in combination.
  • the bulk density of the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated polymer gel electrolyte.
  • the thickness of the nonwoven fabric separator may be the same as that of the electrolyte layer, and is preferably 5 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • the separator includes an electrolytic solution (liquid electrolyte).
  • the liquid electrolyte has a function as a lithium ion carrier and has a form in which a lithium salt is dissolved in an organic solvent.
  • organic solvent include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate.
  • the lithium salt Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF such 6, LiCF 3 SO 3
  • a compound that can be added to the active material layer of the electrode can be similarly employed.
  • the electrolytic solution may contain an additive.
  • additives include, for example, vinylene carbonate, methyl vinylene carbonate, dimethyl vinylene carbonate, phenyl vinylene carbonate, diphenyl vinylene carbonate, ethyl vinylene carbonate, diethyl vinylene carbonate, vinyl ethylene carbonate, 1,2-divinyl ethylene.
  • vinylene carbonate, methyl vinylene carbonate, and vinyl ethylene carbonate are preferable, and vinylene carbonate and vinyl ethylene carbonate are more preferable.
  • vinylene carbonate and vinyl ethylene carbonate are more preferable.
  • these additives only 1 type may be used independently and 2 or more types may be used together.
  • the separator is preferably a separator in which a heat-resistant insulating layer is laminated on a porous substrate (a separator with a heat-resistant insulating layer).
  • the heat resistant insulating layer is a ceramic layer containing inorganic particles and a binder.
  • a highly heat-resistant separator having a melting point or a heat softening point of 150 ° C. or higher, preferably 200 ° C. or higher is used.
  • the separator is less likely to curl in the battery manufacturing process due to the effect of suppressing thermal shrinkage and high mechanical strength.
  • the inorganic particles in the heat resistant insulating layer contribute to the mechanical strength and heat shrinkage suppressing effect of the heat resistant insulating layer.
  • the material used as the inorganic particles is not particularly limited. Examples thereof include silicon, aluminum, zirconium, titanium oxides (SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 ), hydroxides and nitrides, and composites thereof. These inorganic particles may be derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine and mica, or may be artificially produced. Moreover, only 1 type may be used individually for these inorganic particles, and 2 or more types may be used together. Of these, silica (SiO 2 ) or alumina (Al 2 O 3 ) is preferably used, and alumina (Al 2 O 3 ) is more preferably used from the viewpoint of cost.
  • the basis weight of the heat-resistant particles is not particularly limited, but is preferably 5 to 15 g / m 2 . If it is this range, sufficient ion conductivity will be acquired and it is preferable at the point which maintains heat resistant strength.
  • the binder in the heat-resistant insulating layer has a role of adhering the inorganic particles and the inorganic particles to the resin porous substrate layer.
  • the heat resistant insulating layer is stably formed, and peeling between the porous substrate layer and the heat resistant insulating layer is prevented.
  • the binder used for the heat-resistant insulating layer is not particularly limited.
  • a compound such as butadiene rubber, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), or methyl acrylate can be used as the binder.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVF polyvinyl fluoride
  • methyl acrylate methyl acrylate
  • PVDF polyvinylidene fluoride
  • these compounds only 1 type may be used independently and 2 or more types may be used together.
  • the binder content in the heat-resistant insulating layer is preferably 2 to 20% by weight with respect to 100% by weight of the heat-resistant insulating layer.
  • the binder content is 2% by weight or more, the peel strength between the heat-resistant insulating layer and the porous substrate layer can be increased, and the vibration resistance of the separator can be improved.
  • the binder content is 20% by weight or less, the gap between the inorganic particles is appropriately maintained, so that sufficient lithium ion conductivity can be ensured.
  • the thermal contraction rate of the separator with a heat-resistant insulating layer is preferably 10% or less for both MD and TD after holding for 1 hour at 150 ° C. and 2 gf / cm 2 .
  • a current collector plate (tab) electrically connected to a current collector is taken out of a laminate film as an exterior material for the purpose of taking out current outside the battery.
  • the material constituting the current collector plate is not particularly limited, and a known highly conductive material conventionally used as a current collector plate for a lithium ion secondary battery can be used.
  • a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable. Note that the same material may be used for the positive electrode current collector plate (positive electrode tab) and the negative electrode current collector plate (negative electrode tab), or different materials may be used.
  • the tabs 58 and 59 shown in FIG. 2 are not particularly limited.
  • the positive electrode tab 58 and the negative electrode tab 59 may be drawn out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be divided into a plurality of parts and taken out from each side, as shown in FIG. It is not limited to.
  • a terminal may be formed using a cylindrical can (metal can).
  • the seal portion is a member unique to the serially stacked battery and has a function of preventing leakage of the electrolyte layer. In addition to this, it is possible to prevent current collectors adjacent in the battery from coming into contact with each other and a short circuit due to a slight unevenness at the end of the laminated electrode.
  • the constituent material of the seal part is not particularly limited, but polyolefin resin such as polyethylene and polypropylene, epoxy resin, rubber, polyimide and the like can be used. Among these, it is preferable to use a polyolefin resin from the viewpoints of corrosion resistance, chemical resistance, film-forming property, economy, and the like.
  • ⁇ Positive terminal lead and negative terminal lead> As a material for the negative electrode and the positive electrode terminal lead, a lead used in a known laminated secondary battery can be used.
  • the parts removed from the battery exterior material should be heat-insulating so that they do not affect products (for example, automobile parts, especially electronic devices) by touching peripheral devices or wiring and causing leakage. It is preferable to coat with a heat shrinkable tube or the like.
  • Laminate film A conventionally known metal can case can be used as the exterior material.
  • the power generation element 17 may be packed using a laminate film 22 as shown in FIG.
  • the laminate film can be configured as a three-layer structure in which, for example, polypropylene, aluminum, and nylon are laminated in this order.
  • the manufacturing method in particular of a lithium ion secondary battery is not restrict
  • a lithium ion secondary battery is not limited to this.
  • the electrode (positive electrode and negative electrode) is prepared, for example, by preparing an active material slurry (positive electrode active material slurry or negative electrode active material slurry) and applying the active material slurry onto a current collector. It can be made by drying, then pressing.
  • the active material slurry includes the above-described active material (positive electrode active material or negative electrode active material), a binder, a conductive additive, and a solvent.
  • the solvent is not particularly limited, and N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylformamide, cyclohexane, hexane, water and the like can be used.
  • NMP N-methyl-2-pyrrolidone
  • the method for applying the active material slurry to the current collector is not particularly limited, and examples thereof include a screen printing method, a spray coating method, an electrostatic spray coating method, an ink jet method, and a doctor blade method.
  • the method for drying the coating film formed on the surface of the current collector is not particularly limited as long as at least a part of the solvent in the coating film is removed.
  • An example of the drying method is heating. Drying conditions (drying time, drying temperature, etc.) can be appropriately set according to the volatilization rate of the solvent contained in the applied active material slurry, the coating amount of the active material slurry, and the like. A part of the solvent may remain. The remaining solvent can be removed by a press process described later.
  • the pressing means is not particularly limited, and for example, a calendar roll, a flat plate press, or the like can be used.
  • the single cell layer can be produced by laminating the electrodes (positive electrode and negative electrode) produced in (1) via an electrolyte layer.
  • the power generation element can be produced by laminating the single cell layers in consideration of the output and capacity of the single cell layer, the output and capacity required for the battery, and the like.
  • the structure of the battery various shapes such as a square, a paper, a laminated, a cylindrical, and a coin can be adopted.
  • the current collector and insulating plate of the component parts are not particularly limited, and may be selected according to the above shape.
  • a stacked battery is preferable.
  • a lead is joined to the current collector of the power generation element obtained above, and the positive electrode lead or the negative electrode lead is joined to the positive electrode tab or the negative electrode tab.
  • a power generation element is placed in a laminate sheet so that the positive electrode tab and the negative electrode tab are exposed to the outside of the battery, and an electrolytic solution is injected with a liquid injector and then sealed in a vacuum to produce a stacked battery. sell.
  • the initial charge treatment, gas removal treatment and activation treatment are further performed under the following conditions.
  • it is done (see Example 1).
  • the three sides of the laminate sheet (exterior material) are completely sealed in a rectangular shape by thermocompression when sealing in the production of the laminated battery of (4) so that the gas removal treatment can be performed. Stop (main sealing), and the remaining one side is temporarily sealed by thermocompression bonding.
  • the remaining one side may be freely opened and closed by, for example, clip fastening, but from the viewpoint of mass production (production efficiency), it is preferable to temporarily seal the side by thermocompression bonding.
  • thermocompression it is only necessary to adjust the temperature and pressure for pressure bonding.
  • it can be opened by lightly applying force, and after degassing, it may be sealed again by thermocompression, or finally completely sealed by thermocompression ( Main sealing).
  • the battery aging treatment is preferably performed as follows. At 25 ° C., a constant current charging method is used for 0.05 C and charging for 4 hours (SOC about 20%), and the state is maintained for about 1 day. Next, after charging to 4.45 V at a 0.1 C rate at 25 ° C., the charging is stopped, and the state (SOC about 70%) is maintained for about 1 day, and then discharged to 2.0 V at 0.1 C. After being left in that state for 1 hour, it is discharged to 2.0 V at 0.05C.
  • thermocompression bonding Next, the following process is performed as the first (first) gas removal process. First, one side temporarily sealed by thermocompression bonding is opened, gas is removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding is performed again to perform temporary sealing. Further, pressurization with a roller (surface pressure 0.5 ⁇ 0.1 MPa) is performed, and the electrode and the separator are sufficiently adhered.
  • activation process Next, as an activation treatment method, for example, the following electrochemical pretreatment method is performed.
  • the constant current charging method is used as the activation processing method, and the electrochemical pretreatment method when the voltage is set as the termination condition is described as an example, but the charging method is a constant current constant voltage charging method. You may use. Further, as the termination condition, a charge amount or time may be used in addition to the voltage.
  • thermocompression bonding Next, the following process is performed as the first (first) gas removal process. First, one side temporarily sealed by thermocompression bonding is opened, gas is removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding is performed again to perform main sealing. Further, pressurization with a roller (surface pressure 0.5 ⁇ 0.1 MPa) is performed, and the electrode and the separator are sufficiently adhered.
  • the performance and durability of the obtained battery can be improved by performing the initial charging process, the gas removal process, and the activation process described above.
  • the assembled battery is configured by connecting a plurality of batteries. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series.
  • a small assembled battery that can be attached and detached by connecting a plurality of batteries in series or in parallel. Then, a plurality of small assembled batteries that can be attached and detached are connected in series or in parallel to provide a large capacity and large capacity suitable for vehicle drive power supplies and auxiliary power supplies that require high volume energy density and high volume output density.
  • An assembled battery having an output can also be formed. How many batteries are connected to make an assembled battery, and how many small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the mounted vehicle (electric vehicle) It may be determined according to the output.
  • the electric device of the present invention including the lithium ion secondary battery according to the present embodiment maintains a discharge capacity even when used for a long time, and has good cycle characteristics. Furthermore, the volume energy density is high. Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles require higher capacity, larger size, and longer life than electric and portable electronic devices. . Therefore, the lithium ion secondary battery (electric device) can be suitably used as a vehicle power source, for example, as a vehicle driving power source or an auxiliary power source.
  • a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle.
  • a plug-in hybrid electric vehicle having a long EV mileage or an electric vehicle having a long charge mileage can be formed by mounting such a battery.
  • a car a hybrid car, a fuel cell car, an electric car (four-wheeled vehicles (passenger cars, trucks, buses, commercial vehicles, light cars, etc.) This is because it can be used for motorcycles (including motorcycles) and tricycles) to provide a long-life and highly reliable automobile.
  • the application is not limited to automobiles.
  • it can be applied to various power sources for moving vehicles such as other vehicles, for example, trains, and power sources for mounting such as uninterruptible power supplies. It is also possible to use as.
  • Example 1 (Preparation of solid solution positive electrode active material C1) 1.
  • Manganese sulfate monohydrate (molecular weight 223.06 g / mol) 28.61 g, Nickel sulfate hexahydrate (molecular weight 262.85 g / mol) 17.74 g, was added to 200 g of pure water and dissolved by stirring to prepare a mixed solution.
  • the dried powder was pulverized in a mortar and then calcined at 500 ° C. for 5 hours.
  • Lithium hydroxide monohydrate (molecular weight 41.96 g / mol) 10.67 g was mixed with the calcined powder and pulverized and mixed for 30 minutes.
  • This powder was calcined at 500 ° C. for 2 hours and then calcined at 900 ° C. for 12 hours to obtain a solid solution positive electrode active material C1.
  • composition of the solid solution positive electrode active material C1 thus obtained was as follows.
  • composition C1 Li 1.5 [Ni 0.45 Mn 0.85 [Li] 0.20 ] O 3
  • composition of slurry for positive electrode had the following composition.
  • Positive electrode active material solid solution positive electrode active material C1 obtained above 9.4 parts by weight
  • Conductive aid flake graphite 0.15 parts by weight
  • Acetylene black 0.15 parts by weight
  • Binder polyvinylidene fluoride (PVDF) 0.3 Part by weight
  • Solvent 8.2 parts by weight of N-methyl-2-pyrrolidone (NMP).
  • a positive electrode slurry having the above composition was prepared as follows. First, 4.0 parts by weight of a solvent (NMP) is added to 2.0 parts by weight of a 20% binder solution obtained by dissolving a binder in a solvent (NMP) into a 50 ml disposable cup, and a stirring defoaming machine (spinning revolving mixer: Awatori) A binder diluted solution was prepared by stirring for 1 minute with Rentaro AR-100).
  • NMP solvent
  • NMP spinning revolving mixer
  • the positive electrode slurry was applied to one side of an aluminum current collector with a thickness of 20 ⁇ m using an automatic coating apparatus (Doctor blade manufactured by Tester Sangyo: PI-1210 automatic coating apparatus). Subsequently, the current collector coated with the positive electrode slurry was dried on a hot plate (100 ° C. to 110 ° C., drying time 30 minutes), and the amount of NMP remaining in the positive electrode active material layer was 0.02 wt%.
  • a sheet-like positive electrode was formed as follows.
  • the sheet-like positive electrode was compression-molded by applying a roller press and cut to produce a positive electrode having a density of 2.65 g / cm 3 .
  • composition of slurry for negative electrode had the following composition.
  • the polyamic acid that is a polyimide precursor is soluble in NMP that is a solvent.
  • NMP that is a solvent.
  • Pyre-ML purchased from Aldrich was used.
  • a negative electrode slurry having the above composition was prepared as follows. First, 5 parts by weight of a solvent (NMP) was added to 1.75 parts by weight of a 20% binder solution obtained by dissolving a binder in a solvent (NMP), and the mixture was stirred for 1 minute with a stirring deaerator to prepare a binder diluted solution. To this binder diluted solution, 0.2 parts by weight of conductive auxiliary agent, 9.45 parts by weight of negative electrode active material powder, and 3.6 parts by weight of solvent (NMP) are added, and the mixture is stirred for 3 minutes with a stirring defoaming machine. A slurry (solid content concentration 50 wt%) was obtained.
  • NMP solvent
  • the negative electrode slurry was applied to one side of a 10 ⁇ m thick electrolytic copper current collector using an automatic coating apparatus. Subsequently, the current collector coated with the negative electrode slurry was dried on a hot plate (100 ° C. to 110 ° C., drying time 30 minutes), and the amount of NMP remaining in the negative electrode active material layer was 0.02 wt% or less. A sheet-like negative electrode was formed.
  • the obtained sheet-like negative electrode was compression-molded by a roller press and cut to prepare a negative electrode having a weight of about 8.54 mg / cm 2 and a density of 1.45 g / cm 3 of the negative electrode active material layer on one side. When the surface of this negative electrode was observed, no cracks were observed.
  • the positive electrode C1 obtained above was cut out so as to have an active material layer area of 2.5 cm in length and 2.0 cm in width, and the two current collectors faced each other, so that the uncoated surface (aluminum current collector)
  • the current collector portion was spot welded together with the surface not coated with the foil slurry.
  • an aluminum positive electrode tab positive electrode current collector plate
  • the negative electrode A1 obtained above was cut out so as to have an active material layer area of 2.7 cm in length and 2.2 cm in width, and then a negative electrode tab of electrolytic copper was further welded to the current collector portion to form a negative electrode A11.
  • the negative electrode A11 has a structure in which a negative electrode active material layer is formed on one surface of a current collector.
  • a porous polypropylene separator (S) (length 3.0 cm ⁇ width 2.5 cm, thickness 25 ⁇ m, porosity 55%) is sandwiched between the negative electrode A11 to which these tabs are welded and the positive electrode C11.
  • a laminated power generation element was produced.
  • the structure of the stacked type power generation element is the structure of negative electrode (single side) / separator / positive electrode (both sides) / separator / negative electrode (single side), that is, A11- (S) -C11- (S) -A11. The configuration.
  • both sides of the power generation element were sandwiched with an aluminum laminate film exterior material (length 3.5 cm ⁇ width 3.5 cm), and the above power generation element was accommodated by thermocompression sealing at three sides.
  • the electrolyte After injecting 0.8 cm 3 of the electrolyte into this power generation element (in the case of the above five-layer configuration, the two-cell configuration is used and the amount of liquid injection per cell is 0.4 cm 3 ), the remaining one side is temporarily bonded by thermocompression bonding. Sealed to produce a laminate type battery. In order to sufficiently infiltrate the electrolyte into the electrode pores, the electrolyte was held at 25 ° C. for 24 hours while being pressurized at a surface pressure of 0.5 Mpa.
  • LiPF 6 electrolyte
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • LiPO 2 F 2 lithium difluorophosphate
  • DDTO lithium fluorophosphate
  • Example 2 A battery was fabricated in the same manner as in Example 1 except that Si 42 Ti 7 Sn 51 , which is a Si-containing alloy, was used instead of SiO x as the Si material used for the preparation of the negative electrode slurry.
  • Si 42 Ti 7 Sn 51 which is a Si-containing alloy
  • SiO x the Si material used for the preparation of the negative electrode slurry.
  • the Si-containing alloy was produced by a mechanical alloy method. Specifically, using a planetary ball mill device P-6 manufactured by Fricht, Germany, zirconia pulverized balls and alloy raw material powders were charged into a zirconia pulverized pot and alloyed at 600 rpm for 48 hours.
  • Si-containing alloy prepared in the above Si 42 Ti 7 Sn 51
  • other alloys that may be used in the present invention Si x Ti y Ge z A a, Si x Ti y Zn z A a, and Si this of x Ti y Sn z a, Si 42 Ti 7 Sn 51 except one
  • Si x Ti y Ge z A a, Si x Ti y Zn z A a, and Si this of x Ti y Sn z a, Si 42 Ti 7 Sn 51 except one also, since those having the same characteristics as Si 42 Ti 7 Sn 51, using Si 42 Ti 7 Sn 51 The same or similar results as in the examples are obtained.
  • Example 3 A battery was obtained in the same manner as in Example 2 except that Si 34 Sn 21 C 45 was used instead of Si 42 Ti 7 Sn 51 as the Si material (Si-containing alloy) used for the preparation of the slurry for the negative electrode.
  • the negative electrode prepared in this example is referred to as a negative electrode A3.
  • Si 34 Sn 21 C 45 a Si-containing alloy prepared above, other alloys that may be used in the present invention (Si x Sn y Al z A a, Si x Sn y V z A a, and Si this of x Sn y C z a, Si 34 Sn 21 C 45 other things) also, since those having the same characteristics as Si 34 Sn 21 C 45, using Si 34 Sn 21 C 45 The same or similar results as in the examples are obtained.
  • Example 4 A battery is obtained in the same manner as in Example 2 described above except that Si 53 Zn 44 C 3 is used instead of Si 42 Ti 7 Sn 51 as the Si material (Si-containing alloy) used for the preparation of the slurry for the negative electrode.
  • Si 53 Zn 44 C 3 is used instead of Si 42 Ti 7 Sn 51 as the Si material (Si-containing alloy) used for the preparation of the slurry for the negative electrode.
  • the negative electrode created in a present Example be the negative electrode A4.
  • Si-containing alloy prepared above Si 53 Zn 44 C 3
  • other alloys that can be used in the present invention Si x Zn y V z A a , Si x Zn y Sn z A a , Si x Of Zn y Al z A a and Si x Zn y C z A a , those other than Si 53 Zn 44 C 3
  • Si x Zn y V z A a Si x Zn y Sn z A a
  • Si x Of Zn y Al z A a and Si x Zn y C z A a those other than Si 53 Zn 44 C 3
  • Si 53 Zn 44 C 3 the same or similar results are obtained as in this example using 53 Zn 44 C 3 .
  • Example 5 A battery was obtained in the same manner as in Example 2 described above except that Si 67 Al 22 Nb 11 was used in place of Si 42 Ti 7 Sn 51 as the Si material (Si-containing alloy) used for the preparation of the slurry for the negative electrode. was made. Here, let the negative electrode created in a present Example be the negative electrode A5.
  • Si-containing alloy prepared in the above Si 67 Al 22 Nb 11
  • other alloys that may be used in the present invention Si x Al y C z A a, and among the Si x Al y Nb z A a , Other than Si 67 Al 22 Nb 11
  • Si x Al y C z A a Si x Al y C z A a
  • Si 67 Al 22 Nb 11 other alloys that may be used in the present invention
  • Example 6 A battery was obtained in the same manner as in Example 1 except that the amount of binder 1 (polyamic acid) used was 0.25 parts by weight and the amount of binder 2 (polyacrylic acid) used was 0.10 parts by weight. Was made.
  • Example 7 A battery was obtained in the same manner as in Example 1 except that the amount of binder 1 (polyamic acid) used was 0.15 parts by weight and the amount of binder 2 (polyacrylic acid) used was 0.20 parts by weight. Was made.
  • Example 8 A battery was obtained in the same manner as in Example 2 except that the amount of binder 1 (polyamic acid) used was 0.25 parts by weight and the amount of binder 2 (polyacrylic acid) used was 0.10 parts by weight. Was made.
  • Example 9 A battery was obtained in the same manner as in Example 2 except that the amount of binder 1 (polyamic acid) used was 0.15 parts by weight and the amount of binder 2 (polyacrylic acid) used was 0.20 parts by weight. Was made.
  • Example 10 As binder 1, using polyvinylidene fluoride (PVDF) instead of polyamic acid, except that the maximum temperature (300 ° C.) in “drying of the negative electrode” was changed to 130 ° C., the same as in Example 1 described above, A battery was produced.
  • PVDF polyvinylidene fluoride
  • Example 11 As the binder 1, styrene-butadiene rubber (SBR) was used instead of polyamic acid, and the maximum temperature (300 ° C.) in “negative electrode drying” was changed to 130 ° C., in the same manner as in Example 1 described above. A battery was produced.
  • SBR styrene-butadiene rubber
  • Example 1 A battery was fabricated in the same manner as in Example 1 except that the amount of binder 1 (polyamic acid) used was 0.35 parts by weight and that binder 2 (polyacrylic acid) was not used.
  • binder 1 polyamic acid
  • binder 2 polyacrylic acid
  • Example 2 A battery was fabricated in the same manner as in Example 2 described above, except that the amount of binder 1 (polyamic acid) used was 0.35 parts by weight, and binder 2 (polyacrylic acid) was not used.
  • Example 3 A battery was fabricated in the same manner as in Example 3 described above, except that the amount of binder 1 (polyamic acid) used was 0.35 parts by weight, and binder 2 (polyacrylic acid) was not used.
  • Example 4 A battery was fabricated in the same manner as in Example 4 except that the amount of binder 1 (polyamic acid) used was 0.35 parts by weight and that binder 2 (polyacrylic acid) was not used.
  • Example 5 A battery was fabricated in the same manner as in Example 5 except that the amount of binder 1 (polyamic acid) used was 0.35 parts by weight and that binder 2 (polyacrylic acid) was not used.
  • Example 6 A battery was fabricated in the same manner as in Example 10 except that the amount of binder 1 (PVDF) used was 0.35 parts by weight and that binder 2 (polyacrylic acid) was not used.
  • PVDF binder 1
  • Example 7 A battery was fabricated in the same manner as in Example 1 except that the amount of binder 2 (polyacrylic acid) used was 0.35 parts by weight and that binder 1 (polyamic acid) was not used.
  • the initial charge treatment and activation treatment were performed on the laminated battery produced above under the following conditions, and the performance was evaluated.
  • the battery aging treatment was performed as follows. At 25 ° C., 0.05 C charging for 4 hours (SOC about 20%) was performed by a constant current charging method, and the state was maintained for about 1 day. Subsequently, after charging to 4.45V at a 0.1C rate at 25 ° C., the charging was stopped, and the state (SOC about 70%) was maintained for about 1 day, and then discharged to 2.0V at 0.1C. After being left in that state for 1 hour, it was discharged to 2.0 V at 0.05C.
  • thermocompression bonding One side temporarily sealed by thermocompression bonding was opened, gas was removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding was performed again to perform temporary sealing. Furthermore, pressure (surface pressure 0.5 ⁇ 0.1 MPa) was shaped with a roller, and the electrode and the separator were sufficiently adhered.
  • thermocompression bonding One side temporarily sealed by thermocompression bonding was opened, gas was removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding was performed again to perform main sealing. Furthermore, pressure (surface pressure 0.5 ⁇ 0.1 MPa) was shaped with a roller, and the electrode and the separator were sufficiently adhered.
  • the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the 1st cycle was evaluated as “capacity maintenance rate (%)”. The results are shown in Table 1 below.
  • Capacity retention rate (%) 100th cycle discharge capacity / 1st cycle discharge capacity ⁇ 100
  • the lithium ion secondary batteries of Examples 1 to 11 using the negative electrode for an electric device according to the present invention are excellent in that the slurry properties are not changed even after storage for 3 hours. Dispersibility was shown.
  • Comparative Examples 1 to 7 changes in the slurry properties (sedimentation of solid content and phase separation) were observed after storage for 3 hours, suggesting an influence on dispersibility.
  • each example showed better cycle durability than the comparative example.
  • Comparative Example 7 when only polyacrylic acid was used as the binder, the slurry properties were good, but the cycle durability was inferior to that of Comparative Example 1 not containing polyacrylic acid. became. This is thought to be because polyacrylic acid performs functions such as improving slurry properties and suppressing unnecessary electrolyte decomposition inside the negative electrode, but cannot sufficiently exhibit the mechanical properties required as a binder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】リチウムイオン二次電池等の電気デバイスにおいて、サイクル耐久性をよりいっそう向上させうる手段を提供する。 【解決手段】負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる電気デバイス用負極において、負極活物質層に式(1)で表される負極活物質を含有させ、さらに、負極活物質層にポリフッ化ビニリデン、スチレン・ブタジエンゴム、ポリイミドおよびポリアミドイミドからなる群から選択される1種または2種以上、並びに、単位構造に少なくとも1つのカルボン酸基を有する高分子をバインダとして含有させる。

Description

電気デバイス用負極およびこれを用いた電気デバイス
 本発明は、電気デバイス用負極およびこれを用いた電気デバイスに関する。本発明に係る電気デバイスは、例えば、二次電池やキャパシタ等として電気自動車、燃料電池車およびハイブリッド電気自動車等の車両のモータ等の駆動用電源や補助電源に用いられる。
 近年、地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池などの電気デバイスの開発が盛んに行われている。
 モータ駆動用二次電池としては、携帯電話やノートパソコン等に使用される民生用リチウムイオン二次電池と比較して極めて高い出力特性、および高いエネルギーを有することが求められている。従って、全ての電池の中で最も高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。
 リチウムイオン二次電池は、一般に、バインダを用いて正極活物質等を正極集電体の両面に塗布した正極と、バインダを用いて負極活物質等を負極集電体の両面に塗布した負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。
 従来、リチウムイオン二次電池の負極には充放電サイクルの寿命やコスト面で有利な炭素・黒鉛系材料が用いられてきた。しかし、炭素・黒鉛系の負極材料ではリチウムイオンの黒鉛結晶中への吸蔵・放出により充放電がなされるため、最大リチウム導入化合物であるLiCから得られる理論容量372mAh/g以上の充放電容量が得られないという欠点がある。このため、炭素・黒鉛系負極材料で車両用途の実用化レベルを満足する容量、エネルギー密度を得るのは困難である。
 これに対し、負極にLiと化合物を形成するSiO(0<x<2)材料を用いた電池は、従来の炭素・黒鉛系負極材料と比較しエネルギー密度が向上するため、車両用途における負極材料として期待されている。例えば、SiOで表される化学組成を有するケイ素酸化物は、微視的にみると、Si(単結晶のナノ粒子)と非晶質(アモルファス)SiOとが相分離して存在する。
 ケイ素酸化物は、四面体構造を単位構造として有し、SiO以外のケイ素酸化物(中間酸化物)は、四面体の頂点の酸素数1個、2個及び3個に対応して、SiO、SiOおよびSiと表すことができるが、これらの中間酸化物は熱力学的に不安定で単結晶として存在することは極めて難しい。よって、SiOは、単位構造が不規則に配列した非晶質構造で構成され、さらに、この非晶質構造は、複数の非晶質化合物が界面を形成せずに構成される非晶質構造であり、主として均質な非晶質構造部分で構成されている。したがって、SiOでは、Siナノ粒子が非晶質のSiOに分散した構造を有している。
 このSiOの場合、充放電に関与できるのはSiのみであり、SiOは充放電に関与しない。したがって、SiOは、これらの平均組成を表すものである。SiOでは、Siが反応式(A)のように1molあたり4.4molのリチウムイオンを吸蔵放出し、Li22Si(=Li4.4Si)という理論容量4200mAh/gの可逆容量成分を生成する一方で、SiOが反応式(B)のように1molあたり4.3molのリチウムイオンを吸蔵放出し、初回のLi吸蔵時にLi4.4Siとともに不可逆容量を生じる原因となるLiSiOを生成する点が大きな問題である。
Figure JPOXMLDOC01-appb-C000004
 ところで、Liを含有するリチウムシリケート化合物として、例えば、LiSiO、LiSiO、LiSi、LiSi、LiSi11などの、LiSiO(0<y、0<x<2)が挙げられるが、これらLiSiOは電子伝導性が極めて小さく、さらに、SiOが電子伝導性を有しないため、負極の抵抗が上昇するという問題がある。その結果、リチウムイオンを負極活物質に脱離および挿入させることが、極めて困難になる。
 とは言え、負極にLiと合金化する材料を用いたリチウムイオン二次電池は、充放電時の負極での膨張収縮が大きい。例えば、リチウムイオンを吸蔵した場合の体積膨張は、黒鉛材料では約1.2倍であるのに対し、Si材料ではSiとLiが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起こすため、電極のサイクル寿命を低下させる問題があった。また、Si負極活物質の場合、電池の容量とサイクル耐久性とはトレードオフの関係にあり、高容量を示しつつ高サイクル耐久性を向上させることが困難であるといった問題があった。
 こうした問題を解決すべく、SiOと黒鉛材料とを含む、リチウムイオン二次電池用の負極が提案されている(例えば、特許文献1を参照)。かかる特許文献1に記載の発明では、段落「0018」にSiOの含有量を最小限にすることで、高容量の他に、良好なサイクル寿命を示すことが記載されている。
特表2009-517850号公報
 上記特許文献1に記載のSiOと炭素材料とを含む負極を用いたリチウムイオン二次電池の場合、良好なサイクル特性を示すことができるとされている。しかしながら、本発明者らの検討によれば、このような負極を用いてもなお、必ずしも十分なサイクル耐久性を達成することが難しいことが判明した。
 そこで、本発明は、リチウムイオン二次電池等の電気デバイスにおいて、サイクル耐久性をよりいっそう向上させうる手段を提供することを目的とする。
 本発明者らは、上記課題を解決するため、鋭意研究を行った。その結果、Si材料を負極活物質として用いた電気デバイス用負極において所定のバインダを用いることによって、上記課題が解決されうることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、負極集電体の表面に負極活物質層が形成されてなる電気デバイス用負極に関するものである。
 そして、前記負極活物質層は、下記式(1)で表される負極活物質を含有する。
Figure JPOXMLDOC01-appb-M000005
 式中、Si材料は、アモルファスSiO粒子とSi粒子との混合体であるSiO(xはSiの原子価を満足する酸素数を表す)およびSi含有合金からなる群から選択される1種または2種以上であり、αおよびβは負極活物質層における各成分の重量%を表し、80≦α+β≦98、3≦α≦40、40≦β≦95である。
 さらに、前記負極活物質層は、ポリフッ化ビニリデン、スチレン-ブタジエンゴム、ポリイミドおよびポリアミドイミドからなる群から選択される1種または2種以上、並びに、単位構造に少なくとも1つのカルボン酸基を有する高分子をバインダとして含有する点に特徴の1つがある。
 本発明によれば、所定のバインダ(カルボン酸基を有する高分子)の存在により、負極活物質層の作製時に調製されるスラリーにおける負極活物質成分の沈降が抑制される。これにより、スラリー中での固形分の分散性が改善され、負極活物質層の内部における負極活物質の偏在が防止される。その結果、充放電過程における負極活物質の膨張が平準化され、サイクル耐久性に優れる電気デバイスが提供されうる。
本発明に係る電気デバイスの一実施形態である、扁平型(積層型)の双極型でない非水電解質リチウムイオン二次電池の基本構成を示す断面概略図である。 本発明に係る電気デバイスの代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。
 本発明の一形態によれば、負極集電体の表面に負極活物質層が形成されてなる電気デバイス用負極であって、
 前記負極活物質層が、下記式(1):
Figure JPOXMLDOC01-appb-M000006
 式中、Si材料は、アモルファスSiO粒子とSi粒子との混合体であるSiO(xはSiの原子価を満足する酸素数を表す)およびSi含有合金からなる群から選択される1種または2種以上であり、αおよびβは負極活物質層における各成分の重量%を表し、80≦α+β≦98、3≦α≦40、40≦β≦95である、
で表される負極活物質を含有し、
 前記負極活物質層が、ポリフッ化ビニリデン、スチレン-ブタジエンゴム、ポリイミドおよびポリアミドイミドからなる群から選択される1種または2種以上、並びに、単位構造に少なくとも1つのカルボン酸基を有する高分子をバインダとして含有する、電気デバイス用負極が提供される。
 以下、本実施形態に係る電気デバイスの基本的な構成を説明する。本実施形態では、電気デバイスとしてリチウムイオン二次電池を例示して説明する。
 まず、本実施形態に係る電気デバイスを用いてなるリチウムイオン二次電池では、セル(単電池層)の電圧が大きく、高エネルギー密度、高出力密度が達成できる。そのため本実施形態のリチウムイオン二次電池は、車両の駆動電源用や補助電源用として優れている。その結果、車両の駆動電源用等のリチウムイオン二次電池として好適に利用できる。このほかにも、携帯電話などの携帯機器向けのリチウムイオン二次電池にも十分に適用可能である。
 上記リチウムイオン二次電池を形態・構造で区別した場合には、例えば、積層型(扁平型)電池、巻回型(円筒型)電池など、従来公知のいずれの形態・構造にも適用し得るものである。積層型(扁平型)電池構造を採用することで簡単な熱圧着などのシール技術により長期信頼性を確保でき、コスト面や作業性の点では有利である。
 また、リチウムイオン二次電池内の電気的な接続形態(電極構造)で見た場合、非双極型(内部並列接続タイプ)電池および双極型(内部直列接続タイプ)電池のいずれにも適用しうるものである。
 リチウムイオン二次電池内の電解質層の種類で区別した場合には、電解質層に非水系の電解液等の溶液電解質を用いた溶液電解質型電池、電解質層に高分子電解質を用いたポリマー電池など従来公知のいずれの電解質層のタイプにも適用しうるものである。該ポリマー電池は、さらに高分子ゲル電解質(単にゲル電解質ともいう)を用いたゲル電解質型電池、高分子固体電解質(単にポリマー電解質ともいう)を用いた固体高分子(全固体)型電池に分けられる。
 したがって、以下の説明では、本実施形態のリチウムイオン二次電池の例として、非双極型(内部並列接続タイプ)リチウムイオン二次電池について図面を用いてごく簡単に説明する。ただし、本発明に係る電気デバイスおよび本実施形態に係るリチウムイオン二次電池の技術的範囲が、これらに制限されるべきではない。
 <電池の全体構造>
 図1は、電気デバイスの代表的な一実施形態である、扁平型(積層型)のリチウムイオン二次電池(以下、単に「積層型電池」ともいう)の全体構造を模式的に表した断面概略図である。
 図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体であるラミネートシート29の内部に封止された構造を有する。ここで、発電要素21は、正極集電体11の両面に正極活物質層13が配置された正極と、電解質層17と、負極集電体12の両面に負極活物質層15が配置された負極とを積層した構成を有している。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、電解質層17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。
 これにより、隣接する正極、電解質層、および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、発電要素21の両最外層に位置する最外層の正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層の負極集電体が位置するようにし、該最外層の負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。
 正極集電体11および負極集電体12は、各電極(正極および負極)と導通される正極集電板25および負極集電板27がそれぞれ取り付けられ、ラミネートシート29の端部に挟まれるようにしてラミネートシート29の外部に導出される構造を有している。正極集電板25および負極集電板27は、それぞれ必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体11および負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。
 本実施形態に係るリチウムイオン二次電池は、負極の構成に特徴を有する。以下、当該負極を含めた電池の主要な構成部材について説明する。
 <活物質層>
 活物質層(13、15)は活物質を含み、必要に応じてその他の添加剤をさらに含む。
 [負極活物質層]
 負極活物質層15は、負極活物質として、Si材料および炭素材料を必須に含む。
 本明細書中、Si材料とは、アモルファスSiO粒子とSi粒子との混合体であるSiO(xはSiの原子価を満足する酸素数を表す)およびSi含有合金を意味する。これらのうちの1種のみがSi材料として用いられてもよいし、2種以上が併用されてもよい。以下、これらのSi材料について詳細に説明する。
 (SiO
 SiOは、アモルファスSiO粒子とSi粒子との混合体であり、xはSiの原子価を満足する酸素数を表す。xの具体的な値について特に制限はなく、適宜設定されうる。
 また、上記SiOは、機械的表面融合処理によってSiO粒子の表面が導電性物質で被覆されてなる導電性SiO粒子であってもよい。かような構成とすることにより、SiO粒子内のSiがリチウムイオンの脱離および挿入をしやすくなり、活物質における反応がよりスムーズに進行することができるようになる。この場合、導電性SiO粒子における導電性物質の含有量は1~30重量%であることが好ましく、2~20重量%であることがより好ましい。
 上記SiOの平均粒子径は、既存の負極活物質層15に含まれる負極活物質の平均粒子径と同程度であればよく、特に制限されない。高出力化の観点からは、好ましくは1~20μmの範囲であればよい。ただし、上記範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、上記範囲を外れていてもよいことは言うまでもない。なお、本明細書において、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される活物質粒子(観察面)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。また、本明細書において、「平均粒子径」の値は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の粒子径や平均粒子径も同様に定義することができる。また、SiOの形状としては、特に制限はなく、球状、楕円状、円柱状、多角柱状、鱗片状、不定形などでありうる。
 SiOの製造方法
 本形態に係るSiOの製造方法としては、特に制限されるものではなく、従来公知の各種の製造を利用して製造することができる。すなわち、作製方法によるアモルファス状態・特性の違いはほとんどないため、ありとあらゆる作製方法が適用できる。
 SiOを調製する手法としては、以下の方法が挙げられる。まず、原料としてSi粉末とSiO粉末とを所定の割合で配合し、混合、造粒および乾燥した混合造粒原料を、不活性ガス雰囲気で加熱(830℃以上)または真空中で加熱(1,100℃以上1,600℃以下)してSiOを生成(昇華)させる。昇華により発生した気体状のSiOを析出基体上(基体の温度は450℃以上800℃以下)に蒸着させ、SiO析出物を析出させる。その後、析出基体からSiO析出物を取り外し、ボールミル等を使用して粉砕することによりSiO粉末が得られる。
 xの値は蛍光X線分析により求めることができる。例えば、O-Kα線を用いた蛍光X線分析でのファンダメンタルパラメータ法を用いて求めることができる。蛍光X線分析には、例えば、理学電機工業(株)製RIX3000を用いることができる。蛍光X線分析の条件としては、例えば、ターゲットにロジウム(Rh)を用い、管電圧50kV、管電流50mAとすればよい。ここで得られるx値は、基板上の測定領域で検出されるO-Kα線の強度から算出されるため、測定領域の平均値となる。
 (Si含有合金)
 Si含有合金は、Siを含有する他の金属との合金であれば特に制限されず、従来公知の知見が適宜参照されうる。ここでは、Si含有合金の好ましい実施形態として、SiTiGe、SiTiZn、SiTiSn、SiSnAl、SiSn、SiSn、SiZn、SiZnSn、SiZnAl、SiZn、SiAlおよびSiAlNb(式中、Aは、不可避不純物である。さらに、x、y、z、およびaは、重量%の値を表し、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である)が挙げられる。これらのSi含有合金を負極活物質として用いることで、所定の第1添加元素および所定の第2添加元素を適切に選択することによって、Li合金化の際に、アモルファス-結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
 (炭素材料)
 本発明に用いられうる炭素材料は、特に制限されないが、天然黒鉛、人造黒鉛等の高結晶性カーボンである黒鉛(グラファイト);ソフトカーボン、ハードカーボン等の低結晶性カーボン;ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラック等のカーボンブラック;フラーレン、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボンフィブリル等の炭素材料が挙げられる。これらのうち、黒鉛を用いることが好ましい。
 本実施形態では、負極活物質として、上記Si材料とともに炭素材料が併用されることにより、より高いサイクル耐久性を示しつつ、かつ、初期容量も高くバランスよい特性を示すことができる。
 特に、SiOは、負極活物質層内において、均一に配置されない場合がある。このような場合、それぞれのSiOが発現する電位や容量は個別に異なる。その結果、負極活物質層内のSiOの中には、過度にリチウムイオンと反応するSiOと、リチウムイオンと反応しないSiOが生じる。すなわち、負極活物質層内のSiOのリチウムイオンとの反応の不均一性が発生する。そうすると、上記合金のうち、過度にリチウムイオンと反応するSiOが過度に作用することによって、電解液との著しい反応による電解液の分解や過剰な膨張によるSiOの構造の破壊が生じうる。その結果として、優れた特性を有するSiOを使用した場合であっても、均一にSiOが配置されていない等の場合には、電気デバイス用負極としてサイクル特性が低下しうる。
 しかしながら、当該SiOを炭素材料と混合すると、上記問題が解決されうる。より詳細には、SiOを炭素材料と混合することにより、負極活物質層内にSiOを均一に配置することが可能となりうる。その結果、負極活物質層内におけるSiOはいずれも同等の反応性を示し、サイクル特性の低下を防止することができると考えられるのである。
 なお、炭素材料が混合される結果、負極活物質層内におけるSiOの含有量が低下することによって、初期容量は低下しうる。しかしながら、炭素材料自体はリチウムイオンとの反応性を有するため、初期容量の低下の度合いは相対的に小さくなる。すなわち、本形態に係る負極活物質は、初期容量の低下の作用と比べて、サイクル特性の向上効果が大きいのである。
 また、炭素材料は、SiOと対比すると、リチウムイオンと反応する際の体積変化が生じにくい。そのため、SiOの体積変化が大きい場合であっても、負極活物質を全体としてみると、リチウム反応に伴う負極活物質の体積変化の影響を相対的に軽微なものとすることができる。なお、このような効果は、炭素材料の含有率が大きいほど(SiOの含有率が小さいほど)、サイクル特性が高くなる実施例の結果からも理解することができる。
 また、炭素材料を含有することによって、消費電気量(Wh)を向上させることができる。より詳細には、炭素材料は、SiOと対比して相対的に電位が低い。その結果、SiOが有する相対的に高い電位を低減することができる。そうすると、負極全体の電位が低下するため、消費電力量(Wh)を向上させることができるのである。このような作用は、電気デバイスの中でも、例えば、車両の用途に使用する際に特に有利である。
 炭素材料の形状としては、特に制限はなく、球状、楕円状、円柱状、多角柱状、鱗片状、不定形などでありうる。
 また、炭素材料の平均粒子径としては、特に制限されないが、5~25μmであることが好ましく、5~10μmであることがより好ましい。この際、上述のSiOとの平均粒子径との対比については、炭素材料の平均粒子径は、SiOの平均粒子径と同一であっても、異なっていてもよいが、異なることが好ましい。特に、前記SiOの平均粒子径が、前記炭素材料の平均粒子径よりも小さいことがより好ましい。炭素材料の平均粒子径がSiOの平均粒子径よりも相対的に大きいと、均一に炭素材料の粒子が配置され、当該炭素材料の粒子間にSiOが配置した構成を有するため、負極活物質層内においてSiOが均一に配置されうる。
 炭素材料の平均粒子径とSiOの平均粒子径との粒子径の比(SiOの平均粒子径/炭素材料の平均粒子径)は、1/250~1未満であることが好ましく、1/100~1/4であることがより好ましい。
 場合によっては、上述した2種の負極活物質(Si材料および炭素材料)以外の負極活物質が併用されてもよい。併用可能な負極活物質としては、例えば、リチウム-遷移金属複合酸化物(例えば、LiTi12)、金属材料、リチウム合金系負極材料などが挙げられる。これ以外の負極活物質が用いられてもよいことは勿論である。
 負極活物質層は、下記式(1)で表される負極活物質を含有する。
Figure JPOXMLDOC01-appb-M000007
 式(1)において、Si材料は、アモルファスSiO粒子とSi粒子との混合体であるSiO(xはSiの原子価を満足する酸素数を表す)およびSi含有合金からなる群から選択される1種または2種以上であり、また、αおよびβは負極活物質層における各成分の重量%を表し、80≦α+β≦98、3≦α≦40、40≦β≦95である。
 式(2)から明らかなように、負極活物質層における負極活物質としてのSi材料の含有量は3~40重量%である。また、炭素材料負極活物質の含有量は40~95重量%である。さらに、これらの合計含有量は80~98重量%である。
 なお、負極活物質のSi材料および炭素材料の混合比は、上記の含有量の規定を満足する限り特に制限はなく、所望の用途等に応じて適宜選択できる。なかでも、前記負極活物質中のSi材料の含有率は、3~40重量%であることが好ましい。一実施形態において、前記負極活物質中のSi材料の含有率は、4~30重量%であることがより好ましい。また、別の一実施形態においては、前記負極活物質中のSi材料の含有率は、5~20重量%であることがより好ましい。
 前記Si材料の含有率が3重量%以上であると、高い初期容量が得られうることから好ましい。一方、前記Si材料の含有量が40重量%以下であると、高いサイクル特性が得られうることから好ましい。
 また、負極活物質層は上述した負極活物質のほか、バインダを必須に含み、導電助剤をさらに含むことが好ましい。さらに、必要に応じて、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含んでもよい。
 (バインダ)
 本実施形態に係る負極活物質層15は、所定のバインダを含有する点にも特徴がある。すなわち、負極活物質層15は、ポリフッ化ビニリデン(PVDF)、スチレン・ブタジエンゴム(SBR)、ポリイミド(PI)およびポリアミドイミド(PAI)からなる群から選択される1種または2種以上、並びに、単位構造に少なくとも1つのカルボン酸基を有する高分子をバインダとして含有する。
 単位構造に少なくとも1つのカルボン酸基を有する高分子の具体的な構成について特に制限はないが、例えば、(メタ)アクリル酸、フマル酸、マレイン酸、イタコン酸、アクリルアミドグリコール酸、並びにこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩およびアミン塩からなる群から選択される1種または2種以上の単量体をラジカル開始剤存在下で重合したポリマーが挙げられる。これらのポリマーは、ホモポリマー、ランダムコポリマー、ブロックコポリマー、グラフトコポリマーのいずれかのポリマーが好ましい。また、カルボキシメチルセルロース(CMC)またはその塩が当該高分子として用いられてもよい。なかでも、本実施形態の効果をより確実に発現させるという観点から、ポリ(メタ)アクリル酸が好ましい高分子として挙げられる。また、本実施形態の効果をより確実に発現させるという観点から、カルボン酸基を含有する高分子の数平均分子量は、好ましくは、5000~2000000である。
 なお、上記以外のバインダが併用されてもよい。上記以外のバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリアミド、セルロース、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。これらのバインダは、単独で用いてもよいし、2種以上を併用してもよい。
 負極活物質層におけるバインダの含有量は、好ましくは1~10重量%であり、より好ましくは1~8重量%である。また、本実施形態の効果をより確実に発現させるという観点から、負極活物質層に含有されるバインダの全量100重量%に占める上記「ポリフッ化ビニリデン(PVDF)、スチレン・ブタジエンゴム(SBR)、ポリイミド(PI)およびポリアミドイミド(PAI)からなる群から選択される1種または2種以上」と上記「カルボン酸基を含有する高分子」との合計量の割合は、好ましくは50重量%以上であり、より好ましくは80重量%以上であり、さらに好ましくは90重量%以上であり、特に好ましくは95重量%以上であり、最も好ましくは100重量%である。また、負極活物質層に含有される上記「ポリフッ化ビニリデン(PVDF)、スチレン・ブタジエンゴム(SBR)、ポリイミド(PI)およびポリアミドイミド(PAI)からなる群から選択される1種または2種以上」と上記「カルボン酸基を含有する高分子」との含有量の比(重量比)は、好ましくは90:10~10:90であり、より好ましくは80:20~20:80であり、さらに好ましくは70:30~30:70であり、特に好ましくは60:40~40:60である。
 (導電助剤)
 導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、ケッチェンブラック、アセチレンブラック等のカーボンブラックが挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
 負極活物質層における導電助剤の含有量は、好ましくは1~10重量%であり、より好ましくは1~8重量%である。導電助剤の配合比(含有量)を上記範囲内に規定することで以下の効果が発現される。すなわち、電極反応を阻害することなく、電子伝導性を十分に担保することができ、電極密度の低下によるエネルギー密度の低下を抑制でき、ひいては電極密度の向上によるエネルギー密度の向上を図ることができるのである。
 (その他の成分)
 電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
 イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
 負極(負極活物質層)は、通常のスラリーを塗布(コーティング)する方法によって形成することができる。
 [正極活物質層]
 正極活物質層13は、正極活物質を含む。本実施形態において、正極活物質層13は、少なくとも固溶体材料からなる正極活物質(本明細書中、「固溶体正極活物質」とも称する)を含むことが好ましい。固溶体正極活物質は、従来の正極活物質と比較して極めて大きい電気容量を示すことから、電気デバイスの高エネルギー密度化の観点から好ましい材料である。よって以下、固溶体正極活物質について、説明する。
 (固溶体正極活物質)
 固溶体正極活物質は、下記式(3)で表される組成を基本構造として有する。
Figure JPOXMLDOC01-appb-M000008
 式(3)において、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である。
 ここで、「固溶体正極活物質が式(3)で表される組成を基本構造として有する」とは、固溶体正極活物質として式(3)で表される組成を有する活物質それ自体が用いられる場合のほか、固溶体正極活物質として式(3)で表される組成を有する活物質が、当該組成を有する活物質を由来とするものであることが確認できる程度に適宜改変されてなる活物質が用いられる場合をも包含する概念である。ここで、後者の形態として、例えば以下の(A)~(C)の3つの形態が例示される。
 (A)式(3)で表される組成を有する固溶体正極活物質の粒子表面に、Al、Zr、Ti、Nb、B、S、Sn、W、MoおよびVからなる群から選択される1種または2種以上の元素Mが、当該元素Mの存在量を[M]としたときに0.002≦[M]/[a+b+c]≦0.05を満たす量で存在する形態。
 形態(A)において、元素Mが存在する形態には特に制限はなく、酸化物の形態のほか、Liとの化合物の形態などが想定されうるが、酸化物の形態であることが好ましい。また、元素Mを含む材料(酸化物など)の粒子の平均粒子径は5~50nmであることが好ましい。なお、元素Mが酸化物の形態で存在する場合、当該酸化物は、固溶体正極活物質の粒子表面に点在することになる。このように点在する酸化物の平均粒子径は上述したように5~50nmであることが好ましいが、固溶体正極活物質の粒子表面で凝集して二次粒子を形成していてもよい。かような二次粒子の平均粒子径は、0.1μm(100nm)~1μm(1000nm)であることが好ましい。
 ここで、形態(A)のように元素Mを固溶体正極活物質の粒子表面にドープさせるには、例えば、ドープさせたい元素Mを含有する酸化物自体や当該酸化物のゾルを活物質と所定の割合で混合し、必要に応じて100~150℃程度の温度で5~20時間程度処理し、さらに200~300℃程度の温度で3~10時間程度処理するという方法が用いられうる。
 (B)式(3)で表される組成を有する固溶体正極活物質の粒子表面に、Al、ZrおよびTiからなる群から選択される金属の酸化物または複合酸化物からなる被覆層が形成される形態(この際、被覆後の固溶体正極活物質における前記酸化物または複合酸化物の含有量は酸化物換算で0.1~3.0重量%である);並びに、
 形態(B)において、固溶体正極活物質の粒子表面に存在する金属酸化物の具体的な構成は特に制限されず、上述した金属元素を含む理論上可能な酸化物または複合酸化物のいずれも用いられうる。好ましくは、Al、ZrOまたはTiOが用いられる。なお、Nb、Sn、W、MoおよびVからなる群から選択される1種または2種以上のような他の元素を含む(複合)酸化物が被覆層にさらに含まれていてもよい。
 (C)式(3)で表される組成を有する固溶体正極活物質に含まれるMn原子がTi、ZrおよびNbからなる群から選択される少なくとも1種によって置換されてなる結果、固溶体正極活物質がLi1.5[NiMnCo[Li][X]]Oで表される組成を有する形態(前記式中、Xは、Ti、ZrおよびNbからなる群から選択される少なくとも1種であり、0.01≦e≦0.4、a+b+c+d+e=1.5、0.1≦d≦0.4、1.1≦[a+b+c+e]≦1.4であり、zは、原子価を満足する酸素数を表す)。
 形態(C)において、置換後の固溶体正極活物質は、X線回折(XRD)測定において、20-23°、35-40°(101)、42-45°(104)および64-65(108)/65-66(110)に、岩塩型層状構造を示す回折ピークを有するものであることが好ましい。この際、サイクル特性向上の効果を確実に得るためには、岩塩型層状構造の回折ピーク以外に帰属されるピークを実質的に有していないものが好ましい。より好ましくは、35-40°(101)に3つの回折ピークを有し、42-45°(104)に1つの回折ピークを有するものが好適である。しかしながら、岩塩型層状構造の回折ピークに帰属されるものであれば、必ずしもそれぞれが3つおよび1つのピークに数えられなくてもよい。X線回折測定は、後述する実施例で記載する測定方法を採用するものとする。なお、64-65(108)/65-66(110)の表記は、64-65と65-66に近接する2つのピークがあり、組成によっては明確に分離されずにブロードに一つのピークとなる場合も含むことを意味する。
 また、形態(C)における置換後の固溶体正極活物質は、X線回折(XRD)測定において、特定の複数の回折ピークを有していることが好ましい。上記組成式の固溶体正極活物質は、LiMnOとLiMnOの固溶体系であり、上記で特定した複数の回折ピークのうち、20-23°の回折ピークは、LiMnOに特徴的な超格子回折ピークである。また、通常、36.5-37.5°(101)、44-45°(104)および64-65(108)/65-66(110)の回折ピークは、LiMnOの岩塩型層状構造に特徴的なものである。また、本実施形態では、岩塩型層状構造を示す回折ピークの一部として、35-40°(101)に3つ、42-45°(104)に1つの回折ピークを有することが好ましい。本実施形態の固溶体正極活物質には、これらの角度範囲に、岩塩型層状構造を示す回折ピーク以外のピーク、例えば不純物等に由来する他のピークが存在するものは含まれないことが好ましい。このような他のピークが存在する場合には、岩塩型層状構造以外の構造が正極活物質に含まれることを意味している。岩塩型層状構造以外の構造は含まれない方が、サイクル特性向上の効果を確実に得られる。
 場合によっては、上述した固溶体正極活物質以外の正極活物質が用いられてももちろんよい。この場合、好ましくは、容量、出力特性の観点から、リチウム-遷移金属複合酸化物が正極活物質として用いられる。これ以外の正極活物質が用いられてもよいことは勿論である。活物質それぞれの固有の効果を発現する上で最適な粒子径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒子径同士をブレンドして用いればよく、全ての活物質の粒子径を必ずしも均一化させる必要はない。
 正極活物質層13に含まれる正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1~30μmであり、より好ましくは5~20μmである。
 上述したように、正極活物質層は、下記式(2)で表される正極活物質(固溶体正極活物質)を含有することが好ましい。
Figure JPOXMLDOC01-appb-M000009
 式(2)において、eは正極活物質層における各成分の重量%を表し、80≦e≦98である。
 式(2)から明らかなように、好ましい実施形態において、正極活物質層における固溶体正極活物質の含有量は80~98重量%であり、好ましくは84~98重量%である。
 また、正極活物質層は上述した正極活物質(好ましくは固溶体正極活物質)のほか、バインダおよび導電助剤を含むことが好ましい。さらに、必要に応じて、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。これらの具体的な種類や正極活物質層における好ましい含有量については、負極活物質層の説明の欄において上述した形態が同様に採用されうるため、ここでは詳細な説明を省略する。ただし、正極活物質層に用いられるバインダは、カルボン酸基を含有する高分子を含む必要はなく、その他の上記で例示されたバインダが好ましく用いられる。
 各活物質層(集電体片面の活物質層)の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1~500μm程度、好ましくは2~100μmである。
 <集電体>
 集電体(11、12)は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。
 集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。
 集電体の形状についても特に制限されない。図1に示す積層型電池10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。
 なお、負極活物質をスパッタ法等により薄膜合金を負極集電体12上に直接形成する場合には、集電箔を用いることが好ましい。
 集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料または非導電性高分子材料に導電性フィラーが添加された樹脂が採用されうる。
 具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。
 また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。
 非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
 上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。
 導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、およびKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むものである。
 導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5~35重量%程度である。
 <セパレータ(電解質層)>
 本実施形態において、セパレータは、電解液(液体電解質)を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。
 セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。
 ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。
 微多孔質(微多孔膜)セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。1例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途においては、単層あるいは多層で4~60μmであることが望ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。
 不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独または混合して用いる。また、不織布のかさ密度は、含浸させた高分子ゲル電解質により十分な電池特性が得られるものであればよく、特に制限されるべきものではない。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5~200μmであり、特に好ましくは10~100μmである。
 また、上述したように、セパレータは、電解液(液体電解質)を含む。液体電解質は、リチウムイオンのキャリヤーとしての機能を有し、有機溶媒にリチウム塩が溶解した形態を有する。用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート等のカーボネート類が例示される。また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiCFSO等の電極の活物質層に添加されうる化合物が同様に採用されうる。
 なお、電解液(液体電解質)は、添加剤を含んでもよい。かような添加剤の具体例としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2-ジビニルエチレンカーボネート、1-メチル-1-ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1-エチル-1-ビニルエチレンカーボネート、1-エチル-2-ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1-ジメチル-2-メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの添加剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
 また、セパレータとしては多孔質基体に耐熱絶縁層が積層されたセパレータ(耐熱絶縁層付セパレータ)であることが好ましい。耐熱絶縁層は、無機粒子およびバインダを含むセラミック層である。耐熱絶縁層付セパレータは融点または熱軟化点が150℃以上、好ましくは200℃以上である耐熱性の高いものを用いる。耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果が得られうる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破膜が起こりにくい。さらに、熱収縮抑制効果および機械的強度の高さから、電池の製造工程でセパレータがカールしにくくなる。
 耐熱絶縁層における無機粒子は、耐熱絶縁層の機械的強度や熱収縮抑制効果に寄与する。無機粒子として使用される材料は特に制限されない。例えば、ケイ素、アルミニウム、ジルコニウム、チタンの酸化物(SiO、Al、ZrO、TiO)、水酸化物、および窒化物、ならびにこれらの複合体が挙げられる。これらの無機粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来のものであってもよいし、人工的に製造されたものであってもよい。また、これらの無機粒子は1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。これらのうち、コストの観点から、シリカ(SiO)またはアルミナ(Al)を用いることが好ましく、アルミナ(Al)を用いることがより好ましい。
 耐熱性粒子の目付けは、特に限定されるものではないが、5~15g/mであることが好ましい。この範囲であれば、十分なイオン伝導性が得られ、また、耐熱強度を維持する点で好ましい。
 耐熱絶縁層におけるバインダは、無機粒子どうしや、無機粒子と樹脂多孔質基体層とを接着させる役割を有する。当該バインダによって、耐熱絶縁層が安定に形成され、また多孔質基体層および耐熱絶縁層の間の剥離を防止される。
 耐熱絶縁層に使用されるバインダは、特に制限はなく、例えば、カルボキシメチルセルロース(CMC)、ポリアクリロニトリル、セルロース、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン-ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、アクリル酸メチルなどの化合物がバインダとして用いられうる。このうち、カルボキシメチルセルロース(CMC)、アクリル酸メチル、またはポリフッ化ビニリデン(PVDF)を用いることが好ましい。これらの化合物は、1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。
 耐熱絶縁層におけるバインダの含有量は、耐熱絶縁層100重量%に対して、2~20重量%であることが好ましい。バインダの含有量が2重量%以上であると、耐熱絶縁層と多孔質基体層との間の剥離強度を高めることができ、セパレータの耐振動性を向上させることができる。一方、バインダの含有量が20重量%以下であると、無機粒子の隙間が適度に保たれるため、十分なリチウムイオン伝導性を確保することができる。
 耐熱絶縁層付セパレータの熱収縮率は、150℃、2gf/cm条件下、1時間保持後にMD、TDともに10%以下であることが好ましい。このような耐熱性の高い材質を用いることで、正極発熱量が高くなり電池内部温度が150℃に達してもセパレータの収縮を有効に防止することができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。
 <集電板(タブ)>
 リチウムイオン二次電池においては、電池外部に電流を取り出す目的で、集電体に電気的に接続された集電板(タブ)が外装材であるラミネートフィルムの外部に取り出されている。
 集電板を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板(正極タブ)と負極集電板(負極タブ)とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
 また、図2に示すタブ58、59の取り出しに関しても、特に制限されるものではない。正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図2に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、タブに変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。
 <シール部>
 シール部は、直列積層型電池に特有の部材であり、電解質層の漏れを防止する機能を有する。このほかにも、電池内で隣り合う集電体同士が接触したり、積層電極の端部の僅かな不ぞろいなどによる短絡が起こったりするのを防止することもできる。
 シール部の構成材料としては、特に制限されないが、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、エポキシ樹脂、ゴム、ポリイミド等が用いられうる。これらのうち、耐蝕性、耐薬品性、製膜性、経済性などの観点からは、ポリオレフィン樹脂を用いることが好ましい。
 <正極端子リードおよび負極端子リード>
 負極および正極端子リードの材料は、公知の積層型二次電池で用いられるリードを用いることができる。なお、電池外装材から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆するのが好ましい。
 <外装材;ラミネートフィルム>
 外装材としては、従来公知の金属缶ケースを用いることができる。そのほか、図1に示すようなラミネートフィルム22を外装材として用いて、発電要素17をパックしてもよい。ラミネートフィルムは、例えば、ポリプロピレン、アルミニウム、ナイロンがこの順に積層されてなる3層構造として構成されうる。このようなラミネートフィルムを用いることにより、外装材の開封、容量回復材の添加、外装材の再封止を容易に行うことができる。
 <リチウムイオン二次電池の製造方法>
 リチウムイオン二次電池の製造方法は特に制限されず、公知の方法により製造されうる。具体的には、(1)電極の作製、(2)単電池層の作製、(3)発電要素の作製、および(4)積層型電池の製造を含む。以下、リチウムイオン二次電池の製造方法について一例を挙げて説明するが、これに限定されるものではない。
 (1)電極(正極および負極)の作製
 電極(正極または負極)は、例えば、活物質スラリー(正極活物質スラリーまたは負極活物質スラリー)を調製し、当該活物質スラリーを集電体上に塗布、乾燥し、次いでプレスすることにより作製されうる。前記活物質スラリーは、上述した活物質(正極活物質または負極活物質)、バインダ、導電助剤および溶媒を含む。
 前記溶媒としては、特に制限されず、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、シクロヘキサン、ヘキサン、水等が用いられうる。
 活物質スラリーの集電体への塗布方法としては、特に制限されず、スクリーン印刷法、スプレーコート法、静電スプレーコート法、インクジェット法、ドクターブレード法等が挙げられる。
 集電体の表面に形成された塗膜の乾燥方法としては、特に制限されず、塗膜中の溶媒の少なくとも一部が除去されればよい。当該乾燥方法としては、加熱が挙げられる。乾燥条件(乾燥時間、乾燥温度など)は、適用する活物質スラリーに含有される溶媒の揮発速度、活物質スラリーの塗布量等に応じて適宜設定されうる。なお、溶媒は一部が残存していてもよい。残存した溶媒は、後述のプレス工程等で除去されうる。
 プレス手段としては、特に限定されず、例えば、カレンダーロール、平板プレス等が用いられうる。
 (2)単電池層の作製
 単電池層は、(1)で作製した電極(正極および負極)を、電解質層を介して積層させることにより作製されうる。
 (3)発電要素の作製
 発電要素は、単電池層の出力および容量、電池として必要とする出力および容量等を適宜考慮し、前記単電池層を積層して作製されうる。
 (4)積層型電池の製造
 電池の構成としては、角形、ペーパー型、積層型、円筒型、コイン型等、種々の形状を採用することができる。また構成部品の集電体や絶縁板等は特に限定されるものではなく、上記の形状に応じて選定すればよい。しかし、本実施形態では積層型電池が好ましい。積層型電池は、上記で得られた発電要素の集電体にリードを接合し、これらの正極リードまたは負極リードを、正極タブまたは負極タブに接合する。そして、正極タブおよび負極タブが電池外部に露出するように、発電要素をラミネートシート中に入れ、注液機により電解液を注液してから真空に封止することにより積層型電池が製造されうる。
 (5)活性化処理など
 さらに、本実施形態では、上記により得られた積層型電池の性能および耐久性を高める観点から、さらに、以下の条件で初充電処理、ガス除去処理および活性化処理を行うことが好ましい(実施例1参照)。この場合には、ガス除去処理ができるように、上記(4)の積層型電池の製造において、封止する際に、矩形形状にラミネートシート(外装材)の3辺を熱圧着により完全に封止(本封止)し、残る1辺は、熱圧着で仮封止しておく。残る1辺は、例えば、クリップ留め等により開閉自在にしてもよいが、量産化(生産効率)の観点からは、熱圧着で仮封止するのがよい。この場合には、圧着する温度、圧力を調整するだけでよいためである。熱圧着で仮封止した場合には、軽く力を加えることで開封でき、ガス抜き後、再度、熱圧着で仮封止してもよいし、最後的には熱圧着で完全に封止(本封止)すればよい。
 (初充電処理)
 電池のエージング処理は、以下のように実施することが好ましい。25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行い、その状態で約1日間保持する。次いで、25℃にて0.1Cレートで4.45Vまで充電した後、充電を止め、その状態(SOC約70%)で約1日間保持したのち、0.1Cで2.0Vまで放電する。その状態のまま1時間放置したのち、0.05Cにて、2.0Vまで放電する。
 (最初(1回目)のガス除去処理)
 次に、最初(1回目)のガス除去処理として、以下の処理を行う。まず、熱圧着で仮封止した1辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行って仮封止を行う。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させる。
 (活性化処理)
 次に、活性化処理法として、例えば以下の電気化学前処理法を行う。
 25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行う。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行う。同様に、0.1Cで4.65Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行う。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行う。
 なお、ここでは、活性化処理法として、定電流充電法を用い、電圧を終止条件とした場合の電気化学前処理法を例として記載しているが、充電方式は定電流定電圧充電法を用いても構わない。また、終止条件は電圧以外にも電荷量や時間を用いても構わない。
 (最後(2回目)のガス除去処理)
 次に、最初(1回目)のガス除去処理として、以下の処理を行う。まず、熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行って本封止を行う。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させる。
 本実施形態では、上記した初充電処理、ガス除去処理及び活性化処理を行うことにより、得られた電池の性能および耐久性を高めることができる。
 [組電池]
 組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
 電池が複数、直列にまたは並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。
 [車両]
 本実施形態に係るリチウムイオン二次電池をはじめとした本発明の電気デバイスは、長期使用しても放電容量が維持され、サイクル特性が良好である。さらに、体積エネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記リチウムイオン二次電池(電気デバイス)は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
 具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリッド車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。
 以下、実施例および比較例を用いてさらに詳細に説明するが、本発明は以下の実施例のみに何ら限定されるわけではない。
 [実施例1]
 (固溶体正極活物質C1の調製)
 1.硫酸マンガン・1水和物(分子量223.06g/mol)28.61g、
   硫酸ニッケル・6水和物(分子量262.85g/mol)17.74g、
   を純水200gに加え、攪拌溶解し、混合溶液を調製した。
 2.次に、この混合溶液にアンモニア水をpH7になるまで滴下して、さらに、NaCO溶液を滴下して、複合炭酸塩を沈殿させた(NaCO溶液を滴下している間、アンモニア水でpH7を保持する)。
 3.その後、沈殿物を吸引濾過し、さらに、十分に水洗した後、乾燥オーブンにて120℃、5時間乾燥した。
 4.乾燥した粉末を乳鉢で粉砕した後、500℃、5時間仮焼成を行った。
 5.仮焼成した粉末に、水酸化リチウム・1水和物(分子量41.96g/mol)10.67gを混合し、30分間粉砕混合した。
 6.この粉末を500℃で2時間仮焼成した後、900℃で12時間焼成して固溶体正極活物質C1を得た。
 こうして得られた固溶体正極活物質C1の組成は以下の通りであった。
 組成:C1 Li1.5[Ni0.45Mn0.85[Li]0.20]O
 固溶体正極活物質C1の組成を式(3)に当てはめると、a+b+c+d=1.5、d=0.20、a+b+c=1.3、z;原子価を満足する酸素数となり、式(3)の要件を満足する。
 (集電体の片面に正極活物質層を形成した正極C1の作製)
 (正極用スラリーの組成)
 正極用スラリーは下記組成とした。
 正極活物質:上記で得られた固溶体正極活物質C1 9.4重量部
 導電助剤: 燐片状黒鉛 0.15重量部
       アセチレンブラック 0.15重量部
 バインダ: ポリフッ化ビニリデン(PVDF) 0.3重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 8.2重量部。
 この組成を式(2)に当てはめると、e=94となり、式(2)の要件を満足する。
 (正極用スラリーの製造)
 上記組成の正極用スラリーを次のように調製した。まず、50mlのディスポカップに、溶媒(NMP)にバインダを溶解した20%バインダ溶液2.0重量部に溶媒(NMP)4.0重量部を加え、攪拌脱泡機(自転公転ミキサー:あわとり錬太郎AR-100)で1分間攪拌してバインダ希釈溶液を作製した。次に、このバインダ希釈液に、導電助剤0.4重量部と固溶体正極活物質C1 9.2重量部、および溶媒(NMP)2.6重量部を加え、攪拌脱泡機で3分間攪拌して正極用スラリー(固形分濃度55重量%)とした。
 (正極用スラリーの塗布・乾燥)
 20μm厚のアルミニウム集電体の片面に、上記正極用スラリーを自動塗工装置(テスター産業製ドクターブレード:PI-1210自動塗工装置)により塗布した。続いて、この正極用スラリーを塗布した集電体について、ホットプレートにて乾燥(100℃~110℃、乾燥時間30分)を行い、正極活物質層に残留するNMP量を0.02重量%以下として、シート状正極を形成した。
 (正極のプレス)
 上記シート状正極を、ローラープレスをかけて圧縮成形し、切断して、密度2.65g/cmの正極を作製した。
 (正極の乾燥)
 次に、上記手順で作製した正極を用い真空乾燥炉にて乾燥処理を行った。乾燥炉内部に正極C1を設置した後、室温(25℃)にて減圧(100mmHg(1.33×10Pa))し乾燥炉内の空気を除去した。続いて、窒素ガスを流通(100cm/分)しながら、10℃/分で120℃まで昇温し、120℃で再度減圧して炉内の窒素を排気したまま12時間保持した後、室温まで降温した。こうして正極表面の水分を除去した正極C1を得た。
 (集電箔の片面に活物質層を形成した負極A1の作製)
 (負極用スラリーの組成)
 負極用スラリーは下記組成とした。
 負極活物質:SiOx (日下レアメタル製、x=1) 1.00重量部
       炭素材料(日立化成製、黒鉛) 8.45重量部
 導電助剤: SuperP 0.20重量部
 バインダ1: ポリアミック酸(ポリイミド前駆体) 0.30重量部
 バインダ2: ポリアクリル酸 0.05重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部
 この組成を式(1)に当てはめると、α+β=94.5、α=10、β=84.5となり、式(1)の要件を満足する。なお、炭素材料の平均粒子径は24μmであり、SiOの平均粒子径は0.5μmであった。また、ポリイミド前駆体であるポリアミック酸は溶媒であるNMPに可溶な状態であり、本実施例においてはAldrichより購入したPyre-MLを使用した。また、ポリアクリル酸としては、Aldrichより購入した平均分子量125万のものを使用した。
 (負極用スラリーの製造)
 上記組成の負極用スラリーを次のように調製した。まず、溶媒(NMP)にバインダを溶解した20%バインダ溶液1.75重量部に溶媒(NMP)5重量部を加えて、攪拌脱泡機1分間攪拌してバインダ希釈溶液を作製した。このバインダ希釈液に、導電助剤0.2重量部、負極活物質粉末9.45重量部、および溶媒(NMP)3.6重量部を加え、攪拌脱泡機で3分間攪拌して負極用スラリー(固形分濃度50重量%)とした。
 (負極用スラリーの塗布・乾燥)
 10μm厚の電解銅集電体の片面に、上記負極用スラリーを自動塗工装置により塗布した。続いて、この負極スラリーを塗布した集電体について、ホットプレートにて乾燥(100℃~110℃、乾燥時間30分)を行い、負極活物質層に残留するNMP量を0.02重量%以下として、シート状負極を形成した。
 (負極のプレス)
 得られたシート状負極を、ローラープレスをかけて圧縮成形し、切断して、片面の負極活物質層の重量約8.54mg/cm、密度1.45g/cmの負極を作製した。この負極の表面を観察したところ、クラックの発生は見られなかった。
 (電極の乾燥)
 次に、上記手順で作製した負極を用い真空乾燥炉にて乾燥処理を行った。乾燥炉内部に負極を設置した後、室温(25℃)にて減圧(100mmHg(1.33×10Pa))し乾燥炉内の空気を除去した。続いて、窒素ガスを流通(100cm/分)しながら、10℃/分で300℃まで昇温し、300℃で再度減圧して炉内の窒素を排気したまま12時間保持した後、室温まで降温した。こうして負極表面の水分を除去して、負極A1を得た。
 [ラミネートセルの作製]
 上記で得られた正極C1を、活物質層面積;縦2.5cm×横2.0cmになるように切り出し、これら2枚を集電体同士が向き合うようにして、未塗工面(アルミニウム集電箔のスラリーを塗工していない面)を合わせて集電体部分をスポット溶接した。これにより、外周部をスポット溶接により一体化された2枚重ねの集電箔の両面に正極活物質層を有する正極を形成した。その後、さらに集電体部分にアルミニウムの正極タブ(正極集電板)を溶接して正極C11を形成した。すなわち、正極C11は、集電箔の両面に正極活物質層が形成された構成である。
 一方、上記で得られた負極A1を、活物質層面積;縦2.7cm×横2.2cmになるように切り出し、その後、さらに集電体部分に電解銅の負極タブを溶接して負極A11を形成した。すなわち、負極A11は、集電体の片面に負極活物質層が形成された構成である。
 これらタブを溶接した負極A11と、正極C11との間に多孔質ポリプロピレン製セパレータ(S)(縦3.0cm×横2.5cm、厚さ25μm、空孔率55%)を挟んで5層からなる積層型の発電要素を作製した。積層型の発電要素の構成は、負極(片面)/セパレータ/正極(両面)/セパレータ/負極(片面)の構成、すなわち、A11-(S)-C11-(S)-A11の順に積層された構成とした。次いで、アルミラミネートフィルム製外装材(縦3.5cm×横3.5cm)で発電要素の両側を挟み込み、3辺を熱圧着封止して上記発電要素を収納した。この発電要素に、電解液0.8cm(上記5層構成の場合、2セル構成となり、1セル当たりの注液量0.4cm)を注入した後、残りの1辺を熱圧着で仮封止し、ラミネート型電池を作製した。電解液を電極細孔内に十分に浸透させるため、面圧0.5Mpaで加圧しながら、25℃にて24時間保持した。
 なお、電解液の調製では、まず、エチレンカーボネート(EC)30体積%とジエチルカーボネート(DEC)70体積%の混合溶媒に、1.0MのLiPF(電解質)を溶解した。その後、添加剤として作用するフルオロリン酸リチウムとして、ジフルオロリン酸リチウム(LiPO)を1.8重量%、1,5,2,4-ジオキサジチアン-2,2,4,4-テトラオキシド(DDTO)1.5重量%を溶解したものを、電解液として用いた。
 [実施例2]
 負極用スラリーの調製に用いたSi材料として、SiOに代えてSi含有合金であるSi42TiSn51を用いたこと以外は、上述した実施例1と同様にして、電池を作製した。ここで、本実施例において作成された負極を負極A2とする。なお、上記Si含有合金は、メカニカルアロイ法により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置P-6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールおよび合金の各原料粉末を投入し、600rpmで48時間かけて合金化させた。
 また、上記で調製したSi含有合金(Si42TiSn51)と、それ以外の本発明に用いられうる合金(SiTiGe、SiTiZn、およびSiTiSnAのうち、Si42TiSn51以外のもの)もまた、Si42TiSn51と同様の特性を有するものであることから、Si42TiSn51を用いた本実施例と同一または類似する結果が得られる。
 [実施例3]
 負極用スラリーの調製に用いたSi材料(Si含有合金)として、Si42TiSn51に代えてSi34Sn2145を用いたこと以外は、上述した実施例2と同様にして、電池を作製した。ここで、本実施例において作成された負極を負極A3とする。
 また、上記で調製したSi含有合金(Si34Sn2145)と、それ以外の本発明に用いられうる合金(SiSnAl、SiSn、およびSiSnAのうち、Si34Sn2145以外のもの)もまた、Si34Sn2145と同様の特性を有するものであることから、Si34Sn2145を用いた本実施例と同一または類似する結果が得られる。
 [実施例4]
 負極用スラリーの調製に用いたSi材料(Si含有合金)として、Si42TiSn51に代えてSi53Zn44を用いたこと以外は、上述した実施例2と同様にして、電池を作製した。ここで、本実施例において作成された負極を負極A4とする。
 また、上記で調製したSi含有合金(Si53Zn44)と、それ以外の本発明に用いられうる合金(SiZn、SiZnSn、SiZnAl、SiZnのうち、Si53Zn44以外のもの)もまた、Si53Zn44と同様の特性を有するものであることから、Si53Zn44を用いた本実施例と同一または類似する結果が得られる。
 [実施例5]
 負極用スラリーの調製に用いたSi材料(Si含有合金)として、Si42TiSn51に代えてSi67Al22Nb11を用いたこと以外は、上述した実施例2と同様にして、電池を作製した。ここで、本実施例において作成された負極を負極A5とする。
 また、上記で調製したSi含有合金(Si67Al22Nb11)と、それ以外の本発明に用いられうる合金(SiAl、およびSiAlNbのうち、Si67Al22Nb11以外のもの)もまた、Si67Al22Nb11と同様の特性を有するものであることから、Si67Al22Nb11を用いた本実施例と同一または類似する結果が得られる。
 [実施例6]
 バインダ1(ポリアミック酸)の使用量を0.25重量部とし、バインダ2(ポリアクリル酸)の使用量を0.10重量部としたこと以外は、上述した実施例1と同様にして、電池を作製した。
 [実施例7]
 バインダ1(ポリアミック酸)の使用量を0.15重量部とし、バインダ2(ポリアクリル酸)の使用量を0.20重量部としたこと以外は、上述した実施例1と同様にして、電池を作製した。
 [実施例8]
 バインダ1(ポリアミック酸)の使用量を0.25重量部とし、バインダ2(ポリアクリル酸)の使用量を0.10重量部としたこと以外は、上述した実施例2と同様にして、電池を作製した。
 [実施例9]
 バインダ1(ポリアミック酸)の使用量を0.15重量部とし、バインダ2(ポリアクリル酸)の使用量を0.20重量部としたこと以外は、上述した実施例2と同様にして、電池を作製した。
 [実施例10]
 バインダ1として、ポリアミック酸に変えてポリフッ化ビニリデン(PVDF)を用い、「負極の乾燥」における最大温度(300℃)を130℃に変更したこと以外は、上述した実施例1と同様にして、電池を作製した。
 [実施例11]
 バインダ1として、ポリアミック酸に変えてスチレン・ブタジエンゴム(SBR)を用い、「負極の乾燥」における最大温度(300℃)を130℃に変更したこと以外は、上述した実施例1と同様にして、電池を作製した。
 [比較例1]
 バインダ1(ポリアミック酸)の使用量を0.35重量部とし、バインダ2(ポリアクリル酸)を用いなかったこと以外は、上述した実施例1と同様にして、電池を作製した。
 [比較例2]
 バインダ1(ポリアミック酸)の使用量を0.35重量部とし、バインダ2(ポリアクリル酸)を用いなかったこと以外は、上述した実施例2と同様にして、電池を作製した。
 [比較例3]
 バインダ1(ポリアミック酸)の使用量を0.35重量部とし、バインダ2(ポリアクリル酸)を用いなかったこと以外は、上述した実施例3と同様にして、電池を作製した。
 [比較例4]
 バインダ1(ポリアミック酸)の使用量を0.35重量部とし、バインダ2(ポリアクリル酸)を用いなかったこと以外は、上述した実施例4と同様にして、電池を作製した。
 [比較例5]
 バインダ1(ポリアミック酸)の使用量を0.35重量部とし、バインダ2(ポリアクリル酸)を用いなかったこと以外は、上述した実施例5と同様にして、電池を作製した。
 [比較例6]
 バインダ1(PVDF)の使用量を0.35重量部とし、バインダ2(ポリアクリル酸)を用いなかったこと以外は、上述した実施例10と同様にして、電池を作製した。
 [比較例7]
 バインダ2(ポリアクリル酸)の使用量を0.35重量部とし、バインダ1(ポリアミック酸)を用いなかったこと以外は、上述した実施例1と同様にして、電池を作製した。
 [負極用スラリーの特性評価]
 上述した各実施例・比較例において、調製された負極用スラリーについて、スラリー組成がスラリーの物性に及ぼす影響を評価した。具体的には、「負極用スラリーの製造」の段階において、最終工程である攪拌脱泡機での3分間処理後、得られた負極用スラリーを負極塗工分とは別に採取し、ポリエチレン製の密封ビンに入れて、室温下1時間放置した。3時間後、負極用スラリー中の固形分の沈降や相分離の有無を目視にて確認し、以下のような3段階で評価した:
 A:固形分の沈降や相分離がなく均一なスラリーであった
 B:固形分の沈降や相分離が観察され、やや不均一なスラリーであった
 C:固形分の沈降や相分離がひどく、明らかに不均一なすらりーであった。
 [電池特性の評価]
 その後、上記で得られた各電池の発電要素を評価セル取り付け冶具にセットし、正極リードと負極リードを発電要素の各タブ端部に取り付け、試験を行った。
 上記で作製したラミネート型電池に対して、以下の条件で初充電処理および活性化処理を行い、性能を評価した。
 [初充電処理]
 電池のエージング処理は、以下のように実施した。25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行い、その状態で約1日間保持した。次いで、25℃にて0.1Cレートで4.45Vまで充電した後、充電を止め、その状態(SOC約70%)で約1日間保持したのち、0.1Cで2.0Vまで放電した。その状態のまま1時間放置したのち、0.05Cにて、2.0Vまで放電した。
 [ガス除去処理1]
 熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い仮封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させた。
 [活性化処理]
 25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行った。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行った。同様に、0.1Cで4.65Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行った。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行った。
 [ガス除去処理2]
 熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い本封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させた。
 [サイクル耐久性評価]
 サイクル耐久性の評価では、1Cレートでの充放電を、25℃で100サイクル繰り返した。電池の評価の際、充電条件は、1Cレートにて最高電圧が4.5Vとなるまで充電した後、約1時間~1.5時間保持する定電流定電圧充電法とした。また、放電条件は、電池の最低電圧が2.0Vとなるまで1Cレートで放電する定電流放電法で行った。いずれも、室温下で行った。
 1サイクル目の放電容量に対する100サイクル目の放電容量の割合を「容量維持率(%)」として評価した。結果を下記の表1に示す。
 容量維持率(%)=100サイクル目の放電容量/1サイクル目の放電容量×100
Figure JPOXMLDOC01-appb-T000010
 表1に示す結果から明らかなように、本発明に係る電気デバイス用負極を用いた実施例1~11のリチウムイオン二次電池では3時間保管後においてもスラリー性状に変化が見られず良好な分散性を示した。これに対し、比較例1~7では3時間保管後にスラリー性状の変化(固形分の沈降や相分離)が見られ、分散性への影響が示唆された。これに対応する形で、各実施例では、比較例と比べて、良好なサイクル耐久性を示すことが確認された。
 なお、比較例7に示すように、バインダとしてポリアクリル酸のみを用いた場合には、スラリー性状は良好であったが、サイクル耐久性はポリアクリル酸を含まない比較例1よりも劣る結果となった。これは、ポリアクリル酸がスラリー性状改善や負極内部での不必要な電解液分解抑制といった機能を果たす一方で、バインダとして要求される機械的物性を十分に発揮できないためであると考えられる。
  10、50 リチウムイオン二次電池、
  11 負極集電体、
  12 正極集電体、
  13 負極活物質層、
  15 正極活物質層、
  17 セパレータ、
  19 単電池層、
  21、57 発電要素、
  25 負極集電板、
  27 正極集電板、
  29、52 電池外装材、
  58  正極タブ、
  59  負極タブ。

Claims (6)

  1.  負極集電体の表面に負極活物質層が形成されてなる電気デバイス用負極であって、
     前記負極活物質層が、下記式(1):
    Figure JPOXMLDOC01-appb-M000001
     式中、Si材料は、アモルファスSiO粒子とSi粒子との混合体であるSiO(xはSiの原子価を満足する酸素数を表す)およびSi含有合金からなる群から選択される1種または2種以上であり、αおよびβは負極活物質層における各成分の重量%を表し、80≦α+β≦98、3≦α≦40、40≦β≦95である、
    で表される負極活物質を含有し、
     前記負極活物質層が、ポリフッ化ビニリデン、スチレン・ブタジエンゴム、ポリイミドおよびポリアミドイミドからなる群から選択される1種または2種以上、並びに、単位構造に少なくとも1つのカルボン酸基を有する高分子をバインダとして含有する、電気デバイス用負極。
  2.  前記高分子がポリ(メタ)アクリル酸である、請求項1に記載の電気デバイス用負極。
  3.  前記高分子の数平均分子量が5000以上である、請求項1または2に記載の電気デバイス用負極。
  4.  前記Si含有合金が、SiTiGe、SiTiZn、SiTiSn、SiSnAl、SiSn、SiSn、SiZn、SiZnSn、SiZnAl、SiZn、SiAlおよびSiAlNb(式中、Aは、不可避不純物である。さらに、x、y、z、およびaは、重量%の値を表し、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である)からなる群から選択される1種または2種以上である、請求項1~3のいずれか1項に記載の電気デバイス用負極。
  5.  正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、
     請求項1~4のいずれか1項に記載の電気デバイス用負極と、
     セパレータと、
    を含む発電要素を有する電気デバイスであって、
     前記正極活物質層が、下記式(2):
    Figure JPOXMLDOC01-appb-M000002
     式中、eは正極活物質層における各成分の重量%を表し、80≦e≦98である、
    で表される正極活物質を含有し、この際、前記固溶体正極活物質は、下記式(3):
    Figure JPOXMLDOC01-appb-M000003
     式中、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である、
    で表される組成を基本構造として有する、電気デバイス。
  6.  リチウムイオン二次電池である、請求項5に記載の電気デバイス。
PCT/JP2014/051540 2014-01-24 2014-01-24 電気デバイス用負極およびこれを用いた電気デバイス WO2015111195A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051540 WO2015111195A1 (ja) 2014-01-24 2014-01-24 電気デバイス用負極およびこれを用いた電気デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051540 WO2015111195A1 (ja) 2014-01-24 2014-01-24 電気デバイス用負極およびこれを用いた電気デバイス

Publications (1)

Publication Number Publication Date
WO2015111195A1 true WO2015111195A1 (ja) 2015-07-30

Family

ID=53681024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051540 WO2015111195A1 (ja) 2014-01-24 2014-01-24 電気デバイス用負極およびこれを用いた電気デバイス

Country Status (1)

Country Link
WO (1) WO2015111195A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119855A (ja) * 2019-01-28 2020-08-06 三菱ケミカル株式会社 非水系電解液電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049046A (ja) * 2009-08-27 2011-03-10 Nissan Motor Co Ltd 電池用電極およびその製造方法
WO2011065504A1 (ja) * 2009-11-27 2011-06-03 日産自動車株式会社 電気デバイス用Si合金負極活物質
WO2012121240A1 (ja) * 2011-03-08 2012-09-13 日産自動車株式会社 電気デバイス用負極活物質
WO2012160854A1 (ja) * 2011-05-25 2012-11-29 日産自動車株式会社 電気デバイス用負極活物質
WO2013088846A1 (ja) * 2011-12-16 2013-06-20 日産自動車株式会社 電気デバイス用負極活物質
WO2013115311A1 (ja) * 2012-02-03 2013-08-08 日産自動車株式会社 固溶体リチウム含有遷移金属酸化物及びリチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049046A (ja) * 2009-08-27 2011-03-10 Nissan Motor Co Ltd 電池用電極およびその製造方法
WO2011065504A1 (ja) * 2009-11-27 2011-06-03 日産自動車株式会社 電気デバイス用Si合金負極活物質
WO2012121240A1 (ja) * 2011-03-08 2012-09-13 日産自動車株式会社 電気デバイス用負極活物質
WO2012160854A1 (ja) * 2011-05-25 2012-11-29 日産自動車株式会社 電気デバイス用負極活物質
WO2013088846A1 (ja) * 2011-12-16 2013-06-20 日産自動車株式会社 電気デバイス用負極活物質
WO2013115311A1 (ja) * 2012-02-03 2013-08-08 日産自動車株式会社 固溶体リチウム含有遷移金属酸化物及びリチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119855A (ja) * 2019-01-28 2020-08-06 三菱ケミカル株式会社 非水系電解液電池

Similar Documents

Publication Publication Date Title
JP6252602B2 (ja) 電気デバイス
JP6187602B2 (ja) 電気デバイス
JP6202106B2 (ja) 電気デバイス
WO2017187637A1 (ja) 非水電解質二次電池
JP2018055952A (ja) 非水電解質二次電池、および負極ユニット
JP6327361B2 (ja) 電気デバイス
WO2017187638A1 (ja) 非水電解質二次電池
JP6252600B2 (ja) 電気デバイス
JP6202107B2 (ja) 電気デバイス
JP6252604B2 (ja) 電気デバイス
JP6737091B2 (ja) 非水電解質二次電池用負極及びこれを用いた非水電解質二次電池
JP6380553B2 (ja) 電気デバイス
WO2015111195A1 (ja) 電気デバイス用負極およびこれを用いた電気デバイス
JP6380554B2 (ja) 電気デバイス
JP6252603B2 (ja) 電気デバイス
JP2018078052A (ja) 非水電解質二次電池
JP6252601B2 (ja) 電気デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14879984

Country of ref document: EP

Kind code of ref document: A1