WO2014123385A1 - 그래핀 리튬 이온 커패시터 - Google Patents
그래핀 리튬 이온 커패시터 Download PDFInfo
- Publication number
- WO2014123385A1 WO2014123385A1 PCT/KR2014/001055 KR2014001055W WO2014123385A1 WO 2014123385 A1 WO2014123385 A1 WO 2014123385A1 KR 2014001055 W KR2014001055 W KR 2014001055W WO 2014123385 A1 WO2014123385 A1 WO 2014123385A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphene
- lithium
- lithium ion
- ion capacitor
- ions
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 193
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 175
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 153
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 153
- 239000003990 capacitor Substances 0.000 title claims abstract description 112
- 239000000463 material Substances 0.000 claims abstract description 94
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 47
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000003792 electrolyte Substances 0.000 claims abstract description 24
- 150000002500 ions Chemical class 0.000 claims abstract description 19
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 42
- 239000011230 binding agent Substances 0.000 claims description 21
- 239000004020 conductor Substances 0.000 claims description 19
- 239000002131 composite material Substances 0.000 claims description 14
- 125000006850 spacer group Chemical group 0.000 claims description 11
- 239000002134 carbon nanofiber Substances 0.000 claims description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 239000003575 carbonaceous material Substances 0.000 claims description 9
- 125000005842 heteroatom Chemical group 0.000 claims description 9
- TXLQIRALKZAWHN-UHFFFAOYSA-N dilithium carbanide Chemical compound [Li+].[Li+].[CH3-].[CH3-] TXLQIRALKZAWHN-UHFFFAOYSA-N 0.000 claims description 8
- 238000003475 lamination Methods 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 150000004767 nitrides Chemical class 0.000 claims description 8
- 239000011148 porous material Substances 0.000 claims description 8
- 239000006229 carbon black Substances 0.000 claims description 7
- 238000004898 kneading Methods 0.000 claims description 7
- 229910003002 lithium salt Inorganic materials 0.000 claims description 7
- 159000000002 lithium salts Chemical class 0.000 claims description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims description 7
- 150000004706 metal oxides Chemical class 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 6
- 239000002174 Styrene-butadiene Substances 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 6
- 239000002585 base Substances 0.000 claims description 6
- -1 lithium nitrides Chemical class 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 6
- 239000002033 PVDF binder Substances 0.000 claims description 5
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 230000009257 reactivity Effects 0.000 claims description 5
- 239000011115 styrene butadiene Substances 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 4
- 239000002041 carbon nanotube Substances 0.000 claims description 4
- 239000002608 ionic liquid Substances 0.000 claims description 4
- 229910021450 lithium metal oxide Inorganic materials 0.000 claims description 4
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical class [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 claims description 4
- 239000007769 metal material Substances 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000006479 redox reaction Methods 0.000 claims description 4
- 150000004763 sulfides Chemical class 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 claims description 3
- 150000004770 chalcogenides Chemical class 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 229910052723 transition metal Inorganic materials 0.000 claims description 3
- 150000003624 transition metals Chemical class 0.000 claims description 3
- WWTDBJIWQKDBSY-UHFFFAOYSA-N 5-(4-methoxyphenyl)-1,3-oxazole Chemical compound C1=CC(OC)=CC=C1C1=CN=CO1 WWTDBJIWQKDBSY-UHFFFAOYSA-N 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000003487 electrochemical reaction Methods 0.000 claims description 2
- ARNWQMJQALNBBV-UHFFFAOYSA-N lithium carbide Chemical compound [Li+].[Li+].[C-]#[C-] ARNWQMJQALNBBV-UHFFFAOYSA-N 0.000 abstract 1
- 239000012528 membrane Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 53
- 210000004027 cell Anatomy 0.000 description 16
- 230000007423 decrease Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000002848 electrochemical method Methods 0.000 description 3
- 238000000053 physical method Methods 0.000 description 3
- BHZCMUVGYXEBMY-UHFFFAOYSA-N trilithium;azanide Chemical compound [Li+].[Li+].[Li+].[NH2-] BHZCMUVGYXEBMY-UHFFFAOYSA-N 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 238000001994 activation Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000011149 active material Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/62—Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/50—Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the present invention relates to a graphene lithium ion capacitor exhibiting high energy and high power performance using a graphene material.
- a capacitor refers to an electronic device that can store electricity in advance and charge a constant capacitance.
- the supercapacitors are the ones that focus on the performance of the capacitor, especially the capacitance. Research on supercapacitors is ongoing, and various types of supercapacitors have been reported.
- lithium ion capacitors are composed of a cathode for an electric double layer capacitor (EDLC) and a cathode for a lithium secondary battery, and have high operating voltage and large capacity. Accordingly, the lithium ion capacitor is known to have an excellent energy density compared to the electric double layer capacitor.
- EDLC electric double layer capacitor
- lithium ion capacitors are known to have the following problems.
- the energy density characteristics of a lithium ion capacitor largely depend on the specific capacitance of the anode under the conditions of the rated voltage and the lower limit voltage, and activated carbon applied as a cathode material of the lithium ion capacitor.
- the specific capacitance of the material is limited (up to around 100F / g), which limits the improvement in energy density characteristics of lithium ion capacitors.
- the output density of the lithium ion capacitor is limited by the electrode having a relatively poor output characteristics of the positive electrode and the negative electrode, the graphite material applied as the negative electrode material has a relatively low output characteristics, so the output density of the entire lithium ion capacitor Limiting improvement.
- One object of the present invention is to propose a capacitor having a structure different from that of the prior art.
- Another object of the present invention is to provide a capacitor having an improved energy density by providing a larger specific surface area than a conventional capacitor.
- the graphene lithium ion capacitor includes at least a part of an anode and a cathode formed of a graphene material; A lithium sacrificial electrode electrically connected to the cathode to provide pre-doped lithium ions to the cathode; A separator installed between the anode and the cathode; And an electrolyte coupled to the positive electrode and the negative electrode in a dissociated state with ions to allow a current to flow between the positive electrode and the negative electrode, wherein the negative electrode adsorbs lithium ions provided from the lithium sacrificial electrode to a surface of the graphene It is formed in a multi-layer structure to receive the lithium ions intercalated between the layers of, wherein at least a portion of the surface and the multi-layer structure is formed of lithium carbide by reaction with the lithium ions.
- the cathode may be formed by stacking 2 to 500 graphene layers to form the multilayer structure.
- the negative electrode is formed of a composite material in which the graphene material and the heterogeneous material are mixed, and the heterogeneous material is a) a metal that reacts with the lithium ions to form a lithium metal alloy.
- Material b) a metal oxide that reacts with the lithium ions to form a lithium metal oxide, c) a sulfide that reacts with the lithium ions to form a lithium sulfide, and d) a nitride that reacts with the lithium ions to form a lithium nitride. It may be at least one selected from the group consisting of.
- the lithium sacrificial electrode is electrically connected with the graphene material of the anode to form a galvanic cell to provide lithium ions pre-doped the cathode, and the lithium may be electrochemically reacted. Can be dissociated into ions.
- the lithium sacrificial electrode is electrically connected to the graphene material of the negative electrode to provide lithium ions pre-doped with the negative electrode, and the lithium ions by an externally applied voltage and current. Can be dissociated.
- the lithium sacrificial electrode is formed at least by a high temperature environment that is locally formed in the lithium sacrificial electrode relative to other regions of the capacitor to provide lithium ions pre-dope the cathode. Can be dissociated into lithium ions.
- the lithium sacrificial electrode is dissociated into the lithium ions by a dissolving agent injected into the capacitor to provide lithium ions pre-doped the cathode, and the dissolving agent transfers electrons to the lithium ions. It may be a donor organic molecule.
- the solubilizer may comprise a) a 5-membered or 6-membered monocyclic compound comprising hetero elements of C, N, O, Si, P or S; b) a multicyclic compound in which at least two of the rings are connected to each other; And c) a multicyclic compound in which at least two rings of the rings share at least one element with each other.
- the anode may be formed of a graphene material having a specific surface area of 100 m 2 / g or more.
- the anode may be formed to have a wrinkled shape or at least a portion thereof to prevent the reduction of specific surface area due to the relamination of graphene layers.
- the anode includes a spacer inserted between the layers to prevent the reduction of specific surface area due to the relamination of graphene layers, the spacer of the graphene layers It can be formed of a carbon material to maintain the electrical conductivity of the anode while preventing re-lamination.
- the spacer may be at least one selected from the group consisting of carbon nanotubes, carbon nanofibers, and carbon black.
- the anode may be formed through a process of being exposed to oxygen, carbon dioxide or steam to further include pores to increase the specific surface area of the graphene.
- the anode is formed through a chemical reaction with any one of an acid, a base, and a metal salt to further include pores to increase the specific surface area of the graphene, the acid , Base and metal salts may include H 3 PO 4, KOH, NaOH, K 2 CO 3 , Na 2 CO 3 , ZnCl 2 , AlCl 3 and MgCl 2 .
- the positive electrode is formed by doping heterogeneous materials to the graphene to improve the reactivity with ions dissociated in the electrolyte, the heterogeneous material is nitrogen, sulfur, oxygen, silicon and At least one selected from the group consisting of boron.
- the positive electrode is formed of a composite material in which the graphene material and the heterogeneous material are mixed so as to improve specific capacitance by redox reaction with ions dissociated in the electrolyte
- the hetero material may be at least one selected from the group consisting of metal oxides, sulfides, nitrides, MPO 4 (where M is a transition metal) and a chalcogenide material.
- At least one of the positive electrode and the negative electrode may include: a binder formed to attach the layers of the graphene to each other; And it may include a conductive material formed to limit the electrical conductivity loss by the binder.
- the binder may include Polyvinylidene Fluoride (PVDF), Polytetrafluoroethylene (PTFE), Polyvinyl Alcohol (PVA), and Styrene Butadiene (SBR).
- PVDF Polyvinylidene Fluoride
- PTFE Polytetrafluoroethylene
- PVA Polyvinyl Alcohol
- SBR Styrene Butadiene
- the conductive material may include carbon black and VGCF (Vapor Grown Carbon Fiber).
- the electrode including the binder and the conductive material of the positive electrode and the negative electrode may be formed by mixing the graphene material, the binder and the conductive material in a slurry form, and coating the slurry on a current collector.
- the electrode including the binder and the conductive material of the positive electrode and the negative electrode is mixed with the graphene material, the binder, and the conductive material to form a paste kneading sheet, and attach the paste kneading sheet to a current collector. Can be formed.
- the electrolyte may be formed by dissolving a lithium salt in an organic solvent.
- the electrolyte may be formed by dissolving a lithium salt in an ionic liquid.
- the weight ratio of the positive electrode and the negative electrode may be 0.5 to 5.
- the cathode of the multilayer structure formed by stacking the graphene layers can improve the output characteristics of the capacitor.
- the graphene anode of the multi-layer structure has a sufficient reaction site capable of reacting with lithium ions by a large specific surface area.
- the diffusion distance of the lithium ions may be shortened than that of the conventional structure, thereby improving output characteristics of the negative electrode.
- the present invention by applying a graphene material to the positive electrode can provide a capacitor with an improved energy density than the conventional structure.
- the theoretical specific surface area of graphene is 2,675 m 2 / g, and when all of them are utilized, theoretically, electric double layer specific storage capacity of 550 F / g or more can be achieved. Therefore, when the graphene material is used for the anode, it is possible to theoretically provide a capacitor having a high specific capacitance characteristic of 500F / g or more.
- the electrical conductivity of graphene is about the same as that of graphite about 2 ⁇ 10 2 S / m, it has a very high value among carbonaceous materials. Therefore, even if the conductive material is not used or used, a capacitor having a sufficiently high specific capacitance can be provided in a very small amount.
- FIG. 1 is a conceptual diagram of a graphene lithium ion capacitor according to an embodiment of the present invention, a state before pre-doping lithium ions.
- FIG. 2 is a conceptual diagram illustrating a state after pre-doping the graphene lithium ion capacitor shown in FIG. 1 with lithium ions.
- FIG. 2 is a conceptual diagram illustrating a state after pre-doping the graphene lithium ion capacitor shown in FIG. 1 with lithium ions.
- Figure 3 is a capacity-electrode potential graph to confirm the performance of the graphene lithium ion capacitor proposed in the present invention.
- 4A to 4C are capacitance-electrode potential graphs of conventional capacitors capable of comparing the performance of graphene lithium ion capacitors, respectively.
- Figure 5 is a capacity-voltage graph to confirm the performance of the graphene lithium ion capacitor proposed in the present invention.
- FIG. 6 is a capacity-cell voltage graph that can compare a graphene lithium ion capacitor with conventional capacitors.
- FIG. 1 is a conceptual diagram of a graphene lithium ion capacitor 100 according to an embodiment of the present invention, and shows a state before pre-doping lithium ions.
- the graphene lithium ion capacitor 100 includes the anodes 110 and 150, the cathodes 120 and 160, the lithium sacrificial electrode 130, and the separator ( 140) and a lithium electrolyte (not shown).
- the anodes 110 and 150 and the cathodes 120 and 160 are at least partially formed of the graphene material 110.
- Graphene is a thin film of carbon atoms, one atom thick.
- the cathodes 120 and 160 are formed in a multilayer structure in which the layers 121 of the graphene 120 are stacked, which will be described later.
- the lithium sacrificial electrode 130 is electrically connected to the cathodes 120 and 160 to provide pre-doped lithium ions to the cathodes 120 and 160.
- the lithium sacrificial electrode 130 is generally formed of lithium metal, but may be provided as long as it can provide pre-doped lithium ions to the cathodes 120 and 160, but is not necessarily limited thereto.
- the separator 140 is disposed between the anodes 110 and 150 and the cathodes 120 and 160 to separate the cathodes 110 and 150 from the cathodes 120 and 160.
- the separator 140 is formed porous to allow ions to pass through.
- the lithium electrolyte is coupled to the anodes 110 and 150 and the cathodes 120 and 160 in a state in which the lithium electrolyte is dissociated with ions so that a current flows between the cathodes 110 and 150 and the cathodes 120 and 160.
- the graphene lithium ion capacitor 100 When the graphene lithium ion capacitor 100 is charged, the negative ions dissociated in the electrolyte are combined with the positive electrodes 110 and 150, and the positive ions are combined with the negative electrodes 120 and 160.
- anions dissociated in the electrolyte are separated from the anodes 110 and 150, and cations are separated from the cathodes 120 and 160.
- the cell may have various shapes such as a coin type, a cylindrical type, a prismatic type, a pouch type, and the like.
- the cathodes 120 and 160 in the present invention adsorb lithium ions provided from the lithium sacrificial electrode 130 to the surface, and the layers 121 of the graphene 120 forming the cathodes 120 and 160. It is formed in a multi-layered structure to receive lithium ions inserted therebetween.
- the cathodes 120 and 160 are formed in a multilayer structure of the graphene layer 121, lithium ions provided from the lithium sacrificial electrode 130 are smoothly inserted between the graphene layers 121 or the graphene layer 121. Can be detached from between.
- the cathodes 120 and 160 may be formed by stacking 2 to 500 graphene layers 121.
- lithium metal is formed, and the lithium metal forms a dendrite structure as the number of charge and discharge of the capacitor increases.
- the dendritic structure provides the cause of cell short-circuits and can cause problems with the stability of the capacitor.
- the cathodes 120 and 160 are formed in a multilayer structure by stacking the graphene layers 121, and lithium ions provided from the lithium sacrificial electrode 130 are not only adsorbed onto the surface of the graphene 120. It is inserted between the graphene layers 121.
- the cathodes 120 and 160 formed of the multilayer structure of the graphene layers 121 are pre-doped with lithium ions so that at least a portion of the surface and the multilayer structure are formed of lithium carbide. If the surfaces of the cathodes 120 and 160 are formed of lithium carbide, the dendritic structure is not formed in spite of an increase in the number of charges and discharges of the capacitors 100, thereby improving stability of the capacitors 100. Therefore, the cathodes 120 and 160 formed in the multilayer structure of the graphene layer 121 may improve the reliability of the capacitor 100.
- the cathodes 120 and 160 may be formed of the graphene material 120, but may be formed of a composite material in which the graphene material 120 and the heterogeneous material are mixed.
- the heterogeneous material includes at least one selected from the group consisting of metal materials, metal oxides, sulfides and nitrides.
- the metal material reacts with lithium ions to form a lithium metal alloy.
- the composite material mixed with the graphene material 120 and the metal material is formed of lithium carbide and a lithium metal alloy when pre-doped with lithium ions.
- Metal oxides react with lithium ions to form lithium metal oxides.
- the composite material mixed with the graphene material 120 and the metal oxide is formed of lithium carbide and lithium metal oxide when pre-doped with lithium ions.
- Sulfide reacts with lithium ions to form lithium sulfide.
- the composite material mixed with the graphene material 120 and sulfide is formed of lithium carbide and lithium sulfide when pre-doped with lithium ions.
- Nitride reacts with lithium ions to form lithium nitride.
- the composite material in which the graphene material 120 and the nitride are mixed is formed of lithium carbide and lithium nitride when pre-doped with lithium ions.
- the composite materials may be used in a bulk reaction in which lithium ions are inserted into the graphene layer 121 or detachable from the graphene layer 121.
- the composites can provide additional capacity to the graphene lithium ion capacitor 100 as much as the lithium ions used in the bulk reaction.
- Two methods may be used as an electrochemical method for providing lithium ions for pre-doping the cathodes 120 and 160 from the lithium sacrificial electrode 130.
- the lithium sacrificial electrode 130 is electrically connected 170 to the graphene material 120 or the current collector 160 of the cathodes 120 and 160 to form a galvanic cell, and thus to an electrochemical reaction. By dissociation into lithium ions.
- the lithium sacrificial electrode 130 is electrically connected 170 to the graphene material 120 or the current collector 160, and an external voltage and current are applied from the lithium sacrificial electrode 130. Dissociates lithium ions.
- the physical method of providing lithium ions for pre-doping of the cathodes 120 and 160 from the lithium sacrificial electrode 130 is a high temperature locally at the lithium sacrificial electrode 130 compared to other regions of the graphene lithium ion capacitor 100. By forming an environment of the lithium ions are dissociated from the lithium sacrificial electrode 130.
- a solvent (not shown) is injected into the capacitor 100 to obtain lithium ions from the lithium sacrificial electrode 130. Dissociate.
- the solubilizer is in the form of naphthalene or NMP (N-methyl pyrrolidinone), and an organic molecule capable of donating electrons to lithium ions may be used.
- Solvents are a) 5- or 6-membered monocyclic compounds comprising heteroatoms of C, N, O, Si, P, or S, based on an Electronic Hybrid Structure, b) at least one of the rings And a multi-cyclic compound in which two rings are connected to each other, and c) at least two of the rings are selected from the group consisting of a multi-cyclic compound in which at least one element shares with each other.
- Lithium ions dissociated into the electrolyte from the lithium sacrificial electrode 130 may be provided for pre-doping the cathodes 120 and 160.
- the anodes 110 and 150 are formed of at least a portion of the graphene material 110.
- the anodes 110 and 150 may be formed of a graphene material having a specific surface area of 100 m 2 / g or more.
- the thicknesses of the cathodes 110 and 150 except for the current collector 150 may be 50 to 300 ⁇ m.
- the graphene material 100 may be formed to be flat, but at least a portion of the graphene material 100 may be formed to be wrinkled or crumpled to prevent a reduction in specific surface area due to the lamination of the graphene layers.
- the lamination of the graphene layers 111 may occur due to van der Waals interaction, and the lamination of the graphene layers 111 may reduce the specific surface area of the electrode and the capacitance of the electrode. Causes a decrease.
- the shape of the graphene layer 111 is formed in a wrinkled or crumpled shape, it is possible to prevent the lamination of the graphene layers 111 and to prevent the capacitance of the electrode from being reduced.
- the anodes 110 and 150 may further include spacers (not shown) inserted between the graphene layers 111 to prevent a reduction in specific surface area due to the relamination of the graphene layers 111.
- the spacer is disposed between the graphene layers 111 to suppress relamination of the graphene layers 111.
- the spacer may be formed of a carbon material to prevent the lamination of the graphene layers 111 and to prevent the electrical conductivity of the anodes 110 and 150 from decreasing.
- Carbon material of the spacer may be carbon nanotubes (CNT), carbon nanofibers (CNF), carbon black (Carbon Black). Since the carbon materials are materials with high electrical conductivity, the carbon materials may function as spacers without lowering the electrical conductivity even when inserted between the graphene layers. In addition, since the carbon materials have a specific surface area, when inserted between graphene layers, the carbon materials have an advantage of contributing to an increase in the specific surface area of the anodes 110 and 150.
- the anodes 110 and 150 may be formed through an activation process using a physical chemical method so as to further include pores for increasing the specific surface area of the graphene material 110.
- the activation process is a process used to manufacture active carbon, which refers to increasing specific surface area by forming pores of a material.
- a process may be selectively employed in the graphene material 110 to increase specific surface areas of the anodes 110 and 150.
- the physical method is to form pores in the graphene material 110 by exposing the graphene material 110 to oxygen, carbon dioxide or steam.
- the chemical method is to chemically react the graphene material with any one of acid, base and metal salt.
- acid, base and metal salt H 3 PO 4, KOH, NaOH, K 2 CO 3 , Na 2 CO 3 , ZnCl 2 , AlCl 3 and MgCl 2 may be used.
- Further pores may be formed on the surface of the graphene material through physical or chemical methods, thereby increasing the specific surface area of the graphene material 110.
- the anodes 110 and 150 may be formed by doping heterogeneous materials on the graphene material 110 to improve reactivity with ions dissociated in the electrolyte.
- the hetero material may be, for example, a group consisting of nitrogen (N), sulfur (S), oxygen (O), silicon (Si), and boron (B), and at least one selected from the group may be a graphene material ( Doped 110).
- the hetero material is doped into the graphene material 110, the electrical properties and reactivity of the graphene material 110 are changed to increase the reactivity with ions in the electrolyte and increase the capacity of the anodes 110 and 150.
- the anodes 110 and 150 may be formed of a composite material in which the graphene material 110 and the heterogeneous material are mixed to improve specific capacitance by redox reaction with ions dissociated in the electrolyte.
- the heterogeneous material may be, for example, a metal, an oxide, a sulfide, a nitride, an MPO 4 (where M is a transition metal), or a chalcogenide material, and at least one selected from the group is the graphene material 110 ) May be mixed.
- the heterogeneous materials accumulate using the ions of the electrolyte and the redox reaction principle therein, and the capacitance of the electrode expressed using this principle is called pseudo-capacitance.
- pseudocapacity is several times to several tens of times compared to the surface reaction of adsorption or desorption on the surface of the material of the ions. Therefore, when the cathodes 110 and 150 are formed of a composite material in which the heterogeneous materials and the graphene material 110 are mixed, it is possible to secure a relatively higher specific capacitance.
- the method of pre-doping the cathodes 120 and 160 may be applied to the anodes 110 and 150 as they are.
- the positive electrode (110, 150) in addition to pre-doping the cathode (120, 160), is pre-doped with lithium ions and the pre-doped lithium ion to the positive electrode (110, 150) when charging the capacitor 100 It can be implemented by a method of moving from the anode (110, 150) to the cathode (120, 160). Accordingly, the electrochemical, physical, and chemical methods of predoping the cathodes 120 and 160 may also be applied to the predoping of the anodes 110 and 150.
- At least one of the anodes 110 and 150 and the cathodes 120 and 160 may include a binder (not shown) and a conductive material (not shown).
- the binder is formed to adhere the layers of graphene to each other.
- the conductive material is formed to limit the electrical conductivity loss by the addition of the binder.
- the binder PVDF (Polyvinylidene Fluoride), PTFE (Polytetrafluoroethylene), PVA (Polyvinyl Alcohol), SBR (Styrene Butadiene) and the like may be used.
- the conductive material carbon black and VGCF (Vapor Grown Carbon Fiber) may be used.
- the first method is to mix the graphene material (110, 120), the binder and the conductive material in the form of a slurry, and to coat the slurry on the current collector to form the positive electrode (110, 150) or the negative electrode (120, 160).
- a paste kneading sheet is formed by mixing the graphene materials 110 and 120, a binder, and a conductive material, and attaching the paste kneading sheet to a current collector to form a positive electrode 110 or 150 or a negative electrode. To form 120 and 160.
- the method of forming the paste kneading sheet can be used when producing a thick electrode of 100 mu m or more.
- the weight ratio of the anodes 110 and 150 to the cathodes 120 and 160 preferably has a value between 0.5 and 5.
- the energy density of the cell in the graphene lithium ion capacitor 100 depends on the weight ratio of the anodes 110 and 150 and the cathodes 120 and 160, and for optimum performance, the anodes 110 and 150 and the cathode 120,
- the weight ratio of 160 should be designed to have a value between 0.5 and 5.
- the electrolyte may be formed by dissolving lithium salt in an organic solvent, or may be formed by dissolving lithium salt in an ionic liquid.
- the lithium salt may be LiPF 6 .
- the organic solvent may be ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC).
- the electrolyte may be formed by dissolving LiPF 6 in an organic solvent such as EC, DEC, or DMC.
- the voltage of the cell cannot be increased by more than 4V, but since the ionic liquid is stable even at a high voltage of 4V or more, the voltage of the cell can be increased by 4V or more.
- the energy density of the cell increases as the voltage of the cell increases.
- FIG. 2 is a conceptual diagram illustrating a state after pre-doping the graphene lithium ion 131 capacitor 100 illustrated in FIG. 1 with lithium ions 131.
- FIG. 1 illustrates a state before the pre-doping of the cathodes 120 and 160
- FIG. 2 illustrates a state after the pre-doping of the cathodes 120 and 160.
- FIG. 1 when the lithium sacrificial electrode 130 is electrically connected to the current collectors 160 of the cathodes 120 and 160 and electric energy is applied from the outside, lithium ions (eg, 131 is dissociated.
- lithium ions 131 are adsorbed on the surfaces of the cathodes 120 and 160 formed in the multilayer structure of the graphene layers 121, and are inserted between the graphene layers 121.
- the capacity of the capacitor 100 may be increased.
- Anions 115 are adsorbed to the anodes 110 and 150.
- the anodes 110 and 150 are formed in a crumpled shape to prevent relamination, and negative ions 115 are adsorbed onto the surface of the graphene material.
- the graphene lithium ion 131 capacitor 100 repeats charging and discharging in the state of FIG. 2.
- the anion 115 inside the electrolyte is adsorbed on the surface of the graphene layer 111 of the anodes 110 and 150, and the lithium ions 131 are graphene material 120 of the cathodes 120 and 160. It is inserted between the surface and the graphene layer 121 of.
- the anions 115 and the lithium ions 131 are separated from the anodes 110 and 150 and the cathodes 120 and 160, respectively.
- the charging and discharging of the graphene lithium ion 131 capacitor 100 may be performed by the anion 115 and the lithium ion 131 being coupled to or detached from the anodes 110 and 150 and the cathodes 120 and 160, respectively. It's a repetition.
- the cathodes 120 and 160 having the multilayer structure formed by stacking the graphene layers 121 may improve the output characteristics of the capacitor 100.
- the graphene material 120 having a multi-layer structure has sufficient reaction sites capable of reacting with the lithium ions 131 by a large specific surface area.
- the diffusion distance of the lithium ions 131 may be shorter than that of the conventional structure. ) Can improve the output characteristics.
- the graphene material 110 may also be applied to the anodes 110 and 150 to provide a capacitor 100 having an improved energy density than the conventional structure.
- the theoretical specific surface area of the graphene material 110 is 2,675 m2 / g, and when using all of them can theoretically implement an electrical double layer specific storage capacity of 550F / g or more. Accordingly, when the graphene material is used for the anodes 110 and 150, the capacitor 100 may have a high specific capacitance characteristic of 500 F / g or more in theory.
- FIG. 3 is a capacitance-electrode potential graph for confirming the performance of the graphene lithium ion capacitor proposed in the present invention.
- the capacitor is in a state where the voltage difference between the positive electrode and the negative electrode is different by the lower limit voltage of the capacitor before charging, and when charging starts, the potential of the positive electrode increases and the potential of the negative electrode begins to decrease.
- the potential of the anode increases relatively linearly. If the charging of the capacitor is completed and the discharge is in progress, the potential of the anode will decrease linearly again to return to the potential before starting charging.
- the width decreases steeply and then gradually decreases relatively. Compared with the case where the potential of the cathode decreases linearly, it can be confirmed that a relatively larger capacity can be obtained.
- the potential difference between the positive electrode and the negative electrode indicates the cell's rated voltage when the charge is completed, and the higher the potential difference is, the higher the rated voltage is, which indicates that the capacitor has excellent performance in terms of cell voltage.
- 4A to 4C are capacitance-electrode potential graphs of conventional capacitors capable of comparing the performance of graphene lithium ion capacitors, respectively.
- Figure 4a shows an electric double layer capacitor using activated carbon.
- 4b shows an electric double layer capacitor using graphene.
- 4C shows a lithium ion capacitor.
- FIG. 3 which shows the effect of the present invention, has a larger voltage and greater capacity than cells of FIGS. 4A to 4C. Can be.
- Graphene lithium ion capacity can set the voltage of the cell (potential difference between the positive electrode and the negative electrode) to 4V or more, and the voltage of the cell decreases to increase the capacity. Area in the graph represents energy.
- FIG. 6 is a capacity-cell voltage graph that can compare a graphene lithium ion capacitor with conventional capacitors.
- FIG. 6 shows an electric double layer capacitor using activated carbon.
- (b) shows an electric double layer capacitor using graphene.
- (c) shows a lithium ion capacitor.
- (d) shows the graphene lithium ion capacitor proposed by the present invention.
- the present invention is a capacitor of a relatively larger energy than the capacitors of (a) to (c).
- the graphene lithium ion capacitor described above is not limited to the configuration and method of the above-described embodiments, but the embodiments may be configured by selectively combining all or some of the embodiments so that various modifications can be made. have.
- the present invention can be variously used in the industrial field that requires a capacitor having a high energy and high output performance.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
Claims (24)
- 적어도 일부가 그래핀 소재로 형성되는 양극 및 음극;상기 음극에 프리 도핑 리튬 이온을 제공하도록 상기 음극과 전기적으로 연결되는 리튬 희생 전극;상기 양극과 음극 사이에 설치되는 분리막; 및이온으로 해리된 상태에서 상기 양극과 음극에 결합되어 상기 양극과 음극 사이에 전류를 흐르게 하는 전해질을 포함하고,상기 음극은, 상기 리튬 희생 전극으로부터 제공되는 리튬 이온을 표면에 흡착시키고 상기 그래핀의 레이어들 사이에 삽입되는 상기 리튬 이온을 수용하도록 다층 구조로 형성되며, 상기 리튬 이온과의 반응에 의해 상기 표면과 상기 다층 구조의 적어도 일부가 리튬 탄화물로 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 음극은, 상기 다층 구조를 형성하도록 2~500층의 그래핀 레이어가 적층되어 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 음극은, 상기 그래핀 소재와 이종소재를 혼합한 복합소재로 형성되고,상기 이종소재는,a) 상기 리튬 이온과 반응하여 리튬 금속 합금을 형성하는 금속 소재,b) 상기 리튬 이온과 반응하여 리튬 금속 산화물을 형성하는 금속 산화물,c) 상기 리튬 이온과 반응하여 리튬 황화물을 형성하는 황화물, 및d) 상기 리튬 이온과 반응하여 리튬 질화물을 형성하는 질화물로 이루어진 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 리튬 희생 전극은 상기 음극을 프리 도핑하는 리튬 이온을 제공하도록, 상기 음극의 그래핀 소재와 전기적으로 연결되어 갈바닉셀을 형성하며 전기화학반응에 의해 상기 리튬 이온으로 해리되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 리튬 희생 전극은 상기 음극을 프리 도핑하는 리튬 이온을 제공하도록, 상기 음극의 그래핀 소재와 전기적으로 연결되며 외부에서 인가되는 전압 및 전류에 의하여 상기 리튬 이온으로 해리되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 리튬 희생 전극은 상기 음극을 프리 도핑하는 리튬 이온을 제공하도록, 상기 커패시터의 다른 영역에 비해 상기 리튬 희생 전극에 국부적으로 형성되는 고온의 환경에 의해 적어도 상기 리튬 이온으로 해리되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 리튬 희생 전극은 상기 음극을 프리 도핑하는 리튬 이온을 제공하도록 상기 커패시터에 주입되는 용해제에 의해 상기 리튬 이온으로 해리되고,상기 용해제는 상기 리튬 이온에 전자를 공여하는 유기분자인 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제7항에 있어서,상기 용해제는a) C, N, O, Si, P 또는 S의 이종원소를 포함하는 5원 또는 6원 단일 고리형 화합물;b) 고리들 중 적어도 두 개의 고리가 서로 이어진 다중 고리형 화합물; 및c) 고리들 중 적어도 두 개의 고리가 적어도 하나의 원소를 서로 공유하는 다중 고리형 화합물;로 이루어진 군으로부터 선택되어 조합되는 단일 분자 화합물인 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 양극은 비표면적 100㎡/g 이상의 그래핀 소재로 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 양극은 그래핀 레이어들의 재적층에 의한 비표면적 감소를 방지하도록 적어도 일부가 주름지거나 구겨진 형태로 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 양극은 그래핀 레이어들의 재적층에 의한 비표면적 감소를 방지하도록 상기 레이어들 사이에 삽입되는 스페이서를 포함하고,상기 스페이서는 상기 그래핀 레이어들의 재적층을 방지하면서 상기 양극의 전기전도도를 유지시키도록 탄소소재로 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제11항에 있어서,상기 스페이서는 탄소나노튜브, 탄소나노섬유, 카본블랙으로 이루어진 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 양극은 상기 그래핀의 비표면적을 증가시키는 기공을 추가로 구비하도록 산소, 이산화탄소 또는 증기에 노출되는 과정을 거쳐 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 양극은 상기 그래핀의 비표면적을 증가시키는 기공을 추가로 구비하도록 산, 염기 및 금속염 중 어느 하나와 화학반응을 거쳐 형성되고,상기 산, 염기 및 금속염은 H3PO4, KOH, NaOH, K2CO3, Na2CO3, ZnCl2, AlCl3 및 MgCl2를 포함하는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 양극은 상기 전해질에 해리된 이온과의 반응성을 향상시키도록 상기 그래핀에 이종소재를 도핑시켜 형성되며,상기 이종소재는 질소, 황, 산소, 실리콘 및 붕소로 이루어진 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 양극은, 상기 전해질에 해리된 이온과의 산화환원반응에 의해 비축전용량을 향상시키도록 상기 그래핀 소재와 이종소재를 혼합한 복합소재로 형성되고,상기 이종소재는, 금속 산화물, 황화물, 질화물, MPO4(여기서 M은 전이금속), 칼코겐족 소재로 이루어진 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 양극 및 음극 중 적어도 하나는,상기 그래핀의 레이어들을 서로 부착시키도록 형성되는 바인더; 및상기 바인더에 의한 전기전도도 손실을 제한하도록 형성되는 도전재를 포함하는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제17항에 있어서,상기 바인더는,PVDF(Polyvinylidene Fluoride), PTFE(Polytetrafluoroethylene), PVA(Polyvinyl Alcohol) 및 SBR(Styrene Butadiene)을 포함하는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제17항에 있어서,상기 도전재는 카본 블랙 및 VGCF(Vapor Grown Carbon Fiber)를 포함하는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제17항에 있어서,상기 양극 및 음극 중 상기 바인더와 도전재를 포함하는 전극은,상기 그래핀 소재, 상기 바인더 및 도전재를 슬러리 형태로 혼합하고, 상기 슬러리를 집전체에 코팅하여 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제17항에 있어서,상기 양극 및 음극 중 상기 바인더와 도전재를 포함하는 전극은,상기 그래핀 소재, 상기 바인더 및 도전재를 혼합하여 페이스트 니딩 시트를 형성하고, 상기 페이스트 니딩 시트를 집전체에 부착시켜 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 전해질은 리튬염을 유기용매에 용해시켜 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 전해질은 리튬염을 이온성 액체에 용해시켜 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
- 제1항에 있어서,상기 양극과 상기 음극의 무게비는 0.5~5인 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14749115.3A EP2958122A4 (en) | 2013-02-08 | 2014-02-07 | Graphene lithium ion capacitor |
CN201480007959.6A CN104981885A (zh) | 2013-02-08 | 2014-02-07 | 石墨烯锂离子电容器 |
JP2015556873A JP2016509757A (ja) | 2013-02-08 | 2014-02-07 | グラフェンリチウムイオンキャパシタ |
KR1020157021143A KR101778541B1 (ko) | 2013-02-08 | 2014-02-07 | 그래핀 리튬 이온 커패시터 |
US14/765,536 US20150380176A1 (en) | 2013-02-08 | 2014-02-07 | Graphene lithium ion capacitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361762334P | 2013-02-08 | 2013-02-08 | |
US61/762,334 | 2013-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014123385A1 true WO2014123385A1 (ko) | 2014-08-14 |
Family
ID=51299929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/001055 WO2014123385A1 (ko) | 2013-02-08 | 2014-02-07 | 그래핀 리튬 이온 커패시터 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150380176A1 (ko) |
EP (1) | EP2958122A4 (ko) |
JP (1) | JP2016509757A (ko) |
KR (1) | KR101778541B1 (ko) |
CN (1) | CN104981885A (ko) |
WO (1) | WO2014123385A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105006268A (zh) * | 2015-06-19 | 2015-10-28 | 周焕民 | 一种固相石墨烯导电分散体的制备方法 |
JP2016225412A (ja) * | 2015-05-28 | 2016-12-28 | Jsr株式会社 | 蓄電デバイス |
WO2017065963A1 (en) * | 2015-10-13 | 2017-04-20 | Nanotek Instruments, Inc. | Continuous process for producing electrodes for supercapacitors having high energy densities |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104125925A (zh) | 2011-12-21 | 2014-10-29 | 加州大学评议会 | 互连波纹状碳基网络 |
ES2934222T3 (es) | 2012-03-05 | 2023-02-20 | Univ California | Condensador con electrodos hechos de una red a base de carbono corrugado interconectado |
US9552930B2 (en) | 2015-01-30 | 2017-01-24 | Corning Incorporated | Anode for lithium ion capacitor |
US9779885B2 (en) | 2012-11-09 | 2017-10-03 | Corning Incorporated | Method of pre-doping a lithium ion capacitor |
US9640332B2 (en) * | 2013-12-20 | 2017-05-02 | Intel Corporation | Hybrid electrochemical capacitor |
CA2952233C (en) | 2014-06-16 | 2023-07-25 | The Regents Of The University Of California | Hybrid electrochemical cell |
AU2015349949B2 (en) | 2014-11-18 | 2019-07-25 | The Regents Of The University Of California | Porous interconnected corrugated carbon-based network (ICCN) composite |
US9672992B2 (en) | 2015-01-30 | 2017-06-06 | Corning Incorporated | Coke sourced anode for lithium ion capacitor |
US9607778B2 (en) | 2015-01-30 | 2017-03-28 | Corning Incorporated | Poly-vinylidene difluoride anode binder in a lithium ion capacitor |
US9679704B2 (en) | 2015-01-30 | 2017-06-13 | Corning Incorporated | Cathode for a lithium ion capacitor |
US9911545B2 (en) | 2015-01-30 | 2018-03-06 | Corning Incorporated | Phenolic resin sourced carbon anode in a lithium ion capacitor |
US10014704B2 (en) | 2015-01-30 | 2018-07-03 | Corning Incorporated | Integrated energy and power device |
AU2016378400B2 (en) | 2015-12-22 | 2021-08-12 | The Regents Of The University Of California | Cellular graphene films |
IL260398B (en) | 2016-01-22 | 2022-08-01 | Univ California | high voltage devices |
EP3435392B1 (en) | 2016-03-22 | 2020-08-19 | National Institute for Materials Science | Method for producing laminate of graphenes and carbon nanotubes, electrode material formed of laminate of graphenes and carbon nanotubes, and electric double layer capacitor using same |
KR102361374B1 (ko) | 2016-03-23 | 2022-02-09 | 나노테크 에너지, 인크. | 고전압 및 태양 응용분야를 위한 디바이스 및 방법 |
KR101771000B1 (ko) * | 2016-04-14 | 2017-08-24 | 한국세라믹기술원 | 유연성을 갖는 울트라커패시터 전극의 제조방법 및 상기 울트라커패시터 전극을 적용한 울트라커패시터 |
KR20170124700A (ko) | 2016-05-03 | 2017-11-13 | 한국세라믹기술원 | 리튬-황 울트라커패시터 및 그 제조방법 |
KR102535218B1 (ko) * | 2016-08-31 | 2023-05-22 | 더 리전트 오브 더 유니버시티 오브 캘리포니아 | 탄소-계 물질을 포함하는 장치 및 그의 제조 |
US11108045B2 (en) | 2016-10-24 | 2021-08-31 | Northwestern University | Host material for stabilizing lithium metal electrode, and fabricating method and applications of same |
WO2018140451A1 (en) * | 2017-01-24 | 2018-08-02 | Sabic Global Technologies B.V. | Multi-layered graphene material having a plurality of yolk/shell structures |
CN110249401A (zh) * | 2017-02-13 | 2019-09-17 | 国立研究开发法人物质材料研究机构 | 锂离子电容器 |
KR102115602B1 (ko) * | 2017-06-21 | 2020-05-26 | 주식회사 엘지화학 | 리튬 이차전지 |
WO2018236166A1 (ko) * | 2017-06-21 | 2018-12-27 | 주식회사 엘지화학 | 리튬 이차전지 |
KR102629047B1 (ko) * | 2018-05-02 | 2024-01-23 | 가부시키가이샤 제이텍트 | 알칼리 금속 이온 커패시터 |
CN108878173A (zh) * | 2018-05-25 | 2018-11-23 | 中国电子科技集团公司第十八研究所 | 一种石墨烯正极片异质结掺杂的制备方法 |
KR102628054B1 (ko) * | 2019-04-10 | 2024-01-25 | 한국전력공사 | 슈퍼커패시터용 분리막, 이의 제조방법 및 이를 포함하는 슈퍼커패시터 |
CN113540448A (zh) * | 2021-06-30 | 2021-10-22 | 广东邦普循环科技有限公司 | 一种预锂化石墨烯及其制备方法和应用 |
CN114944286A (zh) * | 2022-05-17 | 2022-08-26 | 中国电子科技集团公司第十八研究所 | 一种石墨烯基正极材料的电化学活化方法及锂离子电容器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003073929A (ja) * | 2001-08-29 | 2003-03-12 | Gsi Creos Corp | 気相成長法による炭素繊維、リチウム二次電池用電極材およびリチウム二次電池 |
JP2007305475A (ja) * | 2006-05-12 | 2007-11-22 | Fdk Corp | 蓄電装置および蓄電セル |
JP2011077156A (ja) * | 2009-09-29 | 2011-04-14 | Nissin Electric Co Ltd | 蓄電デバイス |
KR101137723B1 (ko) * | 2010-11-15 | 2012-04-24 | 비나텍주식회사 | 탄소가 코팅된 집전체를 이용한 리튬이온 커패시터 셀 및 그 제조방법 |
KR101199538B1 (ko) * | 2011-08-22 | 2012-11-12 | 삼화콘덴서공업주식회사 | 하이브리드 커패시터 |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007294539A (ja) * | 2006-04-21 | 2007-11-08 | Advanced Capacitor Technologies Inc | リチウムイオンハイブリッドキャパシタ |
JP4928824B2 (ja) * | 2006-05-02 | 2012-05-09 | Fdk株式会社 | リチウムイオン蓄電素子の製造方法 |
WO2007132896A1 (ja) * | 2006-05-16 | 2007-11-22 | Ube Industries, Ltd. | 蓄電デバイスおよび蓄電システム |
JP2008010682A (ja) * | 2006-06-29 | 2008-01-17 | Equos Research Co Ltd | 非対称型キャパシタ |
JP4971729B2 (ja) * | 2006-09-04 | 2012-07-11 | 富士重工業株式会社 | リチウムイオンキャパシタ |
JP2008066053A (ja) * | 2006-09-06 | 2008-03-21 | Fuji Heavy Ind Ltd | 蓄電デバイス用負極活物質およびその製造方法 |
JP2008177346A (ja) * | 2007-01-18 | 2008-07-31 | Sanyo Electric Co Ltd | エネルギー貯蔵デバイス |
JP5481748B2 (ja) * | 2007-12-12 | 2014-04-23 | 新日鉄住金化学株式会社 | 炭素ナノ構造体、金属内包樹状炭素ナノ構造物の作製方法、及び炭素ナノ構造体の作製方法 |
KR20100028356A (ko) * | 2008-09-04 | 2010-03-12 | 한국과학기술연구원 | 전이금속 산화물/다층벽 탄소나노튜브 나노복합체 및 이의 제조방법 |
WO2011021570A1 (ja) * | 2009-08-17 | 2011-02-24 | 宇部興産株式会社 | 非水電解液及びそれを用いた電気化学素子 |
US9640334B2 (en) * | 2010-01-25 | 2017-05-02 | Nanotek Instruments, Inc. | Flexible asymmetric electrochemical cells using nano graphene platelet as an electrode material |
JP5604982B2 (ja) * | 2010-05-26 | 2014-10-15 | アイシン精機株式会社 | リチウムイオンキャパシタ用負極材料、その製造方法およびリチウムイオンキャパシタ |
KR101138502B1 (ko) * | 2010-08-27 | 2012-04-25 | 삼성전기주식회사 | 리튬 이온 커패시터의 제조 방법 |
TW201212353A (en) * | 2010-09-01 | 2012-03-16 | Chien-Min Sung | Li-ion battery |
KR101139426B1 (ko) * | 2010-09-28 | 2012-04-27 | 한국에너지기술연구원 | 리튬 이온 커패시터 |
JP2012114374A (ja) * | 2010-11-26 | 2012-06-14 | Taiyo Yuden Co Ltd | 電気化学デバイス |
CN102485647B (zh) * | 2010-12-02 | 2013-10-30 | 中国科学院上海硅酸盐研究所 | 一种硼掺杂石墨烯的制备方法 |
CN103237755B (zh) * | 2010-12-02 | 2016-01-13 | 独立行政法人物质·材料研究机构 | 碳纳米管连接的石墨烯片膜和其制造方法及使用其的石墨烯片电容器 |
US9166252B2 (en) * | 2010-12-23 | 2015-10-20 | Nanotek Instruments, Inc. | Surface-controlled lithium ion-exchanging energy storage device |
US8889298B2 (en) * | 2011-08-30 | 2014-11-18 | Nanotek Instruments, Inc. | Surface-mediated lithium ion-exchanging energy storage device |
WO2012087698A1 (en) * | 2010-12-23 | 2012-06-28 | Nanotek Instruments, Inc. | Surface-mediated lithium ion-exchanging energy storage device |
CN102167310B (zh) * | 2011-01-30 | 2013-02-06 | 黑龙江大学 | 水热法制备氮掺杂石墨烯材料的方法 |
US8551650B2 (en) * | 2011-05-12 | 2013-10-08 | Northwestern University | Graphene materials having randomly distributed two-dimensional structural defects |
US20120300366A1 (en) * | 2011-05-27 | 2012-11-29 | Samsung Electro-Mechanics Co., Ltd. | Method for pre-doping anode and lithium ion capacitor storage device including the same |
JP2012256694A (ja) * | 2011-06-08 | 2012-12-27 | Taiyo Yuden Co Ltd | リチウムイオンキャパシタ |
US9218916B2 (en) * | 2011-06-24 | 2015-12-22 | Semiconductor Energy Laboratory Co., Ltd. | Graphene, power storage device, and electric device |
CN105174252B (zh) * | 2011-06-24 | 2018-12-14 | 株式会社半导体能源研究所 | 多层石墨烯及蓄电装置 |
KR20130007320A (ko) * | 2011-06-30 | 2013-01-18 | 삼성전기주식회사 | 리튬판, 전극의 리튬화 방법 및 에너지 저장장치 |
KR101371288B1 (ko) * | 2011-12-22 | 2014-03-07 | 이화여자대학교 산학협력단 | 망간 산화물/그래핀 나노복합체 및 이의 제조 방법 |
US20130171502A1 (en) | 2011-12-29 | 2013-07-04 | Guorong Chen | Hybrid electrode and surface-mediated cell-based super-hybrid energy storage device containing same |
US8895189B2 (en) * | 2012-02-03 | 2014-11-25 | Nanotek Instruments, Inc. | Surface-mediated cells with high power density and high energy density |
US9484158B2 (en) | 2012-02-17 | 2016-11-01 | The Trustees Of Princeton University | Graphene-ionic liquid composites |
US9300002B2 (en) * | 2012-03-03 | 2016-03-29 | Illinois Institute Of Technology | Three-dimensional supercapacitors and batteries with high energy densities |
US9738526B2 (en) * | 2012-09-06 | 2017-08-22 | The Trustees Of The Stevens Institute Of Technology | Popcorn-like growth of graphene-carbon nanotube multi-stack hybrid three-dimensional architecture for energy storage devices |
-
2014
- 2014-02-07 JP JP2015556873A patent/JP2016509757A/ja active Pending
- 2014-02-07 EP EP14749115.3A patent/EP2958122A4/en not_active Withdrawn
- 2014-02-07 KR KR1020157021143A patent/KR101778541B1/ko active IP Right Grant
- 2014-02-07 CN CN201480007959.6A patent/CN104981885A/zh active Pending
- 2014-02-07 WO PCT/KR2014/001055 patent/WO2014123385A1/ko active Application Filing
- 2014-02-07 US US14/765,536 patent/US20150380176A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003073929A (ja) * | 2001-08-29 | 2003-03-12 | Gsi Creos Corp | 気相成長法による炭素繊維、リチウム二次電池用電極材およびリチウム二次電池 |
JP2007305475A (ja) * | 2006-05-12 | 2007-11-22 | Fdk Corp | 蓄電装置および蓄電セル |
JP2011077156A (ja) * | 2009-09-29 | 2011-04-14 | Nissin Electric Co Ltd | 蓄電デバイス |
KR101137723B1 (ko) * | 2010-11-15 | 2012-04-24 | 비나텍주식회사 | 탄소가 코팅된 집전체를 이용한 리튬이온 커패시터 셀 및 그 제조방법 |
KR101199538B1 (ko) * | 2011-08-22 | 2012-11-12 | 삼화콘덴서공업주식회사 | 하이브리드 커패시터 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016225412A (ja) * | 2015-05-28 | 2016-12-28 | Jsr株式会社 | 蓄電デバイス |
CN105006268A (zh) * | 2015-06-19 | 2015-10-28 | 周焕民 | 一种固相石墨烯导电分散体的制备方法 |
WO2017065963A1 (en) * | 2015-10-13 | 2017-04-20 | Nanotek Instruments, Inc. | Continuous process for producing electrodes for supercapacitors having high energy densities |
Also Published As
Publication number | Publication date |
---|---|
CN104981885A (zh) | 2015-10-14 |
EP2958122A4 (en) | 2017-06-07 |
US20150380176A1 (en) | 2015-12-31 |
KR101778541B1 (ko) | 2017-09-18 |
EP2958122A1 (en) | 2015-12-23 |
KR20150117261A (ko) | 2015-10-19 |
JP2016509757A (ja) | 2016-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014123385A1 (ko) | 그래핀 리튬 이온 커패시터 | |
WO2014014274A1 (ko) | 탄소-실리콘 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질 | |
WO2019108039A2 (ko) | 음극 및 이를 포함하는 이차전지 | |
WO2017131377A1 (ko) | 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지 | |
WO2015041450A1 (ko) | 다공성 실리콘계 음극 활물질 및 이를 포함하는 리튬 이차전지 | |
WO2014116029A1 (ko) | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 | |
WO2019132394A1 (ko) | 리튬-황 전지용 바인더, 이를 포함하는 양극 및 리튬-황 전지 | |
WO2016137147A1 (ko) | 이차 전지용 분리막, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지 | |
WO2019088475A1 (ko) | 황-탄소 복합체 및 이를 포함하는 리튬-황 전지 | |
WO2007052742A1 (ja) | 蓄電素子 | |
WO2018217071A1 (ko) | 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지 | |
WO2019093709A1 (ko) | 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법 | |
WO2018194345A1 (ko) | 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법 | |
WO2022164107A1 (ko) | 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지 | |
WO2016010403A1 (ko) | 리튬 공기 전지, 및 그 제조 방법 | |
WO2019009560A1 (ko) | 전극 및 이를 포함하는 리튬 이차전지 | |
WO2022086098A1 (ko) | 그래핀-실리콘 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2022045852A1 (ko) | 음극 및 상기 음극을 포함하는 이차 전지 | |
WO2019022358A1 (ko) | 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지 | |
WO2019083257A1 (ko) | 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지 | |
WO2020226329A1 (ko) | 촉매점이 도입된 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지 | |
WO2023008783A1 (ko) | 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지 | |
WO2019125024A1 (ko) | 리튬이차전지용 음극, 이의 제조방법 및 이를 포함한 리튬이차전지 | |
WO2022086026A1 (ko) | 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2020226330A1 (ko) | 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14749115 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14765536 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157021143 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2015556873 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014749115 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |