WO2014123385A1 - 그래핀 리튬 이온 커패시터 - Google Patents

그래핀 리튬 이온 커패시터 Download PDF

Info

Publication number
WO2014123385A1
WO2014123385A1 PCT/KR2014/001055 KR2014001055W WO2014123385A1 WO 2014123385 A1 WO2014123385 A1 WO 2014123385A1 KR 2014001055 W KR2014001055 W KR 2014001055W WO 2014123385 A1 WO2014123385 A1 WO 2014123385A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
lithium
lithium ion
ion capacitor
ions
Prior art date
Application number
PCT/KR2014/001055
Other languages
English (en)
French (fr)
Inventor
서훈
박기훈
김광헌
김일환
양광석
이재석
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201480007959.6A priority Critical patent/CN104981885A/zh
Priority to KR1020157021143A priority patent/KR101778541B1/ko
Priority to EP14749115.3A priority patent/EP2958122A4/en
Priority to US14/765,536 priority patent/US20150380176A1/en
Priority to JP2015556873A priority patent/JP2016509757A/ja
Publication of WO2014123385A1 publication Critical patent/WO2014123385A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a graphene lithium ion capacitor exhibiting high energy and high power performance using a graphene material.
  • a capacitor refers to an electronic device that can store electricity in advance and charge a constant capacitance.
  • the supercapacitors are the ones that focus on the performance of the capacitor, especially the capacitance. Research on supercapacitors is ongoing, and various types of supercapacitors have been reported.
  • lithium ion capacitors are composed of a cathode for an electric double layer capacitor (EDLC) and a cathode for a lithium secondary battery, and have high operating voltage and large capacity. Accordingly, the lithium ion capacitor is known to have an excellent energy density compared to the electric double layer capacitor.
  • EDLC electric double layer capacitor
  • lithium ion capacitors are known to have the following problems.
  • the energy density characteristics of a lithium ion capacitor largely depend on the specific capacitance of the anode under the conditions of the rated voltage and the lower limit voltage, and activated carbon applied as a cathode material of the lithium ion capacitor.
  • the specific capacitance of the material is limited (up to around 100F / g), which limits the improvement in energy density characteristics of lithium ion capacitors.
  • the output density of the lithium ion capacitor is limited by the electrode having a relatively poor output characteristics of the positive electrode and the negative electrode, the graphite material applied as the negative electrode material has a relatively low output characteristics, so the output density of the entire lithium ion capacitor Limiting improvement.
  • One object of the present invention is to propose a capacitor having a structure different from that of the prior art.
  • Another object of the present invention is to provide a capacitor having an improved energy density by providing a larger specific surface area than a conventional capacitor.
  • the graphene lithium ion capacitor includes at least a part of an anode and a cathode formed of a graphene material; A lithium sacrificial electrode electrically connected to the cathode to provide pre-doped lithium ions to the cathode; A separator installed between the anode and the cathode; And an electrolyte coupled to the positive electrode and the negative electrode in a dissociated state with ions to allow a current to flow between the positive electrode and the negative electrode, wherein the negative electrode adsorbs lithium ions provided from the lithium sacrificial electrode to a surface of the graphene It is formed in a multi-layer structure to receive the lithium ions intercalated between the layers of, wherein at least a portion of the surface and the multi-layer structure is formed of lithium carbide by reaction with the lithium ions.
  • the cathode may be formed by stacking 2 to 500 graphene layers to form the multilayer structure.
  • the negative electrode is formed of a composite material in which the graphene material and the heterogeneous material are mixed, and the heterogeneous material is a) a metal that reacts with the lithium ions to form a lithium metal alloy.
  • Material b) a metal oxide that reacts with the lithium ions to form a lithium metal oxide, c) a sulfide that reacts with the lithium ions to form a lithium sulfide, and d) a nitride that reacts with the lithium ions to form a lithium nitride. It may be at least one selected from the group consisting of.
  • the lithium sacrificial electrode is electrically connected with the graphene material of the anode to form a galvanic cell to provide lithium ions pre-doped the cathode, and the lithium may be electrochemically reacted. Can be dissociated into ions.
  • the lithium sacrificial electrode is electrically connected to the graphene material of the negative electrode to provide lithium ions pre-doped with the negative electrode, and the lithium ions by an externally applied voltage and current. Can be dissociated.
  • the lithium sacrificial electrode is formed at least by a high temperature environment that is locally formed in the lithium sacrificial electrode relative to other regions of the capacitor to provide lithium ions pre-dope the cathode. Can be dissociated into lithium ions.
  • the lithium sacrificial electrode is dissociated into the lithium ions by a dissolving agent injected into the capacitor to provide lithium ions pre-doped the cathode, and the dissolving agent transfers electrons to the lithium ions. It may be a donor organic molecule.
  • the solubilizer may comprise a) a 5-membered or 6-membered monocyclic compound comprising hetero elements of C, N, O, Si, P or S; b) a multicyclic compound in which at least two of the rings are connected to each other; And c) a multicyclic compound in which at least two rings of the rings share at least one element with each other.
  • the anode may be formed of a graphene material having a specific surface area of 100 m 2 / g or more.
  • the anode may be formed to have a wrinkled shape or at least a portion thereof to prevent the reduction of specific surface area due to the relamination of graphene layers.
  • the anode includes a spacer inserted between the layers to prevent the reduction of specific surface area due to the relamination of graphene layers, the spacer of the graphene layers It can be formed of a carbon material to maintain the electrical conductivity of the anode while preventing re-lamination.
  • the spacer may be at least one selected from the group consisting of carbon nanotubes, carbon nanofibers, and carbon black.
  • the anode may be formed through a process of being exposed to oxygen, carbon dioxide or steam to further include pores to increase the specific surface area of the graphene.
  • the anode is formed through a chemical reaction with any one of an acid, a base, and a metal salt to further include pores to increase the specific surface area of the graphene, the acid , Base and metal salts may include H 3 PO 4, KOH, NaOH, K 2 CO 3 , Na 2 CO 3 , ZnCl 2 , AlCl 3 and MgCl 2 .
  • the positive electrode is formed by doping heterogeneous materials to the graphene to improve the reactivity with ions dissociated in the electrolyte, the heterogeneous material is nitrogen, sulfur, oxygen, silicon and At least one selected from the group consisting of boron.
  • the positive electrode is formed of a composite material in which the graphene material and the heterogeneous material are mixed so as to improve specific capacitance by redox reaction with ions dissociated in the electrolyte
  • the hetero material may be at least one selected from the group consisting of metal oxides, sulfides, nitrides, MPO 4 (where M is a transition metal) and a chalcogenide material.
  • At least one of the positive electrode and the negative electrode may include: a binder formed to attach the layers of the graphene to each other; And it may include a conductive material formed to limit the electrical conductivity loss by the binder.
  • the binder may include Polyvinylidene Fluoride (PVDF), Polytetrafluoroethylene (PTFE), Polyvinyl Alcohol (PVA), and Styrene Butadiene (SBR).
  • PVDF Polyvinylidene Fluoride
  • PTFE Polytetrafluoroethylene
  • PVA Polyvinyl Alcohol
  • SBR Styrene Butadiene
  • the conductive material may include carbon black and VGCF (Vapor Grown Carbon Fiber).
  • the electrode including the binder and the conductive material of the positive electrode and the negative electrode may be formed by mixing the graphene material, the binder and the conductive material in a slurry form, and coating the slurry on a current collector.
  • the electrode including the binder and the conductive material of the positive electrode and the negative electrode is mixed with the graphene material, the binder, and the conductive material to form a paste kneading sheet, and attach the paste kneading sheet to a current collector. Can be formed.
  • the electrolyte may be formed by dissolving a lithium salt in an organic solvent.
  • the electrolyte may be formed by dissolving a lithium salt in an ionic liquid.
  • the weight ratio of the positive electrode and the negative electrode may be 0.5 to 5.
  • the cathode of the multilayer structure formed by stacking the graphene layers can improve the output characteristics of the capacitor.
  • the graphene anode of the multi-layer structure has a sufficient reaction site capable of reacting with lithium ions by a large specific surface area.
  • the diffusion distance of the lithium ions may be shortened than that of the conventional structure, thereby improving output characteristics of the negative electrode.
  • the present invention by applying a graphene material to the positive electrode can provide a capacitor with an improved energy density than the conventional structure.
  • the theoretical specific surface area of graphene is 2,675 m 2 / g, and when all of them are utilized, theoretically, electric double layer specific storage capacity of 550 F / g or more can be achieved. Therefore, when the graphene material is used for the anode, it is possible to theoretically provide a capacitor having a high specific capacitance characteristic of 500F / g or more.
  • the electrical conductivity of graphene is about the same as that of graphite about 2 ⁇ 10 2 S / m, it has a very high value among carbonaceous materials. Therefore, even if the conductive material is not used or used, a capacitor having a sufficiently high specific capacitance can be provided in a very small amount.
  • FIG. 1 is a conceptual diagram of a graphene lithium ion capacitor according to an embodiment of the present invention, a state before pre-doping lithium ions.
  • FIG. 2 is a conceptual diagram illustrating a state after pre-doping the graphene lithium ion capacitor shown in FIG. 1 with lithium ions.
  • FIG. 2 is a conceptual diagram illustrating a state after pre-doping the graphene lithium ion capacitor shown in FIG. 1 with lithium ions.
  • Figure 3 is a capacity-electrode potential graph to confirm the performance of the graphene lithium ion capacitor proposed in the present invention.
  • 4A to 4C are capacitance-electrode potential graphs of conventional capacitors capable of comparing the performance of graphene lithium ion capacitors, respectively.
  • Figure 5 is a capacity-voltage graph to confirm the performance of the graphene lithium ion capacitor proposed in the present invention.
  • FIG. 6 is a capacity-cell voltage graph that can compare a graphene lithium ion capacitor with conventional capacitors.
  • FIG. 1 is a conceptual diagram of a graphene lithium ion capacitor 100 according to an embodiment of the present invention, and shows a state before pre-doping lithium ions.
  • the graphene lithium ion capacitor 100 includes the anodes 110 and 150, the cathodes 120 and 160, the lithium sacrificial electrode 130, and the separator ( 140) and a lithium electrolyte (not shown).
  • the anodes 110 and 150 and the cathodes 120 and 160 are at least partially formed of the graphene material 110.
  • Graphene is a thin film of carbon atoms, one atom thick.
  • the cathodes 120 and 160 are formed in a multilayer structure in which the layers 121 of the graphene 120 are stacked, which will be described later.
  • the lithium sacrificial electrode 130 is electrically connected to the cathodes 120 and 160 to provide pre-doped lithium ions to the cathodes 120 and 160.
  • the lithium sacrificial electrode 130 is generally formed of lithium metal, but may be provided as long as it can provide pre-doped lithium ions to the cathodes 120 and 160, but is not necessarily limited thereto.
  • the separator 140 is disposed between the anodes 110 and 150 and the cathodes 120 and 160 to separate the cathodes 110 and 150 from the cathodes 120 and 160.
  • the separator 140 is formed porous to allow ions to pass through.
  • the lithium electrolyte is coupled to the anodes 110 and 150 and the cathodes 120 and 160 in a state in which the lithium electrolyte is dissociated with ions so that a current flows between the cathodes 110 and 150 and the cathodes 120 and 160.
  • the graphene lithium ion capacitor 100 When the graphene lithium ion capacitor 100 is charged, the negative ions dissociated in the electrolyte are combined with the positive electrodes 110 and 150, and the positive ions are combined with the negative electrodes 120 and 160.
  • anions dissociated in the electrolyte are separated from the anodes 110 and 150, and cations are separated from the cathodes 120 and 160.
  • the cell may have various shapes such as a coin type, a cylindrical type, a prismatic type, a pouch type, and the like.
  • the cathodes 120 and 160 in the present invention adsorb lithium ions provided from the lithium sacrificial electrode 130 to the surface, and the layers 121 of the graphene 120 forming the cathodes 120 and 160. It is formed in a multi-layered structure to receive lithium ions inserted therebetween.
  • the cathodes 120 and 160 are formed in a multilayer structure of the graphene layer 121, lithium ions provided from the lithium sacrificial electrode 130 are smoothly inserted between the graphene layers 121 or the graphene layer 121. Can be detached from between.
  • the cathodes 120 and 160 may be formed by stacking 2 to 500 graphene layers 121.
  • lithium metal is formed, and the lithium metal forms a dendrite structure as the number of charge and discharge of the capacitor increases.
  • the dendritic structure provides the cause of cell short-circuits and can cause problems with the stability of the capacitor.
  • the cathodes 120 and 160 are formed in a multilayer structure by stacking the graphene layers 121, and lithium ions provided from the lithium sacrificial electrode 130 are not only adsorbed onto the surface of the graphene 120. It is inserted between the graphene layers 121.
  • the cathodes 120 and 160 formed of the multilayer structure of the graphene layers 121 are pre-doped with lithium ions so that at least a portion of the surface and the multilayer structure are formed of lithium carbide. If the surfaces of the cathodes 120 and 160 are formed of lithium carbide, the dendritic structure is not formed in spite of an increase in the number of charges and discharges of the capacitors 100, thereby improving stability of the capacitors 100. Therefore, the cathodes 120 and 160 formed in the multilayer structure of the graphene layer 121 may improve the reliability of the capacitor 100.
  • the cathodes 120 and 160 may be formed of the graphene material 120, but may be formed of a composite material in which the graphene material 120 and the heterogeneous material are mixed.
  • the heterogeneous material includes at least one selected from the group consisting of metal materials, metal oxides, sulfides and nitrides.
  • the metal material reacts with lithium ions to form a lithium metal alloy.
  • the composite material mixed with the graphene material 120 and the metal material is formed of lithium carbide and a lithium metal alloy when pre-doped with lithium ions.
  • Metal oxides react with lithium ions to form lithium metal oxides.
  • the composite material mixed with the graphene material 120 and the metal oxide is formed of lithium carbide and lithium metal oxide when pre-doped with lithium ions.
  • Sulfide reacts with lithium ions to form lithium sulfide.
  • the composite material mixed with the graphene material 120 and sulfide is formed of lithium carbide and lithium sulfide when pre-doped with lithium ions.
  • Nitride reacts with lithium ions to form lithium nitride.
  • the composite material in which the graphene material 120 and the nitride are mixed is formed of lithium carbide and lithium nitride when pre-doped with lithium ions.
  • the composite materials may be used in a bulk reaction in which lithium ions are inserted into the graphene layer 121 or detachable from the graphene layer 121.
  • the composites can provide additional capacity to the graphene lithium ion capacitor 100 as much as the lithium ions used in the bulk reaction.
  • Two methods may be used as an electrochemical method for providing lithium ions for pre-doping the cathodes 120 and 160 from the lithium sacrificial electrode 130.
  • the lithium sacrificial electrode 130 is electrically connected 170 to the graphene material 120 or the current collector 160 of the cathodes 120 and 160 to form a galvanic cell, and thus to an electrochemical reaction. By dissociation into lithium ions.
  • the lithium sacrificial electrode 130 is electrically connected 170 to the graphene material 120 or the current collector 160, and an external voltage and current are applied from the lithium sacrificial electrode 130. Dissociates lithium ions.
  • the physical method of providing lithium ions for pre-doping of the cathodes 120 and 160 from the lithium sacrificial electrode 130 is a high temperature locally at the lithium sacrificial electrode 130 compared to other regions of the graphene lithium ion capacitor 100. By forming an environment of the lithium ions are dissociated from the lithium sacrificial electrode 130.
  • a solvent (not shown) is injected into the capacitor 100 to obtain lithium ions from the lithium sacrificial electrode 130. Dissociate.
  • the solubilizer is in the form of naphthalene or NMP (N-methyl pyrrolidinone), and an organic molecule capable of donating electrons to lithium ions may be used.
  • Solvents are a) 5- or 6-membered monocyclic compounds comprising heteroatoms of C, N, O, Si, P, or S, based on an Electronic Hybrid Structure, b) at least one of the rings And a multi-cyclic compound in which two rings are connected to each other, and c) at least two of the rings are selected from the group consisting of a multi-cyclic compound in which at least one element shares with each other.
  • Lithium ions dissociated into the electrolyte from the lithium sacrificial electrode 130 may be provided for pre-doping the cathodes 120 and 160.
  • the anodes 110 and 150 are formed of at least a portion of the graphene material 110.
  • the anodes 110 and 150 may be formed of a graphene material having a specific surface area of 100 m 2 / g or more.
  • the thicknesses of the cathodes 110 and 150 except for the current collector 150 may be 50 to 300 ⁇ m.
  • the graphene material 100 may be formed to be flat, but at least a portion of the graphene material 100 may be formed to be wrinkled or crumpled to prevent a reduction in specific surface area due to the lamination of the graphene layers.
  • the lamination of the graphene layers 111 may occur due to van der Waals interaction, and the lamination of the graphene layers 111 may reduce the specific surface area of the electrode and the capacitance of the electrode. Causes a decrease.
  • the shape of the graphene layer 111 is formed in a wrinkled or crumpled shape, it is possible to prevent the lamination of the graphene layers 111 and to prevent the capacitance of the electrode from being reduced.
  • the anodes 110 and 150 may further include spacers (not shown) inserted between the graphene layers 111 to prevent a reduction in specific surface area due to the relamination of the graphene layers 111.
  • the spacer is disposed between the graphene layers 111 to suppress relamination of the graphene layers 111.
  • the spacer may be formed of a carbon material to prevent the lamination of the graphene layers 111 and to prevent the electrical conductivity of the anodes 110 and 150 from decreasing.
  • Carbon material of the spacer may be carbon nanotubes (CNT), carbon nanofibers (CNF), carbon black (Carbon Black). Since the carbon materials are materials with high electrical conductivity, the carbon materials may function as spacers without lowering the electrical conductivity even when inserted between the graphene layers. In addition, since the carbon materials have a specific surface area, when inserted between graphene layers, the carbon materials have an advantage of contributing to an increase in the specific surface area of the anodes 110 and 150.
  • the anodes 110 and 150 may be formed through an activation process using a physical chemical method so as to further include pores for increasing the specific surface area of the graphene material 110.
  • the activation process is a process used to manufacture active carbon, which refers to increasing specific surface area by forming pores of a material.
  • a process may be selectively employed in the graphene material 110 to increase specific surface areas of the anodes 110 and 150.
  • the physical method is to form pores in the graphene material 110 by exposing the graphene material 110 to oxygen, carbon dioxide or steam.
  • the chemical method is to chemically react the graphene material with any one of acid, base and metal salt.
  • acid, base and metal salt H 3 PO 4, KOH, NaOH, K 2 CO 3 , Na 2 CO 3 , ZnCl 2 , AlCl 3 and MgCl 2 may be used.
  • Further pores may be formed on the surface of the graphene material through physical or chemical methods, thereby increasing the specific surface area of the graphene material 110.
  • the anodes 110 and 150 may be formed by doping heterogeneous materials on the graphene material 110 to improve reactivity with ions dissociated in the electrolyte.
  • the hetero material may be, for example, a group consisting of nitrogen (N), sulfur (S), oxygen (O), silicon (Si), and boron (B), and at least one selected from the group may be a graphene material ( Doped 110).
  • the hetero material is doped into the graphene material 110, the electrical properties and reactivity of the graphene material 110 are changed to increase the reactivity with ions in the electrolyte and increase the capacity of the anodes 110 and 150.
  • the anodes 110 and 150 may be formed of a composite material in which the graphene material 110 and the heterogeneous material are mixed to improve specific capacitance by redox reaction with ions dissociated in the electrolyte.
  • the heterogeneous material may be, for example, a metal, an oxide, a sulfide, a nitride, an MPO 4 (where M is a transition metal), or a chalcogenide material, and at least one selected from the group is the graphene material 110 ) May be mixed.
  • the heterogeneous materials accumulate using the ions of the electrolyte and the redox reaction principle therein, and the capacitance of the electrode expressed using this principle is called pseudo-capacitance.
  • pseudocapacity is several times to several tens of times compared to the surface reaction of adsorption or desorption on the surface of the material of the ions. Therefore, when the cathodes 110 and 150 are formed of a composite material in which the heterogeneous materials and the graphene material 110 are mixed, it is possible to secure a relatively higher specific capacitance.
  • the method of pre-doping the cathodes 120 and 160 may be applied to the anodes 110 and 150 as they are.
  • the positive electrode (110, 150) in addition to pre-doping the cathode (120, 160), is pre-doped with lithium ions and the pre-doped lithium ion to the positive electrode (110, 150) when charging the capacitor 100 It can be implemented by a method of moving from the anode (110, 150) to the cathode (120, 160). Accordingly, the electrochemical, physical, and chemical methods of predoping the cathodes 120 and 160 may also be applied to the predoping of the anodes 110 and 150.
  • At least one of the anodes 110 and 150 and the cathodes 120 and 160 may include a binder (not shown) and a conductive material (not shown).
  • the binder is formed to adhere the layers of graphene to each other.
  • the conductive material is formed to limit the electrical conductivity loss by the addition of the binder.
  • the binder PVDF (Polyvinylidene Fluoride), PTFE (Polytetrafluoroethylene), PVA (Polyvinyl Alcohol), SBR (Styrene Butadiene) and the like may be used.
  • the conductive material carbon black and VGCF (Vapor Grown Carbon Fiber) may be used.
  • the first method is to mix the graphene material (110, 120), the binder and the conductive material in the form of a slurry, and to coat the slurry on the current collector to form the positive electrode (110, 150) or the negative electrode (120, 160).
  • a paste kneading sheet is formed by mixing the graphene materials 110 and 120, a binder, and a conductive material, and attaching the paste kneading sheet to a current collector to form a positive electrode 110 or 150 or a negative electrode. To form 120 and 160.
  • the method of forming the paste kneading sheet can be used when producing a thick electrode of 100 mu m or more.
  • the weight ratio of the anodes 110 and 150 to the cathodes 120 and 160 preferably has a value between 0.5 and 5.
  • the energy density of the cell in the graphene lithium ion capacitor 100 depends on the weight ratio of the anodes 110 and 150 and the cathodes 120 and 160, and for optimum performance, the anodes 110 and 150 and the cathode 120,
  • the weight ratio of 160 should be designed to have a value between 0.5 and 5.
  • the electrolyte may be formed by dissolving lithium salt in an organic solvent, or may be formed by dissolving lithium salt in an ionic liquid.
  • the lithium salt may be LiPF 6 .
  • the organic solvent may be ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC).
  • the electrolyte may be formed by dissolving LiPF 6 in an organic solvent such as EC, DEC, or DMC.
  • the voltage of the cell cannot be increased by more than 4V, but since the ionic liquid is stable even at a high voltage of 4V or more, the voltage of the cell can be increased by 4V or more.
  • the energy density of the cell increases as the voltage of the cell increases.
  • FIG. 2 is a conceptual diagram illustrating a state after pre-doping the graphene lithium ion 131 capacitor 100 illustrated in FIG. 1 with lithium ions 131.
  • FIG. 1 illustrates a state before the pre-doping of the cathodes 120 and 160
  • FIG. 2 illustrates a state after the pre-doping of the cathodes 120 and 160.
  • FIG. 1 when the lithium sacrificial electrode 130 is electrically connected to the current collectors 160 of the cathodes 120 and 160 and electric energy is applied from the outside, lithium ions (eg, 131 is dissociated.
  • lithium ions 131 are adsorbed on the surfaces of the cathodes 120 and 160 formed in the multilayer structure of the graphene layers 121, and are inserted between the graphene layers 121.
  • the capacity of the capacitor 100 may be increased.
  • Anions 115 are adsorbed to the anodes 110 and 150.
  • the anodes 110 and 150 are formed in a crumpled shape to prevent relamination, and negative ions 115 are adsorbed onto the surface of the graphene material.
  • the graphene lithium ion 131 capacitor 100 repeats charging and discharging in the state of FIG. 2.
  • the anion 115 inside the electrolyte is adsorbed on the surface of the graphene layer 111 of the anodes 110 and 150, and the lithium ions 131 are graphene material 120 of the cathodes 120 and 160. It is inserted between the surface and the graphene layer 121 of.
  • the anions 115 and the lithium ions 131 are separated from the anodes 110 and 150 and the cathodes 120 and 160, respectively.
  • the charging and discharging of the graphene lithium ion 131 capacitor 100 may be performed by the anion 115 and the lithium ion 131 being coupled to or detached from the anodes 110 and 150 and the cathodes 120 and 160, respectively. It's a repetition.
  • the cathodes 120 and 160 having the multilayer structure formed by stacking the graphene layers 121 may improve the output characteristics of the capacitor 100.
  • the graphene material 120 having a multi-layer structure has sufficient reaction sites capable of reacting with the lithium ions 131 by a large specific surface area.
  • the diffusion distance of the lithium ions 131 may be shorter than that of the conventional structure. ) Can improve the output characteristics.
  • the graphene material 110 may also be applied to the anodes 110 and 150 to provide a capacitor 100 having an improved energy density than the conventional structure.
  • the theoretical specific surface area of the graphene material 110 is 2,675 m2 / g, and when using all of them can theoretically implement an electrical double layer specific storage capacity of 550F / g or more. Accordingly, when the graphene material is used for the anodes 110 and 150, the capacitor 100 may have a high specific capacitance characteristic of 500 F / g or more in theory.
  • FIG. 3 is a capacitance-electrode potential graph for confirming the performance of the graphene lithium ion capacitor proposed in the present invention.
  • the capacitor is in a state where the voltage difference between the positive electrode and the negative electrode is different by the lower limit voltage of the capacitor before charging, and when charging starts, the potential of the positive electrode increases and the potential of the negative electrode begins to decrease.
  • the potential of the anode increases relatively linearly. If the charging of the capacitor is completed and the discharge is in progress, the potential of the anode will decrease linearly again to return to the potential before starting charging.
  • the width decreases steeply and then gradually decreases relatively. Compared with the case where the potential of the cathode decreases linearly, it can be confirmed that a relatively larger capacity can be obtained.
  • the potential difference between the positive electrode and the negative electrode indicates the cell's rated voltage when the charge is completed, and the higher the potential difference is, the higher the rated voltage is, which indicates that the capacitor has excellent performance in terms of cell voltage.
  • 4A to 4C are capacitance-electrode potential graphs of conventional capacitors capable of comparing the performance of graphene lithium ion capacitors, respectively.
  • Figure 4a shows an electric double layer capacitor using activated carbon.
  • 4b shows an electric double layer capacitor using graphene.
  • 4C shows a lithium ion capacitor.
  • FIG. 3 which shows the effect of the present invention, has a larger voltage and greater capacity than cells of FIGS. 4A to 4C. Can be.
  • Graphene lithium ion capacity can set the voltage of the cell (potential difference between the positive electrode and the negative electrode) to 4V or more, and the voltage of the cell decreases to increase the capacity. Area in the graph represents energy.
  • FIG. 6 is a capacity-cell voltage graph that can compare a graphene lithium ion capacitor with conventional capacitors.
  • FIG. 6 shows an electric double layer capacitor using activated carbon.
  • (b) shows an electric double layer capacitor using graphene.
  • (c) shows a lithium ion capacitor.
  • (d) shows the graphene lithium ion capacitor proposed by the present invention.
  • the present invention is a capacitor of a relatively larger energy than the capacitors of (a) to (c).
  • the graphene lithium ion capacitor described above is not limited to the configuration and method of the above-described embodiments, but the embodiments may be configured by selectively combining all or some of the embodiments so that various modifications can be made. have.
  • the present invention can be variously used in the industrial field that requires a capacitor having a high energy and high output performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

본 발명은 그래핀 소재로 형성되고 리튬 이온으로 프리 도핑된 전극을 구비하는 그래핀 리튬 이온 커패시터를 제안한다. 그래핀 리튬 이온 커패시터는, 적어도 일부가 그래핀 소재로 형성되는 양극 및 음극; 상기 음극에 프리 도핑 리튬 이온을 제공하도록 상기 음극과 전기적으로 연결되는 리튬 희생 전극; 상기 양극과 음극 사이에 설치되는 분리막; 및 이온으로 해리된 상태에서 상기 양극과 음극에 결합되어 상기 양극과 음극 사이에 전류를 흐르게 하는 전해질을 포함하고, 상기 음극은, 상기 리튬 희생 전극으로부터 제공되는 리튬 이온을 표면에 흡착시키고 상기 그래핀의 레이어들 사이에 삽입되는 상기 리튬 이온을 수용하도록 다층 구조로 형성되며 상기 리튬 이온과의 반응에 의해 상기 표면과 상기 다층 구조의 적어도 일부가 리튬 탄화물로 형성된다.

Description

그래핀 리튬 이온 커패시터
본 발명은 그래핀 소재를 이용하여 고에너지 및 고출력의 성능을 나타내는 그래핀 리튬 이온 커패시터에 관한 것이다.
커패시터는 사전적으로 전기를 저장하여 일정한 전기 용량을 충전할 수 있는 전자 소자를 가리킨다. 커패시터의 종류는 다양하나, 커패시터의 성능 중에서도 특히 전기 용량의 성능을 중점적으로 강화한 것을 수퍼 커패시터라고 한다. 수퍼 커패시터에 대한 연구는 지속적으로 진행되고 있으며, 다양한 형태의 수퍼 커패시터가 보고되었다.
기존의 리튬 이온 커패시터는 전기이중층 커패시터(Electrical Double Layer, Capacitor; EDLC)용 양극(cathode)과 리튬 이차전지용 음극(anode)으로 구성되며, 높은 작동전압과 대용량의 특성을 갖는다. 이에 따라, 리튬 이온 커패시터는 전기이중층 커패시터에 비하여 에너지 밀도가 우수한 것으로 알려져 있다.
그러나, 리튬 이온 커패시터는 다음과 같은 문제점이 있는 것으로 알려져 있다.
먼저, 리튬 이온 커패시터의 에너지 밀도 특성은 정격 전압(Rated Voltage) 및 하한 전압(Rated Lower Limit Voltage)의 조건에서 양극의 비축전용량에 크게 의존하는데, 상기 리튬 이온 커패시터의 양극 소재로 적용되고 있는 활성탄 소재의 비축전 용량은 한계가 있기 때문에(최대 100F/g 내외), 리튬 이온 커패시터의 에너지 밀도 특성 향상을 제한한다는 점이다.
다음으로, 리튬 이온 커패시터의 출력 밀도는 양극과 음극 중 비교적 나쁜 출력 특성을 갖는 전극에 의해 제한되는데, 음극 소재로 적용되고 있는 흑연 소재는 상대적으로 낮은 출력 특성을 나타내므로 리튬 이온 커패시터 전체의 출력 밀도 향상을 제한한다는 점이다.
이러한 문제들은 리튬 이온 커패시터에서 사용되는 활성탄 소재와 흑연 소재의 특성으로 인해 나타나는 것이므로 상기 리튬 이온 커패시터와 동일한 소재를 사용하는 한 극복하기 어렵다. 이에 따라, 상기 리튬 이온 커패시터의 문제점을 극복하기 위한 다양한 시도들이 지속적으로 연구되고 있다.
본 발명의 일 목적은 종래와 다른 구조의 커패시터를 제안하기 위한 것이다.
본 발명의 다른 일 목적은 종래의 커패시터보다 넓은 비표면적을 제공함에 따라 에너지 밀도를 향상시킨 커패시터를 제시하기 위한 것이다.
이와 같은 본 발명의 일 목적을 달성하기 위하여 본 발명의 일 실시예에 따르는 그래핀 리튬 이온 커패시터는, 적어도 일부가 그래핀 소재로 형성되는 양극 및 음극; 상기 음극에 프리 도핑 리튬 이온을 제공하도록 상기 음극과 전기적으로 연결되는 리튬 희생 전극; 상기 양극과 음극 사이에 설치되는 분리막; 및 이온으로 해리된 상태에서 상기 양극과 음극에 결합되어 상기 양극과 음극 사이에 전류를 흐르게 하는 전해질을 포함하고, 상기 음극은, 상기 리튬 희생 전극으로부터 제공되는 리튬 이온을 표면에 흡착시키고 상기 그래핀의 레이어들 사이에 삽입(intercalation)되는 상기 리튬 이온을 수용하도록 다층 구조로 형성되며, 상기 리튬 이온과의 반응에 의해 상기 표면과 상기 다층 구조의 적어도 일부가 리튬 탄화물로 형성된다.
본 발명과 관련한 일 예에 따르면, 상기 음극은, 상기 다층 구조를 형성하도록 2~500층의 그래핀 레이어가 적층되어 형성될 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 음극은, 상기 그래핀 소재와 이종소재를 혼합한 복합소재로 형성되고, 상기 이종소재는, a) 상기 리튬 이온과 반응하여 리튬 금속 합금을 형성하는 금속 소재, b) 상기 리튬 이온과 반응하여 리튬 금속 산화물을 형성하는 금속 산화물, c) 상기 리튬 이온과 반응하여 리튬 황화물을 형성하는 황화물, 및 d) 상기 리튬 이온과 반응하여 리튬 질화물을 형성하는 질화물로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 리튬 희생 전극은 상기 음극을 프리 도핑하는 리튬 이온을 제공하도록, 상기 음극의 그래핀 소재와 전기적으로 연결되어 갈바닉셀을 형성하며 전기화학반응에 의해 상기 리튬 이온으로 해리될 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 리튬 희생 전극은 상기 음극을 프리 도핑하는 리튬 이온을 제공하도록, 상기 음극의 그래핀 소재와 전기적으로 연결되며 외부에서 인가되는 전압 및 전류에 의하여 상기 리튬 이온으로 해리될 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 리튬 희생 전극은 상기 음극을 프리 도핑하는 리튬 이온을 제공하도록, 상기 커패시터의 다른 영역에 비해 상기 리튬 희생 전극에 국부적으로 형성되는 고온의 환경에 의해 적어도 상기 리튬 이온으로 해리될 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 리튬 희생 전극은 상기 음극을 프리 도핑하는 리튬 이온을 제공하도록 상기 커패시터에 주입되는 용해제에 의해 상기 리튬 이온으로 해리되고, 상기 용해제는 상기 리튬 이온에 전자를 공여하는 유기분자일 수 있다.
상기 용해제는, a) C, N, O, Si, P 또는 S의 이종원소를 포함하는 5원(5-membered) 또는 6원(6-membered) 단일 고리형 화합물; b) 고리들 중 적어도 두 개의 고리가 서로 이어진 다중 고리형 화합물; 및 c) 고리들 중 적어도 두 개의 고리가 적어도 하나의 원소를 서로 공유하는 다중 고리형 화합물;로 이루어진 군으로부터 선택되어 조합되는 단일 분자 화합물일 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 양극은 비표면적 100㎡/g 이상의 그래핀 소재로 형성될 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 양극은 그래핀 레이어들의 재적층에 의한 비표면적 감소를 방지하도록 적어도 일부가 주름지거나(wrinkled) 구겨진(crumpled) 형태로 형성될 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 양극은 그래핀 레이어들의 재적층에 의한 비표면적 감소를 방지하도록 상기 레이어들 사이에 삽입되는 스페이서(spacer)를 포함하고, 상기 스페이서는 상기 그래핀 레이어들의 재적층을 방지하면서 상기 양극의 전기전도도를 유지시키도록 탄소소재로 형성될 수 있다.
상기 스페이서는 탄소나노튜브, 탄소나노섬유, 카본블랙으로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 양극은 상기 그래핀의 비표면적을 증가시키는 기공을 추가로 구비하도록 산소, 이산화탄소 또는 증기에 노출되는 과정을 거쳐 형성될 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 양극은 상기 그래핀의 비표면적을 증가시키는 기공을 추가로 구비하도록 산, 염기 및 금속염(metallic salt) 중 어느 하나와 화학반응을 거쳐 형성되고, 상기 산, 염기 및 금속염은 H3PO4, KOH, NaOH, K2CO3, Na2CO3, ZnCl2, AlCl3 및 MgCl2를 포함할 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 양극은 상기 전해질에 해리된 이온과의 반응성을 향상시키도록 상기 그래핀에 이종소재를 도핑시켜 형성되며, 상기 이종소재는 질소, 황, 산소, 실리콘 및 붕소로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 양극은, 상기 전해질에 해리된 이온과의 산화환원반응에 의해 비축전용량을 향상시키도록 상기 그래핀 소재와 이종소재를 혼합한 복합소재로 형성되고, 상기 이종소재는, 금속 산화물, 황화물, 질화물, MPO4(여기서 M은 전이금속), 칼코겐족(Chalcogens) 소재로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 양극 및 음극 중 적어도 하나는, 상기 그래핀의 레이어들을 서로 부착시키도록 형성되는 바인더; 및 상기 바인더에 의한 전기전도도 손실을 제한하도록 형성되는 도전재를 포함할 수 있다.
상기 바인더는, PVDF(Polyvinylidene Fluoride), PTFE(Polytetrafluoroethylene), PVA(Polyvinyl Alcohol) 및 SBR(Styrene Butadiene)을 포함할 수 있다.
상기 도전재는 카본 블랙 및 VGCF(Vapor Grown Carbon Fiber)를 포함할 수 있다.
상기 양극 및 음극 중 상기 바인더와 도전재를 포함하는 전극은, 상기 그래핀 소재, 상기 바인더 및 도전재를 슬러리 형태로 혼합하고, 상기 슬러리를 집전체에 코팅하여 형성될 수 있다.
상기 양극 및 음극 중 상기 바인더와 도전재를 포함하는 전극은, 상기 그래핀 소재, 상기 바인더 및 도전재를 혼합하여 페이스트 니딩 시트(paste kneading sheet)를 형성하고, 상기 페이스트 니딩 시트를 집전체에 부착시켜 형성될 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 전해질은 리튬염을 유기용매에 용해시켜 형성될 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 전해질은 리튬염을 이온성 액체에 용해시켜 형성될 수 있다.
본 발명과 관련한 다른 일 예에 따르면, 상기 양극과 상기 음극의 무게비는 0.5~5일 수 있다.
상기와 같은 구성의 본 발명에 의하면, 그래핀 레이어들이 적층되어 형성되는 다층 구조의 음극은 커패시터의 출력 특성을 향상시킬 수 있다. 다층 구조의 그래핀 음극은 넓은 비표면적에 의해 리튬 이온과 반응할 수 있는 반응 사이트를 충분히 구비한다. 또한, 리튬 이온이 그래핀 소재 내로 삽입되거나 그래핀 소재로부터 탈리될 때, 리튬 이온의 확산 거리를 종래의 구조보다 단축시킬 수 있으므로 음극의 출력 특성을 개선할 수 있다.
또한 본 발명은, 양극에도 그래핀 소재를 적용하여 종래의 구조보다 에너지 밀도가 향상된 커패시터를 제공할 수 있다. 그래핀의 이론적 비표면적은 2,675㎡/g이고, 이를 모두 활용하는 경우 이론적으로 550F/g 이상의 전기 이중층 비축전 용량을 구현할 수 있다. 따라서, 그래핀 소재를 양극에 활용하는 경우 이론적으로 500F/g 이상의 고비축전 용량 특성을 가진 커패시터를 제공할 수 있다.
또한 본 발명은, 그래핀의 전기전도도가 2×102S/m 정도로 흑연과 거의 비슷하므로, 탄소계 소재 중 매우 높은 값을 갖는다. 따라서, 도전재를 사용하지 않거나 사용하더라도 매우 적은 양만으로도 충분히 높은 비축전 용량을 가진 커패시터를 제공할 수 있다.
도 1은 본 발명의 일 실시예에 관련된 그래핀 리튬 이온 커패시터의 개념도이며, 리튬 이온을 프리 도핑하기 전의 상태.
도 2는 도 1에 도시된 그래핀 리튬 이온 커패시터를 리튬 이온으로 프리 도핑한 후의 상태를 나타내는 개념도.
도 3은 본 발명에서 제안한 그래핀 리튬 이온 커패시터의 성능을 확인할 수 있는 커패시티-전극전위 그래프.
도 4a 내지 도 4c는 각각 그래핀 리튬 이온 커패시터의 성능을 비교할 수 있는 종래 커패시터들의 커패시티-전극전위 그래프.
도 5는 본 발명에서 제안한 그래핀 리튬 이온 커패시터의 성능을 확인할 수 있는 커패시티-전압 그래프.
도 6은 그래핀 리튬 이온 커패시터를 종래의 커패시터들과 비교할 수 있는 커패시티-셀 전압 그래프.
이하, 본 발명에 관련된 그래핀 리튬 이온 커패시터에 대하여 도면을 참조하여 보다 상세하게 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일·유사한 구성에 대해서는 동일·유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다. 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
도 1은 본 발명의 일 실시예에 관련된 그래핀 리튬 이온 커패시터(100)의 개념도이며, 리튬 이온을 프리 도핑하기 전의 상태를 나타낸다.
이하에서는 그래핀 리튬 이온 커패시터(100)의 전체적인 구성에 대하여 설명하고, 이어서 그래핀을 전극의 소재로 선택한 본 발명의 특징에 대하여 설명한다. 그리고 그 다음에는 그래핀 리튬 이온 커패시터(100)의 나머지 구성에 대하여 설명한다.
먼저, 그래핀 리튬 이온 커패시터(100)의 전체적인 구성에 대하여 설명하면, 그래핀 리튬 이온 커패시터(100)는 양극(110, 150), 음극(120, 160), 리튬 희생 전극(130), 분리막(140) 및 리튬 전해질(미도시)을 포함한다.
양극(110, 150)과 음극(120, 160)은 적어도 일부가 그래핀 소재(110)로 형성된다. 그래핀은 탄소 원자로 이루어져 있으며, 원자 1개의 두께로 이루어진 얇은 막을 가리킨다. 특히, 본 발명에서 음극(120, 160)은 그래핀(120)의 레이어(121)들이 적층된 다층 구조로 형성되며, 이에 대하여는 후술한다.
리튬 희생 전극(130)은 음극(120, 160)에 프리 도핑 리튬 이온을 제공하도록 상기 음극(120, 160)과 전기적으로 연결된다. 리튬 희생 전극(130)은 리튬 금속으로 형성되는 것이 일반적이나, 프리 도핑 리튬 이온을 상기 음극(120, 160)에 제공할 수 있는 것이면 족하고 반드시 이에 한정되는 것은 아니다.
분리막(140)은 양극(110, 150)과 음극(120, 160)을 분리하도록 상기 양극(110, 150)과 음극(120, 160) 사이에 설치된다. 분리막(140)은 이온들이 통과하도록 다공성으로 형성된다.
리튬 전해질은 이온으로 해리된 상태에서 상기 양극(110, 150)과 음극(120, 160)에 결합되어 상기 양극(110, 150)과 음극(120, 160) 사이에 전류를 흐르게 한다. 그래핀 리튬 이온 커패시터(100)의 충전시 전해질에 해리된 음이온은 양극(110, 150)과 결합하고, 양이온은 음극(120, 160)과 결합한다. 반대로 그래핀 리튬 이온 커패시터(100)의 방전시 전해질에 해리된 음이온은 양극(110, 150)으로부터 이탈되고, 양이온은 음극(120, 160)으로부터 이탈된다.
셀의 형태는 코인형(coin type), 원통형(cylindrical type), 각형(prismatic type), 파우치형(pouch type) 등 다양하게 형성될 수 있다.
다음으로 그래핀을 전극의 소재로 선택한 본 발명의 특징에 대하여 설명한다. 본 발명에서는 그래핀 소재 또는 그래핀 소재와 이종소재를 혼합한 복합소재가 전극의 활물질(Active Material)로 사용된다.
본 발명에서 특히 음극(120, 160)은 리튬 희생 전극(130)으로부터 제공되는 리튬 이온을 표면에 흡착시킴과 아울러 상기 음극(120, 160)을 형성하는 그래핀(120)의 레이어(121)들 사이에 삽입되는 리튬 이온을 수용하도록 다층 구조로 형성된다. 음극(120, 160)이 그래핀 레이어(121)의 다층 구조로 형성되면, 리튬 희생 전극(130)으로부터 제공되는 리튬 이온이 그래핀 레이어(121)들 사이로 원활하게 삽입되거나 상기 그래핀 레이어(121)들 사이로부터 탈리될 수 있다. 예를 들어, 음극(120, 160)은 2~500층의 그래핀 레이어(121)가 적층되어 형성될 수 있다.
만약 리튬 이온이 그래핀의 표면에만 전착(Electro-deposition)되는 경우에는 리튬 금속을 형성하게 되며, 리튬 금속은 커패시터의 충전과 방전의 횟수 증가에 따라 수지상 구조(dendrite structure)를 형성한다. 수지상 구조는 셀 단락의 원인을 제공하므로 커패시터의 안정성에 문제를 유발할 수 있다.
그러나, 본 발명에서 음극(120, 160)은 그래핀 레이어(121)들이 적층되어 다층 구조로 형성되고, 리튬 희생 전극(130)으로부터 제공된 리튬 이온은 그래핀(120)의 표면에 흡착될 뿐만 아니라 그래핀 레이어(121)들 사이로 삽입된다. 그래핀 레이어(121)들의 다층 구조로 형성되는 음극(120, 160)은 리튬 이온에 의해 프리 도핑되어 표면과 다층 구조의 적어도 일부가 리튬 탄화물로 형성된다. 음극(120, 160)의 표면과 내부까지 리튬 탄화물로 형성되면, 커패시터(100)의 충전과 방전 횟수의 증가에도 불구하고 수지상 구조를 형성하지 않으므로 커패시터(100)의 안정성을 향상시킬 수 있다. 따라서, 그래핀 레이어(121)의 다층 구조로 형성되는 음극(120, 160)은 커패시터(100)의 신뢰성을 향상시킬 수 있다.
음극(120, 160)은 그래핀 소재(120)로 형성될 수도 있으나, 그래핀 소재(120)와 이종소재를 혼합한 복합소재로 형성될 수도 있다. 이종소재는 금속 소재, 금속 산화물, 황화물, 질화물로 이루어진 군으로부터 선택된 적어도 하나를 포함한다.
금속 소재는 리튬 이온과 반응하여 리튬 금속 합금을 형성한다. 그래핀 소재(120)와 금속 소재가 혼합된 복합소재는, 리튬 이온으로 프리 도핑되면 리튬 탄화물과 리튬 금속 합금으로 형성된다.
금속 산화물은 리튬 이온과 반응하여 리튬 금속 산화물을 형성한다. 그래핀 소재(120)와 금속 산화물이 혼합된 복합소재는, 리튬 이온으로 프리 도핑되면 리튬 탄화물과 리튬 금속 산화물로 형성된다.
황화물은 리튬 이온과 반응하여 리튬 황화물을 형성한다. 그래핀 소재(120)와 황화물이 혼합된 복합소재는, 리튬 이온으로 프리 도핑되면 리튬 탄화물과 리튬 황화물로 형성된다.
질화물은 리튬 이온과 반응하여 리튬 질화물을 형성한다. 그래핀 소재(120)와 질화물이 혼합된 복합소재는, 리튬 이온으로 프리 도핑되면 리튬 탄화물과 리튬 질화물로 형성된다.
상기 복합소재들은, 리튬 이온이 그래핀 레이어(121)의 내부로 삽입되거나 상기 그래핀 레이어(121)로부터 탈리 가능한 벌크 반응에 이용될 수 있다. 따라서, 상기 복합소재들은 벌크 반응에 사용된 리튬 이온만큼 그래핀 리튬 이온 커패시터(100)에 추가적인 용량을 제공할 수 있다.
리튬 희생 전극(130)으로부터 음극(120, 160)에 프리 도핑을 위한 리튬 이온을 제공하는 방법은 여러 가지가 있을 수 있다. 이하에서는 전기화학적 방법, 물리적 방법, 화학적 방법에 대하여 설명한다.
리튬 희생 전극(130)으로부터 음극(120, 160)의 프리 도핑을 위한 리튬 이온을 제공하는 전기화학적 방법은 두 가지 방법이 사용될 수 있다.
먼저, 리튬 희생 전극(130)은 음극(120, 160)의 그래핀 소재(120) 또는 집전체(160)와 전기적으로 연결(170)되어 갈바닉셀(Galvanic Cell)을 형성하며, 전기화학반응에 의해 리튬 이온으로 해리될 수 있다.
이와 다른 전기화학적 방법은, 리튬 희생 전극(130)을 그래핀 소재(120) 또는 집전체(160)와 전기적으로 연결(170)시키고, 외부에서 전압 및 전류를 인가하여 리튬 희생 전극(130)으로부터 리튬 이온을 해리시킨다.
리튬 희생 전극(130)으로부터 음극(120, 160)의 프리 도핑을 위한 리튬 이온을 제공하는 물리적 방법은, 그래핀 리튬 이온 커패시터(100)의 다른 영역에 비해 리튬 희생 전극(130)에 국부적으로 고온의 환경을 형성하여 리튬 희생 전극(130)으로부터 리튬 이온을 해리시키는 것이다.
리튬 희생 전극(130)으로부터 음극(120, 160)의 프리 도핑을 위한 리튬 이온을 제공하는 화학적 방법은, 커패시터(100)에 용해제(미도시)를 주입하여 리튬 희생 전극(130)으로부터 리튬 이온을 해리시키는 것이다.
용해제는 나프탈렌 또는 NMP(N-methyl pyrrolidinone) 등의 형태로서, 리튬 이온에 전자를 공여할 수 있는 유기분자가 사용될 수 있다. 용해제는, a) 전자혼성구조(Electronic Hybrid Structure)를 바탕으로, C, N, O, Si, P 또는 S의 이종원소를 포함하는 5원 또는 6원 단일 고리형 화합물, b) 고리들 중 적어도 두 개의 고리가 서로 이어진 다중 고리형 화합물, 및 c) 고리들 중 적어도 두 개의 고리가 적어도 하나의 원소를 서로 공유하는 다중 고리형 화합물로 이루어진 군으로부터 선택되어 조합되는 단일 분자 화합물일 수 있다.
리튬 희생 전극(130)으로부터 전해질에 해리된 리튬 이온은 음극(120, 160)의 프리 도핑에 제공될 수 있다.
양극(110, 150)은 음극(120, 160)과 마찬가지로 적어도 일부가 그래핀 소재(110)로 형성된다. 그래핀 리튬 이온 커패시터(100)의 에너지 밀도를 충분히 확보하기 위해서 양극(110, 150)은 비표면적 100㎡/g 이상의 그래핀 소재로 형성되는 것이 바람직하다. 일반적으로 집전체(150)를 제외한 양극(110, 150)의 두께는 50~300㎛가 될 수 있다.
그래핀 소재(100)는 평평(flat)하게 형성될 수도 있으나, 그래핀 레이어들의 재적층에 의한 비표면적 감소를 방지하도록 적어도 일부가 주름지거나(wrinkled) 구겨진(crumpled) 형태로 형성될 수 있다. 그래핀 소재는 반데르발스 인력(van der Waals interaction)에 의해 그래핀 레이어(111)들의 재적층이 발생할 수 있는데, 그래핀 레이어(111)들의 재적층은 전극의 비표면적을 감소시키고 전극의 용량을 감소시키는 원인이 된다. 그래핀 레이어(111)의 형태가 주름지거나 구겨진 형태로 형성되면 그래핀 레이어(111)들의 재적층을 방지할 수 있으며, 전극의 용량이 감소되는 것을 방지할 수 있다.
양극(110, 150)은 그래핀 레이어(111)들의 재적층에 의한 비표면적 감소를 방지하도록 상기 그래핀 레이어(111)들 사이에 삽입되는 스페이서(spacer, 미도시)를 더 포함할 수 있다. 스페이서는 그래핀 레이어(111)들 사이에 배치되어 그래핀 레이어(111)들의 재적층을 억제한다.
스페이서는 그래핀 레이어(111)들의 재적층을 방지함과 아울러 양극(110, 150)의 전기전도도 저하를 방지하도록 탄소소재로 형성될 수 있다. 스페이서의 탄소소재로는 탄소나노튜브(Carbon Nano Tube; CNT), 탄소나노섬유(Carbon Nano Fiber, CNF), 카본블랙(Carbon Black)이 사용될 수 있다. 상기와 같은 탄소소재들은 전기전도도가 높은 물질들이므로, 그래핀 레이어들 사이에 삽입하더라도 전기전도도의 저하 없이 스페이서로 기능할 수 있기 때문이다. 또한, 상기와 같은 탄소소재들은 비표면적을 가지고 있으므로, 그래핀 레이어들 사이에 삽입되면, 양극(110, 150)의 비표면적 증가에 기여할 수 있는 장점이 있다.
양극(110, 150)은 그래핀 소재(110)의 비표면적을 증가시키는 기공을 추가로 구비하도록 물리적 화학적 방법을 이용한 활성화 공정(Activation)을 거쳐 형성될 수 있다.
활성화 공정은 활성탄(Active Carbon) 제조에 사용되는 공정으로 소재의 기공을 형성하여 비표면적을 증가시키는 것을 가리킨다. 본 발명에서는 이러한 공정을 그래핀 소재(110)에 선택적으로 채택하여 양극(110, 150)의 비표면적을 증가시킬 수 있다.
상기 물리적 방법은 그래핀 소재(110)를 산소, 이산화탄소 또는 증기에 노출시켜 그래핀 소재(110)에 기공을 형성하는 것이다. 상기 화학적 방법은 그래핀 소재를 산, 염기 및 금속염 중 어느 하나와 화학반응시키는 것이다. 상기 산, 염기 및 금속염은 H3PO4, KOH, NaOH, K2CO3, Na2CO3, ZnCl2, AlCl3 및 MgCl2 등이 사용될 수 있다.
물리적 방법 또는 화학적 방법을 거쳐 그래핀 소재의 표면에 추가적인 기공을 형성하고, 이를 통해 그래핀 소재(110)의 비표면적을 증가시킬 수 있다.
양극(110, 150)은 전해질에 해리된 이온과의 반응성을 향상시키도록 그래핀 소재(110)에 이종소재를 도핑하여 형성될 수 있다. 상기 이종소재는, 예를 들어 질소(N), 황(S) 산소(O), 실리콘(Si) 및 붕소(B)로 이루어진 군이 될 수 있으며, 상기 군에서 선택된 적어도 하나가 그래핀 소재(110)에 도핑될 수 있다. 이종소재가 그래핀 소재(110)에 도핑되면, 그래핀 소재(110)의 전기적 특성과 반응성이 변화되어 전해질 내의 이온과 반응성이 증대되고, 양극(110, 150)의 용량을 증대시킬 수 있다.
양극(110, 150)은 전해질에 해리된 이온과의 산화환원반응에 의해 비축전용량을 향상시키도록 그래핀 소재(110)와 이종소재를 혼합한 복합소재로 형성될 수 있다. 이종소재는, 예를 들어, 금속, 산화물, 황화물, 질화물, MPO4(여기서 M은 전이금속), 칼코겐족 소재로 이루어진 군이 될 수 있으며, 상기 군에서 선택된 적어도 하나가 상기 그래핀 소재(110)와 혼합될 수 있다.
상기 이종소재들은 그 내부에서 전해질의 이온들과 산화환원반응 원리를 이용하여 축전을 하며, 이러한 원리를 이용하여 발현되는 전극의 용량을 의사 용량(Pseudo-Capacitance)라고 한다. 일반적으로 의사 용량은 이온들의 소재 표면에서 흡착 또는 탈착되는 표면 반응에 비해 수 배 내지 수십 배에 달하는 특성이 있다. 따라서, 상기 이종소재들과 그래핀 소재(110)를 혼합한 복합소재로 양극(110, 150)을 형성하면, 상대적으로 더 높은 비축전용량을 확보할 수 있다.
음극(120, 160)을 프리 도핑하는 방법은 양극(110, 150)에도 그대로 적용될 수 있다. 본 발명에서는 음극(120, 160)을 프리 도핑하는 것 외에도, 양극(110, 150)을 리튬 이온으로 프리 도핑하고 양극(110, 150)에 프리 도핑된 리튬 이온을 커패시터(100)의 충전시에 양극(110, 150)에서 음극(120, 160)으로 이동시키는 방법으로 구현할 수 있다. 따라서, 음극(120, 160)을 프리 도핑하는 전기화학적 방법, 물리적 방법 및 화학적 방법은 양극(110, 150)의 프리 도핑에도 적용될 수 있다.
양극(110, 150)과 음극(120, 160) 중 적어도 하나는 바인더(미도시)와 도전재(미도시)를 포함할 수 있다.
바인더는 그래핀의 레이어들을 서로 부착시키도록 형성된다. 도전재는 바인더의 추가에 의한 전기전도도 손실을 제한하도록 형성된다. 바인더는, PVDF(Polyvinylidene Fluoride), PTFE(Polytetrafluoroethylene), PVA(Polyvinyl Alcohol) 및 SBR(Styrene Butadiene) 등이 사용될 수 있다. 그리고, 도전재는 카본 블랙 및 VGCF(Vapor Grown Carbon Fiber) 등이 사용될 수 있다.
바인더와 도전재를 혼합하여 양극(110, 150) 또는 음극(120, 160)을 형성하는 방법은 여러 가지가 있을 수 있으며, 여기서는 2가지만 설명한다.
첫 번째 방법은 그래핀 소재(110, 120), 바인더 및 도전재를 슬러리 형태로 혼합하고, 상기 슬러리를 집전체에 코팅하여 양극(110, 150) 또는 음극(120, 160)을 형성하는 것이다.
두 번째 방법은 그래핀 소재(110, 120), 바인더 및 도전재를 혼합하여 페이스트 니딩 시트(paste kneading sheet)를 형성하고, 상기 페이스트 니딩 시트를 집전체에 부착하여 양극(110, 150) 또는 음극(120, 160)을 형성하는 것이다. 페이스트 니딩 시트를 형성하는 방법은 100㎛ 이상의 두꺼운 전극을 제조하는 경우에 사용될 수 있다.
양극(110, 150)과 음극(120, 160)의 무게비는 0.5~5 사이의 값을 가지는 것이 바람직하다. 그래핀 리튬 이온 커패시터(100)에서 셀의 에너지 밀도는 양극(110, 150)과 음극(120, 160)의 무게비에 따라 달라지며, 최적의 성능을 위해서는 양극(110, 150)과 음극(120, 160)의 무게비가 0.5~5 사이의 값을 갖도록 설계되어야 한다.
전해질은 리튬염을 유기용매(Organic Solvent)에 용해시켜 형성되거나, 리튬염을 이온성 액체(Ionic Liquid)에 용해시켜 형성될 수 있다.
리튬염은, LiPF6일 수 있다. 유기용매는 에틸렌 카보네이트(Ethylene Carbonate; EC), 디에틸 카보네이트(Diethyl Carbonate; DEC), 디메틸 카보네이트(Dimethyl Carbonate; DMC)일 수 있다. 전해질은 LiPF6을 EC, DEC, DMC와 같은 유기용매에 용해시켜 형성될 수 있다.
일반적인 유기용매는 4V 이상의 고전압에서 분해되므로 셀의 전압을 4V 이상 증가시킬 수 없으나, 이온성 액체는 4V 이상의 고전압에서도 안정적이므로 셀의 전압을 4V이상 증가시킬 수 있다. 또한, 셀의 전압이 증가하면 셀의 에너지 밀도가 증가하는 장점이 있다.
도 2는 도 1에 도시된 그래핀 리튬 이온(131) 커패시터(100)를 리튬 이온(131)으로 프리 도핑한 후의 상태를 나타내는 개념도이다.
도 1은 음극(120, 160)의 프리 도핑 전의 상태를 나타내고, 도 2는 음극(120, 160)의 프리 도핑 후의 상태를 나타낸다. 도 1에 도시된 바와 같이 리튬 희생 전극(130)을 음극(120, 160)의 집전체(160)와 전기적으로 연결하고 외부에서 전기적인 에너지를 인가하면, 리튬 희생 전극(130)으로부터 리튬 이온(131)이 해리된다.
도 2를 참조하면, 리튬 이온(131)은 그래핀 레이어(121)들의 다층 구조로 형성되는 음극(120, 160)의 표면에 흡착되고, 그래핀 레이어(121)들 사이에 삽입된다. 특히, 음극(120, 160)의 다층 구조는 단일 레이어의 그래핀 소재보다 더 많은 리튬 이온(131)과 결합하므로, 커패시터(100)의 용량을 증대시킨 수 있다.
양극(110, 150)에는 음이온(115)들이 흡착된다. 도 2를 참조하면, 양극(110, 150)은 재적층을 방지하기 위해 구겨진 형태로 형성되며, 그래핀 소재의 표면에 음이온(115)들이 흡착된다.
그래핀 리튬 이온(131) 커패시터(100)는 도 2의 상태에서 충전과 방전을 반복한다. 셀을 완전히 충전하게 되면 전해질 내부의 음이온(115)은 양극(110, 150) 그래핀 레이어(111)의 표면에 흡착되고, 리튬 이온(131)은 음극(120, 160) 그래핀 소재(120)의 표면과 그래핀 레이어(121)들 사이로 삽입된다. 반대로 셀을 완전히 방전하게 되면 음이온(115)과 리튬 이온(131)은 각각 양극(110, 150)과 음극(120, 160)으로부터 분리된다.
그래핀 리튬 이온(131) 커패시터(100)의 충전과 방전은, 음이온(115)과 리튬 이온(131)이 각각 양극(110, 150)과 음극(120, 160)에 결합되거나, 탈리되는 과정의 반복이다.
본 발명에서 그래핀 레이어(121)들이 적층되어 형성되는 다층 구조의 음극(120, 160)은 커패시터(100)의 출력 특성을 향상시킬 수 있다. 다층 구조의 그래핀 소재(120)는 넓은 비표면적에 의해 리튬 이온(131)과 반응할 수 있는 반응 사이트를 충분히 구비한다. 또한, 리튬 이온(131)이 그래핀 레이어(121) 내로 삽입되거나 그래핀 레이어(121)로부터 탈리될 때, 리튬 이온(131)의 확산 거리를 종래의 구조보다 단축시킬 수 있으므로 음극(120, 160)의 출력 특성을 개선할 수 있다.
본 발명은 양극(110, 150)에도 그래핀 소재(110)를 적용하여 종래의 구조보다 에너지 밀도가 향상된 커패시터(100)를 제공할 수 있다. 그래핀 소재(110)의 이론적 비표면적은 2,675㎡/g이고, 이를 모두 활용하는 경우 이론적으로 550F/g 이상의 전기 이중층 비축전 용량을 구현할 수 있다. 따라서, 그래핀 소재를 양극(110, 150)에 활용하는 경우 이론적으로 500F/g 이상의 고비축전 용량 특성을 가진 커패시터(100)를 제공할 수 있다.
이하에서는 본 발명의 효과를 시각적으로 확인할 수 있도록, 그래프를 참조하여 설명한다.
도 3은 본 발명에서 제안한 그래핀 리튬 이온 커패시터의 성능을 확인할 수 있는 커패시티-전극전위 그래프이다.
커패시터는, 충전 전 양극과 음극의 전위차에 의하여 커패시터의 하한 전압만큼 차이가 있는 상태에 있다가, 충전이 시작되면 양극의 전위가 증가하고 음극의 전위가 감소하기 시작한다.
양극의 전위는 비교적 선형으로 증가한다. 만약 커패시터의 충전이 완료되고 방전이 진행되는 경우에는, 양극의 전위는 다시 선형으로 감소하여 충전을 시작하기 전의 전위로 되돌아갈 것이다.
음극의 전위는 리튬 이온으로 프리 도핑되어 있으므로 비교적 처음에는 가파르게 감소하다가 점차 감소하는 폭이 완화된다. 음극의 전위가 선형으로 감소하는 경우와 비교하면, 상대적으로 더 많은 용량을 확보할 수 있음을 확인할 수 있다.
충전이 완료된 상태에서 양극과 음극의 전위차는 셀의 정격 전압을 나타내며 전위차가 클수록 정격 전압이 커지므로, 셀 전압 측면에서 커패시터의 성능이 우수함을 나타낸다.
도 4a 내지 도 4c는 각각 그래핀 리튬 이온 커패시터의 성능을 비교할 수 있는 종래 커패시터들의 커패시티-전극전위 그래프이다.
도 4a는 활성탄을 사용한 전기이중층 커패시터를 나타낸 것이다. 도 4b는 그래핀을 사용한 전기이중층 커패시터를 나타낸 것이다. 도 4c는 리튬 이온 커패시터를 나타낸 것이다.
도 4a 내지 도 4c에 도시된 그래프와 도 3의 그래프를 비교하면, 본 발명의 효과를 나타낸 도 3이 도 4a 내지 도 4c에 비하여 셀의 전압도 크고, 커패시티도 더 큰 값을 가짐을 확인할 수 있다.
도 5는 본 발명에서 제안한 그래핀 리튬 이온 커패시터의 성능을 확인할 수 있는 커패시티-전압 그래프이다.
그래핀 리튬 이온 커패시티는 셀의 전압(양극과 음극의 전위차)을 4V 이상으로 설정할 수 있으며, 커패시티가 증가할 수도록 셀의 전압은 감소한다. 그래프에서 면적은 에너지를 나타낸다.
도 6은 그래핀 리튬 이온 커패시터를 종래의 커패시터들과 비교할 수 있는 커패시티- 셀 전압 그래프이다.
도 6에서 (a)는 활성탄을 사용한 전기이중층 커패시터를 나타낸 것이다. (b)는 그래핀을 사용한 전기이중층 커패시터를 나타낸 것이다. (c)는 리튬 이온 커패시터를 나타낸 것이다. (d)는 본 발명에서 제안하는 그래핀 리튬 이온 커패시터를 나타낸 것이다.
(a) 내지 (d)를 비교하면, (d)는 (a)와 (b)보다 전압이 높다. 이에 의하여, 본 발명은 활성탄 또는 그래핀을 사용한 전기이중층 커패시터보다 전압이 높음을 확인할 수 있다.
또한 (a) 내지 (d)를 비교하면, (d)는 (a)와 (c)보다 커패시티가 크다. 이에 의하여 본 발명은 활성탄을 사용한 전기이중층 커패시터와 리튬 이온 커패시터보다 커패시티가 큼을 확인할 수 있다.
(a) 내지 (d)의 면적을 비교하면, (d)가 (a) 내지 (c)의 면적보다 크다. 이에 의하면, 본 발명은 (a) 내지 (c)의 커패시터보다 상대적으로 큰 에너지의 커패시터임을 확인할 수 있다.
이상에서 설명된 그래핀 리튬 이온 커패시터는 상기 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
본 발명은 고에너지 및 고출력의 성능을 가진 커패시터를 필요로 하는 산업 분야에 다양하게 이용될 수 있다.

Claims (24)

  1. 적어도 일부가 그래핀 소재로 형성되는 양극 및 음극;
    상기 음극에 프리 도핑 리튬 이온을 제공하도록 상기 음극과 전기적으로 연결되는 리튬 희생 전극;
    상기 양극과 음극 사이에 설치되는 분리막; 및
    이온으로 해리된 상태에서 상기 양극과 음극에 결합되어 상기 양극과 음극 사이에 전류를 흐르게 하는 전해질을 포함하고,
    상기 음극은, 상기 리튬 희생 전극으로부터 제공되는 리튬 이온을 표면에 흡착시키고 상기 그래핀의 레이어들 사이에 삽입되는 상기 리튬 이온을 수용하도록 다층 구조로 형성되며, 상기 리튬 이온과의 반응에 의해 상기 표면과 상기 다층 구조의 적어도 일부가 리튬 탄화물로 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  2. 제1항에 있어서,
    상기 음극은, 상기 다층 구조를 형성하도록 2~500층의 그래핀 레이어가 적층되어 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  3. 제1항에 있어서,
    상기 음극은, 상기 그래핀 소재와 이종소재를 혼합한 복합소재로 형성되고,
    상기 이종소재는,
    a) 상기 리튬 이온과 반응하여 리튬 금속 합금을 형성하는 금속 소재,
    b) 상기 리튬 이온과 반응하여 리튬 금속 산화물을 형성하는 금속 산화물,
    c) 상기 리튬 이온과 반응하여 리튬 황화물을 형성하는 황화물, 및
    d) 상기 리튬 이온과 반응하여 리튬 질화물을 형성하는 질화물로 이루어진 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  4. 제1항에 있어서,
    상기 리튬 희생 전극은 상기 음극을 프리 도핑하는 리튬 이온을 제공하도록, 상기 음극의 그래핀 소재와 전기적으로 연결되어 갈바닉셀을 형성하며 전기화학반응에 의해 상기 리튬 이온으로 해리되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  5. 제1항에 있어서,
    상기 리튬 희생 전극은 상기 음극을 프리 도핑하는 리튬 이온을 제공하도록, 상기 음극의 그래핀 소재와 전기적으로 연결되며 외부에서 인가되는 전압 및 전류에 의하여 상기 리튬 이온으로 해리되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  6. 제1항에 있어서,
    상기 리튬 희생 전극은 상기 음극을 프리 도핑하는 리튬 이온을 제공하도록, 상기 커패시터의 다른 영역에 비해 상기 리튬 희생 전극에 국부적으로 형성되는 고온의 환경에 의해 적어도 상기 리튬 이온으로 해리되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  7. 제1항에 있어서,
    상기 리튬 희생 전극은 상기 음극을 프리 도핑하는 리튬 이온을 제공하도록 상기 커패시터에 주입되는 용해제에 의해 상기 리튬 이온으로 해리되고,
    상기 용해제는 상기 리튬 이온에 전자를 공여하는 유기분자인 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  8. 제7항에 있어서,
    상기 용해제는
    a) C, N, O, Si, P 또는 S의 이종원소를 포함하는 5원 또는 6원 단일 고리형 화합물;
    b) 고리들 중 적어도 두 개의 고리가 서로 이어진 다중 고리형 화합물; 및
    c) 고리들 중 적어도 두 개의 고리가 적어도 하나의 원소를 서로 공유하는 다중 고리형 화합물;
    로 이루어진 군으로부터 선택되어 조합되는 단일 분자 화합물인 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  9. 제1항에 있어서,
    상기 양극은 비표면적 100㎡/g 이상의 그래핀 소재로 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  10. 제1항에 있어서,
    상기 양극은 그래핀 레이어들의 재적층에 의한 비표면적 감소를 방지하도록 적어도 일부가 주름지거나 구겨진 형태로 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  11. 제1항에 있어서,
    상기 양극은 그래핀 레이어들의 재적층에 의한 비표면적 감소를 방지하도록 상기 레이어들 사이에 삽입되는 스페이서를 포함하고,
    상기 스페이서는 상기 그래핀 레이어들의 재적층을 방지하면서 상기 양극의 전기전도도를 유지시키도록 탄소소재로 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  12. 제11항에 있어서,
    상기 스페이서는 탄소나노튜브, 탄소나노섬유, 카본블랙으로 이루어진 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  13. 제1항에 있어서,
    상기 양극은 상기 그래핀의 비표면적을 증가시키는 기공을 추가로 구비하도록 산소, 이산화탄소 또는 증기에 노출되는 과정을 거쳐 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  14. 제1항에 있어서,
    상기 양극은 상기 그래핀의 비표면적을 증가시키는 기공을 추가로 구비하도록 산, 염기 및 금속염 중 어느 하나와 화학반응을 거쳐 형성되고,
    상기 산, 염기 및 금속염은 H3PO4, KOH, NaOH, K2CO3, Na2CO3, ZnCl2, AlCl3 및 MgCl2를 포함하는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  15. 제1항에 있어서,
    상기 양극은 상기 전해질에 해리된 이온과의 반응성을 향상시키도록 상기 그래핀에 이종소재를 도핑시켜 형성되며,
    상기 이종소재는 질소, 황, 산소, 실리콘 및 붕소로 이루어진 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  16. 제1항에 있어서,
    상기 양극은, 상기 전해질에 해리된 이온과의 산화환원반응에 의해 비축전용량을 향상시키도록 상기 그래핀 소재와 이종소재를 혼합한 복합소재로 형성되고,
    상기 이종소재는, 금속 산화물, 황화물, 질화물, MPO4(여기서 M은 전이금속), 칼코겐족 소재로 이루어진 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  17. 제1항에 있어서,
    상기 양극 및 음극 중 적어도 하나는,
    상기 그래핀의 레이어들을 서로 부착시키도록 형성되는 바인더; 및
    상기 바인더에 의한 전기전도도 손실을 제한하도록 형성되는 도전재를 포함하는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  18. 제17항에 있어서,
    상기 바인더는,
    PVDF(Polyvinylidene Fluoride), PTFE(Polytetrafluoroethylene), PVA(Polyvinyl Alcohol) 및 SBR(Styrene Butadiene)을 포함하는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  19. 제17항에 있어서,
    상기 도전재는 카본 블랙 및 VGCF(Vapor Grown Carbon Fiber)를 포함하는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  20. 제17항에 있어서,
    상기 양극 및 음극 중 상기 바인더와 도전재를 포함하는 전극은,
    상기 그래핀 소재, 상기 바인더 및 도전재를 슬러리 형태로 혼합하고, 상기 슬러리를 집전체에 코팅하여 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  21. 제17항에 있어서,
    상기 양극 및 음극 중 상기 바인더와 도전재를 포함하는 전극은,
    상기 그래핀 소재, 상기 바인더 및 도전재를 혼합하여 페이스트 니딩 시트를 형성하고, 상기 페이스트 니딩 시트를 집전체에 부착시켜 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  22. 제1항에 있어서,
    상기 전해질은 리튬염을 유기용매에 용해시켜 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  23. 제1항에 있어서,
    상기 전해질은 리튬염을 이온성 액체에 용해시켜 형성되는 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
  24. 제1항에 있어서,
    상기 양극과 상기 음극의 무게비는 0.5~5인 것을 특징으로 하는 그래핀 리튬 이온 커패시터.
PCT/KR2014/001055 2013-02-08 2014-02-07 그래핀 리튬 이온 커패시터 WO2014123385A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480007959.6A CN104981885A (zh) 2013-02-08 2014-02-07 石墨烯锂离子电容器
KR1020157021143A KR101778541B1 (ko) 2013-02-08 2014-02-07 그래핀 리튬 이온 커패시터
EP14749115.3A EP2958122A4 (en) 2013-02-08 2014-02-07 Graphene lithium ion capacitor
US14/765,536 US20150380176A1 (en) 2013-02-08 2014-02-07 Graphene lithium ion capacitor
JP2015556873A JP2016509757A (ja) 2013-02-08 2014-02-07 グラフェンリチウムイオンキャパシタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361762334P 2013-02-08 2013-02-08
US61/762,334 2013-02-08

Publications (1)

Publication Number Publication Date
WO2014123385A1 true WO2014123385A1 (ko) 2014-08-14

Family

ID=51299929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001055 WO2014123385A1 (ko) 2013-02-08 2014-02-07 그래핀 리튬 이온 커패시터

Country Status (6)

Country Link
US (1) US20150380176A1 (ko)
EP (1) EP2958122A4 (ko)
JP (1) JP2016509757A (ko)
KR (1) KR101778541B1 (ko)
CN (1) CN104981885A (ko)
WO (1) WO2014123385A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006268A (zh) * 2015-06-19 2015-10-28 周焕民 一种固相石墨烯导电分散体的制备方法
JP2016225412A (ja) * 2015-05-28 2016-12-28 Jsr株式会社 蓄電デバイス
WO2017065963A1 (en) * 2015-10-13 2017-04-20 Nanotek Instruments, Inc. Continuous process for producing electrodes for supercapacitors having high energy densities

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6184421B2 (ja) 2011-12-21 2017-08-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 相互接続された波状炭素系網状体
CN109524246B (zh) 2012-03-05 2021-07-27 加州大学评议会 具有由互连波纹状碳基网络制成的电极的电容器
US9552930B2 (en) 2015-01-30 2017-01-24 Corning Incorporated Anode for lithium ion capacitor
US9779885B2 (en) 2012-11-09 2017-10-03 Corning Incorporated Method of pre-doping a lithium ion capacitor
US9640332B2 (en) * 2013-12-20 2017-05-02 Intel Corporation Hybrid electrochemical capacitor
WO2015195700A1 (en) 2014-06-16 2015-12-23 The Regents Of The University Of California Hybrid electrochemical cell
CA2968139C (en) 2014-11-18 2023-01-10 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (iccn) composite
US9679704B2 (en) 2015-01-30 2017-06-13 Corning Incorporated Cathode for a lithium ion capacitor
US9672992B2 (en) 2015-01-30 2017-06-06 Corning Incorporated Coke sourced anode for lithium ion capacitor
US10014704B2 (en) 2015-01-30 2018-07-03 Corning Incorporated Integrated energy and power device
US9911545B2 (en) 2015-01-30 2018-03-06 Corning Incorporated Phenolic resin sourced carbon anode in a lithium ion capacitor
US9607778B2 (en) 2015-01-30 2017-03-28 Corning Incorporated Poly-vinylidene difluoride anode binder in a lithium ion capacitor
US10655020B2 (en) 2015-12-22 2020-05-19 The Regents Of The University Of California Cellular graphene films
EP3405966A4 (en) 2016-01-22 2019-12-18 The Regents of the University of California HIGH VOLTAGE DEVICES
US10636585B2 (en) 2016-03-22 2020-04-28 National Institute For Materials Science Method for manufacturing stack of graphene and carbon nanotube, electrode material including stack of graphene and carbon nanotube, and electric double-layer capacitor using the same
WO2017165548A1 (en) 2016-03-23 2017-09-28 The Regents Of The University Of California Devices and methods for high voltage and solar applications
KR101771000B1 (ko) * 2016-04-14 2017-08-24 한국세라믹기술원 유연성을 갖는 울트라커패시터 전극의 제조방법 및 상기 울트라커패시터 전극을 적용한 울트라커패시터
KR20170124700A (ko) 2016-05-03 2017-11-13 한국세라믹기술원 리튬-황 울트라커패시터 및 그 제조방법
AU2017321294B2 (en) * 2016-08-31 2021-12-09 The Regents Of The University Of California Devices comprising carbon-based material and fabrication thereof
WO2018081055A2 (en) * 2016-10-24 2018-05-03 Northwestern University Host material for stabilizing lithium metal electrode, and fabricating method and applications of same
US20200099054A1 (en) * 2017-01-24 2020-03-26 Sabic Global Technologies B.V. Multi-layered graphene material having a plurality of yolk/shell structures
CN110249401A (zh) * 2017-02-13 2019-09-17 国立研究开发法人物质材料研究机构 锂离子电容器
WO2018236166A1 (ko) * 2017-06-21 2018-12-27 주식회사 엘지화학 리튬 이차전지
KR102115602B1 (ko) * 2017-06-21 2020-05-26 주식회사 엘지화학 리튬 이차전지
JPWO2019212038A1 (ja) * 2018-05-02 2021-05-13 株式会社ジェイテクト アルカリ金属イオンキャパシタ
CN108878173A (zh) * 2018-05-25 2018-11-23 中国电子科技集团公司第十八研究所 一种石墨烯正极片异质结掺杂的制备方法
KR102628054B1 (ko) * 2019-04-10 2024-01-25 한국전력공사 슈퍼커패시터용 분리막, 이의 제조방법 및 이를 포함하는 슈퍼커패시터
CN113540448A (zh) * 2021-06-30 2021-10-22 广东邦普循环科技有限公司 一种预锂化石墨烯及其制备方法和应用
CN114944286A (zh) * 2022-05-17 2022-08-26 中国电子科技集团公司第十八研究所 一种石墨烯基正极材料的电化学活化方法及锂离子电容器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073929A (ja) * 2001-08-29 2003-03-12 Gsi Creos Corp 気相成長法による炭素繊維、リチウム二次電池用電極材およびリチウム二次電池
JP2007305475A (ja) * 2006-05-12 2007-11-22 Fdk Corp 蓄電装置および蓄電セル
JP2011077156A (ja) * 2009-09-29 2011-04-14 Nissin Electric Co Ltd 蓄電デバイス
KR101137723B1 (ko) * 2010-11-15 2012-04-24 비나텍주식회사 탄소가 코팅된 집전체를 이용한 리튬이온 커패시터 셀 및 그 제조방법
KR101199538B1 (ko) * 2011-08-22 2012-11-12 삼화콘덴서공업주식회사 하이브리드 커패시터

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294539A (ja) * 2006-04-21 2007-11-08 Advanced Capacitor Technologies Inc リチウムイオンハイブリッドキャパシタ
JP4928824B2 (ja) * 2006-05-02 2012-05-09 Fdk株式会社 リチウムイオン蓄電素子の製造方法
US20090226797A1 (en) * 2006-05-16 2009-09-10 Ube Industries, Ltd. Electric storage device and electric storage system
JP2008010682A (ja) * 2006-06-29 2008-01-17 Equos Research Co Ltd 非対称型キャパシタ
JP4971729B2 (ja) * 2006-09-04 2012-07-11 富士重工業株式会社 リチウムイオンキャパシタ
JP2008066053A (ja) * 2006-09-06 2008-03-21 Fuji Heavy Ind Ltd 蓄電デバイス用負極活物質およびその製造方法
JP2008177346A (ja) * 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
US9656870B2 (en) * 2007-12-12 2017-05-23 Nippon Steel & Sumikin Chemical Co., Ltd Metal encapsulated dendritic carbon nanostructure, carbon nanostructure, process for producing metal encapsulated dendritic carbon nanostructure, process for producing carbon nanostructure, and capacitor
KR20100028356A (ko) * 2008-09-04 2010-03-12 한국과학기술연구원 전이금속 산화물/다층벽 탄소나노튜브 나노복합체 및 이의 제조방법
EP2469638B1 (en) * 2009-08-17 2014-10-01 Ube Industries, Ltd. Non-aqueous electrolytic solution and electrochemical device using the same
US9640334B2 (en) * 2010-01-25 2017-05-02 Nanotek Instruments, Inc. Flexible asymmetric electrochemical cells using nano graphene platelet as an electrode material
JP5604982B2 (ja) * 2010-05-26 2014-10-15 アイシン精機株式会社 リチウムイオンキャパシタ用負極材料、その製造方法およびリチウムイオンキャパシタ
KR101138502B1 (ko) * 2010-08-27 2012-04-25 삼성전기주식회사 리튬 이온 커패시터의 제조 방법
TW201212353A (en) * 2010-09-01 2012-03-16 Chien-Min Sung Li-ion battery
KR101139426B1 (ko) * 2010-09-28 2012-04-27 한국에너지기술연구원 리튬 이온 커패시터
JP2012114374A (ja) * 2010-11-26 2012-06-14 Taiyo Yuden Co Ltd 電気化学デバイス
WO2012073998A1 (ja) * 2010-12-02 2012-06-07 独立行政法人物質・材料研究機構 カーボンナノチューブ連結のグラフェンシートフィルムとその製造方法及びそれを用いたグラフェンシートキャパシター
CN102485647B (zh) * 2010-12-02 2013-10-30 中国科学院上海硅酸盐研究所 一种硼掺杂石墨烯的制备方法
US8889298B2 (en) * 2011-08-30 2014-11-18 Nanotek Instruments, Inc. Surface-mediated lithium ion-exchanging energy storage device
US9166252B2 (en) * 2010-12-23 2015-10-20 Nanotek Instruments, Inc. Surface-controlled lithium ion-exchanging energy storage device
JP6077460B2 (ja) * 2010-12-23 2017-02-08 ナノテク インスツルメンツ インク 表面媒介リチウムイオン交換エネルギー貯蔵装置
CN102167310B (zh) * 2011-01-30 2013-02-06 黑龙江大学 水热法制备氮掺杂石墨烯材料的方法
US8551650B2 (en) * 2011-05-12 2013-10-08 Northwestern University Graphene materials having randomly distributed two-dimensional structural defects
US20120300366A1 (en) * 2011-05-27 2012-11-29 Samsung Electro-Mechanics Co., Ltd. Method for pre-doping anode and lithium ion capacitor storage device including the same
JP2012256694A (ja) * 2011-06-08 2012-12-27 Taiyo Yuden Co Ltd リチウムイオンキャパシタ
CN105174252B (zh) * 2011-06-24 2018-12-14 株式会社半导体能源研究所 多层石墨烯及蓄电装置
US9218916B2 (en) * 2011-06-24 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Graphene, power storage device, and electric device
KR20130007320A (ko) * 2011-06-30 2013-01-18 삼성전기주식회사 리튬판, 전극의 리튬화 방법 및 에너지 저장장치
KR101371288B1 (ko) * 2011-12-22 2014-03-07 이화여자대학교 산학협력단 망간 산화물/그래핀 나노복합체 및 이의 제조 방법
US20130171502A1 (en) 2011-12-29 2013-07-04 Guorong Chen Hybrid electrode and surface-mediated cell-based super-hybrid energy storage device containing same
US8895189B2 (en) * 2012-02-03 2014-11-25 Nanotek Instruments, Inc. Surface-mediated cells with high power density and high energy density
US9484158B2 (en) 2012-02-17 2016-11-01 The Trustees Of Princeton University Graphene-ionic liquid composites
US9300002B2 (en) * 2012-03-03 2016-03-29 Illinois Institute Of Technology Three-dimensional supercapacitors and batteries with high energy densities
US9738526B2 (en) * 2012-09-06 2017-08-22 The Trustees Of The Stevens Institute Of Technology Popcorn-like growth of graphene-carbon nanotube multi-stack hybrid three-dimensional architecture for energy storage devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073929A (ja) * 2001-08-29 2003-03-12 Gsi Creos Corp 気相成長法による炭素繊維、リチウム二次電池用電極材およびリチウム二次電池
JP2007305475A (ja) * 2006-05-12 2007-11-22 Fdk Corp 蓄電装置および蓄電セル
JP2011077156A (ja) * 2009-09-29 2011-04-14 Nissin Electric Co Ltd 蓄電デバイス
KR101137723B1 (ko) * 2010-11-15 2012-04-24 비나텍주식회사 탄소가 코팅된 집전체를 이용한 리튬이온 커패시터 셀 및 그 제조방법
KR101199538B1 (ko) * 2011-08-22 2012-11-12 삼화콘덴서공업주식회사 하이브리드 커패시터

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225412A (ja) * 2015-05-28 2016-12-28 Jsr株式会社 蓄電デバイス
CN105006268A (zh) * 2015-06-19 2015-10-28 周焕民 一种固相石墨烯导电分散体的制备方法
WO2017065963A1 (en) * 2015-10-13 2017-04-20 Nanotek Instruments, Inc. Continuous process for producing electrodes for supercapacitors having high energy densities

Also Published As

Publication number Publication date
KR20150117261A (ko) 2015-10-19
EP2958122A4 (en) 2017-06-07
US20150380176A1 (en) 2015-12-31
KR101778541B1 (ko) 2017-09-18
EP2958122A1 (en) 2015-12-23
CN104981885A (zh) 2015-10-14
JP2016509757A (ja) 2016-03-31

Similar Documents

Publication Publication Date Title
WO2014123385A1 (ko) 그래핀 리튬 이온 커패시터
WO2014014274A1 (ko) 탄소-실리콘 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2017131377A1 (ko) 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2015041450A1 (ko) 다공성 실리콘계 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2019108039A2 (ko) 음극 및 이를 포함하는 이차전지
WO2014116029A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2017213325A1 (ko) 카본 나이트라이드와 그래핀 옥사이드의 자기조립 복합체 및 그 제조방법, 이를 적용한 양극 및 이를 포함하는 리튬-황 전지
WO2016137147A1 (ko) 이차 전지용 분리막, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2007052742A1 (ja) 蓄電素子
WO2019132394A1 (ko) 리튬-황 전지용 바인더, 이를 포함하는 양극 및 리튬-황 전지
WO2014098419A1 (ko) 리튬 이차 전지용 음극재, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2019088475A1 (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019093709A1 (ko) 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법
WO2016010403A1 (ko) 리튬 공기 전지, 및 그 제조 방법
WO2018194345A1 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법
WO2019009560A1 (ko) 전극 및 이를 포함하는 리튬 이차전지
WO2022164107A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2022086098A1 (ko) 그래핀-실리콘 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2019083257A1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
WO2020226329A1 (ko) 촉매점이 도입된 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
WO2023008783A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2019125024A1 (ko) 리튬이차전지용 음극, 이의 제조방법 및 이를 포함한 리튬이차전지
WO2019022358A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749115

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14765536

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157021143

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015556873

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014749115

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE