WO2017131377A1 - 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지 - Google Patents

폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지 Download PDF

Info

Publication number
WO2017131377A1
WO2017131377A1 PCT/KR2017/000530 KR2017000530W WO2017131377A1 WO 2017131377 A1 WO2017131377 A1 WO 2017131377A1 KR 2017000530 W KR2017000530 W KR 2017000530W WO 2017131377 A1 WO2017131377 A1 WO 2017131377A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
separator
sulfur battery
coating layer
polydopamine
Prior art date
Application number
PCT/KR2017/000530
Other languages
English (en)
French (fr)
Inventor
이승호
이해신
김선진
양두경
권기영
Original Assignee
주식회사 엘지화학
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 한국과학기술원 filed Critical 주식회사 엘지화학
Priority to US15/742,426 priority Critical patent/US10622669B2/en
Priority to CN201780002678.5A priority patent/CN107925042B/zh
Priority to EP17744499.9A priority patent/EP3312906B1/en
Priority to JP2018500900A priority patent/JP6732293B2/ja
Publication of WO2017131377A1 publication Critical patent/WO2017131377A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a separator for a lithium-sulfur battery having a composite coating layer containing polydopamine and a method of manufacturing the same.
  • a lithium-sulfur (Li-S) battery is a secondary battery using a sulfur-based material having an SS bond (Sulfur-sulfur bond) as a positive electrode active material and using lithium metal as a negative electrode active material.
  • Sulfur the main material of the positive electrode active material, is very rich in resources, has no toxicity, and has an advantage of having a low weight per atom.
  • the theoretical discharge capacity of the lithium-sulfur battery is 1675 mAh / g-sulfur, and the theoretical energy density is 2,600 Wh / kg.
  • FeS cells: 480 Wh / kg, Li-MnO 2 cells: 1,000 Wh / kg, Na-S cells: 800 Wh / kg) is very high compared to the most promising battery that has been developed to date.
  • a reduction reaction in a cyclic S 8 so that the lithium polysulfide is completely Reduction will eventually lead to the formation of lithium sulfide (Lithium sulfide, Li 2 S).
  • Discharge behavior of the lithium-sulfur battery by the process of reduction to each lithium polysulfide is characterized by showing the discharge voltage step by step unlike the lithium ion battery.
  • lithium polysulfides such as Li 2 S 8 , Li 2 S 6 , Li 2 S 4 , and Li 2 S 2
  • lithium polysulfide (Li 2 S x , usually x> 4) having a high number of sulfur oxides can easily melts Lithium polysulfide dissolved in the electrolyte is diffused away from the positive electrode where lithium polysulfide is formed due to the difference in concentration.
  • the lithium polysulfide eluted from the positive electrode is lost out of the positive electrode reaction region, so that stepwise reduction to lithium sulfide (Li 2 S) is impossible.
  • lithium polysulfide which is present in the dissolved state outside the positive electrode and the negative electrode, cannot participate in the charge / discharge reaction of the battery, the amount of sulfur material participating in the electrochemical reaction at the positive electrode decreases, and eventually lithium-sulfur It is a major factor causing a decrease in the charge capacity and energy of the battery.
  • lithium polysulfide diffused to the negative electrode in addition to being suspended or precipitated in the electrolyte, is directly reacted with lithium and fixed in the form of Li 2 S on the surface of the negative electrode, causing a problem of corrosion of the lithium metal negative electrode.
  • the lithium-sulfur battery has a problem in that the capacity and lifespan characteristics of the battery are lowered due to lithium polysulfide eluted from the positive electrode.
  • Another object of the present invention is to provide a method for producing the separator for lithium-sulfur batteries.
  • Still another object of the present invention is to provide a lithium-sulfur battery including the separator for a lithium-sulfur battery.
  • the present invention provides a separator for a lithium-sulfur battery, including a separator body and a composite coating layer including polydopamine and a conductive material on one surface of the separator body facing the cathode.
  • the present invention comprises the steps of preparing a separator body; Preparing a slurry by mixing polydopamine, a conductive material and a solvent; Coating the slurry on at least one surface of the membrane body; It provides a separator for manufacturing a lithium-sulfur battery comprising a; and drying the coated separator to form a composite coating layer.
  • the present invention provides a lithium-sulfur battery comprising the separator for lithium-sulfur battery.
  • the porous structure of the conductive material included in the composite coating layer adsorbs lithium polysulfide eluted from the positive electrode to prevent elution and diffusion, and also provides additional electrical conductivity to the reaction of the positive electrode active material.
  • FIG. 1 is a cross-sectional view of a lithium-sulfur battery including a separator having a composite coating layer as a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a lithium-sulfur battery including a separator having a composite coating layer and a polydopamine coating layer as a second embodiment of the present invention.
  • Example 3 is a graph showing the discharge cycle characteristics of Example 1 and Comparative Example 1 according to the present invention.
  • the present invention provides a separator for a lithium-sulfur battery including a composite coating layer including polydopamine and a conductive material on at least one side of a separator body in order to prevent diffusion of lithium polysulfide and to provide an additional site of sulfur reduction reaction. do.
  • At least one surface of the separator body is one surface or both surfaces that necessarily include a surface facing the anode during electrode assembly.
  • the lithium-sulfur battery has a positive electrode 200 and a negative electrode 300, and has a structure in which an electrolyte 400 and a separator 100 are interposed therebetween. It provides a separator 100 having a multilayer structure in which the separator body 110 and the composite coating layer 120 are sequentially stacked.
  • the composite coating layer 120 may be formed on one side of the separator body 110, and may be formed on both sides if necessary.
  • the separator body 110 is not particularly limited in the material of the present invention, and physically separates the electrode, and having an electrolyte and ion permeability, if used as a conventional separator can be used without particular limitation, porous and As the non-conductive or insulating material, it is particularly desirable to have low resistance to ion migration of the electrolyte solution and excellent electrolyte-wetting ability.
  • a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer may be used alone. It may be used as a lamination or or a conventional porous non-woven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers of high melting point, etc. may be used, but is not limited thereto.
  • the present invention forms a composite coating layer 120 formed on the separator body 110 to prevent the diffusion of lithium polysulfide and to provide additional sites of the reduction reaction of sulfur.
  • Dopamine a monomeric form of polydopamine included in the composite coating layer 120, is well known as a neurotransmitter and is 3,4-Dihydroxy-Lphenylalanine (L-DOPA) found in mussels in the sea. It is a mimic molecule of molecules.
  • polydopamine produced by oxidant-induced self-polymerization and electrochemical polymerization of dopamine is known as covalent bond catechol and imine.
  • Surface reforming, surface modification, and self-assembly because they have functional groups that form very strong bonds not only on organic materials such as biomaterials and synthetic polymers, but also on solid surfaces such as electrodes or separators in batteries. Self-assembled multilayer, nanocomposite thin film, etc. may be formed.
  • the catechol functional group of dopamine is easily oxidized in the presence of oxygen and forms self-polymerized polydopamine thin films of various thicknesses.
  • Dopamine an environmentally friendly and readily available organic material, self-polymerizes under a buffer solution of pH 8.5, and the polydopamine formed through this process is very reactive and can easily make new bonds on its surface. .
  • polydopamine can be self-polymerized at room temperature, it can be coated without additional reagents or equipment, thereby providing excellent manufacturing process cost and process efficiency.
  • the polydopamine is a material having a high adhesion, and thus a thin and even coating is possible, and as shown in FIG. 1, the lithium polysulfide 20 cannot be permeated while the lithium ions 10 are easily diffused into the anode. Since the electrode reaction is activated and the diffusion of the lithium polysulfide 20 can be prevented, it was applied to the composite coating layer 120 of the separator of the lithium-sulfur battery of the present invention.
  • the composite coating layer 120 of the present invention includes a conductive material together with the above-described polydopamine in order to impart additional electrical conductivity to the lithium-sulfur battery. Since sulfur, which is a cathode active material of a lithium-sulfur battery, does not have conductivity by itself, it is generally manufactured as a cathode 200 by complexing with a conductive carbon-based material.
  • the composite coating layer 120 of the present invention includes a conductive material, to provide a reduction reaction site of the sulfur material in addition to the anode reaction site.
  • the conductive material of the composite coating layer 120 may further provide a reduction reaction site of the adsorbed lithium polysulfide 20 to increase electrode efficiency.
  • the conductive material included in the composite coating layer 110 according to the present invention may be selected from the group consisting of a carbon-based conductive material, a conductive polymer and a combination thereof.
  • the carbon-based conductive material is not limited in its kind, but graphite such as natural graphite, artificial graphite, expanded graphite, graphene, super-P, and super-C.
  • System Activated carbon system, Channel black, Denka black, Furnace black, Thermal black, Contact black, Lamp black Carbon black system such as acetylene black; It may include one selected from the group consisting of carbon fiber-based, carbon nanotube (CNT), carbon nanostructures such as fullerene (Fullerene) and combinations thereof, preferably super-blood Use
  • the conductive polymer is not limited in its kind, but polyaniline, polypyrrole, polythiopene, polyazulene, polypyridine, polypyridine, polyindole, polycarbazole (Polycarbazole), Polyazine, Polyquinone, Polyacetylene, Polyselenophene, Polytellurophene, Polyparapylene, Poly-p-phenylene It may include one selected from the group consisting of polyphenylene vinylene (PPV), polyphenylene sulfide (PPS), polyethylenedioxythiophene (PEDT), and combinations thereof.
  • PV polyphenylene vinylene
  • PPS polyphenylene sulfide
  • PEDT polyethylenedioxythiophene
  • the weight ratio of the polydopamine and the conductive material may be adjusted within a range of 3: 1 to 7: 1 for the effect of preventing the diffusion of lithium polysulfite and the conductivity providing effect for providing a reduction reaction site of lithium polysulfite. If the polydopamine is used in excess of the above range, it acts as a resistive layer, resulting in a problem of deterioration of the battery performance. On the contrary, when the conductive material is used in excess, the polydopamine content is relatively reduced. Since a problem arises that it is difficult to secure, it is suitably used in the above range.
  • the composite coating layer 120 is formed to a thickness of 0.1 ⁇ 10 ⁇ m, preferably 0.1 ⁇ 5 ⁇ m on the separator body 110 to secure the above-mentioned effect. If the thickness is less than the above range, the lithium polysulfide adsorption effect is insignificant. On the contrary, if the thickness exceeds the above range, lithium ion conductivity is lowered, which causes problems in electrode performance. Therefore, it is suitably used within the above range.
  • the separator 100 having a multilayer structure of the separator main body 110 / the composite coating layer 120 according to the first embodiment of the above-mentioned may further increase the effect by providing another layer therebetween.
  • the lithium-sulfur battery according to the second embodiment is a separator body 110 and a composite coating layer as a separator.
  • the polydopamine coating layer 130 is provided between the 120.
  • the separator body 110 and the composite coating layer 120 is as described in the first embodiment.
  • the additionally provided polydopamine coating layer 130 is used for the purpose of improving the adhesive force between the interface of the separator body 110 and the composite coating layer 120, to further secure the capture effect of the lithium polysulfide by the above-described polydopamine. Can be.
  • the poly dopamine coating layer 130 is formed to have a thickness of 0.1 ⁇ 10 ⁇ m. If the thickness exceeds the above range, it causes a problem that the conductivity of lithium ions is lowered, and therefore it is preferable to form it at a maximum of 10 ⁇ m.
  • the separator for a lithium-sulfur battery as shown in FIG. 1 presented in the first embodiment of the present invention may be prepared by performing the following steps.
  • the separator main body 110 is not particularly limited in the present invention, and any one of the aforementioned separator main bodies may be selected, and a separator manufactured directly or commercially available may be purchased and used.
  • the polydopamine and the conductive material are mixed at a weight ratio of 3: 1 to 7: 1 described above, and then dispersed in a predetermined solvent to prepare a slurry.
  • a separate binder is not required due to the adhesive property of the polydopamine itself.
  • the solvent may uniformly disperse the polydopamine and the conductive material and may be easily evaporated and dried. Specifically, acetonitrile, methanol, ethanol, tetrahydrofuran, water, isopropyl alcohol Etc. can be mentioned.
  • the mixing for preparing the slurry may be stirred in a conventional manner using a conventional mixer, such as a paste mixer, a high speed shear mixer, a homo mixer, and the like.
  • the prepared slurry is coated on one surface of the membrane body 110.
  • one surface of the separator main body 110 is one surface of the separator main body 110 which is assembled to face the anode 200 when the electrode is assembled later.
  • a method of wet coating the slurry for example, doctor blade coating, dip coating, gravure coating, slit die coating, spin coating It can be manufactured by performing spin coating, comma coating, bar coating, reverse roll coating, screen coating, cap coating, or the like. .
  • the drying process is a process of removing the solvent and water in the slurry to dry the slurry coated on the metal current collector, the drying temperature and time may vary depending on the solvent used, generally in a vacuum oven of 50 ⁇ 200 °C It is preferable to dry within 48 hours.
  • the separator for a lithium-sulfur battery as shown in FIG. 2 presented in the second embodiment of the present invention follows the manufacturing method of the first embodiment mentioned above, and the composite coating layer 120 is coated on the separator body 110. It can be prepared by coating the poly dopamine coating layer 130 before.
  • the polydopamine coating layer 130 is obtained by preparing a coating solution in which polydopamine is dispersed in the above-described solvent, and then performing a wet coating process, and following any one of the coating methods described in the first embodiment. Can be.
  • the separator 100 described in the first and second embodiments as described above is preferably applicable as a separator of a lithium-sulfur battery, and as shown in FIGS. 1 and 2, the separator 100 may be a positive electrode ( It is interposed between the 200 and the cathode 300, in which case the composite coating layer 120 is coated only on one surface, preferably the composite coating layer 120 is arranged to face the anode 200 to be assembled.
  • the positive electrode 200 may include elemental sulfur (S8), a sulfur-based compound, or a mixture thereof as a positive electrode active material, and since the sulfur material alone is not electrically conductive, it is applied in combination with a conductive material.
  • the conductive material may be porous. Therefore, the conductive material may be used without limitation as long as it has porosity and conductivity, and for example, a carbon-based material having porosity may be used. As such a carbon-based material, carbon black, graphite, graphene, activated carbon, carbon fiber, carbon nanotubes (CNT), or the like may be used. Moreover, metallic fibers, such as a metal mesh; Metallic powders such as copper, silver, nickel and aluminum; Or organic conductive materials, such as a polyphenylene derivative, can also be used. The conductive materials may be used alone or in combination.
  • the negative electrode 300 is a negative electrode active material, a material capable of reversibly intercalating or deintercalating lithium ions (Li + ), a material capable of reacting with lithium ions to form a reversible lithium-containing compound, lithium Metals or lithium alloys can be used.
  • the material capable of reversibly occluding or releasing the lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon or a mixture thereof.
  • the material capable of reacting with the lithium ions (Li + ) to form a lithium-containing compound reversibly may be, for example, tin oxide, titanium nitrate or silicon.
  • the lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), silicon (Si) and tin (Sn).
  • sulfur used as the positive electrode active material may be changed into an inert material and adhered to the surface of the lithium negative electrode.
  • inactive sulfur refers to sulfur in which sulfur is no longer able to participate in the electrochemical reaction of the anode through various electrochemical or chemical reactions, and inactive sulfur formed on the surface of the lithium anode is a protective layer of the lithium cathode. It also has the advantage of acting as).
  • the electrolyte 400 impregnated in the positive electrode 200, the negative electrode 300, and the separator 100 is a non-aqueous electrolyte containing lithium salt and is composed of a lithium salt and an electrolyte solution.
  • an organic solid electrolyte and an inorganic solid electrolyte are used. Etc. are used.
  • Lithium salt of the present invention is a good material to be dissolved in a non-aqueous organic solvent, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB (Ph) 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiSO 3 CH 3, LiSO 3 CF 3, LiSCN, LiC (CF 3 SO 2) 3, LiN (CF 3 SO 2) 2, LiNO 3, chloroborane lithium And one or more from the group consisting of lower aliphatic lithium carbonate, lithium tetraphenyl borate, imide.
  • a non-aqueous organic solvent for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB (Ph) 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSb
  • the concentration of the lithium salt is 0.2-4M, depending on several factors such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the cell, the operating temperature and other factors known in the lithium battery art, 0.3 to 2M, more specifically 0.3 to 1.5M may be. If the amount is less than 0.2M, the conductivity of the electrolyte may be lowered, and thus the performance of the electrolyte may be lowered. If it is used more than 4M, the viscosity of the electrolyte may be increased to reduce the mobility of lithium ions (Li + ).
  • the non-aqueous organic solvent should dissolve lithium salts well, and as the non-aqueous organic solvent of the present invention, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, di Ethyl carbonate, ethylmethyl carbonate, gamma-butylo lactone, 1,2-dimethoxy ethane, 1,2-diethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1, 3-dioxolane, 4-methyl-1,3-dioxene, diethyl ether, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxy methane , Aprotic organic solvents such as dioxolane derivatives, sulfolane, methyl sul
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, agitation lysine, polyester sulfides, polyvinyl alcohol, polyvinylidene fluoride, and ionic dissociation. Polymers containing groups and the like can be used.
  • Examples of the inorganic solid electrolyte of the present invention include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates, and the like of Li, such as Li 4 SiO 4 —LiI-LiOH, Li 3 PO 4 —Li 2 S-SiS 2 , and the like, may be used.
  • the electrolyte of the present invention includes, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro, for the purpose of improving the charge and discharge characteristics, flame retardancy, and the like.
  • Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. .
  • a halogen-containing solvent such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-ethylene) may be further included.
  • the electrolyte may be used as a liquid electrolyte or may be used in the form of a solid electrolyte separator.
  • a physical separator having a function of physically separating an electrode further includes a separator made of porous glass, plastic, ceramic, or polymer.
  • the stacked electrode assembly is formed by interposing a separator 100 cut into a predetermined size corresponding to the positive electrode plate and the negative electrode plate between the positive electrode plate and the negative electrode plate in which the positive electrode 200 and the negative electrode 300 are cut to a predetermined size. Can be prepared.
  • two or more positive electrode plates and negative electrode plates may be arranged on the separator sheet such that the positive electrode 200 and the negative electrode 300 face each other with the separator sheet 100 interposed therebetween, or the two or more positive electrode plates and the negative electrode plates may be stacked with the separator interposed therebetween.
  • Stack and folding electrode assemblies may be manufactured by arranging two or more unit cells on a separator sheet, winding the separator sheet, or bending the separator sheet to the size of an electrode plate or a unit cell.
  • a positive electrode active material prepared by mixing carbon and sulfur in a weight ratio of 9: 1, 20% by weight of Denka black as a conductive material, and 10% by weight of a SBR / CMC (weight ratio of 1: 1) as a binder was added to DI water. After the addition to prepare a positive electrode slurry, it was coated on an aluminum current collector to prepare a positive electrode.
  • SBR is styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • Lithium foil having a thickness of about 150 ⁇ m was used as a negative electrode, and an electrolyte solution containing dimethoxyethane and dioxolane dissolved in 1M LiN (CF 3 SO 2 ) 2 in a volume ratio of 1: 1 was used.
  • the lithium-sulfur battery was manufactured using the separator coated with polydopamine and Super-P.
  • a lithium-sulfur battery was manufactured in the same manner as in Example 1, except that an untreated polypropylene film having a thickness of 20 ⁇ m was used as the separator instead of the separator coated with polydopamine and Super-P.
  • the lithium-sulfur batteries prepared according to Example 1 and Comparative Example 1 were repeatedly charged / discharged at 0.1 C / 0.1 C for 30 cycles, and the initial capacity of each battery was measured every cycle. As shown in FIG. 3, the lithium-sulfur battery of Example 1 according to the present disclosure has a larger initial capacity and improved life characteristics than the lithium-sulfur battery of Comparative Example 1.
  • the battery pack including the lithium-sulfur battery is an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), power Can be used as a power source for storage.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • PHEV plug-in hybrid electric vehicle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막 및 이의 제조방법에 관한 것으로, 보다 상세하게는 분리막 일면에 폴리도파민과 전도성 물질을 포함하는 복합 코팅층을 적용하여 리튬 폴리설파이드의 용출이 억제된 리튬-황 전지에 관한 것이다. 본 발명에 따른 리튬-황 전지는 양극으로부터 용출되는 리튬 폴리설파이드를 폴리도파민의 다공성 구조가 흡착하여 용출 및 확산을 방지할 뿐만 아니라, 추가적인 전기 전도성을 부여하여, 양극 활물질의 반응 사이트를 제공하므로, 전지의 용량 및 수명 특성이 향상된다.

Description

폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지
본 출원은 2016년 1월 28일자 한국 특허 출원 제10-2016-0010969호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.
본 발명은 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막 및 이의 제조방법에 관한 것이다.
최근 전자제품, 전자기기, 통신기기 등의 소형 경량화가 급속히 진행되고 있으며, 환경 문제와 관련하여 전기 자동차의 필요성이 크게 대두됨에 따라 이들 제품의 동력원으로 사용되는 이차전지의 성능 개선에 대한 요구도 증가하는 실정이다. 그 중 리튬 이차전지는 고 에너지밀도 및 높은 표준전극 전위 때문에 고성능 전지로서 상당한 각광을 받고 있다.
특히 리튬-황(Li-S) 전지는 S-S 결합(Sulfur - sulfur bond)을 갖는 황 계열 물질을 양극 활물질로 사용하고, 리튬 금속을 음극 활물질로 사용하는 이차전지이다. 양극 활물질의 주재료인 황은 자원이 매우 풍부하고, 독성이 없으며, 낮은 원자당 무게를 가지고 있는 장점이 있다. 또한 리튬-황 전지의 이론 방전용량은 1675mAh/g-sulfur이며, 이론 에너지밀도가 2,600Wh/kg로서, 현재 연구되고 있는 다른 전지시스템의 이론 에너지밀도(Ni-MH 전지: 450Wh/kg, Li-FeS 전지: 480Wh/kg, Li-MnO2 전지: 1,000Wh/kg, Na-S 전지: 800Wh/kg)에 비하여 매우 높기 때문에 현재까지 개발되고 있는 전지 중에서 가장 유망한 전지이다.
리튬-황 전지의 방전 반응 중 음극(Anode)에서는 리튬의 산화 반응이 발생하고, 양극(Cathode)에서는 황의 환원 반응이 발생한다. 방전 전의 황은 환형의 S8 구조를 가지고 있는데, 환원 반응(방전) 시 S-S 결합이 끊어지면서 S의 산화수가 감소하고, 산화 반응(충전) 시 S-S 결합이 다시 형성되면서 S의 산화수가 증가하는 산화-환원 반응을 이용하여 전기 에너지를 저장 및 생성한다. 이런 반응 중 황은 환형의 S8에서 환원 반응에 의해 선형 구조의 리튬 폴리설파이드(Lithium polysulfide, Li2Sx, x = 8, 6, 4, 2)로 변환되게 되며, 결국 이러한 리튬 폴리설파이드가 완전히 환원되면 최종적으로 리튬 설파이드(Lithium sulfide, Li2S)가 생성되게 된다. 각각의 리튬 폴리설파이드로 환원되는 과정에 의해 리튬-황 전지의 방전 거동은 리튬 이온전지와는 달리 단계적으로 방전 전압을 나타내는 것이 특징이다.
Li2S8, Li2S6, Li2S4, Li2S2 등의 리튬 폴리설파이드 중에서, 특히 황의 산화수가 높은 리튬 폴리설파이드(Li2Sx, 보통 x > 4)는 친수성의 전해액에 쉽게 녹는다. 전해액에 녹은 리튬 폴리설파이드는 농도 차에 의해서 리튬 폴리설파이드가 생성된 양극으로부터 먼 쪽으로 확산되어 간다. 이렇게 양극으로부터 용출된 리튬 폴리설파이드는 양극 반응 영역 밖으로 유실되어 리튬 설파이드(Li2S)로의 단계적 환원이 불가능하다. 즉, 양극과 음극을 벗어나 용해된 상태로 존재하는 리튬 폴리설파이드는 전지의 충·방전 반응에 참여할 수 없게 되므로, 양극에서 전기화학 반응에 참여하는 황 물질의 양이 감소하게 되고, 결국 리튬-황 전지의 충전 용량 감소 및 에너지 감소를 일으키는 주요한 요인이 된다.
뿐만 아니라 음극으로 확산한 리튬 폴리설파이드는 전해액 중에 부유 또는 침전되는 것 이외에도, 리튬과 직접 반응하여 음극 표면에 Li2S 형태로 고착되므로 리튬 금속 음극을 부식시키는 문제를 발생시킨다.
이러한 리튬 폴리설파이드의 용출을 최소화하기 위하여, 다양한 탄소 구조에 황 입자를 채워 넣는 복합체를 형성하는 양극 복합체의 모폴로지(Morphology)를 변형시키는 연구가 진행되고 있으나, 이러한 방법들은 제조방법이 복잡하고, 근본적인 문제를 해결하지 못하고 있는 실정이다.
상술한 바와 같이, 리튬-황 전지는 양극으로부터 용출되어 확산되는 리튬 폴리설파이드로 인하여 전지의 용량 및 수명 특성이 저하되는 문제점이 있다.
따라서 본 발명의 목적은 리튬 폴리설파이드의 용출 및 확산을 억제하고 이것의 추가적인 환원 반응 사이트를 제공하는 리튬-황 전지용 분리막을 제공하는 것이다.
본 발명의 다른 목적은 상기 리튬-황 전지용 분리막의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 리튬-황 전지용 분리막을 포함하는 리튬-황 전지를 제공하는 것이다.
상기의 목적을 달성하기 위하여 본 발명은 분리막 본체 및 상기 분리막 본체의 양극과 대면하는 일면에 폴리도파민과 전도성 물질을 포함하는 복합 코팅층을 포함하는 것을 특징으로 하는 리튬-황 전지용 분리막을 제공한다.
또한 본 발명은 분리막 본체를 준비하는 단계; 폴리도파민, 전도성 물질 및 용매를 혼합하여 슬러리를 제조하는 단계; 상기 슬러리를 분리막 본체의 적어도 일면에 코팅하는 단계; 및 상기 코팅된 분리막을 건조하여 복합 코팅층을 형성하는 단계;를 포함하는 리튬-황 전지용 분리막 제조방법을 제공한다.
또한 본 발명은 상기 리튬-황 전지용 분리막을 포함하는 리튬-황 전지를 제공한다.
본 발명에 따른 리튬-황 전지는 양극으로부터 용출되는 리튬 폴리설파이드를 복합 코팅층에 포함된 전도성 물질의 다공성 구조가 흡착하여 용출 및 확산을 방지할 뿐만 아니라, 추가적인 전기 전도성을 부여하여, 양극 활물질의 반응 사이트를 제공하므로, 전지의 용량 및 수명 특성이 향상된다.
도 1은 본 발명의 제1구현예로서 복합 코팅층을 가지는 분리막을 포함하는 리튬-황 전지의 단면도이다.
도 2는 본 발명의 제2구현예로서 복합 코팅층과 폴리도파민 코팅층을 가지는 분리막을 포함하는 리튬-황 전지의 단면도이다.
도 3은 본 발명에 따른 실시예 1 및 비교예 1의 방전 사이클 특성을 나타낸 그래프이다.
이하, 본 발명의 바람직한 실시예를 첨부된 예시도면에 의거하여 상세히 설명한다. 이러한 도면은 본 발명을 설명하기 위한 일 구현예로서 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다. 이때 도면에서는 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였고, 명세서 전체를 통해 유사한 부분에 대해서는 유사한 도면 부호를 사용하였다. 또한 도면에서 표시된 구성요소의 크기 및 상대적인 크기는 실제 축척과는 무관하며, 설명의 명료성을 위해 축소되거나 과장된 것일 수 있다.
리튬-황 전지용 분리막
본 발명은 리튬 폴리설파이드의 확산을 방지하고 황의 환원 반응의 추가적인 사이트(site) 제공을 위하여, 분리막 본체의 적어도 일면에 폴리도파민과 전도성 물질을 포함하는 복합 코팅층을 포함하는 리튬-황 전지용 분리막을 제공한다. 상기 분리막 본체의 적어도 일면이란, 전극 조립시 양극과 대향하는 면을 반드시 포함하는 일면 또는 양면이다.
도 1은 본 발명의 제1구현예에 따른 리튬-황 전지를 보여주는 단면도이다. 도 1에 도시된 바와 같이, 리튬-황 전지는 양극(200), 음극(300)을 구비하고, 이들 사이에 전해질(400) 및 분리막(100)이 개재된 구조를 가지며, 특히, 본 발명은 분리막 본체(110)와 복합 코팅층(120)이 순차적으로 적층된 다층 구조의 분리막(100)을 제공한다. 이때 복합 코팅층(120)은 도 1에 나타낸 바와 같이, 분리막 본체(110)의 일측 면에 형성될 수 있으며, 필요한 경우 양측 면에 형성이 가능하다.
상기 분리막 본체(110)는 본 발명에서 특별히 그 재질을 한정하지 않으며, 전극을 물리적으로 분리하고, 전해질 및 이온 투과능을 갖는 것으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하나, 다공성이고 비전도성 또는 절연성인 물질로서, 특히 전해액의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다.
구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
특히, 본 발명에서는 분리막 본체(110) 상에 형성되는 복합 코팅층(120)을 형성하여 리튬 폴리설파이드의 확산을 방지하고 황의 환원 반응의 추가적인 사이트를 제공한다.
상기 복합 코팅층(120)에 포함되는 폴리도파민의 단량체 형태인 도파민(Dopamine)은 신경전달물질로 잘 알려져 있으며, 바다 속 홍합류(Mussels)에서 발견되는 3,4-Dihydroxy-Lphenylalanine(L-DOPA) 분자의 모방 분자이다. 특히 도파민의 산화제-유도 자체 고분자화(Oxidant-induced self-polymerization)와 전기화학적 고분자화 반응(Electrochemical polymerization)들에 의해 생성된 폴리도파민은 공유결합(Covalent bond) 카테콜(Catechol)과 이민(Imine) 작용기를 가지고 있어 생체물질, 합성 고분자 등의 유기질뿐만 아니라, 전지의 전극 또는 분리막과 같은 고체 표면들에서도 아주 강한 결합을 형성하기 때문에 표면 개질(Surface reforming), 표면 변환(Surface modification), 자기조립 다층박막(Self-assembled multilayer), 나노복합체 박막(Nanocomposite thin film)의 형성 등이 가능하다. 도파민의 카테콜 작용기는 산소의 존재 하에서 쉽게 산화되며 자체-고분자화에 의해 다양한 두께의 폴리도파민 박막을 형성한다.
친환경적이고 쉽게 구할 수 있는 유기물인 도파민은 pH 8.5 정도의 완충 용액(Buffer solution) 하에서 자체-고분자화를 이루고 이 과정을 통해 형성된 폴리도파민은 반응성이 매우 강하여 그 표면에 새로운 결합을 쉽게 만들어 줄 수 있다. 또한 폴리도파민은 상온에서 자가 고분자화가 가능하기 때문에 추가적인 시약이나 장비 없이도 코팅이 가능한 장점이 있어 제조상의 공정 비용 및 공정 효율이 우수하다.
이러한 폴리도파민은 접착력이 큰 물질로서 얇고 고른 코팅이 가능하며, 도 1에 도시된 바와 같이, 리튬 이온(10)을 양극 내부로 용이하게 확산시키면서도, 리튬 폴리설파이드(20)의 투과는 불가능하기 때문에, 전극 반응은 활성화하면서 리튬 폴리설파이드(20)의 확산은 방지할 수 있으므로, 본 발명의 리튬-황 전지의 분리막의 복합 코팅층(120)으로 적용하였다.
또한 본 발명의 복합 코팅층(120)은 리튬-황 전지에 추가적인 전기 전도성을 부여하기 위하여, 상술한 폴리도파민과 함께 전도성 물질을 포함한다. 리튬-황 전지의 양극 활물질인 황은 그 자체만으로는 전도성을 지니지 않기 때문에 도전성 탄소계 물질과 복합화하여 양극(200)으로 제조하는 것이 일반적이다. 본 발명의 복합 코팅층(120)은 전도성 물질을 포함하여, 양극 반응 사이트 이외에도 추가적인 황 물질의 환원 반응 사이트를 제공한다.
보다 구체적으로는 복합 코팅층(120)은 전도성 물질의 다공성 구조로 인하여, 황의 환원 단계의 중간 생성물인 리튬 폴리설파이드(Lithium polysulfide, Li2Sx, x = 8, 6, 4, 2)(20)를 흡착하여 확산을 억제한다. 또한 복합 코팅층(120)의 도전성 물질이 상기 흡착된 리튬 폴리설파이드(20)의 환원 반응 사이트를 추가적으로 제공하여 전극 효율을 높일 수 있게 된다.
본 발명에 따른 복합 코팅층(110)에 포함되는 상기 전도성 물질은 탄소계 도전재, 전도성 고분자 및 이들의 조합으로 이루어진 군으로부터 선택하는 것일 수 있다.
상기 탄소계 도전재는 그 종류의 제한은 없으나, 천연 흑연, 인조 흑연, 팽창 흑연, 그래핀(Graphene), 슈퍼-피(Super-P), 슈퍼-씨(Super-C)와 같은 흑연(Graphite)계, 활성탄(Activated carbon)계, 채널 블랙(Channel black), 덴카 블랙(Denka black), 퍼니스 블랙(Furnace black), 써말 블랙(Thermal black), 컨택트 블랙(Contact black), 램프 블랙(Lamp black), 아세틸렌 블랙(Acetylene black)과 같은 카본 블랙(Carbon black)계; 탄소 섬유(Carbon fiber)계, 탄소나노튜브(Carbon nanotube: CNT), 풀러렌(Fullerene)과 같은 탄소나노구조체 및 이들의 조합으로 이루어진 군으로부터 선택된 1종을 포함할 수 있으며, 바람직하게는 슈퍼-피를 사용한다.
상기 전도성 고분자는 그 종류의 제한은 없으나, 폴리아닐린(Polyaniline), 폴리피롤(Polypyrrole), 폴리티오펜(Polythiopene), 폴라아줄렌(Polyazulene), 폴리피리딘(Polypyridine), 폴리인돌(Polyindole), 폴리카바졸(Polycarbazole), 폴리아진(Polyazine), 폴리퀴논(Polyquinone), 폴리아세틸렌(Polyacetylene), 폴리셀레노펜(Polyselenophene), 폴리텔루로펜(Polytellurophene), 폴리파라페닐렌(Poly-p-phenylene), 폴리페닐렌비닐렌(Polyphenylene vinylene: PPV), 폴리페닐렌설파이드(Polyphenylene sulfide: PPS), 폴리에틸렌디옥시티오펜(Polyethylenedioxythiophene: PEDT) 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는 것일 수 있다.
상술한 리튬 폴리설파이트 확산 방지 효과와 리튬 폴리설파이트의 환원 반응 사이트를 제공하기 위한 전도성 부여 효과를 위하여 폴리도파민과 전도성 물질의 중량비는 3 : 1 ~ 7 : 1 범위 내에서 조절 가능하다. 만약, 상기한 범위보다 폴리도파민을 과량 사용할 경우에는 저항층으로 작용하여 전지 성능 저하의 문제가 발생하고, 반대로 전도성 물질을 과량 사용할 경우에는 상대적으로 폴리도파민의 함량이 감소되기 때문에 폴리도파민으로 인한 효과를 확보하기 어려운 문제가 발생하므로, 상기 범위에서 적절히 사용한다.
이러한 복합 코팅층(120)은 상기한 효과를 확보하기 위해 분리막 본체(110) 상에 0.1 ~ 10㎛, 바람직하게는 0.1 ~ 5㎛의 두께로 형성한다. 만약 그 두께가 상기 범위 미만이면 리튬 폴리설파이드 흡착 효과가 미비하고, 이와 반대로 상기 범위를 초과할 경우에는 리튬 이온 전도성이 저하되어 전극 성능에 문제가 발생하므로, 상기 범위 내에서 적절히 사용한다.
추가적으로, 상기 언급한 바의 제1구현예에 따른 분리막 본체(110)/복합 코팅층(120)의 다층 구조를 갖는 분리막(100)은 이들 사이에 다른 층을 더욱 구비하여 그 효과를 높일 수 있다.
도 2는 본 발명의 제2구현예에 따른 리튬-황 전지를 보여주는 단면도로서, 도 2에 도시된 바와 같이, 제2구현예에 따른 리튬-황 전지는 분리막으로서 분리막 본체(110)와 복합 코팅층(120) 사이에 폴리도파민 코팅층(130)을 구비한다. 이때 분리막 본체(110) 및 복합 코팅층(120)은 제1구현예에서 언급한 바를 따른다.
상기 추가로 구비된 폴리도파민 코팅층(130)은 분리막 본체(110)와 복합 코팅층(120) 계면 간의 접착력을 향상시키는 목적으로 사용하며, 상술한 폴리도파민에 의한 리튬 폴리설파이드의 포집 효과를 더욱 확보할 수 있다. 이때 폴리도파민 코팅층(130)은 두께를 0.1 ~ 10㎛가 되도록 형성한다. 만약 그 두께가 상기 범위를 초과하면 리튬 이온의 전도도가 저하되는 문제를 야기하므로, 최대 10㎛ 이하로 형성하는 것이 바람직하다.
리튬-황 전지용 분리막 제조방법
본 발명의 제1구현예에서 제시하는 도 1에 도시된 바와 같은 리튬-황 전지용 분리막은 다음과 같은 단계를 수행하여 제조될 수 있다.
먼저, 분리막 본체(110)를 준비한다. 분리막 본체(110)는 본 발명에서 특별히 한정하지 않으며, 전술한 분리막 본체 중 어느 하나를 선택할 수 있고, 직접 제조하거나 시판되는 분리막을 구입하여 사용하는 것이 가능하다.
다음으로, 폴리도파민과 전도성 물질을 상술한 3 : 1 ~ 7 : 1의 중량비로 혼합한 후, 소정의 용매에 분산시켜 슬러리 상태로 제조한다. 이때 폴리도파민의 자체의 접착 특성상 별도의 바인더는 요구되지 않는다. 상기 용매로는 폴리도파민과 전도성 물질을 균일하게 분산시킬 수 있으며, 쉽게 증발되어 건조가 용이한 것을 사용하는 것이 바람직하며, 구체적으로는 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란, 물, 이소프로필알코올 등을 들 수 있다. 또한 상기 슬러리 제조를 위한 혼합은 통상의 혼합기, 예컨대 페이스트 믹서, 고속 전단 믹서, 호모 믹서 등을 이용하여 통상의 방법으로 교반할 수 있다.
다음으로, 상기 제조된 슬러리를 분리막 본체(110)의 일면에 코팅한다. 여기에서 분리막 본체(110)의 일면이란, 추후 전극 조립시, 양극(200)과 대향하여 조립되는 분리막 본체(110)의 일면이다. 이때 상기 슬러리를 습식 코팅하는 방법으로 그 제한은 없으며, 예컨대, 닥터 블레이드 코팅(Doctor blade coating), 딥 코팅(Dip coating), 그라비어 코팅(Gravure coating), 슬릿 다이 코팅(Slit die coating), 스핀 코팅(Spin coating), 콤마 코팅(Comma coating), 바 코팅(Bar coating), 리버스 롤 코팅(Reverse roll coating), 스크린 코팅(Screen coating), 캡 코팅(Cap coating) 방법 등을 수행하여 제조할 수 있다.
다음으로, 상기 코팅된 분리막을 건조하여 복합 코팅층(120)을 형성한다. 상기 건조 공정은, 금속 집전체에 코팅된 슬러리를 건조하기 위하여 슬러리 내의 용매 및 수분을 제거하는 과정으로, 사용한 용매에 따라 건조 온도 및 시간이 달라질 수 있으며, 일반적으로 50 ~ 200℃의 진공 오븐에서 48시간 이내로 건조하는 것이 바람직하다.
또한 본 발명의 제2구현예에서 제시하는 도 2에 도시된 바와 같은 리튬-황 전지용 분리막은 상기 언급한 제1구현예의 제조방법을 따르되, 상기 분리막 본체(110)에 복합 코팅층(120)을 코팅하기 전에 상기 폴리도파민 코팅층(130)을 코팅함으로써 제조할 수 있다.
이때 상기 폴리도파민 코팅층(130)은 폴리도파민을 전술한 용매에 분산시킨 코팅액을 제조한 다음, 습식 코팅 공정을 수행하여 얻어지며, 상기 제1구현예에서 제시한 코팅 방법 중 어느 하나의 방법을 따를 수 있다.
리튬-황 전지
전술한 바의 제1 및 제2구현예에서 제시하는 분리막(100)은 바람직하게 리튬-황 전지의 분리막으로 적용 가능하며, 도 1 및 도 2에 제시한 바와 같이, 분리막(100)은 양극(200) 및 음극(300) 사이에 개재되고, 이때 복합 코팅층(120)이 일면에만 코팅되는 경우, 바람직하게는 복합 코팅층(120)이 양극(200)과 대향하도록 배치하여 조립하도록 한다.
상기 양극(200)은 양극 활물질로서 황 원소(Elemental sulfur, S8), 황 계열 화합물 또는 이들의 혼합물을 포함할 수 있으며, 이들은 황 물질 단독으로는 전기전도성이 없기 때문에 도전재와 복합하여 적용한다. 상기 황 계열 화합물은 구체적으로, Li2Sn(n≥1), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n: x=2.5 ~ 50, n≥2) 등일 수 있다.
상기 도전재는 다공성일 수 있다. 따라서, 상기 도전재로는 다공성 및 도전성을 갖는 것이라면 제한 없이 사용할 수 있으며, 예를 들어 다공성을 갖는 탄소계 물질을 사용할 수 있다. 이와 같은 탄소계 물질로는 카본 블랙, 그라파이트, 그래핀, 활성탄, 탄소 섬유, 탄소나노튜브(CNT) 등을 사용할 수 있다. 또한, 금속 메쉬 등의 금속성 섬유; 구리, 은, 니켈, 알루미늄 등의 금속성 분말; 또는 폴리페닐렌 유도체 등의 유기 도전성 재료도 사용할 수 있다. 상기 도전성 재료들은 단독 또는 혼합하여 사용될 수 있다.
상기 음극(300)은 음극 활물질로서 리튬 이온(Li+)을 가역적으로 흡장(Intercalation) 또는 방출(Deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다. 상기 리튬 이온(Li+)을 가역적으로 흡장 또는 방출할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al), 실리콘(Si) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
또한, 리튬-황 전지를 충ㆍ방전하는 과정에서, 양극 활물질로 사용되는 황이 비활성 물질로 변화되어, 리튬 음극 표면에 부착될 수 있다. 이와 같이 비활성 황(Inactive sulfur)은 황이 여러 가지 전기화학적 또는 화학적 반응을 거쳐 양극의 전기화학 반응에 더이상 참여할 수 없는 상태의 황을 의미하며, 리튬 음극 표면에 형성된 비활성 황은 리튬 음극의 보호막(Protective layer)으로서 역할을 하는 장점도 있다.
상기 양극(200), 음극(300) 및 분리막(100)에 함침되어 있는 전해질(400)은 리튬염을 함유하는 비수계 전해질로서 리튬염과 전해액으로 구성되어 있으며, 이외에도 유기 고체 전해질 및 무기 고체 전해질 등이 사용된다.
본 발명의 리튬염은 비수계 유기용매에 용해되기 좋은 물질로서, 예컨대, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4 , LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, LiNO3, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드로 이루어진 군으로부터 하나 이상이 포함될 수 있다.
상기 리튬염의 농도는, 전해질 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 ~ 4M, 구체적으로 0.3 ~ 2M, 더욱 구체적으로 0.3 ~ 1.5M일 수 있다. 0.2M 미만으로 사용하면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 4M을 초과하여 사용하면 전해질의 점도가 증가하여 리튬 이온(Li+)의 이동성이 감소될 수 있다.
상기 비수계 유기용매는 리튬염을 잘 용해시켜야 하며, 본 발명의 비수계 유기용매로는, 예컨대, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥솔란, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아미드, 디메틸포름아미드, 디옥솔란, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥솔란 유도체, 설포란, 메틸설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있으며, 상기 유기 용매는 하나 또는 둘 이상의 유기 용매들의 혼합물일 수 있다.
상기 유기 고체 전해질로는, 예컨대, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(Agitation lysine), 폴리에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
본 발명의 무기 고체 전해질로는, 예컨대, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
본 발명의 전해질에는 충ㆍ방전 특성, 난연성 등의 개선을 목적으로, 예컨대, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-ethylene carbonate), PRS(Propene sultone), FPC(Fluoro-propylene carbonate) 등을 더 포함시킬 수 있다.
전해질은 액상 전해질로 사용할 수도 있고, 고체 상태의 전해질 세퍼레이터 형태로도 사용할 수 있다. 액상 전해질로 사용할 경우에는 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서 다공성 유리, 플라스틱, 세라믹 또는 고분자 등으로 이루어진 분리막을 더 포함한다.
상술한 양극(200)과 음극(300)을 소정의 크기로 절취한 양극판과 음극판 사이에 상기 양극판과 음극판에 대응하는 소정의 크기로 절취한 분리막(100)을 개재시킨 후 적층함으로써 스택형 전극 조립체를 제조할 수 있다.
또는 양극(200)과 음극(300)이 분리막(100) 시트를 사이에 두고 대면하도록, 둘 이상의 양극판 및 음극판들을 분리막 시트 상에 배열하거나 또는 상기 둘 이상의 양극판 및 음극판들이 분리막을 사이에 두고 적층되어 있는 유닛셀들 둘 이상을 분리막 시트 상에 배열하고, 상기 분리막 시트를 권취하거나, 전극판 또는 유닛셀의 크기로 분리막 시트를 절곡함으로써 스택 앤 폴딩형 전극조립체를 제조할 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
<실시예 1>
1. 분리막 제조
폴리도파민과 탄소계 도전재인 Super-P를 5 : 1의 중량비로 혼합하여 염기성(pH 8.5) 버퍼 용액에 분산시켜 제조된 슬러리를 20㎛ 두께의 폴리프로필렌 필름의 일면에 5㎛ 두께로 코팅하여 분리막을 제조하였다.
2. 리튬-황 전지 제조
탄소 및 황을 9 : 1 의 중량비로 혼합하여 제조된 양극 활물질 70 중량%, 도전재인 Denka black 20 중량% 및 바인더로서 SBR/CMC(중량비 1 : 1) 10 중량% 조성의 양극 합제를 D.I water에 첨가하여 양극 슬러리를 제조한 후, 알루미늄 집전체에 코팅하여 양극을 제조하였다. 단, 바인더에서 SBR은 스티렌 부타디엔 고무이고, CMC는 카복시메틸셀룰로오스이다.
음극으로서 약 150㎛ 두께를 갖는 리튬 호일을 사용하였으며, 전해액으로 1M LiN(CF3SO2)2가 용해된 디메톡시에탄과 디옥솔란을 1 : 1의 부피비로 혼합한 전해액을 사용하였고, 상기 제조된 폴리도파민과 Super-P가 코팅된 분리막을 사용하여 리튬-황 전지를 제조하였다.
<비교예 1>
상기 폴리프로필렌에 폴리도파민과 Super-P가 코팅된 분리막 대신 무처리된 20㎛의 폴리프로필렌 필름을 분리막으로 사용하는 것을 제외하고는 상기 실시예 1와 동일한 방법으로 리튬-황 전지를 제조하였다.
<실험예 1>
실시예 1 및 비교예 1에 따라 제조된 리튬-황 전지를 각각 0.1 C/0.1 C로 충전/방전을 30 사이클 반복하면서, 사이클마다 각 전지의 초기 용량을 측정하였다. 도 3에 도시된 바와 같이, 본 명세서에 따른 실시예 1의 리튬-황 전지는 비교예 1의 리튬-황 전지보다 초기용량이 크고, 수명 특성 또한 향상된 것을 알 수 있다.
상기한 리튬-황 전지를 포함하는 전지팩은 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV), 전력 저장장치의 전원으로 사용될 수 있다.

Claims (11)

  1. 분리막 본체; 및
    상기 분리막 본체의 적어도 일면에 형성된 복합 코팅층;을 포함하고,
    상기 복합 코팅층은 폴리도파민과 전도성 물질을 포함하는 것을 특징으로 하는 리튬-황 전지용 분리막.
  2. 제1항에 있어서,
    상기 복합 코팅층은 폴리도파민과 전도성 물질을 3 : 1 ~ 7 : 1 의 중량비로 포함하는 것을 특징으로 하는 리튬-황 전지용 분리막.
  3. 제1항에 있어서,
    상기 복합 코팅층의 두께는 0.1 ~ 10㎛ 인 것을 특징으로 하는 리튬-황 전지용 분리막.
  4. 제1항에 있어서,
    상기 전도성 물질은 탄소계 도전재, 전도성 고분자 및 이들의 조합으로 이루어진 군으로부터 선택된 1종을 포함하는 것을 특징으로 하는 리튬-황 전지용 분리막.
  5. 제4항에 있어서,
    상기 탄소계 도전재는 흑연계, 활성탄계, 카본 블랙계, 탄소 섬유계, 탄소나노구조체 및 이들의 조합으로 이루어진 군으로부터 선택된 1종을 포함하는 것을 특징으로 하는 리튬-황 전지용 분리막.
  6. 제4항에 있어서,
    상기 전도성 고분자는 폴리아닐린, 폴리피롤, 폴리티오펜, 폴라아줄렌, 폴리피리딘, 폴리인돌, 폴리카바졸, 폴리아진, 폴리퀴논, 폴리아세틸렌, 폴리셀레노펜, 폴리텔루로펜, 폴리파라페닐렌, 폴리페닐렌비닐렌, 폴리페닐렌설파이드, 폴리에틸렌디옥시티오펜 및 이들의 조합으로 이루어진 군으로부터 선택된 1종을 포함하는 것을 특징으로 하는 리튬-황 전지용 분리막.
  7. 제1항에 있어서,
    상기 분리막 본체와 복합 코팅층 사이에 폴리도파민 코팅층을 더 구비하는 것을 특징으로 하는 리튬-황 전지용 분리막.
  8. 제7항에 있어서,
    상기 폴리도파민 코팅층의 두께는 0.1 ~ 10㎛인 것을 특징으로 하는 리튬-황 전지용 분리막.
  9. 리튬-황 전지용 분리막의 제조방법에 있어서,
    i) 분리막 본체를 준비하는 단계;
    ii) 폴리도파민, 전도성 물질 및 용매를 혼합하여 슬러리를 제조하는 단계;
    iii) 상기 슬러리를 분리막 본체의 적어도 일면에 코팅하는 단계; 및
    iv) 상기 코팅된 분리막을 건조하여 복합 코팅층을 형성하는 단계;를 포함하는 것을 특징으로 하는 리튬-황 전지용 분리막의 제조방법.
  10. 제9항에 있어서,
    상기 i) 단계 수행 후, ii) 단계 수행 전에,
    폴리도파민 슬러리를 제조하여 분리막 본체 상에 코팅 후 건조하여 폴리도파민 코팅층을 형성하는 단계를 수행하는 것을 특징으로 하는 리튬-황 전지용 분리막의 제조방법.
  11. 양극; 음극; 상기 양극과 음극 사이에 개재되는 분리막; 및 전해질을 포함하는 리튬-황 전지에 있어서,
    상기 분리막은 제1항 내지 제8항 중 어느 한 항의 분리막인 것을 특징으로 하는 리튬-황 전지.
PCT/KR2017/000530 2016-01-28 2017-01-16 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지 WO2017131377A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/742,426 US10622669B2 (en) 2016-01-28 2017-01-16 Lithium-sulfur battery separation film having composite coating layer including polydopamine, manufacturing method therefor, and lithium-sulfur battery comprising same
CN201780002678.5A CN107925042B (zh) 2016-01-28 2017-01-16 具有包含聚多巴胺的复合涂层的锂硫电池隔膜、其制造方法及包含其的锂硫电池
EP17744499.9A EP3312906B1 (en) 2016-01-28 2017-01-16 Lithium-sulfur battery separation film having composite coating layer including polydopamine, manufacturing method therefor, and lithium-sulfur battery comprising the same
JP2018500900A JP6732293B2 (ja) 2016-01-28 2017-01-16 ポリドーパミンを含む複合コーティング層が形成されたリチウム−硫黄電池用分離膜、この製造方法及びこれを含むリチウム−硫黄電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0010969 2016-01-28
KR1020160010969A KR102038543B1 (ko) 2016-01-28 2016-01-28 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지

Publications (1)

Publication Number Publication Date
WO2017131377A1 true WO2017131377A1 (ko) 2017-08-03

Family

ID=59398297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000530 WO2017131377A1 (ko) 2016-01-28 2017-01-16 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지

Country Status (6)

Country Link
US (1) US10622669B2 (ko)
EP (1) EP3312906B1 (ko)
JP (1) JP6732293B2 (ko)
KR (1) KR102038543B1 (ko)
CN (1) CN107925042B (ko)
WO (1) WO2017131377A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3482819A1 (en) * 2017-11-13 2019-05-15 Korea Advanced Institute Of Science And Technology Apparatus for generating electrical energy based on hydrophilic fiber membrane and method of fabricating same
WO2019157088A1 (en) * 2018-02-06 2019-08-15 The Board Of Trustees Of The Leland Stanford Junior University Rational design of redox mediator for fast and energy-efficient charging of sulfur cathodes
CN110731021A (zh) * 2018-02-19 2020-01-24 株式会社Lg化学 锂硫电池用隔膜、其制备方法和包含所述隔膜的锂硫电池
CN111344880A (zh) * 2017-12-06 2020-06-26 株式会社Lg化学 用于涂覆二次电池隔离件的浆料组合物和使用其制备的二次电池隔离件
CN112201791A (zh) * 2020-10-23 2021-01-08 江苏大学 一种吸氧自愈合膜改善锂离子电池三元正极材料的方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102229446B1 (ko) * 2017-09-22 2021-03-17 주식회사 엘지화학 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
KR102244908B1 (ko) * 2017-10-25 2021-04-26 주식회사 엘지화학 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
KR102229452B1 (ko) 2017-11-08 2021-03-17 주식회사 엘지화학 분리막 및 이를 포함하는 리튬-황 전지
KR102388260B1 (ko) * 2017-11-30 2022-04-18 주식회사 엘지에너지솔루션 키토산-카테콜계 다공성 분리막, 그 제조방법 및 이를 포함하는 리튬-황 전지
KR102420594B1 (ko) * 2018-05-24 2022-07-13 주식회사 엘지에너지솔루션 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
KR102420593B1 (ko) * 2018-05-24 2022-07-13 주식회사 엘지에너지솔루션 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
CN112470309A (zh) * 2018-10-31 2021-03-09 株式会社Lg化学 硫碳复合物、其制备方法和包含其的锂二次电池
KR20200065828A (ko) * 2018-11-30 2020-06-09 한국과학기술연구원 도전재층을 포함하는 기능성 복합 분리막, 이를 포함하는 이차전지, 전기화학 소자, 전기화학 장치, 및 그 제조방법
DE102018131922A1 (de) 2018-12-12 2020-06-18 Carl Freudenberg Kg Membran für den selektiven Stofftransport
DE102018131928A1 (de) 2018-12-12 2020-06-18 Carl Freudenberg Kg Separator für elektrochemische Energiespeicher und Wandler
US11545722B2 (en) * 2019-03-15 2023-01-03 Purdue Research Foundation Separators for electrochemical cells and methods of making the same
KR20200127869A (ko) * 2019-05-03 2020-11-11 주식회사 엘지화학 촉매점이 도입된 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
KR102448077B1 (ko) * 2019-05-09 2022-09-27 주식회사 엘지에너지솔루션 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
CN110233225B (zh) * 2019-06-28 2020-07-21 电子科技大学 一种锂硫电池用改性隔膜及其制备方法
CN110350130A (zh) * 2019-07-18 2019-10-18 中南大学 金属/硫二次电池用非对称隔膜
CN110707264B (zh) * 2019-09-19 2022-03-11 河北金力新能源科技股份有限公司 锂硫电池用高电导涂层隔膜及其制备方法和应用
CN112909328A (zh) * 2019-12-04 2021-06-04 中国科学院宁波材料技术与工程研究所 一种超薄硫化物固体电解质层及其制备方法和应用
CN113067096B (zh) * 2019-12-16 2022-11-01 河北金力新能源科技股份有限公司 锂硫电池用功能性隔膜及其制备方法和应用
CN111244370A (zh) * 2020-01-15 2020-06-05 华南师范大学 多元胺碳复合材料、浆料、隔膜、锂硫电池及制备方法
CN112768840A (zh) * 2021-01-04 2021-05-07 长沙矿冶研究院有限责任公司 一种锂硫电池多功能隔膜及其制备方法
CN114552126B (zh) * 2021-07-12 2023-11-03 万向一二三股份公司 一种锂离子电池复合隔膜及其制备方法
CN113937269B (zh) * 2021-10-13 2023-09-01 福州大学 一种银颗粒涂层修饰的三维多孔铜集流体-锂负极一体结构及其制备方法和应用
CN113871625B (zh) * 2021-12-02 2022-03-11 中科南京绿色制造产业创新研究院 一种复合层及其制备方法和锂硫电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120103948A (ko) * 2011-03-11 2012-09-20 주식회사 엘지화학 이차전지용 세퍼레이터
KR101261703B1 (ko) * 2011-04-27 2013-05-06 한국과학기술원 리튬이차전지 방전용량 향상방법 이를 위한 분리막 및 그 표면처리방법, 이를 포함하는 리튬이차전지
KR20130099463A (ko) * 2012-02-29 2013-09-06 주식회사 엘지화학 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
KR101327891B1 (ko) * 2012-02-02 2013-11-11 에스케이씨 주식회사 생체고분자로 코팅된 다공성 필름 및 이를 포함하는 이차전지용 분리막
KR20150004358A (ko) * 2012-04-10 2015-01-12 캘리포니아 인스티튜트 오브 테크놀로지 전기화학 시스템들용 신규 세퍼레이터들
KR20160010969A (ko) 2014-07-21 2016-01-29 한전케이피에스 주식회사 공기구동밸브 시트 링 누설시험장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050021131A (ko) 2003-08-26 2005-03-07 대한민국 (경상대학교 총장) 코팅된 분리막을 갖는 충ㆍ방전 특성이 개선된 리튬/유황이차전지
KR101118473B1 (ko) 2009-03-27 2012-03-12 (주)바이오니아 나노다공막 및 이의 제조방법
KR101198493B1 (ko) 2011-06-07 2012-11-06 한국과학기술원 홍합유래 고분자를 이용한 폴리올레핀 분리막의 열수축 방지방법, 이에 의하여 열 수축 특성이 향상된 폴리올레핀 분리막과 이를 포함하는 리튬이차전지
DE102011079662A1 (de) * 2011-07-22 2013-01-24 Robert Bosch Gmbh Separator für einen Energiespeicher und Energiespeicher
DE102011088910A1 (de) 2011-12-16 2013-06-20 Robert Bosch Gmbh Lithium-Schwefel-Zellen-Separator mit Polysulfidsperrschicht
KR20130127201A (ko) * 2012-05-14 2013-11-22 주식회사 엘지화학 다공성 코팅층을 포함하는 세퍼레이터 및 그를 포함하는 전기화학소자
KR101465173B1 (ko) * 2012-06-15 2014-11-25 주식회사 엘지화학 다공성 코팅층을 포함하는 세퍼레이터 및 그를 포함하는 전기화학소자
KR101367577B1 (ko) 2012-07-20 2014-02-26 경기대학교 산학협력단 폴리도파민을 이용한 카본/촉매 복합체의 제조방법과, 이에 따라 제조되는 카본/촉매 복합체 및 이를 공기극으로 이용한 리튬/공기 이차전지
CN104103791A (zh) 2013-04-08 2014-10-15 中国科学院金属研究所 一种电池复合隔膜及其制备方法
US9742028B2 (en) * 2013-08-21 2017-08-22 GM Global Technology Operations LLC Flexible membranes and coated electrodes for lithium based batteries
KR101455943B1 (ko) 2013-10-17 2014-11-04 한양대학교 산학협력단 이차 전지용 분리막, 그 제조 방법, 및 이를 이용한 이차 전지
JP6370584B2 (ja) * 2014-04-04 2018-08-08 学校法人早稲田大学 リチウム硫黄二次電池
KR101745759B1 (ko) * 2014-04-14 2017-06-12 주식회사 엘지화학 코팅층을 포함하는 분리막 및 이를 포함하는 리튬 이차전지
US9774058B2 (en) * 2014-04-18 2017-09-26 Seeo, Inc. Polymer composition with electrophilic groups for stabilization of lithium sulfur batteries
WO2015171607A1 (en) * 2014-05-05 2015-11-12 Board Of Regents, The University Of Texas System Bifunctional separators for lithium-sulfur batteries
CN104051695A (zh) * 2014-06-20 2014-09-17 江苏大学 锂硫电池用聚合物修饰隔膜、其制备方法及锂硫电池
CN105261721B (zh) 2015-08-28 2018-07-10 清华大学 一种不对称隔膜及在锂硫二次电池中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120103948A (ko) * 2011-03-11 2012-09-20 주식회사 엘지화학 이차전지용 세퍼레이터
KR101261703B1 (ko) * 2011-04-27 2013-05-06 한국과학기술원 리튬이차전지 방전용량 향상방법 이를 위한 분리막 및 그 표면처리방법, 이를 포함하는 리튬이차전지
KR101327891B1 (ko) * 2012-02-02 2013-11-11 에스케이씨 주식회사 생체고분자로 코팅된 다공성 필름 및 이를 포함하는 이차전지용 분리막
KR20130099463A (ko) * 2012-02-29 2013-09-06 주식회사 엘지화학 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
KR20150004358A (ko) * 2012-04-10 2015-01-12 캘리포니아 인스티튜트 오브 테크놀로지 전기화학 시스템들용 신규 세퍼레이터들
KR20160010969A (ko) 2014-07-21 2016-01-29 한전케이피에스 주식회사 공기구동밸브 시트 링 누설시험장치

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3482819A1 (en) * 2017-11-13 2019-05-15 Korea Advanced Institute Of Science And Technology Apparatus for generating electrical energy based on hydrophilic fiber membrane and method of fabricating same
US11404222B2 (en) 2017-11-13 2022-08-02 Korea Advanced Institute Of Science And Technology Apparatus for generating electrical energy based on hydrophilic fiber membrane and method of fabricating same
CN111344880A (zh) * 2017-12-06 2020-06-26 株式会社Lg化学 用于涂覆二次电池隔离件的浆料组合物和使用其制备的二次电池隔离件
CN111344880B (zh) * 2017-12-06 2022-11-25 株式会社Lg新能源 用于涂覆二次电池隔离件的浆料组合物和使用其制备的二次电池隔离件
US11539099B2 (en) 2017-12-06 2022-12-27 Lg Energy Solution, Ltd. Slurry composition for coating secondary battery separator and secondary battery separator prepared using same
WO2019157088A1 (en) * 2018-02-06 2019-08-15 The Board Of Trustees Of The Leland Stanford Junior University Rational design of redox mediator for fast and energy-efficient charging of sulfur cathodes
CN110731021A (zh) * 2018-02-19 2020-01-24 株式会社Lg化学 锂硫电池用隔膜、其制备方法和包含所述隔膜的锂硫电池
EP3624226A4 (en) * 2018-02-19 2020-05-27 LG Chem, Ltd. CATHODE FOR LITHIUM-SULFUR BATTERY, MANUFACTURING METHOD FOR IT AND LITHIUM-SULFUR BATTERY THEREFOR
US11289770B2 (en) 2018-02-19 2022-03-29 Lg Energy Solution, Ltd. Separator including separator base with coating layer including structural unit derived from sulfonic acid containing catechol/pyrogallol and dopamine, manufacturing method therefor, and lithium-sulfur battery comprising same
CN112201791A (zh) * 2020-10-23 2021-01-08 江苏大学 一种吸氧自愈合膜改善锂离子电池三元正极材料的方法

Also Published As

Publication number Publication date
US10622669B2 (en) 2020-04-14
CN107925042A (zh) 2018-04-17
EP3312906B1 (en) 2019-01-02
EP3312906A1 (en) 2018-04-25
KR102038543B1 (ko) 2019-10-30
CN107925042B (zh) 2020-10-20
EP3312906A4 (en) 2018-05-02
JP6732293B2 (ja) 2020-07-29
KR20170090294A (ko) 2017-08-07
US20180198156A1 (en) 2018-07-12
JP2018520490A (ja) 2018-07-26

Similar Documents

Publication Publication Date Title
WO2017131377A1 (ko) 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2017213325A1 (ko) 카본 나이트라이드와 그래핀 옥사이드의 자기조립 복합체 및 그 제조방법, 이를 적용한 양극 및 이를 포함하는 리튬-황 전지
WO2019088672A1 (ko) 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자
WO2018084449A2 (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
WO2014148819A1 (ko) 저저항 전기화학소자용 전극, 그의 제조방법 및 상기 전극을 포함하는 전기화학소자
WO2019088475A1 (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
WO2019132394A1 (ko) 리튬-황 전지용 바인더, 이를 포함하는 양극 및 리튬-황 전지
WO2018208035A1 (ko) 리튬 이차전지의 제조방법
WO2016209014A1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
WO2017052246A1 (ko) 금속 나노입자를 포함하는 양극 활물질 및 양극, 이를 포함하는 리튬-황 전지
WO2017191883A1 (ko) 폴리도파민을 포함하는 전해액, 이를 포함하는 리튬-황 전지
WO2022164107A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2019083257A1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
KR102320325B1 (ko) 리튬-황 전지
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2018097695A1 (ko) 금속 황화물 나노입자를 포함하는 리튬-황 전지용 양극 활물질 및 이의 제조방법
WO2020060132A1 (ko) 황-탄소 복합체의 제조방법, 그에 의해 제조된 황-탄소 복합체, 상기 황-탄소 복합체를 포함하는 양극, 및 상기 양극을 포함하는 리튬 이차 전지
WO2019093735A1 (ko) 리튬 이차 전지의 수명 향상 방법
KR102229446B1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
WO2023008783A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2019022358A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
WO2021241959A1 (ko) 프리스탠딩 필름형 리튬 이차전지용 양극재, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2018216866A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2023090682A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2023120883A1 (ko) 리튬 이차전지 및 상기 리튬 이차전지의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018500900

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017744499

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE