CN107925042B - 具有包含聚多巴胺的复合涂层的锂硫电池隔膜、其制造方法及包含其的锂硫电池 - Google Patents

具有包含聚多巴胺的复合涂层的锂硫电池隔膜、其制造方法及包含其的锂硫电池 Download PDF

Info

Publication number
CN107925042B
CN107925042B CN201780002678.5A CN201780002678A CN107925042B CN 107925042 B CN107925042 B CN 107925042B CN 201780002678 A CN201780002678 A CN 201780002678A CN 107925042 B CN107925042 B CN 107925042B
Authority
CN
China
Prior art keywords
separator
lithium
sulfur battery
polydopamine
composite coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780002678.5A
Other languages
English (en)
Other versions
CN107925042A (zh
Inventor
李昇昊
李海臣
金善珍
梁斗景
权起暎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lg Energy Solution
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
LG Chem Ltd
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd, Korea Advanced Institute of Science and Technology KAIST filed Critical LG Chem Ltd
Publication of CN107925042A publication Critical patent/CN107925042A/zh
Application granted granted Critical
Publication of CN107925042B publication Critical patent/CN107925042B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及具有包含聚多巴胺的复合涂层的锂硫电池隔膜及其制造方法,更具体地,涉及通过在隔膜的一个表面上施加包含聚多巴胺和导电材料的复合涂层来抑制多硫化锂的溶出的锂硫电池。根据本发明的锂硫电池通过经由聚多巴胺的多孔结构吸附从正极溶出的多硫化锂来防止溶出和扩散,并且还通过提供额外的导电性而提供正极活性材料的反应位点,从而改善电池的容量和寿命特性。

Description

具有包含聚多巴胺的复合涂层的锂硫电池隔膜、其制造方法 及包含其的锂硫电池
技术领域
本申请要求2016年1月28日提交给韩国知识产权局的韩国专利申请号10-2016-0010969的优先权和权益,并通过引用的方式将其全部内容并入本文中。
本发明涉及具有包含聚多巴胺的复合涂层的锂硫电池用隔膜及其制备方法。
背景技术
近来随着电子产品、电子装置、通讯装置等已快速地变得越来越小型化和轻质化,并且由于环境问题而使得对电动车辆的需求已高度出现,对于用作这些产品的电源的二次电池的性能改善的需求已大幅增加。其中,作为高性能电池的锂二次电池由于其高能量密度和高标准电极电位而受到了相当大的关注。
特别地,锂硫(Li-S)电池是使用具有硫-硫(S-S)键的硫系材料作为正极活性材料且使用锂金属作为负极活性材料的二次电池。作为正极活性材料的主要材料的硫具有原料非常丰富、无毒且具有低原子量的优点。另外,锂硫电池具有1675mAh/g硫的理论放电容量和相比于目前所研究的其它电池体系的理论能量密度(Ni-MH电池:450Wh/kg,Li-FeS电池:480Wh/kg,Li-MnO2电池:1000Wh/kg,Na-S电池:800Wh/kg)而言非常高的2600Wh/kg的理论能量密度,因此是迄今为止已开发的电池中最有前景的电池。
在锂硫(Li-S)电池的放电反应期间,在负极(阳极)中发生锂的氧化反应,且在正极(阴极)中发生硫的还原反应。硫在放电前具有环状的S8结构,且使用如下的氧化还原反应储存和产生电能:其中在还原反应(放电)期间随着S-S键的断裂而使S的氧化数减小,并且在氧化反应(充电)期间随着S-S键的再次形成而使S的氧化数增加。在这样的反应期间,硫被从环状的S8通过还原反应而转化成线性结构的多硫化锂(Li2Sx,x=8、6、4和2),结果当这样的多硫化锂被完全还原时最终产生硫化锂(Li2S)。通过被还原成各种多硫化锂的过程,锂硫(Li-S)电池的放电行为显示出不同于锂离子电池的渐变的放电电压。
在诸如Li2S8、Li2S6、Li2S4和Li2S2的多硫化锂中,具有高的硫氧化数的多硫化锂(Li2Sx,通常x>4)特别易于溶于亲水性液体电解质。溶于液体电解质的多硫化锂由于浓度差而从由多硫化锂制造的正极扩散开。如上所述从正极溶出的多硫化锂被冲出至正极反应区域之外,使得不可能将其逐渐地还原至硫化锂(Li2S)。换而言之,以溶解的状态存在于正极和负极之外的多硫化锂不能参与电池的充放电反应,因此参与正极中的电化学反应的硫材料的量减少,结果,这变成导致锂硫电池的充电容量减小和能量降低的主要因素。
此外,除漂浮和浸渍在液体电解质中的多硫化锂以外,扩散至负极的多硫化锂直接与锂反应且以Li2S形式被固定在负极表面上,这导致腐蚀锂金属负极的问题。
为了使这样的多硫化锂溶出最小化,已经对其中用硫粒子填充各种碳结构的正极复合材料的形态进行改变作了研究,然而这样的方法在制备方面是复杂的并且也并没有解决根本的问题。
发明内容
技术问题
如上所述,锂硫电池存在的问题在于电池容量和寿命特性由于多硫化锂从正极溶出并扩散而劣化。
因此,本发明的一方面提供抑制多硫化锂的溶出和扩散并提供其额外的还原反应位点的锂硫电池用隔膜。
本发明的另一方面提供制备锂硫电池用隔膜的方法。
本发明的另一方面提供包含所述锂硫电池用隔膜的锂硫电池。
技术方案
根据本发明的一方面,提供一种锂硫电池用隔膜,其包含隔膜体和在隔膜体的面对正极的一个表面上的复合涂层,所述复合涂层包含聚多巴胺和导电材料。
根据本发明的另一方面,提供一种制备锂硫电池用隔膜的方法,所述方法包括准备隔膜体;通过混合聚多巴胺、导电材料和溶剂而制备浆料;将所述浆料涂布在所述隔膜体的至少一个表面上;以及通过对涂布的隔膜进行干燥而形成复合涂层。
根据本发明的另一方面,提供一种锂硫电池,包含所述锂硫电池用隔膜。
有益效果
在根据本发明的锂硫电池中,包含在复合涂层中的导电材料的多孔结构吸附从正极溶出的多硫化锂并防止多硫化锂的溶出和扩散,并且通过提供额外的导电性而提供正极活性材料的反应位点,因此能够提高电池容量和寿命特性。
附图说明
图1为作为本发明的第一实施方式的包含具有复合涂层的隔膜的锂硫电池的截面图。
图2为作为本发明的第二实施方式的包含具有复合涂层和聚多巴胺涂层的隔膜的锂硫电池的截面图。
图3为显示根据本发明的实施例1和比较例1的放电循环特性的图。
具体实施方式
下文中,将参照附图对本发明的优选实施例进行详细说明。这样的图对应于用于说明本发明的一个实施方式、可以以各种不同的形式实现并且不限于本说明书。在图中,为了清楚地说明本发明而没有包含说明所没有涉及的部分,并且在整个说明书中相同的参考符号用于相同的要素。另外,图中所示构成的尺寸和相对尺寸与实际大小无关,并且为了说明的清楚性而可以进行缩小或放大。
锂硫电池用隔膜
本发明提供锂硫电池用隔膜以用于防止多硫化锂扩散并提供硫的还原反应的额外的位点,所述锂硫电池用隔膜在隔膜体的至少一个表面上包含含有聚多巴胺和导电材料的复合涂层。所述隔膜体的至少一个表面为需要包括当组装电池时面对正极的表面的一个表面或两个表面。
图1为说明根据本发明的第一实施方式的锂硫电池的截面图。如图1中所示,锂硫电池具有包含正极(200)和负极(300)的结构,并且在正极(200)与负极(300)之间设置电解质(400)和隔膜(100),特别地,本发明提供多层结构的隔膜(100),其中隔膜体(110)和复合涂层(120)被依次地层叠。在此,复合涂层(120)可以如图1中所示在隔膜体(110)的一个侧面上形成,并且必要时复合涂层可以在两个侧面上形成。
隔膜体(110)在本发明中对于其材料并无限制,并且可以使用具有物理地隔开电极的功能并且具有电解质和离子透过性的、通常用作隔膜的那些隔膜,而没有特别限制,然而,作为多孔且不导电或绝缘的材料,特别优选的是在具有低的液体电解质的离子迁移阻力的同时具有优异的液体电解质水分保持能力的材料。
具体地,多孔聚合物膜例如用聚烯烃类聚合物如乙烯均聚物、丙烯均聚物、乙烯/丁烯共聚物、乙烯/己烯共聚物和乙烯/甲基丙烯酸酯共聚物制备的多孔聚合物膜可以单独或以它们的层叠物的形式进行使用,或者可以使用常见的多孔无纺布例如由高熔点玻璃纤维或聚对苯二甲酸乙二醇酯纤维制成的无纺布,然而隔膜不限于此。
特别地,通过在隔膜体(110)上形成复合涂层(120),本发明防止了多硫化锂扩散并且提供硫的还原反应的额外的位点。
作为包含在复合涂层(120)中的聚多巴胺的单体形式即多巴胺,其作为神经递质是众所周知的,并且是海中的贻贝中所发现的3,4-二羟基-L-苯基丙氨酸(L-DOPA)分子的仿制分子(mimicking molecule)。特别地,通过多巴胺的由氧化剂诱导的自聚合反应和电化学聚合反应而制造的聚多巴胺具有共价键合的邻苯二酚和亚胺官能团,并且不仅在有机物如生物材料或合成聚合物中而且在固体表面上如电池电极或隔膜上形成非常强的键,因此可以获得表面重整、表面改性、自组装的多层形成、纳米复合薄膜形成等。多巴胺的邻苯二酚官能团在氧的存在下易于氧化并且可以通过自聚合反应形成具有各种厚度的聚多巴胺薄膜。
作为环境友好且易于获得的有机物质的多巴胺在pH近似为8.5的缓冲液中形成自聚合反应,并且通过该过程形成的聚多巴胺具有非常强的反应性且易于在表面上形成新的键。另外,聚多巴胺可以在室温下进行自聚合使得能够在无另外的试剂或装置的情况下进行涂布,因此制造工艺成本和工艺效率是优异的。
这样的聚多巴胺为具有高粘合强度的材料并且能够进行薄且均匀的涂布,如图1中所示,尽管锂离子(10)易于扩散到正极中、但多硫化锂(20)无法透过,在激活电极反应的同时可以防止多硫化锂(20)扩散,因此本发明使用聚多巴胺作为锂硫电池的隔膜的复合涂层(120)。
另外,本发明的复合涂层(120)包含导电材料和上述的聚多巴胺以对锂硫电池提供额外的导电性。作为锂硫电池的正极活性材料的硫本身不具有导电性,因此通常与导电性碳类材料进行复合而制备成正极(200)。本发明的复合涂层(120)包含导电材料,由此提供除正极反应位点之外的额外的硫材料的还原反应位点。
更具体地,复合涂层(120)由于导电材料的多孔结构而吸附作为硫还原期间的中间产物的多硫化锂(Li2Sx,x=8,6,4,2)(20),由此抑制多硫化锂的扩散。另外,因额外提供吸附的多硫化锂(20)的还原反应位点的复合涂层(120)的导电材料而可使电极效率增加。
包含在根据本发明的复合涂层(120)中的导电材料可以选自由碳类导体、导电性聚合物及它们的组合构成的组。
碳类导体在类型方面没有限制,而是可以包含选自由如下构成的组中的一种:石墨类如天然石墨、人造石墨、膨胀石墨、石墨烯、Super-P或Super-C,活性碳类,炭黑类如槽法炭黑、丹卡黑(denka black)、炉黑、热裂法炭黑、接触炭黑、灯黑或乙炔黑;碳纤维类,碳纳米结构如碳纳米管(CNT)或富勒烯,以及它们的组合,并且优选使用Super-P。
导电性聚合物在类型方面没有限制,而是可以包含选自由如下构成的组中的一种:聚苯胺、聚吡咯、聚噻吩、聚薁、聚吡啶、聚吲哚、聚咔唑、聚吖嗪、聚醌、聚乙炔、聚硒吩、聚碲吩、聚对苯撑、聚苯撑乙烯撑(polyphenylene vinylene,PPV)、聚苯硫醚(PPS)、聚乙撑二氧噻吩(polyethylenedioxythiophene,PEDT)及它们的组合。
为了获得上述防止多硫化锂扩散的效果和获得提供用于提供多硫化锂的还原反应位点的导电性的效果,聚多巴胺与导电材料的重量比可以控制在3:1至7:1的范围内。当以与上述范围相比过量的量使用聚多巴胺时,其起到导致电池性能劣化的问题的电阻层的作用,并且当过量地使用导电材料时,聚多巴胺含量相对地减少使得难以确保通过聚多巴胺所获得的效果,因此适当地采用在上述范围内的含量。
为了确保上述效果,这样的复合涂层(120)在隔膜体(110)上被形成为具有0.1μm至10μm且优选0.1μm至5μm的厚度。当厚度小于上述范围时,多硫化锂吸附的效果不显著,并且当厚度大于上述范围时,锂离子传导性降低并导致电池性能出现问题,因此适当地采用在上述范围内的厚度。
另外,根据上述第一实施方式的具有隔膜体(110)/复合涂层(120)的多层结构的隔膜(100)可以通过在隔膜体(110)与复合涂层(120)之间另外设置其他层而增加效果。
图2为说明根据本发明的第二实施方式的锂硫电池的截面图,如图2中所示,根据第二实施方式的锂硫电池在作为隔膜的隔膜体(110)与复合涂层(120)之间设置有聚多巴胺涂层(130)。在此,隔膜体(110)与复合涂层(120)遵循在第一实施方式中的说明。
使用额外设置的聚多巴胺涂层(130)的目的是为了提高在隔膜体(110)与复合涂层(120)之间的界面处的粘合强度,并且可以进一步确保上述由于聚多巴胺而产生的多硫化锂收集的效果。在此,聚多巴胺涂层(130)形成为具有0.1μm至10μm的厚度。大于上述范围的厚度导致降低锂离子传导性的问题,因此该厚度优选形成至最大值10μm以下。
制备锂硫电池用隔膜的方法
如图1中所示的本发明的第一实施方式中提供的锂硫电池用隔膜可以通过实施以下步骤进行制备。
首先,准备隔膜体(110)。在本发明中隔膜体(110)没有特别限制,且可以选择上述的任一种隔膜体。所述隔膜体可以直接制备,或者可以购买并使用市售隔膜。
接下来,在以上述3:1至7:1的重量比混合聚多巴胺和导电材料之后,将混合物分散在规定的溶剂中以制备浆料状态的制得物。在此,由于聚多巴胺本身的粘合性而无需单独的粘合剂。作为溶剂,优选使用能够均匀地分散聚多巴胺和导电材料并且易于蒸发的溶剂。具体地,可以包括乙腈、甲醇、乙醇、四氢呋喃、水、异丙醇等。另外,对于为制备浆料而进行的混合,可以使用利用诸如调糊机、高剪切混合器和高速搅拌机的普通混合器的普通方法进行搅拌。
接下来,将制备的浆料涂布在隔膜体(110)的一个表面上。在此,隔膜体(110)的一个表面为在组装电极时隔膜体(110)的组装为面对正极(200)的一个表面。在此,湿式涂布浆料的方法没有限制,例如可以实施刮刀涂布、浸渍涂布、凹版涂布、模缝涂布、旋转涂布、逗号涂布、棒涂、逆转辊涂布、丝网涂布、帽式涂布(cap coating)等的方法。
接下来,将涂布的隔膜进行干燥以形成复合涂层(120)。干燥工序为除去浆料中的溶剂和水分以干燥涂布在金属集电器上的浆料的工序,并且干燥温度和时间可以根据所使用的溶剂而变化。通常,所述干燥优选在50℃至200℃下的真空烘箱中实施48小时以下。
另外,如图2中所示的本发明的第二实施方式中提供的锂硫电池用隔膜可以使用第一实施方式中的上述制备方法进行制备,并且可以在涂布复合涂层(120)之前将聚多巴胺涂层(130)涂布在隔膜体(110)上。
在此,通过制备将聚多巴胺分散在上述溶剂中的涂布溶液且然后实施湿式涂布工序而获得聚多巴胺涂层(130),并且可以使用第一实施方式中提供的涂布方法中的任一种方法。
锂硫电池
上述第一实施方式和第二实施方式中提供的隔膜(100)可以被优选地用作锂硫电池用隔膜,如图1和图2中所示,所述隔膜(100)设置在正极(200)与负极(300)之间,并且当将复合涂层(120)仅涂布在一个表面上时,该复合涂层(120)优选被配置为面对组件中的正极(200)。
正极(200)可以包含单质硫(S8)、硫系化合物或它们的混合物作为正极活性材料,并且由于硫材料本身不具有导电性,因此可以将这些硫材料与导体一起作为复合材料进行使用。硫系化合物可以具体地为Li2Sn(n≥1)、有机硫化合物、碳硫聚合物((C2Sx)n:x=2.5至50,n≥2)等。
导体可以是多孔的。因此,作为导体,可以使用具有多孔性和导电性的材料而没有限制,例如可以使用具有多孔性的碳类材料。作为这样的碳类材料,可以使用炭黑、石墨、石墨烯、活性炭、碳纤维、碳纳米管(CNT)等。另外,还可以使用金属纤维如金属网眼;金属粉末如铜、银、镍和铝;或有机导电材料如聚苯撑衍生物。所述导电材料可以单独地或作为混合物进行使用。
负极(300)可以使用如下材料作为负极活性材料:能够可逆地嵌入或脱嵌锂离子(Li+)的材料、能够通过与锂离子反应而可逆地形成含锂化合物的材料、锂金属或锂合金。能够可逆地嵌入或脱嵌锂离子(Li+)的材料的实例可以包括结晶碳、无定形碳或它们的混合物。能够通过与锂离子(Li+)反应而可逆地形成含锂化合物的材料的实例可以包括锡氧化物、硝酸钛或硅。锂合金的实例可以包括锂(Li)与选自由钠(Na)、钾(K)、铷(Rb)、铯(Cs)、钫(Fr)、铍(Be)、镁(Mg)、钙(Ca)、锶(Sr)、钡(Ba)、镭(Ra)、铝(Al)、硅(Si)和锡(Sn)构成的组的金属的合金。
另外,在对锂硫电池进行充电和放电的同时,用作正极活性材料的硫可能变成惰性材料并附着在锂负极表面上。惰性硫是指已经经历了各种电化学或化学反应并且不再能参与到正极的电化学反应中的硫,且在锂负极表面上形成的惰性硫具有起到锂负极的保护层的作用的优点。
浸渍入正极(200)、负极(300)和隔膜(100)中的作为含锂盐非水电解质的电解质(400)由锂盐和液体电解质形成,除此之外,可以使用有机固体电解质、无机固体电解质等。
本发明的锂盐为可顺利地溶于非水有机溶剂中的材料,例如可以包括选自由如下锂盐构成的组中的一种或多种:LiCl、LiBr、LiI、LiClO4、LiBF4、LiB10Cl10、LiB(Ph)4、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiAlCl4、LiSO3CH3、LiSO3CF3、LiSCN、LiC(CF3SO2)3、LiN(CF3SO2)2、LiNO3、氯硼烷锂、低级脂肪族羧酸锂、四苯基硼酸锂和亚氨基锂。
取决于诸如液体电解质混合物的确切组成、盐的溶解度、溶解的盐的传导性、电池的充放电条件、工作温度和锂硫电池领域中众所周知的其它因素的各种因素,锂盐的浓度可以为0.2M至4M,具体为0.3M至2M且更具体为0.3M至1.5M。当锂盐浓度小于0.2M时,电解质的导电性可能降低并导致电池性能劣化,并且当锂盐浓度高于4M时,电解质的粘度增大并导致锂离子(Li+)迁移率降低。
所述非水有机溶剂需要顺利地溶解锂盐,本发明的非水有机溶剂的实例可以包括非质子有机溶剂如N-甲基-2-吡咯烷酮、碳酸亚丙酯、碳酸亚乙酯、碳酸亚丁酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、γ-丁内酯、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、四氢呋喃、2-甲基四氢呋喃、二甲亚砜、1,3-二氧戊环、4-甲基-1,3-二
Figure BDA0001569677720000101
烯、二乙醚、甲酰胺、二甲基甲酰胺、二氧戊环、乙腈、甲酸甲酯、乙酸甲酯、磷酸三酯、三甲氧基甲烷、二氧戊环衍生物、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、碳酸亚丙酯衍生物、四氢呋喃衍生物、醚、丙酸甲酯或丙酸乙酯,并且可以单独地或作为两种以上有机溶剂的混合物使用所述有机溶剂。
作为有机固体电解质,例如可以使用聚乙烯衍生物、聚环氧乙烷衍生物、聚环氧丙烷衍生物、磷酸酯聚合物、聚海藻酸盐-赖氨酸、聚酯硫化物、聚乙烯醇、聚偏二氟乙烯和含有离子离解基团的聚合物等。
作为本发明的无机固体电解质,例如可以使用Li的氮化物、卤化物、硫酸盐等如Li3N、LiI、Li5NI2、Li3N-LiI-LiOH、LiSiO4、LiSiO4-LiI-LiOH、Li2SiS3、Li4SiO4、Li4SiO4-LiI-LiOH或Li3PO4-Li2S-SiS2
为了改善充放电特性和阻燃性,例如还可以向本发明的电解质中添加吡啶、亚磷酸三乙酯、三乙醇胺、环醚、乙二胺、正甘醇二甲醚、六甲基磷酰三胺、硝基苯衍生物、硫、醌亚胺染料、N-取代的
Figure BDA0001569677720000111
唑烷酮、N,N-取代的咪唑烷、乙二醇二烷基醚、铵盐、吡咯、2-甲氧基乙醇、三氯化铝等。在某些情况下,为了赋予不燃性,还可以包含含卤素的溶剂如四氯化碳和三氟乙烯,为了提高高温储存特性,还可以包含二氧化碳气体,且还可以包含氟代碳酸亚乙酯(FEC)、丙烯磺酸内酯(PRS)、氟代碳酸亚丙酯(FPC)等。
电解质可以以液态电解质或呈固体状态的电解质隔膜形式进行使用。当以液态电解质进行使用时,还包含用多孔玻璃、塑料、陶瓷或聚合物形成的隔膜作为具有物理地隔开电极的功能的物理隔膜。
堆叠型电极组件可以通过如下进行制备:在通过将上述正极(200)和负极(300)切割成预定尺寸而获得的正极板与负极板之间设置切割成对应于正极板和负极板的预定尺寸的隔膜(100),且然后将制得物进行堆叠。
或者,可以通过如下制备堆叠折叠型电极组件:在隔膜(100)片上布置两个以上的正极板和负极板,或者在隔膜片上布置其中将两个以上的正极板和负极板在隔膜置于所述正极板与负极板之间的情况下进行层叠的两个以上单元电池,并且将隔膜片卷绕或者折叠成电极板或者单元电池的尺寸,以提供在隔着隔膜(100)片的情况下彼此相对的正极(200)和负极(300)。
下文中,将参考实施例对本发明进行详细说明。然而,根据本发明的实施例可以被修改成各种不同的形式,并且本发明的范围不被解释为限于下述实施例。为了更充分地说明本发明而将本发明的实施例提供给本领域普通技术人员。
<实施例1>
1.隔膜的制备
将通过以5:1的重量比混合聚多巴胺和作为碳类导体的Super-P并将该混合物分散在碱性(pH 8.5)缓冲液中而制备的浆料在厚度为20μm的聚丙烯膜的一个表面上涂布至5μm的厚度以制备隔膜。
2.锂硫电池的制造
将通过混合9:1的重量比的碳和硫、20重量%的作为导体的丹卡黑和10重量%的作为粘合剂的SBR/CMC(重量比1:1)而制备的具有正极活性材料为70重量%的组成的正极混合物添加至去离子水以制备正极浆料,且然后将该浆料涂布在铝集电器上以制备正极。在粘合剂中,SBR为丁苯橡胶且CMC为羧甲基纤维素。
将厚度近似为150μm的锂箔用作负极,并且使用在以1:1的体积比混合的二甲氧基乙烷和二氧戊环中溶解1M LiN(CF3SO2)2而得到的液体电解质作为液体电解质,且使用具有涂布的聚多巴胺和Super-P的所制备的隔膜来制造锂硫电池。
<比较例1>
除了使用未经处理的厚度为20μm的聚丙烯膜作为隔膜代替具有涂布在聚丙烯上的聚多巴胺和Super-P的隔膜以外,以与实施例1相同的方式制造锂硫电池。
<实验例1>
对于根据实施例1和比较例1制造的锂硫电池,在0.1C/0.1C的条件下重复30次充放电循环的同时测定各电池的各次循环的初始容量。如图3中所示,可以看出与比较例1的锂硫电池相比,根据本说明书的实施例1的锂硫电池具有更大的初始容量以及提高的寿命特性。
包含所述锂硫电池的电池组可以被用作电动车辆(EV)、混合动力电动车辆(HEV)、插电式混合动力电动车辆(PHEV)或储能系统的电源。

Claims (10)

1.一种锂硫电池用隔膜,包含:
隔膜体,和
在所述隔膜体的至少一个表面上形成的复合涂层,
其中所述复合涂层由聚多巴胺和导电材料构成,
其中所述复合涂层中所述聚多巴胺和所述导电材料的重量比为3:1至7:1。
2.权利要求1所述的锂硫电池用隔膜,其中所述复合涂层具有0.1μm至10μm的厚度。
3.权利要求1所述的锂硫电池用隔膜,其中所述导电材料包含选自由碳类导体、导电性聚合物及它们的组合构成的组中的一种。
4.权利要求3所述的锂硫电池用隔膜,其中所述碳类导体包含选自由石墨类、活性碳类、炭黑类、碳纤维类、碳纳米结构及它们的组合构成的组中的一种。
5.权利要求3所述的锂硫电池用隔膜,其中所述导电性聚合物包含选自由聚苯胺、聚吡咯、聚噻吩、聚薁、聚吡啶、聚吲哚、聚咔唑、聚吖嗪、聚醌、聚乙炔、聚硒吩、聚碲吩、聚对苯撑、聚苯撑乙烯撑、聚苯硫醚、聚乙撑二氧噻吩及它们的组合构成的组中的一种。
6.权利要求1所述的锂硫电池用隔膜,还包含在所述隔膜体与所述复合涂层之间的聚多巴胺涂层。
7.权利要求6所述的锂硫电池用隔膜,其中所述聚多巴胺涂层具有0.1μm至10μm的厚度。
8.一种制备权利要求1的锂硫电池用隔膜的方法,所述方法包括:
i)准备隔膜体;
ii)通过混合聚多巴胺、导电材料和溶剂而制备浆料,其中所述聚多巴胺和所述导电材料以3:1至7:1的重量比混合;
iii)将所述浆料涂布在所述隔膜体的至少一个表面上;以及
iv)通过对涂布的隔膜进行干燥而形成复合涂层。
9.权利要求8所述的制备锂硫电池用隔膜的方法,包括:
在实施i)之后且在实施ii)之前,通过制备聚多巴胺浆料并将所述浆料涂布在所述隔膜体上且对制得物进行干燥而形成聚多巴胺涂层。
10.一种锂硫电池,包含:
正极;
负极;
设置在所述正极与所述负极之间的隔膜;和
电解质,
其中所述隔膜为权利要求1至7中任一项所述的隔膜。
CN201780002678.5A 2016-01-28 2017-01-16 具有包含聚多巴胺的复合涂层的锂硫电池隔膜、其制造方法及包含其的锂硫电池 Active CN107925042B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020160010969A KR102038543B1 (ko) 2016-01-28 2016-01-28 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지
KR10-2016-0010969 2016-01-28
PCT/KR2017/000530 WO2017131377A1 (ko) 2016-01-28 2017-01-16 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지

Publications (2)

Publication Number Publication Date
CN107925042A CN107925042A (zh) 2018-04-17
CN107925042B true CN107925042B (zh) 2020-10-20

Family

ID=59398297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780002678.5A Active CN107925042B (zh) 2016-01-28 2017-01-16 具有包含聚多巴胺的复合涂层的锂硫电池隔膜、其制造方法及包含其的锂硫电池

Country Status (6)

Country Link
US (1) US10622669B2 (zh)
EP (1) EP3312906B1 (zh)
JP (1) JP6732293B2 (zh)
KR (1) KR102038543B1 (zh)
CN (1) CN107925042B (zh)
WO (1) WO2017131377A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102229446B1 (ko) * 2017-09-22 2021-03-17 주식회사 엘지화학 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
KR102244908B1 (ko) * 2017-10-25 2021-04-26 주식회사 엘지화학 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
KR102229452B1 (ko) 2017-11-08 2021-03-17 주식회사 엘지화학 분리막 및 이를 포함하는 리튬-황 전지
WO2019093701A1 (ko) 2017-11-13 2019-05-16 한국과학기술원 친수성 섬유 멤브레인 기반 전기 에너지 생성 장치
KR102388260B1 (ko) * 2017-11-30 2022-04-18 주식회사 엘지에너지솔루션 키토산-카테콜계 다공성 분리막, 그 제조방법 및 이를 포함하는 리튬-황 전지
KR102132756B1 (ko) 2017-12-06 2020-07-13 주식회사 엘지화학 이차전지 분리막 코팅용 슬러리 조성물 및 이를 이용한 이차전지 분리막
US11804620B2 (en) * 2018-02-06 2023-10-31 The Board Of Trustees Of The Leland Stanford Junior University Rational design of redox mediator for fast and energy-efficient charging of sulfur cathodes
KR102207526B1 (ko) * 2018-02-19 2021-01-25 주식회사 엘지화학 리튬-황 전지용 분리막, 그의 제조방법, 및 그를 포함하는 리튬-황 전지
KR102420594B1 (ko) 2018-05-24 2022-07-13 주식회사 엘지에너지솔루션 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
KR102420593B1 (ko) 2018-05-24 2022-07-13 주식회사 엘지에너지솔루션 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
KR102415167B1 (ko) 2018-10-26 2022-07-01 주식회사 엘지에너지솔루션 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
CN112470309A (zh) * 2018-10-31 2021-03-09 株式会社Lg化学 硫碳复合物、其制备方法和包含其的锂二次电池
KR20200065828A (ko) * 2018-11-30 2020-06-09 한국과학기술연구원 도전재층을 포함하는 기능성 복합 분리막, 이를 포함하는 이차전지, 전기화학 소자, 전기화학 장치, 및 그 제조방법
DE102018131922A1 (de) 2018-12-12 2020-06-18 Carl Freudenberg Kg Membran für den selektiven Stofftransport
DE102018131928A1 (de) 2018-12-12 2020-06-18 Carl Freudenberg Kg Separator für elektrochemische Energiespeicher und Wandler
US11545722B2 (en) * 2019-03-15 2023-01-03 Purdue Research Foundation Separators for electrochemical cells and methods of making the same
KR20200127869A (ko) * 2019-05-03 2020-11-11 주식회사 엘지화학 촉매점이 도입된 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
KR102448077B1 (ko) * 2019-05-09 2022-09-27 주식회사 엘지에너지솔루션 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
CN110233225B (zh) * 2019-06-28 2020-07-21 电子科技大学 一种锂硫电池用改性隔膜及其制备方法
CN110350130A (zh) * 2019-07-18 2019-10-18 中南大学 金属/硫二次电池用非对称隔膜
CN110707264B (zh) * 2019-09-19 2022-03-11 河北金力新能源科技股份有限公司 锂硫电池用高电导涂层隔膜及其制备方法和应用
CN112909328A (zh) * 2019-12-04 2021-06-04 中国科学院宁波材料技术与工程研究所 一种超薄硫化物固体电解质层及其制备方法和应用
CN113067096B (zh) * 2019-12-16 2022-11-01 河北金力新能源科技股份有限公司 锂硫电池用功能性隔膜及其制备方法和应用
CN111244370A (zh) * 2020-01-15 2020-06-05 华南师范大学 多元胺碳复合材料、浆料、隔膜、锂硫电池及制备方法
CN112201791B (zh) * 2020-10-23 2021-10-12 江苏大学 一种吸氧自愈合膜改善锂离子电池三元正极材料的方法
CN112768840A (zh) * 2021-01-04 2021-05-07 长沙矿冶研究院有限责任公司 一种锂硫电池多功能隔膜及其制备方法
CN114552126B (zh) * 2021-07-12 2023-11-03 万向一二三股份公司 一种锂离子电池复合隔膜及其制备方法
CN113937269B (zh) * 2021-10-13 2023-09-01 福州大学 一种银颗粒涂层修饰的三维多孔铜集流体-锂负极一体结构及其制备方法和应用
CN113871625B (zh) * 2021-12-02 2022-03-11 中科南京绿色制造产业创新研究院 一种复合层及其制备方法和锂硫电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120121623A (ko) * 2011-04-27 2012-11-06 한국과학기술원 리튬이차전지 방전용량 향상방법 이를 위한 분리막 및 그 표면처리방법, 이를 포함하는 리튬이차전지
KR20130127201A (ko) * 2012-05-14 2013-11-22 주식회사 엘지화학 다공성 코팅층을 포함하는 세퍼레이터 및 그를 포함하는 전기화학소자
JP2014523630A (ja) * 2011-07-22 2014-09-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング エネルギー蓄積器用のセパレータおよびエネルギー蓄積器
CN104051695A (zh) * 2014-06-20 2014-09-17 江苏大学 锂硫电池用聚合物修饰隔膜、其制备方法及锂硫电池
CN104103791A (zh) * 2013-04-08 2014-10-15 中国科学院金属研究所 一种电池复合隔膜及其制备方法
JP2015501070A (ja) * 2011-12-16 2015-01-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh ポリスルフィドバリア層を有するリチウム硫黄電池セパレータ
KR20150118468A (ko) * 2014-04-14 2015-10-22 주식회사 엘지화학 코팅층을 포함하는 분리막 및 이를 포함하는 리튬 이차전지
JP2015201270A (ja) * 2014-04-04 2015-11-12 学校法人早稲田大学 リチウム硫黄二次電池
CN105261721A (zh) * 2015-08-28 2016-01-20 清华大学 一种不对称隔膜及在锂硫二次电池中的应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050021131A (ko) 2003-08-26 2005-03-07 대한민국 (경상대학교 총장) 코팅된 분리막을 갖는 충ㆍ방전 특성이 개선된 리튬/유황이차전지
KR101118473B1 (ko) 2009-03-27 2012-03-12 (주)바이오니아 나노다공막 및 이의 제조방법
KR101642334B1 (ko) 2011-03-11 2016-07-25 주식회사 엘지화학 이차전지용 세퍼레이터
KR101198493B1 (ko) 2011-06-07 2012-11-06 한국과학기술원 홍합유래 고분자를 이용한 폴리올레핀 분리막의 열수축 방지방법, 이에 의하여 열 수축 특성이 향상된 폴리올레핀 분리막과 이를 포함하는 리튬이차전지
KR101327891B1 (ko) 2012-02-02 2013-11-11 에스케이씨 주식회사 생체고분자로 코팅된 다공성 필름 및 이를 포함하는 이차전지용 분리막
KR101903189B1 (ko) * 2012-02-29 2018-10-01 주식회사 엘지화학 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
KR102392086B1 (ko) 2012-04-10 2022-04-28 캘리포니아 인스티튜트 오브 테크놀로지 전기화학 시스템들용 신규 세퍼레이터들
KR101465173B1 (ko) * 2012-06-15 2014-11-25 주식회사 엘지화학 다공성 코팅층을 포함하는 세퍼레이터 및 그를 포함하는 전기화학소자
KR101367577B1 (ko) 2012-07-20 2014-02-26 경기대학교 산학협력단 폴리도파민을 이용한 카본/촉매 복합체의 제조방법과, 이에 따라 제조되는 카본/촉매 복합체 및 이를 공기극으로 이용한 리튬/공기 이차전지
US9742028B2 (en) * 2013-08-21 2017-08-22 GM Global Technology Operations LLC Flexible membranes and coated electrodes for lithium based batteries
KR101455943B1 (ko) 2013-10-17 2014-11-04 한양대학교 산학협력단 이차 전지용 분리막, 그 제조 방법, 및 이를 이용한 이차 전지
US9774058B2 (en) 2014-04-18 2017-09-26 Seeo, Inc. Polymer composition with electrophilic groups for stabilization of lithium sulfur batteries
KR20170003604A (ko) * 2014-05-05 2017-01-09 보드 오브 리전츠 더 유니버시티 오브 텍사스 시스템 리튬-황 배터리용 이작용성 세퍼레이터
KR101621152B1 (ko) 2014-07-21 2016-05-13 한전케이피에스 주식회사 공기구동밸브 시트 링 누설시험장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120121623A (ko) * 2011-04-27 2012-11-06 한국과학기술원 리튬이차전지 방전용량 향상방법 이를 위한 분리막 및 그 표면처리방법, 이를 포함하는 리튬이차전지
JP2014523630A (ja) * 2011-07-22 2014-09-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング エネルギー蓄積器用のセパレータおよびエネルギー蓄積器
JP2015501070A (ja) * 2011-12-16 2015-01-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh ポリスルフィドバリア層を有するリチウム硫黄電池セパレータ
KR20130127201A (ko) * 2012-05-14 2013-11-22 주식회사 엘지화학 다공성 코팅층을 포함하는 세퍼레이터 및 그를 포함하는 전기화학소자
CN104103791A (zh) * 2013-04-08 2014-10-15 中国科学院金属研究所 一种电池复合隔膜及其制备方法
JP2015201270A (ja) * 2014-04-04 2015-11-12 学校法人早稲田大学 リチウム硫黄二次電池
KR20150118468A (ko) * 2014-04-14 2015-10-22 주식회사 엘지화학 코팅층을 포함하는 분리막 및 이를 포함하는 리튬 이차전지
CN104051695A (zh) * 2014-06-20 2014-09-17 江苏大学 锂硫电池用聚合物修饰隔膜、其制备方法及锂硫电池
CN105261721A (zh) * 2015-08-28 2016-01-20 清华大学 一种不对称隔膜及在锂硫二次电池中的应用

Also Published As

Publication number Publication date
CN107925042A (zh) 2018-04-17
EP3312906B1 (en) 2019-01-02
EP3312906A1 (en) 2018-04-25
EP3312906A4 (en) 2018-05-02
JP6732293B2 (ja) 2020-07-29
US10622669B2 (en) 2020-04-14
JP2018520490A (ja) 2018-07-26
US20180198156A1 (en) 2018-07-12
KR102038543B1 (ko) 2019-10-30
KR20170090294A (ko) 2017-08-07
WO2017131377A1 (ko) 2017-08-03

Similar Documents

Publication Publication Date Title
CN107925042B (zh) 具有包含聚多巴胺的复合涂层的锂硫电池隔膜、其制造方法及包含其的锂硫电池
CN108137324B (zh) 氮化碳和氧化石墨烯的自组装复合材料、其制造方法、应用其的正极和包含其的锂-硫电池
KR101440347B1 (ko) 다층 구조의 이차전지용 음극 및 이를 포함하는 리튬 이차전지
CN113692661A (zh) 锂二次电池电极用粘合剂、包含其的锂二次电池用正极和锂二次电池
CN112470309A (zh) 硫碳复合物、其制备方法和包含其的锂二次电池
JP6664482B2 (ja) ポリドーパミンを含む電解液、これを含むリチウム−硫黄電池
JP7118138B2 (ja) リチウム-硫黄電池用分離膜及びこれを含むリチウム-硫黄電池
CN110679010B (zh) 锂硫电池
KR102229446B1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
KR20200121498A (ko) 리튬 이차전지용 양극 슬러리 조성물, 이를 포함하는 양극 및 리튬 이차전지
KR20200136656A (ko) 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지
KR102003302B1 (ko) 리튬-황 전지용 비수계 양극 슬러리 조성물, 이로부터 제조된 양극 및 리튬-황 전지
KR102468497B1 (ko) 산화물 반도체 층을 갖는 보호막을 포함하는 리튬-황 이차전지
KR20210019941A (ko) 표면에 인산 음이온이 흡착된 옥시수산화질산철, 이의 제조방법, 상기 표면에 인산 음이온이 흡착된 옥시수산화질산철을 포함하는 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
JP2023525521A (ja) S‐o系環形化合物を含有する電解質を含むリチウム‐硫黄二次電池
KR20210004295A (ko) 리튬 이차전지용 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220729

Address after: Seoul, South Kerean

Patentee after: LG Energy Solution

Patentee after: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY

Address before: Seoul, South Kerean

Patentee before: LG CHEM, Ltd.

Patentee before: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY