WO2020226330A1 - 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지 - Google Patents

기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2020226330A1
WO2020226330A1 PCT/KR2020/005616 KR2020005616W WO2020226330A1 WO 2020226330 A1 WO2020226330 A1 WO 2020226330A1 KR 2020005616 W KR2020005616 W KR 2020005616W WO 2020226330 A1 WO2020226330 A1 WO 2020226330A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional
redox
separator
conductive carbon
polymer
Prior art date
Application number
PCT/KR2020/005616
Other languages
English (en)
French (fr)
Inventor
김기현
이장수
양승보
김수현
김민수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200049801A external-priority patent/KR102448077B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080004170.0A priority Critical patent/CN112514154B/zh
Priority to EP20802874.6A priority patent/EP3817094A4/en
Priority to US17/262,527 priority patent/US11936064B2/en
Publication of WO2020226330A1 publication Critical patent/WO2020226330A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Electrochemical devices are the field that is receiving the most attention in this respect, and among them, the development of secondary batteries such as lithium-sulfur batteries capable of charging and discharging has become the focus of interest, and in recent years, capacity density and In order to improve the specific energy, research and development on the design of new electrodes and batteries are being conducted.
  • Such an electrochemical device among which a Li-S battery, has a high energy density (theoretical capacity), and is in the spotlight as a next-generation secondary battery that can replace a lithium ion battery.
  • a reduction reaction of sulfur and an oxidation reaction of lithium metal occur during discharge, and at this time, sulfur forms lithium polysulfide (LiPS) of a linear structure from S 8 having a ring structure.
  • the lithium-sulfur battery is characterized by a stepwise discharge voltage until the polysulfide is completely reduced to Li 2 S.
  • an object of the present invention is to improve the capacity and life of a battery by coating a polymer containing a redox functional group capable of reducing lithium polysulfide and conductive carbon on the surface of a separator in order to solve the problem arising from the elution of lithium polysulfide. It is to provide a functional separator that can be improved, a method of manufacturing the same, and a lithium secondary battery including the same.
  • the base separation membrane In order to achieve the above object, the present invention, the base separation membrane; And a redox functional polymer-conductive carbon composite layer positioned on the surface of the base separation membrane.
  • the present invention (a) dispersing the redox functional group-containing polymer and conductive carbon in a solvent to prepare a redox functional polymer-conductive carbon composite dispersion; And (b) coating the prepared redox-functional polymer-conductive carbon composite dispersion on the surface of the base separator.
  • the present invention provides a lithium secondary battery comprising; and an electrolyte.
  • the functional separator according to the present invention In order to solve the problem caused by the elution of lithium polysulfide, the functional separator according to the present invention, a method of manufacturing the same, and a lithium secondary battery including the same are provided with a redox functional group-containing polymer capable of reducing lithium polysulfide on the surface of the separator.
  • a redox functional group-containing polymer capable of reducing lithium polysulfide on the surface of the separator.
  • 1 is an image obtained by observing the surface of the functional separator according to the present invention with an electron microscope.
  • FIGS. 2 and 3 are graphs showing discharge capacity (a) and life characteristics (b) of lithium secondary batteries according to an embodiment and a comparative example of the present invention.
  • the functional separator according to the present invention includes a base separator and a redox functional polymer-conductive carbon composite layer positioned on the surface of the base separator.
  • the separator is interposed between the positive electrode and the negative electrode (i.e., a physical separator having a function of physically separating the electrode), allowing the transport of lithium ions between the positive electrode and the negative electrode while separating or insulating the positive electrode and the negative electrode from each other. do.
  • a physical separator having a function of physically separating the electrode
  • the resistance to ion migration of the electrolyte is low and the electrolyte-moisture ability is excellent, and may be made of a porous, non-conductive or insulating material.
  • the base separator in a state in which the redox functional polymer-conductive carbon composite layer is excluded may be an independent member such as a film, or a coating layer added (adhered or faced) to one or more of the anode and the cathode, and specifically Is a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer.
  • they may be laminated and used, or may be a conventional porous nonwoven fabric, for example, a nonwoven fabric made of high melting point glass fibers or polyethylene terephthalate fibers, but is not limited thereto.
  • the conductive carbon constituting the redox-acting polymer-conductive carbon composite layer is coated with the redox-acting polymer on the surface of the base separator, and has a pore structure in itself, so that the electrolyte can be freely in and out.
  • the conductive carbon has conductivity as the name suggests, and by transferring electrons to the redox-acting polymer through such properties, the reduction efficiency of lithium polysulfide can be improved.
  • any conductive carbon material capable of exhibiting the above effects may be applied without particular limitation.
  • carbon nanotubes (CNT), graphene, and reduced graphene oxide (rGO) may be exemplified, among which the use of the reduced graphene oxide is preferable, and peeling is advantageous due to thermal expansion. It may be more preferable to use a thermally exfoliated reduced graphene oxide (TErGO) that can exhibit excellent performance by allowing a thin large area coating.
  • TErGO thermally exfoliated reduced graphene oxide
  • the thermal exfoliation-reduced graphene oxide (TErGO) is exfoliated, and may have a thickness of 0.5 to 40 nm, preferably 5 to 30 nm, more preferably 10 to 20 nm, and may have a plate shape or a flake shape.
  • the degree of thermal expansion of the thermally exfoliated reduced graphene oxide (TErGO) may vary from less than 100 m 2 /g to 900 m 2 /g in the range of BET, and the degree of reduction can be measured through XPS or EA. Do.
  • the reduced graphene oxide may be about 9:1.
  • the reduced graphene oxide before peeling has a thickness of about 50 to 500 nm, and because it is easily desorbed when coated in the form of particles, it not only requires the use of a binder (even if it is not a separator), but also has a low coating density to achieve the desired effect. I could't get enough.
  • the present invention can be uniformly and densely coated on a substrate by using a thermally exfoliated reduced graphene oxide in a plate or flake shape having a thickness in a certain range through peeling.
  • pores are formed in the conductive carbon, and the porosity of the pores is 40 to 90%, preferably 60 to 80%, and if the porosity of the pores is less than 40%, lithium ions are not normally transferred and thus a resistance component It may act as a problem, and if it exceeds 90%, a problem of lowering the mechanical strength may occur.
  • the pore size of the conductive carbon is 10 nm to 5 ⁇ m, preferably 50 nm to 5 ⁇ m, and if the pore size is less than 10 nm, there may be a problem in which lithium ion transmission is impossible, and the pore size exceeding 5 ⁇ m In this case, a battery short circuit and safety problems may occur due to contact between electrodes.
  • a binder may be interposed between the base separator and the redox-acting polymer-conductive carbon composite layer so that the redox-acting polymer-conductive carbon composite layer is more easily coated on the surface of the base separator.
  • TErGO thermally exfoliated reduced graphene oxide
  • rGO reduced graphene oxide
  • the redox-acting polymer is a component that promotes the reduction of lithium polysulfide (LiPS) eluted from the positive electrode through a redox action, and exhibits conductivity by receiving electrons to form a redox zone. It may be a lithium conductivity type compound.
  • redox functional polymers include poly(1,4-anthraquinone) (poly(1,4-anthraquinone), P14AQ) and poly(1,5-anthraquinone) represented by the following formula (1) , 5-anthraquinone), P15AQ); Polynaphthoquinone; And polybenzoquinone; Quinone-based compounds, such as a representative, can be illustrated.
  • n is a natural number of 1 to 1,000.
  • the redox polymers include polyaniline, polythiophene, polypyrrole, polyacetylene, poly-p-phenylene, polyphenylene vinylene, polyperinaphthalene, polyfran, polyfluran, polythienylene, poly ⁇ -conjugated compounds such as pyridindiyl, polyisothianaphthene, polykinoxarine, polypyridine, polypyrimidine, polyindool, polyaminoanthraquinone, polyimidazole and derivatives thereof, etc., redox when electrons are accepted Any material that exhibits conductivity by forming a band can be applied without particular limitation.
  • the weight ratio of the conductive carbon and the redox-acting polymer may be 1: 0.001 to 0.2, preferably 1: 0.002 to 0.1, and when out of the weight ratio, The effects achievable by using dox-acting polymers and conductive carbon may be insignificant.
  • the number average molecular weight (Mn) of the redox functional polymer may be 500 to 200,000, preferably 1,000 to 100,000.
  • the redox-acting polymer-conductive carbon composite layer may be formed on a part of the surface of the base separation membrane, but in order to maximize the effect of the use of conductive carbon and redox-acting polymer, it is formed on the entire surface of the base separation membrane. It is desirable.
  • the thickness of the redox-acting polymer-conductive carbon composite layer is 0.1 to 20 ⁇ m, preferably 0.5 to 10 ⁇ m, and more preferably 0.5 to 5 ⁇ m, and the thickness of the redox-acting polymer-conductive carbon composite layer is 0.1 If it is less than ⁇ m, there may be a problem that the electronic conductivity is lowered due to insufficient formation of the conductive network. If it exceeds 20 ⁇ m, the cell resistance increases due to the passage of lithium ions, and it is a disadvantageous problem in terms of energy density per volume. There is a risk of occurrence.
  • the redox functioning polymer-conductive carbon composite layer is 1 to 200 ⁇ g/cm 2 , preferably 5 to 100 ⁇ g/cm 2 , more preferably 5 to 50 ⁇ g/cm with respect to the surface area of the base separation membrane. It may be formed and located in a content of 2 . If the coating content of the redox-acting polymer-conductive carbon composite layer is less than 1 ⁇ g/cm 2 with respect to the surface area of the base separator, the effect of the use of the conductive carbon and redox-acting polymer may be insignificant, and 200 ⁇ g/ If it exceeds cm 2 , there may be no further effects that can be obtained by using conductive carbon and redox functional polymer.
  • the manufacturing method of the functional separator includes (a) dispersing a redox functional group-containing polymer and conductive carbon in a solvent to prepare a redox functional polymer-conductive carbon composite dispersion, and (b) the prepared redox functional polymer-conductivity And coating the carbon composite dispersion on the surface of the base separator.
  • the solvent may be water, or organic solvents such as ethanol, acetone, IPA, THF, MC, DMF, DMSO, and DMAc, among which THF or a compound having similar properties is applied as a solvent. It may be desirable.
  • a reaction bonding by ⁇ - ⁇ interaction between the redox functional group-containing polymer and the conductive carbon is performed. It can be carried out for 1 to 24 hours at room temperature to 100 °C, preferably 40 to 70 °C, through the reaction electrons are transferred to the redox functional group to reduce the lithium polysulfide.
  • the redox-acting polymer-conductive carbon composite dispersion (or redox-acting polymer-conductive carbon composite) including conductive carbon and redox-acting polymer is prepared
  • the redox-acting polymer-conductive carbon composite dispersion is prepared.
  • a functional separator according to the present invention is prepared. At this time, the coating is a dropcast, dip-coating method, blade coating method, spray coating method, meyer bar coating method, or vacuum filtration ( vacuum filter).
  • the lithium secondary battery including the functional separator includes a positive electrode, a negative electrode, the functional separator and an electrolyte interposed between the positive electrode and the negative electrode, and includes a lithium-sulfur battery, a lithium air battery, and a lithium metal battery, etc. All known lithium secondary batteries can be exemplified, and among them, lithium-sulfur batteries are preferred.
  • the description of the functional separator included in the lithium secondary battery is instead of the above, and in addition, the remaining positive electrode, negative electrode, and electrolyte applied to the lithium secondary battery may be conventional ones used in the art, and a detailed description thereof is It will be described later.
  • the battery module or battery pack may include a power tool; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or a system for power storage; It can be used as a power supply for any one or more of medium and large devices.
  • EVs electric vehicles
  • PHEVs plug-in hybrid electric vehicles
  • a system for power storage It can be used as a power supply for any one or more of medium and large devices.
  • a positive electrode composition including a positive electrode active material, a conductive material, and a binder
  • a slurry prepared by diluting it in a predetermined solvent (dispersion medium) is directly coated on the positive electrode current collector, and By drying, an anode layer can be formed.
  • a film obtained by peeling from the support may be laminated on a positive electrode current collector to prepare a positive electrode layer.
  • a positive electrode may be manufactured in various ways using a method widely known to those skilled in the art.
  • the conducting material serves as a path through which electrons move from the positive electrode current collector to the positive electrode active material, thereby imparting electron conductivity, as well as electrically connecting the electrolyte and the positive electrode active material so that lithium ions (Li+) in the electrolyte At the same time, it acts as a pathway to move to and react to sulfur. Therefore, if the amount of the conductive material is insufficient or the role cannot be performed properly, the non-reactive portion of the sulfur in the electrode increases, resulting in a decrease in capacity. In addition, since it adversely affects the high rate discharge characteristics and charge/discharge cycle life, it is necessary to add an appropriate conductive material.
  • the content of the conductive material is preferably added appropriately within the range of 0.01 to 30% by weight based on the total weight of the positive electrode composition.
  • the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery, for example, graphite; Carbon blacks such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • Carbon blacks such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black
  • Conductive fibers such as carbon fibers and metal fibers
  • Metal powders such as carbon fluoride, aluminum and nickel powder
  • Conductive whiskers such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • conductive materials include acetylene black-based Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, Ketjenblack, EC-based Armak Company (Armak Company) product, Vulcan (Vulcan) XC-72 Cabot Company (Cabot Company) product and Super-P (Timcal company product), and the like can be used.
  • the binder may be any binder known in the art, and specifically, a fluororesin binder including polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE); Rubber binders including styrene-butadiene rubber, acrylonitrile-butadiene rubber, and styrene-isoprene rubber; Cellulose-based binders including carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, and regenerated cellulose; Polyalcohol binder; Polyolefin-based binders including polyethylene and polypropylene; Polyimide-based binder, polyester-based binder, silane-based binder; may be a mixture or a copolymer selected from the group consisting of, but is not limited thereto.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • Rubber binders including styrene-butadiene rubber,
  • the content of the binder may be 0.5 to 30% by weight based on the total weight of the positive electrode composition, but is not limited thereto.
  • the content of the binder resin is less than 0.5% by weight, the physical properties of the positive electrode are deteriorated, so that the positive electrode active material and the conductive material may fall off, and if it exceeds 30% by weight, the ratio of the active material and the conductive material in the positive electrode is relatively reduced. Battery capacity may be reduced, and efficiency may be lowered by acting as a resistance element.
  • the positive electrode composition including the positive electrode active material, the conductive material, and the binder may be diluted in a predetermined solvent and coated on the positive electrode current collector using a conventional method known in the art.
  • a positive electrode current collector is prepared.
  • the positive electrode current collector has a thickness of 3 to 500 ⁇ m.
  • Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery.
  • stainless steel, aluminum, nickel, titanium, sintered carbon, or aluminum or stainless steel Carbon, nickel, titanium, silver, or the like may be used on the surface of the steel.
  • the current collector may increase the adhesion of the positive electrode active material by forming fine irregularities on its surface, and various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics are possible.
  • the method of applying the slurry-like positive electrode composition for example, Doctor blade coating, Dip coating, Gravure coating, Slit die coating. coating), spin coating, comma coating, bar coating, reverse roll coating, screen coating, cap coating, etc. It can be manufactured.
  • evaporation of the solvent (dispersion medium), the denseness of the coating film, and adhesion between the coating film and the current collector are achieved through a subsequent drying process. At this time, drying is carried out according to a conventional method, and this is not particularly limited.
  • any one capable of occluding and releasing lithium ions can be used, and examples thereof include metal materials such as lithium metal and lithium alloys, and carbon materials such as low crystalline carbon and high crystalline carbon.
  • Soft carbon and hard carbon are typical examples of low-crystalline carbon, and natural graphite, kish graphite, pyrolytic carbon, and liquid crystal pitch-based carbon fiber are high-crystalline carbon.
  • High-temperature calcined carbons such as (Mesophase pitch based carbon fiber), Meso-carbon microbeads, Mesophase pitches, and Petroleum or coal tar pitch derived cokes are typical.
  • alloys containing silicon or oxides such as Li 4 Ti 5 O 12 are also well-known cathodes.
  • the negative electrode may include a binder, and as the binder, polyvinylidenefluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), and polyacrylonitrile (Polyacrylonitrile), polymethylmethacrylate (Polymethylmethacrylate), styrene-butadiene rubber (SBR), and various kinds of binder polymers can be used.
  • PVDF polyvinylidenefluoride
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • SBR styrene-butadiene rubber
  • the negative electrode may optionally further include a negative electrode current collector for supporting the negative electrode active layer including the negative electrode active material and the binder.
  • the negative electrode current collector may be specifically selected from the group consisting of copper, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof.
  • the stainless steel may be surface-treated with carbon, nickel, titanium, or silver, and an aluminum-cadmium alloy may be used as the alloy.
  • calcined carbon, a non-conductive polymer surface-treated with a conductive agent, or a conductive polymer may be used.
  • the binder serves as a paste of the negative active material, mutual adhesion between the active materials, adhesion between the active material and the current collector, and a buffering effect on expansion and contraction of the active material.
  • the binder is the same as described above for the binder of the positive electrode.
  • the negative electrode may be a lithium metal or a lithium alloy.
  • the negative electrode may be a thin film of lithium metal, and lithium and one selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al, and Sn It may be an alloy with the above metals.
  • the electrolyte solution includes a solvent and a lithium salt, and may further include additives, if necessary.
  • a solvent a conventional non-aqueous solvent serving as a medium through which ions involved in the electrochemical reaction of a battery can move may be used without particular limitation.
  • the non-aqueous solvent include carbonate-based solvents, ester-based solvents, ether-based solvents, ketone-based solvents, alcohol-based solvents, and aprotic solvents.
  • the carbonate-based solvent dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), methyl ethyl carbonate (MEC) ), ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate (BC), and the ester solvents include methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethylethyl acetate, methyl Propionate, ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone, mevalonolactone, and caprolactone, and the ether solvents include di Ethyl ether, dipropyl ether, dibutyl ether, dimethoxymethane, trimethoxymethane, dimethoxyethane, die
  • the ketone solvent includes cyclohexanone
  • the alcohol solvent includes ethyl alcohol and isopropyl alcohol
  • the aprotic solvent includes nitriles such as acetonitrile, and amino acids such as dimethylformamide.
  • Dioxolanes such as Drew, 1,3-dioxolane (DOL), and sulfolane.
  • Non-aqueous solvents as described above can be used alone or in combination of two or more, and the mixing ratio in the case of mixing two or more can be appropriately adjusted according to the performance of the intended battery, and 1,3-dioxolane and dimethoxyethane A solvent mixed in a volume ratio of 1: 1 can be illustrated.
  • thermal exfoliation-reduced graphene oxide (TErGO, manufactured by the applicant itself), and 0.2 parts by weight of poly(1,4-anthraquinone) based on 100 parts by weight of the thermal exfoliation-reduced graphene oxide ( A redox functional polymer, synthesized by the present applicant) was dispersed at 30° C. for 3 hours to prepare a P14AQ-rGO composite dispersion.
  • the prepared P14AQ-rGO composite dispersion was coated on the surface of the porous base separator made of polyethylene by vacuum filtration and dried, and the content of the coating layer (P14AQ-rGO) was 20 ⁇ g/cm with respect to the surface area of the base separator. 2 , and a thickness of 1 ⁇ m functional separator (permeability: 202 Sec/100 mL) was prepared.
  • thermal exfoliation-reduced graphene oxide and poly(1,4-anthraquinone) used in the preparation of the P14AQ-rGO composite dispersion were manufactured through self-production/synthesis by the applicant, specifically, the thermal exfoliation Reduced graphene oxide was reduced by heat-treating graphene oxide (SE2430, Sixth Element, China) at 300° C. for 1 hour, and then prepared to a thickness of 15 nm using a high-speed mixer and an ultrasonic homogenizer.
  • the poly(1,4-anthraquinone) was synthesized through the following process. First, 3.3 g of bis(1,5-cyclooctadiene)nickel(0) (Stream Chemicals, USA), 1.9 g of 2,2'-bipyridine (Aldrich, USA) and 1.1 g of 1,5-cyclooctadiene (Aldrich, USA) ) was dissolved in 90 mL of dimethylformamide (Aldrich, USA). Separately, 2.5 g of 1,4-dichloroanthraquinone (Aldrich, USA) was dissolved in 60 mL of dimethylformamide (Aldrich, USA), and then, the two prepared solutions were mixed and 48 at 60° C.
  • reaction product was precipitated in 200 mL of 0.5 N HCl solution to produce a yellow precipitate, and the precipitate was filtered through a filter, dissolved in chloroform, and purified by recrystallization by adding methanol to obtain the final product.
  • Poly(1,4-anthraquinone) was added in an amount of 1 part by weight based on 100 parts by weight of reduced graphene oxide, and the content of the coating layer (P14AQ-rGO) was 10 ⁇ g/cm 2 based on the surface area of the base separator, and the thickness Except for changing to 2 ⁇ m, a functional separator (permeability: 197 Sec/100 mL) was prepared in the same manner as in Example 1 above.
  • Poly(1,4-anthraquinone) was added in an amount of 10 parts by weight based on 100 parts by weight of reduced graphene oxide, and the content of the coating layer (P14AQ-rGO) was 5 ⁇ g/cm 2 based on the surface area of the base separation membrane, and the thickness A functional separator (permeability: 193 Sec/100 mL) was prepared in the same manner as in Example 1, except for changing to 2 ⁇ m.
  • a bare separator made of polyethylene (PE) was prepared.
  • FIG. 1 is an image obtained by observing the surface of the functional separator according to the present invention with an electron microscope, and FIGS. 1A to 1C correspond to Examples 1 to 3, respectively.
  • FIG. 1 it can be seen that the redox-acting polymer-conductive carbon composite layer (coating layer) coated on the surface is evenly spread in a plate shape without agglomeration.
  • the discharge current rate of the lithium-sulfur batteries prepared in Examples 4 to 6 and Comparative Example 2 was set at 0.1 C 3 times, 0.2 C 3 times, and then 0.5 C, and then the discharge capacity and life characteristics were observed.
  • . 2 is a graph showing discharge capacity (a) and life characteristics (b) of lithium secondary batteries according to an embodiment and a comparative example of the present invention. As shown in FIG. 2, the lithium-sulfur batteries of Examples 4 to 6 to which the functional separator is applied are compared with the lithium-sulfur battery of Comparative Example 2 to which the conventional separator is applied, and all of the initial discharge capacity, average specific capacity, and life characteristics It was confirmed that it appeared excellently.
  • FIG. 3 is a graph showing discharge capacity (a) and life characteristics (b) of lithium secondary batteries according to an embodiment and a comparative example of the present invention.
  • the lithium-sulfur batteries of Examples 5 and 6 to which the functional separator is applied even if charged in the CC/CV mode, the initial discharge capacity compared to the lithium-sulfur battery of Comparative Example 2 to which the conventional separator is applied, It was found that both the average specific capacity and the life characteristics were excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

리튬 폴리설파이드의 용출로 인하여 발생하는 문제를 해결하기 위하여, 분리막 표면에 리튬 폴리설파이드의 환원이 가능한 물질을 코팅시킴으로써 전지의 용량과 수명을 향상시킬 수 있는, 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지가 개시된다. 상기 기능성 분리막은, 베이스 분리막; 및 상기 베이스 분리막의 표면에 위치하는 레독스 작용 고분자-전도성 탄소 복합층;을 포함한다.

Description

기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
본 출원은 2019년 05월 09일자 한국 특허 출원 제10-2019-0054322호 및 2020년 04월 24일자 한국 특허 출원 제10-2020-0049801호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지에 관한 것으로서, 더욱 상세하게는, 리튬 폴리설파이드의 용출로 인하여 발생하는 문제를 해결하기 위하여, 분리막 표면에 리튬 폴리설파이드의 환원이 가능한 물질을 코팅시킴으로써 전지의 용량과 수명을 향상시킬 수 있는, 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
에너지 저장 기술에 대한 관심이 갈수록 높아짐에 따라, 휴대폰, 태블릿(tablet), 랩탑(laptop) 및 캠코더, 나아가서는 전기 자동차(EV) 및 하이브리드 전기 자동차(HEV)의 에너지까지 적용분야가 확대되면서, 전기화학소자에 대한 연구 및 개발이 점차 증대되고 있다. 전기화학소자는 이러한 측면에서 가장 주목을 받고 있는 분야이고, 그 중에서도 충방전이 가능한 리튬-황 전지와 같은 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비 에너지를 향상시키기 위하여, 새로운 전극과 전지의 설계에 대한 연구개발로 이어지고 있다.
이와 같은 전기화학소자, 그 중 리튬-황 전지(Li-S battery)는 높은 에너지 밀도(이론 용량)를 가져, 리튬이온전지를 대체할 수 있는 차세대 이차전지로 각광받고 있다. 이와 같은 리튬-황 전지 내에서는, 방전 시 황의 환원 반응과 리튬 메탈의 산화반응이 일어나며, 이 때 황은 고리 구조의 S8로부터 선형 구조의 리튬 폴리설파이드(Lithium Polysulfide, LiPS)를 형성하게 되는데, 이러한 리튬-황 전지는 폴리설파이드가 완전히 Li2S로 환원되기까지 단계적 방전 전압을 나타내는 것이 특징이다.
하지만, 리튬-황 전지의 상업화에 있어서 가장 큰 걸림돌은 리튬 폴리설파이드의 용출 및 셔틀현상이고, 이로 인하여 리튬-황 전지의 용량이 감소된다는 커다란 문제점을 가지고 있다. 즉, 양극에서 용출된 폴리설파이드는 유기 전해액으로의 용해도가 높기 때문에, 전해액을 통해 음극 쪽으로 원치 않는 이동(PS shuttling)이 일어날 수 있으며, 그 결과, 양극 활물질의 비가역적 손실로 인한 용량의 감소 및 부반응에 의한 리튬 메탈 표면에의 황 입자 증착으로 인한 전지 수명의 감소가 발생하게 되는 것이다. 이와 같은 문제점을 해결하기 위하여, 양극 복합체에 PS 흡착 물질을 첨가하거나, 기존 PE 등으로 이루어진 분리막을 개질시키는 등의 다양한 연구가 진행되고 있지만, 뚜렷한 해결책을 제시하지는 못하고 있는 실정이다.
따라서, 본 발명의 목적은, 리튬 폴리설파이드의 용출로 인하여 발생하는 문제를 해결하기 위하여, 분리막 표면에 리튬 폴리설파이드의 환원이 가능한 레독스 작용기 함유 고분자와 전도성 탄소를 코팅시킴으로써 전지의 용량과 수명을 향상시킬 수 있는, 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, 베이스 분리막; 및 상기 베이스 분리막의 표면에 위치하는 레독스 작용 고분자-전도성 탄소 복합층;을 포함하는 기능성 분리막을 제공한다.
또한, 본 발명은, (a) 레독스 작용기 함유 고분자와 전도성 탄소를 용매에 분산시켜 레독스 작용 고분자-전도성 탄소 복합 분산액을 제조하는 단계; 및 (b) 상기 제조된 레독스 작용 고분자-전도성 탄소 복합 분산액을 베이스 분리막의 표면에 코팅시키는 단계;를 포함하는 기능성 분리막의 제조 방법을 제공한다.
또한, 본 발명은, 양극; 음극; 상기 양극과 음극의 사이에 개재되는 상기 기능성 분리막; 및 전해질;을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지는, 리튬 폴리설파이드의 용출로 인하여 발생하는 문제를 해결하기 위하여, 분리막 표면에 리튬 폴리설파이드의 환원이 가능한 레독스 작용기 함유 고분자와 전도성 탄소를 코팅시킴으로써 전지의 용량과 수명을 향상시킬 수 있는 장점을 가지고 있다.
도 1은 본 발명에 따른 기능성 분리막의 표면을 전자 현미경으로 관찰한 이미지이다.
도 2 및 3은 본 발명의 일 실시예 및 비교예에 따른 리튬 이차전지의 방전용량(a) 및 수명특성(b)을 보여주는 그래프이다.
이하, 본 발명을 상세히 설명한다.
본 발명에 따른 기능성 분리막은, 베이스 분리막 및 상기 베이스 분리막의 표면에 위치하는 레독스 작용 고분자-전도성 탄소 복합층을 포함한다.
상기 분리막은 양극과 음극의 사이에 개재되는 것으로서(즉, 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막), 양극과 음극을 서로 분리 또는 절연시키면서 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 특히 전해질의 이온 이동에 대하여 저항이 낮으면서 전해질 함습 능력이 우수할수록 바람직하며, 다공성이고 비전도성 또는 절연성인 물질로 이루어질 수 있다.
상기 레독스 작용 고분자-전도성 탄소 복합층이 배제된 상태의 베이스 분리막은, 필름과 같은 독립적인 부재이거나, 또는 양극 및 음극 중 어느 하나 이상에 부가(접착 또는 대면)된 코팅층일 수 있으며, 구체적으로는, 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용한 것이거나, 통상적인 다공성 부직포, 예를 들어, 고융점의 유리 섬유 또는 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포일 수 있으나, 이에 한정되는 것은 아니다.
상기 레독스 작용 고분자-전도성 탄소 복합층을 구성하는 전도성 탄소는, 상기 베이스 분리막의 표면에 레독스 작용 고분자와 함께 코팅되는 것으로서, 그 자체에 기공 구조를 가지고 있어 전해액의 출입이 자유롭다. 또한, 상기 전도성 탄소는 이름 그대로 전도성을 가지고 있고, 이와 같은 성질에 의해 전자를 레독스 작용 고분자에 전달함으로써 리튬 폴리설파이드의 환원 효율을 향상시킬 수 있다.
상기 전도성 탄소로는, 상기와 같은 효과를 나타낼 수 있는 전도성의 탄소재라면 특별한 제한 없이 적용될 수 있다. 그 중에서도 탄소나노튜브(CNT), 그래핀(graphene) 및 환원 그래핀 옥사이드(rGO)를 예로 들 수 있으며, 이들 중 상기 환원 그래핀 옥사이드의 사용이 바람직하고, 열팽창으로 인하여 박리가 유리하고 이에 따라 얇게 대면적 코팅이 가능하여 우수한 성능을 나타낼 수 있는 열적 박리 환원 그래핀 옥사이드(thermally exfoliated reduced graphene oxide; TErGO)를 사용하는 것이 보다 바람직할 수 있다.
상기 열적 박리 환원 그래핀 옥사이드(TErGO)는, 그래핀 옥사이드를 열처리하여 열팽창 그래핀 옥사이드(또는, 열적 박리 그래핀 옥사이드)를 제조한 후 이를 환원 처리한 것일 수 있다. 이때 열팽창 그래핀 옥사이드의 제조를 위한 열처리는, 공지의 방법 또는 이를 변형하는 다양한 방법에 의해 수행될 수 있으며, 본 발명에서 특별히 한정하지는 않는다. 일 예로, 상기 열처리는 300 내지 900 ℃의 온도 범위에서 10분 내지 3시간 동안 수행될 수 있다.
특히, 상기 열적 박리 환원 그래핀 옥사이드(TErGO)는 박리된 것으로서, 두께가 0.5 내지 40 nm, 바람직하게는 5 내지 30 nm, 더욱 바람직하게는 10 내지 20 nm일 수 있고, 판상 또는 플레이크 형상일 수 있다. 또한, 상기 열적 박리 환원 그래핀 옥사이드(TErGO)의 열팽창 정도는, BET의 범위로 100 m2/g 미만에서 900 m2/g까지 다양할 수 있고, 환원의 정도는 XPS나 EA를 통하여 측정 가능하다. 또한, 일반적인 그래핀 옥사이드는 탄소와 산소의 질량비가 약 1 : 1인 것에 비하여, 환원된 그래핀 옥사이드는 약 9 : 1 정도가 될 수 있다.
일반적으로, 박리 전의 환원 그래핀 옥사이드는 두께가 약 50 내지 500 nm로서, 입자 형태로 코팅 시 쉽게 탈리되기 때문에 (분리막이 아니더라도) 바인더의 사용을 필요로 할뿐만 아니라 코팅 밀도가 낮아 목적한 효과를 충분히 얻을 수 없었다. 하지만 본 발명은, 박리를 통해 일정 범위의 두께를 가지는 판상 또는 플레이크 형상의 열적 박리 환원 그래핀 옥사이드를 사용함으로써 기재 상에 균일하고 치밀하게 코팅할 수 있다.
그밖에, 상기 전도성 탄소에는 기공이 형성되어 있으며, 상기 기공의 공극률은 40 내지 90 %, 바람직하게는 60 내지 80 %로서, 상기 기공의 공극률이 40 % 미만이면 리튬 이온 전달이 정상적으로 이루어지지 않아 저항 성분으로 작용하여 문제가 발생할 수 있고, 90 %를 초과하는 경우에는 기계적 강도가 저하되는 문제가 발생할 수 있다. 또한, 상기 전도성 탄소의 기공 크기는 10 ㎚ 내지 5 ㎛, 바람직하게는 50 ㎚ 내지 5 ㎛로서, 상기 기공의 크기가 10 ㎚ 미만이면 리튬 이온 투과가 불가능한 문제가 발생할 수 있고, 5 ㎛를 초과하는 경우에는 전극 간 접촉에 의한 전지 단락 및 안전성 문제가 발생할 수 있다.
한편, 상기 베이스 분리막과 레독스 작용 고분자-전도성 탄소 복합층의 사이에는, 상기 레독스 작용 고분자-전도성 탄소 복합층이 상기 베이스 분리막의 표면에 보다 용이하게 코팅될 수 있도록 하는 바인더가 개재될 수 있다. 하지만, 본 발명의 전도성 탄소, 특히, 환원 그래핀 옥사이드(rGO) 중에서도 열적 박리 환원 그래핀 옥사이드(TErGO)를 사용하는 경우에는, 전도성 탄소가 판상 구조로 이루어지기 때문에, 상기 전도성 탄소층은 바인더 없이도 프리-스탠딩(free-standing)되어 베이스 분리막의 표면에 용이하게 코팅될 수 있다.
상기 전도성 탄소 이외에 레독스 작용 고분자-전도성 탄소 복합층을 구성하는 레독스 작용 고분자(또는, 레독스 작용기 함유 고분자)는, 리튬 폴리설파이드의 환원 효율을 극대화시키기 위하여 사용되는 것으로서, 상기 전도성 탄소와의 화학 결합 또는 그 자체의 물성으로 인하여, 베이스 분리막과의 결합력을 향상시키는 동시에 리튬 이온의 전달을 보다 원활하게 할 수 있다.
보다 구체적으로, 상기 레독스 작용 고분자는 레독스(Redox) 작용을 통하여, 양극에서 용출된 리튬 폴리설파이드(LiPS)의 환원을 촉진시키는 성분으로서, 전자를 수용하여 레독스 대를 형성함으로써 도전성을 발현하는 리튬 전도형 화합물일 수 있다. 이와 같은 레독스 작용 고분자로는, 하기 화학식 1로 표시되는 폴리(1,4-안트라퀴논)(poly(1,4-anthraquinone), P14AQ) 및 폴리(1,5-안트라퀴논)(poly(1,5-anthraquinone), P15AQ)과 같은 폴리안트라퀴논; 폴리나프토퀴논; 및 폴리벤조퀴논; 등의 퀴논계 화합물을 대표적으로 예시할 수 있다.
[화학식 1]
Figure PCTKR2020005616-appb-I000001
상기 화학식 1에서 n은 1 내지 1,000의 자연수이다.
그밖에, 레독스 작용 고분자로는 폴리아닐린, 폴리티오펜, 폴리피로울, 폴리아세틸렌, 폴리-p-페닐렌, 폴리페닐렌 비닐렌, 폴리페리나프탈렌, 폴리프란, 폴리플루란, 폴리티에닐렌, 폴리피리딘디일, 폴리이소티아나프텐, 폴리키녹사린, 폴리피리딘, 폴리피리미딘, 폴리인도올, 폴리아미노안트라퀴논, 폴리이미다졸 및 이들의 유도체 등의 π공액계 화합물 등, 전자 수용 시 레독스 대를 형성하여 도전성을 발현하는 물질이라면 특별한 제한 없이 적용될 수 있다.
상기 레독스 작용 고분자-전도성 탄소 복합층에 있어서, 상기 전도성 탄소와 레독스 작용 고분자의 중량비는 1 : 0.001 내지 0.2, 바람직하게는 1 : 0.002 내지 0.1일 수 있으며, 상기 중량비를 벗어나는 경우에는, 레독스 작용 고분자와 전도성 탄소를 사용함으로써 얻을 수 있는 효과들이 미미할 수 있다. 또한, 상기 레독스 작용 고분자의 수평균분자량(Mn)은 500 내지 200,000, 바람직하게는 1,000 내지 100,000일 수 있다.
상기 레독스 작용 고분자-전도성 탄소 복합층은 상기 베이스 분리막의 표면 일부에 형성될 수도 있으나, 전도성 탄소 및 레독스 작용 고분자의 사용에 따른 효과 발현을 극대화시키기 위하여, 상기 베이스 분리막의 표면 전체에 형성시키는 것이 바람직하다. 상기 레독스 작용 고분자-전도성 탄소 복합층의 두께는 0.1 내지 20 ㎛, 바람직하게는 0.5 내지 10 ㎛, 더욱 바람직하게는 0.5 내지 5 ㎛로서, 상기 레독스 작용 고분자-전도성 탄소 복합층의 두께가 0.1 ㎛ 미만이면, 전도성 네트워크가 충분하게 형성되지 않아 전자 전도성이 낮아지는 문제가 발생할 수 있고, 20 ㎛를 초과하는 경우에는, 리튬 이온의 통행을 방해하여 셀 저항이 커지며 또한 부피당 에너지 밀도 면에서도 불리한 문제가 발생할 우려가 있다.
또한, 상기 레독스 작용 고분자-전도성 탄소 복합층은, 상기 베이스 분리막의 표면적에 대하여 1 내지 200 ㎍/cm2, 바람직하게는 5 내지 100 ㎍/cm2, 더욱 바람직하게는 5 내지 50 ㎍/cm2의 함량으로 형성되어 위치할 수 있다. 만일, 상기 레독스 작용 고분자-전도성 탄소 복합층의 코팅 함량이 베이스 분리막의 표면적에 대하여 1 ㎍/cm2 미만이면, 전도성 탄소 및 레독스 작용 고분자의 사용에 따른 효과가 미미할 수 있고, 200 ㎍/cm2를 초과하는 경우에는 전도성 탄소 및 레독스 작용 고분자를 사용함에 따라 얻을 수 있는 더 이상의 효과가 없을 수 있다.
다음으로, 본 발명에 따른 기능성 분리막의 제조 방법에 대하여 설명한다. 상기 기능성 분리막의 제조 방법은, (a) 레독스 작용기 함유 고분자와 전도성 탄소를 용매에 분산시켜 레독스 작용 고분자-전도성 탄소 복합 분산액을 제조하는 단계 및 (b) 상기 제조된 레독스 작용 고분자-전도성 탄소 복합 분산액을 베이스 분리막의 표면에 코팅시키는 단계를 포함한다.
상기 용매로는 물(water)이나, 에탄올, 아세톤, IPA, THF, MC, DMF, DMSO 및 DMAc 등의 유기 용매를 예시할 수 있고, 이 중 THF 또는 이와 유사한 성질을 가지는 화합물을 용매로 적용하는 것이 바람직할 수 있다. 또한, 상기 (a) 단계에서 레독스 작용기 함유 고분자와 전도성 탄소를 용매에 분산시킨 이후에는 레독스 작용기 함유 고분자와 전도성 탄소 간 반응(π-π 상호작용에 의한 결합)이 이루어지며, 이때 반응은 상온 내지 100 ℃, 바람직하게는 40 내지 70 ℃ 하에서 1 내지 24 시간 동안 수행될 수 있고, 상기 반응을 통하여 전자가 레독스 작용기에 전달되어 리튬 폴리설파이드를 환원시키게 된다.
이와 같이, 전도성 탄소와 레독스 작용 고분자를 포함한 레독스 작용 고분자-전도성 탄소 복합 분산액(또는, 레독스 작용 고분자-전도성 탄소 복합체)가 제조된 후에는, 상기 레독스 작용 고분자-전도성 탄소 복합 분산액을 베이스 분리막의 표면에 코팅시킴으로써, 본 발명에 따른 기능성 분리막이 제조된다. 이때, 상기 코팅은 드롭캐스트(dropcast), 딥-코팅(dip-coating) 방식, 블레이드 코팅(blade coating) 방식, 스프레이 코팅(spray coating) 방식, 마이어 바 코팅(meyer bar coating) 방식 또는 진공여과(vacuum filter)에 의해 수행될 수 있다.
마지막으로, 본 발명이 제공하는 기능성 분리막을 포함하는 리튬 이차전지에 대하여 설명한다. 상기 기능성 분리막을 포함하는 리튬 이차전지는, 양극, 음극, 상기 양극과 음극의 사이에 개재되는 상기 기능성 분리막 및 전해질을 포함하며, 리튬-황 전지, 리튬 공기 전지 및 리튬 메탈 전지 등, 당업계에 알려진 모든 리튬 이차전지를 예로 들 수 있고, 이 중 리튬-황 전지인 것이 바람직하다. 상기 리튬 이차전지에 포함되는 기능성 분리막에 대한 설명은 전술한 것으로 대신하며, 그밖에, 리튬 이차전지에 적용되는 나머지 양극, 음극 및 전해질은 당업계에서 사용하는 통상의 것일 수 있고, 이에 대한 구체적인 설명은 후술하도록 한다.
한편, 본 발명은, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩의 제공 또한 가능하다. 상기 전지모듈 또는 전지팩은 파워 툴(Power tool); 전기자동차(Electric vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in hybrid electric vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템; 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명에 따른 리튬 이차전지에 적용되는 양극, 음극 및 전해질에 대한 설명을 부가한다.
양극
본 발명에 사용되는 양극에 관하여 설명하면, 양극 활물질, 도전재 및 바인더를 포함하는 양극 조성물을 제조한 후, 이를 소정의 용매(분산매)에 희석하여 제조된 슬러리를 양극 집전체 상에 직접 코팅 및 건조함으로써 양극층을 형성할 수 있다. 또는, 상기 슬러리를 별도의 지지체 상에 캐스팅한 후, 상기 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션하여 양극층을 제조할 수 있다. 이외에도, 당해 기술 분야에서 통상의 지식을 가지는 기술자들에게 널리 알려진 방법을 사용하여 다양한 방식으로 양극을 제조할 수 있다.
상기 도전재(Conducting material)는 양극 집전체로부터 전자가 양극 활물질까지 이동하는 경로의 역할을 하여 전자 전도성을 부여할 뿐만 아니라, 전해질과 양극 활물질을 전기적으로 연결시켜 주어 전해질 내 리튬 이온(Li+)이 황까지 이동하여 반응하게 하는 경로의 역할을 동시에 하게 된다. 따라서, 도전재의 양이 충분하지 않거나 역할을 제대로 수행하지 못하게 되면 전극 내 황 중 반응하지 못하는 부분이 증가하게 되고, 결국은 용량 감소를 일으키게 된다. 또한, 고율 방전 특성과 충방전 사이클 수명에도 악영향을 미치게 되므로, 적절한 도전재의 첨가가 필요하다. 상기 도전재의 함량은 양극 조성물 총 중량을 기준으로 0.01 내지 30 중량% 범위 내에서 적절히 첨가하는 것이 바람직하다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예컨대, 그라파이트; 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙 및 서머 블랙 등의 카본 블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄 및 니켈 분말 등의 금속 분말; 산화아연 및 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판 중인 도전재의 구체적인 예로는, 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품, 케첸 블랙(Ketjenblack), EC 계열 아르막 컴퍼니(Armak Company) 제품, 불칸(Vulcan) XC-72 캐보트 컴퍼니(Cabot Company) 제품 및 슈퍼-피(Super-P; Timcal 사 제품) 등이 사용될 수 있다.
상기 바인더는 양극 활물질을 집전체에 잘 부착시키기 위한 것으로서, 용매에 잘 용해되어야 하며, 양극 활물질과 도전재와의 도전 네크워크를 잘 구성해주어야 할 뿐만 아니라, 전해액의 함침성도 적당히 가져야 한다. 상기 바인더는 당해 업계에서 공지된 모든 바인더들일 수 있고, 구체적으로는, 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF) 또는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무, 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈를 포함하는 셀룰로오스계 바인더; 폴리 알코올계 바인더; 폴리에틸렌, 폴리프로필렌를 포함하는 폴리 올레핀계 바인더; 폴리 이미드계 바인더, 폴리 에스테르계 바인더, 실란계 바인더;로 이루어진 군에서 선택된 1종 이상의 혼합물이거나 공중합체일 수 있으나, 이에 제한되지는 않는다.
상기 바인더의 함량은 양극 조성물 총 중량을 기준으로 0.5 내지 30 중량%일 수 있으나, 이에 한정되는 것은 아니다. 상기 바인더 수지의 함량이 0.5 중량% 미만인 경우에는, 양극의 물리적 성질이 저하되어 양극 활물질과 도전재가 탈락할 수 있고, 30 중량%를 초과하는 경우에는 양극에서 활물질과 도전재의 비율이 상대적으로 감소되어 전지 용량이 감소될 수 있으며, 저항 요소로 작용하여 효율이 저하될 수 있다.
상기 양극 활물질, 도전재 및 바인더를 포함하는 양극 조성물은 소정의 용매에 희석되어, 양극 집전체 상에 당업계에 알려진 통상의 방법을 이용하여 코팅할 수 있다. 먼저, 양극 집전체를 준비한다. 상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께를 사용한다. 이와 같은 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소결 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
다음으로, 상기 양극 집전체 상에 양극 활물질, 도전재 및 바인더를 포함하는 양극 조성물을 용매에 희석한 슬러리를 도포한다. 전술한 양극 활물질, 도전재 및 바인더를 포함하는 양극 조성물을 소정의 용매와 혼합하여 슬러리로 제조할 수 있다. 이때 용매는 건조가 용이해야 하며, 바인더를 잘 용해시킬 수 있으되, 양극 활물질 및 도전재는 용해시키지 않고 분산 상태로 유지시킬 수 있는 것이 가장 바람직하다. 용매가 양극 활물질을 용해시킬 경우에는 슬러리에서 황의 비중(D = 2.07)이 높기 때문에 황이 슬러리에서 가라앉게 되어 코팅 시 집전체에 황이 몰려 도전 네트워크에 문제가 생겨, 전지의 작동에 문제가 발생하는 경향이 있다. 상기 용매(분산매)는 물 또는 유기 용매가 가능하며, 상기 유기 용매는 디메틸포름아미드, 이소프로필알콜 또는 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란 군으로부터 선택되는 1종 이상일 수 있다.
계속해서, 상기 슬러리 상태의 양극 조성물을 도포하는 방법에는 특별한 제한이 없으며, 예컨대, 닥터 블레이드 코팅(Doctor blade coating), 딥 코팅(Dip coating), 그라비어 코팅(Gravure coating), 슬릿 다이 코팅(Slit die coating), 스핀 코팅(Spin coating), 콤마 코팅(Comma coating), 바 코팅(Bar coating), 리버스 롤 코팅(Reverse roll coating), 스크린 코팅(Screen coating), 캡 코팅(Cap coating) 방법 등을 수행하여 제조할 수 있다. 이와 같은 코팅 과정을 거친 양극 조성물은, 이후 건조 과정을 통해 용매(분산매)의 증발, 코팅막의 조밀성 및 코팅막과 집전체와의 밀착성 등이 이루어진다. 이때, 건조는 통상적인 방법에 따라 실시되며, 이를 특별히 제한하지는 않는다.
음극
음극으로는 리튬이온을 흡장 및 방출할 수 있는 것을 모두 사용할 수 있으며, 예를 들어, 리튬 금속, 리튬 합금 등의 금속재와, 저결정 탄소, 고결정성 탄소 등의 탄소재를 예시할 수 있다. 저결정성 탄소로는 연화탄소(Soft carbon) 및 경화탄소(Hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시 흑연(Kish graphite), 열분해 탄소(Pyrolytic carbon), 액정 피치계 탄소섬유(Mesophase pitch based carbon fiber), 탄소 미소구체(Meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(Petroleum or coal tar pitch derived cokes) 등의 고온 소성 탄소가 대표적이다. 이 외에, 실리콘이 포함된 얼로이 계열이나 Li4Ti5O12 등의 산화물도 잘 알려진 음극이다.
이때, 음극은 결착제를 포함할 수 있으며, 결착제로는 폴리비닐리덴플루오라이드(Polyvinylidenefluoride, PVDF), 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리아크릴로니트릴(Polyacrylonitrile), 폴리메틸메타크릴레이트(Polymethylmethacrylate), 스티렌-부타디엔 고무(SBR) 등, 다양한 종류의 바인더 고분자가 사용될 수 있다.
상기 음극은 상기 음극 활물질 및 바인더를 포함하는 음극 활성층의 지지를 위한 음극 집전체를 선택적으로 더 포함할 수도 있다. 상기 음극 집전체는 구체적으로 구리, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다. 상기 스테인리스스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금이 사용될 수 있다. 그 외에도 소성 탄소, 도전제로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등이 사용될 수도 있다.
상기 바인더는 음극 활물질의 페이스트화, 활물질간 상호 접착, 활물질과 집전체와의 접착, 활물질 팽창 및 수축에 대한 완충 효과 등의 역할을 한다. 구체적으로 상기 바인더는 앞서 양극의 바인더에서 설명한 바와 동일하다. 또한 상기 음극은 리튬 금속 또는 리튬 합금일 수 있다. 비제한적인 예로, 음극은 리튬 금속의 박막일 수도 있으며, 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로 이루어진 군으로부터 선택되는 1종 이상의 금속과의 합금일 수 있다.
전해질
전해액은 용매(Solvents) 및 리튬염(Lithium Salt)을 포함하며, 필요에 따라, 첨가제(Additives)를 더 포함할 수 있다. 상기 용매로는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 하는 통상의 비수성 용매를 특별한 제한 없이 사용할 수 있다. 상기 비수성 용매의 예로는, 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 케톤계 용매, 알코올계 용매 및 비양자성 용매 등을 들 수 있다.
보다 구체적인 예를 들면, 상기 카보네이트계 용매로서 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 디프로필카보네이트(DPC), 메틸프로필카보네이트(MPC), 에틸프로필카보네이트(EPC), 메틸에틸카보네이트(MEC), 에틸렌카보네이트(EC), 프로필렌카보네이트(PC) 및 부틸렌 카보네이트(BC) 등이 있고, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 1,1-디메틸에틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone) 및 카프로락톤(carprolactone) 등이 있으며, 상기 에테르계 용매로는 디에틸 에테르, 디프로필 에테르, 디부틸 에테르, 디메톡시메탄, 트리메톡시메탄, 디메톡시에탄, 디에톡시에탄, 디글라임, 트리글라임, 테트라글라임, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란 및 폴리에틸렌 글리콜 디메틸 에테르 등이 있다. 또한, 상기 케톤계 용매로는 시클로헥사논 등이 있고, 상기 알코올계 용매로는 에틸알코올 및 이소프로필알코올 등이 있으며, 상기 비양자성 용매로는 아세토니트릴 등의 니트릴류, 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란(DOL) 등의 디옥솔란류 및 술포란(sulfolane) 등이 있다. 이상과 같은 비수성 용매는 단독 또는 둘 이상 혼합하여 사용할 수 있고, 둘 이상 혼합할 경우의 혼합 비율은 목적으로 하는 전지의 성능에 따라 적절하게 조절할 수 있으며, 1,3-디옥솔란과 디메톡시에탄을 1 : 1의 부피비로 혼합한 용매를 예시할 수 있다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예 1] 기능성 분리막의 제조
먼저, 용매인 THF의 존재 하에서, 열적 박리 환원 그래핀 옥사이드(TErGO, 본 출원인 자체 제작)와, 상기 열적 박리 환원 그래핀 옥사이드 100 중량부에 대하여 0.2 중량부의 폴리(1,4-안트라퀴논)(레독스 작용 고분자, 본 출원인 자체 합성)을 30 ℃에서 3 시간 동안 분산시켜 P14AQ-rGO 복합 분산액을 제조하였다.
이어서, 폴리에틸렌 재질의 다공성 베이스 분리막의 표면에, 상기 제조된 P14AQ-rGO 복합 분산액을 진공여과 방식으로 코팅한 후 건조하여, 코팅층(P14AQ-rGO)의 함량이 베이스 분리막의 표면적에 대하여 20 ㎍/cm2이고, 두께가 1 ㎛인 기능성 분리막(통기도: 202 Sec/100mL)을 제조하였다.
한편, 상기 P14AQ-rGO 복합 분산액의 제조에 사용된 열적 박리 환원 그래핀 옥사이드와 폴리(1,4-안트라퀴논) 모두, 본 출원인의 자체 제작/합성을 통해 제조된 것으로서, 구체적으로, 상기 열적 박리 환원 그래핀 옥사이드는 그래핀 옥사이드(SE2430, Sixth Element, China)를 300 ℃에서 1 시간 동안 열처리하여 환원시킨 후, 고속 혼합기와 초음파 호모게나이저를 이용하여 15 ㎚의 두께로 제조하였다.
또한, 상기 폴리(1,4-안트라퀴논)은 다음과 같은 과정을 거쳐 합성하였다. 먼저 3.3 g의 bis(1,5-cyclooctadiene)nickel(0)(Stream Chemicals, 미국), 1.9 g의 2,2'-bipyridine(알드리치, 미국) 및 1.1 g의 1,5-cyclooctadiene(알드리치, 미국)을 90 mL의 디메틸포름아마이드(알드리치, 미국)에 녹였다. 이와는 별도로, 2.5 g의 1,4-디클로로안트라퀴논(알드리치, 미국)을 60 mL의 디메틸포름아마이드(알드리치, 미국)에 녹였으며, 이후, 상기 제조된 두 용액을 섞고 질소 분위기에서 60 ℃로 48시간 동안 반응시켰다. 이어서, 반응 생성물을 200 mL의 0.5 N HCl 용액에 침전시켜 노란색 침전물이 생성되었으며, 침전물을 필터로 거른 후 다시 클로로포름에 녹이고, 여기에 메탄올을 가하여 재결정시키는 방법으로 정제하여 최종 산물을 얻었다.
[실시예 2] 기능성 분리막의 제조
폴리(1,4-안트라퀴논)을 환원 그래핀 옥사이드 100 중량부에 대하여 1 중량부의 함량으로 투입하고, 코팅층(P14AQ-rGO)의 함량을 베이스 분리막의 표면적에 대하여 10 ㎍/cm2로, 두께를 2 ㎛로 변경한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 기능성 분리막(통기도: 197 Sec/100mL)을 제조하였다.
[실시예 3] 기능성 분리막의 제조
폴리(1,4-안트라퀴논)을 환원 그래핀 옥사이드 100 중량부에 대하여 10 중량부의 함량으로 투입하고, 코팅층(P14AQ-rGO)의 함량을 베이스 분리막의 표면적에 대하여 5 ㎍/cm2로, 두께를 2 ㎛로 변경한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 기능성 분리막(통기도: 193 Sec/100mL)을 제조하였다.
[비교예 1] 통상적인 분리막
별도의 코팅 없이, 폴리에틸렌(PE)으로 이루어진 bare 상태의 분리막을 준비하였다.
[실험예 1] 기능성 분리막의 코팅 균일성 평가
상기 실시예 1 내지 3에서 제조된 기능성 분리막의 코팅 균일성을 평가하였다. 도 1은 본 발명에 따른 기능성 분리막의 표면을 전자 현미경으로 관찰한 이미지로서, 도 1의 (a) 내지 (c)는 각각 실시예 1 내지 3에 해당한다. 본 발명에 따른 기능성 분리막은, 도 1에 도시된 바와 같이, 그 표면에 코팅된 레독스 작용 고분자-전도성 탄소 복합층(코팅층)이 뭉침 현상 없이 판상형으로 고르게 잘 펴져 있음을 확인할 수 있다.
[실시예 4~6, 비교예 2] 리튬 이차전지의 제조
상기 실시예 1 내지 3 및 비교예 1에서 제조된 기능성 분리막과, 전해액(DOL:DME (1:1), 1.0 M LiTFSI, 1 wt% LiNO3) 70 ㎕, 황 양극 및 리튬 메탈 음극을 포함하는 코인셀 형태의 리튬-황 전지를 제조하였다.
[실험예 2] 리튬 이차전지의 방전용량 및 수명특성 평가 - A
상기 실시예 4 내지 6 및 비교예 2에서 제조된 리튬-황 전지의 방전 전류 속도를 0.1 C로 3회, 0.2 C로 3회, 이후 0.5 C로 설정한 후, 방전용량과 수명특성을 관찰하였다. 도 2는 본 발명의 일 실시예 및 비교예에 따른 리튬 이차전지의 방전용량(a) 및 수명특성(b)을 보여주는 그래프이다. 도 2에 도시된 바와 같이, 기능성 분리막을 적용한 실시예 4 내지 6의 리튬-황 전지는, 통상적인 분리막을 적용한 비교예 2의 리튬-황 전지에 비하여 초기 방전용량, 평균 비용량 및 수명특성 모두 우수하게 나타나는 것을 확인할 수 있었다.
[실험예 3] 리튬 이차전지의 방전용량 및 수명특성 평가 - B
상기 실시예 5, 6 및 비교예 2에서 제조된 리튬-황 전지를 정전류/정전압(CC/CV) 모드로 충전한 후 방전용량과 수명특성을 관찰하였다. 도 3은 본 발명의 일 실시예 및 비교예에 따른 리튬 이차전지의 방전용량(a) 및 수명특성(b)을 보여주는 그래프이다. 도 3에 도시된 바와 같이, 기능성 분리막을 적용한 실시예 5 및 6의 리튬-황 전지는, CC/CV 모드로 충전하더라도 통상적인 분리막을 적용한 비교예 2의 리튬-황 전지에 비하여 초기 방전용량, 평균 비용량 및 수명특성 모두 우수하게 나타나는 것을 알 수 있었다.

Claims (13)

  1. 베이스 분리막; 및
    상기 베이스 분리막의 표면에 위치하는 레독스 작용 고분자-전도성 탄소 복합층;을 포함하는 기능성 분리막.
  2. 청구항 1에 있어서, 상기 레독스 작용 고분자는 전자를 수용하여 레독스 대를 형성함으로써 도전성을 발현하는 리튬 전도형 화합물인 것을 특징으로 하는, 기능성 분리막.
  3. 청구항 1에 있어서, 상기 레독스 작용 고분자는 폴리안트라퀴논, 폴리나프토퀴논 및 폴리벤조퀴논으로 이루어진 군으로부터 선택되는 퀴논계 화합물 또는 π공액계 화합물인 것을 특징으로 하는, 기능성 분리막.
  4. 청구항 3에 있어서, 상기 레독스 작용 고분자는 폴리안트라퀴논이고, 상기 폴리안트라퀴논은 폴리(1,4-안트라퀴논) 또는 폴리(1,5-안트라퀴논)인 것을 특징으로 하는, 기능성 분리막.
  5. 청구항 1에 있어서, 상기 전도성 탄소는 탄소나노튜브, 그래핀 및 환원 그래핀 옥사이드로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 기능성 분리막.
  6. 청구항 1에 있어서, 상기 전도성 탄소와 레독스 작용 고분자의 중량비는 1 : 0.001 내지 0.2인 것을 특징으로 하는, 기능성 분리막.
  7. 청구항 1에 있어서, 상기 레독스 작용 고분자-전도성 탄소 복합층의 두께는 0.1 내지 20 ㎛인 것을 특징으로 하는, 기능성 분리막.
  8. 청구항 1에 있어서, 상기 레독스 작용 고분자-전도성 탄소 복합층은, 상기 베이스 분리막의 표면적에 대하여 1 내지 200 ㎍/cm2의 함량으로 형성되어 위치하는 것을 특징으로 하는, 기능성 분리막.
  9. (a) 레독스 작용기 함유 고분자와 전도성 탄소를 용매에 분산시켜 레독스 작용 고분자-전도성 탄소 복합 분산액을 제조하는 단계; 및
    (b) 상기 제조된 레독스 작용 고분자-전도성 탄소 복합 분산액을 베이스 분리막의 표면에 코팅시키는 단계;를 포함하는 기능성 분리막의 제조 방법.
  10. 청구항 9에 있어서, 상기 (a) 단계의 분산 시 레독스 작용기 함유 고분자와 전도성 탄소는 상온 내지 100 ℃ 하에서 1 내지 24 시간 동안 반응하는 것을 특징으로 하는, 기능성 분리막의 제조 방법.
  11. 청구항 10에 있어서, 상기 반응 시에는, 상기 레독스 작용기 함유 고분자와 전도성 탄소가 π-π 상호작용에 의해 결합하는 것을 특징으로 하는, 기능성 분리막의 제조 방법.
  12. 양극; 음극; 상기 양극과 음극의 사이에 개재되는 청구항 1의 기능성 분리막; 및 전해질;을 포함하는 리튬 이차전지.
  13. 청구항 12에 있어서, 상기 리튬 이차전지는 리튬-황 전지인 것을 특징으로 하는, 리튬 이차전지.
PCT/KR2020/005616 2019-05-09 2020-04-28 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지 WO2020226330A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080004170.0A CN112514154B (zh) 2019-05-09 2020-04-28 功能性隔膜、制造所述功能性隔膜的方法和包含所述功能性隔膜的锂二次电池
EP20802874.6A EP3817094A4 (en) 2019-05-09 2020-04-28 FUNCTIONAL SEPARATOR, ITS MANUFACTURING PROCESS AND SECONDARY LITHIUM BATTERY INCLUDING IT
US17/262,527 US11936064B2 (en) 2019-05-09 2020-04-28 Functional separator, method for manufacturing the same, and lithium secondary battery comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190054322 2019-05-09
KR10-2019-0054322 2019-05-09
KR10-2020-0049801 2020-04-24
KR1020200049801A KR102448077B1 (ko) 2019-05-09 2020-04-24 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2020226330A1 true WO2020226330A1 (ko) 2020-11-12

Family

ID=73051295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005616 WO2020226330A1 (ko) 2019-05-09 2020-04-28 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2020226330A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702928A (zh) * 2016-02-18 2016-06-22 钟玲珑 一种石墨烯/聚蒽醌硫醚/硫复合正极材料的制备方法
WO2017139941A1 (zh) * 2016-02-18 2017-08-24 肖丽芳 一种石墨烯 / 聚蒽醌硫醚 / 硫复合正极材料的制备方法
KR20190046316A (ko) * 2017-10-26 2019-05-07 주식회사 엘지화학 분리막 및 이를 포함하는 리튬-황 전지
KR20190046315A (ko) * 2017-10-26 2019-05-07 주식회사 엘지화학 분리막 및 이를 포함하는 리튬-황 전지
KR20190054322A (ko) 2017-11-13 2019-05-22 조준영 방화문의 결로 방지장치
KR20200049801A (ko) 2017-08-24 2020-05-08 울라드지미르 라스타우초우 객체의 상태의 자동 진단을 위한 방법 및 이를 구현하기 위한 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702928A (zh) * 2016-02-18 2016-06-22 钟玲珑 一种石墨烯/聚蒽醌硫醚/硫复合正极材料的制备方法
WO2017139941A1 (zh) * 2016-02-18 2017-08-24 肖丽芳 一种石墨烯 / 聚蒽醌硫醚 / 硫复合正极材料的制备方法
KR20200049801A (ko) 2017-08-24 2020-05-08 울라드지미르 라스타우초우 객체의 상태의 자동 진단을 위한 방법 및 이를 구현하기 위한 시스템
KR20190046316A (ko) * 2017-10-26 2019-05-07 주식회사 엘지화학 분리막 및 이를 포함하는 리튬-황 전지
KR20190046315A (ko) * 2017-10-26 2019-05-07 주식회사 엘지화학 분리막 및 이를 포함하는 리튬-황 전지
KR20190054322A (ko) 2017-11-13 2019-05-22 조준영 방화문의 결로 방지장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GE LI, XIAOLEI WANG, MIN HO SEO, MATTHEW LI, LU MA, YIFEI YUAN, TIANPIN WU, AIPING YU, SHUN WANG, JUN LU, ZHONGWEI CHEN: "Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries", NATURE COMMUNICATIONS, vol. 9, no. 1, 2018, pages 705, XP055759428, DOI: 10.1038/s41467-018-03116-z *

Similar Documents

Publication Publication Date Title
WO2014109523A1 (ko) 리튬-황 전지용 양극 활물질 및 이의 제조방법
WO2015102139A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
US20220006131A1 (en) Functional separator having catalytic sites introduced thereinto, manufacturing method therefor, and lithium secondary battery comprising same
KR102415167B1 (ko) 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
WO2022071722A1 (ko) 고 에너지 밀도를 갖는 리튬-황 전지
WO2021235760A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2019093709A1 (ko) 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법
WO2020226329A1 (ko) 촉매점이 도입된 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
WO2021210814A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2016122196A1 (ko) 전극, 전지 및 전극의 제조 방법
WO2020085859A1 (ko) 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2019059662A2 (ko) 금속 전극을 구비하는 금속이차전지
KR102415168B1 (ko) 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
WO2019022358A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
WO2020226330A1 (ko) 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
WO2016032210A1 (ko) 탄소-실리콘 복합 구조체 및 이의 제조 방법
WO2020226328A1 (ko) 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
KR102651781B1 (ko) 고연신성 고분자 보호층이 형성된 리튬 이차전지용 음극, 이의 제조 방법 및 상기 음극을 포함하는 리튬 이차전지
KR20200138058A (ko) 레독스 작용기 함유 고분자층이 형성된 탄소, 이를 포함하는 황-탄소 복합체 및 리튬 이차전지
KR102448077B1 (ko) 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
WO2020242237A1 (ko) 레독스 작용기 함유 고분자층이 형성된 탄소, 이를 포함하는 황-탄소 복합체 및 리튬 이차전지
WO2023140502A1 (ko) 수명 성능이 개선된 리튬-황 전지
WO2023096182A1 (ko) 에너지 밀도 및 출력이 개선된 리튬-황 전지
WO2022114650A1 (ko) 리튬-황 전지의 양극 제조용 바인더 조성물, 및 이에 의해 제조된 리튬-황 전지의 양극

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020802874

Country of ref document: EP

Effective date: 20210126

NENP Non-entry into the national phase

Ref country code: DE