KR20190046316A - 분리막 및 이를 포함하는 리튬-황 전지 - Google Patents

분리막 및 이를 포함하는 리튬-황 전지 Download PDF

Info

Publication number
KR20190046316A
KR20190046316A KR1020170139969A KR20170139969A KR20190046316A KR 20190046316 A KR20190046316 A KR 20190046316A KR 1020170139969 A KR1020170139969 A KR 1020170139969A KR 20170139969 A KR20170139969 A KR 20170139969A KR 20190046316 A KR20190046316 A KR 20190046316A
Authority
KR
South Korea
Prior art keywords
lithium
graphene
partially reduced
sulfur battery
oxide
Prior art date
Application number
KR1020170139969A
Other languages
English (en)
Other versions
KR102229449B1 (ko
Inventor
송지은
손권남
양두경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020170139969A priority Critical patent/KR102229449B1/ko
Priority to PCT/KR2018/011838 priority patent/WO2019083193A1/ko
Priority to EP18870316.9A priority patent/EP3678219A4/en
Priority to JP2020518720A priority patent/JP6937901B2/ja
Priority to US16/753,217 priority patent/US11411283B2/en
Priority to CN201880067164.2A priority patent/CN111213255B/zh
Publication of KR20190046316A publication Critical patent/KR20190046316A/ko
Application granted granted Critical
Publication of KR102229449B1 publication Critical patent/KR102229449B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • H01M2/1686
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • H01M2/166
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 다공성 기재의 적어도 일면을 쉬트(sheet) 형상의 부분 환원된 산화 그래핀과 리튬이온 전도성 고분자로 코팅한 분리막을 구비하여 종래 리튬-황 전지에서 발생하는 리튬 폴리설파이드로 인한 문제를 해소할 수 있는 분리막 및 이를 포함하는 리튬-황 전지에 관한 것이다.

Description

분리막 및 이를 포함하는 리튬-황 전지 {SEPERATOR AND LITHIUM SULFUR BATTERY COMPRISING THE SAME}
본 발명은 리튬 폴리설파이드로 인한 문제를 해소할 수 있는 분리막 및 이를 포함하는 리튬-황 전지에 관한 것이다.
최근 전자제품, 전자기기, 통신기기 등의 소형 경량화가 급속히 진행되고 있으며, 환경 문제와 관련하여 전기 자동차의 필요성이 크게 대두됨에 따라 이들 제품의 동력원으로 사용되는 이차전지의 성능 개선에 대한 요구도 증가하는 실정이다. 그 중 리튬 이차전지는 고 에너지밀도 및 높은 표준전극 전위 때문에 고성능 전지로서 상당한 각광을 받고 있다.
특히 리튬-황(Li-S) 전지는 S-S 결합(Sulfur - sulfur bond)을 갖는 황 계열 물질을 양극 활물질로 사용하고, 리튬 금속을 음극 활물질로 사용하는 이차전지이다. 양극 활물질의 주재료인 황은 자원이 매우 풍부하고, 독성이 없으며, 낮은 원자당 무게를 가지고 있는 장점이 있다. 또한, 리튬-황 전지의 이론 방전용량은 1,675mAh/g-sulfur이며, 이론 에너지밀도가 2,600Wh/kg로서, 현재 연구되고 있는 다른 전지시스템의 이론 에너지밀도(Ni-MH 전지: 450Wh/kg, Li-FeS 전지: 480Wh/kg, Li-MnO2 전지: 1,000Wh/kg, Na-S 전지: 800Wh/kg)에 비하여 매우 높기 때문에 현재까지 개발되고 있는 전지 중에서 가장 유망한 전지이다.
리튬-황 전지의 방전 반응 중 음극(Anode)에서는 리튬의 산화 반응이 발생하고, 양극(Cathode)에서는 황의 환원 반응이 발생한다. 상기 리튬-황 전지는 방전 도중에 리튬 폴리설파이드(Li2Sx, x=2~8)가 생성되고, 이는 전해질에 용해되고 음극으로 확산되어 여러 가지 부반응을 일으킬 뿐만 아니라 전기 화학 반응에 참여하는 황의 용량을 감소시킨다. 또한, 충전과정 중 상기 리튬 폴리설파이드는 셔틀반응(shuttle reaction)을 일으켜 충방전 효율을 크게 저하시킨다.
상기 문제를 해결하기 위해, 황을 흡착하는 성질을 갖는 첨가제를 첨가하는 방법이 제안되었으나, 이는 열화 문제가 발생하여 추가적인 전지의 부반응이 새로이 발생하였다. 이에 양극 활물질, 즉 황의 유출을 지연시키기 위해 금속 칼코게나이드나 알루미나 등을 첨가하거나, 표면을 옥시카보네이트 등으로 코팅하는 방법이 제안되었으나, 이러한 방법은 처리 과정 중에 황이 유실되거나 복잡할 뿐만 아니라 활물질인 황을 넣을 수 있는 양(즉, 로딩양)이 제한된다.
따라서 리튬-황 전지의 상용화를 위해서, 리튬 폴리설파이드 문제는 가장 우선적으로 해결해야 할 과제이다.
중국 공개특허 제106356488호(2017.01.25), "일종 리튬 이온 전지 혹은 리튬 황 전지용 복합 분리막 및 그 제조 방법과 응용" 대한민국 등록특허 제10-1678817호(2016.11.17), "환원 그래핀 옥사이드 제조방법, 그에 따른 환원 그래핀 옥사이드, 이를 이용한 배리어필름 제조방법 및 그에 따른 배리어필름"
이에 본 발명에서는 리튬-황 전지의 양극 측에서 발생하는 리튬 폴리설파이드의 문제를 해소하기 위해, 이와 접하는 분리막에 일정한 입자 크기를 갖는 쉬트 형상의 부분 환원된 산화 그래핀과 리튬이온 전도성 고분자를 적용한 새로운 구조를 적용한 결과, 상기 문제를 해결하여 리튬-황 전지의 전지 성능을 향상시킬 수 있음을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 리튬 폴리설파이드에 의한 문제를 해소할 수 있는 리튬-황 전지용 분리막을 제공하는데 있다.
또한, 본 발명의 다른 목적은 상기 분리막을 구비하여 전지 성능이 향상된 리튬-황 전지를 제공하는데 있다.
상기 목적을 달성하기 위해, 본 발명은
다공성 기재; 및 이의 적어도 일면에 형성된 코팅층을 포함하며,
상기 코팅층은 쉬트(sheet) 형상의 부분 환원된 산화 그래핀과 리튬이온 전도성 고분자를 포함하는 것을 특징으로 하는 리튬-황 전지용 분리막을 제공한다.
이 때, 상기 부분 환원된 산화 그래핀은 직경이 20 내지 30㎛인 제1입자와, 직경이 1 내지 5㎛인 제2입자를 포함하는 것을 특징으로 한다.
이 때, 상기 부분 환원된 산화 그래핀은 제1입자와 제2입자를 중량비로 1:1 내지 10:1로 혼합한 것을 특징으로 한다.
또한, 본 발명은 상기 리튬-황 전지용 분리막을 포함하는 리튬-황 전지를 제공한다.
본 발명에 따른 분리막은 쉬트(sheet) 형상의 부분 환원된 산화 그래핀과 리튬이온 전도성 고분자를 함께 포함하여 리튬-황 전지의 양극에서 발생하는 리튬 폴리설파이드에 의한 문제를 해소한다.
상기 분리막이 구비된 리튬-황 전지는 황의 용량 저하가 발생하지 않아 고용량 전지 구현이 가능하고 황을 고로딩으로 안정적으로 적용 가능할 뿐만 아니라 전지의 쇼트, 발열 등의 문제가 없어 전지 안정성이 향상된다. 더불어, 이러한 리튬-황 전지는 전지의 충방전 효율이 높고 수명 특성이 개선되는 이점을 갖는다.
도 1은 본 발명의 일 구현예에 따른 리튬-황 전지를 보여주는 단면도이다.
도 2는 실시예 1에 따른 분리막의 주사 전자 현미경(Scanning Electron Microscope; SEM) 이미지이다.
도 3은 실시예 2에 따른 분리막의 주사 전자 현미경(Scanning Electron Microscope; SEM) 이미지이다.
도 4는 실시예 3에 따른 분리막의 주사 전자 현미경(Scanning Electron Microscope; SEM) 이미지이다.
도 5는 실시예 1 내지 3, 비교예 1에서 제조된 리튬-황 전지의 초기 충방전 용량을 보여주는 그래프이다.
도 6은 실시예 1 내지 3, 비교예 1에서 제조된 리튬-황 전지의 수명 특성을 보여주는 그래프이다.
이하, 본 발명을 더욱 상세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또는 '가지다'등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 리튬-황 전지 및 이에 사용하는 분리막을 제시한다.
도 1은 리튬-황 전지(10)를 보여주는 단면도로, 음극(1)으로 리튬 금속을, 양극(3)으로 황을 포함하고, 이들 사이에 분리막(5)이 배치된 구조를 갖는다. 이때 전해질(미도시)은 상기 음극(1)과 양극(3) 사이에 분리막(5)이 함침된 형태로 존재한다.
리튬-황 전지(10)의 충방전시 양극에서는 리튬 폴리설파이드가 생성되고, 이로 인해 전지(10)의 충전 용량 감소 및 에너지 감소가 야기되고, 음극에서는 리튬 덴드라이트의 발생으로 인해 전지 수명 감소와 함께 전지의 단락, 발열, 발화 및 폭발과 같은 안정성 문제가 발생한다. 이 문제를 해소하기 위해 전극 상에 새로운 조성을 첨가하거나 추가 코팅층을 형성하는 방법이 제안되었으나, 원하는 수준으로 전지 성능 향상 효과를 확보할 수 없었다.
이에 본 발명에서는 이러한 문제를 해결하기 위해 새로운 구조의 분리막(5)을 제시한다.
구체적으로, 본 발명에 따른 분리막(5)은 다공성 기재 및 이의 일면 또는 양면에 코팅층을 형성한다. 상기 코팅층을 다공성 기재의 일면에 형성할 경우 코팅층은 음극(1) 또는 양극(3) 측 어느 곳에서도 위치할 수 있으며, 본 발명에서 바람직하게는 양극(3)에 대향하도록 형성되는 것 일 수 있다.
분리막(5)을 구성하는 다공성 기재는 음극(1)과 양극(3)을 서로 분리 또는 절연시키면서 상기 음극(1) 및 양극(3) 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막(5)은 다공성이고 비전도성 또는 절연성인 물질로 이루어질 수 있다. 상기 분리막(5)은 필름과 같은 독립적인 부재일 수 있다.
구체적으로는, 다공성 기재는 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 다공성 기재의 재질로는 본 발명에서 한정하지 않고, 이 분야에서 통상적으로 사용하는 재질이 가능하다. 대표적으로, 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트 등의 폴리에스테르, 아라미드와 같은 폴리아미드, 폴리아세탈, 폴리카보네이트, 폴리이미드, 폴리에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌, 폴리테트라 플루오로에틸렌, 폴리비닐리덴플루오라이드, 폴리염화비닐, 폴리아크릴로니트릴, 셀룰로오스, 나일론, 폴리파라페닐렌벤조비스옥사졸, 및 폴리아릴레이트로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물로 형성될 수 있다.
상기 다공성 기재의 두께는 3㎛ 내지 100 ㎛, 또는 3㎛ 내지 30㎛일 수 있다. 다공성 기재의 범위가 특별히 전술한 범위로 한정되는 것은 아니지만, 두께가 전술한 하한보다 지나치게 얇은 경우에는 기계적 물성이 저하되어 전지 사용 중 분리막(5)이 쉽게 손상될 수 있다. 한편, 다공성 기재에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 각각 0.01㎛ 내지 10㎛ 및 25% 내지 85%일 수 있다.
상기 다공성 기재의 적어도 일면에 형성되는 코팅층은 리튬 폴리설파이드에 의해 야기되는 문제를 해결할 수 있는 역할을 하며, 이를 위해 쉬트(sheet) 형상의 부분 환원된 산화 그래핀과 리튬이온 전도성 고분자를 동시에 포함한다.
산화 그래핀은 그래핀의 산화물 형태로 그래핀 옥사이드(Graphene Oxide)라고 하며, 그래핀 2차원 탄소격자 뼈대에 에폭시(epoxy), 히드록실(hydroxyl), 락톤(lactone), 락톨(lactol), 케톤(ketone), 에스터(ester)와 카르복실 산(carboxylic acid) 등의 다양한 산소-포함 작용기들이 불규칙하게 배열되어 있는 탄소재료의 일종이다. 그래핀 자체는 높은 전기 전도성을 가지며, 이 특성으로는 전해액이 담지되어야 하고 리튬 이온이 전달되어야 하는 분리막(5)에 적용하기에 곤란하다. 산화 그래핀은 절연체의 특성을 가지고 전기 저항이 매우 큰 반면, 적층된 산화 그래핀 사이로 리튬 이온이 쉽게 이동할 수 있다.
이러한 산화 그래핀은 일정 온도 이상으로 가열하면 자발적으로 CO, H2O, CO2와 같은 기체를 배출하면서 그래핀에 가까운 탄소재료인 '환원된 그래핀 옥사이드'(reduced graphene oxide, 이하 rGO)로 분해되는 성질을 나타낸다.
특히, 본 발명에서는 산화 그래핀을 350 내지 450 ℃에서 가열하여 생성된 '부분 환원된 산화 그래핀(partially reduced graphene oxide)'을 분리막(5)의 코팅층에 적용하되, 판산형인 쉬트(sheet) 형상의 부분 환원된 산화 그래핀을 적용하여 양극(3)의 황과 음극(1)의 리튬과의 반응에 의해 발생하는 리튬 폴리설파이드를 흡착하여 이의 셔틀 효과(Shuttle effect)에 의해 발생하는 음극(1) 표면에서의 부반응, 일례로 리튬 금속과 반응하여 계면에 황화물계 SEI layer의 고저항층을 형성하거나 전극 계면에 석출되는 등의 문제를 해소하여 전지의 쿨롱 효율(Coulomb efficiency)과 순환 안정성을 향상시킬 수 있다.
더불어, 상기 리튬 폴리설파이드를 분리막(5)의 코팅층에 구속하여 리튬 폴리설파이드의 음극(1)으로의 확산 이동을 억제하여 종래 리튬 폴리설파이드에 의해 발생하는 황의 용량감소(capacity loss) 문제를 해결하여 고용량의 전지 구현이 가능하고, 황을 고로딩하더라도 안전한 구현이 가능하다. 더불어, 리튬 폴리설파이드를 구속함에 따라 양극(3)의 전기화학 반응 영역에서 이탈되는 것을 최소화한다.
본 발명에서 제시하는 부분 환원된 산화 그래핀은 제조 방법에 따라 약간씩 달라지나 표면 또는 내부에 산소를 포함하는 관능기가 존재하고 여러 형태의 결함(defect)이 존재한다. 또한 제조 방법에 따라서 표면 및 내부에 주로 히드록실기가 존재하고, 그 외에 카르복실기, 카르보닐기, 또는 에폭시기가 에스테르기, 에테르기, 아미드기, 또는 아미노기 등의 관능기를 더욱 포함한다. 상기 산화 그래핀은 상기 관능기들로 인해 친수성을 가져 수용액 또는 친수성 용매에 분산되고, 여기에 초음파 인가를 통해 박리되어 매우 얇은 두께를 갖는 쉬트(sheet) 또는 플레이크(flake) 형태로 얻어질 수 있다.
구체적으로, 본 발명에 따른 쉬트 형상의 부분 환원된 산화 그래핀은 두께가 0.1nm 내지 1㎛일 수 있고, 바람직하기로 0.5 내지 100 nm, 더욱 바람직하기로는 1 내지 50 nm일 수 있고, 입경이 0.1 내지 100㎛, 바람직하기로 1 내지 30㎛를 가질 수 있으며 코팅의 목적에 맞게 조절이 가능하다. 상기 산화 그래핀의 수 nm 수준의 두께로 인해 이를 여러 층 적층 하더라도 여전이 나노 수준의 두께 유지에 유리한 이점이 있다. 이러한 나노 수준의 얇은 두께로 인해 산화 그래핀은 유연한 성질을 가지며 다공성 기재 상에 적층이 용이하고, 친수성 특성으로 인해 분리막(5)에 대한 접착력이 우수하여 코팅 도중 또는 작업 도중 분리가 쉽게 이루어지지 않는다.
본 발명의 일 구현예에 따르면 쉬트 형상의 부분 환원된 산화 그래핀은 직경이 20 내지 30㎛인 제1입자와, 직경이 1 내지 5㎛인 제2입자를 포함할 수 있다.
본 발명의 또다른 일 구현예에 따르면 상기 부분 환원된 산화 그래핀은 제1입자와 제2입자를 중량비로 1:1 내지 10:1로 혼합한 것 일 수 있다. 도 3을 보면 코팅층 내에 상대적으로 입경이 큰 제1입자들 사이에 그보다 입경이 작은 제2입자들이 코팅층의 빈 공간을 채워주는 것을 확인할 수 있다. 따라서 리튬-황 전지에서 발생하는 리튬 폴리설파이드를 더욱 효과적으로 흡착하여 전지의 초기 충방전 용량과 수명 특성을 개선할 수 있게 된다.
또한 본 발명의 일 구현예에 따른 부분 환원된 산화 그래핀은, 상기 열처리를 통하여 산소 원자를 전체 산화 그래핀 대비 1 내지 30% 포함하는 것 일 수 있고, 바람직하게는 2 내지 20% 포함하는 것 일 수 있으며, 가장 바람직하게는 3 내지 17% 포함하는 것 일 수 있다.
만일 산소 원자의 조성의 상기 범위 미만일 경우에는 산화 그래핀이 지나치게 환원되어 산화되지 않은 그래핀과 같은 성질을 띄게 되어 리튬 폴리설파이드의 흡착능력이 떨어질 수 있으며, 상기 범위를 초과하는 경우에는 이를 리튬-황 전지의 분리막에 적용하였을 때 고로딩 전극에서 전지의 성능 향상 효과가 미미하므로 상기 범위 내에서 적절히 조절한다.
상기와 같은 효과를 갖는 산화 그래핀은 리튬 폴리설파이드에 의한 문제를 해소한다고 하더라도 실제 분리막(5)으로 적용시 산화 그래핀의 판상 구조 특성으로 인해 리튬 이온 전달 속도가 느려지는 새로운 문제가 발생하였다.
즉, 나노 수준의 두께를 갖는 산화 그래핀을 분리막(5) 상에 단독으로 적층할 경우 높은 수준으로 적층이 되어 리튬 이온이 이송될 수 있도록 산화 그래핀이 충분한 수준의 채널을 형성하지 않아, 리튬 이온의 전달이 쉽게 이루어지지 않는다. 달리 말하면, 액체 전해질을 사용할 경우 분리막(5)은 상기 액체 전해질에 충분히 함침된 (젖어있는 또는 wetting된) 형태로 존재하여야만 리튬 이온이 상기 분리막(5)을 통과하여 양극(3) 및 음극(1)으로 이송된다. 상기 리튬 이온은 산화 그래핀의 길이 방향에 대해 수직으로 통과가 어려우므로, 적층된 산화 그래핀 간 사이로 리튬 이온 확산 경로(lithium ion diffusion path)를 통해 이송된다. 이때 판상 구조의 산화 그래핀이 고밀도로 적층되어 있을 경우 상기 경로 확보가 용이하지 않거나, 길이 방향에 대해 수평으로 이동 후 경로를 통해 이송되는 등 리튬 이온의 이송 경로가 필요 이상으로 길어져 리튬 이온 전달 속도가 느려지는 문제가 발생한다. 느려진 리튬 이온 전달 속도는 낮은 리튬 이온 전도율과 함께 전지 내부의 임피던스를 높여 결과적으로 전지의 성능(즉, 비용량)을 저하시키는 문제를 야기한다.
이에 본 발명에서는 상기 부분 환원된 산화 그래핀의 단독 사용으로 야기되는 문제를 해소하기 위해 리튬이온 전도성 고분자와 혼합하여 사용한다.
산화 그래핀과 혼합 사용하기 위해선, 상기 산화 그래핀에 의해 얻어지는 리튬 폴리설파이드 흡착에 영향을 주지 않으면서 리튬 이온 확산 경로의 확보를 용이하게 함과 동시에 리튬 이온 전도도를 높일 수 있는 물질이 선정되어야 한다.
본 발명의 일구현예에 따른 상기 리튬이온 전도성 고분자는 폴리우레탄(polyurethane), 리튬 치환된 나피온(lithiated Nafion), 폴리에틸렌옥사이드(Polyethylene oxide), 폴리프로필렌옥사이드(Polypropylene oxide), 폴리실록산(Polysiloxane), 폴리스티렌(polystyrene) 및 폴리에틸렌글리콜(polyethylene glycol)로 이루어진 군에서 선택되는 1종 이상을 포함하는 것일 수 있다. 이 중 본 발명에서 바람직하게는 리튬 치환된 나피온(lithiated Nafion)을 사용할 수 있다.
본 발명의 일 구현예에 따른 리튬 치환된 나피온(lithiated Nafion) 폴리머는 술폰화 테트라 플루오르 에틸렌계 불소 중합체의 공중합체인 Nafion(상품명, Du Pont 社)에 리튬 이온을 포함한 형태의 고분자로써, 하기와 같은 화학식 구조에서 설폰산 그룹의 양성자 대신 Li+ 이온을 포함한 형태를 의미한다.
[화학식 1]
Figure pat00001
이렇게 부분 환원된 산화 그래핀과 리튬이온 전도성 고분자를 혼합 사용함으로써 리튬 이온이 전달되는 경로를 용이하게 확보할 뿐만 아니라 이를 통해 리튬 이온 전달이 용이하여 종래 산화 그래핀을 단독으로 사용할 경우 발생하는 문제점을 충분히 해소할 수 있다.
더불어, 본 발명에 따른 코팅층의 재료로 사용하는 부분 환원된 산화 그래핀 및 리튬이온 전도성 고분자는 친수성을 가지며, 본 발명의 부분 환원된 산화 그래핀은 열처리 공정에서 열팽창을 거쳐 다공성(porous)의 형태를 나타내기 때문에 전해액으로 친수성 용매를 사용할 경우 높은 젖음성(wettability)을 가져 리튬 이온을 리튬 금속층 측으로 효과적으로 전달한다. 이로 인해 음극에 대해 균일하게 리튬 이온을 전달할 수 있다. 그 결과, 리튬 이온의 전달이 효과적으로 일어나게 되어 전지의 단락 없이 우수한 전지 특성을 가지며, 코팅층의 형성에도 저항 상승 없이 우수한 충방전 특성을 갖는다.
상기 효과를 충분히 확보하기 위해, 본 발명에 따른 코팅층은 부분 환원된 산화 그래핀과 리튬이온 전도성 고분자의 함량비, 코팅층의 두께를 한정한다.
구체적으로, 상기 코팅층은 부분 환원된 산화 그래핀:리튬이온 전도성 고분자가 1:5 내지 1:20의 중량비, 바람직하기로 1:10 내지 1:15의 중량비로 혼합한다. 만약, 부분 환원된 산화 그래핀의 함량이 소량일 경우(또는 리튬이온 전도성 고분자의 함량이 과량인 경우), 리튬 폴리설파이드로 인해 야기되는 문제를 충분히 해소할 수 없다. 이와 반대로 리튬이온 전도성 고분자의 함량이 소량일 경우(또는 부분 환원된 산화 그래핀 함량이 과량인 경우), 전해액의 투과가 어려운 문제점이 있다.
또한, 코팅층의 두께는 상기 효과를 확보하면서도 전지의 내부 저항을 높이지 않는 범위를 가지며, 50nm 내지 20㎛일 수 있다. 바람직하기로 100nm 내지 10㎛, 더욱 바람직하기로 200nm 내지 3㎛의 두께일 수 있다. 만약 그 두께가 상기 범위 미만이면 코팅층으로서의 기능을 수행할 수 없고, 이와 반대로 상기 범위를 초과하면 안정적인 계면 특성을 부여할 수 있으나, 초기 계면 저항이 높아져 전지 제조 시 내부 저항의 증가를 초래할 수 있다.
상기 코팅층은 이미 언급한 바와 같이 분리막(5)의 일면 또는 양면에 형성이 가능하며, 리튬 폴리설파이드의 흡착 효과를 높이기 위해 양극(3)에 대향하도록 형성할 수 있다.
본 발명에서 제시하는 분리막(5)의 제조 방법은 본 발명에서 특별히 한정하지 않으며, 통상의 기술자에 의해 공지의 방법 또는 이를 변형하는 다양한 방법이 사용 가능하다.
하나의 방법으로, 용매에 부분 환원된 산화 그래핀과 리튬이온 전도성 고분자를 포함하는 코팅액을 제조한 다음, 이를 다공성 기재의 적어도 일면에 코팅 후 건조하는 단계를 거쳐 수행한다.
또 다른 방법으로, 상기 코팅액을 기판 상에 코팅 후 건조하여 코팅층을 제조하고, 이를 다공성 기재에 전사하거나 합지하여 분리막(5)을 제조할 수 있다.
상기 용매는 부분 환원된 산화 그래핀과 리튬이온 전도성 고분자를 충분히 분산시킬 수 있는 것이면 어느 것이든 가능하다. 일례로, 상기 용매는 물과 알코올의 혼합 용매, 또는 하나 혹은 그 이상의 유기용매 혼합물일 수 있으며, 이 경우 상기 알코올은 탄소수 1 내지 6의 저급 알코올, 바람직하게는 메탄올, 에탄올, 프로판올, 이소프로판올 등일 수 있다. 유기 용매로는 아세트산, DMFO(dimethyl-formamide), DMSO(dimethyl sulfoxide) 등의 극성 용매, 아세토니트릴, 에틸 아세테이트, 메틸 아세테이트, 플루오로알칸, 펜탄, 2,2,4-트리메틸펜탄, 데칸, 사이클로헥산, 사이클로펜탄, 디이소부틸렌, 1-펜텐, 1-클로로부탄, 1-클로로펜탄, o-자일렌, 디이소프로필 에테르, 2-클로로프로판, 톨루엔, 1-클로로프로판, 클로로벤젠, 벤젠, 디에틸 에테르, 디에틸 설파이드, 클로로포름, 디클로로메탄, 1,2-디클로로에탄, 아닐린, 디에틸아민, 에테르, 사염화탄소 및 THF(Tetrahydrofuran) 등의 비극성 용매를 사용할 수도 있다. 바람직하기로는 물 또는 물과 저급 알코올의 혼합 용매가 사용될 수 있다.
상기 용매의 함량은 코팅을 용이하게 할 수 있는 정도의 농도를 갖는 수준으로 함유될 수 있으며, 구체적인 함량은 코팅 방법 및 장치에 따라 달라진다. 일례로, 부분 환원된 산화 그래핀과 리튬이온 전도성 고분자 각각을 용액에 분산시킨 후 이를 혼합하여 코팅액을 제조할 수 있으며, 이때 최종 코팅액의 농도가 0.001 내지 30 중량% (고형분 함량)의 범위가 되도록 조절한 다음 코팅을 수행한다.
본 발명의 일 구현예에 따르면, 상기 부분 환원된 산화 그래핀은 상기 분리막 전체 면적 대비 5 내지 100㎍/cm2로 코팅되는 것 일 수 있고, 바람직하게는 5 내지 40㎍/cm2일 수 있으며, 가장 바람직하게는 5 내지 20㎍/cm2일 수 있다.
만일 부분 환원된 산화 그래핀의 코팅량이 상기 범위 미만일 경우에는 리튬 폴리설파이드의 흡착 능력이 떨어질 수 있고, 상기 범위를 초과할 경우에는 리튬이온 전도도가 낮아지거나 전해액의 투과가 어려운 단점이 있으므로 상기 범위에서 적절히 선택한다.
전사 등의 방법을 이용할 경우 분리 가능한 기판, 즉 유리 기판 또는 플라스틱 기판일 수 있다. 이때 플라스틱 기판은 본 발명에서 특별히 한정하지 않으며, 폴리아릴레이트, 폴리에틸렌 테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리실란, 폴리실록산, 폴리실라잔, 폴리에틸렌, 폴리카르보실란, 폴리아크릴레이트, 폴리(메타)아크릴레이트, 폴리메틸아크릴레이트, 폴리메틸(메타)아크릴레이트, 폴리에틸아크릴레이트, 사이클릭 올레핀 코폴리머, 폴리에틸(메타)아크릴레이트, 사이클릭 올레핀 폴리머, 폴리프로필렌, 폴리이미드, 폴리스타이렌, 폴리비닐클로라이드, 폴리아세탈, 폴리에테르에테르케톤, 폴리에스테르설폰, 폴리테트라플루오로에틸렌, 폴리비닐리덴플로라이드, 퍼플루오로알킬 고분자 등이 가능하다.
필요한 경우, 코팅을 위해 제조된 코팅액은 균일한 분산을 위해 초음파를 인가할 수 있다. 초음파로 분쇄하는 단계를 더 포함하게 되면 용액 내 부분 환원된 산화 그래핀 및 리튬이온 전도성 고분자의 분산성을 향상시킬 수 있어, 보다 균일한 특성을 갖는 코팅층의 제조를 가능케 한다.
본 단계에서의 코팅은 특별히 한정하지 않으며, 공지의 습식 코팅 방식이면 어느 것이든 가능하다. 일례로, 닥터 블레이드(Doctor blade) 등을 사용하여 균일하게 분산시키는 방법, 다이 캐스팅(Die casting), 콤마 코팅(Comma coating), 스크린 프린팅(Screen printing), 감압 여과 코팅(vacuum filtration coating) 등의 방법 등을 들 수 있다.
이어, 코팅 후 용매 제거를 위한 건조 공정을 수행한다. 상기 건조 공정은 용매를 충분히 제거할 수 있는 수준의 온도 및 시간에서 수행하며, 그 조건은 용매의 종류에 따라 달라질 수 있으므로 본 발명에서 특별히 언급하지는 않는다. 일례로, 건조는 30 내지 200℃의 진공 오븐에서 수행할 수 있고, 건조 방법으로는 온풍, 열풍, 저습풍에 의한 건조, 진공 건조 등의 건조법을 사용할 수 있다. 건조 시간에 대해서는 특별히 한정되지 않지만, 통상적으로 30초 내지 24시간의 범위에서 행해진다.
본 발명에 따른 코팅액의 농도, 또는 코팅 횟수 등을 조절하여 최종적으로 코팅되는 코팅층의 코팅 두께를 조절할 수 있다.
추가로, 본 발명에 따른 코팅층은 리튬 이온 전달을 보다 원활히 수행하기 위해 리튬염을 더욱 포함한다.
리튬염으로는 본 발명에서 특별히 한정하지 않으며, 공지의 리튬-황 전지에 사용가능한 것이면 어느 것이든 가능하다. 구체적으로, 상기 리튬염으로는 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (FSO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 리튬 보레이트, 리튬 이미드 등이 사용될 수 있으며, 바람직하기로 (CF3SO2)2NLi로 표시되는 LiTFSI(Lithium bis(trifluoromethane sulfonyl)imide), (FSO2)2NLi로 표시되는 LiFSI(Lithium bis(fluorosulfonyl)imide가 가능하다.
이러한 이온 전도성 고분자 및 리튬염은 코팅층 조성 100 중량% 내에서 10 중량% 이하로 사용하는 것이 바람직하다.
전술한 바의 코팅층을 구비한 분리막(5)은 도 1에 도시한 바의 리튬-황 전지에 바람직하게 적용 가능하다.
이러한 리튬-황 전지는 리튬 폴리설파이드에 의해 야기되는 문제를 해소하여 리튬-황 전지의 용량 저하 문제 및 수명 저하 문제를 개선하여 고용량 및 고로딩 전극 구현이 가능할 뿐만 아니라 수명 특성을 개선하고, 폭발 및 화재 가능성이 없어 높은 안정성을 갖는 리튬-황 전지로 적용 가능성을 갖는다.
상기 리튬-황 전지에서 제시하는 양극, 음극 및 전해액에 대한 설명은 하기와 같다.
양극은 양극 집전체 상에 양극 활물질이 적층된 형태를 갖는다.
양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
양극 활물질로서 황 원소(elemental sulfur, S8), 황 계열 화합물 또는 이들의 혼합물을 포함할 수 있으며, 이들은 황 물질 단독으로는 전기 전도성이 없기 때문에 도전재와 복합하여 적용한다. 상기 황 계열 화합물은 구체적으로, Li2Sn(n≥1), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n: x=2.5 ~ 50, n≥2) 등일 수 있다.
상기 도전재는 전극 활물질의 도전성을 더욱 향상시키기 위해 사용한다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등이 사용될 수 있다.
상기 양극은 양극 활물질과 도전재의 결합과 집전체에 대한 결합을 위하여 바인더를 더 포함할 수 있다. 상기 바인더는 열가소성 수지 또는 열경화성 수지를 포함할 수 있다. 예를 들어, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로 에틸렌(PTFE), 폴리불화비닐리덴(PVDF), 스티렌-부타디엔 고무, 테트라플루오로에틸렌-퍼플루오로 알킬비닐에테르 공중합체, 불화비닐리덴-헥사 플루오로프로필렌 공중합체, 불화비닐리덴-클로로트리플루오로에틸렌 공중합체, 에틸렌-테트라플루오로에틸렌 공중합체, 폴리클로로트리플루오로에틸렌, 불화비니리덴-펜타프루오로 프로필렌 공중합체, 프로필렌-테트라플루오로에틸렌 공중합체, 에틸렌-클로로트리플루오로에틸렌 공중합체, 불화비닐리덴-헥사플루오로프로필렌-테트라 플루오로에틸렌 공중합체, 불화비닐리덴-퍼플루오로메틸비닐에테르-테트라플루오로 에틸렌 공중합체, 에틸렌-아크릴산 공중합제 등을 단독 또는 혼합하여 사용할 수 있으나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 바인더로 사용될 수 있는 것이라면 모두 가능하다.
상기와 같은 양극은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 양극 활물질과 도전재 및 바인더를 유기 용매 상에서 혼합하여 제조한 양극 활물질층 형성용 조성물을 집전체 위에 도포 및 건조하고, 선택적으로 전극 밀도의 향상을 위하여 집전체에 압축 성형하여 제조할 수 있다. 이때 상기 유기 용매로는 양극 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하다. 구체적으로는 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란, 물, 이소프로필알코올 등을 들 수 있다.
음극은 음극 집전체 상에 음극 활물질이 적층된 형태를 갖는다. 필요한 경우 상기 음극 집전체는 생략이 가능하다.
이때 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 그 형태는 표면에 미세한 요철이 형성된/미형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다.
리튬 금속층은 리튬 금속 또는 리튬 합금일 수 있다. 이때 리튬 합금은 리튬과 합금화가 가능한 원소를 포함하고, 이때 그 원소로는 Si, Sn, C, Pt, Ir, Ni, Cu, Ti, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, Co 또는 이들의 합금일 수 있다.
상기 리튬 금속층은 시트 또는 호일일 수 있으며, 경우에 따라 집전체 상에 리튬 금속 또는 리튬 합금이 건식 공정에 의해 증착 또는 코팅된 형태이거나, 입자 상의 금속 및 합금이 습식 공정 등에 의해 증착 또는 코팅된 형태일 수 있다.
상기 리튬 이차전지의 전해액은 리튬염 함유 전해액으로 수계 또는 비수계 비수계 전해액일 수 있으며, 바람직하기로 유기용매 전해액과 리튬염으로 이루어진 비수계 전해질이다. 이외에 유기 고체 전해질 또는 무기 고체 전해질 등이 포함될 수 있지만 이들만으로 한정되는 것은 아니다.
비수계 유기용매는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 감마-부티로락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라하이드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥솔란, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아마이드, 디메틸포름아마이드, 디옥솔란, 아세토니트릴, 니트로메탄, 포름산메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥솔란 유도체, 설포란, 메틸설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르계, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
이때 비수계 용매로서 본 발명의 전극 보호층과 유사하도록 에테르계 용매를 사용하며, 그 예로는 테트라하이드로 퓨란, 에틸렌 옥사이드, 1,3-디옥솔란, 3,5-디메틸 이속사졸, 2,5-디메틸퓨란, 퓨란, 2-메틸 퓨란, 1,4-옥산, 4-메틸디옥솔란 등이 사용된다
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (FSO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 리튬 이미드 등이 사용될 수 있다.
전술한 바의 리튬-황 전지(10)의 형태는 특별히 제한되지 않으며, 예를 들어 젤리-롤형, 스택형, 스택-폴딩형(스택-Z-폴딩형 포함), 또는 라미네이션-스택 형일 수 있으며, 바람직하기로 스택-폴딩형일 수 있다.
이러한 상기 양극(3), 분리막(5), 및 음극(1)이 순차적으로 적층된 전극 조립체를 제조한 후, 이를 전지 케이스에 넣은 다음, 케이스의 상부에 전해액을 주입하고 캡 플레이트 및 가스켓으로 밀봉하여 조립하여 리튬-황 전지(10)를 제조한다.
상기 리튬-황 전지(10)는 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
본 발명에 따른 리튬-황 전지(10)는 고용량 및 고로딩 전지로서 이러한 특성이 요구되는 디바이스의 전원으로 사용될 수 있다. 상기 디바이스의 구체적인 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차 (Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기 자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기스쿠터(Escooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명의 효과에 대한 이해를 돕기 위하여 실시예, 비교예 및 실험예를 기재한다. 다만, 하기 기재는 본 발명의 내용 및 효과에 관한 일 예에 해당할 뿐, 본 발명의 권리 범위 및 효과가 이에 한정되는 것은 아니다.
[실시예]
실시예 1
(1) 분리막 제조
다공성 기재로 20㎛의 폴리에틸렌(기공도 50%) 필름을 준비하였다.
400℃에서 열처리한 쉬트(sheet) 형상의 부분 환원된 산화 그래핀(25㎛ 입경, 그래핀 내 산소 원자의 함량은 15%) 수분산액(0.002 중량% 농도)과 Lithiated Nafion(Du Pont社) 수분산액(0.25 mg/mL 농도)을 혼합한 후 초음파를 8시간 동안 인가하여 코팅액을 제조하였다(부분 환원된 산화 그래핀: Lithiated Nafion = 1:12.5 중량비).
상기 다공성 기재 상에 상기 코팅액에 부은 후 감압 여과하여 다공성 기재의 양극에 대향하는 면에 10㎍/cm2으로 코팅층을 형성하고, 70에서 24시간 동안 건조하여 분리막을 제조하였다. 이때 상기 코팅층은 두께가 약 1.6?0.4㎛으로 측정되었다.
(2) 리튬-황 전지
전기전도성을 지니고 있는 도전성 탄소와 황을 도전성 탄소:황의 중량비(wt%) 30:70 (21g:49g)으로 볼밀공정을 통해 혼합하여 황-탄소 복합체를 얻었다. 양극 활물질 슬러리 전체 중량에 대하여, 상기 복합체를 포함하는 양극 활물질 70.0 g, 도전재로 Super-P 20.0 g, 바인더로 폴리비닐리덴 플루오라이드 10.0 g 및 용매로 N-메틸-2-피롤리돈 500 g의 조성으로 양극 활물질 슬러리를 제조한 후, 알루미늄 집전체 상에 코팅하여 양극 활성부를 제조하였다.
상기 양극과 함께, 음극으로 약 40 ㎛의 두께를 갖는 리튬 호일을 사용하였고, 전해액으로 1M 농도의 LiN(CF3SO2)2가 용해된 디메톡시에탄:디옥솔란(1:1의 부피비)의 혼합액을 사용하였으며, 상기 분리막을 사용하여 리튬-황 전지를 제조하였다.
실시예 2
25㎛ 입경과 3㎛ 입경의 쉬트 형상의 부분 환원된 산화 그래핀을 1:1의 중량비로 혼합하여 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬-황 전지를 제조하였다.
실시예 3
3㎛ 입경의 쉬트(sheet) 형상의 부분 환원된 산화 그래핀을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬-황 전지를 제조하였다.
비교예 1
코팅층을 형성하지 않고, 다공성 기재를 그대로 분리막을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬-황 전지를 제조하였다.
실험예 1
상기 실시예 및 비교예에서 제조된 리튬-황 전지를 0.1C/0.1C (2.5 사이클), [0.2C/0.2C(3 사이클), 0.3C/0.5C(10 사이클)반복] 충전/방전으로 조건 하에 구동하고, 초기 충방전 용량을 측정하였고, 160회 사이클을 수행하여 용량 변화를 확인하였다.
도 5는 실시예 1 내지 3, 비교예 1에서 제조된 리튬-황 전지의 초기 충방전 용량을 보여주는 그래프이다. 도 5를 참조하면, 본 발명의 일 구현예에 따라 입자의 크기가 서로 다른 부분 환원된 산화 그래핀을 혼합하여 형성된 코팅층을 갖는 실시예 2의 전지가, 이를 구비하지 않은 비교예 1 및 제1입자 및 제2입자로만 구성된 실시예 1 및 3의 전지 대비 높은 초기 방전 용량을 가짐을 알 수 있다.
도 6는 실시예 1 내지 3, 비교예 1에서 제조된 리튬-황 전지의 수명 특성을 보여주는 그래프이다. 도 6을 보면, 실시예 2의 전지의 경우 초기 충방전 대비 높은 용량 유지율을 보이며 용량 개선 효과가 나타났으며, 비교예 1 및 실시예 3의 전지 대비 수명 특성이 우수함을 알 수 있다.
이러한 결과로부터, 본 발명에서 제시하는 코팅층으로 인해 리튬-황 전지 구동 시 리튬 폴리설파이드를 흡착하여 높은 초기 충방전 용량 특성 및 우수한 수명 특성을 확보할 수 있음을 알 수 있다.
10: 리튬-황 전지 1: 음극
3: 양극 5: 분리막

Claims (20)

  1. 다공성 기재; 및 이의 적어도 일면에 형성된 코팅층을 포함하며,
    상기 코팅층은 쉬트(sheet) 형상의 부분 환원된 산화 그래핀과 리튬이온 전도성 고분자를 포함하는 것을 특징으로 하는 리튬-황 전지용 분리막.
  2. 제1항에 있어서,
    상기 부분 환원된 산화 그래핀은 두께가 0.1nm 내지 1㎛인 것을 특징으로 하는 리튬-황 전지용 분리막.
  3. 제1항에 있어서,
    상기 부분 환원된 산화 그래핀은 직경이 20 내지 30㎛인 제1입자와, 직경이 1 내지 5㎛인 제2입자를 포함하는 것을 특징으로 하는 리튬-황 전지용 분리막.
  4. 제3항에 있어서,
    상기 부분 환원된 산화 그래핀은 제1입자와 제2입자를 중량비로 1:1 내지 10:1로 혼합한 것을 특징으로 하는 리튬-황 전지용 분리막.
  5. 제1항에 있어서,
    상기 다공성 기재는 두께가 3㎛ 내지 100 ㎛이고, 기공 크기가 0.01㎛ 내지 10㎛인 것을 특징으로 하는 리튬-황 전지용 분리막.
  6. 제1항에 있어서,
    상기 다공성 기재는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아미드, 폴리아세탈, 폴리카보네이트, 폴리이미드, 폴리에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌, 폴리테트라 플루오로에틸렌, 폴리비닐리덴플루오라이드, 폴리염화비닐, 폴리아크릴로니트릴, 셀룰로오스, 나일론, 폴리파라페닐렌벤조비스옥사졸, 및 폴리아릴레이트로 이루어진 군에서 선택된 1종 이상의 재질을 포함하는 것을 특징으로 하는 리튬-황 전지용 분리막.
  7. 제1항에 있어서,
    상기 리튬이온 전도성 고분자는 폴리우레탄(polyurethane), 리튬 치환된 나피온(lithiated Nafion), 폴리에틸렌옥사이드(Polyethylene oxide), 폴리프로필렌옥사이드(Polypropylene oxide), 폴리실록산(Polysiloxane), 폴리스티렌(polystyrene) 및 폴리에틸렌글리콜(polyethylene glycol)로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 리튬-황 전지용 분리막.
  8. 제1항에 있어서,
    상기 코팅층은 부분 환원된 산화 그래핀 및 리튬이온 전도성 고분자가 1:5 내지 1:20의 중량비로 혼합된 것을 특징으로 하는 리튬-황 전지용 분리막.
  9. 제1항에 있어서,
    상기 코팅층은 부분 환원된 산화 그래핀 및 리튬이온 전도성 고분자가 1:10 내지 1:15의 중량비로 혼합된 것을 특징으로 하는 리튬-황 전지용 분리막.
  10. 제1항에 있어서,
    상기 코팅층은 두께가 50nm 내지 20㎛인 것을 특징으로 하는 리튬-황 전지용 분리막.
  11. 제1항에 있어서,
    상기 코팅층은 두께가 100nm 내지 10㎛인 것을 특징으로 하는 리튬-황 전지용 분리막.
  12. 제1항에 있어서,
    상기 코팅층은 두께가 200nm 내지 3㎛인 것을 특징으로 하는 리튬-황 전지용 분리막.
  13. 제1항에 있어서,
    상기 부분 환원된 산화 그래핀은 산소 원자를 전체 부분 환원된 산화 그래핀 대비 1 내지 30% 포함하는 것을 특징로 하는 리튬-황 전지용 분리막.
  14. 제1항에 있어서,
    상기 부분 환원된 산화 그래핀은 산소 원자를 전체 부분 환원된 산화 그래핀 대비 2 내지 20% 포함하는 것을 특징으로 하는 리튬-황 전지용 분리막.
  15. 제1항에 있어서,
    상기 부분 환원된 산화 그래핀은 산소 원자를 전체 부분 환원된 산화 그래핀 대비 3 내지 17% 포함하는 것을 특징으로 하는 리튬-황 전지용 분리막.
  16. 제1항에 있어서,
    상기 부분 환원된 산화 그래핀은 상기 분리막 전체 면적 대비 5 내지 100㎍/cm2로 코팅되는 것을 특징으로 하는 리튬-황 전지용 분리막.
  17. 제1항에 있어서,
    상기 부분 환원된 산화 그래핀은 상기 분리막 전체 면적 대비 5 내지 40㎍/cm2로 코팅되는 것을 특징으로 하는 리튬-황 전지용 분리막.
  18. 제1항에 있어서,
    상기 부분 환원된 산화 그래핀은 상기 분리막 전체 면적 대비 5 내지 20㎍/cm2로 코팅되는 것을 특징으로 하는 리튬-황 전지용 분리막.
  19. 제1항에 있어서,
    상기 코팅층은 리튬-황 전지의 양극에 대향하도록 형성된 것을 특징으로 하는 리튬-황 전지용 분리막.
  20. 제1항 내지 제19항 중 어느 한 항에 따른 분리막을 포함하는 것을 특징으로 하는 리튬-황 전지.
KR1020170139969A 2017-10-26 2017-10-26 분리막 및 이를 포함하는 리튬-황 전지 KR102229449B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020170139969A KR102229449B1 (ko) 2017-10-26 2017-10-26 분리막 및 이를 포함하는 리튬-황 전지
PCT/KR2018/011838 WO2019083193A1 (ko) 2017-10-26 2018-10-08 분리막 및 이를 포함하는 리튬 이차전지
EP18870316.9A EP3678219A4 (en) 2017-10-26 2018-10-08 SEPARATING MEMBRANE AND LITHIUM SECONDARY BATTERY WITH IT
JP2020518720A JP6937901B2 (ja) 2017-10-26 2018-10-08 分離膜及びこれを含むリチウム二次電池
US16/753,217 US11411283B2 (en) 2017-10-26 2018-10-08 Separator having coating layer including partially reduced graphene oxide and lithium ion conductive polymer and lithium secondary battery comprising the same
CN201880067164.2A CN111213255B (zh) 2017-10-26 2018-10-08 隔膜和包含所述隔膜的锂二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170139969A KR102229449B1 (ko) 2017-10-26 2017-10-26 분리막 및 이를 포함하는 리튬-황 전지

Publications (2)

Publication Number Publication Date
KR20190046316A true KR20190046316A (ko) 2019-05-07
KR102229449B1 KR102229449B1 (ko) 2021-03-17

Family

ID=66247454

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170139969A KR102229449B1 (ko) 2017-10-26 2017-10-26 분리막 및 이를 포함하는 리튬-황 전지

Country Status (6)

Country Link
US (1) US11411283B2 (ko)
EP (1) EP3678219A4 (ko)
JP (1) JP6937901B2 (ko)
KR (1) KR102229449B1 (ko)
CN (1) CN111213255B (ko)
WO (1) WO2019083193A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226330A1 (ko) * 2019-05-09 2020-11-12 주식회사 엘지화학 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
KR20200130125A (ko) * 2019-05-09 2020-11-18 주식회사 엘지화학 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
WO2020235971A1 (ko) * 2019-05-23 2020-11-26 주식회사 엘지화학 리튬 이차 전지용 분리막, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2020242237A1 (ko) * 2019-05-31 2020-12-03 주식회사 엘지화학 레독스 작용기 함유 고분자층이 형성된 탄소, 이를 포함하는 황-탄소 복합체 및 리튬 이차전지
CN113228352A (zh) * 2019-05-31 2021-08-06 株式会社Lg化学 在其上形成有含氧化还原官能团的聚合物层的碳以及包含所述碳的硫碳复合物和锂二次电池
US12009545B2 (en) 2019-05-23 2024-06-11 Lg Energy Solution, Ltd. Separator including ion conductive polymer filling pores of substrate and coating layer, manufacturing method of the same, lithium secondary battery including the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102244909B1 (ko) * 2017-10-26 2021-04-26 주식회사 엘지화학 분리막 및 이를 포함하는 리튬-황 전지
KR102010929B1 (ko) 2017-12-26 2019-08-16 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR102415168B1 (ko) 2019-05-03 2022-07-01 주식회사 엘지에너지솔루션 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
CN112886140A (zh) * 2021-01-29 2021-06-01 苏州科技大学 锂硫电池改性隔膜及其制备方法和应用
CN113462235B (zh) * 2021-09-06 2022-03-22 北京石墨烯技术研究院有限公司 用于防止锂离子电池热失控的涂料及其制备方法和应用
CN115224435B (zh) * 2022-04-28 2024-07-23 中材锂膜(宁乡)有限公司 一种石墨烯水凝胶/聚烯烃基锂离子电池复合隔膜
CN115312968B (zh) * 2022-09-09 2023-12-22 盐城师范学院 一种基于耐高温隔膜的锂离子电池及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101678817B1 (ko) 2014-12-03 2016-11-24 주식회사 상보 환원 그래핀 옥사이드 제조방법, 그에 따른 환원 그래핀 옥사이드, 이를 이용한 배리어필름 제조방법 및 그에 따른 배리어필름
KR20170003604A (ko) * 2014-05-05 2017-01-09 보드 오브 리전츠 더 유니버시티 오브 텍사스 시스템 리튬-황 배터리용 이작용성 세퍼레이터
CN106356488A (zh) 2015-07-13 2017-01-25 中国科学院金属研究所 一种锂离子电池或锂硫电池用复合隔膜及其制备方法和应用

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9385397B2 (en) * 2011-08-19 2016-07-05 Nanotek Instruments, Inc. Prelithiated current collector and secondary lithium cells containing same
US8765303B2 (en) * 2012-04-02 2014-07-01 Nanotek Instruments, Inc. Lithium-ion cell having a high energy density and high power density
EP2984128A1 (en) 2013-04-12 2016-02-17 General Electric Company Ion exchange membranes containing inorganic particles
CN104143614B (zh) * 2013-05-09 2017-02-08 中国科学院大连化学物理研究所 一种锂硫电池
KR20150026088A (ko) * 2013-08-30 2015-03-11 전남대학교산학협력단 고분자 전해질 복합막 및 상기 고분자 전해질 복합막 제조방법 및 그 복합막을 포함하는 에너지저장장치
KR101533636B1 (ko) 2013-08-30 2015-07-06 한국기계연구원 부분 환원된 산화 그래핀을 포함하는 탄소 섬유 복합재 및 이의 제조방법
WO2015074037A2 (en) * 2013-11-18 2015-05-21 California Institute Of Technology Separator enclosures for electrodes and electrochemical cells
US10714724B2 (en) * 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
SI24590A (sl) 2013-12-09 2015-06-30 Kemijski inštitut Kemijsko modificirani reducirani grafenov oksid v vlogi separatorja v Ĺľveplovih akumulatorjih
JP5873605B2 (ja) 2014-01-30 2016-03-01 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
KR20150105022A (ko) * 2014-03-07 2015-09-16 한양대학교 산학협력단 수소분리용 그래핀 옥사이드 나노복합막, 환원된 그래핀 옥사이드 나노복합막 및 그 제조방법
US10029215B2 (en) 2014-03-07 2018-07-24 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Graphene oxide nanocomposite membrane for gas separation, reduced graphene oxide nanocomposite membrane and method for manufacturing the same
WO2015157339A1 (en) * 2014-04-07 2015-10-15 California Institute Of Technology Membranes for electrochemical cells
CN103950239B (zh) 2014-04-24 2017-01-18 合肥国轩高科动力能源有限公司 化学电源用多功能复合膜
CN104064707B (zh) 2014-06-09 2017-02-08 东莞市魔方新能源科技有限公司 无机/有机复合隔膜、其制备方法及含该隔膜的锂离子二次电池
EP3156220B1 (en) 2014-06-12 2022-06-22 Toray Industries, Inc. Layered product and process for producing same
JP2016007815A (ja) 2014-06-26 2016-01-18 セイコーエプソン株式会社 インクジェットヘッド、および、インクジェットプリンタ
JP6439293B2 (ja) * 2014-06-26 2018-12-19 東レ株式会社 積層多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
WO2016019382A1 (en) * 2014-08-01 2016-02-04 SiNode Systems, Inc. Carbon containing binderless electrode formation
KR101725650B1 (ko) * 2014-10-29 2017-04-12 주식회사 엘지화학 리튬 황 전지
KR101696625B1 (ko) 2014-12-23 2017-01-16 주식회사 포스코 전기화학 소자용 세퍼레이터, 이의 제조 방법 및 이를 포함하는 전기화학 소자
US10388947B2 (en) * 2015-02-06 2019-08-20 The Regents Of The University Of California Pnictide containing catalysts for electrochemical conversion reactions and methods of use
US10573933B2 (en) 2015-05-15 2020-02-25 Samsung Electronics Co., Ltd. Lithium metal battery
US20170093001A1 (en) * 2015-09-25 2017-03-30 Samsung Electronics Co., Ltd. Composite electrolyte film, electrochemical cell including the composite electrolyte film, and method of preparing the composite electrolyte film
KR102546315B1 (ko) * 2015-09-25 2023-06-21 삼성전자주식회사 리튬전지용 전극 복합분리막 어셈블리 및 이를 포함한 리튬전지
US10361460B2 (en) * 2015-10-02 2019-07-23 Nanotek Instruments, Inc. Process for producing lithium batteries having an ultra-high energy density
KR101769210B1 (ko) 2015-11-18 2017-08-18 한국과학기술원 광소결을 통해 환원된 그래핀 산화물을 이용한 가스 감지층과 그 제조 방법 및 이를 포함하는 웨어러블 가스 센서
CN105870605B (zh) 2016-04-20 2019-04-05 电子科技大学 一种超宽带低剖面圆极化双臂螺旋天线
CN105970605B (zh) * 2016-05-26 2018-09-04 厦门大学 一种氧化石墨烯复合无纺布及其制备方法与应用
KR101924401B1 (ko) 2016-06-10 2018-12-05 (주)코아바이오텍 구강상피세포 보존액과 이의 제조방법
CN106129314B (zh) * 2016-08-15 2019-06-14 杭州威宏能源科技有限公司 一种动力锂离子电池
CN106129455A (zh) 2016-08-30 2016-11-16 上海大学 锂硫电池
KR101997074B1 (ko) * 2017-03-15 2019-07-08 한국과학기술연구원 폴리에틸렌이마인이 부착된 탄소재료 및 이를 코팅한 리튬-황 전지용 분리막
CN107068945A (zh) * 2017-04-08 2017-08-18 深圳市佩成科技有限责任公司 一种锂硫电池复合隔膜的制备方法
CN107275551B (zh) * 2017-05-16 2020-04-24 清华大学 锂硫电池及其组件,以及功能性材料层在锂硫电池中的应用
KR102244909B1 (ko) * 2017-10-26 2021-04-26 주식회사 엘지화학 분리막 및 이를 포함하는 리튬-황 전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170003604A (ko) * 2014-05-05 2017-01-09 보드 오브 리전츠 더 유니버시티 오브 텍사스 시스템 리튬-황 배터리용 이작용성 세퍼레이터
KR101678817B1 (ko) 2014-12-03 2016-11-24 주식회사 상보 환원 그래핀 옥사이드 제조방법, 그에 따른 환원 그래핀 옥사이드, 이를 이용한 배리어필름 제조방법 및 그에 따른 배리어필름
CN106356488A (zh) 2015-07-13 2017-01-25 中国科学院金属研究所 一种锂离子电池或锂硫电池用复合隔膜及其制备方法和应用

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226330A1 (ko) * 2019-05-09 2020-11-12 주식회사 엘지화학 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
KR20200130125A (ko) * 2019-05-09 2020-11-18 주식회사 엘지화학 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
CN112514154A (zh) * 2019-05-09 2021-03-16 株式会社Lg化学 功能性隔膜、制造所述功能性隔膜的方法和包含所述功能性隔膜的锂二次电池
CN112514154B (zh) * 2019-05-09 2023-10-13 株式会社Lg新能源 功能性隔膜、制造所述功能性隔膜的方法和包含所述功能性隔膜的锂二次电池
US11936064B2 (en) 2019-05-09 2024-03-19 Lg Energy Solution, Ltd. Functional separator, method for manufacturing the same, and lithium secondary battery comprising the same
WO2020235971A1 (ko) * 2019-05-23 2020-11-26 주식회사 엘지화학 리튬 이차 전지용 분리막, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
US12009545B2 (en) 2019-05-23 2024-06-11 Lg Energy Solution, Ltd. Separator including ion conductive polymer filling pores of substrate and coating layer, manufacturing method of the same, lithium secondary battery including the same
WO2020242237A1 (ko) * 2019-05-31 2020-12-03 주식회사 엘지화학 레독스 작용기 함유 고분자층이 형성된 탄소, 이를 포함하는 황-탄소 복합체 및 리튬 이차전지
CN113228352A (zh) * 2019-05-31 2021-08-06 株式会社Lg化学 在其上形成有含氧化还原官能团的聚合物层的碳以及包含所述碳的硫碳复合物和锂二次电池
US12087940B2 (en) 2019-05-31 2024-09-10 Lg Energy Solution, Ltd. Carbon having redox functional group-containing polymer layer formed thereon, and sulfur-carbon composite and lithium secondary battery including same

Also Published As

Publication number Publication date
EP3678219A4 (en) 2020-11-25
JP2020536352A (ja) 2020-12-10
JP6937901B2 (ja) 2021-09-22
US20200328391A1 (en) 2020-10-15
WO2019083193A1 (ko) 2019-05-02
KR102229449B1 (ko) 2021-03-17
CN111213255B (zh) 2023-04-18
CN111213255A (zh) 2020-05-29
US11411283B2 (en) 2022-08-09
EP3678219A1 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
US11411283B2 (en) Separator having coating layer including partially reduced graphene oxide and lithium ion conductive polymer and lithium secondary battery comprising the same
CN109565018B (zh) 隔膜和包含该隔膜的锂硫电池
JP7062191B2 (ja) 分離膜及びこれを含むリチウム二次電池
CN109565019B (zh) 隔膜和包含该隔膜的锂硫电池
US11569548B2 (en) Separator and lithium-sulfur battery comprising the same
KR102567960B1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant