WO2019093709A1 - 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법 - Google Patents

리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법 Download PDF

Info

Publication number
WO2019093709A1
WO2019093709A1 PCT/KR2018/013087 KR2018013087W WO2019093709A1 WO 2019093709 A1 WO2019093709 A1 WO 2019093709A1 KR 2018013087 W KR2018013087 W KR 2018013087W WO 2019093709 A1 WO2019093709 A1 WO 2019093709A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte
sulfur battery
organic solvent
salts
Prior art date
Application number
PCT/KR2018/013087
Other languages
English (en)
French (fr)
Inventor
박은경
이상영
조성주
장민철
양두경
정보라
Original Assignee
주식회사 엘지화학
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 울산과학기술원 filed Critical 주식회사 엘지화학
Priority to JP2020531414A priority Critical patent/JP6972350B2/ja
Priority to CN201880054078.8A priority patent/CN111052478B/zh
Priority to US16/641,168 priority patent/US20200203758A1/en
Priority to EP18876317.1A priority patent/EP3654434B1/en
Publication of WO2019093709A1 publication Critical patent/WO2019093709A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrolyte composite applicable to an electrochemical device, and more particularly, to a solid electrolyte which is different from a solid electrolyte used for an anode and a cathode of an electrochemical device, Which is capable of reducing the interfacial resistance between the electrolyte and the electrode, and an electrochemical device including the same, and a method of manufacturing the electrolyte composite.
  • Electrochemical devices have attracted the greatest attention in this respect.
  • the development of rechargeable batteries such as lithium-sulfur batteries which can be charged and discharged has become a focus of attention.
  • the lithium-sulfur secondary battery has a high energy density and is attracting attention as a next-generation secondary battery that can replace a lithium ion battery.
  • sulfur (S 8 ) used as an anode material is a liquid polysulfide (for example, Li 2 S 8 , Li 2 S 6 , Li 2 S 4 ) (For example, Li 2 S 2 and Li 2 S) through a solid state polysulfide.
  • the liquid polysulfide melts on the surface of the anode and moves to the separator and the cathode, And a problem of being reduced to solid Li 2 S from the surface of the negative electrode.
  • an electrolyte that facilitates the elution of polysulfide is usually required.
  • the eluted liquid polysulfide moves to the anode and the separator, Of polysulfide, thereby eventually causing a serious problem of not only deactivating the negative electrode but also blocking the pores formed in the surface of the separator to reduce the capacity and lifetime of the battery.
  • an object of the present invention is to provide an electrolyte complex for a lithium-sulfur battery in which different solid electrolytes are applied to the positive electrode and the negative electrode of an electrochemical device to improve the capacity and lifetime characteristics of the battery, an electrochemical device including the same, Method.
  • Another object of the present invention is to provide an electrolyte complex for a lithium-sulfur battery which can reduce the interfacial resistance between an electrolyte and an electrode by integrating a solid electrolyte and an electrode, an electrochemical device including the same, and a method for manufacturing the same.
  • the present invention provides an electrolyte for a lithium-sulfur battery including two kinds of phase-separated solid electrolytes and having a layered structure of a first electrolyte interposed in the anode side and a second electrolyte interposed in the cathode side, Lt; / RTI >
  • the present invention also relates to the aforementioned electrolyte complex; And an electrode facing the electrolyte complex.
  • the present invention also provides an electrochemical device comprising the electrolyte complex for a lithium-sulfur battery.
  • A dissolving a lithium salt in an organic solvent having a dielectric constant of 30 or more to prepare a first electrolyte solution, sequentially supplying the crosslinked monomer and the inorganic particles to the first electrolyte solution, Thereby producing a first electrolyte paste;
  • (b) dissolving a lithium salt in an organic solvent having a dielectric constant of 20 or less to prepare a second electrolyte solution, and then supplying the crosslinked monomer and the inorganic particles to the second electrolyte solution successively, stirring and dispersing the second electrolyte solution, ;
  • the present invention also provides an electrolyte composite for a lithium
  • the electrolyte complex for a lithium-sulfur battery according to the present invention, the electrochemical device including the same, and the method of manufacturing the same can improve the capacity and lifetime characteristics of a battery by applying different solid electrolytes to each of the positive electrode and the negative electrode of the electrochemical device In addition, it has the advantage that the interface resistance between the electrolyte and the electrode can be reduced by integrating the solid electrolyte and the electrode.
  • FIG. 1 is a side sectional view schematically showing a lithium-sulfur battery including an electrolyte complex according to an embodiment of the present invention.
  • FIG. 2 is a schematic view illustrating a manufacturing process of an electrolyte complex according to an embodiment of the present invention.
  • FIG. 3 is a graph showing an image (A) obtained by observing a state in which an electrolyte complex and a sulfur electrode are integrated by a scanning electron microscope (SEM) according to an embodiment of the present invention and an electrolyte Observed image (B).
  • SEM scanning electron microscope
  • FIG. 4 is a graph comparing the capacity and life characteristics of a lithium-sulfur battery according to an embodiment and a comparative example of the present invention.
  • FIG. 5 is a graph showing an anode surface resistance value of a lithium-sulfur battery according to an embodiment and a comparative example of the present invention.
  • FIG. 6 is a graph of XPS analysis of the surface of a cathode of a lithium-sulfur battery according to an embodiment of the present invention and a comparative example.
  • FIG. 7 is a graph comparing ion conduction characteristics of a lithium-sulfur battery according to an embodiment of the present invention and a comparative example.
  • the electrolyte composite for a lithium-sulfur battery according to the present invention includes two types of phase-separated solid electrolytes and includes a first electrolyte 20 interposed between the positive and negative electrodes 10 and 30, And the second electrolyte 40 interposed therebetween has a layered structure.
  • the electrolyte composite for a lithium-sulfur battery is characterized in that liquid polysulfide (Li 2 S 8 , Li 2 S 6 , Li 2 S 4, etc.) eluted from a sulfur anode is moved to a separation membrane and a cathode, (Li 2 S 2 , Li 2 S, and the like) in the solid state to prevent the deactivation of the cathode and the pore blocking phenomenon on the surface of the separator, thereby improving the capacity and lifetime characteristics of the battery .
  • the electrolyte composite for a lithium-sulfur battery is a solid phase in which an organic electrolyte having a gel-type of high ion conductivity is uniformly compounded with an inorganic particle.
  • the electrolyte composite for lithium-sulfur battery exhibits smooth ion migration and simultaneous migration of solid polysulfide Can be more effectively suppressed.
  • the first electrolyte 20 is applied to the surface of the anode.
  • the first electrolyte is applied to the surface of the sulfur particles as the anode, thereby facilitating the dissolution of the polysulfide, thereby maximizing the capacity of the battery.
  • the first electrolyte 20 includes an organic solvent having a high dielectric constant of 30 or more, a lithium salt, a crosslinking monomer, and an inorganic particle.
  • the above organic solvent (having a dielectric constant of 30 or more) and the lithium salt are components used to maximize the capacity of the battery.
  • the organic solvent include ethylmethyl sulfone and tetramethylene sulfone Nitrile organic solvents such as phonetic organic solvents and acetonitrile, carbonate organic solvents such as propylene carbonate and gamma -butyrolactone, and the like.
  • the degree of dissolution of the polysulfide is determined by the dielectric constant of the organic solvent, and the organic solvent may have a dielectric constant of 30 or more, preferably 30 to 200.
  • the content of the organic solvent may be 20 to 90% by weight based on the total weight of the first electrolyte, and the content of the organic solvent may vary depending on the kind of the organic solvent and other components. If the content of the organic solvent is less than 20% by weight based on the total weight of the first electrolyte, there is a fear that the ion conduction is not smooth. If the content exceeds 90% by weight, the solid state may not be maintained.
  • the lithium salt can be used without limitation, as long as it contains lithium metal, and dissociates into an organic solvent and moves in the form of ions.
  • Examples of such lithium salts include lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), lithium bis (fluorosulfonyl) imide (LiFSI), lithium perchlorate Lithium perchlorate (LiClO 4 ), Lithium hexafluoroarsenate (LiAsF 6 ), Lithium tetrafluoroborate (LiBF 4 ), Lithium hexafluorophosphate (LiPF 6 ), Lithium hexafluoro (LiCoF 6 ), lithium difluoromethane sulfonate (LiC 4 F 9 SO 3 ), lithium aluminate (LiAlO 2 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium chloride (LiC
  • the content of the lithium salt may vary depending on the kind of the lithium salt or other components and is not easily specified.
  • the content of the lithium salt may be 1 to 30% by weight based on the total weight of the first electrolyte, If the content of the lithium salt is less than 1% by weight based on the total weight of the first electrolyte, ion conduction may not be smooth, and if it exceeds 30% by weight, the lithium salt may not dissociate into a solvent.
  • the crosslinking monomer is used for crosslinking the anode and the electrolyte by photopolymerization or thermal polymerization to form a polymer matrix.
  • the crosslinking monomer include trimethylolpropane ethoxylate triacrylate, polyethyleneglycol diacrylate, Selected from the group consisting of triethyleneglycol diacrylate, trimethylopropaneethoxylate triacrylate, bisphenol A ethoxylate dimethacrylate, derivatives thereof, and mixtures thereof. Can be exemplified.
  • the content of the crosslinking monomer is 1 to 40% by weight, preferably 5 to 20% by weight based on the total weight of the first electrolyte, and the content of the crosslinking monomer is less than 1% by weight based on the total weight of the first electrolyte
  • the crosslinking is insufficient and the first electrolyte may not maintain a solid state and may flow.
  • it exceeds 40% by weight the ionic conductivity decreases remarkably as the proportion of the polymer in the electrolyte complex increases, .
  • the inorganic particles are dispersed uniformly in the electrolyte complex and are used for securing the mechanical strength without self-standing in the film state.
  • the inorganic particles include alumina (Al 2 O 3 ), silicon dioxide (SiO 2 ) (Li 2 O), lithium fluoride (LiF), lithium hydroxide (LiOH), lithium nitride (Li 3 N), and oxides such as titanium oxide (TiO 2 ), barium titanate (BaTiO 3 ) barium (BaO), sodium oxide (Na 2 O), lithium carbonate (Li 2 CO 3), calcium carbonate (CaCO 3), lithium aluminate (LiAlO 2), strontium tiyum titanate (SrTiO 3), tin oxide (ZnO), zirconium dioxide (ZrO 2 ), silicon carbide (SiC), and the like, which are used in the present invention, such as SnO 2 , CeO 2 , MgO, NiO
  • the average particle size of the inorganic particles is not particularly limited, but is preferably 1,000 nm or less. If the average particle size of the inorganic particles is excessively large, the particles may not be uniformly dispersed in the organic electrolyte. On the other hand, since the electrolyte to be finally produced contains an organic solvent and the type of the inorganic particles which are solid depends on the kind and size of the inorganic substance, it is not easy to specify the content of the inorganic particles. However, it may be contained in an amount of, for example, 30 to 90 parts by weight based on 100 parts by weight of the first electrolyte.
  • the first electrolyte 20 may be applied to the surface of each of the sulfur particles, or may be applied only to the surface of the aggregate of the sulfur particles. There are no special restrictions on the area.
  • the thickness of the first electrolyte 20 is closely related to the ion transport performance.
  • the thickness of the first electrolyte 20 may vary depending on the size of the anode particles, the capacity of the battery, and the like. It is preferably 100 ⁇ or less Better).
  • the second electrolyte 40 is interposed between the first electrolyte 20 and the cathode 30, that is, the surface of the cathode 30 (the surface facing the anode) And is prevented from reaching the cathode or the separation membrane due to the difference in dielectric constant (dielectric constant) between the first electrolyte 20 and the first electrolyte 20, , Whereby the capacity and life characteristics of the battery can be improved.
  • the second electrolyte (40) includes an organic solvent having a low dielectric constant of 20 or less, a lithium salt, a crosslinking monomer, and an inorganic particle.
  • the organic solvent (having a dielectric constant of 20 or less) described above is a component used for inhibiting the migration of polysulfide, and includes tetraethylene glycol ether, triethylene glycol ether, diethylene glycol ether ethereal organic solvents such as diethylene glycol ether, tetrahydrofuran and dioxolane, and most preferably tetraethylene glycol ether having a dielectric constant of 7.7.
  • the second electrolyte (40) can be applied to a thickness of 100 ⁇ or less, and if it is more than 100 ⁇ , the second electrolyte (40) becomes a resistance element of the ion transfer path and it may be difficult to supply ions smoothly to the electrode.
  • the crosslinking monomer contained in the second electrolyte is for crosslinking the negative electrode and the electrolyte by a photopolymerization reaction to form a polymer matrix).
  • the electrochemical device including the electrolyte composite for a lithium-sulfur battery according to the present invention is characterized in that the electrolyte composite for a lithium-sulfur battery and the electrolyte
  • the electrolyte complex and the electrode can be integrated, and in this case, the interface resistance between the electrolyte complex and the electrode can be further reduced.
  • the method for manufacturing an electrochemical device comprises the steps of: (a) Preparing a first electrolyte solution by dissolving a lithium salt in an organic solvent having a high dielectric constant equal to or higher than that of the first electrolyte solution and sequentially supplying the crosslinked monomer and the inorganic particles to the first electrolyte solution and then stirring and dispersing the first electrolyte solution to prepare a first electrolyte paste (b) dissolving a lithium salt in an organic solvent having a low dielectric constant of 20 or less to prepare a second electrolyte solution, and sequentially supplying the crosslinked monomer and the inorganic particles to the second electrolyte solution, stirring and dispersing the second electrolyte solution, (C) applying the first electrolyte paste to the surface of the anode and then poly
  • the amount of the organic solvent and the lithium salt to be used is not particularly limited, and the amount of the crosslinking monomer used is 1 to 50 parts by weight per 100 parts by weight of the first electrolyte solution containing the organic solvent and the lithium salt And preferably 5 to 30 parts by weight.
  • the amount of the inorganic particles to be used may be different depending on the type and size of the inorganic particles. However, when alumina having a particle size of 300 nm is used, 100 to 200 parts by weight based on 100 parts by weight of the total amount of the lithium salt and the crosslinking monomer.
  • the step of supplying the crosslinking monomer to the electrolyte solution and stirring the electrolyte solution is not particularly limited as long as the electrolyte solution and the crosslinking monomer can be mixed well.
  • the step may be performed at room temperature for 5 to 30 minutes
  • the subsequent step of supplying and dispersing the inorganic particles is not particularly limited as long as the inorganic particles can be dispersed well.
  • the process may be performed for 2 to 30 minutes by a ball-milling method, a ball-texting method or a planetary- .
  • the amount of the crosslinking monomer used is preferably 1 to 100 parts by weight of the second electrolyte solution containing the organic solvent and the lithium salt. To 50 parts by weight, preferably 5 to 30 parts by weight.
  • the amount of the inorganic particles to be used varies depending on the kind and size of the inorganic particles, and there is no particular limitation. When alumina having a particle size of 300 nm is used , 100 to 200 parts by weight based on 100 parts by weight of the total amount of the organic solvent, the lithium salt and the crosslinking monomer.
  • the step of supplying the crosslinking monomer to the electrolyte solution and stirring the electrolyte solution is not particularly limited as long as the electrolyte solution and the crosslinking monomer can be mixed well.
  • the step may be performed at room temperature for 5 to 30 minutes
  • the subsequent step of supplying and dispersing the inorganic particles is not particularly limited as long as the inorganic particles can be dispersed well.
  • the process may be performed for 2 to 30 minutes by a ball-milling method, a ball-texting method or a planetary- .
  • the method in which the first and second electrolyte pastes are respectively applied in the steps (c) and (d) is not particularly limited as long as the method can uniformly apply a doctor blade method.
  • the amount to which each of the first and second electrolyte pastes is applied may vary depending on the capacity of the lithium-sulfur battery, and is not particularly limited. However, it is preferable that the electrolyte is applied to a thickness of 100 ⁇ m or less.
  • the first electrolyte paste may be coated on the surface of each of the sulfur particles, or may be coated only on the surface of the aggregate of the sulfur particles. If the polysulfide can be eluted from the anode, There are no special restrictions.
  • the polymerization (reaction) in the steps (c) and (d) is a step for curing the coated first and second electrolyte paste, and a conventional photopolymerization light source such as UV, halogen and LED is exposed for 10 to 600 seconds ≪ / RTI >
  • the polymerization may be exemplified by photopolymerization (photo-crosslinking) and thermal polymerization (thermal crosslinking), but is not particularly limited.
  • the thickness of the first electrolyte is preferably 100 ⁇ ⁇ or less for smooth ion conduction.
  • the battery module or the battery pack may include a power tool; Electric vehicles including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • the positive electrode used in the present invention is prepared by preparing a positive electrode composition comprising a positive electrode active material, a conductive material and a binder, diluting the positive electrode composition with a predetermined solvent (dispersion medium), coating the slurry directly on the positive electrode collector,
  • the anode layer can be formed by drying.
  • the slurry may be cast on a separate support, and then the film may be peeled off from the support to laminate the cathode current collector on the anode current collector to produce a cathode layer.
  • the anode can be fabricated in a variety of ways using methods well known to those skilled in the art.
  • the conductive material serves as a path through which electrons move from the positive electrode collector to the positive electrode active material, thereby not only imparting electron conductivity, but also electrically connecting the electrolyte and the positive electrode active material to form lithium ions (Li +) in the electrolyte. Sulfur, and react to the reaction. Therefore, if the amount of the conductive material is insufficient or fails to perform its role properly, the portion of the sulfur in the electrode that does not react increases and eventually causes a reduction in capacity. In addition, since high-rate discharge characteristics and charge-discharge cycle life are adversely affected, it is necessary to add an appropriate conductive material.
  • the conductive material is preferably added in an amount of 0.01 to 30% by weight based on the total weight of the cathode composition.
  • the conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and examples thereof include graphite; Carbon black such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • acetylene black series such as Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, Ketjenblack, Armak Company products, Vulcan XC-72 Cabot Company products and Super-P (Timcal) products can be used.
  • the binder is used to adhere the positive electrode active material well to the current collector.
  • the binder should be well dissolved in a solvent, and it should not only constitute a conductive network between the positive electrode active material and the conductive material, but also have adequate electrolyte impregnation properties.
  • the binder may be any binder known in the art and specifically includes a fluororesin binder including polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE); Rubber-based binders including styrene-butadiene rubber, acrylonitrile-butadiene rubber, and styrene-isoprene rubber; Cellulosic binders including carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, and regenerated cellulose; Polyalcohol-based binders; Polyolefin binders including polyethylene and polypropylene; Polyamide-based binder, polyester-based binder, and silane-based binder.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • Rubber-based binders including styrene-butadiene rubber, acrylonitrile-butadiene rubber, and styrene-isopren
  • the content of the binder may be 0.5 to 30% by weight based on the total weight of the cathode composition, but is not limited thereto. If the content of the binder resin is less than 0.5% by weight, the physical properties of the positive electrode may deteriorate and the positive electrode active material and the conductive material may fall off. When the amount of the binder resin is more than 30% by weight, the ratio of the active material and the conductive material is relatively decreased The battery capacity may be reduced, and the efficiency may be lowered by acting as a resistance element.
  • the cathode composition comprising the cathode active material, the conductive material and the binder may be diluted with a predetermined solvent and coated on the anode current collector by a conventional method known in the art.
  • a positive electrode current collector is prepared.
  • the cathode current collector generally has a thickness of 3 to 500 mu m.
  • Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and examples thereof include stainless steel, aluminum, nickel, titanium, sintered carbon, The surface of the steel may be surface treated with carbon, nickel, titanium, silver, or the like.
  • the current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric are possible.
  • a slurry obtained by diluting a positive electrode composition containing a positive electrode active material, a conductive material and a binder in a solvent is applied on the positive electrode current collector.
  • the cathode composition including the above-mentioned cathode active material, conductive material and binder may be mixed with a predetermined solvent to prepare a slurry.
  • the solvent should be easy to dry, and it is most preferable that the binder can be dissolved well, but the cathode active material and the conductive material can be maintained in a dispersed state without dissolving.
  • the solvent may be water or an organic solvent, and the organic solvent may be at least one selected from the group consisting of dimethylformamide, isopropyl alcohol, acetonitrile, methanol, ethanol, and tetrahydrofuran.
  • the method of applying the cathode composition in the slurry state for example, a doctor blade coating, a dip coating, a gravure coating, a slit die coating coating, coating, spin coating, comma coating, bar coating, reverse roll coating, screen coating, and cap coating.
  • the cathode composition is evaporated through evaporation of the solvent (dispersion medium), denseness of the coating film and adhesion between the coating film and the current collector through the drying process.
  • the drying is carried out according to a conventional method, and the drying is not particularly limited.
  • any material capable of intercalating and deintercalating lithium ions can be used.
  • the negative electrode include a metallic material such as lithium metal and lithium alloy, and carbon materials such as low crystalline carbon and highly crystalline carbon.
  • low crystalline carbon are soft carbon and hard carbon.
  • highly crystalline carbon include natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber High-temperature sintered carbon such as mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes. Alloys containing silicon and oxides such as Li 4 Ti 5 O 12 are also well known cathodes.
  • the negative electrode may include a binder.
  • the binder include polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyacrylonitrile Various kinds of binder polymers such as polyacrylonitrile, polymethylmethacrylate and styrene-butadiene rubber (SBR) may be used.
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • SBR styrene-butadiene rubber
  • the negative electrode may further include a negative electrode collector for supporting the negative electrode active layer including the negative electrode active material and the binder.
  • the negative electrode current collector may be specifically selected from the group consisting of copper, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof.
  • the stainless steel may be surface-treated with carbon, nickel, titanium or silver, and an aluminum-cadmium alloy may be used as the alloy.
  • fired carbon, a nonconductive polymer surface treated with a conductive agent, or a conductive polymer may be used.
  • the binder acts as a paste for the anode active material, mutual adhesion between the active materials, adhesion between the active material and the current collector, buffering effect on expansion and contraction of the active material, and the like.
  • the binder is the same as that described above for the positive electrode binder.
  • the negative electrode may be a lithium metal or a lithium alloy.
  • the cathode may be a thin film of lithium metal, and may be a thin film of one selected from the group consisting of lithium, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Or more.
  • a conventional separation membrane may be interposed between the anode and the cathode.
  • the separator is a physical separator having a function of physically separating the electrode. Any separator may be used without limitation, as long as it is used as a conventional separator. Particularly, it is preferable that the separator is excellent in electrolyte hiding ability while having low resistance against ion migration of the electrolyte. In addition, the separator separates or insulates the positive electrode and the negative electrode from each other, and enables transport of lithium ions between the positive electrode and the negative electrode. Such a separator may be made of a porous, nonconductive or insulating material.
  • the separator may be an independent member such as a film, or a coating layer added to at least one of the anode and the cathode.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, and an ethylene / methacrylate copolymer,
  • nonwoven fabrics made of conventional porous nonwoven fabrics such as high melting point glass fibers and polyethylene terephthalate fibers can be used, but the present invention is not limited thereto.
  • LiTFSI lithium bisimide
  • ethyl methyl sulfone having a dielectric constant of 95
  • Trimethylolpropane ethoxylate triacrylate crosslinking monomer
  • alumina inorganic particles having an average particle size of 300 nm was supplied and dispersed for 10 minutes in a ball-milling system (THINKY SUPER MIXER, ARE-310, THINKY CORPORATION, JAPAN) Paste.
  • the weight ratio of the first electrolyte solution: crosslinking monomer was 85:15
  • the weight ratio of (first electrolyte solution + crosslinking monomer): inorganic particles was 1: 1.5.
  • a second electrolyte solution was prepared by dissolving lithium bisimide in a solvent at a molar ratio of tetraethylene glycol ether having a dielectric constant of 7.7 and lithium bisimide (LiTFSI) at a molar ratio of 1: 1, followed by adding trimethylolpropane (Crosslinking monomer), and the mixture was stirred at room temperature for 20 minutes.
  • alumina inorganic particles
  • the weight ratio of the second electrolyte solution: crosslinking monomer was 85:15
  • the weight ratio of the (second electrolyte solution + crosslinking monomer): inorganic particles was 1: 1.5.
  • a first electrolyte paste was applied on the prepared sulfur anode, and then a UV light source was irradiated thereto for 30 seconds to form a film-like first electrolyte having a thickness of 50 ⁇ ⁇ . Then, a first electrolyte , A UV light source was irradiated thereto for 30 seconds to form a second electrolyte in the form of a film having a thickness of 50 mu m to prepare a solid electrolyte composite having a layered structure .
  • a second electrolyte solution was prepared by mixing dioxolane having a dielectric constant of 7.0 and lithium bisimide in a molar ratio of 1: 1 to dissolve lithium bisimide in a solvent, and then trimethylolpropane ethoxylate triacryl (Crosslinking monomer) was supplied and stirred at room temperature for 20 minutes. Subsequently, alumina (inorganic particles) was supplied and dispersed by a ball-milling method for 10 minutes to prepare a second electrolyte paste. At this time, the weight ratio of the second electrolyte solution: crosslinking monomer was 85:15, and the weight ratio of the (second electrolyte solution + crosslinking monomer): inorganic particles was 1: 1.5.
  • a first electrolyte paste was applied on the prepared sulfur anode, and then a UV light source was irradiated thereto for 30 seconds to form a film-like first electrolyte having a thickness of 50 ⁇ ⁇ . Then, a first electrolyte , A UV light source was irradiated thereto for 30 seconds to form a second electrolyte in the form of a film having a thickness of 50 mu m to prepare a solid electrolyte composite having a layered structure .
  • One mole of lithium bisimide was dissolved in ethyl methyl sulfone to prepare an electrolyte solution.
  • the electrolyte solution was supplied between the sulfur positive electrode and the lithium negative electrode, and the UV light source was irradiated for 30 seconds to produce an electrolyte having a single-layer structure.
  • Lithium bisimide was dissolved in a solvent at a molar ratio of tetraethylene glycol ether and lithium bisimide at a molar ratio of 1: 1 to prepare an electrolytic solution, which was then fed between a sulfur anode and a lithium negative electrode.
  • the UV light source was supplied for 30 seconds To thereby produce an electrolyte having a single-layer structure.
  • FIG. 3 is a graph showing an image (A) obtained by observing a state in which an electrolyte complex and a sulfur electrode are integrated by a scanning electron microscope (SEM) according to an embodiment of the present invention and an image As an image (B) observed with a microscope, A in FIG. 3 corresponds to Example 1, and B in FIG. 3 corresponds to Comparative Example 3.
  • SEM scanning electron microscope
  • FIG. 4 is a graph comparing the capacity and life characteristics of a lithium-sulfur battery according to an embodiment and a comparative example of the present invention.
  • Comparative Example 1 using an electrolyte including a sulfone-based organic solvent as shown in FIG. 4, the sulfur releasing property was excellent and the battery capacity was high.
  • the migration phenomenon of the polysulfide (shuttle phenomenon) The inactivation of the surface and clogging of the pore structure of the separator occurred, and the cycle life characteristics were confirmed to be very short.
  • Comparative Example 2 using an electrolyte including a glare-based organic solvent the sulfur release characteristics were poor and the cell capacity was low, but the migration phenomenon of polysulfide was suppressed, showing excellent cycle characteristics.
  • Example 1 in the case of Example 1 to which the electrolyte complex is applied, the first electrolyte is formed on the sulfur anode to facilitate the elution of polysulfide, the second electrolyte formed on the lithium anode to inhibit the elution and migration of polysulfide Unlike Comparative Examples 1 and 2, it was possible to simultaneously realize a high capacity of the battery and excellent cycle life characteristics. Meanwhile, the battery manufactured in Example 2 also showed similar results to those in Example 1.
  • FIG. 5 is a graph showing an anode surface resistance value of a lithium-sulfur battery according to an embodiment of the present invention and a comparative example.
  • Example 2 shows similar results to those in Example 1.
  • Example 7 is a graph comparing ion conduction characteristics of a lithium-sulfur battery according to an embodiment (Example 1) and a comparative example (Comparative Example 3) of the present invention.
  • the ion conductivity of the lithium-sulfur battery produced through Example 1 and Comparative Example 3 was tested. As shown in FIG. 7, it was confirmed that the ion conductivity of Example 1 was superior to that of Comparative Example 3 . This is because the electrolyte complex of Example 1 directly applied the second electrolyte on the first electrolyte, whereas the electrolyte of Comparative Example 3 was caused by simply lamination of the single layer structure.
  • Comparative Example 3 It was found that the ionic conductivity was excellent because the interfacial resistance between the electrolytes was large and the interfacial resistance between the two electrolytes was small in the case of Example 1 in which pores were not generated or minimized.

Abstract

전기화학소자의 양극과 음극 각각에 서로 다른 고체 전해질을 적용하여 전지의 용량 및 수명특성을 개선시키고, 고체 전해질과 전극을 일체화시켜 전해질과 전극 간 계면 저항을 감소시킬 수 있는, 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법이 개시된다. 상기 리튬-황 전지용 전해질 복합체는, 2종의 상분리 고체 전해질을 포함하며, 양극 쪽에 개재(介在)되는 제1 전해질 및 음극 쪽에 개재되는 제2 전해질이 층상구조를 이루고 있다.

Description

리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법
본 출원은 2017년 11월 08일자 한국 특허 출원 제10-2017-0148072호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전기화학소자에 적용 가능한 전해질 복합체에 관한 것으로서, 더욱 상세하게는, 전기화학소자의 양극과 음극 각각에 서로 다른 고체 전해질을 적용하여 전지의 용량 및 수명특성을 개선시키고, 고체 전해질과 전극을 일체화시켜 전해질과 전극 간 계면 저항을 감소시킬 수 있는, 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법에 관한 것이다.
에너지 저장 기술에 대한 관심이 갈수록 높아짐에 따라, 휴대폰, 태블릿(tablet), 랩탑(laptop) 및 캠코더, 나아가서는 전기 자동차(EV) 및 하이브리드 전기 자동차(HEV)의 에너지까지 적용분야가 확대되면서, 전기화학소자에 대한 연구 및 개발이 점차 증대되고 있다. 전기화학소자는 이러한 측면에서 가장 주목을 받고 있는 분야이고, 그 중에서도 충·방전이 가능한 리튬-황 전지 등의 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비 에너지를 향상시키기 위하여, 새로운 전극과 전지의 설계에 대한 연구개발로 이어지고 있다.
이와 같은 전기화학소자, 그 중 리튬-황 이차전지는 높은 에너지 밀도를 가져, 리튬이온전지를 대체할 수 있는 차세대 이차전지로 각광받고 있다. 하지만, 리튬-황 이차전지에 있어서, 양극물질로 사용되는 황(sulfur, S8)은 중간체인 액체 상태의 폴리설파이드(polysulfide, 예시: Li2S8, Li2S6, Li2S4)를 거쳐, 고체 상태의 폴리설파이드(예시: Li2S2, Li2S)로 환원되는 특징을 가지고 있고, 이에 의해, 액상의 폴리설파이드는 양극 표면에서 녹아 나와 분리막 및 음극으로 이동하게 되고, 분리막 및 음극 표면에서 고상의 Li2S로 환원되는 문제가 있다.
즉, 통상적으로 고 용량 고 수명의 리튬-황 이차전지를 구현하기 위해서는, 폴리설파이드의 용출을 용이하게 하는 전해질이 필요하지만, 이 경우, 용출된 액상의 폴리설파이드가 음극 및 분리막 등으로 이동하여 고상의 폴리설파이드로 환원됨으로써, 종국에는 음극을 비활성화시킬 뿐만 아니라, 분리막 표면에 형성되어 있는 기공을 막아, 전지의 용량 및 수명을 감소시키는 심각한 문제가 발생하게 된다. 이에, 해당 기술 분야에서는, 고 용량 및 고 수명의 리튬-황 이차전지를 구현하기 위하여, 폴리설파이드의 용출은 용이하게 하되, 폴리설파이드가 음극 및 분리막 등으로 이동하는 것은 방지할 수 있는 전해질의 연구개발에 박차를 가하고 있는 실정이다.
따라서, 본 발명의 목적은, 전기화학소자의 양극과 음극 각각에 서로 다른 고체 전해질을 적용하여 전지의 용량 및 수명특성을 개선시킨, 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법을 제공하는 것이다.
본 발명의 다른 목적은, 고체 전해질과 전극을 일체화시켜 전해질과 전극 간 계면 저항을 감소시킬 수 있는, 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, 2종의 상분리 고체 전해질을 포함하며, 양극 쪽에 개재(介在)되는 제1 전해질 및 음극 쪽에 개재되는 제2 전해질이 층상구조를 이루고 있는 리튬-황 전지용 전해질 복합체를 제공한다.
또한, 본 발명은, 상기 전해질 복합체; 및 상기 전해질 복합체에 대향되는 전극;을 포함하는 리튬-황 전지용 전해질 복합체를 포함하는 전기화학소자를 제공한다.
또한, 본 발명은, (a) 30 이상의 유전상수를 가지는 유기용매에 리튬염을 용해시켜 제1 전해질 용액을 제조하고, 상기 제1 전해질 용액에 가교 모노머 및 무기 입자를 순차 공급한 후 교반 및 분산시켜 제1 전해액 페이스트를 제조하는 단계; (b) 20 이하의 유전상수를 가지는 유기용매에 리튬염을 용해시켜 제2 전해질 용액을 제조하고, 상기 제2 전해질 용액에 가교 모노머 및 무기 입자를 순차 공급한 후 교반 및 분산시켜 제2 전해액 페이스트를 제조하는 단계; (c) 양극의 표면에 상기 제1 전해액 페이스트를 도포한 후 중합시켜 고체상의 제1 전해질을 형성하는 단계; (d) 상기 형성된 제1 전해질 상에 상기 제2 전해액 페이스트를 도포한 후 중합시켜 고체상의 제2 전해질을 형성하는 단계; 및 (e) 상기 제2 전해질 상에 음극을 부착하는 단계;를 포함하는 리튬-황 전지용 전해질 복합체를 포함하는 전기화학소자의 제조방법을 제공한다.
본 발명에 따른 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법은, 전기화학소자의 양극과 음극 각각에 서로 다른 고체 전해질을 적용하여 전지의 용량 및 수명특성을 개선시킬 수 있을 뿐만 아니라, 고체 전해질과 전극을 일체화시켜 전해질과 전극 간 계면 저항을 감소시킬 수도 있는 장점을 가지고 있다.
도 1은 본 발명의 일 실시예에 따른 전해질 복합체를 포함하는 리튬-황 전지의 측단면 모식도이다.
도 2는 본 발명의 일 실시예에 따른 전해질 복합체의 제조 공정 모식도이다.
도 3은 본 발명의 일 실시예에 따라 전해질 복합체와 황 전극이 일체화된 모습을 주사전자현미경(SEM)으로 관찰한 이미지(A)와, 비교예에 따라 단순 적층시킨 전해질 복합체를 주사전자현미경으로 관찰한 이미지(B)이다.
도 4는 본 발명의 일 실시예 및 비교예에 따른 리튬-황 전지의 용량 및 수명특성을 비교 대조한 그래프이다.
도 5는 본 발명의 일 실시예 및 비교예에 따른 리튬-황 전지의 양극 표면 저항 값을 나타낸 그래프이다.
도 6은 본 발명의 일 실시예 및 비교예에 따른 리튬-황 전지의 음극 표면을 XPS로 분석한 그래프이다.
도 7은 본 발명의 일 실시예 및 비교예에 따른 리튬-황 전지의 이온 전도 특성을 비교 대조한 그래프이다.
이하, 첨부된 도면을 참조하여, 본 발명을 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 전해질 복합체를 포함하는 리튬-황 전지의 측단면 모식도이다. 본 발명에 따른 리튬-황 전지용 전해질 복합체는, 도 1에 도시된 바와 같이, 2종의 상분리 고체 전해질을 포함하며, 양극(10) 쪽에 개재(介在)되는 제1 전해질(20) 및 음극(30) 쪽에 개재되는 제2 전해질(40)이 층상구조를 이루고 있다.
상기 리튬-황 전지용 전해질 복합체는, 황 양극으로부터 용출되는 액체 상태의 폴리설파이드(Li2S8, Li2S6, Li2S4 등)가 분리막 및 음극 등으로 이동된 후, 분리막 및 음극 표면에서 고체 상태의 폴리설파이드(Li2S2, Li2S 등)로 환원되는 것을 차단하여, 음극의 비활성화 현상과 분리막 표면의 기공 막힘 현상이 방지되고, 이로 인하여, 전지의 용량 및 수명특성을 향상시킬 수 있다. 또한, 상기 리튬-황 전지용 전해질 복합체는 높은 이온 전도성의 겔(gel) 타입을 가지는 유기 전해질과 무기입자가 균일하게 복합화된 고체상으로서, 원활한 이온 이동과 동시에 무기입자 복합화를 통해, 고상 폴리설파이드의 이동을 보다 효과적으로 억제할 수 있는 장점을 가질 수 있다.
상기 제1 전해질(20)은 양극(물질)의 표면에 도포되는 것으로서, 양극인 황 입자의 표면에 제1 전해질이 도포됨으로써, 폴리설파이드의 용출을 용이하게 하여 전지의 용량을 극대화 할 수 있다. 상기 제1 전해질(20)은 30 이상의 높은 유전상수를 가지는 유기용매, 리튬염, 가교 모노머 및 무기 입자를 포함한다.
상기 (30 이상의 유전상수를 가지는) 유기용매 및 리튬염은 전지의 용량을 극대화시키기 위하여 사용되는 성분들로서, 상기 유기용매로는 에틸메틸술폰(ethylmethyl sulfone) 및 테트라메틸렌술폰(tetramethylene sulfone) 등의 술폰계 유기용매, 아세토나이트릴(Acetonitrile) 등의 나이트릴계 유기용매, 프로필렌카보네이트(propylene carbonate) 등의 카보네이트계 유기용매 및 감마-부틸로락톤(γ-butyrolactone) 등을 예시할 수 있으며, 유전상수가 95인 에틸메틸술폰을 사용하는 것이 가장 바람직하다. 한편, 리튬-황 전지에 있어서, 폴리설파이드가 녹아 나오는 정도는 유기용매의 유전율에 의하여 결정되는 것으로서, 상기 유기용매는 30 이상의 유전상수, 바람직하게는 30 내지 200의 유전상수를 가질 수 있다.
상기 유기용매의 함량은 유기용매나 다른 성분들의 종류에 따라 상이해질 수 있어 특정하는 것은 용이하지 않으나, 예를 들어, 상기 제1 전해질의 총 중량에 대하여 20 내지 90 중량%가 될 수 있으며, 이 경우, 상기 유기용매의 함량이 제1 전해질의 총 중량에 대하여 20 중량% 미만이면 이온 전도가 원활하지 않을 우려가 있고, 90 중량%를 초과하면 고체 상태를 유지하지 못하는 문제가 발생할 수 있다.
상기 리튬염은 리튬 금속을 포함하는 것이라면 특별한 제한 없이 사용될 수 있으며, 유기용매에 해리되어 이온의 형태로 이동하게 된다. 이와 같은 리튬염으로는 리튬비스트리플루오로메탄술포닐이미드(LiTFSI; lithium bis(trifluoromethane sulfonyl)imide), 리튬비스플루오로술포닐이미드(LiFSI; Lithium bis(fluorosulfonyl)imide), 리튬퍼클로레이트(LiClO4; Lithium perchlorate), 리튬헥사플루오로알세네이트(LiAsF6; Lithium hexafluoroarsenate), 리튬테트라플루오로보레이트(LiBF4; Lithium tetrafluoroborate), 리튬헥사플루오로포스페이트(LiPF6; Lithium hexafluorophosphate), 리튬헥사플루오로안티모네이트(LiSbF6), 리튬디플루오로메탄설포네이트(LiC4F9SO3), 리튬알루미네이트(LiAlO2), 리튬테트라클로로알루미네이트(LiAlCl4), 염화리튬(LiCl), 요오드화리튬(LiI), 리튬 비스옥살레이토 보레이트(LiB(C2O4)2), 리튬트리플루오로메탄설포닐이미드(LiN(CxF2x+1SO2)(CyF2y+1SO2), (여기서, x 및 y는 자연수이다)), 이들의 유도체 및 이들의 혼합물 중에서 선택되는 1종 이상을 예시할 수 있다.
상기 리튬염의 함량은 리튬염이나 다른 성분들의 종류에 따라 상이해질 수 있어 특정하는 것은 용이하지 않으나, 예를 들어, 상기 제1 전해질의 총 중량에 대하여 1 내지 30 중량%가 될 수 있으며, 이 경우, 상기 리튬염의 함량이 제1 전해질의 총 중량에 대하여 1 중량% 미만이면 이온 전도가 원활하지 않을 우려가 있고, 30 중량%를 초과하면 리튬염이 용매에 해리되지 않는 문제가 발생할 수 있다.
상기 가교 모노머는 광중합 또는 열중합 반응 등에 의해 양극과 전해질을 가교시켜 고분자 매트릭스를 형성하기 위한 것으로서, 트리메틸올프로판 에톡시레이트 트리아크릴레이트(Trimethylolpropane ethoxylate triacrylate), 폴리에틸렌글리콜 디아크릴레이트(Polyethyleneglycol diacrylate), 트리에틸렌글리콜 디아크릴레이트(Triethyleneglycol diacrylate), 트리메틸올프로판에톡시레이트 트리아크릴레이트(Trimethylopropaneethoxylate triacrylate), 비스페놀에이에톡시레이트 디메타아크릴레이트(Bisphenol A ethoxylate dimethacrylate), 이들의 유도체 및 이들의 혼합물 중에서 선택되는 1종 이상을 예시할 수 있다.
상기 가교 모노머의 함량은, 상기 제1 전해질의 총 중량에 대하여 1 내지 40 중량%, 바람직하게는 5 내지 20 중량%로서, 상기 가교 모노머의 함량이 제1 전해질의 총 중량에 대하여 1 중량% 미만일 경우, 가교가 미흡하여 제1 전해질이 고체 상태를 유지하지 못하고 흐를 우려가 있고, 40 중량%를 초과할 경우에는, 전해질 복합체 내에 고분자 비율이 높아짐에 따라 이온 전도도가 현저히 낮아져, 원활한 이온 전도가 어려울 수 있다.
상기 무기 입자는 전해질 복합체 내에 고르게 분산되어 지지체 없이 필름 상태를 유지할 수 있는(self-standing) 기계적 강도의 확보를 위하여 사용되는 성분으로서, 알루미나(Al2O3), 이산화규소(SiO2), 이산화티타늄(TiO2), 바륨타이타네이트(BaTiO3), 리튬옥사이트(Li2O), 플로오린화리튬(LiF), 리튬하이드록사이드(LiOH), 리튬나이트라이드(Li3N), 산화바륨(BaO), 소듐옥사이드(Na2O), 리튬카보네이트(Li2CO3), 탄산칼슘(CaCO3), 리튬알루미네이트(LiAlO2), 스트론티윰타이타네이트(SrTiO3), 산화주석(SnO2), 세리늄옥사이드(CeO2), 마그네슘옥사이드(MgO), 니클옥사이드(NiO) 칼슘옥사이드(CaO), 징크옥사이드(ZnO), 지르코늄다이옥사이드(ZrO2), 탄화규소(SiC), 이들의 유도체 및 이들의 혼합물 중에서 선택되는 1종 이상을 예시할 수 있다.
상기 무기 입자의 평균 입도에는 특별한 제한이 없으나, 1,000 ㎚ 이하가 바람직하며, 상기 무기 입자의 평균 입도가 과도하게 큰 경우에는 유기 전해질에 균일하게 분산되지 않을 수 있다. 한편, 최종 제조되는 전해질에는 유기용매가 포함되고, 고체인 무기 입자의 종류는 무기물의 종류 및 크기에 따라 달라지기 때문에, 상기 무기 입자의 함량을 특정하는 것은 용이하지 않다. 다만, 예를 들어, 상기 제1 전해질 100 중량부에 대하여 30 내지 90 중량부로 포함될 수는 있다.
한편, 상기 제1 전해질(20)은 황 입자 각각의 표면에 도포될 수도 있고, 황 입자의 집합체 표면에만 도포될 수도 있는 등, 양극으로부터 폴리설파이드의 용출을 가능하게만 한다면, 어떠한 부위로 도포되는 지에 대해서는 특별한 제한을 두지 않는다. 또한, 상기 제1 전해질(20)의 두께는 이온 전달 성능과 밀접한 연관을 가지는 것으로서, 양극 입자의 크기나 목적으로 하는 전지의 용량 등에 따라 가변될 수 있으며, 100 ㎛ 이하가 바람직하다(즉, 얇을수록 좋다).
다음으로, 상기 제2 전해질(40)은 상기 제1 전해질(20)과 음극(30)의 사이에 개재(介在)되는, 즉, 다시 말해, 음극(30)의 표면(양극과 마주하는 면)에 도포되어 제1 전해질(20)에 대응되게 위치하는 것으로서, 상기 제1 전해질(20)과의 유전율(유전상수) 차이에 의해 황 양극으로부터 이동되는 폴리설파이드가 음극이나 분리막까지 도달하는 것을 억제하며, 이로 인하여, 전지의 용량 및 수명특성을 개선시킬 수 있는 것이다.
상기 제2 전해질(40)은 20 이하의 낮은 유전상수를 가지는 유기용매, 리튬염, 가교 모노머 및 무기 입자를 포함한다. 상기 (20 이하의 유전상수를 가지는) 유기용매는 폴리설파이드의 이동을 억제하기 위하여 사용되는 성분으로서, 테트라에틸렌 글리콜에테르(tetraethylene glycol ether), 트리에틸렌 글리콜에테르(triethylene glycol ether), 디에틸렌 글리콜에테르(diethylene glycol ether) 등의 에테르계 유기용매, 테트라하이드로퓨란(tetrahydrofuran) 및 다이옥솔란(dioxolane) 등을 예시할 수 있으며, 유전상수가 7.7인 테트라에틸렌 글리콜에테르를 사용하는 것이 가장 바람직하다. 한편, 상기 제2 전해질(40)은 100 ㎛ 이하의 두께로 도포될 수 있으며, 이를 초과할 경우에는 이온전달 경로의 저항 요소가 되어 전극으로의 원활한 이온 공급이 어려울 수 있다.
그밖에, 상기 제2 전해질(40)에 포함되는 리튬염, 가교 모노머 및 무기 입자 각각의 정의, 종류 및 함량 등에 관한 설명은, 상기 제1 전해질(20)에 포함되는 리튬비스마이드, 가교 모노머 및 무기 입자에 관한 설명을 준용한다(단, 제2 전해질에 포함되는 가교 모노머는, 광중합 반응에 의해 음극과 전해질을 가교시켜 고분자 매트릭스를 형성하기 위한 것이다).
계속해서, 본 발명에 따른 리튬-황 전지용 전해질 복합체를 포함하는 전기화학소자에 대하여 설명하면, 상기 리튬-황 전지용 전해질 복합체를 포함하는 전기화학소자는, 전술한 리튬-황 전지용 전해질 복합체 및 상기 전해질 복합체에 대향되는 전극을 포함하며, 필요에 따라, 상기 전해질 복합체 및 전극이 일체화될 수 있고, 이 경우, 전해질 복합체와 전극 사이의 계면 저항을 더욱 감소시킬 수 있다.
다음으로, 본 발명에 따른 리튬-황 전지용 전해질 복합체를 포함하는 전기화학소자의 제조방법에 대하여 설명한다. 도 2는 본 발명의 일 실시예에 따른 전해질 복합체의 제조 공정 모식도로서, 도 1 및 2를 참조하여 설명하면, 상기 전기화학소자, 바람직하게는 리튬-황 전지의 제조방법은, (a) 30 이상의 높은 유전상수를 가지는 유기용매에 리튬염을 용해시켜 제1 전해질 용액을 제조하고, 상기 제1 전해질 용액에 가교 모노머 및 무기 입자를 순차 공급한 후 교반 및 분산시켜 제1 전해액 페이스트를 제조하는 단계, (b) 20 이하의 낮은 유전상수를 가지는 유기용매에 리튬염을 용해시켜 제2 전해질 용액을 제조하고, 상기 제2 전해질 용액에 가교 모노머 및 무기 입자를 순차 공급한 후 교반 및 분산시켜 제2 전해액 페이스트를 제조하는 단계, (c) 양극의 표면에 상기 제1 전해액 페이스트를 도포한 후 중합시켜 고체상의 제1 전해질을 형성하는 단계, (d) 상기 형성된 제1 전해질 상에 상기 제2 전해액 페이스트를 도포한 후 중합시켜 고체상의 제2 전해질을 형성하는 단계 및 (e) 상기 제2 전해질 상에 음극을 부착하는 단계를 포함한다.
상기 (a) 단계에 있어서, 유기용매와 리튬염의 사용 함량에는 특별한 제한이 없고, 가교 모노머의 사용 함량은 상기 유기용매 및 리튬염을 포함하는 제1 전해질 용액 100 중량부에 대하여 1 내지 50 중량부, 바람직하게는 5 내지 30 중량부이고, 무기 입자의 사용 함량은 무기입자의 종류와 크기에 따라 상이해질 수 있는 것으로서 특별한 제한이 없으나, 300 nm 입자 크기를 가지는 알루미나를 사용할 경우에는, 유기용매, 리튬염 및 가교 모노머의 총 함량 100 중량부에 대하여 100 내지 200 중량부로 사용될 수 있다.
또한, 상기 (a) 단계에서, 전해질 용액에 가교 모노머를 공급한 후 교반시키는 공정은, 전해질 용액과 가교 모노머가 잘 혼합될 수 있는 방법이라면 특별히 한정하지는 않으나, 상온에서 5 내지 30 분간 수행될 수 있고, 이어지는 무기 입자를 공급한 후 분산시키는 공정은, 무기 입자가 잘 분산될 수 있는 방법이라면 특별히 한정하지는 않으나, 볼-밀링 방식, 볼-텍싱 방식 또는 플래너터리-믹서 방식에 의해 2 내지 30 분간 수행될 수 있다.
상기 (b) 단계에 있어서, 글라임계 유기용매와 리튬비스마이드의 사용 함량에는 특별한 제한이 없고, 가교 모노머의 사용 함량은 상기 유기용매 및 리튬염을 포함하는 제2 전해질 용액 100 중량부에 대하여 1 내지 50 중량부, 바람직하게는 5 내지 30 중량부이고, 무기 입자의 사용 함량은 무기입자의 종류와 크기에 따라 상이해질 수 있는 것으로서 특별한 제한이 없으나, 300 nm 입자 크기를 가지는 알루미나를 사용할 경우에는, 유기용매, 리튬염 및 가교 모노머의 총 함량 100 중량부에 대하여 100 내지 200 중량부로 사용될 수 있다.
또한, 상기 (b) 단계에서, 전해질 용액에 가교 모노머를 공급한 후 교반시키는 공정은, 전해질 용액과 가교 모노머가 잘 혼합될 수 있는 방법이라면 특별히 한정하지는 않으나, 상온에서 5 내지 30 분간 수행될 수 있고, 이어지는 무기 입자를 공급한 후 분산시키는 공정은, 무기 입자가 잘 분산될 수 있는 방법이라면 특별히 한정하지는 않으나, 볼-밀링 방식, 볼-텍싱 방식 또는 플래너터리-믹서 방식에 의해 2 내지 30 분간 수행될 수 있다.
그밖에, 상기 (a) 및 (b) 단계에서 사용된 화합물들 각각의 정의 및 종류 등에 관한 설명은, 상기 리튬-황 전지용 전해질 복합체 항목에서 설명된 내용을 준용한다. 한편, 상기 제조방법에 있어서, 제1 전해액 페이스트를 먼저 제조한 후 제2 전해액 페이스트를 제조하는 것으로 기재하고 있으나, 이는 설명의 편의를 위한 것으로서, 그 순서에는 특별한 제한이 없다.
상기 (c) 및 (d) 단계에서 제1 및 제2 전해액 페이스트가 각각 도포되는 방식으로는, 균일한 도포를 할 수 있는 방법이라면 특별히 한정하지는 않으나 닥터블레이드 방식 등을 예시할 수 있다. 또한, 제1 및 제2 전해액 페이스트가 각각 도포되는 양은 리튬-황 전지의 용량 등에 따라 가변될 수 있는 것으로서 특별한 제한은 없으나, 100 ㎛ 이하의 두께로 도포되는 것이 바람직하다.
한편, 상기 제1 전해액 페이스트는 황 입자 각각의 표면에 코팅될 수도 있고, 황 입자의 집합체 표면에만 코팅될 수도 있는 등, 양극으로부터 폴리설파이드의 용출을 가능하게만 한다면, 어떠한 부위로 코팅되는 지에 대해서는 특별한 제한을 두지 않는다. 그밖에, 상기 (c) 및 (d) 단계의 중합(반응)은, 코팅된 제1 및 제2 전해액 페이스트를 경화시키기 위한 공정으로서, UV, 할로겐 및 LED 등 통상의 광중합 광원을 10 내지 600 초의 시간 동안 조사하여 수행될 수 있다. 또한, 상기 중합으로는 광중합(광가교) 및 열중합(열가교) 등을 예시할 수 있으나, 특별한 제한을 두지 않는다. 한편, 상기 제1 전해질의 두께는, 원활한 이온전도 역할을 위해 100 ㎛ 이하가 바람직하다.
한편, 본 발명은, 전기화학소자(리튬-황 전지)를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩의 제공 또한 가능하다. 상기 전지모듈 또는 전지팩은 파워 툴(Power tool); 전기자동차(Electric vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in hybrid electric vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명에 따른 전해질 복합체를 포함하는 전기화학소자(리튬-황 전지)에 적용되는 양극, 음극 및 분리막에 대한 설명을 부가한다.
양극
본 발명에 사용되는 양극에 관하여 설명하면, 양극 활물질, 도전재 및 바인더를 포함하는 양극 조성물을 제조한 후, 이를 소정의 용매(분산매)에 희석하여 제조된 슬러리를 양극 집전체 상에 직접 코팅 및 건조함으로써 양극층을 형성할 수 있다. 또는, 상기 슬러리를 별도의 지지체 상에 캐스팅한 후, 상기 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션하여 양극층을 제조할 수 있다. 이외에도, 당해 기술 분야에서 통상의 지식을 가지는 기술자들에게 널리 알려진 방법을 사용하여 다양한 방식으로 양극을 제조할 수 있다.
상기 도전재(Conducting material)는 양극 집전체로부터 전자가 양극 활물질까지 이동하는 경로의 역할을 하여 전자 전도성을 부여할 뿐만 아니라, 전해질과 양극 활물질을 전기적으로 연결시켜 주어 전해질 내 리튬 이온(Li+)이 황까지 이동하여 반응하게 하는 경로의 역할을 동시에 하게 된다. 따라서, 도전재의 양이 충분하지 않거나 역할을 제대로 수행하지 못하게 되면 전극 내 황 중 반응하지 못하는 부분이 증가하게 되고, 결국은 용량 감소를 일으키게 된다. 또한, 고율 방전 특성과 충방전 사이클 수명에도 악영향을 미치게 되므로, 적절한 도전재의 첨가가 필요하다. 상기 도전재의 함량은 양극 조성물 총 중량을 기준으로 0.01 내지 30 중량% 범위 내에서 적절히 첨가하는 것이 바람직하다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예컨대, 그라파이트; 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙 및 서머 블랙 등의 카본 블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄 및 니켈 분말 등의 금속 분말; 산화아연 및 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판 중인 도전재의 구체적인 예로는, 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품, 케첸 블랙(Ketjenblack), EC 계열 아르막 컴퍼니(Armak Company) 제품, 불칸(Vulcan) XC-72 캐보트 컴퍼니(Cabot Company) 제품 및 슈퍼-피(Super-P; Timcal 사 제품) 등이 사용될 수 있다.
상기 바인더는 양극 활물질을 집전체에 잘 부착시키기 위한 것으로서, 용매에 잘 용해되어야 하며, 양극 활물질과 도전재와의 도전 네크워크를 잘 구성해주어야 할 뿐만 아니라, 전해액의 함침성도 적당히 가져야 한다. 상기 바인더는 당해 업계에서 공지된 모든 바인더들일 수 있고, 구체적으로는, 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF) 또는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무, 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈를 포함하는 셀룰로오스계 바인더; 폴리 알코올계 바인더; 폴리에틸렌, 폴리프로필렌를 포함하는 폴리 올레핀계 바인더; 폴리 이미드계 바인더, 폴리 에스테르계 바인더, 실란계 바인더;로 이루어진 군에서 선택된 1종 이상의 혼합물이거나 공중합체일 수 있으나, 이에 제한되지는 않는다.
상기 바인더의 함량은 양극 조성물 총 중량을 기준으로 0.5 내지 30 중량%일 수 있으나, 이에 한정되는 것은 아니다. 상기 바인더 수지의 함량이 0.5 중량% 미만인 경우에는, 양극의 물리적 성질이 저하되어 양극 활물질과 도전재가 탈락할 수 있고, 30 중량%를 초과하는 경우에는 양극에서 활물질과 도전재의 비율이 상대적으로 감소되어 전지 용량이 감소될 수 있으며, 저항 요소로 작용하여 효율이 저하될 수 있다.
상기 양극 활물질, 도전재 및 바인더를 포함하는 양극 조성물은 소정의 용매에 희석되어, 양극 집전체 상에 당업계에 알려진 통상의 방법을 이용하여 코팅할 수 있다. 먼저, 양극 집전체를 준비한다. 상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께를 사용한다. 이와 같은 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소결 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
다음으로, 상기 양극 집전체 상에 양극 활물질, 도전재 및 바인더를 포함하는 양극 조성물을 용매에 희석한 슬러리를 도포한다. 전술한 양극 활물질, 도전재 및 바인더를 포함하는 양극 조성물을 소정의 용매와 혼합하여 슬러리로 제조할 수 있다. 이때 용매는 건조가 용이해야 하며, 바인더를 잘 용해시킬 수 있으되, 양극 활물질 및 도전재는 용해시키지 않고 분산 상태로 유지시킬 수 있는 것이 가장 바람직하다. 용매가 양극 활물질을 용해시킬 경우에는 슬러리에서 황의 비중(D = 2.07)이 높기 때문에 황이 슬러리에서 가라앉게 되어 코팅 시 집전체에 황이 몰려 도전 네트워크에 문제가 생겨, 전지의 작동에 문제가 발생하는 경향이 있다. 상기 용매(분산매)는 물 또는 유기 용매가 가능하며, 상기 유기 용매는 디메틸포름아미드, 이소프로필알콜 또는 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란 군으로부터 선택되는 1종 이상일 수 있다.
계속해서, 상기 슬러리 상태의 양극 조성물을 도포하는 방법에는 특별한 제한이 없으며, 예컨대, 닥터 블레이드 코팅(Doctor blade coating), 딥 코팅(Dip coating), 그라비어 코팅(Gravure coating), 슬릿 다이 코팅(Slit die coating), 스핀 코팅(Spin coating), 콤마 코팅(Comma coating), 바 코팅(Bar coating), 리버스 롤 코팅(Reverse roll coating), 스크린 코팅(Screen coating), 캡 코팅(Cap coating) 방법 등을 수행하여 제조할 수 있다. 이와 같은 코팅 과정을 거친 양극 조성물은, 이후 건조 과정을 통해 용매(분산매)의 증발, 코팅막의 조밀성 및 코팅막과 집전체와의 밀착성 등이 이루어진다. 이때, 건조는 통상적인 방법에 따라 실시되며, 이를 특별히 제한하지는 않는다.
음극
음극으로는 리튬이온을 흡장 및 방출할 수 있는 것을 모두 사용할 수 있으며, 예를 들어, 리튬 금속, 리튬 합금 등의 금속재와, 저결정 탄소, 고결정성 탄소 등의 탄소재를 예시할 수 있다. 저결정성 탄소로는 연화탄소(Soft carbon) 및 경화탄소(Hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시 흑연(Kish graphite), 열분해 탄소(Pyrolytic carbon), 액정 피치계 탄소섬유(Mesophase pitch based carbon fiber), 탄소 미소구체(Meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(Petroleum or coal tar pitch derived cokes) 등의 고온 소성 탄소가 대표적이다. 이 외에, 실리콘이 포함된 얼로이 계열이나 Li4Ti5O12 등의 산화물도 잘 알려진 음극이다.
이때, 음극은 결착제를 포함할 수 있으며, 결착제로는 폴리비닐리덴플루오라이드(Polyvinylidenefluoride, PVDF), 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리아크릴로니트릴(Polyacrylonitrile), 폴리메틸메타크릴레이트(Polymethylmethacrylate), 스티렌-부타디엔 고무(SBR) 등, 다양한 종류의 바인더 고분자가 사용될 수 있다.
상기 음극은 상기 음극 활물질 및 바인더를 포함하는 음극 활성층의 지지를 위한 음극 집전체를 선택적으로 더 포함할 수도 있다. 상기 음극 집전체는 구체적으로 구리, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다. 상기 스테인리스스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금이 사용될 수 있다. 그 외에도 소성 탄소, 도전제로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등이 사용될 수도 있다.
상기 바인더는 음극 활물질의 페이스트화, 활물질간 상호 접착, 활물질과 집전체와의 접착, 활물질 팽창 및 수축에 대한 완충 효과 등의 역할을 한다. 구체적으로 상기 바인더는 앞서 양극의 바인더에서 설명한 바와 동일하다. 또한 상기 음극은 리튬 금속 또는 리튬 합금일 수 있다. 비제한적인 예로, 음극은 리튬 금속의 박막일 수도 있으며, 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로 이루어진 군으로부터 선택되는 1종 이상의 금속과의 합금일 수 있다.
분리막
양극과 음극 사이는 통상적인 분리막이 개재될 수 있다. 상기 분리막은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해질의 이온 이동에 대하여 저 저항이면서 전해질 함습 능력이 우수한 것이 바람직하다. 또한, 상기 분리막은 양극과 음극을 서로 분리 또는 절연시키면서 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막은 다공성이고 비전도성 또는 절연성인 물질로 이루어질 수 있다. 상기 분리막은 필름과 같은 독립적인 부재이거나, 또는 양극 및 음극 중 어느 하나 이상에 부가된 코팅층일 수 있다. 구체적으로는, 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어, 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예 1] 전해질 복합체의 제조
유전상수가 95인 에틸메틸술폰에 1 몰의 리튬비스마이드(LiTFSI)를 용해시켜 제1 전해질 용액을 제조한 후, 여기에 트리메틸올프로판 에톡시레이트 트리아크릴레이트(가교 모노머)를 공급하여 상온에서 20 분간 교반시키고, 이어서, 평균 입도 300 ㎚의 크기를 가지는 알루미나(무기 입자)를 공급하여 볼-밀링 방식(THINKY SUPER MIXER, ARE-310, THINKY CORPORATION사, JAPAN)으로 10 분간 분산시켜 제1 전해액 페이스트를 제조하였다. 이때, 제1 전해질 용액 : 가교 모노머의 중량비는 85 : 15로 하였고, (제1 전해질 용액 + 가교 모노머) : 무기 입자의 중량비는 1 : 1.5로 하였다.
다음으로, 유전상수가 7.7인 테트라에틸렌 글리콜에테르와 리튬비스마이드(LiTFSI)를 1 : 1의 몰비로 혼합하여 용매에 리튬비스마이드를 용해시켜 제2 전해질 용액을 제조한 후, 여기에 트리메틸올프로판 에톡시레이트 트리아크릴레이트(가교 모노머)를 공급하여 상온에서 20 분간 교반시키고, 이어서, 알루미나(무기 입자)를 공급하여 볼-밀링 방식으로 10 분간 분산시켜 제2 전해액 페이스트를 제조하였다. 이때, 제2 전해질 용액 : 가교 모노머의 중량비는 85 : 15로 하였고, (제2 전해질 용액 + 가교 모노머) : 무기 입자의 중량비는 1 : 1.5로 하였다.
계속해서, 준비된 황 양극 상에 제1 전해액 페이스트를 도포한 후, 여기에 UV 광원을 30 초의 시간 동안 조사하여, 50 ㎛의 두께를 가지는 필름 형태의 제1 전해질이 형성되었으며, 이어서, 제1 전해질 상에 제2 전해액 페이스트를 도포한 후, 여기에 UV 광원을 30 초의 시간 동안 조사하여, 50 ㎛의 두께를 가지는 필름 형태의 제2 전해질이 형성되어, 층상 구조를 가지는 고체상의 전해질 복합체가 제조되었다.
[실시예 2] 전해질 복합체의 제조
유전상수가 64.97인 프로필렌카보네이트에 5 몰의 리튬비스마이드를 용해시켜 제1 전해질 용액을 제조한 후, 여기에 트리메틸올프로판 에톡시레이트 트리아크릴레이트(가교 모노머)를 공급하여 상온에서 20 분간 교반시키고, 이어서, 평균 입도 300 ㎚의 크기를 가지는 알루미나(무기 입자)를 공급하여 볼-밀링 방식(THINKY SUPER MIXER, ARE-310, THINKY CORPORATION사, JAPAN)으로 10 분간 분산시켜 제1 전해액 페이스트를 제조하였다. 이때, 제1 전해질 용액 : 가교 모노머의 중량비는 85 : 15로 하였고, (제1 전해질 용액 + 가교 모노머) : 무기 입자의 중량비는 1 : 1.5로 하였다.
다음으로, 유전상수가 7.0인 다이옥솔란과 리튬비스마이드를 1 : 1의 몰비로 혼합하여 용매에 리튬비스마이드를 용해시켜 제2 전해질 용액을 제조한 후, 여기에 트리메틸올프로판 에톡시레이트 트리아크릴레이트(가교 모노머)를 공급하여 상온에서 20 분간 교반시키고, 이어서, 알루미나(무기 입자)를 공급하여 볼-밀링 방식으로 10 분간 분산시켜 제2 전해액 페이스트를 제조하였다. 이때, 제2 전해질 용액 : 가교 모노머의 중량비는 85 : 15로 하였고, (제2 전해질 용액 + 가교 모노머) : 무기 입자의 중량비는 1 : 1.5로 하였다.
계속해서, 준비된 황 양극 상에 제1 전해액 페이스트를 도포한 후, 여기에 UV 광원을 30 초의 시간 동안 조사하여, 50 ㎛의 두께를 가지는 필름 형태의 제1 전해질이 형성되었으며, 이어서, 제1 전해질 상에 제2 전해액 페이스트를 도포한 후, 여기에 UV 광원을 30 초의 시간 동안 조사하여, 50 ㎛의 두께를 가지는 필름 형태의 제2 전해질이 형성되어, 층상 구조를 가지는 고체상의 전해질 복합체가 제조되었다.
[비교예 1] 단층 구조를 가지는 전해질의 제조
에틸메틸술폰에 1 몰의 리튬비스마이드를 용해시켜 전해질 용액을 제조한 후, 이를 황 양극과 리튬 음극 사이에 공급하고, UV 광원을 30 초의 시간 동안 조사하여, 단층 구조를 가지는 전해질이 제조되었다.
[비교예 2] 단층 구조를 가지는 전해질의 제조
테트라에틸렌 글리콜에테르와 리튬비스마이드를 1 : 1의 몰비로 혼합하여 용매에 리튬비스마이드를 용해시켜 전해질 용액을 제조한 후, 이를 황 양극과 리튬 음극 사이에 공급하고, UV 광원을 30 초의 시간 동안 조사하여, 단층 구조를 가지는 전해질이 제조되었다.
[비교예 3] 단층 구조를 라미네이션한 전해질 복합체의 제조
비교예1 및 비교예 2에 따르는 단층 구조의 전해질을 각각 제조한 후, 두 전해질을 단순히 포개어 전해질 복합체를 제조하였다.
[실시예 1~2, 비교예 1~3] 리튬-황 전지의 제조
상기 실시예 1 및 2에서 제조된 전해질 복합체 중 제2 전해질 상에 리튬 금속(음극)을 부착하고, 제1 전해질과 제2 전해질의 사이에 분리막을 설치하여, 전해질 복합체를 포함하는 코인 형상의 리튬-황 전지(코인 셀)를 제조하였다. 또한, 상기 비교예 1 내지 3에서 제조된 각각의 전해질에 분리막을 설치하여, 코인 형상의 리튬-황 전지(코인 셀)를 제조하였다. 한편, 도 3은 본 발명의 일 실시예에 따라 전해질 복합체와 황 전극이 일체화된 모습을 주사전자현미경(SEM)으로 관찰한 이미지(A)와, 비교예에 따라 단순 적층시킨 전해질 복합체를 주사전자현미경으로 관찰한 이미지(B)로서, 도 3의 A는 상기 실시예 1에 해당하고, 도 3의 B는 상기 비교예 3에 해당한다.
[실험예 1] 리튬-황 전지의 용량 및 수명특성 평가
상기 실시예 1, 비교예 1 및 2를 통해 제조된 리튬-황 전지의 충·방전 전류 속도를 0.2 C / 0.2 C로 설정한 후, 충·방전 특성을 관찰하였다. 도 4는 본 발명의 일 실시예 및 비교예에 따른 리튬-황 전지의 용량 및 수명특성을 비교 대조한 그래프이다. 술폰계 유기용매를 포함하는 전해질을 이용한 비교예 1의 경우, 도 4에 도시된 바와 같이, 황 용출 특성이 뛰어나 높은 전지 용량을 구현하지만, 폴리설파이드의 이동 현상(셔틀 현상)에 의해, 리튬 음극 표면의 비활성화 및 분리막 기공 구조의 막힘 현상이 발생하여, 사이클 수명 특성은 매우 짧아짐을 확인하였다. 또한, 글라임계 유기용매를 포함하는 전해질을 이용한 비교예 2의 경우, 황 용출 특성이 좋지 않아 전지 용량은 낮아지지만, 폴리설파이드의 이동 현상은 억제되어 우수한 사이클 특성을 보였다.
반면, 전해질 복합체를 적용한 실시예 1의 경우에는, 황 양극 상에 형성되어 폴리설파이드의 용출을 용이하게 하는 제1 전해질, 리튬 음극 상에 형성되어 폴리설파이드의 용출 및 이동을 억제하는 제2 전해질로 인하여, 비교예 1 및 2와 달리, 전지의 고용량과 우수한 사이클 수명 특성을 동시에 구현하는 것이 가능하였다. 한편, 상기 실시예 2에서 제조된 전지 또한 상기 실시예 1과 유사한 결과를 나타내었다.
[실험예 2] 리튬-황 전지의 양극 및 음극 표면 평가
상기 실시예 1, 비교예 1 및 2를 통해 제조된 리튬-황 전지의 충·방전 전류 속도를 0.2 C / 0.2 C로 설정하여 상기 실험예 1과 같은 충·방전 특성을 관찰한 후, 황 양극 표면의 저항 값 및 리튬 음극 표면에 존재하는 폴리설파이드의 양을 관찰하였다. 도 5는 본 발명의 일 실시예 및 비교예에 따른 리튬-황 전지의 양극 표면 저항 값을 나타낸 그래프이고, 도 6은 본 발명의 일 실시예 및 비교예에 따른 리튬-황 전지의 음극 표면을 XPS로 분석한 그래프이다.
먼저, 각 전지를 200 사이클 충·방전 수명 특성 분석 후 임피던스를 통해 황 양극의 표면을 분석한 결과, 도 5에 도시된 바와 같이, 폴리설파이드의 이동 현상(셔틀 현상) 억제를 통해 비교예 1 및 2 대비 실시예 1의 표면 저항이 작은 것을 확인할 수 있었다. 또한, 각 전지를 200 사이클 충·방전 수명 특성 분석 후 리튬 음극의 표면을 XPS로 분석한 결과, 도 6에 도시된 바와 같이, 폴리설파이드의 이동 억제 특성에 의해 실시예 1의 음극 표면에는 고체 상태의 폴리설파이드(Li2S2, Li2S)가 거의 관찰되지 않았다. 이상의 결과들을 통해, 본 발명에 따른 리튬-황 전지용 전해질 복합체를 사용하게 되면, 전지의 용량 및 수명특성이 현저하게 개선됨을 알 수 있다. 한편, 상기 실시예 2에서 제조된 전지 또한 상기 실시예 1과 유사한 결과를 나타내었다.
[실험예 3] 리튬-황 전지의 이온 전도 특성 평가
도 7은 본 발명의 일 실시예(실시예 1) 및 비교예(비교예 3)에 따른 리튬-황 전지의 이온 전도 특성을 비교 대조한 그래프이다. 상기 실시예 1 및 비교예 3을 통해 제조된 리튬-황 전지의 이온 전도도를 실험한 결과, 도 7에 도시된 바와 같이, 실시예 1의 이온 전도도가 비교예 3에 비하여 월등한 것을 확인할 수 있었다. 이는, 실시예 1의 전해질 복합체가 제1 전해질 상에 제2 전해질을 바로 도포한 반면, 비교예 3의 전해질은 단층 구조를 단순히 적층시킨 것에 기인한 것으로서, 비교예 3의 경우 두 전해질 사이에 공극이 발생하여 전해질 사이의 계면 저항이 컸고, 공극이 발생하지 않거나 최소화된 실시예 1의 경우에는, 두 전해질 사이의 계면저항이 작기 때문에 이온 전도도가 우수함을 알 수 있었다.

Claims (16)

  1. 2종의 상분리 고체 전해질을 포함하며,
    양극 쪽에 개재(介在)되는 제1 전해질 및 음극 쪽에 개재되는 제2 전해질이 층상구조를 이루고 있는 리튬-황 전지용 전해질 복합체.
  2. 청구항 1에 있어서, 상기 제1 전해질은 30 이상의 유전상수를 가지는 유기용매, 리튬염, 가교 모노머 및 무기 입자를 포함하는 것을 특징으로 하는, 리튬-황 전지용 전해질 복합체.
  3. 청구항 2에 있어서, 상기 유기용매는 술폰계 유기용매, 나이트릴계 유기용매, 카보네이트계 유기용매 및 감마-부틸로락톤으로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 리튬-황 전지용 전해질 복합체.
  4. 청구항 2에 있어서, 상기 리튬염은 리튬비스트리플루오로메탄술포닐이미드, 리튬비스플루오로술포닐이미드, 리튬퍼클로레이트, 리튬헥사플루오로알세네이트, 리튬테트라플루오로보레이트, 리튬헥사플루오로포스페이트, 리튬헥사플루오로안티모네이트, 리튬디플루오로메탄설포네이트, 리튬알루미네이트, 리튬테트라클로로알루미네이트, 염화리튬, 요오드화리튬, 리튬 비스옥살레이토 보레이트, 리튬트리플루오로메탄설포닐이미드, 이들의 유도체 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는, 리튬-황 전지용 전해질 복합체.
  5. 청구항 2에 있어서, 상기 가교 모노머는 트리메틸올프로판 에톡시레이트 트리아크릴레이트, 폴리에틸렌글리콜 디아크릴레이트, 트리에틸렌글리콜 디아크릴레이트, 트리메틸올프로판에톡시레이트 트리아크릴레이트, 비스페놀에이에톡시레이트 디메타아크릴레이트, 이들의 유도체 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는, 리튬-황 전지용 전해질 복합체.
  6. 청구항 2에 있어서, 상기 무기 입자는 알루미나(Al2O3), 이산화규소(SiO2), 이산화티타늄(TiO2), 바륨타이타네이트(BaTiO3), 리튬옥사이트(Li2O), 플로오린화리튬(LiF), 리튬하이드록사이드(LiOH), 리튬나이트라이드(Li3N), 산화바륨(BaO), 소듐옥사이드(Na2O), 리튬카보네이트(Li2CO3), 탄산칼슘(CaCO3), 리튬알루미네이트(LiAlO2), 스트론티윰타이타네이트(SrTiO3), 산화주석(SnO2), 세리늄옥사이드(CeO2), 마그네슘옥사이드(MgO), 니클옥사이드(NiO) 칼슘옥사이드(CaO), 징크옥사이드(ZnO), 지르코늄다이옥사이드(ZrO2), 탄화규소(SiC), 이들의 유도체 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는, 리튬-황 전지용 전해질 복합체.
  7. 청구항 1에 있어서, 상기 제1 전해질의 두께는 100 ㎛ 이하인 것을 특징으로 하는, 리튬-황 전지용 전해질 복합체.
  8. 청구항 1에 있어서, 상기 제2 전해질은 20 이하의 유전상수를 가지는 유기용매, 리튬염, 가교 모노머 및 무기 입자를 포함하는 것을 특징으로 하는, 리튬-황 전지용 전해질 복합체.
  9. 청구항 8에 있어서, 상기 유기용매는 에테르계 유기용매, 테트라하이드로퓨란 및 다이옥솔란으로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 리튬-황 전지용 전해질 복합체.
  10. 청구항 8에 있어서, 상기 리튬염은 리튬비스트리플루오로메탄술포닐이미드, 리튬비스플루오로술포닐이미드, 리튬퍼클로레이트, 리튬헥사플루오로알세네이트, 리튬테트라플루오로보레이트, 리튬헥사플루오로포스페이트, 리튬헥사플루오로안티모네이트, 리튬디플루오로메탄설포네이트, 리튬알루미네이트, 리튬테트라클로로알루미네이트, 염화리튬, 요오드화리튬, 리튬 비스옥살레이토 보레이트, 리튬트리플루오로메탄설포닐이미드, 이들의 유도체 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는, 리튬-황 전지용 전해질 복합체.
  11. 청구항 8에 있어서, 상기 가교 모노머는 트리메틸올프로판 에톡시레이트 트리아크릴레이트, 폴리에틸렌글리콜 디아크릴레이트, 트리에틸렌글리콜 디아크릴레이트, 트리메틸올프로판에톡시레이트 트리아크릴레이트, 비스페놀에이에톡시레이트 디메타아크릴레이트, 이들의 유도체 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는, 리튬-황 전지용 전해질 복합체.
  12. 청구항 8에 있어서, 상기 무기 입자는 알루미나(Al2O3), 이산화규소(SiO2), 이산화티타늄(TiO2), 바륨타이타네이트(BaTiO3), 리튬옥사이트(Li2O), 플로오린화리튬(LiF), 리튬하이드록사이드(LiOH), 리튬나이트라이드(Li3N), 산화바륨(BaO), 소듐옥사이드(Na2O), 리튬카보네이트(Li2CO3), 탄산칼슘(CaCO3), 리튬알루미네이트(LiAlO2), 스트론티윰타이타네이트(SrTiO3), 산화주석(SnO2), 세리늄옥사이드(CeO2), 마그네슘옥사이드(MgO), 니클옥사이드(NiO) 칼슘옥사이드(CaO), 징크옥사이드(ZnO), 지르코늄다이옥사이드(ZrO2), 탄화규소(SiC), 이들의 유도체 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는, 리튬-황 전지용 전해질 복합체.
  13. 청구항 1에 있어서, 상기 제2 전해질의 두께는 100 ㎛ 이하인 것을 특징으로 하는, 리튬-황 전지용 전해질 복합체.
  14. 청구항 1의 전해질 복합체; 및
    상기 전해질 복합체에 대향되는 전극;을 포함하는 리튬-황 전지용 전해질 복합체를 포함하는 전기화학소자.
  15. 청구항 14에 있어서, 상기 전해질 복합체 및 전극이 일체화되어, 상기 전해질 복합체와 전극 사이의 계면 저항이 감소되는 것을 특징으로 하는, 리튬-황 전지용 전해질 복합체를 포함하는 전기화학소자.
  16. (a) 30 이상의 유전상수를 가지는 유기용매에 리튬염을 용해시켜 제1 전해질 용액을 제조하고, 상기 제1 전해질 용액에 가교 모노머 및 무기 입자를 순차 공급한 후 교반 및 분산시켜 제1 전해액 페이스트를 제조하는 단계;
    (b) 20 이하의 유전상수를 가지는 유기용매에 리튬염을 용해시켜 제2 전해질 용액을 제조하고, 상기 제2 전해질 용액에 가교 모노머 및 무기 입자를 순차 공급한 후 교반 및 분산시켜 제2 전해액 페이스트를 제조하는 단계;
    (c) 양극의 표면에 상기 제1 전해액 페이스트를 도포한 후 중합시켜 고체상의 제1 전해질을 형성하는 단계;
    (d) 상기 형성된 제1 전해질 상에 상기 제2 전해액 페이스트를 도포한 후 중합시켜 고체상의 제2 전해질을 형성하는 단계; 및
    (e) 상기 제2 전해질 상에 음극을 부착하는 단계;를 포함하는 리튬-황 전지용 전해질 복합체를 포함하는 전기화학소자의 제조방법.
PCT/KR2018/013087 2017-11-08 2018-10-31 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법 WO2019093709A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020531414A JP6972350B2 (ja) 2017-11-08 2018-10-31 リチウム−硫黄電池用電解質複合体、それを含む電気化学素子及びその製造方法
CN201880054078.8A CN111052478B (zh) 2017-11-08 2018-10-31 锂硫电池用电解质复合物、包含其的电化学装置及其制备方法
US16/641,168 US20200203758A1 (en) 2017-11-08 2018-10-31 Electrolyte complex for lithium-sulfur battery, electrochemical device including the same and method for preparing the electrochemical device
EP18876317.1A EP3654434B1 (en) 2017-11-08 2018-10-31 Electrolyte composite for lithium-sulfur battery, electrochemical device comprising same, and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0148072 2017-11-08
KR1020170148072A KR102268180B1 (ko) 2017-11-08 2017-11-08 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2019093709A1 true WO2019093709A1 (ko) 2019-05-16

Family

ID=66437957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013087 WO2019093709A1 (ko) 2017-11-08 2018-10-31 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법

Country Status (6)

Country Link
US (1) US20200203758A1 (ko)
EP (1) EP3654434B1 (ko)
JP (1) JP6972350B2 (ko)
KR (1) KR102268180B1 (ko)
CN (1) CN111052478B (ko)
WO (1) WO2019093709A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173946A (ja) * 2019-04-10 2020-10-22 株式会社Abri リチウム硫黄固体電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816842B (zh) * 2020-08-31 2022-08-05 珠海冠宇电池股份有限公司 含有钝化保护膜的锂电极及其制备方法和锂离子电池
CN111834662B (zh) * 2020-08-31 2022-07-08 珠海冠宇电池股份有限公司 界面功能层及其制备方法和锂离子电池
CN112397771B (zh) * 2020-11-27 2021-11-23 中国科学院青岛生物能源与过程研究所 一种固态电解质膜及其制备方法和在固态锂硫电池中的应用
US20230282883A1 (en) * 2022-03-04 2023-09-07 Factorial Inc. Electrochemical Cell Having Electrolyte With Polymer Localized on Electrode Surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020008704A (ko) * 2000-07-25 2002-01-31 김순택 리튬 설퍼 전지용 전해액
KR20130004090A (ko) * 2011-06-30 2013-01-09 주식회사 엘지화학 신규한 폴리머 전해질 및 이를 포함하는 리튬 이차전지
KR101422311B1 (ko) * 2006-12-04 2014-07-22 시온 파워 코퍼레이션 전해질의 분리
KR20150129181A (ko) * 2014-05-08 2015-11-19 국립대학법인 울산과학기술대학교 산학협력단 복합 전극-복합 전해질 합체, 이의 제조 방법, 및 이를 포함하는 전기 화학 소자
KR20160146844A (ko) * 2014-04-18 2016-12-21 시오 인코퍼레이티드 사이클 수명이 긴 리튬 황 고상 전기화학 셀

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3639376B2 (ja) * 1996-03-15 2005-04-20 日立マクセル株式会社 有機電解液二次電池
CN1412882A (zh) * 2001-10-15 2003-04-23 三星Sdi株式会社 用于锂-硫电池的电解质和含有该电解质的锂-硫电池
KR100542213B1 (ko) * 2003-10-31 2006-01-10 삼성에스디아이 주식회사 리튬 금속 전지용 음극 및 이를 포함하는 리튬 금속 전지
JP5093449B2 (ja) * 2007-01-09 2012-12-12 住友電気工業株式会社 リチウム電池
US8845764B2 (en) * 2010-06-14 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Power storage device comprising solid electrolyte layer over active material and second electrolyte and method of manufacturing the same
WO2012161989A1 (en) * 2011-05-24 2012-11-29 Sion Power Corporation Electrochemical cell, components thereof, and methods of making and using same
CN103972467B (zh) * 2013-02-06 2016-01-13 中国科学院金属研究所 一种锂硫电池多层复合正极及其制备方法
KR102073451B1 (ko) * 2013-03-15 2020-02-04 시온 파워 코퍼레이션 전극용 보호 구조물
US9882238B2 (en) * 2013-05-16 2018-01-30 Nanotek Instruments, Inc. Lithium-sulfur secondary battery containing gradient electrolyte
CA2820635A1 (en) * 2013-06-21 2014-12-21 Hydro-Quebec All-solid state polymer li-s electrochemical cells and their manufacturing processes
EP3059784B1 (en) * 2013-10-18 2018-07-11 LG Chem, Ltd. Separation membrane and lithium-sulfur battery comprising same
DE102014207233A1 (de) * 2014-04-15 2015-10-15 Bayerische Motoren Werke Aktiengesellschaft Lithium-Zelle, Batterie mit der Lithium-Zelle, sowie Kraftfahrzeug, mobiles Gerät oder stationäres Speicherelement umfassend die Batterie
CN105576287B (zh) * 2014-10-09 2018-10-19 中国科学院宁波材料技术与工程研究所 一体化无界面的固态电解质锂离子电池及其制备方法
EP3206248B1 (en) * 2014-10-31 2021-03-24 LG Chem, Ltd. Lithium sulfur battery and method for producing same
EP3136475B1 (en) * 2015-08-31 2021-09-22 Samsung Electronics Co., Ltd. Lithium metal battery
CN105489815B (zh) * 2016-01-15 2018-10-12 中南大学 一种全固态锂硫电池用夹层及全固态锂硫电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020008704A (ko) * 2000-07-25 2002-01-31 김순택 리튬 설퍼 전지용 전해액
KR101422311B1 (ko) * 2006-12-04 2014-07-22 시온 파워 코퍼레이션 전해질의 분리
KR20130004090A (ko) * 2011-06-30 2013-01-09 주식회사 엘지화학 신규한 폴리머 전해질 및 이를 포함하는 리튬 이차전지
KR20160146844A (ko) * 2014-04-18 2016-12-21 시오 인코퍼레이티드 사이클 수명이 긴 리튬 황 고상 전기화학 셀
KR20150129181A (ko) * 2014-05-08 2015-11-19 국립대학법인 울산과학기술대학교 산학협력단 복합 전극-복합 전해질 합체, 이의 제조 방법, 및 이를 포함하는 전기 화학 소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3654434A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173946A (ja) * 2019-04-10 2020-10-22 株式会社Abri リチウム硫黄固体電池
JP7283691B2 (ja) 2019-04-10 2023-05-30 株式会社Abri リチウム硫黄固体電池

Also Published As

Publication number Publication date
EP3654434A1 (en) 2020-05-20
EP3654434B1 (en) 2024-04-10
KR20190052406A (ko) 2019-05-16
EP3654434A4 (en) 2020-12-30
KR102268180B1 (ko) 2021-06-22
JP6972350B2 (ja) 2021-11-24
CN111052478A (zh) 2020-04-21
CN111052478B (zh) 2023-09-26
JP2020532086A (ja) 2020-11-05
US20200203758A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
WO2019093709A1 (ko) 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법
WO2015023154A1 (ko) 리튬-황 전지용 양극 및 이의 제조방법
WO2015016496A1 (ko) 리튬-황 전지용 양극 및 이의 제조방법
WO2012044132A2 (ko) 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2014109523A1 (ko) 리튬-황 전지용 양극 활물질 및 이의 제조방법
WO2014088270A1 (ko) 리튬 이차전지용 고용량 음극 활물질, 이의 제조 방법 및 이를 포함한 리튬 이차전지
WO2012165758A1 (ko) 리튬 이차전지
WO2014119960A1 (ko) 구형 천연 흑연을 포함하는 음극 및 이를 포함하는 리튬 이차 전지
WO2014189329A1 (ko) 다층의 활물질층을 포함하는 리튬 이차전지
WO2013002504A2 (ko) 신규한 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2012177016A2 (ko) 신규 구조 전극조립체 및 이를 이용한 이차전지
WO2015020338A1 (ko) 플렉시블 집전체 및 그 제조방법과 이를 이용한 이차전지
WO2019203571A1 (ko) 비대칭 구조의 이차전지용 난연 분리막
WO2019216713A1 (ko) 안전성이 향상된 리튬 금속 이차전지 및 그를 포함하는 전지모듈
WO2019013557A2 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법
WO2017171294A1 (ko) 전극의 제조방법
WO2017146555A1 (ko) 리튬 이차전지
US20210111425A1 (en) Secondary battery
KR20140060800A (ko) 상 전환법을 이용한 전기화학소자용 세퍼레이터의 제조방법, 그로부터 형성된 세퍼레이터 및 그를 포함하는 전기화학소자
WO2014027841A1 (ko) 리튬-설퍼 전지용 양극의 제조 방법 및 리튬 설퍼 전지
WO2014200214A1 (ko) 내진동 특성이 향상된 전기화학소자 및 전지 모듈
WO2016122196A1 (ko) 전극, 전지 및 전극의 제조 방법
WO2019059662A2 (ko) 금속 전극을 구비하는 금속이차전지
WO2018174527A1 (ko) 리튬 이차 전지
WO2013187707A1 (ko) 리튬 이차전지용 음극 및 그 제조방법과 이를 이용한 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531414

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018876317

Country of ref document: EP

Effective date: 20200213

NENP Non-entry into the national phase

Ref country code: DE