WO2017171294A1 - 전극의 제조방법 - Google Patents

전극의 제조방법 Download PDF

Info

Publication number
WO2017171294A1
WO2017171294A1 PCT/KR2017/003027 KR2017003027W WO2017171294A1 WO 2017171294 A1 WO2017171294 A1 WO 2017171294A1 KR 2017003027 W KR2017003027 W KR 2017003027W WO 2017171294 A1 WO2017171294 A1 WO 2017171294A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
active material
electrode active
material slurry
drying
Prior art date
Application number
PCT/KR2017/003027
Other languages
English (en)
French (fr)
Inventor
김영재
김제영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/743,754 priority Critical patent/US10243199B2/en
Priority to CN201780002749.1A priority patent/CN107925061B/zh
Publication of WO2017171294A1 publication Critical patent/WO2017171294A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an electrode.
  • a lithium secondary battery includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and an electrode such as a positive electrode or a negative electrode is coated, dried, and rolled on an electrode current collector by applying an electrode slurry including an electrode active material, a binder, and a solvent. Are manufactured.
  • a loading amount of 950 mg / 25cm 2 or more on the positive electrode basis and a loading amount of 500 mg / 25cm 2 or more on the negative electrode basis is evaluated as a high loading electrode, and the amount of electrode active material is increased to design the high loading electrode.
  • High-loading electrodes with a thick thickness of the active material layer have been tried.
  • the electrode needs to relatively increase the drying temperature during the manufacturing process of the electrode, and as the drying temperature increases, the binder moves to the surface of the electrode active material layer. There was a problem that the resistance of the electrode is increased.
  • the impregnability of the electrolyte solution is lowered, and there is a problem that the rate characteristic of the battery is lowered.
  • An object of the present invention is to provide a method for manufacturing an electrode in a high loading electrode, which can reduce the resistance of the electrode and improve the electrolyte impregnation.
  • the coating step of applying an electrode active material slurry comprising an electrode active material, a binder and a solvent on at least one surface of the electrode current collector A drying step of continuously introducing the electrode collector coated with the electrode active material slurry into a drying apparatus to dry the coated electrode active material slurry; And a rolling step of rolling the dried electrode active material slurry.
  • the method of manufacturing an electrode comprising: applying the electrode active material slurry at a loading amount of 500 mg / 25cm 2 to 1500 mg / 25cm 2 , and Simultaneously with the drying step, there is provided a method of manufacturing an electrode further comprising a pattern forming step of forming a plurality of patterns in the longitudinal direction on the surface of the coated electrode active material slurry.
  • the pattern forming step may form a plurality of patterns by pressing the surface of the electrode active material slurry coated with the pattern forming unit provided in the drying apparatus.
  • the pattern has a width of 0.2 mm to 0.4 mm, the interval between the patterns may be 1 mm to 3 mm.
  • the electrode may be an anode or a cathode.
  • the drying step may be performed at 80 ° C. to 100 ° C.
  • the drying step may be performed at 50 ° C. to 65 ° C.
  • the resistance of the high-loading electrode can be reduced, and the rate characteristic of the battery can be improved by improving the electrolyte impregnation property.
  • FIG. 1 is a view schematically showing a method of manufacturing an electrode according to an aspect of the present invention.
  • FIG. 2 is a view schematically showing a process of part A of FIG. 1.
  • 3 and 4 are SEM pictures showing the surface of the electrode prepared according to one aspect of the present invention.
  • Figure 6 is a graph showing the charging capacity of the monocell prepared according to the Examples and Comparative Examples of the present invention.
  • Conventional electrodes are prepared by applying, drying, and rolling an electrode slurry comprising an electrode active material, a binder, and a solvent to an electrode current collector, but a loading amount of 950 mg / 25 cm 2 or more on the basis of the positive electrode and 500 mg / 25 cm 2 or more on the basis of the negative electrode
  • a loading amount 950 mg / 25 cm 2 or more on the basis of the positive electrode and 500 mg / 25 cm 2 or more on the basis of the negative electrode
  • the drying temperature must be relatively increased during the manufacturing process of the electrode, and as the drying temperature is increased, the binder is formed on the surface of the electrode active material layer.
  • the movement of the electrode to increase the resistance of the electrode.
  • the thickness of the electrode active material layer became thick, there was a problem that the impregnability of the electrolytic solution was lowered and the rate characteristic of the battery was lowered.
  • the present invention in the step of drying the electrode active material slurry, by forming a plurality of patterns in the longitudinal direction on the surface on which the electrode active material slurry is applied, the phenomenon that the binder is prevented from moving to the surface, thereby reducing the resistance of the electrode, By improving electrolyte solution impregnation, the rate characteristic of a battery can be improved.
  • Method for manufacturing an electrode according to the present invention as in the manufacturing method of a conventional electrode, the coating step of applying an electrode active material slurry containing an electrode active material, a binder and a solvent on at least one surface of the electrode current collector; A drying step of continuously introducing the electrode collector coated with the electrode active material slurry into a drying apparatus to dry the coated electrode active material slurry; And a rolling step of rolling the dried electrode active material slurry.
  • the electrode active material may be a positive electrode active material or a negative electrode active material.
  • the positive electrode active material may be a lithium containing oxide, and a lithium containing transition metal oxide may be preferably used.
  • a lithium metal As the negative electrode active material, a lithium metal, a carbon material, a metal compound, or a mixture thereof, which can normally occlude and release lithium ions, may be used.
  • both low crystalline carbon and high crystalline carbon may be used as the carbon material.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon
  • high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber.
  • High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the metal compound may be Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, and Ba
  • the compound containing 1 or more types of metal elements is mentioned. These metal compounds may be used in any form, such as single, alloys, oxides (TiO 2 , SnO 2, etc.), nitrides, sulfides, borides, and alloys with lithium. High capacity can be achieved. Among them, one or more elements selected from Si, Ge, and Sn may be contained, and one or more elements selected from Si and Sn may further increase the capacity of the battery.
  • the binder may be polyvinylidene fluoride (PVDF), hexafluoro propylene (HFP), polyvinylidene fluoride-co-hexafluoro propylene (polyvinylidene fluoride-co-hexafluoro propylene), Polyvinylidene fluorideco-trichloro ethylene, polymethyl methacrylate, polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone ( polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate), polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butylate acetate butyrate, cellulose acetate propionate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethyl cellulose, cyanoethylsu
  • the solvent is acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylform amide, N-methyl-2-pyrrolidone (N-methyl-2 -pyrrolidone, NMP), cyclohexane and any one selected from the group consisting of water or a mixture of two or more thereof.
  • the electrode current collector may be a positive electrode current collector or a negative electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the positive electrode current collector is made of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like on the surface may be used.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • carbon on the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel , Surface-treated with nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like can be used.
  • the electrode current collector 10 is supplied by unwinding a wound electrode current collector roll 100.
  • the electrode active material slurry 20 is applied to one surface of the electrode current collector 10 by the coating device 200.
  • the electrode current collector 10 coated with the electrode active material slurry 20 is continuously introduced into the drying apparatus 300 to perform a drying process.
  • the pattern forming unit 310 provided in the drying apparatus 300 forms a plurality of patterns in the longitudinal direction on the surface of the electrode active material slurry 20.
  • the electrode active material slurry 20 is rolled by the rolling roller 400.
  • the electrode active material slurry applied to at least one surface of the electrode current collector is a loading amount of 950 mg / 25cm 2 to 1500 mg / 25cm 2 when the electrode is a positive electrode, and 500 when the electrode is a negative electrode to achieve a high loading electrode. It may be applied in a loading amount of mg / 25 cm 2 to 750 mg / 25 cm 2 .
  • the drying step is to volatilize the solvent contained in the electrode active material slurry.
  • the drying step may be performed at 80 ° C. to 100 ° C.
  • the drying step may be performed at 50 ° C. to 65 ° C.
  • the manufacturing method of the electrode according to the present invention by forming a plurality of patterns on the surface of the electrode active material slurry The drying process can be carried out at relatively low temperatures.
  • the pattern forming step is performed at the same time as the drying step, and is a step of forming a plurality of patterns in the longitudinal direction on the surface of the electrode active material slurry.
  • the pattern forming step is performed before the drying step, the electrode active material slurry may not be dried, and thus, the viscosity is low, so that the pattern may not be formed properly.
  • the pattern forming step is performed after the drying step, the solvent included in the electrode active material slurry is volatilized. As a result, there is a problem that cracks or dusts are generated in the portion to which the electrode active material slurry is applied. Therefore, the pattern forming step is preferably performed at the same time as the drying step.
  • FIG. 2 is a view schematically showing a process of part A of FIG. 1.
  • the electrode current collector 10 coated with the electrode active material slurry 20 is continuously drawn into a drying apparatus, and the pattern forming part 310 provided in the drying apparatus moves downward, so that the electrode active material slurry The surface of 20 is pressed, and a plurality of patterns in the longitudinal direction are formed on the surface of the electrode active material slurry in accordance with the advancing direction.
  • the pattern may be formed in a width of 0.2 mm to 0.4 mm, the interval between the patterns may be formed of 1 mm to 3 mm.
  • the rolling step may be a step of rolling an electrode active material slurry in which drying and patterns are formed, and may prevent a burr phenomenon in which an electrode active material or a binder occurs in the pattern forming process.
  • 3 and 4 are SEM pictures showing the surface of the electrode prepared according to one aspect of the present invention.
  • 3 is an SEM photograph of an electrode surface before rolling
  • FIG. 4 is an SEM photograph of an electrode surface after rolling
  • (a), (b), and (c) are SEM photographs respectively shown according to magnification.
  • FIG. 3 there is a portion where a pattern is formed to expose an electrode current collector.
  • FIG. 4 as the electrode active material and the binder are partially filled in a portion where a pattern is formed by rolling, the electrode has a plurality of pores. It can be seen that. Therefore, it can be seen that the impregnation of the electrolyte solution is improved.
  • an electrode manufactured according to the above-described manufacturing method.
  • a mixture comprising 97.9% by weight of Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 , 0.5% by weight of carbon black (conductive agent) and 1.6% by weight of PVdF (binder) as a positive electrode active material was mixed in an NMP solvent.
  • NMP N-methyl methacrylate
  • the positive electrode active material slurry was coated on aluminum foil at a loading amount of 956 mg / 25 cm 2 , and then dried in a vacuum oven at 120 ° C. for 10 hours or more, with a plurality of patterns having a width of 0.3 mm and an interval of 1 mm between the patterns.
  • a positive electrode having a thickness of 135 ⁇ m was prepared using a roll-shaped press.
  • a mixture containing 95.6% by weight of artificial graphite, 1% by weight of carbon black, 2.3% by weight of SBR binder, and 1.1% by weight of CMC as a negative electrode active material was mixed in an NMP solvent to prepare a negative electrode active material slurry.
  • the content of NMP was adjusted to be 51% by weight in the negative electrode active material slurry.
  • the negative electrode mixture slurry was coated on a copper foil at a loading amount of 539 mg / 25 cm 2 , and then dried in a vacuum oven at 100 ° C. for 10 hours or more, having a width of 0.3 mm, and having a gap of 1 mm between each pattern. The pattern was formed, and a negative electrode having a thickness of 167 ⁇ m was prepared using a roll-shaped press.
  • An electrolyte solution containing 1.5 wt% of carbonate (EMC), 1.5 wt% of additives VC, and 0.5 wt% of PS was injected to prepare a monocell having a size of 12.6 cm 2 based on a positive electrode and 13.33 cm 2 based on a negative electrode.
  • a monocell was prepared in the same manner as in Example except that no pattern was formed on the anode and the cathode.
  • the same characteristics are exhibited up to 0.5C, but after 0.5C, the monocell of the embodiment exhibits excellent characteristics.
  • the calculated resistance value is shown in FIG. 7, the normal charge transfer resistance value representing the voltage drop by IR drop is shown in FIG. 8, and the diffusion resistance is shown in FIG. 9.
  • the monocell of the embodiment exhibits an increased reaction surface area by increasing the impregnation of the electrolyte and a lower resistance value as the electrolyte is evenly distributed on the electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 고로딩 전극의 저항을 감소시킬 수 있으며, 전해액 함침성을 향상시킴으로써, 전지의 레이트 특성을 개선하기 위한 것으로, 전극 활물질, 바인더 및 용매를 포함하는 전극 활물질 슬러리를 전극 집전체의 적어도 일면에 도포하는 도포단계; 상기 전극 활물질 슬러리가 도포된 전극 집전체가 연속적으로 건조장치로 인입되어, 도포된 전극 활물질 슬러리를 건조하는 건조단계; 및 상기 건조된 전극 활물질 슬러리를 압연하는 압연단계;를 포함하는 전극의 제조방법에 있어서, 상기 도포단계는 전극 활물질 슬러리를 500 mg/25cm2 내지 1500 mg/25cm2의 로딩량으로 도포하고, 상기 건조단계와 동시에 수행되며, 상기 도포된 전극 활물질 슬러리의 표면에 길이방향의 복수의 패턴을 형성하는 패턴형성단계를 더 포함하는 전극의 제조방법을 제공한다.

Description

전극의 제조방법
본 발명은 전극의 제조방법 관한 것이다.
본 출원은 2016년 3월 28일에 출원된 한국특허출원 제10-2016-0036912호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격히 증가하고 있다. 이러한 이차 전지 중 높은 에너지 밀도와 전압을 갖고 사이클 수명이 길며, 방전율이 낮은 리튬 이차 전지가 상용화되어 널리 사용되고 있다. 리튬 이차전지는 양극, 음극 및 상기 양극과 음극 사이에 개재되는 분리막을 구비하여, 양극이나 음극과 같은 전극은 전극 활물질, 바인더 및 용매를 포함하는 전극 슬러리를 전극 집전체에 도포, 건조 및 압연함으로써 제조된다.
최근 환경 문제에 대한 관심이 커짐에 따라 대기 오염의 주요 원인 중 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기 자동차, 하이브리드 전기 자동차 등 고용량 배터리 채용 장치 시장의 성장에 따른 고용량 배터리 수요기반이 확대되면서 이들 장치의 동력원으로 높은 에너지 밀도, 고출력 및 높은 방전 전압을 갖는 리튬 이차전지의 제조를 위한 전극의 고용량화 설계가 요구되고 있는 실정이다.
시장에서는 양극 기준으로 950 mg/25cm2 이상의 로딩량, 음극 기준으로 500 mg/25cm2 이상의 로딩량을 고로딩 전극으로 평가하고 있으며, 고로딩 전극의 설계를 위해 전극 활물질의 양을 증가시켜, 전극 활물질층의 두께가 두꺼운 고로딩 전극이 시도되고 있다. 그러나, 이러한 전극은 전극 활물질층의 두께가 두꺼워짐에 따라, 전극의 제조과정 중 건조 온도를 상대적으로 높여야 하며, 건조 온도가 상승됨에 따라, 전극 활물질층의 표면으로 바인더가 이동하는 현상이 발생하여 전극의 저항이 증가하는 문제가 있었다.
또한, 전극 활물질층의 두께가 두꺼워짐에 따라, 전해액의 함침성이 저하되어, 전지의 레이트(rate) 특성이 저하되는 문제가 있었다.
본 발명이 해결하고자 하는 과제는, 고로딩 전극에 있어서, 전극의 저항을 감소시키고, 전해액 함침성을 개선할 수 있는 전극의 제조방법을 제공하는 것을 목적으로 한다.
상기 과제를 달성하기 위하여, 본 발명의 일 측면에 따라, 전극 활물질, 바인더 및 용매를 포함하는 전극 활물질 슬러리를 전극 집전체의 적어도 일면에 도포하는 도포단계; 상기 전극 활물질 슬러리가 도포된 전극 집전체가 연속적으로 건조장치로 인입되어, 도포된 전극 활물질 슬러리를 건조하는 건조단계; 및 상기 건조된 전극 활물질 슬러리를 압연하는 압연단계;를 포함하는 전극의 제조방법에 있어서, 상기 도포단계는 전극 활물질 슬러리를 500 mg/25cm2 내지 1500 mg/25cm2의 로딩량으로 도포하고, 상기 건조단계와 동시에 수행되며, 상기 도포된 전극 활물질 슬러리의 표면에 길이방향의 복수의 패턴을 형성하는 패턴형성단계를 더 포함하는 전극의 제조방법이 제공된다.
바람직하게는, 상기 패턴형성단계는 건조장치에 구비되는 패턴 형성부가 도포된 전극 활물질 슬러리의 표면을 눌러 복수의 패턴을 형성할 수 있다.
바람직하게는, 상기 패턴은 0.2 mm 내지 0.4 mm의 폭을 가지며, 패턴간의 간격은 1 mm 내지 3 mm일 수 있다.
바람직하게는, 상기 전극은 양극 또는 음극일 수 있다.
바람직하게는, 상기 전극이 양극인 경우 950 mg/25cm2 내지 1500 mg/25cm2의 로딩량, 상기 전극이 음극인 경우 500 mg/25cm2 내지 750 mg/25cm2의 로딩량으로 전극 활물질 슬러리를 도포할 수 있다.
바람직하게는, 상기 전극이 양극인 경우 상기 건조단계는 80℃ 내지 100℃에서 수행되며, 상기 전극이 음극인 경우 상기 건조단계는 50℃ 내지 65℃에서 수행될 수 있다.
본 발명의 제조방법에 따르면, 고로딩 전극의 저항을 감소시킬 수 있으며, 전해액 함침성을 향상시킴으로써, 전지의 레이트 특성을 개선할 수 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 측면에 따른 전극의 제조방법을 개략적으로 나타낸 도면이다.
도 2는 도 1의 A부분의 공정을 개략적으로 나타낸 도면이다.
도 3 및 4는 본 발명의 일 측면에 따라 제조된 전극의 표면을 나타낸 SEM 사진이다.
도 5는 본 발명의 실시예 및 비교예에 따라 제조된 모노셀의 방전용량을 나타낸 그래프이다.
도 6은 본 발명의 실시예 및 비교예에 따라 제조된 모노셀의 충전용량을 나타낸 그래프이다.
도 7 내지 9는 본 발명의 실시예 및 비교예에 따라 제조된 모노셀의 저항을 나타낸 그래프이다.
[부호의 설명]
10: 전극 집전체
20: 전극 활물질 슬러리
100: 전극 집전체롤
200: 도포장치
300: 건조장치
310: 패턴형성부
400: 압연롤러
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
종래의 전극은 전극 활물질, 바인더 및 용매를 포함하는 전극 슬러리를 전극 집전체에 도포, 건조 및 압연함으로써 제조되나, 양극 기준으로 950 mg/25cm2 이상의 로딩량, 음극 기준으로 500 mg/25cm2 이상의 로딩량을 갖는 고로딩 전극을 제조함에 있어서, 전극 활물질층의 두께가 두꺼워짐에 따라, 전극의 제조과정 중 건조 온도를 상대적으로 높여야 하며, 건조 온도가 상승됨에 따라, 전극 활물질층의 표면으로 바인더가 이동하는 현상이 발생하여 전극의 저항이 증가하는 문제가 있었다. 또한, 전극 활물질층의 두께가 두꺼워짐에 따라, 전해액의 함침성이 저하되어, 전지의 레이트 특성이 저하되는 문제가 있었다.
본 발명은 전극 활물질 슬러리를 건조하는 단계에서, 전극 활물질 슬러리가 도포된 표면에 길이방향의 복수의 패턴을 형성함으로써, 표면으로 바인더가 이동하는 현상을 방지하여, 전극의 저항을 감소시킬 수 있으며, 전해액 함침성을 향상시킴으로써, 전지의 레이트 특성을 개선할 수 있다.
본 발명에 따른 전극의 제조방법은 통상의 전극의 제조방법과 마찬가지로, 전극 활물질, 바인더 및 용매를 포함하는 전극 활물질 슬러리를 전극 집전체의 적어도 일면에 도포하는 도포단계; 상기 전극 활물질 슬러리가 도포된 전극 집전체가 연속적으로 건조장치로 인입되어, 도포된 전극 활물질 슬러리를 건조하는 건조단계; 및 상기 건조된 전극 활물질 슬러리를 압연하는 압연단계;를 포함한다.
상기 전극 활물질은 양극 활물질 또는 음극 활물질일 수 있다.
상기 양극 활물질은 리튬 함유 산화물일 수 있으며, 리튬 함유 전이금속 산화물이 바람직하게 사용될 수 있다. 예를 들면, 상기 리튬 함유 전이금속 산화물은, LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1-yCoyO2(0.5<x<1.3, 0<y<1), LixCo1 - yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1 -yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2 - zNizO4(0.5<x<1.3, 0<z<2), LixMn2 - zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있으며, 상기 리튬 함유 전이금속 산화물은 알루미늄(Al) 등의 금속이나 금속산화물로 코팅될 수도 있다. 또한, 상기 리튬 함유 전이금속 산화물 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다.
상기 음극 활물질은 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 리튬 금속, 탄소재, 금속 화합물 및 이들의 혼합물을 사용할 수 있다.
구체적으로는 상기 탄소재로는 저결정성 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
여기서 상기 금속 화합물로는 Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, 및 Ba 등의 금속 원소를 1종 이상 함유하는 화합물을 들 수 있다. 이들 금속 화합물은 단체, 합금, 산화물(TiO2, SnO2 등), 질화물, 황화물, 붕화물, 리튬과의 합금 등, 어떤 형태로도 사용할 수 있지만, 단체, 합금, 산화물, 리튬과의 합금은 고용량화될 수 있다. 그 중에서도, Si, Ge 및 Sn으로부터 선택되는 1종 이상의 원소를 함유할 수 있고, Si 및 Sn으로부터 선택되는 1종 이상의 원소를 포함하는 것이 전지를 더 고용량화 할 수 있다.
상기 바인더는 폴리비닐리덴 풀루오라이드(polyvinylidene fluoride, PVDF), 헥사풀루오로프로필렌(hexafluoro propylene, HFP), 폴리비닐리덴 풀루오라이드-헥사풀루오로 프로필렌(polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로 에틸렌(polyvinylidene fluorideco-trichloro ethylene), 폴리메틸 메타크릴레이트(polymethyl methacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트(polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌 옥사이드(polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트(celluloseacetate), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate), 시아노에틸 풀루란(cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸 셀룰로오스(cyanoethylcellulose), 시아노에틸 수크로오스(cyanoethylsucrose), 풀루란(pullulan), 카르복실 메틸 셀룰로오스(carboxyl methyl cellulose), 아크리로니 트릴-스티렌-부타디엔 공중합체(acrylonitrile-styrene-butadiene copolymer) 및 폴리이미드(polyimide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
상기 용매는 아세톤(acetone), 테트라 하이드로퓨란(tetrahydrofuran), 메틸렌 클로라이드(methylene chloride), 클로로포름(chloroform), 디메틸포름 아미드(dimethylform amide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), 시클로헥산(cyclohexane) 및 물로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
상기 전극 집전체는 양극 집전체 또는 음극 집전체일 수 있다.
상기 양극 집전체는, 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
도 1은 본 발명의 일 측면에 따른 전극의 제조방법을 개략적으로 나타낸 도면이다. 도 1을 참조하면, 전극 집전체(10)가 와인딩된 전극 집전체롤(100)을 언와인딩하여 공급된다. 전극 집전체(10)의 일면에 전극 활물질 슬러리(20)가 도포장치(200)에 의해 도포된다. 전극 활물질 슬러리(20)가 도포된 전극 집전체(10)가 연속적으로 건조장치(300)으로 인입되어 건조공정이 수행된다. 건조 단계에서, 건조장치(300)에 구비되는 패턴형성부(310)가 전극 활물질 슬러리(20)의 표면에 길이방향의 복수의 패턴을 형성한다. 이어서, 압연롤러(400)에 의해 전극 활물질 슬러리(20)가 압연된다.
상기 전극 집전체의 적어도 일면에 도포되는 전극 활물질 슬러리는 고로딩 전극을 달성하기 위해, 상기 전극이 양극인 경우 950 mg/25cm2 내지 1500 mg/25cm2의 로딩량, 상기 전극이 음극인 경우 500 mg/25cm2 내지 750 mg/25cm2의 로딩량으로 도포될 수 있다.
상기 건조단계는 전극 활물질 슬러리에 포함된 용매를 휘발시키는 단계이다. 상기 전극이 양극인 경우 상기 건조단계는 80℃ 내지 100℃에서 수행되며, 상기 전극이 음극인 경우 상기 건조단계는 50℃ 내지 65℃에서 수행될 수 있다. 종래의 전극의 경우 양극인 경우 120℃ 내지 130℃에서 수행되며, 음극인 경우 70℃ 내지 80℃에서 수행되나, 본 발명에 따른 전극의 제조방법은 전극 활물질 슬러리의 표면에 복수의 패턴을 형성함으로써, 상대적으로 낮은 온도에서 건조 공정을 수행할 수 있다.
상기 패턴형성단계는 건조단계와 동시에 수행되며, 전극 활물질 슬러리의 표면에 길이방향의 복수의 패턴을 형성하는 단계이다. 패턴형성단계가 건조단계 이전에 수행되는 경우, 전극 활물질 슬러리가 건조되지 못하여, 점성이 낮아 패턴이 제대로 형성되지 못하는 문제가 있으며, 건조단계 이후에 수행되는 경우, 전극 활물질 슬러리에 포함되는 용매가 휘발됨에 따라, 전극 활물질 슬러리가 도포된 부분에 크랙이 발생하거나 분진이 발생하는 문제가 있다. 따라서, 패턴형성단계는 건조단계와 동시에 수행되는 것이 바람직하다.
도 2는 도 1의 A부분의 공정을 개략적으로 나타낸 도면이다. 도 2를 참조하면, 전극 활물질 슬러리(20)가 도포된 전극 집전체(10)가 연속적으로 건조장치로 인입되며, 건조장치에 구비되는 패턴형성부(310)이 하방으로 이동하여, 전극 활물질 슬러리(20)의 표면을 누르게 되며, 진행방향에 따라 전극 활물질 슬러리의 표면에 길이방향의 복수의 패턴이 형성된다.
상기 패턴은 0.2 mm 내지 0.4 mm의 폭으로 형성될 수 있으며, 패턴간의 간격은 1 mm 내지 3 mm로 형성될 수 있다.
상기 압연단계는 건조 및 패턴이 형성된 전극 활물질 슬러리를 압연하는 단계로, 패턴형성과정에서 전극 활물질이나 바인더가 일어나는 버(Burr) 현상을 방지할 수 있다.
도 3 및 4는 본 발명의 일 측면에 따라 제조된 전극의 표면을 나타낸 SEM 사진이다. 도 3은 압연 이전의 전극 표면의 SEM사진과, 도 4는 압연 이후의 전극 표면의 SEM 사진으로, (a), (b), (c)는 각각 배율에 따라 나타낸 SEM사진이다. 도 3을 참조하면, 패턴이 형성되어 전극 집전체가 노출되는 부분이 있으며, 도 4를 참조하면, 압연에 의해 전극 활물질과 바인더가 패턴이 형성된 부분에 일부 메꿔짐에 따라, 다수의 기공을 갖는 것을 알 수 있다. 따라서, 전해액에 대한 함침성이 향상됨을 알 수 있다.
또한, 본 발명의 다른 일 측면에 따르면, 전술한 제조방법에 따라 제조된 전극이 제공된다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 명확하고 완전하게 설명하기 위해서 제공되는 것이다.
실시예
양극 활물질로서 Li(Ni1/3Mn1/3Co1/3)O2 97.9 중량%, 카본블랙(도전제) 0.5 중량% 및 PVdF(바인더) 1.6 중량%를 포함하는 혼합물을 NMP 용매에 혼합하여 양극 활물질 슬러리를 제조하였다. 이때 NMP의 함량은 상기 양극 활물질 슬러리 중, 77.9 중량%가 되도록 조절하였다. 이러한 양극 활물질 슬러리를 956 mg/25cm2의 로딩량으로 알루미늄 호일에 도포한 후, 120℃의 진공오븐에서 10 시간 이상 건조하면서, 폭 0.3mm를 갖고, 각 패턴간의 간격이 1 mm인 복수의 패턴을 형성하였으며, 롤 형태의 프레스를 이용하여 135 ㎛의 두께를 갖는 양극을 제조하였다.
또한, 음극 활물질로서 인조 흑연 95.6 중량%, 카본블랙 1 중량%, SBR 바인더 2.3 중량%, CMC 1.1 중량%를 포함하는 혼합물을 NMP 용매에 혼합하여 음극 활물질 슬러리를 제조하였다. 이때 NMP의 함량은 상기 음극 활물질 슬러리 중, 51 중량%가 되도록 조절하였다. 후, 이러한 음극 합제 슬러리를 539 mg/25cm2의 로딩량으로 구리 호일에 도포한 후, 100℃의 진공오븐에서 10 시간 이상 건조하면서, 폭 0.3mm를 갖고, 각 패턴간의 간격이 1 mm인 복수의 패턴을 형성하였으며, 롤 형태의 프레스를 이용하여 167 ㎛의 두께를 갖는 음극을 제조하였다.
상기에서 제조된 음극과 양극을 사용하고 상기 음극과 양극 사이에 폴리올레핀 분리막을 개재시킨 후 1M의 LiPF6이 용해된 부피비 2:1:7의 에틸렌카보네이트(EC), 프로필렌카보네이트(PC) 및 에틸메틸카보네이트(EMC)와 첨가제 VC 1.5중량%, PS 0.5 중량%가 혼합된 전해액을 주입하여 양극 기준 12.6 cm2, 음극 기준 13.33 cm2 크기의 모노셀을 제조하였다.
비교예
상기 양극과 음극에 패턴을 형성하지 않은 것을 제외하고는 실시예와 동일한 모노셀을 제조하였다.
방전 레이트 특성
상기 실시예와 비교예에 따라 제조된 모노셀을, 0.1C기준으로 방전 레이트별 특성을 확인하였으며, 그 결과를 도 5에 나타내었다.
도 5를 참조하면, 0.5C 레이트까지는 동일한 특성을 보이지만, 0.5C 레이트 이후부터는 실시예의 모노셀이 우수한 특성을 나타내는 것을 알 수 있다.
충전 레이트 특성
상기 실시예와 비교예에 따라 제조된 모노셀을, CC 충전 레이트별 특성을 확인하였으며, 그 결과를 도 6에 나타내었다.
도 6을 참조하면, 방전 레이트 특성과 동일하게, 0.5C 레이트까지는 동일한 특성을 보이지만, 0.5C 레이트 이후부터는 실시예의 모노셀이 우수한 특성을 나타내는 것을 알 수 있다.
저항 평가
상기 실시예와 비교예에 따라 제조된 모노셀을 정해진 셀 충전 정도에서 높은 전류를 30초간 부여하고 전압을 확인하여 V=IR이라는 식을 통해서 저항을 계산하였다. 계산된 저항값은 도 7에 나타내었으며, IR drop에 의한 전압 강하 값을 나타내는 보통 Charge Transfer 저항값은 도 8에 나타내었고, Diffusion 저항은 도 9에 나타내었다.
도 7 내지 9를 참조하면, 실시예의 모노셀이 전해액의 함침성이 향상되어 늘어난 반응 표면적과, 전극에 전해액이 고르게 분포됨에 따라 더 낮은 저항값을 나타내는 것을 알 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (6)

  1. 전극 활물질, 바인더 및 용매를 포함하는 전극 활물질 슬러리를 전극 집전체의 적어도 일면에 도포하는 도포단계; 상기 전극 활물질 슬러리가 도포된 전극 집전체가 연속적으로 건조장치로 인입되어, 도포된 전극 활물질 슬러리를 건조하는 건조단계; 및 상기 건조된 전극 활물질 슬러리를 압연하는 압연단계;를 포함하는 전극의 제조방법에 있어서,
    상기 도포단계는 전극 활물질 슬러리를 500 mg/25cm2 내지 1500 mg/25cm2의 로딩량으로 도포하고,
    상기 건조단계와 동시에 수행되며, 상기 도포된 전극 활물질 슬러리의 표면에 길이방향의 복수의 패턴을 형성하는 패턴형성단계를 더 포함하는 것을 특징으로 하는 전극의 제조방법.
  2. 제1항에 있어서,
    상기 패턴형성단계는 건조장치에 구비되는 패턴 형성부가 도포된 전극 활물질 슬러리의 표면을 눌러 복수의 패턴을 형성하는 것을 특징으로 하는 전극의 제조방법.
  3. 제1항에 있어서,
    상기 패턴은 0.2 mm 내지 0.4 mm의 폭을 가지며, 패턴간의 간격은 1 mm 내지 3 mm인 것을 특징으로 하는 전극의 제조방법.
  4. 제1항에 있어서,
    상기 전극은 양극 또는 음극인 것을 특징으로 하는 전극의 제조방법.
  5. 제4항에 있어서,
    상기 전극이 양극인 경우 950 mg/25cm2 내지 1500 mg/25cm2의 로딩량, 상기 전극이 음극인 경우 500 mg/25cm2 내지 750 mg/25cm2의 로딩량으로 전극 활물질 슬러리를 도포하는 것을 특징으로 하는 전극의 제조방법.
  6. 제4항에 있어서,
    상기 전극이 양극인 경우 상기 건조단계는 80℃ 내지 100℃에서 수행되며, 상기 전극이 음극인 경우 상기 건조단계는 50℃ 내지 65℃에서 수행되는 것을 특징으로 하는 전극의 제조방법.
PCT/KR2017/003027 2016-03-28 2017-03-21 전극의 제조방법 WO2017171294A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/743,754 US10243199B2 (en) 2016-03-28 2017-03-21 Method for manufacturing electrode
CN201780002749.1A CN107925061B (zh) 2016-03-28 2017-03-21 用于制造电极的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0036912 2016-03-28
KR1020160036912A KR101953364B1 (ko) 2016-03-28 2016-03-28 전극의 제조방법

Publications (1)

Publication Number Publication Date
WO2017171294A1 true WO2017171294A1 (ko) 2017-10-05

Family

ID=59964926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003027 WO2017171294A1 (ko) 2016-03-28 2017-03-21 전극의 제조방법

Country Status (4)

Country Link
US (1) US10243199B2 (ko)
KR (1) KR101953364B1 (ko)
CN (1) CN107925061B (ko)
WO (1) WO2017171294A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017152A1 (ja) * 2017-07-19 2019-01-24 日本スピンドル製造株式会社 非水電解質二次電池の正極用スラリーの製造方法及びその装置
CN111244396A (zh) * 2020-01-21 2020-06-05 重庆金康新能源汽车有限公司 还原氧化石墨烯在高容量锂离子电池中的应用
CN111682162A (zh) * 2020-05-25 2020-09-18 惠州亿纬创能电池有限公司 电池极片及其制备方法
EP4037006A3 (en) * 2021-01-27 2022-12-07 Prime Planet Energy & Solutions, Inc. Electrode material comprising moisture powder, electrode, method for producing same, and secondary battery provided with said electrode
CN113903878B (zh) * 2021-09-27 2023-10-03 湖北亿纬动力有限公司 一种电池极片压辊、电池极片辊压方法、电池极片及电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120124077A (ko) * 2011-05-02 2012-11-12 주식회사 엘지화학 다층의 전극 활물질층을 포함하는 전극 및 이를 포함하는 이차 전지
KR20130011682A (ko) * 2011-07-22 2013-01-30 주식회사 두원공조 차량용 공조장치의 케이스 유닛
KR20140070198A (ko) * 2012-11-30 2014-06-10 주식회사 엘지화학 가스 배출성이 개선된 전기화학소자용 캐소드, 그의 제조방법 및 그를 포함하는 전기화학소자
KR20140073719A (ko) * 2012-12-06 2014-06-17 한국전기연구원 고상 전해질의 전극과의 접촉저항을 최소화하기 위한 유연성을 가지는 전고상 전지 제작 방법
KR20150082958A (ko) * 2014-01-08 2015-07-16 주식회사 엘지화학 이차전지용 전극 및 그 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123668A (en) * 1980-03-04 1981-09-28 Matsushita Electric Ind Co Ltd Manufacture of electrode plate for alkaline battery
JP2003017071A (ja) * 2001-07-02 2003-01-17 Honda Motor Co Ltd 燃料電池用電極およびその製造方法とそれを備える燃料電池
US6884745B2 (en) * 2002-06-28 2005-04-26 Advanced Energy Technology Inc. Perforated cylindrical fuel cells
US20080248386A1 (en) * 2007-04-05 2008-10-09 Obrovac Mark N Electrodes with raised patterns
US11024845B2 (en) 2012-04-16 2021-06-01 Lg Chem, Ltd. Moisture-limited electrode active material, moisture-limited electrode and lithium secondary battery comprising the same
DE102012215921A1 (de) * 2012-09-07 2014-03-13 Robert Bosch Gmbh Batterie mit porösen Elektroden
KR101627305B1 (ko) * 2013-02-04 2016-06-03 주식회사 엘지화학 전극조립체의 제조방법, 그 전극조립체 및 이를 포함하는 전기화학소자
JP2015138619A (ja) * 2014-01-21 2015-07-30 パナソニックIpマネジメント株式会社 非水電解質二次電池の負極の製造方法、および非水電解質二次電池の負極の製造装置
WO2016039264A1 (ja) * 2014-09-10 2016-03-17 三菱マテリアル株式会社 リチウムイオン二次電池用正極及びリチウムイオン二次電池
US9819029B2 (en) * 2016-02-15 2017-11-14 Doosan Fuel Cell America, Inc. Method of making a fuel cell component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120124077A (ko) * 2011-05-02 2012-11-12 주식회사 엘지화학 다층의 전극 활물질층을 포함하는 전극 및 이를 포함하는 이차 전지
KR20130011682A (ko) * 2011-07-22 2013-01-30 주식회사 두원공조 차량용 공조장치의 케이스 유닛
KR20140070198A (ko) * 2012-11-30 2014-06-10 주식회사 엘지화학 가스 배출성이 개선된 전기화학소자용 캐소드, 그의 제조방법 및 그를 포함하는 전기화학소자
KR20140073719A (ko) * 2012-12-06 2014-06-17 한국전기연구원 고상 전해질의 전극과의 접촉저항을 최소화하기 위한 유연성을 가지는 전고상 전지 제작 방법
KR20150082958A (ko) * 2014-01-08 2015-07-16 주식회사 엘지화학 이차전지용 전극 및 그 제조방법

Also Published As

Publication number Publication date
US20180205065A1 (en) 2018-07-19
CN107925061B (zh) 2020-12-11
KR20170111443A (ko) 2017-10-12
US10243199B2 (en) 2019-03-26
KR101953364B1 (ko) 2019-02-28
CN107925061A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2017171294A1 (ko) 전극의 제조방법
WO2016148383A1 (ko) 다층 구조 전극 및 이를 포함하는 리튬 이차전지
WO2014189329A1 (ko) 다층의 활물질층을 포함하는 리튬 이차전지
WO2016060521A1 (ko) 전기절연층이 코팅되어 있는 전극탭 및 이를 포함하는 이차전지
WO2013133572A1 (ko) 무기입자를 이용한 리튬 이차전지용 기재의 코팅방법 및 상기 방법에 의해 코팅된 기재를 포함하는 리튬 이차전지
WO2019078544A1 (ko) 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
WO2019093709A1 (ko) 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법
WO2020032471A1 (ko) 리튬 이차전지용 전극 및 그를 포함하는 리튬 이차전지
WO2013085319A1 (ko) 리튬 이차전지용 음극 활물질 및 이의 제조방법
WO2018044013A1 (ko) 관통형의 기공 또는 구멍들이 형성된 집전체를 사용하여 전극을 제조하는 방법
WO2019093836A1 (ko) 원통형 젤리롤에 사용되는 스트립형 전극 및 그를 포함하는 리튬 이차전지
WO2017146555A1 (ko) 리튬 이차전지
WO2015012640A1 (ko) 에너지 밀도가 향상된 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2016133345A1 (ko) 전극, 이를 포함하는 이차전지 및 이의 제조방법
WO2014193187A1 (ko) 이차전지용 도전재 및 이를 포함하는 리튬 이차전지용 전극
WO2019045552A1 (ko) 플렉시블 전지의 제조방법 및 이로부터 제조된 플렉시블 전지
WO2022149751A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2022092679A1 (ko) 전극 조립체 및 이를 포함하는 전지셀
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
WO2016122196A1 (ko) 전극, 전지 및 전극의 제조 방법
WO2016056775A1 (ko) 교번 배열된 전극 합제부와 비가역부를 포함하고 있는 전극 및 그것을 포함하는 이차전지
WO2020226261A1 (ko) 전극 및 그의 제조 방법
WO2018117405A1 (ko) 전극의 건조 방법
WO2018093151A1 (ko) 양극 활물질 슬러리의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15743754

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775719

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775719

Country of ref document: EP

Kind code of ref document: A1