WO2016056775A1 - 교번 배열된 전극 합제부와 비가역부를 포함하고 있는 전극 및 그것을 포함하는 이차전지 - Google Patents

교번 배열된 전극 합제부와 비가역부를 포함하고 있는 전극 및 그것을 포함하는 이차전지 Download PDF

Info

Publication number
WO2016056775A1
WO2016056775A1 PCT/KR2015/010045 KR2015010045W WO2016056775A1 WO 2016056775 A1 WO2016056775 A1 WO 2016056775A1 KR 2015010045 W KR2015010045 W KR 2015010045W WO 2016056775 A1 WO2016056775 A1 WO 2016056775A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
irreversible
additive
electrode mixture
lithium
Prior art date
Application number
PCT/KR2015/010045
Other languages
English (en)
French (fr)
Inventor
김석구
김인철
김제영
김현민
심정아
오세운
이은주
이지은
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580046112.3A priority Critical patent/CN106688128B/zh
Priority to JP2017509680A priority patent/JP6541773B2/ja
Priority to US15/507,449 priority patent/US10147935B2/en
Publication of WO2016056775A1 publication Critical patent/WO2016056775A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode including an alternating electrode mixture portion and an irreversible portion, and a secondary battery including the same.
  • lithium secondary batteries with high energy density and voltage, long cycle life, and low self discharge rate It is commercially used and widely used.
  • Lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material of the lithium secondary battery.
  • lithium-containing manganese oxide such as spinel crystal structure LiMn 2 O 4 , lithium-containing nickel oxide (LiNiO 2 ), and the like are also used. have.
  • lithium manganese-containing oxides such as LiMnO 2 and LiMn 2 O 4 have the advantage of using abundant resources and environmentally friendly manganese as raw materials, and can manufacture high capacity lithium secondary batteries. I am attracting attention.
  • Carbon materials are mainly used as the negative electrode active material, and use of lithium metal, sulfur compounds and the like is also contemplated.
  • the efficiency of the positive electrode and the negative electrode by controlling the efficiency of the positive electrode and the negative electrode to a similar level it is possible to minimize the waste of inefficient electrodes. For example, if a positive electrode having 100% efficiency is used for a negative electrode having approximately 100% efficiency, the cell may exhibit 100% efficiency while 90% for a negative electrode having 100% efficiency. When using a positive electrode having efficiency, the battery can exhibit only 90% efficiency. As a result, there is a problem that 10% of the cathode is unnecessarily wasted.
  • the irreversible efficiency of the negative electrode during initial charge and discharge including the initial charge is very high, such as 90% or more,
  • the initial irreversible efficiency of the anode stays between 80 and 90%.
  • the irreversible action of the electrode having a high irreversible efficiency is caused, and to improve this irreversible action, the active material of the negative electrode having a high irreversible efficiency must be used more.
  • an irreversible additive may be used for the positive electrode and / or the negative electrode.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application after extensive research and various experiments, when the electrode has a structure in which the electrode mixture portion including the electrode active material and the irreversible portion including the irreversible additive are alternately arranged, it is easy to design irreversible efficiency. In addition, it was confirmed that even in a high capacity battery, the problem of electrolyte impregnation and electrolyte concentration polarization can be solved to suppress an increase in battery resistance, thereby completing the present invention.
  • An electrode mixture portion including an electrode active material and an irreversible portion including an irreversible additive are coated on one or both surfaces of the current collector in an alternating arrangement to form an electrode pattern.
  • the alternating arrangement is not limited as long as the electrode mixture portion and the irreversible portion appear alternately, but may be alternately arranged in a vertical or horizontal direction based on the position of the electrode terminal, and may have a strip shape in plan view. .
  • the electrode mixture layer and the electrode coating layer of the irreversible portion may be formed on one side or both sides of the current collector, but may be formed on both sides in the capacitive side, and in one specific example, the structure of the electrode, If the electrode mixture portion and the irreversible portion each have an alternating arrangement structure based on one side, it is not limited, but the alternating arrangement structure of one side and the alternating arrangement structure of the other side of both surfaces may coincide with each other.
  • each structure has an alternating arrangement structure, but any structure is not limited, but the ease of the process and the like. Considering this, it is preferable that the alternating arrangement structure of one side and the other side coincide.
  • the alternating arrangement structure of adjacent electrodes does not affect each other, but each has only an alternating arrangement structure, but is not limited thereto.
  • mutual matching is desirable in view of ease and simplicity of electrode processing.
  • the electrode mixture part including the electrode active material may be coated with 10% to 99% based on the total area of the electrode in plan view, and more specifically, 50% To 99%.
  • the coating area of the electrode mixture portion is less than 10%, the content of the electrode active material is too small to reduce the battery capacity exerted from one electrode, so that the size of the electrode assembly may be very large to obtain a desired capacity. In the case of exceeding 99%, the effect of the irreversible efficiency control due to the inclusion of the irreversible part is hardly obtained, which is not preferable.
  • the electrode mixture portion and the irreversible portion may be coated at regular intervals in consideration of the ease of processing, but is not limited thereto, and may be coated at any interval without any rule, or may be coated from the center of the electrode toward the edge thereof. Of course, it may be coated with a certain rule in the form of decreasing or increasing spacing.
  • the interval means a vertical distance between the adjacent electrode mixture portion or the adjacent irreversible portion, considering the structure in which the electrode mixture portion and the irreversible portion are alternately arranged, the interval of the electrode mixture portion becomes the coating width of the irreversible portion, The interval of the irreversible portion becomes the coating width of the electrode mixture portion.
  • FIG. 1 is a plan view (a) and a side view (b) of an electrode according to one embodiment of this invention.
  • An irreversible portion 130 including a is coated in an alternating arrangement structure to form an electrode pattern.
  • the electrode mixture portion 120 and the irreversible portion 130 are alternately arranged in the vertical direction with respect to the position of the electrode terminal 113 in a strip shape on a plane, respectively, one surface of the two surfaces (111, 112)
  • the alternating arrangement structure of the (111) and the alternating arrangement structure of the other surface 112 are made to match each other.
  • the electrode mixture portion 120 and the irreversible portion 130 are coated at regular intervals, the electrode mixture portion 120 is coated with 90% based on the total area of the electrode on the plane.
  • FIG. 1 only the structure in which the electrode mixture part and the irreversible part are coated at regular intervals and in which the alternating arrangement structure of one side and the other side of the current collector coincide with each other is disclosed, but as described above, the electrode according to the present invention, As long as one surface and the other surface of the current collector are not affected by each other and have a structure in which the alternating arrangements are each different, the structure is not limited to the above structure, and various structures are possible.
  • the inventors of the present application when the electrode is configured in a structure in which the electrode mixture portion including the electrode active material and the irreversible portion including the irreversible additive are arranged alternately, the irreversible efficiency design is easy to solve the problem of lowering the irreversible efficiency It was confirmed that the solution can be effectively.
  • the irreversible additive in the case where the irreversible additive is simply added to the electrode mixture part, there is a problem that the irreversible additive becomes an inert material after the lithium escapes from the positive electrode during the initial formation, thereby lowering the energy density of the positive electrode.
  • the electrode having the bar can solve all of the above problems, has a sufficient configuration advantage
  • the irreversible additive included in the irreversible portion may have an operating voltage of 1.0V or more to 2.5V or less compared to Li.
  • the irreversible additive is usually lower than the operating voltage of the positive electrode of 2.5 to 4.25V and higher than the operating voltage of the negative electrode of 0.05 to 1.5V, and thus participates in the reaction only at the initial charge and does not participate in the reaction at the time of discharge. It is possible to effectively design the irreversible efficiency of.
  • the irreversible efficiency of the negative electrode can be lowered, and thus, in the secondary battery including the negative electrode having a relatively high irreversible efficiency compared to the positive electrode, the total amount of the negative electrode active material can be reduced. Therefore, the irreversible efficiency of a battery can be designed easily more easily.
  • the irreversible additive may exhibit relatively high conductivity with respect to the electrode active material, and may improve output characteristics by improving the conductive network configuration of the electrode.
  • the electrical resistance value of the irreversible additive may be 5 ⁇ m or more to 100 ⁇ m or less.
  • the irreversible additive the kind thereof may vary depending on whether the electrode is an anode or a cathode.
  • the electrode may be a positive electrode, wherein the irreversible additive may be a lithiated LTO or lithium molybdenum compound.
  • the irreversible additive Li 7/3 Ti 5/3 O 4 may be a lithium-titanium oxide represented by, or to be the one Li 2.3 Mo 6 S 7.7 as lithium molybdenum sulphide, details that are represented by the following general formula (1) .
  • M is a metal or transition metal cation of +2 to + 4-valent oxidation water.
  • the electrode may be a cathode, wherein the irreversible additive may be a molybdenum compound, in detail, may be a molybdenum sulfide represented by the following formula (2), more specifically Mo 6 S 8 Can be.
  • the ratio of a to b (a / b) is 1/2 or more and 1 or less.
  • the irreversible additive may be included in the range of 80 wt% to 99 wt% based on the total weight of the irreversible portion, and the irreversible portion may include a binder or a binder and a conductive material as a material other than the irreversible additive.
  • binder and the conductive material are the same as specific examples of the binder and the conductive material included in the electrode mixture portion described below, and the use thereof is not limited, and in detail, the binder and the conductive material included in the electrode mixture portion and The binder and the conductive material included in the irreversible portion may be the same material.
  • the content of the binder and the conductive material is not limited as long as the irreversible portion has a sufficient bonding strength to the current collector, and in detail, may be similar to or less than the content of the binder included in the electrode mixture portion.
  • the electrode according to the present invention to facilitate the irreversible efficiency design by including an irreversible additive as described above, while in order to have a high capacity characteristics, high loading of the electrode mixture including the electrode active material is essential.
  • the electrode of the present invention by reducing the porosity of the electrolyte impregnation and the concentration concentration of the electrolyte solution that may be a problem due to the increase of the electrode thickness, by varying the porosity of the electrode mixture portion containing the electrode active material and the irreversible portion containing the irreversible additive Can be configured.
  • the porosity of the electrode mixture portion may be 5% to 40%, the porosity of the irreversible portion may be 20% to 90%.
  • the porosity of the electrode mixture portion including the electrode active material which directly affects the capacity is low, and thus the capacity is improved by maintaining a high density, and the porosity of the irreversible portion including the irreversible additive which does not affect the capacity improvement is By setting it high, electrolyte impregnation property can be improved and the problem of electrolyte concentration polarization can be solved.
  • the electrode active material may be a positive electrode active material or a negative electrode active material depending on the type of the electrode.
  • the anode active material is at least one selected from the group consisting of crystalline artificial graphite, crystalline natural graphite, amorphous hard carbon, low crystalline soft carbon, carbon black, acetylene black, Ketjen black, super P, graphene, and fibrous carbon Carbon-based material, Si, Si compound, Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1 - x Me ' y O z (Me: Mn Me ': Al, B, P, Si, group 1, group 2, group 3 element, halogen of the periodic table; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) Metal complex oxides such as these; Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4
  • the present invention can appropriately adjust the content of the irreversible additive and the like according to the combination of the above electrode active materials, and as a result, the irreversible efficiency can be easily designed.
  • the current collector is generally made to a thickness of 3 to 500 ⁇ m.
  • Such a current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • a positive electrode current collector stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum Or surface treated with carbon, nickel, titanium, silver, or the like on the surface of stainless steel
  • a negative electrode current collector copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface of the steel, aluminum-cadmium alloy and the like can be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the electrode mixture part may be formed of an electrode mixture further including a conductive material and / or a binder in addition to the electrode active material, and in some cases, a filler may be further added.
  • the conductive material is typically added in an amount of 1 to 50 wt% based on the total weight of the electrode mixture including the electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material and the bonding to the current collector, and is generally added in an amount of 1 to 50 wt% based on the total weight of the electrode mixture including the electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the present invention also provides a secondary battery in which an electrolyte solution is impregnated into an electrode assembly including an electrode.
  • the electrode assembly generally includes an anode, a cathode, and a separator interposed between the anode and the cathode as the electrode.
  • the separator an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • the solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.
  • the electrolytic solution is composed of a nonaqueous electrolyte and a lithium salt.
  • the nonaqueous electrolyte may be a nonaqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, or the like, but is not limited thereto.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymerizers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide
  • Nitrobenzene derivatives sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyr
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
  • lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which are low viscosity solvents.
  • the electrolyte can be prepared by adding to a mixed solvent of linear carbonate.
  • the present invention provides a battery module including the secondary battery as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • the device examples include a mobile phone, a portable computer, a smartphone, a tablet PC, a smart pad, a netbook, a LEV (Light Electronic Vehicle), an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and electric power. It may be selected from a storage device.
  • LEV Light Electronic Vehicle
  • an electric vehicle a hybrid electric vehicle, a plug-in hybrid electric vehicle, and electric power. It may be selected from a storage device.
  • FIG. 1 is a plan view and a side view of an electrode according to an embodiment of the present invention.
  • Lithium nickel based oxide as a positive electrode active material Li (NiMnCo) 1/3 O 2) 94 % by weight, Super-P (conductive material) 3% by weight, and PVdF (binder) in a 3% by weight of solvent NMP (N-methyl-2 -pyrrolidone) to prepare a positive electrode mixture.
  • NMP N- An irreversible additive mixture added to methyl-2-pyrrolidone
  • the positive electrode mixture and the irreversible additive mixture were alternately applied to an aluminum foil having a thickness of 15 ⁇ m as shown in FIG. 1, dried, and pressed to prepare a positive electrode. At this time, the porosity of the positive electrode mixture portion was 25%, the porosity of the irreversible portion was 40%.
  • Example 2 Except that in Example 1, lithium titanium oxide (Li (Li 1/3 Ti 5/3) O 4) instead of lithium molybdenum sulfide (Li 2. 3 Mo 6 S 7 .7) 94 % by weight in terms of irreversible additives
  • the structure of the positive electrode mixture portion, the structure of the irreversible portion, and the positive electrode were prepared. At this time, the porosity of the positive electrode mixture portion was 25%, the porosity of the irreversible portion was 40%.
  • the positive electrode mixture was applied to an aluminum foil having a thickness of 15 ⁇ m, dried, and pressed to give a positive electrode. Prepared. At this time, the porosity of the positive electrode mixture layer was 25%.
  • Lithium nickel based oxide as a positive electrode active material Li (NiMnCo) 1/3 O 2) 94 % by weight, Super-P (conductive material) 3% by weight, and PVdF (binder) in a 3% by weight of solvent NMP (N-methyl-2 was prepared the positive electrode material mixture was added to -pyrrolidone), the positive electrode mixture on a positive electrode material mixture layer coated on the aluminum foil, and coated on an aluminum foil having a thickness of 15 ⁇ m, as additives irreversible lithium molybdenum sulfide (Li 2.
  • Lithium nickel based oxide as a positive electrode active material Li (NiMnCo) 1/3 O 2) 94 % by weight, Super-P (conductive material) 3% by weight, and PVdF (binder) in a 3% by weight of solvent NMP (N-methyl-2 -pyrrolidone) to prepare a positive electrode mixture
  • the positive electrode mixture was applied to an aluminum foil of 15 ⁇ m thickness, on the positive electrode mixture layer applied to the aluminum foil, lithium titanium oxide (Li (Li 1 / 3 Ti 5/3 ) O 4 ) 94% by weight, Super-P (conductor) 3% by weight and PVdF (binder) 3% by weight to the solvent NMP (N-methyl-2-pyrrolidone) added
  • the mixture was applied to a thickness of 5 ⁇ m, dried and pressurized to prepare a positive electrode.
  • the porosity of the positive electrode mixture layer was 25%
  • the porosity of the irreversible additive layer was 40%.
  • Lithium molybdenum sulfide Li 2. 3 Mo 6 S 7 .7) or lithium titanium oxide (Li (Li 1/3 Ti 5/3) O 4) a, and a lithium nickel-based oxide is added, or, with the exception of not coating that (Li (NiMnCo) 1/3 O 2) 94 % by weight, Super-P (conductive material) 3% by weight, and PVdF (binder) anode by the addition of 3% by weight in a solvent of NMP (N-methyl-2- pyrrolidone)
  • NMP N-methyl-2- pyrrolidone
  • Table 1 shows the irreversible efficiency of the positive electrode prepared in Examples 1, 2 and Comparative Examples 1 to 5, and the capacity of the battery measured by manufacturing the battery including the positive electrode and the negative electrode, respectively.
  • the operating voltage of the lithium molybdenum sulfide and lithium titanium oxide is in the range of 1.0V or more and 2.5V or less with respect to Li, and lower than the operating voltage of the positive electrode, thus participating in the reaction only at the initial charge and reacting at the time of discharge. Because do not participate in.
  • the initial irreversible efficiency of the positive electrode is adjusted to a range similar to that of the negative electrode, thereby maximizing the overall battery cell capacity and volumetric energy density of the battery cell. It can be seen that.
  • the anodes of Examples 1 and 2 and Comparative Examples 1 to 5 were immersed in the electrolyte, and the time until the electrolyte impregnation reached about 80% was measured. The results are shown in Table 2 below.
  • the degree of impregnation represents the degree of increase of the weight of the electrode relative to the initial weight of the electrode when the electrode is impregnated in the electrolyte.
  • Comparative Examples 1 and 3 As shown in Table 2, in Examples 1 and 2 having an electrode configuration according to the present invention, Comparative Examples 1 and 3, the irreversible additive layer having an electrode configuration in which the irreversible additive is simply mixed in the positive electrode mixture, the positive electrode mixture layer It can be seen that the desired level of impregnation was reached in a very short time compared with Comparative Examples 2 and 4 having the electrode configuration formed on the phase, and Comparative Example 5 consisting of only the positive electrode mixture layer having a low porosity.
  • the batteries were manufactured using the positive electrodes of Examples 1 and 2 and Comparative Examples 1 and 5 and the negative electrodes of Experimental Example 1, and these were measured in 10 second discharge resistance for each SOC, and the results are shown in Table 3 below.
  • the electrode according to the present invention can easily control the irreversible efficiency by the irreversible additive, while also improving the electrolyte solution impregnation can exhibit excellent output characteristics in the entire SOC range.
  • the electrode according to the present invention has a structure in which the electrode mixture portion including the electrode active material and the irreversible portion including the irreversible additive are alternately arranged, and thus, through the content of the irreversible additive, the distribution of the irreversible portion, and the like.
  • the irreversible efficiency can be easily adjusted, while the porosity of the electrode mixture section and the irreversible section can be adjusted to improve electrolyte impregnation while improving the characteristics of the electrolyte solution. There is an effect that can exhibit the output characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 집전체의 일면 또는 양면에, 전극 활물질을 포함하는 전극 합제부와 비가역 첨가제를 포함하는 비가역부가 교번 배열 구조로 코팅되어 전극 패턴을 형성하고 있는 것을 특징으로 하는 전극 및 이를 포함하는 이차전지를 제공한다.

Description

교번 배열된 전극 합제부와 비가역부를 포함하고 있는 전극 및 그것을 포함하는 이차전지
본 발명은 교번 배열된 전극 합제부와 비가역부를 포함하고 있는 전극 및 그것을 포함하는 이차전지에 관한 것이다.
본 출원은 2014년 10월 6일자 한국 특허 출원 제10-2014-0134330호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 전압을 가지고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
이러한 리튬 이차전지의 양극 활물질로는 리튬 함유 코발트 산화물(LiCoO2)이 주로 사용되고 있고, 그 외에 스피넬 결정구조의 LiMn2O4 등과 같은 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO2) 등도 사용되고 있다. 특히, LiMnO2, LiMn2O4 등의 리튬 망간 함유 산화물은 원료로서 자원이 풍부하고 환경친화적인 망간을 사용한다는 장점 뿐만 아니라, 고용량의 리튬 이차전지 제조가 가능하여, 근래 리튬 이차전지의 양극 활물질로 주목 받고 있다. 음극 활물질로는 탄소재료가 주로 사용되고 있고, 리튬 금속, 황 화합물 등의 사용도 고려되고 있다.
이러한 전극에 있어서, 양극과 음극의 효율을 비슷한 수준으로 조절하면 비효율적인 전극의 낭비를 최소화할 수 있다. 예를 들어, 대략 100%의 효율을 갖는 음극에 대하여 100%의 효율을 갖는 양극을 사용하는 경우, 전지는 100%의 효율을 발휘할 수 있는 반면, 100%의 효율을 갖는 음극에 대해 90%의 효율을 갖는 양극을 사용하는 경우, 전지는 90%의 효율만을 발휘할 수 있다. 결과적으로, 10%의 음극이 불필요하게 낭비되게 되는 문제가 있다.
이와 관련하여, 특히, 일반적으로 탄소계 음극 활물질을 사용하고, 양극 활물질로서 고용량의 리튬 망간 함유 산화물을 사용하는 경우, 최초 충전을 포함한 초기 충방전시 음극의 비가역 효율은 90% 이상으로 매우 높은 반면, 양극의 초기 비가역 효율은 80 ~ 90% 정도에 머무른다.
또한, 이러한 양극과 음극의 비가역 효율의 차이로 인해, 비가역 효율이 높은 전극의 비가역 작용이 유발되며, 이러한 비가역 작용을 개선하기 위해 비가역 효율이 높은 음극의 활물질을 보다 많이 사용해야 한다.
따라서, 이차전지 설계시 양극과 음극의 비가역 효율을 맞춰주기 위해 양극 및/또는 음극에 비가역 첨가제를 사용할 수 있다.
그러나, 이 경우, 초기 포메이션시 리튬이 양극에서 빠져 나온 후, 비가역 첨가제가 비활성의 물질이 되어 양극의 에너지 밀도를 저하시키게 되는 문제가 있다.
한편, 최근에는 전지의 고용량화를 위해 전극의 고로딩이 필수적인데, 이는 전극의 두께 증가를 유발시켜, 전해액이 전극 내부까지 함침되는 것을 어렵게 하고, 따라서 전해액 농도의 분극이 발생하는 등의 문제로 저항이 증가됨에 따라 출력이 저하되는 문제도 있다.
따라서, 이러한 상기 문제점들을 모두 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 전극이 전극 활물질을 포함하는 전극 합제부와 비가역 첨가제를 포함하는 비가역부가 교번 배열되어 있는 구조로 이루어진 경우, 비가역 효율 설계가 용이한 한편, 고용량의 전지에서도 전해액 함침의 어려움 및 전해액 농도 분극의 문제를 해소하여 전지의 저항 증가를 억제할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이러한 목적을 달성하기 위한 본 발명에 따른 전극은,
집전체의 일면 또는 양면에, 전극 활물질을 포함하는 전극 합제부와 비가역 첨가제를 포함하는 비가역부가 교번 배열 구조로 코팅되어 전극 패턴을 형성하고 있는 것을 특징으로 한다.
이때, 상기 교번 배열은 전극 합제부와 비가역부가 교대로 나타나는 형태라면 한정되지 아니하나, 전극단자의 위치를 기준으로 수직 또는 수평 방향으로 교번 배열될 수 있고, 평면상으로 각각 스트립 형상을 가질 수 있다.
상기에서 설명한 바와 같이, 전극 합제부와 비가역부의 전극 코팅층은 집전체의 일면 또는 양면에 형성될 수 있으나, 용량적인 측면에서 양면에 형성될 수 있고, 하나의 구체적인 예에서, 상기 전극의 구조는, 전극 합제부와 비가역부가 한면을 기준으로 각각 교번 배열 구조를 갖는 경우라면, 한정되지 아니하나, 양면 중 일면의 교번 배열 구조와 타면의 교번 배열 구조가 상호 일치할 수 있다.
즉, 상기 전극 합제부와 비가역부가 집전체의 양면에 교번 배열 구조로 코팅되는 경우, 일면과 타면은 서로에게 영향을 받지 않고, 각각 교번 배열 구조를 가지면 어떤 구조이든 한정이 없으나, 공정의 용이성 등을 고려할 때 일면과 타면의 교번 배열 구조가 일치하는 것이 바람직하다.
이는, 더 큰 범위로서, 상기 전극들이 다수 적층된 전극조립체에서, 인접하는 전극들의 교번 배열 구조는, 서로 영향을 미치지 않고, 각각 별개로 교번 배열 구조를 가지면 될 뿐, 한정되지 아니하나. 상기에서 설명한 바와 같이, 상호 일치하는 것이 전극 공정의 용이성 및 간소화 측면에서 바람직하다.
한편, 상기 전극 활물질을 포함하는 전극 합제부는 소망하는 용량을 고려하여, 상세하게는, 평면상으로 전극의 전체 면적을 기준으로 10% 내지 99%로 코팅되어 있을 수 있고, 더욱 상세하게는 50% 내지 99%로 코팅되어 있을 수 있다.
상기 전극 합제부의 코팅 면적이 10% 미만인 경우에는 전극 활물질의 함량이 너무 적어 하나의 전극으로부터 발휘되는 전지 용량이 감소하므로 소망하는 정도의 용량을 얻기 위해 전극조립체의 크기가 매우 커지는 문제가 있을 수 있고, 99%를 초과하는 경우에는 비가역부가 포함됨에 따른 비가역 효율 조절의 효과를 거의 얻을 수 없는 바, 바람직하지 않다.
이때, 상기 전극 합제부 및 비가역부는 공정의 용이성을 고려하면, 일정한 간격으로 코팅될 수 있으나, 이에 한정되는 것은 아니고, 어떠한 규칙 없이 임의의 간격으로 코팅될 수도 있고, 또는 전극의 중심에서 가장자리 쪽으로 그 간격이 감소하거나 증가하는 형태로 일정한 규칙을 가지면서 코팅될 수도 있음은 물론이다.
여기서, 간격은 인접하는 전극 합제부 또는 인접하는 비가역부 사이의 수직 거리를 의미하는 바, 전극 합제부와 비가역부가 교번 배열된 구조를 고려하면, 상기 전극 합제부의 간격은 비가역부의 코팅 폭이 되고, 비가역부의 간격은 전극 합제부의 코팅 폭이 된다.
도 1에는 이러한 본 발명의 하나의 실시예에 따른 전극의 평면도(a) 및 측면도(b)가 도시되어 있다.
도 1 (a) 및 (b)를 참조하면, 본 발명에 따른 전극(100)은 집전체(110)의 양면(111, 112)에, 전극 활물질을 포함하는 전극 합제부(120)와 비가역 첨가제를 포함하는 비가역부(130)가 교번 배열 구조로 코팅되어 전극 패턴을 형성하고 있다.
구체적으로, 전극 합제부(120)와 비가역부(130)는 평면상으로 각각 스트립 형상으로 전극단자(113)의 위치를 기준으로 수직 방향으로 교번 배열되어 있고, 상기 양면(111, 112) 중 일면(111)의 교번 배열 구조와 타면(112)의 교번 배열 구조가 상호 일치하는 구조로 이루어져 있다.
이때, 상기 전극 합제부(120)와 비가역부(130)는 일정한 간격으로 코팅되어, 전극 합제부(120)는 평면상으로 전극의 전체 면적을 기준으로 90%로 코팅되어 있다.
도 1에는 전극 합제부와 비가역부가 일정한 간격으로 코팅되어 있고, 집전체의 일면과 타면의 교번 배열 구조가 상호 일치하는 구성만이 개시되어 있지만, 상기에서 설명한 바와 같이, 본 발명에 따른 전극은, 집전체의 일면과 타면이 서로에게 영향을 받지 않고, 각각 교번 배열 구조를 갖는 구조라면, 상기 구조에 한정되지 아니하고, 다양한 구조가 가능함은 물론이다.
본 출원의 발명자들은, 이와 같이, 전극 활물질을 포함하는 전극 합제부와 비가역 첨가제를 포함하는 비가역부가 교번 배열되어 있는 구조로 전극을 구성하는 경우에는, 비가역 효율 설계가 용이하여 비가역 효율 저하의 문제를 효과적으로 해결할 수 있음을 확인하였다.
구체적으로, 비가역 첨가제가 전극 합제부에 단순히 첨가되는 경우, 초기 포메이션시 리튬이 양극에서 빠져 나온 후 비가역 첨가제가 비활성의 물질이 되어 양극의 에너지 밀도를 저하시키게 되는 문제가 있고, 적층 구조로 형성하는 경우에는, 전극의 두께 증가를 유발시켜 전해액이 전극 내부까지 함침되는 것을 어렵게 하고, 전해액 농도의 분극이 발생하는 등의 문제로 저항이 증가됨에 따라 출력이 저하되는 문제가 있는 반면, 상기 교번 배열 구조를 갖는 전극은 상기 문제를 모두 해결할 수 있는 바, 충분한 구성적 이점을 갖는다
한편, 상기 비가역부에 포함되는 비가역 첨가제는, Li 대비 1.0V이상 내지 2.5V 이하의 작동전압을 가질 수 있다.
따라서, 상기 비가역 첨가제는 보통 양극의 작동 전압인 2.5 내지 4.25V 보다 낮고, 음극의 작동 전압인 0.05 내지 1.5V 보다 높아, 초기의 충전시에만 반응에 참여하고 방전시에는 반응에 참여하지 않으므로, 전지의 비가역 효율을 효과적으로 설계할 수 있다.
특히, 상기 전극이 음극인 경우에는, 음극의 비가역 효율을 낮출 수 있는 바, 양극에 비해 비가역 효율이 상대적으로 높은 음극을 포함하는 이차전지에 있어서, 음극 활물질의 전체적인 사용량을 감소시킬 수 있으며, 이에 따라, 보다 용이하게 전지의 비가역 효율을 효과적으로 설계할 수 있다.
또한, 상기 비가역 첨가제는 전극 활물질에 대해 상대적으로 높은 도전성을 나타낼 수 있는 바, 전극의 도전 네트워크 구성을 개선시켜 출력 특성을 향상시킬 수도 있다. 이때, 상기 비가역 첨가제의 전기 저항값은 5 μΩm 이상 내지 100 μΩm 이하일 수 있다.
한편, 상기 비가역 첨가제는, 구체적으로 상기 전극이 양극 또는 음극인지에 따라 그 종류가 달라질 수 있다.
하나의 예에서, 상기 전극은 양극일 수 있고, 이때, 상기 비가역 첨가제는 리튬화된 리튬 티타늄 산화물(Lithiated LTO) 또는 리튬 몰리브덴 화합물일 수 있다.
구체적으로, 상기 비가역 첨가제는 Li7 / 3Ti5 / 3O4으로 표현되는 튬 티타늄 산화물일 수 있고, 또는 하기 화학식 1로 표현되는 리튬 몰리브덴 황화물, 상세하게는 Li2.3Mo6S7.7일 수 있다.
Li2 + xMo6 - yMyS8 -z (1)
상기 식에서, -0.1≤x≤0.5, 0≤y≤0.5, -0.1≤z≤0.5이고,
M은 +2가 내지 +4가 산화수의 금속 또는 전이금속 양이온이다.
또 하나의 예에서, 상기 전극은 음극일 수 있으며, 이때, 상기 비가역 첨가제는 몰리브덴 화합물일 수 있고, 상세하게는, 하기 화학식 2로 표현되는 몰리브덴 황화물일 수 있으며, 더욱 상세하게는 Mo6S8일 수 있다.
MoaSb (2)
상기 식에서, b에 대한 a의 비율(a/b)은 1/2 이상 내지 1이하이다.
이러한 상기 비가역 첨가제는 비가역부 전체 중량을 기준으로 80 중량% 내지 99 중량%의 범위로 포함될 수 있고, 상기 비가역부는 비가역 첨가제 이외의 물질로서, 바인더, 또는 바인더 및 도전재를 포함할 수 있다.
상기 바인더 및 도전재의 구체적인 예들은 이하에서 설명하는 전극 합제부에 포함되는 바인더 및 도전재의 구체적인 예들과 같고, 그 사용에 한정이 없으나, 상세하게는, 상기 전극 합제부에 포함되는 바인더 및 도전재와 비가역부에 포함되는 바인더 및 도전재는 상호 동일한 물질일 수 있다.
또한, 상기 바인더 및 도전재의 함량은, 비가역부가 집전체에 대해 충분한 결합력을 가지는 범위라면 한정되지 아니하고, 상세하게는, 상기 전극 합제부에 포함되는 바인더의 함량과 유사하거나, 그 이하일 수 있다.
한편, 본 발명에 따른 전극은 상기와 같이 비가역 첨가제를 포함함으로써 비가역 효율 설계를 용이하게 하는 한편, 고용량의 특성을 갖기 위해서는 전극 활물질을 포함하는 전극 합제부의 고로딩이 필수적이다. 이에, 본 발명의 전극은, 전극 두께의 증가로 문제될 수 있는 전해액 함침성의 저하 및 전해액 농도분극을 해소하기 위해, 전극 활물질을 포함하는 전극 합제부와 비가역 첨가제를 포함하는 비가역부의 공극률을 달리하여 구성될 수 있다.
하나의 구체적인 예에서, 상기 전극 합제부의 공극률은 5% 내지 40%일 수 있고, 상기 비가역부의 공극률은 20% 내지 90%일 수 있다.
즉, 본 발명은, 용량에 직접적인 영향을 미치는 전극 활물질을 포함하는 전극 합제부의 공극률은 낮게 구성하여 높은 밀도를 유지함으로써 용량을 향상시키고, 용량 향상에 영향이 없는 비가역 첨가제를 포함하는 비가역부의 공극률은 높게 구성함으로써 전해액 함침성을 개선하고, 전해액 농도 분극의 문제를 해결할 수 있다.
상기 전극 활물질은 상기 전극에 종류에 따라 양극 활물질 또는 음극 활물질일 수 있다.
상기 양극 활물질은, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 화학식 LiNixMnyCozO2(x+y+z=1)과 같이 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1 + xMn2 - xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2 - xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; 화학식 LiFePO4, 또는 Fe이 1 또는 그 이상의 전이금속으로 치환된 리튬 철인산화물; Fe2(MoO4)3 등을 포함할 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 음극 활물질은 결정질 인조 흑연, 결정질 천연 흑연, 비정질 하드카본, 저결정질 소프트카본, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 수퍼 P, 그래핀 (graphene), 및 섬유상 탄소로 이루어진 군으로부터 선택되는 하나 이상의 탄소계 물질, Si, Si 화합물, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 포함할 수 있고, 상세하게는, 탄소계 물질, 또는 탄소계 물질과 Si 화합물의 혼합물일 수 있으나, 이들만으로 한정되는 것은 아니다.
본 발명은, 이러한 상기 전극 활물질의 조합에 따라 비가역 첨가제의 함량 등을 적절히 조절할 수 있고, 결과적으로 비가역 효율을 용이하게 설계할 수 있다.
상기 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 양극 집전체의 경우, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있고, 음극 집전체의 경우, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 상기 집전체는 그것의 표면에 미세한 요철을 형성하여 전극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 전극 합제부는 상기 전극 활물질 외에 도전재 및/또는 바인더를 더 포함하는 전극 합제로 이루어질 수 있고, 경우에 따라서는 충진제가 더 첨가될 수 있다.
상기 도전재는 통상적으로 전극 활물질을 포함한 전극 합제 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 전극 활물질을 포함하는 전극 합제 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
본 발명은 또한, 전극을 포함하는 전극조립체에 전해액이 함침되어 있는 이차전지를 제공한다.
상기 전극조립체는 일반적으로 상기 전극으로서 양극, 음극, 및 상기 양극과 음극에 개재되는 분리막을 포함한다.
상기 분리막은 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 전해액은 비수 전해액과 리튬염으로 이루어져 있고, 상기 비수 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 상기 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 전해액을 제조할 수 있다.
본 발명은, 상기 이차전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다.
이 때, 상기 디바이스의 구체적인 예로는, 휴대폰, 휴대용 컴퓨터, 스마트폰, 태플릿 PC, 스마트 패드, 넷북, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 및 전력저장장치 등으로부터 선택되는 것일 수 있다.
이들 디바이스의 구조 및 그것의 제작 방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명은 생략한다.
도 1은 본 발명의 하나의 실시예에 따른 전극의 평면도 및 측면도이다.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
<실시예 1>
양극 합제부 구성의 제조
양극 활물질로서 리튬 니켈계 산화물(Li(NiMnCo)1 / 3O2) 94 중량%, Super-P(도전재) 3 중량% 및 PVdF(결합제) 3 중량%를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 양극 합제를 제조하였다.
비가역부 구성의 제조
비가역 첨가제로서 리튬 티타늄 산화물(Li(Li1/3Ti5/3)O4) 94 중량%, Super-P(도전재) 3 중량% 및 PVdF(결합제) 3 중량%를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가한 비가역 첨가제 혼합물을 제조하였다.
양극의 제조
상기 양극 합제와 비가역 첨가제 혼합물을 두께 15 ㎛의 알루미늄 호일에 하기 도 1과 같이 교대로 도포하고, 건조, 가압하여 양극을 제조하였다. 이때, 상기 양극 합제부의 공극률은 25% 이었고, 비가역부의 공극률은 40% 이었다.
<실시예 2>
상기 실시예 1에서, 비가역 첨가제로서 리튬 티타늄 산화물 (Li(Li1/3Ti5/3)O4) 대신 리튬 몰리브덴 황화물(Li2 . 3Mo6S7 .7) 94 중량%를 사용한 것을 제외하고는 실시예 1과 동일하게 양극 합제부의 구성, 비가역부의 구성, 및 양극을 제조하였다. 이때, 상기 양극 합제부의 공극률은 25% 이었고, 비가역부의 공극률은 40% 이었다.
<비교예 1>
양극 활물질로서 리튬 니켈계 산화물(Li(NiMnCo)1 / 3O2) 89 중량%, Super-P(도전재) 3 중량%, PVdF(결합제) 3 중량% 및 비가역 첨가제로서 리튬 몰리브덴 황화물(Li2.3Mo6S7.7) 5 중량%를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 양극 합제를 제조하였으며, 상기 양극 합제를 두께 15 ㎛의 알루미늄 호일에 도포하고, 건조, 가압하여 양극을 제조하였다. 이때, 상기 양극 합제층의 공극률은 25% 이었다.
<비교예 2>
양극 활물질로서 리튬 니켈계 산화물(Li(NiMnCo)1 / 3O2) 94 중량%, Super-P(도전재) 3 중량% 및 PVdF(결합제) 3 중량%를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 양극 합제를 제조하였으며, 상기 양극 합제를 두께 15 ㎛의 알루미늄 호일에 도포하고, 상기 알루미늄 호일에 도포된 양극 합제층 상에, 비가역 첨가제로서 리튬 몰리브덴 황화물(Li2 . 3Mo6S7 .7) 94 중량%, Super-P(도전재) 3 중량% 및 PVdF(결합제) 3 중량%를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가한 비가역 첨가제 혼합물을 5㎛ 두께로 도포하고, 건조, 가압하여 양극을 제조하였다. 이때, 상기 양극 합제층의 공극률은 25% 이었고, 비가역 첨가제층의 공극률은 40% 이었다.
<비교예 3>
양극 활물질로서 리튬 니켈계 산화물(Li(NiMnCo)1 / 3O2) 92 중량%, Super-P(도전재) 3 중량%, PVdF(결합제) 3 중량% 및 비가역 첨가제로서 리튬 티타늄 산화물 (Li(Li1/3Ti5/3)O4) 2 중량%를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 양극 합제를 제조하였으며, 상기 양극 합제를 두께 15 ㎛의 알루미늄 호일에 도포하고, 건조, 가압하여 양극을 제조하였다. 이때, 상기 양극 합제층의 공극률은 25% 이었다.
<비교예 4>
양극 활물질로서 리튬 니켈계 산화물(Li(NiMnCo)1 / 3O2) 94 중량%, Super-P(도전재) 3 중량% 및 PVdF(결합제) 3 중량%를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 양극 합제를 제조하였으며, 상기 양극 합제를 두께 15 ㎛의 알루미늄 호일에 도포하고, 상기 알루미늄 호일에 도포된 양극 합제층 상에, 비가역 첨가제로서 리튬 티타늄 산화물 (Li(Li1/3Ti5/3)O4)을 94 중량%, Super-P(도전재) 3 중량% 및 PVdF(결합제) 3 중량%를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가한 비가역 첨가제 혼합물을 5㎛ 두께로 도포하고, 건조, 가압하여 양극을 제조하였다. 이때, 상기 양극 합제층의 공극률은 25% 이었고, 비가역 첨가제층의 공극률은 40% 이었다.
<비교예 5>
리튬 몰리브덴 황화물(Li2 . 3Mo6S7 .7) 또는 리튬 티타늄 산화물 (Li(Li1/3Ti5/3)O4)을 첨가하거나, 도포하지 않은 점을 제외하고, 리튬 니켈계 산화물(Li(NiMnCo)1 / 3O2) 94 중량%, Super-P(도전재) 3 중량% 및 PVdF(결합제) 3 중량%를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 양극 합제를 제조하였으며, 상기 양극 합제를 두께 15 ㎛의 알루미늄 호일에 도포하고, 건조, 가압하여 양극을 제조하였다. 이때, 상기 양극 합제층의 공극률은 25% 이었다. 즉, 양극 합제부가 양극 면적의 100%를 차지하도록 양극을 제조하였다.
<실험예 1>
음극 활물질로 인조흑연 84 중량%, 실리콘옥사이드(SiO) 10 중량%, Super-P(도전재) 2 중량% 및 SBR(스타이렌 부타디엔 고무, 결합제) 3 중량%, CMC(카르복시 메틸 셀룰로우즈, 증점 및 결합제) 1 중량%를 용제인 증류수에 첨가하여 음극 합제를 제조하였고, 상기 음극 합제를 두께 10 ㎛의 구리 호일에 도포하여 음극을 제조하였다. 상기 음극의 비가역 효율은 약 86% (충전용량 245 mAh/g)였다.
상기 실시예 1, 2 및 비교예 1 내지 5에서 각각 제조한 양극의 비가역 효율 및 상기 양극과 음극을 포함하는 전지를 제조하여 측정한 전지의 용량을 각각 표 1에 나타내었다.
음극 효율 양극 효율 전지용량
실시예 1 86.3% 87.1% 79.0Ah
실시예 2 87.0% 79.2Ah
비교예 1 86.9% 79.4Ah
비교예 2 86.8% 79.4Ah
비교예 3 87.0% 79.1Ah
비교예 4 87.1% 79.0Ah
비교예 5 91.2% 75Ah
상기 표 1에서 보는 바와 같이, 비가역 첨가제로서 리튬 몰리브덴 황화물 또는 리튬 티타늄 산화물을 포함하는 실시예 1 및 2의 양극 구성의 경우, 상기 비가역 첨가제를 포함하고 있지 않은 비교예 5의 양극 구성에 비해 음극과의 비가역 효율의 차이가 적고, 전지 용량이 높음을 확인할 수 있다. 이는 음극의 비가역에 해당하는 리튬이 양극의 비가역을 증가시킴으로써, 전체적으로 전지의 용량을 향상시키는 효과를 발휘함을 나타낸다.
이는 상기 리튬 몰리브덴 황화물 및 리튬 티타늄 산화물의 작동 전압이 Li 대비 1.0V이상 내지 2.5V 이하의 범위에 있어, 양극의 작동 전압에 비해 낮으므로, 초기의 충전시에만 반응에 참여하고, 방전시에는 반응에 참여하지 않기 때문이다.
이에 따라, 상기 리튬 몰리브덴 황화물 및 리튬 티타늄 산화물이 비가역 첨가제로서 양극 구성에 포함되는 경우, 양극의 초기 비가역 효율을 음극과 유사한 범위로 맞춤으로써, 전지셀의 전체적인 전지셀의 용량 및 부피당 에너지 밀도를 최대화할 수 있음을 알 수 있다.
<실험예 2>
상기 실시예 1, 2 및 비교예 1 내지 5의 양극을 전해액에 담가, 전해액 함침도가 약 80%에 이를 때까지의 시간을 측정하여, 그 결과를 하기에 표 2에 나타내었다. 상기 함침도는 전극을 전해액에 함침하는 경우 초기 전극 무게 대비 전극 무게 증가정도를 %로 나타낸 것이다.
함침도 측정(Dropping test) (time, sec)
실시예 1 2705
실시예 2 2580
비교예 1 4050
비교예 2 3570
비교예 3 3950
비교예 4 3490
비교예 5 3900
상기 표 2에서 보는 바와 같이, 본 발명에 따른 전극 구성을 갖는 실시예 1 및 2의 경우, 비가역 첨가제가 양극 합제에 단순 혼합된 전극 구성을 갖는 비교예 1 및 3, 비가역 첨가제 층이 양극 합제 층 상에 형성된 전극 구성을 갖는 비교예 2 및 4, 공극률이 낮은 양극 합제층만으로 이루어진 비교예 5와 비교하여, 매우 짧은 시간내에 소망하는 수준의 함침도에 도달하였음을 알 수 있다.
<실험예 3>
상기 실시예 1, 2 및 비교예 1, 5의 양극과 실험예 1의 음극을 사용하여 전지를 제조하고, 이들을 SOC별 10초 방전 저항을 측정하여 그 결과를 하기 표 3에 나타내었다.
저항(mohm)
SOC5 SOC25 SOC50 SOC75 SOC95
실시예 1 1.84 1.60 1.53 1.52 1.52
실시예 2 1.84 1.58 1.52 1.52 1.51
비교예 1 1.96 1.66 1.58 1.58 1.59
비교예 5 1.87 1.63 1.56 1.56 1.56
표 3을 참조하면, 실시예 1 및 2의 양극을 사용한 전지가 비교예 1 및 5의 양극을 사용한 전지에 비해 출력 특성이 우수함을 확인할 수 있다. 이는, 실시예 1 및 2의 양극의 경우, 공극률이 큰 비가역부가 전극 합제부와 함께 집전체 상에 코팅됨에 따라, 상기 실험예 2에서 볼 수 있는 바와 같이 전해액 함침성을 높여주는 바, 전극 저항을 감소시킬 수 있기 때문이다.
결과적으로 본 발명에 따른 전극은, 비가역 첨가제에 의해 비가역 효율을 용이하게 조절할 수 있으면서도, 전해액 함침성을 개선하여 SOC 전범위에서 우수한 출력 특성을 발휘할 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 전극은, 전극 활물질을 포함하는 전극 합제부와 비가역 첨가제를 포함하는 비가역부가 교번 배열되어 있는 구조로 이루어짐으로써, 비가역 첨가제의 함량, 및 비가역부의 분포 등을 통해 비가역 효율을 용이하게 조절할 수 있는 한편, 전극 합제부와 비가역부의 공극율을 조절하여 고용량의 특성을 가지면서도 전해액 함침성을 개선하여 전해액 농도 분극의 문제를 해소함에 따라, 전지의 저항 증가를 억제하여 우수한 출력 특성을 발휘할 수 있는 효과가 있다.

Claims (26)

  1. 집전체의 일면 또는 양면에, 전극 활물질을 포함하는 전극 합제부와 비가역 첨가제를 포함하는 비가역부가 교번 배열 구조로 코팅되어 전극 패턴을 형성하고 있는 것을 특징으로 하는 전극.
  2. 제 1 항에 있어서, 상기 교번 배열은 전극단자의 형성 방향을 기준으로 수직 또는 수평 방향으로 교번 배열된 것을 특징으로 하는 전극.
  3. 제 1 항에 있어서, 상기 전극 합제부와 비가역부는 평면상으로 각각 스트립 형상인 것을 특징으로 하는 전극.
  4. 제 1 항에 있어서, 상기 전극 합제부 및 비가역부의 교번 배열 구조는 집전체의 양면에 형성되어 있고, 상기 양면 중 일면의 교번 배열 구조와 타면의 교번 배열 구조가 상호 일치하는 것을 특징으로 하는 전극.
  5. 제 1 항에 있어서, 상기 전극 합제부는 평면상으로 전극의 전체 면적을 기준으로 10% 내지 99%로 코팅되어 있는 것을 특징으로 하는 전극.
  6. 제 5 항에 있어서, 상기 전극 합제부는 평면상으로 전극의 전체 면적을 기준으로 50% 내지 99%로 코팅되어 있는 것을 특징으로 하는 전극.
  7. 제 1 항에 있어서, 상기 전극 합제부는 일정한 간격으로 코팅되어 있는 것을 특징으로 하는 전극.
  8. 제 1 항에 있어서, 상기 비가역부는 일정한 간격으로 코팅되어 있는 것을 특징으로 하는 전극.
  9. 제 1 항에 있어서, 상기 비가역 첨가제는Li 대비 1.0V 이상 내지 2.5V 이하의 작동전압을 갖는 것을 특징으로 하는 전극.
  10. 제 1 항에 있어서, 상기 비가역 첨가제는 전극 활물질에 대해 상대적으로 높은 도전성을 나타내는 것을 특징으로 하는 전극.
  11. 제 1 항에 있어서, 상기 전극은 양극이고, 상기 비가역 첨가제는 리튬화된 리튬 티타늄 산화물(Lithiated LTO) 또는 리튬 몰리브덴 화합물인 것을 특징으로 하는 전극.
  12. 제 11 항에 있어서, 상기 비가역 첨가제는 Li7 / 3Ti5 / 3O4으로 표현되는 리튬 티타늄 산화물인 것을 특징으로 하는 전극.
  13. 제 11 항에 있어서, 상기 비가역 첨가제는 하기 화학식 1로 표현되는 리튬 몰리브덴 황화물인 것을 특징으로 하는 전극:
    Li2 + xMo6 - yMyS8 -z (1)
    상기 식에서, -0.1≤x≤0.5, 0≤y≤0.5, -0.1≤z≤0.5이고,
    M은 +2가 내지 +4가 산화수의 금속 또는 전이금속 양이온이다.
  14. 제 13 항에 있어서, 상기 리튬 몰리브덴 황화물은 Li2 . 3Mo6S7 .7인 것을 특징으로 하는 전극.
  15. 제 1 항에 있어서, 상기 전극은 음극이고, 상기 비가역 첨가제는 몰리브덴 화합물인 것을 특징으로 하는 전극.
  16. 제 15 항에 있어서, 상기 비가역 첨가제는 하기 화학식 2로 표현되는 몰리브덴 황화물인 것을 특징으로 하는 전극:
    MoaSb (2)
    상기 식에서, b에 대한 a의 비율(a/b)은 1/2 이상 내지 1이하이다.
  17. 제 16 항에 있어서, 상기 몰리브덴 황화물은 Mo6S8인 것을 특징으로 하는 전극.
  18. 제 1 항에 있어서, 상기 비가역 첨가제는 비가역부 전체 중량을 기준으로 80 중량% 내지 99 중량%의 범위로 포함되어 있는 것을 특징으로 하는 전극.
  19. 제 1 항에 있어서, 상기 비가역부는 비가역 첨가제 이외에 바인더, 또는 바인더 및 도전재를 포함하는 것을 특징으로 하는 전극.
  20. 제 1 항에 있어서, 상기 전극 합제부의 공극률은 5% 내지 40%인 것을 특징으로 하는 전극.
  21. 제 1 항에 있어서, 상기 비가역부의 공극률은 20% 내지 90%인 것을 특징으로 하는 전극.
  22. 제 1 항에 따른 전극을 포함하는 전극조립체에 전해액이 함침되어 있는 것을 특징으로 하는 이차전지.
  23. 제 22 항에 따른 이차전지를 단위전지로 포함하는 것을 특징으로 하는 전지모듈.
  24. 제 23 항에 따른 전지모듈을 포함하는 것을 특징으로 하는 전지팩.
  25. 제 24 항에 따른 전지팩을 전원으로 포함하는 것을 특징으로 하는 디바이스.
  26. 제 25 항에 있어서, 상기 디바이스는 휴대폰, 휴대용 컴퓨터, 스마트폰, 태플릿 PC, 스마트 패드, 넷북, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 및 전력저장장치로 이루어진 군에서 선택되는 것을 특징으로 하는 디바이스.
PCT/KR2015/010045 2014-10-06 2015-09-24 교번 배열된 전극 합제부와 비가역부를 포함하고 있는 전극 및 그것을 포함하는 이차전지 WO2016056775A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580046112.3A CN106688128B (zh) 2014-10-06 2015-09-24 包含交替布置的电极混合物部和不可逆部的电极以及包含所述电极的二次电池
JP2017509680A JP6541773B2 (ja) 2014-10-06 2015-09-24 交互に配列された電極合剤部と非可逆部を含んでいる電極及びそれを含む二次電池
US15/507,449 US10147935B2 (en) 2014-10-06 2015-09-24 Electrode including alternately arranged electrode mixture parts and irreversible parts and secondary battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140134330A KR101786909B1 (ko) 2014-10-06 2014-10-06 교번 배열된 전극 합제부와 비가역부를 포함하고 있는 전극 및 그것을 포함하는 이차전지
KR10-2014-0134330 2014-10-06

Publications (1)

Publication Number Publication Date
WO2016056775A1 true WO2016056775A1 (ko) 2016-04-14

Family

ID=55653339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010045 WO2016056775A1 (ko) 2014-10-06 2015-09-24 교번 배열된 전극 합제부와 비가역부를 포함하고 있는 전극 및 그것을 포함하는 이차전지

Country Status (5)

Country Link
US (1) US10147935B2 (ko)
JP (1) JP6541773B2 (ko)
KR (1) KR101786909B1 (ko)
CN (1) CN106688128B (ko)
WO (1) WO2016056775A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102297246B1 (ko) * 2017-11-30 2021-09-03 주식회사 엘지에너지솔루션 리튬 이차전지용 양극 및 그를 포함하는 리튬 이차전지
KR20190065147A (ko) * 2017-12-01 2019-06-11 주식회사 엘지화학 전극조립체 및 그를 포함하는 리튬 이차전지
JP2020129495A (ja) * 2019-02-08 2020-08-27 エムテックスマート株式会社 全固体電池の製造方法
CN115394953B (zh) * 2022-09-02 2024-06-11 湖北亿纬动力有限公司 一种凹凸阵列厚电极及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067508A (ja) * 2008-09-11 2010-03-25 Nissan Motor Co Ltd リチウムイオン二次電池用負極保護剤およびこれを含むリチウムイオン二次電池用負極
KR20120009703A (ko) * 2010-07-20 2012-02-02 삼성에스디아이 주식회사 양극 및 이를 포함한 리튬 전지
JP2012038539A (ja) * 2010-08-06 2012-02-23 Toyota Motor Corp 電池
KR20140024207A (ko) * 2012-08-20 2014-02-28 다이니폰 스크린 세이조우 가부시키가이샤 리튬 이온 이차 전지용 전극의 제조 방법 및 제조 장치와 리튬 이온 이차 전지용 전극
JP2014063645A (ja) * 2012-09-21 2014-04-10 Kri Inc リチウムイオン電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029075A (ja) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
KR101463648B1 (ko) 2011-06-30 2014-11-19 주식회사 엘지화학 출력특성이 향상된 혼합 양극활물질 및 이를 포함하는 리튬 이차전지
JP5753043B2 (ja) * 2011-09-20 2015-07-22 株式会社Screenホールディングス 電池用電極の製造方法および電池の製造方法
US20140302422A1 (en) * 2013-04-08 2014-10-09 Battelle Memorial Institute Magnesium Energy Storage Device Having a Semi-Solid Positive Electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067508A (ja) * 2008-09-11 2010-03-25 Nissan Motor Co Ltd リチウムイオン二次電池用負極保護剤およびこれを含むリチウムイオン二次電池用負極
KR20120009703A (ko) * 2010-07-20 2012-02-02 삼성에스디아이 주식회사 양극 및 이를 포함한 리튬 전지
JP2012038539A (ja) * 2010-08-06 2012-02-23 Toyota Motor Corp 電池
KR20140024207A (ko) * 2012-08-20 2014-02-28 다이니폰 스크린 세이조우 가부시키가이샤 리튬 이온 이차 전지용 전극의 제조 방법 및 제조 장치와 리튬 이온 이차 전지용 전극
JP2014063645A (ja) * 2012-09-21 2014-04-10 Kri Inc リチウムイオン電池

Also Published As

Publication number Publication date
US20170288207A1 (en) 2017-10-05
KR101786909B1 (ko) 2017-10-18
JP2017530516A (ja) 2017-10-12
KR20160040871A (ko) 2016-04-15
US10147935B2 (en) 2018-12-04
CN106688128B (zh) 2019-11-12
JP6541773B2 (ja) 2019-07-10
CN106688128A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2015016482A1 (ko) 음극 전극의 전리튬화 방법
WO2016148383A1 (ko) 다층 구조 전극 및 이를 포함하는 리튬 이차전지
KR101625822B1 (ko) 비가역 첨가제가 포함되어 있는 이차전지용 양극 합제
WO2016126046A1 (ko) 고용량 음극을 포함하는 이차전지 및 그 제조 방법
WO2018070703A1 (ko) 각 층의 바인더의 함량과 활물질 입경이 상이한 다층 음극 및 이를 포함하는 리튬 이차전지
WO2015016563A1 (ko) 전해액과 반응을 방지하기 위한 코팅층을 포함하는 전극
WO2015016479A1 (ko) 전해액의 추가 공급이 가능한 이차전지
WO2017069410A1 (ko) 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극
WO2015126074A1 (ko) 홀을 포함하고 있는 전지셀
WO2017069405A1 (ko) 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
WO2013157827A1 (ko) 서로 다른 형상의 양극과 음극을 포함하는 전극조립체 및 이차전지
WO2017069407A1 (ko) 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
WO2015102139A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2013137577A1 (ko) 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법
WO2009145494A1 (ko) 리튬 전이금속 산화물 제조용 전구체
WO2014073833A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 이차전지
WO2015102140A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2015016554A1 (ko) 상이한 전극재 층들을 포함하는 전극 및 리튬 이차전지
WO2013109038A1 (ko) 양극 활물질 및 이를 포함하고 불순물 혹은 스웰링 제어를 위한 리튬 이차전지와 생산성이 향상된 양극 활물질의 제조방법
WO2014168398A1 (ko) 면적이 서로 다른 전극들을 포함하고 있는 전극 적층체 및 이를 포함하는 이차전지
WO2015016506A1 (ko) 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지
WO2015012640A1 (ko) 에너지 밀도가 향상된 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2016209014A1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
WO2015026121A1 (ko) 수명특성이 우수한 리튬 코발트계 복합 산화물 및 이를 포함하는 이차전지용 양극 활물질
WO2015016531A1 (ko) 수명 특성이 향상된 이차전지용 음극 활물질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509680

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15507449

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848513

Country of ref document: EP

Kind code of ref document: A1