WO2018070703A1 - 각 층의 바인더의 함량과 활물질 입경이 상이한 다층 음극 및 이를 포함하는 리튬 이차전지 - Google Patents
각 층의 바인더의 함량과 활물질 입경이 상이한 다층 음극 및 이를 포함하는 리튬 이차전지 Download PDFInfo
- Publication number
- WO2018070703A1 WO2018070703A1 PCT/KR2017/010692 KR2017010692W WO2018070703A1 WO 2018070703 A1 WO2018070703 A1 WO 2018070703A1 KR 2017010692 W KR2017010692 W KR 2017010692W WO 2018070703 A1 WO2018070703 A1 WO 2018070703A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- binder
- active material
- mixture layer
- multilayer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0435—Rolling or calendering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a multilayer negative electrode and a lithium secondary battery including the same in which the content of the binder of each layer and the particle size of the active material are different.
- the lithium secondary battery is being developed as a model capable of realizing high voltage and high capacity at the request of the consumer.
- four elements of the lithium secondary battery, a cathode material, an anode material, and a separator, have a limited space. , And an optimization process of the electrolyte solution is required.
- the easiest way to achieve high capacity is to prepare a high loading electrode by placing a large amount of electrode active material on the current collector, but this method is an electrode coating, drying, rolling process if a certain level of electrode adhesion is not secured Electrode detachment may occur at the time, which may cause a problem of deterioration of battery performance and stability.
- the electrode active material, the conductive material, and the current collector constituting the electrode are solid at room temperature, have different surface properties, and are difficult to bond at room temperature. However, when a polymer binder is used, the bonding force between components of the electrode is increased. Desorption of the electrode can be suppressed at the time of electrode coating, drying and rolling.
- the internal resistance of the electrode increases, the electron conductivity decreases, and the capacity decreases.
- the content of the binder is low, the adhesion decreases. As a result, the electrode breaks during charging and discharging, resulting in a decrease in cycle characteristics.
- the binder contained in the slurry is moved in the direction in which the solvent is volatilized (direction away from the current collector) due to the temperature condition of Tg or more of the binder, and thus, between the current collector and the electrode mixture.
- Tg or more of the binder the temperature condition of Tg or more of the binder
- the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
- the inventors of the present application have found that when the binder content and the electrode density of the negative electrode mixture layer in contact with the current collector are increased to a predetermined value or more, the adhesive force at the current collector and the negative electrode mixture layer interface is increased.
- the adhesion between the current collector and the active material even with a binder having a content similar to that of the conventional negative electrode, it was confirmed that the deterioration of overall battery performance was also prevented and the present invention was completed.
- a first negative electrode mixture layer formed on one or both surfaces of the current collector and including a first negative electrode active material and a first binder
- the electrode density of the first negative electrode mixture layer is 0.9 to 2.0 g / cc, and the electrode density of the second negative electrode mixture layer is 0.2 to less than the electrode density of the first negative electrode mixture layer. 1.7 g / cc.
- the electrode density of the first negative electrode mixture layer is 1.4 to 1.8 g / cc
- the electrode density of the second negative electrode mixture layer is lower than the electrode density of the first negative electrode mixture layer. In the range from 0.8 to 1.6 g / cc.
- the electrode density may be obtained by measuring the weight and thickness after punching the negative electrode on which the negative electrode mixture layer is formed in a predetermined area, and obtaining the electrode density therefrom. More specifically, after both the first negative electrode mixture layer and the second negative electrode mixture layer are formed, the average density of all the electrodes is obtained by the same method as described above, and when the second negative electrode mixture layer is removed, After obtaining the electrode density, the electrode density of only the second negative electrode mixture layer can be obtained therefrom.
- the electrode density of the first negative electrode mixture layer is too low outside the above range, a desired sufficient adhesive force cannot be obtained. If the electrode density of the second negative electrode mixture layer is too low, the electrode density of the second negative electrode mixture layer is too low. There is a problem that a decrease in capacity per volume due to the decrease may occur, and when the electrode density of the first negative electrode mixture layer and the electrode density of the second negative electrode mixture layer are too large than the above ranges, the particle strength becomes too low and the flexibility in the electrode It is not preferable because there may be a problem in that the output characteristics are deteriorated due to a decrease in electrolyte impregnability due to (tortuosity) and pore (pore) and the difficulty of movement of lithium ions.
- the average electrode density of the multilayer cathode according to the present invention may be greater than 1.0 g / cc, specifically 1.2 g / cc or more, and more specifically 1.4 g / cc or more and 1.6 g / cc or less.
- the second negative electrode mixture layer does not include a binder as an essential component.
- the second negative electrode mixture layer may or may not include a binder.
- the weight ratio (first binder / second binder) of the first binder and the second binder may be 1.2 to 10, and in detail, 3 to 8 days. It may be, and in more detail may be 5 to 7.
- the amount of the binder included in the first negative electrode mixture layer is small, so that the current collector and the first negative electrode mixture layer It is not preferable that sufficient adhesive force between the interfaces of the two is not secured.
- the electrode density of the first negative electrode mixture layer in contact with the current collector satisfies the above range in the range higher than the electrode density of the second negative electrode mixture layer.
- the binder content is higher than the binder content of the second negative electrode mixture layer located far from the current collector.
- the adhesive force at the interface between the current collector and the mixture layer has the greatest influence on the adhesive strength of the negative electrode, but the adhesive strength between the two is the lowest. Therefore, when the adhesive strength of the part is sufficiently high, the adhesive strength is reduced even with a small amount of binder. It can be significantly improved, thereby minimizing the capacity reduction with the cycle.
- the content of the binder is not limited, but the content of the total binder may be included in 0.5 to 30% by weight based on the weight of the total negative electrode mixture layer, Specifically, it may be included in 0.5 to 10% by weight, more specifically 2 to 5% by weight.
- the content of the first binder within the range satisfying the above range may be 1 to 10% by weight, in detail 2 to 5% by weight, based on the total weight of the first negative electrode mixture layer
- the content of the second binder may be 0.1 to 5% by weight, and specifically 0.1 to 2% by weight based on the total weight of the second negative electrode mixture layer.
- the content of the first binder and the second binder occupies too much weight% in each negative electrode mixture layer, the content of the active material may be relatively reduced, so that the capacity may be reduced, and the content of the first binder and the second binder may be reduced. It is not preferable because it cannot exhibit sufficient adhesive force.
- the first binder and the second binder are not limited in kind, and may be the same kind of materials or different kinds of materials, and may be polyvinylidene fluoride (PVdF), polyvinyl alcohol, Carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), It may also be selected from the group consisting of sulfonated EPDM, styrene butylene rubber (SBR), and fluorine rubber.
- PVdF polyvinylidene fluoride
- CMC Carboxymethylcellulose
- EPDM ethylene-propylene-diene polymer
- EPDM ethylene-propylene-diene polymer
- SBR styrene butylene rubber
- the first negative electrode mixture layer and the second negative electrode mixture layer of the negative electrode made of the multilayer structure may form an interface without being mixed with each other, and solid content of each layer may be mixed with each other to form an interface. It may not work.
- the adhesive strength to reduce the shape of the binder to the second electrode mixture layer when forming the pros and cons of each configuration, for example, the interface, but the first electrode mixture layer and the second electrode If there is an interfacial resistance between the mixture layers and does not form an interface, there is no problem of interfacial resistance, but since the binder contained in the first electrode mixture layer may be raised to the second electrode mixture layer, it is appropriate to consider them. You can choose the configuration.
- the first negative electrode mixture layer and the second negative electrode mixture layer may have a thickness ratio of 1: 9 to 7: 3 on the basis of the interface or, in the absence of the interface, based on the coating time before mixing. 3: 7 to 5: 5.
- the content of the binder included in the first negative electrode mixture layer may not ensure sufficient adhesion between the current collector and the negative electrode mixture layer, and if too large, Since the content of the active material is reduced to decrease the capacity, it is preferable to secure the capacity as well as the most sufficient electrode adhesion when the above range is satisfied.
- the electrode density which is one of the conditions for achieving the effect according to the present invention, satisfies the above range, and since the particle diameter and shape of the active material have the greatest influence on the electrode density, the particle size and shape of the active material are in the above range. It may be configured to satisfy.
- the first negative electrode active material may be in the form of elliptical particles having a long diameter parallel to the surface of the current collector in a vertical cross section
- the second negative electrode active material may be in the form of spherical particles
- the first negative electrode active material and the second negative electrode active material Silver may be in the form of elliptical particles having a long diameter parallel to the surface of the current collector in a vertical cross section, respectively, and the particle length of the first negative electrode active material may be relatively larger than that of the second negative electrode active material.
- the electrode density becomes lower as the negative electrode active material has a spherical particle shape, and the electrode density becomes higher as it has an elliptic particle shape, and it is more preferable that the first negative electrode active material has at least elliptical particle shape.
- the average particle diameter (D50) of the first negative electrode active material may be 10 to 30 micrometers
- the average particle diameter (D50) of the second negative electrode active material may be 5 to 25 micrometers.
- the average particle diameter (D50) (50% diameter of soil particle) means a particle diameter corresponding to 50% of the mass passed through the grain size accumulation curve (grain size accumulation curve), for example, Microtrac (S-3500 ) Can be used to obtain the volume-based powder distribution and measure the D50 value.
- the electrode density of the first electrode composite layer is easily rolled to 0.9 to 2.0 g / cc, and as a result, sufficient adhesive force may be exhibited.
- the electrode density is satisfied, when the particle size condition is not satisfied, a strong rolling process is required, and due to such an excessive rolling process, the movement of the particles during rolling increases, resulting in a breakage of contact between the particles.
- the binder between the particles formed before rolling can be broken. Therefore, even with a high density, it is difficult to have a satisfactory adhesion, which is not preferable for a high capacity, high adhesion electrode because a higher content of binder is required for a satisfactory adhesion.
- the second electrode mixture layer has a characteristic that sufficient passage for allowing electrolyte impregnation and lithium ions to pass in and out is obtained, and the energy density per volume is high while the output does not decrease at the same time.
- Such a first negative electrode active material and a second negative electrode active material are not limited, but may be compounds of the same kind or different kinds of compounds.
- the negative electrode active material is, for example, from the group consisting of crystalline artificial graphite, crystalline natural graphite, amorphous hard carbon, low crystalline soft carbon, carbon black, acetylene black, Ketjen black, super P, graphene, and fibrous carbon At least one carbon-based material, Si-based material, Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1 - x Me ' y O z ( Me: Mn, Fe, Pb, Ge; Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z Metal composite oxides such as?
- Lithium metal Lithium alloys; Silicon-based alloys; Tin-based alloys; SiO, SiO 2 , SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Metal oxides such as Bi 2 O 4 , and Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials; Titanium oxide; Lithium titanium oxide and the like may be included, but are not limited thereto.
- the first negative electrode mixture layer and the second negative electrode mixture layer according to the present invention in order to improve the electrical conductivity, may further include an electrically conductive material, respectively, wherein, in each of the negative electrode mixture layers The content of the conductive material included may be included in an amount of 1 to 10% by weight based on the total weight of the solids of the electrode mixture layers.
- Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
- graphite such as natural graphite and artificial graphite
- Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black
- Conductive fibers such as carbon fibers and metal fibers
- Metal powders such as carbon fluoride powder, aluminum powder and nickel powder
- Conductive whiskeys such as zinc oxide and potassium titanate
- the kind of the conductive material included in each of the negative electrode mixture layers may be the same as or different from each other.
- first negative electrode mixture layer and the second negative electrode mixture layer may further include a filler in some cases.
- the filler is optionally used as a component for inhibiting the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
- the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
- the types of fillers included in the negative electrode mixture layers may also be the same as or different from each other.
- the current collector is a negative electrode current collector, generally made of a thickness of 3 ⁇ 500 ⁇ m.
- a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
- the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
- fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- the present invention also provides a method for producing a multilayer negative electrode according to the present invention.
- the electrode density (electrode density) of the primary coating layer is 0.9 to 2.3 g / cc
- the electrode density (electrode density) of the secondary coating layer is 0.2 to 1.7 g / cc in the range lower than the electrode density of the primary coating layer.
- the binder content and the electrode density of each negative electrode mixture layer must satisfy the conditions according to the present invention.
- the content of the binder may be adjusted in the case of preparing a slurry for forming the mixture layer, but the electrode density may vary depending on the particle diameter and shape of the active materials, instead of simply controlling the electrode. If the density is within the range satisfying the conditions according to the present invention may vary depending on how to control it.
- the average particle diameter (D50) of the first negative electrode active material may be 10 to 30 micrometers, and the average particle diameter (D50) of the second negative electrode active material may be 5 to 25 micrometers. .
- the particle shape as another element may vary depending on the degree of orientation of the particles themselves, but may also be affected by the rolling strength.
- the multilayer cathode in the production method according to the invention, the multilayer cathode
- drying and rolling the primary coating layer and further comprising drying and rolling the secondary coating layer after the step (ii); or
- the method of adjusting the rolling strength may be largely a positive pressure method (method of changing the absolute value of the rolling strength) or a fixed position method (method of adjusting the gap of the roller of the rolling process), which is limited to It is not.
- the second negative electrode slurry does not include a binder, or when the second negative electrode slurry may further include a second binder, and includes a second binder
- the weight ratio (first binder / second binder) of the first binder and the second binder may be 1.2 to 10.
- the present invention also provides a lithium secondary battery including the multilayer negative electrode.
- the lithium secondary battery has a structure in which a lithium salt-containing non-aqueous electrolyte is impregnated into an electrode assembly including the multilayer anode, a cathode, and a separator.
- the positive electrode may include a positive electrode active material and a binder in the positive electrode current collector, and may further include a conductive material and a filler as in the negative electrode.
- the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like may be used.
- the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- the separator an insulating thin film having high ion permeability and mechanical strength is used.
- the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
- olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
- the solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.
- the lithium salt-containing non-aqueous electrolyte is composed of a non-aqueous electrolyte and a lithium salt, and a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, etc. may be used as the non-aqueous electrolyte, but are not limited thereto.
- non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
- organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymerizers containing ionic dissociating groups and the like can be used.
- Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
- the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide.
- the lithium salt-containing non-aqueous electrolyte includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, for the purpose of improving charge and discharge characteristics, flame retardancy, and the like.
- Hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride And the like may be added.
- a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
- lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which are low viscosity solvents.
- the electrolyte can be prepared by adding to a mixed solvent of linear carbonate.
- the present invention provides a battery module or battery pack including the secondary battery as a unit cell and a device including the same as a power source.
- the device include electric vehicles and electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like. Storage systems and the like, but is not limited thereto.
- EVs electric vehicles
- HEVs hybrid electric vehicles
- PHEVs plug-in hybrid electric vehicles
- Storage systems and the like but is not limited thereto.
- the multilayer negative electrode according to the present invention has a relatively high binder content and electrode density of the negative electrode mixture layer in contact with the current collector, thereby improving adhesion between the current collector and the negative electrode mixture layer interface,
- a binder having a similar content may secure adhesion between the current collector and the active material, and thus, may improve overall battery performance and safety such as cycle characteristics.
- SBR was used as the binder
- earth-based natural graphite having an average particle diameter (D50) of 16 ⁇ m was used as the negative electrode active material
- the negative electrode active material carbon black (conductive material): CMC (thickener): binder was 93.5: 1.5: 2.0: After weighing to 3.0, the mixture was put in distilled water and mixed to prepare a negative electrode slurry for preparing a first negative electrode mixture layer.
- the negative electrode active material carbon black (conductive material): CMC (thickener): binder was 93.5: 1.5: 2.0: After weighing to 1.0, the mixture was placed in distilled water and mixed to prepare a negative electrode mixture slurry for preparing a second negative electrode mixture layer.
- the first negative electrode slurry was coated on a current collector of copper foil to have a loading amount of 8 mg / cm 2 (weight after drying), dried, and rolled to an electrode density of 1.1 g / cc to form a first negative electrode mixture layer.
- the negative electrode slurry was coated on the first negative electrode mixture layer to a loading amount of 8 mg / cm 2 and dried, and then the negative electrode was prepared so that the average electrode density of the final first negative electrode mixture layer and the second negative electrode mixture layer was 1.43 g / cc. It was.
- the electrode density of the first negative electrode mixture layer is measured after removing the second negative electrode mixture layer, it can be seen that the electrode density of the second negative electrode mixture layer corresponds to 1.3 g / cc.
- Example 1 a negative electrode was manufactured in the same manner as in Example 1, except that a first negative electrode active material and a second negative electrode active material having an average particle diameter of 11 ⁇ m were used.
- the average electrode density of the first negative electrode mixture layer and the second negative electrode mixture layer is 1.35 g / cc
- the electrode density of the first negative electrode mixture layer is 1.4 g / cc
- the electrode density of the second negative electrode mixture layer is 1.3. g / cc.
- Example 1 the rolling process is adjusted so that the electrode density of the first negative electrode mixture layer is 1.3 g / cc, and the electrode density of the second negative electrode mixture layer is 1.2 g / cc, so that the average electrode density is 1.25 g.
- a negative electrode was manufactured in the same manner as in Example 1, except that the concentration was / cc.
- Example 1 the negative electrode active material included in the first negative electrode slurry: carbon black (conductive material): CMC (thickener): the binder is 93: 1.5: 2.0: 3.5 and the positive electrode active material contained in the second negative electrode slurry : Carbon Black (Conductive Material): CMC (Thickener): A negative electrode was prepared in the same manner as in Example 1 except that the binder was 96: 1.5: 2.0: 0.5. At this time, as in Example 1, the electrode density of the first negative electrode mixture layer was 1.55 g / cc, and the electrode density of the second negative electrode mixture layer was 1.3 g / cc.
- Example 1 the negative electrode active material included in the first negative electrode slurry: carbon black (conductive material): CMC (thickener): the binder to be 92.5: 1.5: 2.0: 4.0, the negative electrode active material included in the second negative electrode slurry : Carbon Black (Conductive Material): CMC (Thickener): A first negative electrode slurry and a second negative electrode slurry were prepared such that the binder was 96.5: 1.5: 2.0: 0, and the first negative electrode slurry was added to a current collector of copper foil at 8 mg.
- carbon black conductive material
- CMC thickener
- CMC Carbon Black
- CMC Thickener
- the negative electrode was prepared so that the electrode density of 1.55 g / cc and the second negative electrode composite layer was 1.4 g / cc.
- Example 1 a negative electrode was manufactured in the same manner as in Example 1, except that the electrode densities of the first negative electrode mixture layer and the second negative electrode mixture layer were both 1.0 g / cc.
- Example 1 the same method as in Example 1, except that the electrode density of the first negative electrode mixture layer is 1.2 g / cc, and the electrode density of the second negative electrode mixture layer is 1.3 g / cc. A negative electrode was prepared.
- Example 1 the negative electrode active material included in the first negative electrode slurry: carbon black (conductive material): CMC (thickener): the binder to be 94.5: 1.5: 2.0: 2.0, the negative electrode active material included in the second negative electrode slurry : Carbon Black (Conductive Material): CMC (Thickener): A negative electrode was prepared in the same manner as in Example 1 except that the binder was 94.5: 1.5: 2.0: 2.0.
- the negative electrode was prepared in the same manner as in Example 1, except that only the first negative electrode slurry was coated with a loading amount of 16 mg / cm 2 , dried, and then rolled to obtain an electrode density of 1.43 g / cc. It was.
- Example 1 the negative electrode was prepared in the same manner as in Example 1, except that only the second negative electrode slurry was coated with a loading amount of 16 mg / cm 2 , dried, and then rolled to obtain an electrode density of 1.43 g / cc. It was.
- Example 1 Example 2 Example 3 Example 4 Example 5 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Adhesive force (gf / 15mm) 33 31 28 37 37 11 18 19 14 9
- Example 5 the content of the first negative electrode mixture layer was similar to that of Example 4, where the content of the first negative electrode mixture layer was slightly lower, which Example 5 applied the second negative electrode slurry before applying and drying the first negative electrode slurry to give a negative electrode. Because the mixture layer is formed, the first negative electrode mixture layer and the second negative electrode mixture layer are mixed with no boundary, so that the binder of the first negative electrode slurry slightly enters the second negative electrode mixture layer during the drying process.
- Example 1 and Comparative Examples 4 and 5 exhibits a higher adhesive force than Comparative Example 4, which has the same total content of binder but is a single layer, and is much lower than Comparative Example 5, which has a smaller binder content and a smaller binder content. Higher adhesion.
- the adhesive strength is higher than in the case where any one condition is not satisfied.
- Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 is used as the positive electrode active material, and mixed with carbon black and PVDF at 96: 2: 2 in distilled water to prepare a positive electrode slurry. Then, this was applied to a current collector of aluminum foil so as to have a loading amount of 730 mg / 25cm 2 (after drying), dried, and then rolled to an electrode density of 3.4 g / cc to prepare a positive electrode.
- the prepared positive electrode was punched into a size of 3 * 4cm, and the negative electrode prepared in Examples 1 to 5 and Comparative Examples 1 to 5 was punched into a size of 3.2 * 4.2cm, and then interposed therebetween PE separator.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은, 외부 도선과 음극 활물질 사이에서 전자를 전달하는 집전체; 상기 집전체의 일면 또는 양면에 형성되어 있고, 제 1 음극 활물질 및 제 1 바인더를 포함하는 제 1 음극 합제층; 및 상기 제 1 음극 합제층 상에 형성되어 있고, 제 2 음극 활물질을 포함하는 제 2 음극 합제층; 을 포함하고 있으며, 상기 제 1 음극 합제층의 전극 밀도(electrode density)가 0.9 내지 2.0 g/cc이고, 상기 제 2 음극 합제층의 전극 밀도(electrode density)가 제 1 음극 합제층의 전극 밀도보다 낮은 범위에서 0.2 내지 1.7 g/cc인 것을 특징으로 하는 다층 음극 및 이를 포함하는 리튬 이차전지에 관한 것이다.
Description
본 발명은, 각 층의 바인더의 함량과 활물질 입경이 상이한 다층 음극 및 이를 포함하는 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로는 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지가 주로 연구, 사용되고 있다.
이러한 리튬 이차전지는, 소비자의 요구에 의해 고전압 및 고용량을 구현할 수 있는 모델로 개발이 진행되고 있는데, 고용량을 구현하기 위해서는, 제한된 공간 내에 리튬 이차전지의 4대 요소인 양극재, 음극재, 분리막, 및 전해액의 최적화 공정이 요구된다.
일반적으로, 고용량을 구현하기 위한 가장 쉬운 방법은 집전체 상에 많은 양의 전극 활물질을 올려 고로딩 전극을 제조하는 것이나, 이러한 방법은 일정 수준의 전극 접착력이 확보되지 않으면 전극 코팅, 건조, 압연 공정 시에 전극 탈리가 발생하게 되어 전지 성능 및 안정성이 저하되는 문제를 야기할 수 있다.
따라서, 고용량을 구현하면서도 전지 성능 및 안정성이 우수한 전지를 제조하기 위해, 전극 접착력을 향상시키는 방법에 대한 연구가 당업계에서 활발히 진행되었으며, 현재 전극 접착력을 향상시키기 위한 바인더를 전극 내에 포함하는 방법이 널리 쓰이고 있다.
전극을 구성하는 전극 활물질, 도전재, 및 집전체는 상온 상태가 고체이고, 표면 특성이 상이하여, 상온에서 쉽게 결합하기 어렵지만, 고분자 바인더를 이용할 경우, 상기 전극의 구성요소들 간의 결합력을 높여, 전극 코팅, 건조, 압연 공정 시에 전극의 탈리 현상을 억제할 수 있다.
그러나, 전극 접착력을 향상시키기 위하여 바인더의 함량을 증가시키게 되면, 전극 내부 저항이 커지고, 전자 전도도가 저하되며, 용량도 감소하는 문제가 발생하게 되고, 반면에, 바인더의 함량이 적으면 접착력이 감소하여 충방전 과정에서 전극이 부서져, 사이클 특성의 저하가 나타나는 문제가 있다.
더욱이, 전극을 코팅한 후 건조하는 과정에서, 바인더의 Tg 이상의 온도 조건으로 인해, 슬러리 상태로 포함되어 있는 바인더가 용매가 휘발되는 방향(집전체에서 먼 방향)으로 움직여, 집전체와 전극 합제 사이의 접착력은 더욱 약화되는 문제점이 존재하였다.
따라서, 높은 이론 용량을 가지면서도 소량의 바인더로도 충분한 전극 접착력을 가져 전반적인 전지의 성능을 향상시킬 수 있는 전극 개발에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 집전체와 접하는 음극 합제층의 바인더 함량과 전극 밀도를 소정의 값 이상으로 높게 하는 경우, 집전체와 음극 합제층 계면에서의 접착력을 향상시켜 기존의 음극과 유사한 함량의 바인더로도 집전체와 활물질 간의 충분한 접착력을 확보할 수 있는 바, 이에 따라 전반적인 전지 성능의 저하 또한 방지할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
본 발명에 따른 다층 음극은,
외부 도선과 음극 활물질 사이에서 전자를 전달하는 집전체;
상기 집전체의 일면 또는 양면에 형성되어 있고, 제 1 음극 활물질 및 제 1 바인더를 포함하는 제 1 음극 합제층; 및
상기 제 1 음극 합제층 상에 형성되어 있고, 제 2 음극 활물질을 포함하는 제 2 음극 합제층;
을 포함하고 있으며,
상기 제 1 음극 합제층의 전극 밀도(electrode density)가 0.9 내지 2.0 g/cc이고, 상기 제 2 음극 합제층의 전극 밀도(electrode density)가 제 1 음극 합제층의 전극 밀도보다 낮은 범위에서 0.2 내지 1.7 g/cc인 것을 특징으로 한다.
상세하게는, 상기 제 1 음극 합제층의 전극 밀도(electrode density)가 1.4 내지 1.8 g/cc이고, 상기 제 2 음극 합제층의 전극 밀도(electrode density)가 제 1 음극 합제층의 전극 밀도보다 낮은 범위에서 0.8 내지 1.6 g/cc일 수 있다.
여기서, 상기 전극 밀도는, 음극 합제층이 형성된 음극을 일정 면적으로 타발한 뒤에 무게와 두께를 측정하여 부피를 구하고, 그로부터 전극 밀도를 구할 수 있다. 더욱 구체적으로, 제 1 음극 합제층과 제 2 음극 합제층을 모두 형성한 뒤에 상기와 같은 방법에 의해 전체 전극의 평균 밀도를 구하고, 제 2 음극 합제층을 제거했을 때의 제 1 음극 합제층의 전극 밀도를 구한 후, 이로부터 제 2 음극 합제층만의 전극 밀도를 구할 수 있다.
상기 제 1 음극 합제층의 전극 밀도가 상기 범위를 벗어나 너무 낮은 경우에는 소망하는 정도의 충분한 접착력을 얻을 수 없고, 제 2 음극 합제층의 전극 밀도가 너무 낮은 경우에는 제 2 음극 합제층의 전극 밀도 저하에 따른 부피당 용량 저하가 나타날 수 있는 문제가 있고, 제 1 음극 합제층의 전극 밀도와 제 2 음극 합제층의 전극 밀도가 상기 범위보다 너무 커지는 경우에는, 입자 강도가 너무 낮아지고 전극 내 만곡성(tortuosity) 및 공극(pore) 저하로 인해 전해액 함침성 저하와 이로 인한 리튬 이온의 이동의 어려움으로부터 출력특성이 저하되는 문제가 있을 수 있어 바람직하지 않다.
또한, 본 발명에 따른 다층 음극의 평균 전극 밀도는, 1.0 g/cc 초과, 상세하게는, 1.2 g/cc 이상, 더욱 상세하게는 1.4 g/cc 이상 내지 1.6 g/cc 이하일 수 있다.
상기 범위를 벗어나 1.0 g/cc 이하인 경우에는, 접착력, 용량 유지율, 및 출력 특성이 모두 저하되는 문제가 있다.
한편, 상기 제 2 음극 합제층은, 바인더를 필수 구성요소로써 포함하지 않는다. 따라서, 제 2 음극 합제층은 제 1 음극 합제층과 달리 바인더를 포함할 수도, 포함하지 않을 수도 있다.
제 2 음극 합제층이 제 2 바인더를 포함하는 경우에는, 상기 제 1 바인더와 제 2 바인더의 중량비(제 1 바인더/제 2 바인더)는 1.2 내지 10일 수 있고, 상세하게는, 3 내지 8일 수 있으며, 더욱 상세하게는 5 내지 7일 수 있다.
상기 범위를 벗어나, 전체 음극에 포함되는 바인더의 함량이 일정할 때, 제 1 바인더의 중량비가 1.2 미만인 경우에는, 제 1 음극 합제층에 포함되는 바인더의 양이 적어 집전체와 제 1 음극 합제층의 계면 사이에서의 충분한 접착력을 확보할 수 없는 바, 바람직하지 않다.
즉, 상기에서 설명한 바와 같이, 본 발명이 소망하는 정도의 전극 접착력을 나타내기 위해서는 집전체와 접하는 제 1 음극 합제층의 전극 밀도가 제 2 음극 합제층의 전극 밀도보다 높은 범위에서 상기 범위를 만족해야 하고, 바인더 함량이 집전체와 멀리 위치하는 제 2 음극 합제층의 바인더 함량보다 많아야 한다. 이는, 본 출원의 발명자들이 음극의 접착력에 가장 큰 영향을 주는 것이 바인더의 함량 외에 음극 합제층의 전극 밀도라는 것과, 이러한 구성들이 상기 범위를 가질 때 가장 우수한 접착력을 발휘함을 확인하였기 때문이다.
따라서, 음극의 접착력에 있어서 통상 집전체와 합제층의 계면에서의 접착력이 가장 큰 영향을 미치나 둘 사이의 접착력이 가장 저조하므로, 이 부분의 접착력을 충분히 높이는 경우에 적은 바인더의 함량으로도 접착력을 상당히 향상시킬 수 있고, 이에 따라 사이클에 따른 용량 감소를 최소화시킬 수 있다.
한편, 상기 각 층의 바인더 중량비가 상기 범위를 만족하는 경우라면 바인더의 함량은 한정되지 아니하나, 총 바인더의 함량은, 전체 음극 합제층의 중량을 기준으로 0.5 내지 30 중량%로 포함될 수 있고, 상세하게는 0.5 내지 10 중량%, 더욱 상세하게는 2 중량% 내지 5 중량%로 포함될 수 있다.
더욱 구체적으로, 상기 범위를 만족하는 범위 내에서 상기 제 1 바인더의 함량은 제 1 음극 합제층 전체 중량을 기준으로 1 내지 10 중량%일 수 있고, 상세하게는 2 내지 5 중량%일 수 있으며, 제 2 바인더의 함량은 제 2 음극 합제층 전체 중량을 기준으로 0.1 내지 5 중량%일 있고, 상세하게는 0.1 내지 2 중량%일 수 있다.
상기 범위를 벗어나, 제 1 바인더 및 제 2 바인더의 함량이 각 음극 합제층에서 너무 많은 중량%를 차지하는 경우에는 활물질의 함량이 상대적으로 줄어 용량이 감소될 수 있고, 너무 적은 중량%로 포함되는 경우에는 충분한 접착력을 발휘할 수 없어 바람직하지 않다.
상기 제 1 바인더와 제 2 바인더는, 그 종류에 있어 한정되지 아니하고, 서로 동종(同種)의 물질일 수도 이종(異種)의 물질일 수도 있으며, 각각 폴리불화비닐리덴(PVdF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무(SBR), 및 불소 고무로 이루어진 군에서 선택될 수도 있다.
하나의 구체적인 예에서, 상기 다층 구조로 제조되는 음극의 제 1 음극 합제층과 제 2 음극 합제층은 서로 혼합되지 않고 경계면을 이루고 있을 수도 있고, 그 사이에서 각 층의 고형분들이 서로 혼입되어 경계면을 이루지 않을 수도 있다.
이는, 상기 다층 구조의 전극을 어떻게 제조하느냐에 따라 결정된다. 예를 들어, 제 1 전극 합제층을 형성하는 제 1 전극 슬러리를 도포하고 건조한 후에 제 2 전극 합제층을 형성하는 제 2 전극 슬러리를 도포하는 경우에는 제 1 전극 합제층과 제 2 전극 합제층이 서로 혼합되지 않고 경계면을 이룰 수 있고, 제 1 전극 슬러리를 도포하고 건조하기 전에 제 2 전극 슬러리를 도포하는 경우에는 그 계면에서 고형분들이 서로 혼입되게 되는 바 경계면을 이루지 않게 된다.
따라서, 전극을 어떻게 구성하는지는, 각 구성의 장단점, 예를 들어 경계면을 이루는 경우 바인더가 제 2 전극 합제층으로 올라가는 형상을 줄일 수 있어 접착력을 확보하는데 바람직하나 제 1 전극 합제층과 제 2 전극 합제층 사이에 계면 저항이 생기고, 경계면을 이루지 않는 경우에는 계면 저항 문제는 발생하지 않으나 제 1 전극 합제층에 포함된 바인더가 제 2 전극 합제층으로 올라가는 형상이 생길 수 있으므로, 이들을 고려하여 적절히 그 구성을 선택할 수 있다.
이러한 상기 제 1 음극 합제층과 제 2 음극 합제층은 경계면을 기준으로, 또는 경계면이 없는 경우에는 혼입되기 전 코팅시를 기준으로 그 두께비가 1:9 내지 7:3일 수 있고, 상세하게는 3:7 내지 5:5일 수 있다.
상기 범위를 벗어나, 제 1 음극 합제층의 두께가 너무 작은 경우에는 제 1 음극 합제층에 포함되는 바인더의 함량으로는 집전체와 음극 합제층간의 충분한 접착력을 확보할 수 없고, 너무 큰 경우에는 전체적으로 활물질의 함량이 줄어들게 되어 용량이 감소되므로, 상기 범위를 만족할 때 가장 충분한 전극 접착력과 더불어 용량 확보에도 바람직하다.
한편, 본 발명에 따른 효과를 발휘하기 위한 조건 중의 하나인 전극 밀도가 상기 범위를 만족하는데 있어, 상기 전극 밀도에는, 활물질의 입경과 형상이 가장 큰 영향을 미치므로 활물질의 입경과 형상이 상기 범위를 만족하도록 구성될 수 있다.
구체적으로, 상기 제 1 음극 활물질은 수직 단면상으로 장경이 집전체의 표면에 평행한 타원형 입자 형태이고, 상기 제 2 음극 활물질은 구형 입자 형태일 수 있고, 또는 상기 제 1 음극 활물질 및 제 2 음극 활물질은 각각 수직 단면상으로 장경이 집전체의 표면에 평행한 타원형 입자 형태이고, 상기 제 1 음극 활물질의 입자 장경은 제 2 음극 활물질의 입자 장경보다 상대적으로 큰 것일 수 있다.
이는, 상기 음극 활물질이 구형 입자 형태를 가질수록 전극 밀도가 낮고, 타원형 입자 형태를 가질수록 전극 밀도가 높아지는 바, 제 1 음극 활물질은 적어도 타원형 입자 형태를 가지는 것이 보다 바람직하다.
또한, 또 하나의 요소로서, 상기 제 1 음극 활물질의 평균 입경(D50)은 10 내지 30 마이크로미터이고, 제 2 음극 활물질의 평균 입경(D50)은 5 내지 25 마이크로미터일 수 있다.
여기서, 상기 평균 입경(D50)(50% diameter of soil particle)은 입경가적곡선(grain size accumulation curve)에서 통과 질량 백분율이 50%에 상당하는 입경을 의미하고, 예를 들어, Microtrac(S-3500)을 이용하여 부피기준 분체 분포도를 얻어 D50값을 측정할 수 있다.
제 1 음극 활물질의 평균 입경이 상기와 같은 조건을 만족할 때, 제 1 전극 합체층의 전극 밀도가 0.9~ 2.0 g/cc로 압연되기에 용이하며, 결과적으로 충분한 접착력을 나타낼 수 있다. 또한 상기 전극 밀도를 만족하더라도 상기의 입경 조건을 만족하지 못할 때에는 강한 압연 공정을 요구하게 되고, 이러한 무리한 압연 공정으로 인하여 압연 동안의 입자의 이동이 커져 오히려 입자 간의 접촉이 끊기는 현상이 발생하며, 결국 압연 전 형성하였던 입자간의 바인더가 끊어질 수 있는 문제가 있다. 따라서 높은 밀도를 갖더라도 만족할만한 접착력을 갖기 어려우며, 만족할 만한 수준의 접착력을 위해서는 더 많은 함량의 바인더가 요구되기 때문에 고용량, 고접착의 전극을 위해서 바람직하지 않다.
제 2 전극 합제층은 제 2 음극 활물질의 평균 입경이 상기와 같은 조건을 만족할 때, 전해액 함침 및 리튬 이온의 출입이 가능한 통로가 충분히 확보되어, 부피당 에너지 밀도가 높으면서 동시에 출력이 저하되지 않는 특성을 가질 수 있다.
이와 같은 제 1 음극 활물질과 제 2 음극 활물질은 한정되지 아니하나, 서로 동종(同種)의 화합물일 수도, 이종(異種)의 화합물일 수도 있다.
상기 음극 활물질은, 예를 들어 결정질 인조 흑연, 결정질 천연 흑연, 비정질 하드카본, 저결정질 소프트카본, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 수퍼 P, 그래핀 (graphene), 및 섬유상 탄소로 이루어진 군으로부터 선택되는 하나 이상의 탄소계 물질, Si계 물질, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1
-
xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SiO, SiO2, SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 포함할 수 있지만, 이들만으로 한정되는 것은 아니다.
한편, 본 발명에 따른 제 1 음극 합제층 및 제 2 음극 합제층에는, 또한, 전기 전도도를 향상시키기 위하여, 각각 전자 전도성의 도전재가 더 포함되어 있을 수 있고, 이때, 상기 각 음극 합제층들에 포함되는 도전재의 함량은, 전극 합제층들 각각의 고형분 전체 중량을 기준으로 1 내지 10 중량%로 포함될 수 있다.
상기 범위를 벗어나, 도전재의 함량이 1 중량% 미만인 경우에는 소망하는 정도의 전기 전도도를 얻을 수 없고, 10 중량%를 초과하는 경우에는 상대적으로 활물질 등의 함량이 줄어 용량이 감소하는 바, 바람직하지 않다.
이러한 도전재는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 한정되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
이때, 상기 바인더와 마찬가지로, 각각의 음극 합제층들에 포함되는 도전재의 종류는 서로 동일할 수 있고, 서로 상이할 수도 있다.
또한, 상기 제 1 음극 합제층 및 제 2 음극 합제층에는 경우에 따라서 충진제를 더 포함할 수 있다.
상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 한정되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
음극 합제층들에 포함되는 충진제의 종류 또한, 서로 동일할 수 있고, 서로 상이할 수도 있다.
상기 집전체는 음극 집전체로서, 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
한편, 본 발명은 또한, 본 발명에 따른 다층 음극을 제조하는 방법을 제공한다.
상기 다층 음극을 제조하는 방법은,
(i) 음극 집전체의 일면 또는 양면에 제 1 음극 활물질 및 제 1 바인더를 포함하는 제 1 음극 슬러리를 코팅하여 1차 코팅층을 형성하는 과정; 및
(ii) 상기 1차 코팅층 상에 제 2 음극 활물질을 포함하는 제 2 음극 슬러리를 코팅하여 2차 코팅층을 형성하는 과정;
를 포함하고,
이때, 상기 1차 코팅층의 전극 밀도(electrode density)가 0.9 내지 2.3 g/cc이고, 상기 2차 코팅층의 전극 밀도(electrode density)가 1차 코팅층의 전극 밀도보다 낮은 범위에서 0.2 내지 1.7 g/cc가 되도록 할 수 있다.
여기서, 상기에서 설명한 바와 같이, 본 발명에 따른 다층 음극은 각 음극 합제층의 바인더의 함량과 전극 밀도가 본 발명에 따른 조건을 만족해야 한다. 여기서, 상기 바인더의 함량은 합제층 형성용 슬러리를 제조하는 경우에 그 함량을 조절하면 되나, 전극 밀도는 단순히 조절하는 것이 아니라 활물질들의 입경과 형상에 따라서도 달라질 수 있는 바, 상기 제조방법은 전극 밀도가 본 발명에 따른 조건을 만족하는 범위라면 이를 조절하는 방법에 따라 다양할 수 있다.
따라서, 하나의 요소로서 상기에서 설명한 바와 같이, 상기 제 1 음극 활물질의 평균 입경(D50)은 10 내지 30 마이크로미터이고, 제 2 음극 활물질의 평균 입경(D50)은 5 내지 25 마이크로미터일 수 있다.
한편, 다른 요소로서 입자 형상은 입자 자체의 배향도 등에 따라 달라질 수도 있으나, 압연 강도에 의해서도 영향을 받을 수 있다.
이와 관련하여, 본 발명에 따른 제조방법에서, 다층 음극은,
상기 과정(i)과 과정(ii) 사이에서 1차 코팅층을 건조하는 과정을 포함하고, 과정(ii) 이후에 2차 코팅층을 건조하고, 코팅층들을 압연하는 과정을 더 포함하거나;
상기 과정(i)과 과정(ii) 사이에서 1차 코팅층을 건조하고 압연하는 과정을 포함하고, 과정(ii) 이후에 2차 코팅층을 건조하고 압연하는 과정을 더 포함하거나; 또는
상기 과정(ii) 이후에 코팅층들을 한번에 건조하고 압연하는 과정을 더 포함하여 제조될 수 있다.
이때, 각각의 방법에 따라 활물질의 평균 입경, 배향도, 바인더의 함량 및 공정상의 압연 강도와 시간 등의 조건을 적절히 조절하여 상기 압연 밀도의 범위를 만족하도록 구성할 수 있다. 여기서, 압연 강도를 조절하는 방법은 크게 정압력 방식(압연 강도의 절대치를 변경하는 방법) 또는 정위치 방식(압연 공정의 롤러의 갭(gap)을 조절하는 방법)이 가능할 수 있고, 이에 한정되는 것은 아니다.
한편, 접착력을 좌우하는 바인더의 함량은, 상기에서 설명한 바와 같고, 제 2 음극 슬러리는 바인더를 포함하지 않거나, 제 2 음극 슬러리가 제 2 바인더를 더 포함할 수 있고, 제 2 바인더를 포함하는 경우에는, 상기 제 1 바인더와 제 2 바인더의 중량비(제 1 바인더/제 2 바인더)는 1.2 내지 10일 수 있다.
본 발명은 또한, 상기 다층 음극을 포함하는 리튬 이차전지를 제공한다.
상기 리튬 이차전지는 상기 다층 음극, 양극 및 분리막을 포함하는 전극 조립체에 리튬염 함유 비수계 전해질이 함침되어 있는 구조로 이루어져 있다.
상기 양극은 양극 집전체에, 양극 활물질, 및 바인더를 포함하고, 상기 음극과 같이 선택적으로 도전재 및 충진제를 더 포함할 수 있다.
상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 양극 활물질은, 예를 들어, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1
+
xMn2
-
xO4
(여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1
-
xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2
-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2
-
xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 포함할 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 분리막은, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 비수계 전해질은 비수 전해액과 리튬염으로 이루어져 있고, 상기 비수 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 상기 리튬염 함유 비수계 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 전해액을 제조할 수 있다.
본 발명은, 상기 이차전지를 단위전지로 포함하는 전지모듈 또는 전지팩 및 이들을 전원으로서 포함하는 디바이스를 제공한다.
상기 디바이스의 구체적인 예로는, 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차 및 전력 저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 전지팩의 구조 및 그것들의 제작 방법과, 상기 디바이스의 구조 및 그것의 제작 방법은 당업계 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명을 생략한다.
이상의 설명과 같이, 본 발명에 따른 다층 음극은, 집전체와 접하는 음극 합제층이 상대적으로 높은 바인더 함량과 전극 밀도를 가짐으로써, 집전체와 음극 합제층 계면에서의 접착력을 향상시켜 기존의 음극과 유사한 함량의 바인더로도 집전체와 활물질 간의 접착력을 확보할 수 있고, 이에 따라 사이클 특성 등의 전반적인 전지 성능 및 안전성을 향상시킬 수 있는 효과가 있다.
이하에서는 실시예를 통해 본 발명의 내용을 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예 1>
1-1.
제 1
음극 슬러리 제조
바인더로서 SBR을 사용하고, 평균 입경(D50)이 16 ㎛인 토상의 천연 흑연을 음극 활물질로 사용하여, 음극 활물질 : 카본블랙(도전재) : CMC(증점제) : 바인더가 93.5 : 1.5 : 2.0: 3.0이 되도록 계량한 후 증류수에 넣고 혼합(mixing)하여 제 1 음극 합제층 제조용 음극 슬러리를 제조하였다.
1-2.
제 2
음극 슬러리 제조
바인더로서 SBR를 사용하고, 평균 입경(D50)이 11 ㎛인 토상의 천연 흑연을 음극 활물질로 사용하여, 음극 활물질: 카본블랙(도전재) : CMC(증점제) : 바인더가 93.5 : 1.5 : 2.0: 1.0이 되도록 계량한 후 증류수에 넣고 혼합(mixing)하여 제 2 음극 합제층 제조용 음극 혼합물 슬러리를 제조하였다.
1-3. 음극의 제조
제 1 음극 슬러리를 구리 호일의 집전체에 8 mg/cm2 로딩량(건조 후의 무게)이 되도록 코팅하고 건조한 후 전극 밀도가 1.1 g/cc가 되도록 압연하여 제 1 음극 합제층을 형성하고, 제 2 음극 슬러리를 제 1 음극 합제층 상에 8 mg/cm2 로딩량이 되도록 코팅하고 건조한 후, 최종 제 1 음극 합제층과 제 2 음극 합제층의 평균 전극 밀도가 1.43 g/cc가 되도록 음극을 제조하였다. 이때, 제 2 음극 합제층을 제거한 뒤 제 1 음극 합제층의 전극 밀도를 측정하면 1.55 g/cc이며, 이로부터 제 2 음극 합제층의 전극 밀도는 1.3 g/cc에 해당함을 알 수 있다.
<실시예 2>
상기 실시예 1에서, 평균 입경이 11 ㎛로 동일한 제 1 음극 활물질과 제 2 음극 활물질을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극을 제조하였다. 이때, 제 1 제 음극 합제층과 제 2 음극 합제층의 평균 전극 밀도는 1.35 g/cc 이며, 제 1 음극 합제층의 전극 밀도는 1.4 g/cc 이고, 제 2 음극 합제층의 전극 밀도는 1.3 g/cc이었다.
<실시예 3>
상기 실시예 1에서, 압연 공정을 조절하여 제 1 음극 합제층의 전극 밀도를 1.3 g/cc가 되도록하고, 제 2 음극 합제층의 전극 밀도를 1.2 g/cc가 되도록 하여 평균 전극 밀도가 1.25 g/cc가 되도록 한 것을 제외하고는 실시예 1과 동일한 방법으로 음극을 제조하였다.
<실시예 4>
상기 실시예 1에서, 제 1 음극 슬러리에 포함되는 음극 활물질 : 카본블랙(도전재) : CMC(증점제) : 바인더가 93 : 1.5 : 2.0: 3.5이 되도록 하고, 제 2 음극 슬러리에 포함되는 양극 활물질 : 카본블랙(도전재) : CMC(증점제) : 바인더가 96 : 1.5 : 2.0: 0.5이 되도록 한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극을 제조하였다. 이때, 실시예 1과 동일하게 제 1 음극 합제층의 전극 밀도는 1.55 g/cc, 제 2 음극 합제층의 전극 밀도는 1.3 g/cc가 되도록 하였다.
<실시예 5>
상기 실시예 1에서, 제 1 음극 슬러리에 포함되는 음극 활물질 : 카본블랙(도전재) : CMC(증점제) : 바인더가 92.5 : 1.5 : 2.0: 4.0 이 되도록 하고, 제 2 음극 슬러리에 포함되는 음극 활물질 : 카본블랙(도전재) : CMC(증점제) : 바인더가 96.5 : 1.5 : 2.0: 0이 되도록 제 1 음극 슬러리와 제 2 음극 슬러리를 제조하였고, 제 1 음극 슬러리를 구리 호일의 집전체에 8 mg/cm2 로딩량으로 코팅하고 건조하기 전에 제 2 음극 슬러리를 제 1 양극 합제층 상에 8 mg/cm2 로딩량으로 코팅한 후, 이들을 함께 압연하여, 최종 제 1 음극 합제층의 전극 밀도가 1.55 g/cc, 제 2 음극 합체층의 전극 밀도가 1.4 g/cc가 되도록 음극을 제조하였다.
<비교예 1>
상기 실시예 1에서, 제 1 음극 합제층과 제 2 음극 합제층의 전극 밀도를 모두 1.0 g/cc가 되도록 한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극을 제조하였다.
<비교예 2>
상기 실시예 1에서, 제 1 음극 합제층의 전극 밀도를 1.2 g/cc가 되도록 하고, 제 2 음극 합제층의 전극 밀도를 1.3 g/cc가 되도록 한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극을 제조하였다.
<비교예 3>
상기 실시예 1에서, 제 1 음극 슬러리에 포함되는 음극 활물질 : 카본블랙(도전재) : CMC(증점제) : 바인더가 94.5 : 1.5 : 2.0: 2.0이 되도록 하고, 제 2 음극 슬러리에 포함되는 음극 활물질 : 카본블랙(도전재) : CMC(증점제) : 바인더가 94.5 : 1.5 : 2.0: 2.0이 되도록 한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극을 제조하였다.
<비교예 4>
상기 비교예 3에서, 제 1 음극 슬러리만을 16 mg/cm2 로딩량으로 코팅하고 건조한 후 압연하여 전극 밀도가 1.43 g/cc가 되도록 한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극을 제조하였다.
<비교예 5>
상기 실시예 1에서, 제 2 음극 슬러리만을 16 mg/cm2 로딩량으로 코팅하고 건조한 후 압연하여 전극 밀도가 1.43 g/cc가 되도록 한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극을 제조하였다.
<실험예 1>
상기 실시예 1 내지 5 및 비교예 1 내지 5에서 제조된 음극의 극판을 15mm의 너비로 잘라 슬라이드 글라스에 고정시킨 후, 집전체를 300mm/min의 속도로 벗겨 내어 180도 벗김 강도를 측정하였고, 그 결과를 하기 표 1에 도시하였다.
실시예 1 | 실시예 2 | 실시예 3 | 실시예 4 | 실시예 5 | 비교예 1 | 비교예 2 | 비교예 3 | 비교예 4 | 비교예 5 | |
접착력(gf/15mm) | 33 | 31 | 28 | 37 | 37 | 11 | 18 | 19 | 14 | 9 |
상기 표 1에서 먼저, 실시예 1과 비교예 1 및 2를 참조하면, 제 1 음극 합제층 전극 밀도보다 제 2 음극 합제층 전극 밀도가 크거나 같은 경우, 본원발명에 따른 경우와 달리, 매우 낮은 접착력을 나타냄을 알 수 있다. 이로부터 집전체와 음극 합제층과의 접착력에 있어서, 바인더의 함량과 함께 전극 밀도 또한 영향을 준다는 것을 알 수 있고, 본원발명과 같은 구성에서 가장 우수한 효과를 나타냄을 확인할 수 있다.
또한, 실시예 1, 4, 5 및 비교예 3을 참조하면, 전체 바인더 함량이 동일할 때 제 1 음극 합제층의 바인더 함량이 많을수록 더 높은 접착력을 발휘함을 알 수 있다. 이는 음극의 접착력에서 집전체와 합제층의 계면에서의 접착력이 가장 저조하여, 이를 높이는 경우 접착력이 상당히 향상되기 때문이다. 실시예 5의 경우, 제 1 음극 합제층의 함량이 조금 낮은 실시예 4와 비교하여 유사한 접착력을 갖는데, 이는 실시예 5는 제 1 음극 슬러리를 도포하고 건조하기 전에 제 2 음극 슬러리를 도포하여 음극 합제층을 형성하기 때문에 제 1 음극 합제층과 제 2 음극 합제층이 경계가 구분되지 않고 혼입되어 제 1 음극 슬러리의 바인더가 건조 과정에서 조금은 들떠 제 2 음극 합제층 쪽으로 혼입되기 때문이다.
또한 실시예 1 및 비교예 4, 5를 참조하면, 본원발명은 바인더의 총 함량이 동일하나 단층으로 된 비교예 4보다도 더 높은 접착력을 나타내고, 바인더 함량이 작으면서 단층으로 된 비교예 5보다는 훨씬 더 높은 접착력을 나타낸다.
한편, 실시예 1 내지 3을 참조하면, 제 1 음극 합제층의 전극 밀도가 높을 수록, 전체 평균 전극 밀도가 높을수록 더 높은 접착력을 나타냄을 확인할 수 있다.
이를 종합적으로 고려하면, 집전체와 접하는 제 1 음극 합제층에 전체적인 바인더의 양 중 보다 많은 양을 포함하게 하면서 전극 밀도도 높게 하는 경우, 하나의 조건이라도 만족되지 않는 경우에 비해 더 높은 접착력을 나타냄을 확인할 수 있다.
<실험예 2>
양극으로는 Li(Ni1/3Co1/3Mn1/3)O2를 양극활물질로 하고, 카본블랙, PVDF와 함께 96:2:2로 증류수에 넣고 혼합(mixing)하여 양극 슬러리를 준비하고, 이를 알루미늄 호일의 집전체에 730 mg/25cm2의 로딩량(건조 후 기준)이 되도록 도포하고 건조한 후, 전극밀도 3.4 g/cc로 압연하여 양극을 제조하였다.
제조한 양극을 3*4cm의 크기로 타발하고, 상기 실시예 1 내지 5, 및 비교예 1 내지 5에서 제조된 음극은 3.2*4.2cm의 크기로 타발한 후, PE 분리막을 이들 사이에 개재하고, EC : DMC : DEC = 1 : 2 : 1 인 용매에 1M의 LiPF6가 들어있는 전해액을 사용하여 알루미늄 파우치로의 씰링으로 파우치 셀들을 제조하였다.
상기 셀들을, 섭씨 25도의 상온에서 상한 전압 4.25V의 1C CC/CV 모드로 50 사이클 동안 충전 및 방전(3.0V)한 후, 용량 유지율을 측정하고, 그 결과를 하기 표 2에 나타내었다.
용량 유지율(%) | 초기방전용량(mAh) | |
실시예 1 | 97.3 | 74.06 |
실시예 2 | 97.0 | 74.10 |
실시예 3 | 95.3 | 74.10 |
실시예 4 | 98.6 | 74.33 |
실시예 5 | 98.8 | 74.60 |
비교예 1 | 86.3 | 73.64 |
비교예 2 | 93.3 | 73.41 |
비교예 3 | 93.9 | 73.38 |
비교예 4 | 89.8 | 72.94 |
비교예 5 | 78.2 | 74.31 |
상기 표 2를 참조하면, 접착력이 높을수록 수명특성 또한 향상되는 것을 확인할 수 있다. 또한, 제 2 음극 합제층의 바인더의 함량을 증가시킨 비교예 4는 초기 용량이 조금 떨어짐을 확인할 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
Claims (23)
- 외부 도선과 음극 활물질 사이에서 전자를 전달하는 집전체;상기 집전체의 일면 또는 양면에 형성되어 있고, 제 1 음극 활물질 및 제 1 바인더를 포함하는 제 1 음극 합제층; 및상기 제 1 음극 합제층 상에 형성되어 있고, 제 2 음극 활물질을 포함하는 제 2 음극 합제층;을 포함하고 있으며,상기 제 1 음극 합제층의 전극 밀도(electrode density)가 0.9 내지 2.0 g/cc이고, 상기 제 2 음극 합제층의 전극 밀도(electrode density)가 제 1 음극 합제층의 전극 밀도보다 낮은 범위에서 0.2 내지 1.7 g/cc인 것을 특징으로 하는 다층 음극.
- 제 1 항에 있어서, 상기 다층 음극의 평균 전극 밀도는, 1.0 g/cc 초과 내지 1.6 g/cc 이하인 것을 특징으로 하는 다층 음극.
- 제 1 항에 있어서, 상기 제 2 음극 합제층은 제 2 바인더를 더 포함하고, 상기 제 1 바인더와 제 2 바인더의 중량비(제 1 바인더/제 2 바인더)는 1.2 내지 10인 것을 특징으로 하는 다층 음극.
- 제 3 항에 있어서, 상기 제 2 음극 합제층은 제 2 바인더를 더 포함하고, 상기 제 1 바인더와 제 2 바인더의 중량비(제 1 바인더/제 2 바인더)는 3 내지 8인 것을 특징으로 하는 다층 음극.
- 제 1 항 내지 제 4 항 중 어느 하나에 있어서, 상기 제 1 바인더의 함량은 제 1 음극 합제층 전체 중량을 기준으로 1 내지 10 중량%인 것을 특징으로 하는 다층 음극.
- 제 3 항 또는 제 4 항에 있어서, 상기 제 2 바인더의 함량은 제 2 음극 합제층 전체 중량을 기준으로 0.1 내지 5 중량%인 것을 특징으로 하는 다층 음극.
- 제 3 항에 있어서, 제 1 바인더와 상기 제 2 바인더는 서로 동종(同種)의 물질인 것을 특징으로 하는 다층 음극.
- 제 3 항에 있어서, 제 1 바인더와 상기 제 2 바인더는 서로 이종(異種)의 물질인 것을 특징으로 하는 다층 음극.
- 제 1 항에 있어서, 상기 제 1 음극 합제층 및 제 2 음극 합제층은 서로 혼합되지 않고 경계면을 이루고 있는 것을 특징으로 하는 다층 음극.
- 제 1 항에 있어서, 상기 제 1 음극 합제층 및 제 2 음극 합제층은 그 사이에서 각 층의 고형분들이 서로 혼입되어 경계면을 이루지 않는 것을 특징으로 하는 다층 음극.
- 제 1 항에 있어서, 상기 제 1 음극 합제층과 제 2 음극 합제층의 두께비는 1:9 내지 7:3인 것을 특징으로 하는 다층 음극.
- 제 1 항에 있어서, 상기 제 1 음극 활물질은 수직 단면상으로 장경이 집전체의 표면에 평행한 타원형 입자 형태이고, 상기 제 2 음극 활물질은 구형 입자 형태인 것을 특징으로 하는 다층 음극.
- 제 1 항에 있어서, 상기 제 1 음극 활물질 및 제 2 음극 활물질은 각각 수직 단면상으로 장경이 집전체의 표면에 평행한 타원형 입자 형태이고, 상기 제 1 음극 활물질의 입자 장경은 제 2 음극 활물질의 입자 장경보다 상대적으로 큰 것을 특징으로 하는 다층 음극.
- 제 1 항에 있어서, 상기 제 1 음극 활물질 및 제 2 음극 활물질은 서로 동종(同種)의 화합물인 것을 특징으로 하는 다층 음극.
- 제 1 항에 있어서, 상기 제 1 음극 활물질 및 제 2 음극 활물질은 서로 이종(異種)의 화합물인 것을 특징으로 하는 다층 음극.
- 제 1 항에 있어서, 상기 제 1 음극 활물질의 평균 입경(D50)은 10 내지 30 마이크로미터이고, 제 2 음극 활물질의 평균 입경(D50)은 5 내지 25 마이크로미터인 것을 특징으로 하는 다층 음극.
- 제 1 항 내지 제 4 항 중 어느 하나에 있어서, 상기 제 1 바인더 및 제 2 바인더는 각각 폴리불화비닐리덴(PVdF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무(SBR), 및 불소 고무로 이루어진 군에서 선택되는 것을 특징으로 하는 다층 음극.
- 제 1 항에 있어서, 상기 제 1 음극 합제층 및 제 2 음극 합제층에는 도전재가 더 포함되어 있는 것을 특징으로 하는 다층 음극.
- 제 1 항에 따른 다층 음극을 제조하는 방법으로서,(i) 음극 집전체의 일면 또는 양면에 제 1 음극 활물질 및 제 1 바인더를 포함하는 제 1 음극 슬러리를 코팅하여 1차 코팅층을 형성하는 과정; 및(ii) 상기 1차 코팅층 상에 제 2 음극 활물질을 포함하는 제 2 음극 슬러리를 코팅하여 2차 코팅층을 형성하는 과정;를 포함하고,상기 1차 코팅층의 전극 밀도(electrode density)가 0.9 내지 2.0 g/cc이고, 상기 2차 코팅층의 전극 밀도(electrode density)가 1차 코팅층의 전극 밀도보다 낮은 범위에서 0.2 내지 1.7 g/cc인 것을 특징으로 하는 다층 음극의 제조방법.
- 제 19 항에 있어서,상기 과정(i)과 과정(ii) 사이에서 1차 코팅층을 건조하는 과정을 포함하고, 과정(ii) 이후에 2차 코팅층을 건조하고, 코팅층들을 압연하는 과정을 더 포함하거나;상기 과정(i)과 과정(ii) 사이에서 1차 코팅층을 건조하고 압연하는 과정을 포함하고, 과정(ii) 이후에 2차 코팅층을 건조하고 압연하는 과정을 더 포함하거나; 또는상기 과정(ii) 이후에 코팅층들을 한번에 건조하고 압연하는 과정을 더 포함하는 것을 특징으로 하는 다층 음극의 제조방법.
- 제 19 항에 있어서, 상기 제 1 음극 활물질의 평균 입경(D50)은 10 내지 30 마이크로미터이고, 제 2 음극 활물질의 평균 입경(D50)은 5 내지 25 마이크로미터인 것을 특징으로 하는 다층 음극의 제조방법.
- 제 20 항에 있어서, 상기 과정(i)과 과정(ii) 사이에서 1차 코팅층을 건조하고 압연하는 과정을 포함하고, 과정(ii) 이후에 2차 코팅층을 건조하고 압연하는 과정을 더 포함할 때, 상기 1차 코팅층의 압연 강도가 2차 코팅층의 압연 강도보다 높은 것을 특징으로 하는 다층 음극의 제조방법.
- 제 19 항에 있어서, 상기 제 2 음극 슬러리는 제 2 바인더를 더 포함하고, 상기 제 1 바인더와 제 2 바인더의 중량비(제 1 바인더/제 2 바인더)는 1.2 내지 10인 특징으로 하는 다층 음극의 제조방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780008029.6A CN108701810B (zh) | 2016-10-12 | 2017-09-27 | 多层负极以及包括该多层负极的锂二次电池 |
US16/069,730 US10910639B2 (en) | 2016-10-12 | 2017-09-27 | Multi-layer negative electrode with different binder content and different particle size of active material in each layer and lithium secondary battery comprising the same |
EP17860403.9A EP3399576B1 (en) | 2016-10-12 | 2017-09-27 | Multilayer anode having, in each layer, different amounts of binder and different active material grain size, and lithium secondary battery comprising same |
PL17860403T PL3399576T3 (pl) | 2016-10-12 | 2017-09-27 | Wielowarstwowa anoda, mająca w każdej warstwie różne ilości spoiwa i różne rozmiary ziaren materiału aktywnego, oraz zawierająca ją litowa bateria akumulatorowa |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160131922A KR102053063B1 (ko) | 2016-10-12 | 2016-10-12 | 각 층의 바인더의 함량과 활물질 입경이 상이한 다층 음극 및 이를 포함하는 리튬 이차전지 |
KR10-2016-0131922 | 2016-10-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018070703A1 true WO2018070703A1 (ko) | 2018-04-19 |
Family
ID=61905397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/010692 WO2018070703A1 (ko) | 2016-10-12 | 2017-09-27 | 각 층의 바인더의 함량과 활물질 입경이 상이한 다층 음극 및 이를 포함하는 리튬 이차전지 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10910639B2 (ko) |
EP (1) | EP3399576B1 (ko) |
KR (1) | KR102053063B1 (ko) |
CN (1) | CN108701810B (ko) |
PL (1) | PL3399576T3 (ko) |
WO (1) | WO2018070703A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11600816B2 (en) * | 2019-03-06 | 2023-03-07 | Contemporary Amperex Technology Co., Limited | Negative electrode, secondary battery and device comprising same |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020046026A1 (ko) | 2018-08-31 | 2020-03-05 | 에스케이이노베이션 주식회사 | 바인더 분포가 최적화된 이차전지용 음극 및 이를 포함하는 이차전지 |
KR102262044B1 (ko) | 2018-08-31 | 2021-06-09 | 에스케이이노베이션 주식회사 | 바인더 분포가 최적화된 이차전지용 음극 및 이를 포함하는 이차전지 |
KR102634863B1 (ko) * | 2018-10-18 | 2024-02-06 | 주식회사 엘지에너지솔루션 | 균일한 공극률을 가지는 다층 구조의 전극 및 이를 포함하는 리튬 이차전지 |
CN109585780A (zh) * | 2018-12-24 | 2019-04-05 | 珠海光宇电池有限公司 | 一种复合正极极片及其制备方法及含有该极片的锂离子电池 |
US20220109143A1 (en) * | 2019-02-01 | 2022-04-07 | Samsung Sdi Co., Ltd. | Electrode and lithium secondary battery comprising same |
CN111613770B (zh) * | 2019-02-26 | 2021-05-11 | 荣盛盟固利新能源科技有限公司 | 一种锂离子电池极片 |
KR102517419B1 (ko) * | 2019-04-04 | 2023-03-31 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 전극 |
US20220238886A1 (en) * | 2019-08-01 | 2022-07-28 | Lg Energy Solution, Ltd. | Negative Electrode, Secondary Battery Including the Negative Electrode, and Method of Preparing the Negative Electrode |
DE102019122226A1 (de) * | 2019-08-19 | 2021-02-25 | Bayerische Motoren Werke Aktiengesellschaft | Kompositelektrode für eine Lithium- oder Lithium-Ionen-Batterie und Herstellungsverfahren dafür |
CN112750981B (zh) * | 2019-10-29 | 2022-11-18 | 北京小米移动软件有限公司 | 锂离子电池用负极及其制备方法、锂离子电池、终端设备 |
CN113497218B (zh) * | 2020-03-20 | 2023-09-22 | 宁德时代新能源科技股份有限公司 | 负极极片、二次电池和包含二次电池的装置 |
US11769882B2 (en) | 2020-06-23 | 2023-09-26 | A123 Systems, LLC | Multi-layered coated electrode for lithium-ion battery |
KR20220009279A (ko) | 2020-07-15 | 2022-01-24 | 에스케이온 주식회사 | 이차전지용 전극 |
KR102706490B1 (ko) * | 2020-08-28 | 2024-09-11 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 전극 조립체 및 이를 포함하는 리튬 이차 전지 |
KR20220050816A (ko) * | 2020-10-16 | 2022-04-25 | 주식회사 엘지에너지솔루션 | 음극 및 이의 제조방법 |
KR20220054954A (ko) * | 2020-10-26 | 2022-05-03 | 에스케이온 주식회사 | 이차전지용 다층 전극 및 이의 제조 방법 |
KR20220057158A (ko) * | 2020-10-29 | 2022-05-09 | 에스케이온 주식회사 | 이차전지용 음극 및 이를 포함하는 이차전지 |
KR20220057125A (ko) * | 2020-10-29 | 2022-05-09 | 에스케이온 주식회사 | 이차전지용 음극 및 이를 포함하는 이차전지 |
EP4207333A1 (en) * | 2020-12-03 | 2023-07-05 | LG Energy Solution, Ltd. | Method for producing negative electrode |
US20240047637A1 (en) * | 2020-12-28 | 2024-02-08 | Lg Energy Solution, Ltd. | Negative electrode and method for manufacturing the same |
CN114709363A (zh) * | 2022-04-29 | 2022-07-05 | 三一技术装备有限公司 | 干法极片及其制备方法 |
KR20240112609A (ko) * | 2023-01-12 | 2024-07-19 | 에스케이온 주식회사 | 음극, 음극 합제층 제조용 키트 및 음극 제조방법 |
CN116565181B (zh) * | 2023-07-05 | 2023-10-13 | 宁德新能源科技有限公司 | 一种二次电池和电子装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130116038A (ko) * | 2012-04-13 | 2013-10-22 | 주식회사 엘지화학 | 다층구조 전극 및 그 제조방법 |
KR20130116026A (ko) * | 2012-04-13 | 2013-10-22 | 주식회사 엘지화학 | 전극의 제조방법 및 이를 사용하여 제조되는 전극 |
KR20140095980A (ko) * | 2013-01-25 | 2014-08-04 | 주식회사 엘지화학 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
KR20140137660A (ko) * | 2013-05-23 | 2014-12-03 | 주식회사 엘지화학 | 이차전지용 전극 및 이를 포함하는 이차전지 |
KR20160050283A (ko) * | 2014-10-29 | 2016-05-11 | 주식회사 엘지화학 | 다층 구조의 이차전지용 전극의 제조방법 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4665931B2 (ja) | 2007-03-29 | 2011-04-06 | Tdk株式会社 | アノード及びリチウムイオン二次電池 |
JP5261961B2 (ja) | 2007-04-06 | 2013-08-14 | トヨタ自動車株式会社 | 二次電池用正極、二次電池用負極、二次電池、及び車両 |
JP5213015B2 (ja) | 2007-09-04 | 2013-06-19 | Necエナジーデバイス株式会社 | リチウムイオン二次電池 |
CN101859885A (zh) * | 2009-04-09 | 2010-10-13 | 上海比亚迪有限公司 | 一种电池极片,其制备方法及包含该极片的二次电池 |
SG178580A1 (en) * | 2009-09-03 | 2012-03-29 | Molecular Nanosystems Inc | Methods and systems for making electrodes having at least one functional gradient therein and devices resulting therefrom |
KR101325555B1 (ko) * | 2011-12-09 | 2013-11-05 | 주식회사 엘지화학 | 구형화 천연 흑연을 음극 활물질로 포함하는 리튬 이차전지 |
KR101527748B1 (ko) | 2012-04-13 | 2015-06-12 | 주식회사 엘지화학 | 전극의 제조방법 및 이를 사용하여 제조되는 전극 |
KR101545886B1 (ko) * | 2012-04-18 | 2015-08-20 | 주식회사 엘지화학 | 다층구조 전극 및 그 제조방법 |
KR101658503B1 (ko) * | 2012-11-06 | 2016-09-21 | 주식회사 엘지화학 | 이차전지용 양극 활물질 및 이를 포함하는 이차전지 |
PL2797142T3 (pl) | 2013-01-25 | 2019-07-31 | Lg Chem, Ltd. | Anoda do litowej baterii akumulatorowej i litowa bateria akumulatorowa ją obejmująca |
JP5997383B2 (ja) * | 2013-05-23 | 2016-09-28 | エルジー・ケム・リミテッド | 多層の活物質層を含むリチウム二次電池 |
JP6108166B2 (ja) * | 2013-06-28 | 2017-04-05 | トヨタ自動車株式会社 | 二次電池用電極 |
KR20150029054A (ko) | 2013-09-09 | 2015-03-18 | 주식회사 엘지화학 | 전해액 함침성이 향상된 전극 및 이를 포함하는 리튬 이차전지 |
KR102220904B1 (ko) * | 2014-05-21 | 2021-02-26 | 삼성에스디아이 주식회사 | 전극 구조체 및 이를 채용한 리튬 전지 |
KR102071585B1 (ko) | 2015-12-24 | 2020-01-30 | 주식회사 엘지화학 | 각 층의 바인더의 함량이 상이한 다층 전극 |
KR20170076604A (ko) | 2015-12-24 | 2017-07-04 | 주식회사 엘지화학 | 접착력이 개선된 리튬 이차전지용 전극 |
-
2016
- 2016-10-12 KR KR1020160131922A patent/KR102053063B1/ko active IP Right Grant
-
2017
- 2017-09-27 EP EP17860403.9A patent/EP3399576B1/en active Active
- 2017-09-27 CN CN201780008029.6A patent/CN108701810B/zh active Active
- 2017-09-27 US US16/069,730 patent/US10910639B2/en active Active
- 2017-09-27 WO PCT/KR2017/010692 patent/WO2018070703A1/ko active Application Filing
- 2017-09-27 PL PL17860403T patent/PL3399576T3/pl unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130116038A (ko) * | 2012-04-13 | 2013-10-22 | 주식회사 엘지화학 | 다층구조 전극 및 그 제조방법 |
KR20130116026A (ko) * | 2012-04-13 | 2013-10-22 | 주식회사 엘지화학 | 전극의 제조방법 및 이를 사용하여 제조되는 전극 |
KR20140095980A (ko) * | 2013-01-25 | 2014-08-04 | 주식회사 엘지화학 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
KR20140137660A (ko) * | 2013-05-23 | 2014-12-03 | 주식회사 엘지화학 | 이차전지용 전극 및 이를 포함하는 이차전지 |
KR20160050283A (ko) * | 2014-10-29 | 2016-05-11 | 주식회사 엘지화학 | 다층 구조의 이차전지용 전극의 제조방법 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11600816B2 (en) * | 2019-03-06 | 2023-03-07 | Contemporary Amperex Technology Co., Limited | Negative electrode, secondary battery and device comprising same |
Also Published As
Publication number | Publication date |
---|---|
PL3399576T3 (pl) | 2021-04-19 |
EP3399576A1 (en) | 2018-11-07 |
EP3399576A4 (en) | 2019-01-16 |
CN108701810A (zh) | 2018-10-23 |
KR102053063B1 (ko) | 2019-12-06 |
US20190027740A1 (en) | 2019-01-24 |
EP3399576B1 (en) | 2020-11-04 |
CN108701810B (zh) | 2021-07-16 |
US10910639B2 (en) | 2021-02-02 |
KR20180040268A (ko) | 2018-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018070703A1 (ko) | 각 층의 바인더의 함량과 활물질 입경이 상이한 다층 음극 및 이를 포함하는 리튬 이차전지 | |
WO2016148383A1 (ko) | 다층 구조 전극 및 이를 포함하는 리튬 이차전지 | |
WO2016089099A1 (ko) | 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2010093219A2 (ko) | 에너지 밀도가 향상된 리튬이차전지 | |
WO2017171425A1 (ko) | 리튬 코발트 산화물을 포함하는 코어 및 붕소와 불소를 포함하는 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법 | |
WO2015053478A1 (ko) | 규소계 화합물을 포함하는 이차전지 | |
WO2010101396A2 (ko) | 고에너지밀도의 양극 재료 및 이를 포함하는 리튬 이차전지 | |
WO2015102139A1 (ko) | 이차전지용 음극 및 이를 포함하는 리튬 이차전지 | |
WO2014073833A1 (ko) | 이차전지용 양극 활물질 및 이를 포함하는 이차전지 | |
WO2013157856A1 (ko) | 다층구조 전극 및 그 제조방법 | |
WO2015102140A1 (ko) | 이차전지용 음극 및 이를 포함하는 리튬 이차전지 | |
WO2018062836A2 (ko) | 천연 흑연 및 인조 흑연을 포함하는 다층 음극 및 이를 포함하는 리튬 이차전지 | |
KR20140032624A (ko) | 이차전지용 전극 및 그것의 제조 방법 | |
WO2014196816A1 (ko) | 신규한 이차전지 | |
WO2020105974A1 (ko) | 이차 전지의 활성화 방법 | |
WO2013157863A1 (ko) | 전극 및 이를 포함하는 이차전지 | |
WO2018048126A1 (ko) | 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법 | |
WO2013157832A1 (ko) | 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 | |
WO2014168398A1 (ko) | 면적이 서로 다른 전극들을 포함하고 있는 전극 적층체 및 이를 포함하는 이차전지 | |
WO2016209014A1 (ko) | 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지 | |
WO2016140454A1 (ko) | 접착력이 강화된 분리막을 포함하는 전지셀 | |
WO2021020853A1 (ko) | 집전체의 양면에 서로 다른 조성의 활물질을 포함하는 음극 합제들이 형성되어 있는 음극을 포함하는 젤리-롤형 전극조립체, 이를 포함하는 이차전지, 및 이차전지를 포함하는 디바이스 | |
WO2015016568A1 (ko) | 안전성이 강화된 리튬 이차전지 | |
KR101629489B1 (ko) | 불소 고분자를 이용하여 표면처리한 리튬 이차전지용 양극 활물질 및 이의 제조방법 | |
WO2020071814A1 (ko) | 실리콘계 화합물을 포함하는 다층 구조 음극 및 이를 포함하는 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2017860403 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017860403 Country of ref document: EP Effective date: 20180803 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |