WO2018048126A1 - 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법 - Google Patents

균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법 Download PDF

Info

Publication number
WO2018048126A1
WO2018048126A1 PCT/KR2017/009368 KR2017009368W WO2018048126A1 WO 2018048126 A1 WO2018048126 A1 WO 2018048126A1 KR 2017009368 W KR2017009368 W KR 2017009368W WO 2018048126 A1 WO2018048126 A1 WO 2018048126A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
manufacturing
electrode mixture
coating layer
mixture coating
Prior art date
Application number
PCT/KR2017/009368
Other languages
English (en)
French (fr)
Inventor
이대원
성기은
김준완
박동혁
전현진
김재홍
김상욱
이학식
박성철
김정기
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170105860A external-priority patent/KR102079929B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780004257.6A priority Critical patent/CN108292743B/zh
Priority to PL17849010T priority patent/PL3370283T3/pl
Priority to US16/082,795 priority patent/US11283101B2/en
Priority to EP17849010.8A priority patent/EP3370283B1/en
Publication of WO2018048126A1 publication Critical patent/WO2018048126A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing electrodes having a uniform quality and to an electrode assembly manufacturing method comprising the same.
  • the secondary battery is an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle that has been proposed as a solution for air pollution of existing gasoline and diesel vehicles using fossil fuel. It is also attracting attention as a power source such as Plug-In HEV.
  • a power tool, an E-bike, an electric scooter, and an electric golf cart that require high power are also required. Or for power storage systems.
  • the secondary battery In terms of the shape of the secondary battery, it is not only applicable to products such as a mobile phone with a thin thickness, but also a combination of a plurality of layers and a large and medium pack structure, which are applicable to medium and large devices such as vehicles and power storage systems, etc.
  • the demand for pouch type secondary batteries is high, and in terms of materials, the demand for lithium secondary batteries such as lithium ion batteries having high energy density, discharge voltage, output stability, and lithium ion polymer batteries is high.
  • secondary batteries are classified according to the structure of the electrode assembly consisting of a positive electrode, a negative electrode, and a separator, typically, a jelly of a structure in which the long sheet-shaped positive electrode and the negative electrode is wound in the state where the separator is interposed -Roll (electrode) electrode assembly, a stack (stacked type) electrode assembly in which a plurality of positive and negative electrodes cut in units of a predetermined size are sequentially stacked with a separator, and the positive and negative electrodes of a predetermined unit are interposed through a separator And a stacked / folding electrode assembly having a structure in which a bi-cell or full cells stacked in a state are wound.
  • the manufacturing process of the electrode assembly including a laminated structure of the unit electrode, a process for producing a positive electrode and a negative electrode mixture, by applying a respective mixture to the positive electrode collector and the negative electrode collector to form a sheet electrode consisting of a positive electrode and a negative electrode
  • a process of manufacturing each a process of forming an electrode tab on the electrode, a process of rolling the electrodes, a process of manufacturing the electrodes by slitting the electrodes to a desired size, vacuum drying process, manufactured electrodes Forming an electrode assembly composed of an anode, a cathode, and a separator;
  • FIG. 1 shows an electrode sheet according to the prior art for producing sheet electrodes.
  • an electrode sheet 10 is formed on a metal sheet with electrode lines 11 including an electrode mixture interposed between the uncoated portions 12, which are uncoated regions.
  • the electrode sheet 10 performs rolling while the rolling roller 20 rotates in a longitudinal direction corresponding to the electrode lines. In this process, pressure is not applied to the uncoated portion 12 between the electrode lines 11. Instead, pressure is applied only to the electrode lines 11, so that the electrode sheet 10 is generally unevenly stretched. This is because the pressure applied to the electrode sheet 10 at the instant of rolling is applied unevenly throughout the sheet 10.
  • the shapes of each of the electrodes derived from the unevenly stretched electrode sheet may be slightly different.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • a method of manufacturing an electrode for an electrode assembly having an electrode laminated structure A method of manufacturing an electrode for an electrode assembly having an electrode laminated structure
  • the rolling since the rolling is performed in a second direction perpendicular to the electrode mixture coating layer lines parallel to the first direction, at least one electrode mixture coating layer line is rolled during rolling. This is because rolling is performed in a state in which the rolling roller is in close contact with the entire electrode mixture coating layer line at the moment of rolling, and thus pressure may be uniformly applied to the entire sheet.
  • the process (iii) and process (iv) may be performed simultaneously, in which case the electrode base materials are manufactured in a single processing device, for example an electrode base material and a device capable of cutting the electrode base material into sheet electrodes. At the same time, the electrode base material can be processed into sheet electrodes.
  • the width of the non-coated portion can be appropriately adjusted in consideration of the length of the electrode tab, and is generally 5 mm to 20 mm, more preferably 8 mm to 18 mm, most preferably 10 mm to 15 mm. If the width of the plain portion exceeds 20 mm, it is not preferable in terms of economics. However, as needed, it can select suitably, without being limited to the said range.
  • the pressure applied to the electrode sheet is preferably in the range of 10 ton / cm 3 to 100 ton / cm 3 for the cathode and 30 to 300 cm / cm 3 for the positive electrode. If the pressure below the lower limit is applied, it is not preferable in view of the electrical characteristics of the electrode, and if the pressure exceeding the upper limit is applied, the electrode mixture may be broken, which is not preferable.
  • process (iii) and process (iv) may be performed sequentially, in this case, may be performed through different processing apparatus.
  • the process (iii) may further include a step of vacuum drying the electrode base material after slitting.
  • the first direction may be a direction corresponding to the width of the metal sheet on a plane
  • the second direction may be a direction corresponding to the length of the metal sheet on a plane
  • the electrode plate base material may have a structure in which the n electrode mixture coating layers are formed in the second direction with the non-coated portion interposed therebetween.
  • one side of the plain portion is cut in the first direction to have the form of an electrode tab, and the end of the electrode mixture coating layer adjacent to the other side of the plain portion is cut in the first direction to form an electrode from the base plate Can be obtained.
  • both end edges may be chamfered.
  • the method according to the present invention is processed from a metal sheet having a relatively long length to width and processed into an electrode through an electrode base material having a relatively small size. Can be designed.
  • the electrode mixture may be a positive electrode mixture or a negative electrode mixture. Therefore, the electrode manufacturing method according to the present invention can be used for the production of both the positive electrode and the negative electrode.
  • the present invention also provides an electrode assembly manufacturing method and electrode assembly including the electrode manufacturing method.
  • the electrode assembly manufacturing method is characterized in that for producing the electrode assembly through a subsequent process the electrodes prepared from the electrode manufacturing method.
  • the stacking of the electrodes with a separator therebetween may be, for example, a process of manufacturing an electrode assembly having a structure in which electrodes are laminated without interposing electrodes through a sheet of separator between the electrodes. have.
  • a process of manufacturing an electrode assembly having a structure in which electrodes are laminated without repeatedly contacting the electrodes by being repeatedly bent in one direction to the opposite direction as one separator passes through a space between all electrodes. can be.
  • the present invention also provides a battery cell comprising the electrode assembly.
  • the type of the secondary battery of the present invention is not particularly limited, specific examples thereof include lithium ion (Li-ion) secondary batteries and lithium polymers having advantages such as high energy density, discharge voltage, and output stability.
  • Li-ion lithium ion
  • a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator, and a lithium salt-containing nonaqueous electrolyte.
  • the positive electrode is manufactured by, for example, applying a mixture of a positive electrode active material, a conductive material, and a binder on a positive electrode current collector and / or an extension current collector, and then drying the composition, and optionally adding a filler to the mixture. do.
  • the positive electrode current collector and / or the extension current collector is generally made to a thickness of 3 to 500 micrometers.
  • the positive electrode current collector and the extension current collector are not particularly limited as long as they have high conductivity without causing chemical change in the battery.
  • stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum Surface treated with carbon, nickel, titanium, silver or the like on the surface of the stainless steel may be used.
  • the positive electrode current collector and the extension current collector may form fine irregularities on the surface thereof to increase adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is manufactured by coating and drying a negative electrode active material on a negative electrode current collector and / or an extension current collector, and optionally, the components as described above may be further included if necessary.
  • the negative electrode current collector and / or the extension current collector is generally made to a thickness of 3 to 500 micrometers.
  • Such a negative electrode current collector and / or an extension current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, Surface treated with carbon, nickel, titanium, silver, or the like on the surface of copper or stainless steel, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • carbon such as hardly graphitized carbon and graphite type carbon
  • Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 micrometers, the thickness is generally from 5 to 300 micrometers.
  • olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the electrolyte may be a lithium salt-containing non-aqueous electrolyte, and consists of a non-aqueous electrolyte and a lithium salt.
  • nonaqueous electrolyte nonaqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, and the like are used, but not limited thereto.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide
  • Nitrobenzene derivatives sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyr
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
  • lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which are low viscosity solvents.
  • Lithium salt-containing non-aqueous electrolytes can be prepared by adding them to a mixed solvent of linear carbonates.
  • the rolling since the rolling is performed in a second direction perpendicular to the electrode mixture coating layer lines parallel to the first direction, at least one electrode mixture coating layer during rolling Only the line is rolled, and since rolling is performed in a state in which the rolling roller is in close contact with the entire electrode mixture coating layer line at the moment of rolling, pressure may be uniformly applied to the entire sheet.
  • the manufacturing method of the electrode of the present invention has the advantage that the roll material can be configured with the width of the short side of the electrode can be reduced in weight of the roll equipment.
  • FIG. 1 is a schematic diagram of an electrode sheet according to the prior art
  • FIG. 2 is a schematic diagram of an electrode manufacturing method according to one embodiment of the present invention.
  • FIG. 3 is a schematic view of using a metal sheet and a rolling roller according to one embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating a slitting process of the electrode sheet of FIG. 3;
  • FIG. 5 is a schematic view of an electrode base material obtained from the electrode sheet of FIG. 4;
  • FIG. 6 is an enlarged schematic view of the electrode mixture coating layer of FIG. 5.
  • FIG. 7 is a schematic diagram of a slitting and notching process of a metal sheet according to the prior art.
  • FIG. 8 is an exemplary view showing in cross section a coating and electrode manufacturing process of the electrode sheet of the present invention.
  • FIG. 9 is a schematic diagram showing a manufacturing process of a secondary battery electrode according to the present invention.
  • FIG. 1 shows a process for producing an electrode by line coating the electrode sheet according to the prior art.
  • an electrode sheet 10 is formed on a metal sheet with electrode lines 11 including an electrode mixture interposed between the uncoated portions 12, which are uncoated regions.
  • the electrode sheet 10 performs rolling while the rolling roller 20 rotates in a longitudinal direction corresponding to the electrode lines. In this process, pressure is not applied to the uncoated portion 12 between the electrode lines 11. Instead, pressure is applied only to the electrode lines 11, so that the electrode sheet 10 is generally unevenly stretched.
  • FIG. 2 is a flowchart of an electrode manufacturing method according to an embodiment of the present invention.
  • the electrode mixture is coated on the metal sheet 210 in step 110 to form a plurality of electrode mixture coating layer lines 211, 212, 213, and 214. Thereafter, a process 120 of rolling the metal sheet 210 with the rolling roller 220 is performed. Therefore, since rolling is performed while the rolling roller 220 is in close contact with the entire electrode mixture coating layer lines 211, 212, 213, and 214 at the moment of rolling, pressure due to the rolling may be uniformly applied to the entire sheet. will be.
  • FIG. 3 In order to explain the above process in more detail, reference is made to FIG. 3 along with FIG. 2, in which a metal sheet 210 according to an embodiment of the present invention is shown.
  • the electrode mixture coating layer lines 211, 212, 213, and 214 are formed of the electrically conductive metal sheet 210 so that the lines are formed in parallel in the first direction with the plain portions 201 interposed therebetween.
  • the electrode mixture is coated on one surface in a first direction.
  • the coating of the electrode mixture may be performed through a coater in which a plurality of nozzles are formed, and the electrode mixtures discharged through the nozzles of the coater are mutually formed on the metal sheet 210. It may be applied in a parallel form, and may form the electrode mixture coating layer lines 211, 212, 213, and 214 having the uncoated portion 201 therebetween.
  • the first direction is a direction corresponding to the width of the metal sheet 210 on a plane.
  • the metal sheet 210 having the electrode mixture coating layer lines 211, 212, 213, and 214 formed thereon is rolled by the rolling roller 220 in the process 120.
  • the rolling roller 220 rotates in the second direction perpendicular to the first direction, and correspondingly, the metal sheet 210 is rolled while moving in the direction opposite to the rotational direction of the rolling roller 220.
  • the second direction is a direction corresponding to the length of the metal sheet 210 on a plane, and the moving direction of the metal sheet 210 by the rolling roller 220 may also be understood as the second direction.
  • the rolling roller is formed at the instant of rolling. Since the rolling is performed while 220 is in close contact with the entire electrode mixture coating layer lines 211, 212, 213, and 214, the pressure according to the rolling may be uniformly applied to the entire sheet.
  • FIG. 7 shows a slitting and notching process of a metal sheet according to the prior art.
  • the prior art winds and supplies a coated electrode sheet in a roll unit, and forms a tab by processing a solid part of a side surface through a notching process.
  • a mold having a shape of a unit electrode is used to cut off the remaining portion of the metal sheet for connecting the electrodes from the uncoated portion, which may be performed by a laser.
  • the electrode sheet which has undergone the notching process is rewound and the rewound electrode sheet is supplied to the cutting process.
  • the electrode sheet is cut with the unit electrode using a cutter or a laser.
  • FIG. 8 shows a process of obtaining a pole plate base material by slitting a rolled metal sheet in a second direction according to the present invention
  • FIG. 9 shows a notching and cutting process with a pole plate base material obtained through the process of FIG. 8. I'm paying.
  • a plurality of cutout lines a-a ′ corresponding to the second direction of the metal sheet 210 rolled in the process 120 are set, and then slitting is performed along the cutout line. do.
  • the metal sheet 210 slitted as described above is defined as an electrode base material 300 in the present invention.
  • the electrode base material 300 has four electrode mixture coating layers equal to the number of electrode mixture coating layer lines 211, 212, 213, and 214 along the uncoated portion 201 along the second direction. It consists of a formed structure.
  • the metal base materials 300 obtained from one metal sheet 210 may be processed into sheets of electrodes corresponding to the number of electrode mixture coating layers 301, 302, 303, and 304 included therein, respectively. Can be.
  • one side of the plain portion 305 is cut in the first direction to have the shape of the electrode tab 321, and the other side of the plain portion ( An end of the electrode mixture coating layer 301 adjacent to 306 is cut in the first direction to obtain an electrode from the electrode base material 300.
  • the present invention cuts the sheet-like electrode base sheet while driving in a roll shape and manufactures it as a unit electrode.
  • the electrode base material sheet is rolled up to be rolled and continuously fed to a press having a mold consistent with the shape of the distal end portion and the tab of the unit electrode to be cut by the mold to obtain a unit electrode.
  • the outer periphery of the electrode mixture coating layer is a point at which rolling of the rolling roller starts or ends, so that the thickness of the electrode mixture coating layer may be thin as compared with the center of the electrode mixture coating layer.
  • the thickness of the electrode since the thin portion is removed from the electrode by the cutting margin, the thickness of the electrode may be relatively uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 (i) n개(n≥2)의 전극합제 코팅층 라인들(lines)이 무지부를 사이에 두고 제 1 방향으로 평행하게 형성되도록, 금속 시트의 적어도 일면 상에 전극합제를 코팅시키는 과정; (ii) 제 1 방향에 대해 수직 방향인 제 2 방향으로 회전하는 압연 롤러를 이용하여 제 1 전극합제 코팅층 라인으로부터 제 n 전극합제 코팅층 라인까지 순차적으로 금속 시트를 압연시키는 과정; (iii) 압연된 금속 시트를 제 2 방향으로 적어도 2회 슬릿팅(slitting)하여 n개의 전극합제 코팅층들이 형성되어 있는 극판 모재들을 제조하는 과정; 및(iv) 상기 극판 모재들 각각을 제 1 방향으로 커팅(cutting)하여 낱장의 전극들 n개를 수득하는 과정;을 포함하는 전극 제조 방법을 제공한다.

Description

균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법
본 발명은 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법에 관한 것이다.
최근, 충방전이 가능한 이차전지는 와이어리스 모바일 기기의 에너지원으로 광범위하게 사용되고 있다. 또한, 이차전지는 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차(EV), 하이브리드 전기자동차(HEV), 플러그-인 하이브리드 전기자동차(Plug-In HEV) 등의 동력원으로서도 주목받고 있으며, 이외에도, 고출력이 요구되는 파워 툴(power tool), 전기 자전거(E-bike), 전기 스쿠터(E-scooter), 전기 골프 카트(electric golf cart), 또는 전력저장용 시스템에도 이용되고 있다.
이차전지의 형상 면에서는 얇은 두께로 휴대폰 등과 같은 제품들에 적용이 가능할뿐만 아니라, 복수 개를 조합 및 적층하여 중대형의 팩 구조로 차량이나 전력저장용 시스템 등의 중대형 디바이스에 적용 가능한 각형 이차전지와 파우치형 이차전지에 대한 수요가 높고, 재료 면에서는 높은 에너지 밀도, 방전 전압, 출력 안정성의 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지에 대한 수요가 높다.
또한, 이차전지는 양극, 음극 및 분리막으로 이루어진 전극조립체가 어떠한 구조로 이루어져 있는지에 따라 분류되기도 하는바, 대표적으로는, 긴 시트형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조의 젤리-롤(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 스택형(적층형) 전극조립체, 소정 단위의 양극과 음극들을 분리막을 개재한 상태로 적층한 바이셀(Bi-cell) 또는 풀셀(Full cell)들을 권취한 구조의 스택/폴딩형 전극조립체 등을 들 수 있다.
여기서, 단위 전극의 적층 구조를 포함하는 전극조립체의 제조 공정은, 양극과 음극 합제를 제조하는 공정, 양극 집전체와 음극 집전체에 각각의 합제를 도포하여 양극 및 음극으로 이루어진 시트 형태의 전극들을 각각 제조하는 공정, 전극 상에 전극 탭을 형성하는 공정, 전극들을 압연(rolling)하는 공정, 전극들을 소망하는 크기로 소폭 절단(Slitting)하여 전극을 제조하는 공정, 진공 건조 공정, 제조된 전극인 양극, 음극 및 분리막 구성된 전극조립체를 형성하는 공정 등을 포함한다.
특히, 적층형 전극조립체 또는 스택/폴딩형 전극조립체를 제조하는 경우, 낱장의 전극들을 상향으로 적층하는 공정이 필요하며, 이에 따라 낱장의 전극들을 제조하는 공정이 우선 수행된다.
이와 관련하여, 도 1에는 낱장의 전극들을 제조를 위한 종래의 기술에 따른 전극 시트가 도시되어 있다.
도 1을 참조하면, 전극 시트(10)는 전극합제를 포함하는 전극 라인들(11)이 미코팅 영역인 무지부(12)를 사이에 두고 금속 시트 상에 형성되어 있다.
이러한 전극 시트(10)는 전극 라인들과 대응되는 세로 방향으로 압연 롤러(20)가 회전하면서 압연을 수행하는데, 이 과정에서 전극 라인들(11) 사이의 무지부(12)에는 압력이 인가되지 않고, 전극 라인들(11)에만 압력이 인가되어, 전극 시트(10)가 전반적으로 불균일하게 연신된다. 이는, 압연 순간에 전극 시트(10)에 인가되는 압력이 시트(10) 전반에 불균일하게 인가됨에 기인한다.
이와 같이 압연된 전극 시트를 절단하여 낱장의 전극들을 제조하는 경우, 상기 불균일하게 연신된 전극 시트로부터 유래되는 전극들 각각의 형태들이 미세하게 상이할 수 있다.
따라서, 복수의 전극들을 균일한 형태로 제조할 수 있는 기술의 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
구체적으로, 본 발명의 목적은, 전극의 제조 공정성을 향상하면서도, 균일한 형태의 전극들 낱장을 수득할 수 있는 전극 제조 방법을 제공하는 것이다.
이러한 목적을 달성하기 위한 본 발명에 따른 제조 방법은,
전극 적층 구조의 전극조립체용 전극을 제조하는 방법으로서,
(i) n개(n≥2)의 전극합제 코팅층 라인들(lines)이 무지부를 사이에 두고 제 1 방향으로 평행하게 형성되도록, 금속 시트의 적어도 일면 상에 전극합제를 코팅시키는 과정;
(ii) 제 1 방향에 대해 수직 방향인 제 2 방향으로 회전하는 압연 롤러를 이용하여 제 1 전극합제 코팅층 라인으로부터 제 n 전극합제 코팅층 라인까지 순차적으로 금속 시트를 압연시키는 과정;
(iii) 압연된 금속 시트를 제 2 방향으로 적어도 2회 슬릿팅(slitting)하여 n개의 전극합제 코팅층들이 형성되어 있는 극판 모재들을 제조하는 과정; 및
(iv) 상기 극판 모재들 각각을 제 1 방향으로 커팅(cutting)하여 낱장의 전극들 n개를 수득하는 과정;을 포함하는 것을 특징으로 한다.
즉, 본 발명에 따른 전극 제조 방법에서는, 제 1 방향과 평행한 전극합제 코팅층 라인들에 대해 수직 방향인 제 2 방향으로 압연이 수행되는 바, 압연 시, 적어도 하나의 전극합제 코팅층 라인만이 압연되며 이는 압연 순간에 압연 롤러가 전극합제 코팅층 라인 전체에 밀착된 상태로 압연이 수행되는 것이므로, 시트 전반에 압력이 균일하게 인가될 수 있다.
더욱이, 이러한 압연 원리가 제 n 전극합제 코팅층 라인까지 동일하기 때문에, 결과적으로, 금속 시트 전반의 연신 정도는 균일하고, 이로부터 수득되는 전극들의 형태 역시 균일한 장점이 있다.
상기 과정(iii)과 과정(iv)은 동시에 수행될 수 있으며, 이 경우, 단일 가공 장치, 예를 들어 전극 모재와 이 전극 모재를 낱장의 전극들로 절삭시킬 수 있는 장치로 상기 전극 모재들이 제조됨과 동시에, 전극 모재가 낱장의 전극들로 가공될 수 있다.
무지부의 폭은 전극 탭의 길이를 고려하여 적절히 조절할 수 있으며, 일반적으로 5mm 내지 20mm, 더욱 바람직하게는 8mm 내지 18mm, 가장 바람직하게 10mm 내지 15mm이다. 무지부의 폭이 20mm 초과할 경우 경제성 측면에서 바람직하지 않다. 그러나, 필요에 따라서는 상기 범위에 한정되지 않게 적절히 선택할 수 있다.
전극 시트에 인가되는 압력은 음극용의 경우 10ton/㎤ ~ 100ton/㎤, 양극용의 경우 30ton/㎤ ~ 300ton/㎤ 의 범위가 바람직하다. 상기 하한치 미만의 압력을 가하게 되면 전극의 전기적 특성면에서 바람직하지 않고, 상기 상한치 값의 초과하는 압력을 가할 경우에는 전극합제가 깨질 수 있어 바람직하지 않다.
이와는 달리, 상기 과정(iii)과 과정(iv)은 순차적으로 수행될 수도 있으며, 이 경우, 서로 다른 가공 장치를 통해 수행될 수 있다.
상기 과정(iii)은 슬리팅 이후에, 극판 모재를 진공 건조시키는 과정을 추가로 포함할 수 있다.
상기 폭 대비 길이가 상대적으로 긴 금속 시트에서, 상기 제 1 방향은 평면상으로 금속 시트의 폭에 대응되는 방향이고, 상기 제 2 방향은 평면상으로 금속 시트의 길이에 대응되는 방향일 수 있다.
하나의 구체적인 예에서, 상기 극판 모재는 n개의 전극합제 코팅층들이 무지부를 사이에 두고 제 2 방향으로 형성되어 있는 구조를 가질 수 있다.
여기서, 상기 전극합제 코팅층을 기준으로, 일측의 무지부가 전극 탭의 형태를 가지도록 제 1 방향으로 커팅됨과 동시에, 타측의 무지부에 인접한 전극합제 코팅층 단부가 제 1 방향으로 커팅되어 극판 모재로부터 전극이 수득될 수 있다.
상기 일측의 무지부를 전극 탭의 형태로 커팅하고 타측의 무지부에 인접한 전극합제 코팅층 단부를 커팅할 때, 전극합제 코팅층의 외주변 단부에 인접한 부위를 함께 커팅하여 커팅 마진을 확보할 수 있다.
경우에 따라서는 상기 타측의 무지부에 인접한 전극합제 코팅층 단부를 커팅할 때, 양측 단부 모서리들도 모따기 될 수 있다.
이상에 따른 예에서와 같이, 본 발명에 따른 방법은, 폭 대비 길이가 상대적으로 긴 금속 시트로부터 가공되어 크기가 상대적으로 작은 전극 모재를 통해 전극의 형태로 가공되는 바, 가공을 위한 장치를 콤팩트하게 설계할 수 있다.
본 발명에서 상기 전극합제는 양극합제 또는 음극합제일 수 있다. 따라서, 본 발명에 따른 전극 제조 방법은 양극과 음극 모두의 제조에 이용될 수 있다.
본 발명은 또한, 상기 전극 제조 방법을 포함하는 전극조립체 제조 방법과 전극조립체를 제공한다.
상기 전극조립체 제조 방법은, 상기 전극 제조 방법으로부터 제조된 전극들을 후속 과정을 통해 전극조립체를 제조하는 것을 특징으로 한다.
상기 후속 과정은, 구체적으로,
상기 전극 제조 방법으로부터 제조된 전극들을 분리막을 사이에 두고 적층하는 과정;
상기 전극 제조 방법으로부터 제조된 전극들을 분리막을 사이에 두고 적층하고, 전극들과 분리막을 라미네이션 시키는 과정; 및
상기 전극 제조 방법으로부터 제조된 전극들을 분리막을 사이에 두고 적층 및/또는 라미네이션한 구조의 단위셀들을 분리필름에 배열한 상태에서 분리필름을 권취하는 과정;
에서 선택되는 적어도 하나의 과정일 수 있다.
상기 전극들을 분리막을 사이에 두고 적층하는 과정은, 하나의 예로서, 전극들 사이에 낱장의 분리막을 개재하여 분리막으로 전극들이 밀착되지 않으면서도 전극들이 적층된 구조의 전극조립체를 제조하는 과정일 수 있다.
또 다른 예로서, 하나의 분리막이 모든 전극들 사이 공간을 통과하는 구조로 일 방향에서 대향 방향으로 반복적으로 절곡되어 분리막으로 전극들이 밀착되지 않으면서도 전극들이 적층된 구조의 전극조립체를 제조하는 과정일 수 있다.
본 발명은 또한, 상기 전극조립체를 포함하는 전지셀을 제공한다.
본 발명의 이차전지는 그것의 종류가 특별히 한정되는 것은 아니지만, 구체적인 예로서, 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬 이온(Li-ion) 이차전지, 리튬 폴리머(Li-polymer) 이차전지, 또는 리튬 이온 폴리머(Li-ion polymer) 이차전지 등과 같은 리튬 이차전지일 수 있다.
일반적으로, 리튬 이차전지는 양극, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성되어 있다.
상기 양극은, 예를 들어, 양극 집전체 및/또는 연장 집전부 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 집전체 및/또는 연장 집전부는 일반적으로 3 내지 500 마이크로미터의 두께로 만든다. 이러한 양극 집전체 및 연장 집전부는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 양극 집전체 및 연장 집전부는 그것의 표면에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - xMxO2 (여기서, M Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극은 음극 집전체 및/또는 연장 집전부 상에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 선택적으로 더 포함될 수도 있다.
상기 음극 집전체 및/또는 연장 집전부는 일반적으로 3 내지 500 마이크로미터의 두께로 만들어진다. 이러한 음극 집전체 및/또는 연장 집전부는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질로는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 마이크로미터이고, 두께는 일반적으로 5 ~ 300 마이크로미터다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 전해액은 리튬염 함유 비수계 전해액일 수 있고, 비수 전해액과 리튬염으로 이루어져 있다. 비수 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다.
이상에서 설명한 바와 같이, 본 발명에 따른 전극 제조 방법에서는, 제 1 방향과 평행한 전극합제 코팅층 라인들에 대해 수직 방향인 제 2 방향으로 압연이 수행되는 바, 압연 시, 적어도 하나의 전극합제 코팅층 라인만이 압연되며 이는 압연 순간에 압연 롤러가 전극합제 코팅층 라인 전체에 밀착된 상태로 압연이 수행되는 것이므로, 시트 전반에 압력이 균일하게 인가될 수 있다.
더욱이, 이러한 압연 원리가 제 n 전극합제 코팅층 라인까지 동일하기 때문에, 결과적으로, 금속 시트 전반의 연신 정도는 균일하고, 이로부터 수득되는 전극들의 형태 역시 균일한 장점이 있다.
또한, 종래에는 전극 시트의 불균일한 연신율로 인해, 전극 시트를 노칭하고 슬리팅하는 과정에서 전극 탭이 들리는 현상이 있었으나, 본 발명의 제조방법은 전극 시트의 연신율이 균일하여 전극 탭이 들리는 현상을 방지하는 효과가 있다.
또한, 본 발명의 전극의 제조방법은 전극의 단변을 폭으로 하는 롤(Roll) 자재 구성이 가능하여 롤 장비를 경량화할 수 있는 이점이 있다.
도 1은 종래 기술에 따른 전극 시트의 모식도이다;
도 2는 본 발명의 하나의 실시예에 따른 전극 제조 방법의 모식도이다;
도 3은 본 발명의 하나의 실시예에 따른 금속 시트와, 압연 롤러 이용에 대한 모식도이다;
도 4는 도 3의 전극 시트의 슬릿팅 과정을 나타낸 모식도이다;
도 5는 도 4의 전극 시트로부터 얻어진 전극 모재의 모식도이다;
도 6은 도 5의 전극합제 코팅층을 확대한 모식도이다.
도 7은 종래 기술에 따른 금속 시트의 슬릿팅 및 노칭 과정의 모식도이다.
도 8은 본 발명의 전극 시트의 코팅 및 전극 제조 공정을 단면으로 나타낸 예시도이다.
도 9는 본 발명에 따른 이차전지용 전극의 제조 공정을 나타낸 모식도이다.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 1은 종래 기술에 따른 전극 시트를 라인 코팅하여 전극을 제조하는 과정을 나타내고 있다. 도 1을 참조하면 전극 시트(10)는 전극합제를 포함하는 전극 라인들(11)이 미코팅 영역인 무지부(12)를 사이에 두고 금속 시트 상에 형성되어 있다.
이러한 전극 시트(10)는 전극 라인들과 대응되는 세로 방향으로 압연 롤러(20)가 회전하면서 압연을 수행하는데, 이 과정에서 전극 라인들(11) 사이의 무지부(12)에는 압력이 인가되지 않고, 전극 라인들(11)에만 압력이 인가되어, 전극 시트(10)가 전반적으로 불균일하게 연신된다.
도 2에는 본 발명의 하나의 실시예에 따른 전극 제조 방법의 흐름도가 도시되어 있다.
본 발명에 전극 제조 방법은, 과정(110)에서 금속 시트(210) 상에 전극합제를 코팅하여, 복수의 전극합제 코팅층 라인들(211, 212, 213, 214)을 형성한다. 이후, 압연 롤러(220)로 금속 시트(210)를 압연 시키는 과정(120)을 수행한다. 따라서, 압연 순간에 압연 롤러(220)가 전극합제 코팅층 라인들(211, 212, 213, 214) 전체에 밀착된 상태로 압연이 수행되므로, 압연에 따른 압력이 시트 전반에 균일하게 인가될 수 있는 것이다.
이상의 과정을 더욱 구체적으로 설명하기 위해, 본 발명의 하나의 실시예에 따른 금속 시트(210)가 도시된 도 3를 도 2와 함께 참조한다.
상기 과정(110)에서는 전극합제 코팅층 라인들(211, 212, 213, 214)(lines)이 무지부(201)를 사이에 두고 제 1 방향으로 평행하게 형성되도록 전기 전도성인 금속 시트(210)의 일면 상에 전극합제를 제 1 방향을 따라 코팅시킨다.
도면에 별도로 도시하지는 않았지만, 상기 전극합제의 코팅은, 복수의 노즐이 형성되어 있는 코터(coater)를 통해 수행될 수 있으며, 상기 코터의 노즐을 통해 토출되는 전극합제들이 금속 시트(210) 상에서 서로 평행한 형태로 도포되며, 무지부(201)를 사이에 둔 전극합제 코팅층 라인들(211, 212, 213, 214)을 형성할 수 있다.
본 발명에서 제 1 방향이란, 평면상으로 금속 시트(210)의 폭에 대응되는 방향이다.
이와 같이 전극합제 코팅층 라인들(211, 212, 213, 214)이 형성된 금속 시트(210)는 이후 과정(120)에서 압연 롤러(220)에 의해 압연된다.
압연 롤러(220)는 제 1 방향에 대해 수직 방향인 제 2 방향으로 회전하고, 이에 대응하여 금속 시트(210)는 압연 롤러(220)의 회전 방향의 대향 방향으로 이동되면서 압연된다. 본 발명에서, 제 2 방향은 평면상으로 금속 시트(210)의 길이에 대응되는 방향으로서, 압연 롤러(220)에 의한 금속 시트(210)의 이동 방향 역시, 제 2 방향으로 이해될 수 있다.
따라서, 본 발명에 따른 제조 방법은, 제 1 방향과 평행한 전극합제 코팅층 라인들(211, 212, 213, 214)에 대해 수직 방향인 제 2 방향으로 압연이 수행되는 바, 압연 순간에 압연 롤러(220)가 전극합제 코팅층 라인들(211, 212, 213, 214) 전체에 밀착된 상태로 압연이 수행되므로, 압연에 따른 압력이 시트 전반에 균일하게 인가될 수 있다.
이러한 압연 원리가 최후의 전극합제 코팅층 라인(214)까지 동일하기 때문에, 결과적으로, 전극합제 코팅층 라인들(211, 212, 213, 214)의 연신 정도는 균일할 수 있다.
이상의 과정 이후에는 압연된 금속 시트(210)를 슬릿팅 하여 전극 모재(300)를 제조하는 과정(130) 및 전극 모재(300)를 커팅하고 노칭 및 커팅하여 낱장의 전극을 수득하는 과정(140)으로 진행한다.
도 7은 종래 기술에 따른 금속 시트의 슬릿팅 및 노칭 과정을 나타낸 것이다. 도 7을 참조하면, 종래 기술은 코팅된 전극 시트를 롤 단위로 권취하여 공급하며, 이를 노칭 공정을 통해 측면의 무지부를 가공해 탭을 형성한다. 노칭 공정에서는 단위 전극의 모양을 가진 금형을 이용하여 무지부 중에서 전극을 연결하기 위한 금속 박판의 일부를 남겨둔 채 나머지를 잘라내게 되며, 이 과정은 레이저를 통해 이루어질 수도 있다. 노칭 공정을 거친 전극 시트는 재권취되며, 재권취된 전극 시트는 커팅 공정으로 공급된다. 커팅 공정에서는 커터 또는 레이저를 이용하여 단위 전극으로 전극 시트를 잘라내게 된다.
도 1에 따른 코팅 방식에서는, 전극 시트의 불균일한 연신율로 인해, 전극 시트를 노칭하고 슬리팅하여 전극 탭을 가공하는 과정에서 전극 탭이 들리는 현상이 발생하는 문제가 있었으나, 본 발명의 코팅 방식은 압연에 따른 압력이 시트 전반에 균일하게 인가되므로, 전극 탭의 형성과정에서 이 같은 종래의 문제를 개선한 효과가 있는 것이다.
이하 본 발명에 있어 전극 탭의 형성 과정인 상기 과정(130)과 과정(140)을 도 2 내지 도 6, 도 8 내지 도 9를 함께 참조하여 구체적으로 설명한다.
도 8은 본 발명에 따라 압연한 금속 시트를 제 2 방향으로 슬릿팅(slitting)하여 극판 모재를 얻는 과정을 나타내고, 도 9는 도 8의 과정을 통해 수득한 극판 모재로 노칭 및 커팅 공정을 타나내고 있다.
이들 도면을 참조하면, 과정(130)에서는 과정(120)에서 압연된 금속 시트(210)를 제 2 방향과 대응되는 절취선들(a-a')을 다수 설정한 후, 절취선을 따라 슬릿팅을 한다. 이와 같이 슬릿팅된 금속 시트(210)를 본 발명에서는 전극 모재(300)라 정의한다.
전극 모재(300)는 도 5에서와 같이, 전극합제 코팅층 라인들(211, 212, 213, 214)의 개수와 동일한 4개의 전극합제 코팅층들이 무지부(201)를 사이에 두고 제 2 방향을 따라 형성된 구조로 이루어져 있다.
과정(130)에서 하나의 금속 시트(210)로부터 얻어지는 금속 모재들(300)은 각각, 이들이 포함하는 전극합제 코팅층들(301, 302, 303, 304)의 개수와 대응되는 낱장의 전극으로 가공될 수 있다.
구체적으로, 도 5에서와 같이, 전극합제 코팅층(301)을 기준으로, 일측의 무지부(305)가 전극 탭(321)의 형태를 가지도록 제 1 방향으로 커팅됨과 동시에, 타측의 무지부(306)에 인접한 전극합제 코팅층(301) 단부가 제 1 방향으로 커팅되어 전극 모재(300)로부터 전극이 수득된다.
종래 기술이 노칭과 커팅의 2 단계 공정을 거치는 것과 달리, 본 발명은 롤 형태의 전극 모재 시트를 주행시키면서 한번에 잘라내어 단위 전극으로 제조한다. 더욱 상세하게는 전극 모재 시트가 권취된 롤을 펴져 연속적으로 단위 전극의 말단부 및 탭의 형상과 일치하는 금형을 가진 프레스로 공급되어 금형에 의해 커팅하여 단위 전극을 수득할 수 있는 것이다.
이는, 전극합제 코팅층들(302, 303, 304)에서도 동일하다.
이때, 일측의 무지부(201)를 전극 탭의 형태로 커팅하고 타측의 무지부(201)에 인접한 전극합제 코팅층(301) 단부를 커팅할 때, 전극합제 코팅층(301)의 외주변 단부에 인접한 부위를 함께 커팅하여 커팅 마진을 확보한다.
일반적으로, 전극합제 코팅층의 외주변 단부는 압연 롤러의 압연이 개시되거나 종료되는 지점이므로, 전극합제 코팅층의 중심부위과 비교하여, 전극합제 코팅층의 두께가 얇을 수 있다. 이에, 본 발명에서는 커팅 마진에 의해 상기 두께가 얇은 부위가 제거되어 전극에 포함되지 않으므로, 상대적으로 전극의 두께가 균일한 형태로 이루어질 수 있다.
또한 본 발명에서는 전극 탭이 형성되는 무지부(305)에 대해 타측에 있는 무지부(306)에 인접한 전극합제 코팅층 단부를 커팅할 때, 양측 단부 모서리들을 모따기할 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
<부호의 설명>
201, 305, 306: 무지부, 202: 유지부
210: 금속 시트
211, 212, 213, 214: 코팅층 라인
220: 압연 롤러
300: 전극 모재
301, 302, 303, 304: 전극 합제 코팅층
321: 전극 탭
400: 전극 시트 롤
500: 노칭
600: 커팅
700: 단위 전극
800: 금형 또는 커터

Claims (13)

  1. 전극 적층 구조의 전극조립체용 전극을 제조하는 방법으로서,
    (i) n개(n≥2)의 전극합제 코팅층 라인들(lines)이 무지부를 사이에 두고 제 1 방향으로 평행하게 형성되도록, 금속 시트의 적어도 일면 상에 전극합제를 코팅시키는 과정;
    (ii) 제 1 방향에 대해 수직 방향인 제 2 방향으로 회전하는 압연 롤러를 이용하여 제 1 전극합제 코팅층 라인으로부터 제 n 전극합제 코팅층 라인까지 순차적으로 금속 시트를 압연시키는 과정;
    (iii) 압연된 금속 시트를 제 2 방향으로 적어도 2회 슬릿팅(slitting)하여 n개의 전극합제 코팅층들이 형성되어 있는 극판 모재들을 제조하는 과정; 및
    (iv) 상기 극판 모재들 각각을 제 1 방향으로 커팅(cutting)하여 낱장의 전극들 n개를 수득하는 과정;
    을 포함하는 것을 특징으로 하는 전극 제조 방법.
  2. 제 1 항에 있어서, 상기 과정(iii)과 과정(iv)은 동시에 수행되는 것을 특징으로 하는 전극 제조 방법.
  3. 제 1 항에 있어서, 상기 과정(iii)과 과정(iv)은 순차적으로 수행되는 것을 특징으로 하는 전극 제조 방법.
  4. 제 1 항에 있어서, 폭 대비 길이가 상대적으로 긴 금속 시트에서, 상기 제 1 방향은 평면상으로 금속 시트의 폭에 대응되는 방향이고, 상기 제 2 방향은 평면상으로 금속 시트의 길이에 대응되는 방향인 것을 특징으로 하는 전극 제조 방법.
  5. 제 1 항에 있어서, 상기 극판 모재는 n개의 전극합제 코팅층들이 무지부를 사이에 두고 제 2 방향으로 형성되어 있는 구조를 가지고 있는 것을 특징으로 하는 전극 제조 방법.
  6. 제 5 항에 있어서, 상기 전극합제 코팅층을 기준으로, 일측의 무지부가 전극 탭의 형태를 가지도록 제 1 방향으로 커팅됨과 동시에, 타측의 무지부에 인접한 전극합제 코팅층 단부가 제 1 방향으로 커팅되어 극판 모재로부터 전극이 수득되는 것을 특징으로 하는 전극 제조 방법.
  7. 제 6 항에 있어서, 상기 일측의 무지부를 전극 탭의 형태로 커팅하고 타측의 무지부에 인접한 전극합제 코팅층 단부를 커팅할 때, 전극합제 코팅층의 외주변 단부에 인접한 부위를 함께 커팅하여 커팅 마진을 확보하는 것을 특징으로 하는 전극 제조 방법.
  8. 제 6 항에 있어서, 상기 타측의 무지부에 인접한 전극합제 코팅층 단부를 커팅할 때, 양측 단부 모서리들도 모따기 되는 것을 특징으로 하는 전극 제조 방법.
  9. 제 1 항에 있어서, 상기 과정(iii)은 슬리팅 이후에, 극판 모재를 진공 건조시키는 과정을 추가로 포함하는 것을 특징으로 하는 전극 제조 방법.
  10. 제 1 항에 있어서, 상기 전극합제는 양극합제 또는 음극합제인 것을 특징으로 하는 전극 제조 방법.
  11. 제 1 항 내지 제 10 항 중 어느 하나에 따른 전극 제조 방법을 포함하는 전극조립체 제조 방법으로서,
    상기 전극 제조 방법으로부터 제조된 전극들을 후속 과정을 통해 전극조립체를 제조하는 것을 특징으로 하는 전극조립체 제조 방법.
  12. 제 11 항에 있어서, 상기 후속 과정은,
    상기 전극 제조 방법으로부터 제조된 전극들을 분리막을 사이에 두고 적층하는 과정;
    상기 전극 제조 방법으로부터 제조된 전극들을 분리막을 사이에 두고 적층하고, 전극들과 분리막을 라미네이션 시키는 과정; 및
    상기 전극 제조 방법으로부터 제조된 전극들을 분리막을 사이에 두고 적층 및/또는 라미네이션한 구조의 단위셀들을 분리필름에 배열한 상태에서 분리필름을 권취하는 과정;
    에서 선택되는 적어도 하나의 과정인 것을 특징으로 하는 전극조립체 제조 방법.
  13. 제 9 항에 따른 전극조립체 제조 방법으로 제조된 것을 특징으로 하는 전극조립체.
PCT/KR2017/009368 2016-09-08 2017-08-28 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법 WO2018048126A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780004257.6A CN108292743B (zh) 2016-09-08 2017-08-28 制备具有均匀质量的电极的方法和制备包括该电极的电极组件的方法
PL17849010T PL3370283T3 (pl) 2016-09-08 2017-08-28 Sposób przygotowania elektrod mających jednolitą jakość i sposób przygotowania zespołu elektrod je zawierający
US16/082,795 US11283101B2 (en) 2016-09-08 2017-08-28 Method of preparing electrodes having uniform quality and electrode assembly preparation method including the same
EP17849010.8A EP3370283B1 (en) 2016-09-08 2017-08-28 Method of preparing electrodes having uniform quality and electrode assembly preparation method including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0115781 2016-09-08
KR20160115781 2016-09-08
KR1020170105860A KR102079929B1 (ko) 2016-09-08 2017-08-22 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법
KR10-2017-0105860 2017-08-22

Publications (1)

Publication Number Publication Date
WO2018048126A1 true WO2018048126A1 (ko) 2018-03-15

Family

ID=61561976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009368 WO2018048126A1 (ko) 2016-09-08 2017-08-28 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법

Country Status (2)

Country Link
US (1) US11283101B2 (ko)
WO (1) WO2018048126A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114207867A (zh) * 2020-06-25 2022-03-18 株式会社Lg新能源 制造形成有电阻层的电极的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210048702A (ko) * 2019-10-24 2021-05-04 주식회사 엘지화학 레이저 식각을 이용한 전극 제조방법 및 이를 수행하는 전극 제조설비
DE102020105156A1 (de) * 2020-02-27 2021-09-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen einer Elektrode
CN115555852B (zh) * 2021-06-30 2023-06-30 宁德时代新能源科技股份有限公司 极片成型方法及设备
US20230249291A1 (en) * 2022-02-09 2023-08-10 Ford Global Technologies, Llc Laser notching apparatus for cutting of electrode sheets

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147851A (ja) * 1995-11-29 1997-06-06 Furukawa Battery Co Ltd:The 水素吸蔵合金電極の製造方法
JP2000315498A (ja) * 1999-04-30 2000-11-14 Toshiba Battery Co Ltd アルカリ二次電池の製造方法
KR20080036741A (ko) * 2006-10-24 2008-04-29 삼성에스디아이 주식회사 극판 압연용 롤러 및 이를 이용한 극판압연장치
US7695864B2 (en) * 2007-07-20 2010-04-13 Panasonic Corporation Electrode plate for battery, electrode group for battery, lithium secondary battery, and method for producing electrode plate for battery
KR20130085828A (ko) * 2012-01-20 2013-07-30 에스케이이노베이션 주식회사 이차 전지용 전극판의 제조방법과 그의 제조방법에 사용되는 전극판의 제조장치

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3146439B2 (ja) 1991-08-12 2001-03-19 日本電池株式会社 電池用電極の製造方法
JP3257877B2 (ja) * 1993-09-27 2002-02-18 富士写真フイルム株式会社 シート状極板の製造方法および非水電池
CA2207801C (en) * 1996-06-19 2004-03-30 Hideki Kaido Nonaqueous electrolyte battery
JP3653425B2 (ja) 1999-09-30 2005-05-25 三洋電機株式会社 アルカリ蓄電池およびその製造方法
JP5159007B2 (ja) * 2001-05-11 2013-03-06 パナソニック株式会社 電池用極板の製造方法
US20060153972A1 (en) * 2003-02-25 2006-07-13 Yoshitsugu Hirokawa Method of manufacturing electrode for electrochemical device
KR20060127031A (ko) 2004-01-09 2006-12-11 쇼와 덴코 가부시키가이샤 알루미늄 하드 포일의 탈지 방법, 알루미늄 하드 포일,알루미늄 하드 포일 전극재, 및 그 알루미늄 하드 포일전극재를 이용한 리튬 이온 이차 전지
KR20060080092A (ko) * 2005-01-04 2006-07-07 엘지전자 주식회사 전극 제조용 커팅장치
JP2007329050A (ja) * 2006-06-08 2007-12-20 Mitsubishi Cable Ind Ltd シート状電池及びその製造方法
JP5383571B2 (ja) * 2010-03-26 2014-01-08 三菱重工業株式会社 電極板製造装置
CN103782419A (zh) * 2011-08-31 2014-05-07 Nec能源元器件株式会社 制造电池电极的方法
JP2014022149A (ja) 2012-07-17 2014-02-03 Dainippon Screen Mfg Co Ltd 電池用電極製造装置、電池用電極製造のためのノズルおよび電池用電極の製造方法
JP5964253B2 (ja) 2013-01-18 2016-08-03 オートモーティブエナジーサプライ株式会社 二次電池用電極シートの製造方法およびそれに用いる塗工装置
CA2939918C (en) 2014-02-28 2020-03-24 Lyondellbasell Acetyls, Llc Acetic acid production process
KR101719031B1 (ko) 2014-04-24 2017-03-22 주식회사 엘지화학 폴리머 전지 전극 제조 방법 및 폴리머 전지 전극 제조 장치
KR101748466B1 (ko) 2014-04-29 2017-06-16 주식회사 엘지화학 이차전지용 절단장치
JP6402555B2 (ja) * 2014-09-22 2018-10-10 株式会社豊田自動織機 電極の製造方法及び電極の製造装置
JP2016139561A (ja) * 2015-01-28 2016-08-04 株式会社豊田自動織機 プレス装置及び電極の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147851A (ja) * 1995-11-29 1997-06-06 Furukawa Battery Co Ltd:The 水素吸蔵合金電極の製造方法
JP2000315498A (ja) * 1999-04-30 2000-11-14 Toshiba Battery Co Ltd アルカリ二次電池の製造方法
KR20080036741A (ko) * 2006-10-24 2008-04-29 삼성에스디아이 주식회사 극판 압연용 롤러 및 이를 이용한 극판압연장치
US7695864B2 (en) * 2007-07-20 2010-04-13 Panasonic Corporation Electrode plate for battery, electrode group for battery, lithium secondary battery, and method for producing electrode plate for battery
KR20130085828A (ko) * 2012-01-20 2013-07-30 에스케이이노베이션 주식회사 이차 전지용 전극판의 제조방법과 그의 제조방법에 사용되는 전극판의 제조장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114207867A (zh) * 2020-06-25 2022-03-18 株式会社Lg新能源 制造形成有电阻层的电极的方法
EP3993089A4 (en) * 2020-06-25 2023-03-01 LG Energy Solution, Ltd. METHOD FOR MANUFACTURING AN ELECTRODE ON WHICH A RESISTANCE LAYER IS FORMED

Also Published As

Publication number Publication date
US20190081345A1 (en) 2019-03-14
US11283101B2 (en) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2016148383A1 (ko) 다층 구조 전극 및 이를 포함하는 리튬 이차전지
WO2017160085A1 (ko) 2층 구조의 전극 및 그의 제조방법
KR102079929B1 (ko) 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법
WO2015046709A1 (ko) 가열 부재를 포함하는 전지셀 절곡 장치
WO2010071387A2 (ko) 고출력 리튬 이차 전지
WO2018048126A1 (ko) 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법
WO2018105964A1 (ko) 전극조립체 제조를 위한 폴딩 장치 및 스택/폴딩형 전극조립체의 제조방법
WO2018169213A1 (ko) 이차 전지용 전극 제조방법 및 그에 따라 제조된 이차 전지용 전극
WO2013157806A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2015016554A1 (ko) 상이한 전극재 층들을 포함하는 전극 및 리튬 이차전지
WO2018212481A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2013157856A1 (ko) 다층구조 전극 및 그 제조방법
WO2019027152A1 (ko) 이차전지용 음극의 제조방법 및 이차전지용 음극
WO2014168398A1 (ko) 면적이 서로 다른 전극들을 포함하고 있는 전극 적층체 및 이를 포함하는 이차전지
WO2013157854A1 (ko) 성능이 우수한 리튬 이차전지
WO2013157832A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2016209014A1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
WO2013157811A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
KR20170094913A (ko) 이차전지 제조용 전극 건조 오븐
WO2015016568A1 (ko) 안전성이 강화된 리튬 이차전지
WO2018147558A1 (ko) 장수명에 적합한 이차전지용 전극의 제조방법
WO2021045580A1 (ko) 음극 전극의 전소듐화 방법, 전소듐화 음극, 및 이를 포함하는 리튬 이차전지
WO2013157862A1 (ko) 전극조립체 및 이를 포함하는 리튬 이차전지
WO2018182195A1 (ko) 고로딩 전극의 제조 방법
WO2019083273A2 (ko) 비틀림 현상이 개선된 이차전지용 단면 전극 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017849010

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE