WO2020046026A1 - 바인더 분포가 최적화된 이차전지용 음극 및 이를 포함하는 이차전지 - Google Patents

바인더 분포가 최적화된 이차전지용 음극 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2020046026A1
WO2020046026A1 PCT/KR2019/011104 KR2019011104W WO2020046026A1 WO 2020046026 A1 WO2020046026 A1 WO 2020046026A1 KR 2019011104 W KR2019011104 W KR 2019011104W WO 2020046026 A1 WO2020046026 A1 WO 2020046026A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
rubber
binder
mixture layer
content
Prior art date
Application number
PCT/KR2019/011104
Other languages
English (en)
French (fr)
Inventor
조병욱
장현중
김민환
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190100358A external-priority patent/KR102262044B1/ko
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to CN201980054236.4A priority Critical patent/CN112585781B/zh
Priority to US17/267,989 priority patent/US11848450B2/en
Priority to JP2020543752A priority patent/JP7313362B2/ja
Priority to EP19855721.7A priority patent/EP3846250A4/en
Publication of WO2020046026A1 publication Critical patent/WO2020046026A1/ko
Priority to US17/570,204 priority patent/US11843117B2/en
Priority to US17/570,165 priority patent/US11848451B2/en
Priority to JP2023113421A priority patent/JP2023134606A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a secondary battery, and more particularly, to improve battery performance by improving a binder distribution in a negative electrode of a secondary battery.
  • Japanese Patent No. 6128481 discloses a nonaqueous electrolyte secondary battery having a negative electrode plate having a negative electrode active material layer having a negative electrode active material and a binder formed on a negative electrode core.
  • the mass of the silicon oxide is 1-20 mass% to the sum of the masses of the silicon oxide and the carbonaceous substance, and the ratio O / Si of the oxygen atom and the silicon atom of the silicon oxide 0.5 to 1.5
  • the binder has a binder A composed of a rubber binder having a double bond and a binder B composed of a water-soluble polymer compound, and the binder A has a negative electrode core side rather than a surface side of the negative electrode active material layer.
  • the binder B is present at least around the silicon oxide. Is disclosed.
  • the negative electrode of the nonaqueous electrolyte secondary battery it is common to use a rubber binder and a water-soluble polymer binder in order to maintain the binding force between the negative electrode active material and the negative electrode active material and the negative electrode current collector. In consideration of this, by optimizing the distribution of each binder for each electrode position to improve the quality and performance of the product compared to the case of using the same amount of binder.
  • the present invention is coated on the negative electrode current collector and the negative electrode current collector, the negative electrode active material, a conductive material, a rubber-based binder and a water-soluble polymer-based binder is a negative electrode for a non-aqueous electrolyte secondary battery comprising a negative electrode mixture layer formed by applying on the negative electrode current collector
  • the negative electrode mixture layer comprises 1.0 to 2.5% by weight of the rubber binder and 0.5 to 1.5% by weight of the water-soluble polymer binder relative to the total weight of the negative electrode mixture layer
  • the negative electrode mixture layer is the thickness direction based on the negative electrode current collector
  • the ratio of rubber binder content (C A ) in the range between 0 and 3 with respect to the total content of the rubber binder and the water-soluble polymer binder content in the range between 0 and 3 with respect to the total content of the water-soluble polymer binder Ratio (C B ) of the ratio (C A / C B ) is greater than 1.0, and C A / C
  • the rubber-based binder is preferably more content in the section between 0 to 3 than the content in the section between 7 to 10.
  • C A / C B in the interval between 0 and 3 is in the range of 1.02 to 1.50
  • C A / C B in the interval between 7 and 10 is preferably in the range of 0.50 to 0.98
  • C in the interval between 0 and 3 It is also preferred that A / C B is in the range of 1.07 to 1.48 and C A / C B in the range between 7 and 10 is in the range of 0.52 to 0.95.
  • the rubber-based binder may have a greater content in the section between 0 and 3 than the total average content, and a smaller content in the section between 7 and 10.
  • the rubber binder is at least one selected from the group consisting of styrene butadiene rubber (SBR), fluorine rubber, ethylene propylene rubber, butyl acrylate rubber, butadiene rubber, isoprene rubber, acrylonitrile rubber, acrylic rubber and silane rubber Can be.
  • SBR styrene butadiene rubber
  • fluorine rubber ethylene propylene rubber
  • butyl acrylate rubber butadiene rubber
  • isoprene rubber acrylonitrile rubber
  • acrylic rubber and silane rubber Can be.
  • the water-soluble polymer-based binder may be at least one selected from the group consisting of carboxymethyl cellulose, cellulose, polyvinylpyrrolidone, polyvinyl alcohol, polyacrylate, and derivatives thereof.
  • the anode active material may be at least one selected from the group consisting of natural graphite, artificial graphite, soft carbon, hard carbon, and silicon oxide, and the conductive material may be made of acetylene carbon black, Ketjen black, carbon nanotube, graphene, and graphite. It may be at least one selected from the group.
  • the negative electrode material mixture layer has a C A / C B of between 3 to 5 intervals greater than 1.0, and the C A / C B of between 5 to 7 range can be less than 1.0.
  • the present invention provides a nonaqueous electrolyte secondary battery comprising the negative electrode as described above.
  • the negative electrode according to the present invention can alleviate the peeling phenomenon between the negative electrode mixture layer and the negative electrode current collector and at the same time improve the battery performance.
  • 1 is a view schematically showing the concept of the diffusion of lithium ions according to the content distribution of the rubber-based binder in the thickness direction of the negative electrode mixture layer.
  • FIG. 2 is a graph showing a ratio (C / C avg ) and C A / C B of the content in each section to the content of average SBR and CMC in the entire section in Comparative Example 1.
  • FIG. 2 is a graph showing a ratio (C / C avg ) and C A / C B of the content in each section to the content of average SBR and CMC in the entire section in Comparative Example 1.
  • FIG. 3 is a graph showing the ratio (C / C avg ) and C A / C B of the content in each section to the content of average SBR and CMC in the entire section in Example 1.
  • FIG. 3 is a graph showing the ratio (C / C avg ) and C A / C B of the content in each section to the content of average SBR and CMC in the entire section in Example 1.
  • Example 4 is a photograph of the distilled water penetrating into the electrode according to the electrode peeling experiment by distilled water infiltration and the peeling phenomenon due to the negative electrode surface of Comparative Example 1 and Example 1.
  • the present invention relates to a nonaqueous electrolyte secondary battery comprising a negative electrode mixture layer formed by coating a negative electrode active material, a rubber-based binder, and a water-soluble polymer-based binder on a negative electrode current collector.
  • the negative electrode provided by the present invention includes a negative electrode current collector and a negative electrode mixture layer formed by applying a negative electrode active material, a conductive material, a rubber binder and a water-soluble polymer binder on the negative electrode current collector.
  • the binders basically serve to maintain the binding force between the negative electrode active material and the binding force between the active material and the negative electrode current collector.
  • the negative electrode mixture layer comprises 1.0 to 2.5% by weight of the rubber binder and 0.5 to 1.5% by weight of the water-soluble polymer binder based on the total weight of the negative electrode mixture layer.
  • the total content of the rubber binder in the negative electrode mixture layer is less than 1.0% by weight, there is a fear of a decrease in the bonding strength between the negative electrode active material, and cracks are likely to occur during drying or rolling due to the lack of ductility of the negative electrode mixture layer.
  • it exceeds 2.5% by weight there is a problem that the cell resistance is greatly increased by inhibiting the movement of electrons and lithium ions in the battery.
  • the rubber binder is not particularly limited, but for example, styrene butadiene rubber (SBR), fluorine rubber, ethylene propylene rubber, butyl acrylate rubber, butadiene rubber, isoprene rubber, acrylonitrile rubber, acrylic rubber and silane rubber At least one selected from the group consisting of may be used.
  • SBR styrene butadiene rubber
  • fluorine rubber ethylene propylene rubber
  • butyl acrylate rubber butadiene rubber
  • isoprene rubber acrylonitrile rubber
  • acrylic rubber and silane rubber At least one selected from the group consisting of may be used.
  • the negative electrode mixture layer contains less than 0.5% by weight of the water-soluble polymer-based binder
  • the bonding strength between the negative electrode active materials is reduced, as well as the viscosity of the slurry is lowered, resulting in poor slurry phase stability and coating.
  • the thickness of the edge portion becomes thick.
  • the content of the water-soluble polymer binder exceeds 1.5% by weight, the viscosity of the slurry is excessively increased, resulting in poor coating workability, and it is difficult to uniformly dissolve the polymer binder, thus forming a micro-gel. There is a problem such as being.
  • the water-soluble polymer-based binder may be at least one selected from the group consisting of carboxymethyl cellulose (CMC), cellulose, polyvinylpyrrolidone, polyvinyl alcohol, polyacrylate and derivatives thereof.
  • CMC carboxymethyl cellulose
  • cellulose cellulose
  • polyvinylpyrrolidone polyvinyl alcohol
  • polyacrylate polyacrylate
  • the negative electrode mixture layer of the present invention includes a negative electrode active material and a conductive material in addition to the rubber binder and the water-soluble polymer binder based on the solid content weight.
  • the negative electrode active material and the conductive material may be generally included in an amount used to form a negative electrode mixture layer, and are not particularly limited in the present invention.
  • the negative electrode active material may use a graphite material, a non-graphite material, and a silicon oxide.
  • the graphite-based material include natural graphite and artificial graphite
  • examples of the non-graphite-based material include soft carbon and hard carbon. These can be used individually, of course, and can mix and use two or more.
  • Examples of the conductive material include acetylene carbon black, Ketjen black, carbon nanotubes, graphene and graphite. These can be used individually, of course, and can mix and use two or more.
  • the negative electrode mixture layer is prepared by slurrying by adding water to a mixture of the negative electrode active material, the conductive material, the rubber binder, and the water-soluble polymer binder as described above, and then applying the prepared slurry to the negative electrode current collector and drying it.
  • the slurry is not particularly limited, but may include water, for example, distilled water, in the range of 40 to 60% by weight based on the total weight of the slurry.
  • the negative electrode mixture layer obtained by the present invention binds the negative electrode active materials to each other by a water-soluble polymer binder and a rubber binder, and further binds the negative electrode active material to the negative electrode current collector.
  • the water-soluble polymer-based binder has a good affinity with water, and when they are exposed to water, swelling occurs by adsorbing water.
  • the water-soluble polymer-based binder is relatively present at the interface between the negative electrode mixture layer and the negative electrode current collector, a part of the bond between the negative electrode active material, the binder, and the negative electrode current collector is replaced by a bond that acts between the water and the binder.
  • the binding force between the negative electrode active material and the negative electrode current collector may be reduced. Such a decrease in binding force may cause peeling between the negative electrode current collector and the negative electrode mixture layer in the state in which the electrolyte is filled.
  • the rubber binder since the rubber binder has a low affinity with water, it does not cause a problem of lowering the binding force due to such water adsorption. Therefore, it is more preferable to improve the binding force between the base material, that is, the negative electrode current collector and the negative electrode active material, through the use of a rubber binder rather than the water-soluble polymer binder in the section close to the negative electrode current collector.
  • the rubber-based binder is non-uniformly present between the negative electrode active material in the form of small particles, when a large number of such rubber-based binder is present in the negative electrode mixture layer, especially on the surface of the negative electrode mixture layer to prevent voids between the negative electrode active material from the positive electrode
  • the lithium ions that are delivered may be prevented from diffusing into the cathode.
  • FIG. 1 The concept of diffusion of lithium ions according to the content distribution of the rubber-based binder is schematically shown in FIG.
  • the rubber-based binder when the rubber-based binder is distributed in a large amount on the surface of the negative electrode mixture layer, it causes a problem of inhibiting the diffusion of lithium ions and inhibiting diffusion of lithium ions into the negative electrode.
  • the rubber binder and the water-soluble polymer binder each have a different effect on binding and battery performance.
  • the quality and performance of the product are simultaneously improved by optimizing the distribution of each binder for each electrode position. I want to.
  • the present invention increases the role of the rubber-based binder in the vicinity of the current collector in order to alleviate the peeling phenomenon between the mixture layer and the current collector within the range that does not impair the bonding force between the active material in the negative electrode mixture layer, and improve the battery performance In order to improve the mixture layer surface to provide a negative electrode having increased the role of the water-soluble polymer binder.
  • the negative electrode mixture layer of the present invention has a rubber binder content ratio (C A ) and a water-soluble polymer binder content ratio (C B ) in a section between 0 and 3 when divided into ten equal parts in the thickness direction based on the current collector It is preferred that the ratio (C A / C B ) is greater than 1.0 and that C A / C B in the interval between 7 and 10 is less than 1.0. More preferably, in the interval between 0 and 3, C A / C B may be in the range of 1.02 to 1.50, still more preferably 1.07 to 1.48, and C A / C B in the interval between 7 and 10 is 0.50 to It may be in the range of 0.98, even more preferably 0.52 to 0.95.
  • the content ratio of the rubber-based binder or water-soluble polymer binder, C A or C B means a value obtained by dividing the content of each binder included in the corresponding section by the content of the binder included in the entire section.
  • each section is limited to between 0 and 3, and between 7 and 10, the quality and performance of the product to be improved in the present invention is related to the characteristics near the interface between both sides of the mixture layer, even if the above conditions are satisfied only in these sections. This is because the characteristics of the can be fully implemented.
  • the rubber-based binder is preferably more content in the section between 0 to 3 than the content in the section between 7 to 10.
  • the content of the section between 0 and 3 is greater than the average content of the rubber-based binder in the entire section, and the content of the section between 7 and 10 is smaller.
  • the ratio (C A / C B ) of the rubber-based binder content ratio (C A ) and the water-soluble polymer-based binder content ratio (C B ) in the interval between 3 and 5 exceeds 1.0, and in the interval between 5 and 7 C A / C B in may be less than 1.0.
  • the rubber-based binder controls the content in the vicinity of the negative electrode current collector than the surface of the negative electrode mixture layer, and the water-soluble polymer binder is the surface of the negative electrode mixture layer than the vicinity of the negative electrode current collector
  • the negative electrode mixture layer formation is not particularly limited.
  • slurry 1 and slurry 2 may be formed by simultaneously or sequentially applying slurry 1 and slurry 2 onto copper foil as a negative electrode current collector and then drying them at once.
  • the slurry may be dried after the application of the slurry 1, followed by application of the slurry 2, followed by drying.
  • Styrene-butadiene rubber (SBR, A) and carboxymethyl cellulose (CMC, B) as a binder, and carbon black with artificial graphite and conductive material as negative electrode active materials were mixed in a weight ratio of 1.8%, 1.2%, 96% and 1%, respectively. Then, distilled water was added so that the solid content weight was about 50%, and mixed for 100 minutes to prepare a negative electrode slurry 1.
  • Styrenebutadiene rubber (SBR, A) and carboxymethyl cellulose (CMC, B) as binders, and artificial black and conductive black as negative electrode active materials were mixed in a weight ratio of 1.2%, 1.2%, 96.6% and 1%, respectively. After that, distilled water was added so that the solid content weight was about 52% and mixed for 100 minutes to prepare a negative electrode slurry 2.
  • the negative electrode slurry 1 was applied to one surface of a copper foil (thickness 8 ⁇ m) to a thickness of 60 ⁇ m to form a first mixture layer. Subsequently, the negative electrode slurry 2 was applied on the first mixture layer to a thickness of 60 ⁇ m to form a second mixture layer.
  • Zone 1 temperature 100 °C, wind speed 0.42m / s, drying time 20 seconds
  • Zone 2 temperature 110 °C, wind speed 0.47m / s, drying time 20 seconds
  • Zone 4 temperature 125 °C, wind speed 0.77m / s, drying time 20 seconds
  • the first and second mixture layers were rolled to prepare a negative electrode having a final thickness of 80 ⁇ m.
  • Styrenebutadiene rubber SBR, A
  • CMC, B carboxymethyl cellulose
  • carbon black artificial graphite and conductive materials as negative electrode active materials, respectively, in a weight ratio of 1.8%, 1.3%, 95.9% and 1%, respectively.
  • distilled water was added so that the solid content weight was about 52%, and mixed for 100 minutes to prepare a negative electrode slurry 1.
  • Styrenebutadiene rubber (SBR, A) and carboxymethyl cellulose (CMC, B) as a binder, and artificial black and conductive carbon as negative electrode active materials were mixed in a weight ratio of 1.2%, 1.3%, 96.5% and 1%, respectively. After that, distilled water was added so that the solid content weight was about 52% and mixed for 100 minutes to prepare a negative electrode slurry 2.
  • Styrenebutadiene rubber (SBR, A) and carboxymethyl cellulose (CMC, B) as binders, and artificial blacks and conductive materials as negative electrode active materials were mixed in a weight ratio of 1.8%, 1.2%, 96% and 1%, respectively. Then, distilled water was added so that the solid content weight was about 50%, and mixed for 100 minutes to prepare a negative electrode slurry 1.
  • Styrenebutadiene rubber (SBR, A) and carboxymethyl cellulose (CMC, B) as binders, and artificial blacks and conductive materials as negative electrode active materials were mixed in a weight ratio of 0.8%, 1.2%, 97% and 1%, respectively. After that, distilled water was added so that the solid content weight was about 50%, and mixed for 100 minutes to prepare a negative electrode slurry 2.
  • Styrenebutadiene rubber (SBR, A) and carboxymethyl cellulose (CMC, B) as binders, and artificial blacks and conductive materials as negative electrode active materials were mixed in a weight ratio of 1.8%, 1.2%, 96% and 1%, respectively. Then, distilled water was added so that the solid content weight was about 50%, and mixed for 100 minutes to prepare a negative electrode slurry 1.
  • Styrenebutadiene rubber (SBR, A) and carboxymethyl cellulose (CMC, B) as binders, and artificial blacks and conductive materials as negative electrode active materials were mixed in a weight ratio of 0.8%, 1.2%, 97% and 1%, respectively. After that, distilled water was added so that the solid content weight was about 50%, and mixed for 100 minutes to prepare a negative electrode slurry 2.
  • the negative electrode slurry 1 was applied to one surface of a copper foil (thickness 8 ⁇ m) with a thickness of 60 ⁇ m, and then dried in a drying furnace formed of four zones under the following conditions to form a first mixture layer.
  • the negative electrode slurry 2 was applied on the first mixture layer in a thickness of 60 ⁇ m, and then, in the same manner as in the first mixture layer formation, drying was performed under the same conditions in a drying furnace formed of four zones to form a second mixture layer. It was.
  • the first and second mixture layers were rolled to prepare a negative electrode having a final thickness of 80 ⁇ m.
  • Styrene-butadiene rubber (SBR, A) and carboxymethyl cellulose (CMC, B) as binders, and artificial black graphite and conductive materials as negative electrode active materials were mixed in a weight ratio of 1.6%, 1.2%, 96.2% and 1%, respectively. Then, distilled water was added so that the solid content weight was about 50%, and mixed for 100 minutes to prepare a negative electrode slurry 1.
  • Styrenebutadiene rubber (SBR, A) and carboxymethylcellulose (CMC, B) as binders, and artificial blacks and conductive materials as negative electrode active materials were mixed in a weight ratio of 1.4%, 1.2%, 96.4% and 1%, respectively. After that, distilled water was added so that the solid content weight was about 50%, and mixed for 100 minutes to prepare a negative electrode slurry 2.
  • the negative electrode slurry 1 was applied to one surface of a copper foil (thickness 8 ⁇ m) with a thickness of 60 ⁇ m, and then dried in a drying furnace formed of four zones under the following conditions to form a first mixture layer.
  • the negative electrode slurry 2 was applied on the first mixture layer to a thickness of 60 ⁇ m, and then dried under the same conditions in a drying furnace formed of four zones to form the first mixture layer in the same manner as the first mixture layer formation. It was.
  • the first and second mixture layers were rolled to prepare a negative electrode having a final thickness of 80 ⁇ m.
  • Styrenebutadiene rubber (SBR, A) and carboxymethyl cellulose (CMC, B) as binders, and artificial black graphite and conductive materials as negative electrode active materials were mixed in a weight ratio of 1.5%, 1.2%, 96.3% and 1%, respectively. Then, distilled water was added so that the solid content weight was about 50%, and mixed for 100 minutes to prepare a negative electrode slurry 1.
  • the negative electrode slurry 1 was coated on one surface of a copper foil (thickness 8 ⁇ m) to a thickness of 120 ⁇ m, and then dried in a drying furnace formed of four zones under the following conditions to form a first mixture layer having a thickness section 0 to 10. Formed.
  • Zone 1 temperature 100 °C, wind speed 0.42m / s, drying time 20 seconds
  • Zone 2 temperature 110 °C, wind speed 0.47m / s, drying time 20 seconds
  • Zone 4 temperature 125 °C, wind speed 0.77m / s, drying time 20 seconds
  • the mixture layer thus prepared was rolled to prepare a cathode having a final thickness of 80 ⁇ m.
  • Styrenebutadiene rubber (SBR, A) and carboxymethyl cellulose (CMC, B) as binders, and artificial black graphite and conductive materials as negative electrode active materials were mixed in a weight ratio of 1.5%, 1.3%, 96.2% and 1%, respectively. Then, distilled water was added so that the solid content weight was about 52%, and mixed for 100 minutes to prepare a negative electrode slurry 1.
  • the negative electrode slurry 1 was coated on one surface of a copper foil (thickness 8 ⁇ m) to a thickness of 120 ⁇ m, and dried under the same conditions as in Comparative Example 1 to form a first mixture layer having a thickness section of 0 to 10 sections.
  • the first mixture layer thus prepared was rolled to prepare a cathode having a final thickness of 80 ⁇ m.
  • Styrenebutadiene rubber (SBR, A) and carboxymethyl cellulose (CMC, B) as binders, and artificial blacks and conductive materials as negative electrode active materials were mixed in a weight ratio of 0.8%, 1.2%, 97% and 1%, respectively. After that, distilled water was added so that the solid content weight was about 50% and mixed for 100 minutes to prepare a negative electrode slurry 1.
  • the negative electrode slurry 1 was coated on one surface of a copper foil (thickness 8 ⁇ m) to a thickness of 120 ⁇ m, and dried under the same conditions as in Comparative Example 1 to form a first mixture layer having a thickness section of 0 to 10 sections.
  • the first mixture layer thus prepared was rolled to prepare a cathode having a final thickness of 80 ⁇ m.
  • Styrene-butadiene rubber (SBR, A) and carboxymethyl cellulose (CMC, B) as a binder, and carbon black with artificial graphite and conductive material as negative electrode active materials were mixed in a weight ratio of 1.8%, 1.2%, 96% and 1%, respectively. Then, distilled water was added so that the solid content weight was about 50%, and mixed for 100 minutes to prepare a negative electrode slurry 1.
  • Styrenebutadiene rubber (SBR, A) and carboxymethyl cellulose (CMC, B) as a binder, and artificial black and conductive black as negative electrode active materials were mixed in a weight ratio of 1.2%, 1.2%, 96.6% and 1%, respectively. After that, distilled water was added so that the solid content weight was about 52% and mixed for 100 minutes to prepare a negative electrode slurry 2.
  • the negative electrode slurry 1 was applied to one surface of a copper foil (thickness 8 ⁇ m) to a thickness of 60 ⁇ m to form a first mixture layer. Subsequently, the negative electrode slurry 2 was applied on the first mixture layer to a thickness of 60 ⁇ m to form a second mixture layer.
  • the first and second mixture layers were rolled to prepare a negative electrode having a final thickness of 80 ⁇ m.
  • Styrenebutadiene rubber (SBR, A) and carboxymethylcellulose (CMC, B) as binders, and artificial blacks and conductive materials as negative electrode active materials were mixed in a weight ratio of 1.4%, 1.6%, 96% and 1%, respectively. Then, distilled water was added so that the solid content weight was about 50% and mixed for 100 minutes.
  • Styrenebutadiene rubber (SBR, A) and carboxymethyl cellulose (CMC, B) as binders, and artificial black graphite and conductive materials as negative electrode active materials were mixed in a weight ratio of 2%, 0.4%, 96.6% and 1%, respectively. Then, distilled water was added so that the solid content weight was about 50%, and mixed for 100 minutes to prepare a negative electrode slurry 1.
  • the negative electrode slurry 1 was applied to one surface of a copper foil (thickness 8 ⁇ m) in a thickness of 120 ⁇ m. However, since the viscosity of the slurry is low, the slurry does not stably form a coating layer on the copper foil, and thus a subsequent process for preparing the negative electrode is stopped.
  • the binder distribution was measured by staining the electrode with OsO 4 in the negative electrode mixture layer, and then cutting the cross section of the electrode to perform SEM-EDAX analysis.
  • the Os element distribution in the cross section of the mixture layer from the SEM analysis indicates the distribution of the rubber binder
  • the Na element distribution indicates the distribution of the water-soluble binder
  • C A represents the ratio of the SBR contained in a predetermined section (section between 0 to 3 and 7 to 10 in the thickness direction from the current collector) with respect to the total SBR content
  • C B is the total CMC content Represents the ratio of the content of CMC contained in a predetermined section (a section between the thickness direction 0 to 3 and a section from 7 to 10) from the current collector
  • C A / C B is a predetermined section (a thickness direction from the current collector 0 to And the ratio of C A to C B included in the interval between 3 and between 7 and 10).
  • Example 1 and Comparative Example 1 the ratio (C / C avg ) and C A / C B of the average SBR content of the entire section and the content of each section to the content of CMC are shown in FIGS. 2 and 3. Represented in each. 2 and 3, (a) is a graph of C / C avg , and (b) is a graph of C A / C B.
  • the electrodes prepared in Examples 1 to 5 and Comparative Examples 1 to 4 were cut to a size of 5 cm to 5 cm, and four corners were fixed with tape.
  • Batteries were prepared using the electrodes prepared in Examples 1 to 5 and Comparative Examples 1 to 4.
  • Each manufactured battery was charged in a constant current (CC) mode of 1.5C until the voltage reached 4.2V to check the charged capacity.
  • CC constant current
  • the battery was discharged in a 0.3C CC (Constant Current) mode until the voltage reached 2.5V, and the discharge capacity was confirmed.
  • 0.3C CC Constant Current
  • the negative electrodes of Comparative Examples 1 to 4 showed lower charge and discharge efficiency than the negative electrodes of Examples 1 to 5.
  • the content ratio (C A ) of SBR is high in a section of 7 to 10, which is the negative electrode surface side, and a large amount of SBR particles fill the surface pores of the active material to prevent lithium ions from expanding into the negative electrode. I think because.
  • the distribution of each binder for each electrode position may be optimized to help improve performance as well as product quality.
  • Comparative Example 3 when the content of SBR is low, the adhesion to the current collector is remarkably low, and it can be seen that there is a problem in that the electrode mixture layer or the negative electrode active material is peeled from the current collector.
  • Comparative Example 3 does not use a negative electrode slurry to control the distribution of the binder, if the SBR content is too low, it will be easy to predict that the adhesion to such a current collector will be significantly lowered even if the binder content by section is controlled.
  • Comparative Example 4 uses the same negative electrode slurry 1 and negative electrode slurry 2 as in Example 1, but shows a case where the drying conditions are performed differently from Example 1. As can be seen from the results of Comparative Example 4 and Example 1, although the same negative electrode slurry was used, it can be seen that the distribution of the binder present in each thickness direction section in the negative electrode mixture layer differs depending on the drying conditions. .

Abstract

본 발명은 음극 집전체 및 상기 음극 합제층 상에 형성되고, 음극 활물질, 도전재, 고무계 바인더 및 수용성 고분자계 바인더를 포함하는 음극 합제층을 포함하는 비수전해질 이차전지용 음극으로서, 상기 음극 합제층은 음극합제층 총 중량에 대하여 고무계 바인더 1.0 내지 2.5중량% 및 수용성 고분자계 바인더 0.5 내지 1.5중량%를 포함하고, 상기 음극 합제층은 집전체를 기준으로 두께방향으로 10등분하였을 때, 고무계 바인더 전체 함량에 대한 0 내지 3 사이 구간에서의 고무계 바인더 함량의 비(C A)와 수용성 고분자계 바인더의 전체 함량에 대한 0 내지 3 사이 구간에서의 수용성 고분자계 바인더 함량의 비(C B)의 비율(C A/C B)이 1.0을 초과하고, 7 내지 10 사이 구간에 있어서의 C A/C B가 1.0 미만인 비수전해질 이차전지용 음극에 관한 것이다.

Description

바인더 분포가 최적화된 이차전지용 음극 및 이를 포함하는 이차전지
본 발명은 이차전지용 음극에 관한 것으로서, 보다 구체적으로는 이차전지의 음극에 있어서 바인더 분포를 개선하여 전지 성능을 향상시키고자 하는 기술이다.
휴대전화, 노트북, 태블릿형 컴퓨터 등의 이동 정보 단말기의 고기능화, 소형 경량화가 급속히 진전하고 있다. 이들의 단말기 구동 전원으로서 높은 에너지 밀도를 가지며, 고용량인 비수전해질 이차전지가 넓게 이용되고 있다.
비수전해질 이차전지의 음극 활물질로서는 탄소 재료가 넓게 이용되고 있지만, 비수전해질 이차전지에 대한 새로운 고용량화의 요망이 높아져 있고 탄소 재료보다 방전 용량이 큰 규소 재료에 대한 주목이 높아지고 있다.
규소 재료를 이용한 비수전해질 이차전지에 관한 기술로서, 일본특허 제6128481호에는 음극심체 상에 음극 활물질과 결착제를 가지는 음극 활물질층이 형성된 음극판을 구비하는 비수전해질 이차전지에 있어서, 상기 음극 활물질은 규소 산화물과 탄소질물을 가지며, 상기 규소 산화물과 상기 탄소질물과의 질량의 합에 대한 상기 규소 산화물의 질량이 1~20질량%이며, 상기 규소 산화물의 산소 원자와 규소 원자의 비 O/Si가 0.5~1.5이며, 상기 결착제는 이중 결합을 갖는 고무 바인더로 구성되는 결착제 A와 수용성 고분자 화합물로 구성되는 결착제 B를 가지며, 상기 결착제 A는 상기 음극 활물질층의 표면 측보다 음극심체 측에 많이 존재하는 분포이며, 상기 결착제 B는 적어도 상기 규소 산화물의 주위에 존재하는 것을 특징으로 하는 비수전해질 이차전지가 개시되어 있다.
위 특허문헌은 SiOx가 포함된 음극 극판에서 결착제 A와 결착제 B 각각의 분포를 한정하고 있으나, 이들 상호간의 함량에 대하여는 언급하지 않는다.
비수전해질 이차전지의 음극에 있어서 음극 활물질 간의 결착력 및 음극 활물질과 음극 집전체 간의 결착력을 유지하는 역할을 위해 고무계 바인더와 수용성 고분자계 바인더를 사용하는 것이 일반적인데, 상기 바인더들 각각이 결착에 미치는 영향력을 고려하여, 전극 위치별 각 바인더의 분포를 최적화함으로써 동일 함량의 바인더를 사용하는 경우와 비교하여 제품의 품질 및 성능을 개선시키고자 한다.
본 발명은 음극 집전체 및 상기 음극 집전체 위에 도포되어 형성되고, 음극 활물질, 도전재, 고무계 바인더 및 수용성 고분자계 바인더가 상기 음극 집전체 위에 도포되어 형성된 음극 합제층을 포함하는 비수전해질 이차전지용 음극에 대한 것으로서, 상기 음극 합제층은 음극합제층 총 중량에 대하여 고무계 바인더 1.0 내지 2.5중량% 및 수용성 고분자계 바인더 0.5 내지 1.5중량%를 포함하고, 상기 음극 합제층은 음극 집전체를 기준으로 두께방향으로 10등분하였을 때, 고무계 바인더 전체 함량에 대한 0 내지 3 사이 구간에서의 고무계 바인더 함량의 비(C A)와 수용성 고분자계 바인더의 전체 함량에 대한 0 내지 3 사이 구간에서의 수용성 고분자계 바인더 함량의 비(C B)의 비율(C A/C B)이 1.0을 초과하고, 7 내지 10 사이 구간에 있어서의 C A/C B가 1.0 미만인 비수전해질 이차전지용 음극을 제공한다.
상기 고무계 바인더는 0 내지 3 사이 구간에서의 함량이 7 내지 10 사이 구간에서의 함량보다 많은 것이 바람직하다.
0 내지 3 사이 구간에서의 C A/C B는 1.02 내지 1.50의 범위이고, 7 내지 10 사이 구간에서의 C A/C B는 0.50 내지 0.98 범위인 것이 바람직하며, 0 내지 3 사이 구간에서의 C A/C B는 1.07 내지 1.48의 범위이고, 7 내지 10 사이 구간에서의 C A/C B는 0.52 내지 0.95 범위인 것이 또한 바람직하다.
상기 고무계 바인더는 전체 평균 함량에 비하여 0 내지 3 사이 구간의 함량이 더 크고, 7 내지 10 사이 구간의 함량이 더 작은 것일 수 있다.
상기 고무계 바인더는 스타이렌 부타디엔 고무(SBR), 불소계 고무, 에틸렌 프로필렌 고무, 부틸 아크릴레이트 고무, 부타디엔 고무, 이소프렌 고무, 아크릴로니트릴 고무, 아크릴계 고무 및 실란계 고무로 이루어진 그룹으로부터 선택되는 적어도 하나일 수 있다.
상기 수용성 고분자계 바인더는 카르복시메틸셀룰로오스, 셀룰로오스, 폴리비닐피롤리돈, 폴리비닐알코올, 폴리아크릴레이트 및 이들의 유도체로부터 이루어진 그룹으로부터 선택되는 적어도 하나일 수 있다.
상기 음극 활물질은 천연 흑연, 인조 흑연, 소프트카본, 하드카본, 규소 산화물로 이루어진 그룹으로부터 선택되는 적어도 하나일 수 있으며, 상기 도전재는 아세틸렌 카본블랙, 케첸 블랙, 카본나노튜브, 그래핀 및 흑연으로 이루어진 그룹으로부터 선택되는 적어도 하나일 수 있다.
상기 음극 합제층은 3 내지 5 사이 구간에서의 C A/C B가 1.0을 초과하고, 5 내지 7 사이 구간에서의 C A/C B가 1.0 미만일 수 있다.
나아가, 본 발명은 상기한 바와 같은 음극을 포함하는 비수전해질 이차전지를 제공한다.
본 발명에 따른 음극은 음극 합제층과 음극 집전체와의 박리 현상을 완화시키고 동시에 전지 성능을 향상시킬 수 있다.
도 1은 음극 합제층의 두께 방향으로의 고무계 바인더의 함량 분포에 따른 리튬 이온의 확산에 대한 개념을 개략적으로 나타낸 도면이다.
도 2는 비교예 1에 있어서, 전체 구간의 평균 SBR 및 CMC의 함량에 대한 각 구간에서의 함량의 비(C/C avg) 및 C A/C B를 나타내는 그래프이다.
도 3은 실시예 1에 있어서, 전체 구간의 평균 SBR 및 CMC의 함량에 대한 각 구간에서의 함량의 비(C/C avg) 및 C A/C B를 나타내는 그래프이다.
도 4는 비교예 1 및 실시예 1의 음극 표면에 대하여 증류수 침투에 의한 전극박리 실험에 따른 전극 내부로의 증류수 침투 및 이로 인한 박리현상을 촬영한 사진이다.
본 발명은 음극 활물질과 고무계 바인더 및 수용성 고분자계 바인더가 음극 집전체 위에 도포되어 형성된 음극 합제층을 포함하는 비수전해질 이차전지에 관한 것이다.
구체적으로, 본 발명에 의해 제공되는 음극은 음극 집전체 및 상기 음극 집전체 상에 음극 활물질, 도전재, 고무계 바인더 및 수용성 고분자계 바인더가 도포되어 형성된 음극 합제층을 포함한다.
상기 바인더들은 기본적으로 음극 활물질 간의 결착력 및 활물질과 음극 집전체 간의 결착력을 유지하는 역할을 수행한다. 상기 음극 합제층은 음극 합제층 총 중량에 대하여 고무계 바인더 1.0 내지 2.5중량% 및 수용성 고분자계 바인더 0.5 내지 1.5중량%를 포함한다.
상기 음극 합제층에 있어서 고무계 바인더의 총 함량이 1.0중량% 미만으로 포함하는 경우에는 음극 활물질간의 결합력 저하의 우려가 있으며, 음극 합제층의 연성 부족으로 인해 건조과정 또는 압연과정에서 크랙이 발생하기 쉬우며, 2.5중량%를 초과하는 경우에는 전지 내의 전자 및 리튬 이온의 이동을 저해하여 셀 저항이 크게 증가하는 문제가 있다.
상기 고무계 바인더는 특별히 한정하지 않으나, 예를 들어, 스타이렌 부타디엔 고무(SBR), 불소계 고무, 에틸렌 프로필렌 고무, 부틸 아크릴레이트 고무, 부타디엔 고무, 이소프렌 고무, 아크릴로니트릴 고무, 아크릴계 고무 및 실란계 고무로 이루어진 그룹으로부터 선택되는 적어도 하나를 사용할 수 있다.
한편, 상기 음극 합제층에 있어서 수용성 고분자계 바인더의 함량이 0.5중량% 미만으로 포함하는 경우에는 음극 활물질 간의 결합력을 저하함은 물론, 슬러리의 점도 저하를 초래하여, 슬러리의 상 안정성이 떨어지고 코팅시 엣지(Edge)부의 두께가 두꺼워지는 등의 문제가 있다. 한편, 수용성 고분자계 바인더의 함량이 1.5중량%를 초과하는 경우에는 슬러리의 점도가 지나치게 상승하여 코팅 작업성이 떨어짐은 물론, 고분자계 바인더의 균일한 용해가 어려워 마이크로 겔(micro-gel)이 형성되는 등의 문제가 있다.
상기 수용성 고분자계 바인더는 카르복시메틸셀룰로오스(CMC), 셀룰로오스, 폴리비닐피롤리돈, 폴리비닐알코올, 폴리아크릴레이트 및 이들의 유도체로부터 이루어진 그룹으로부터 선택되는 적어도 하나를 사용할 수 있다.
한편, 본 발명의 음극합제층은 고형분 중량을 기준으로, 상기 고무계 바인더 및 수용성 고분자계 바인더 이외에, 음극 활물질과 도전재를 포함한다. 상기 음극활물질 및 도전재는 통상적으로 음극합제층 형성에 사용되는 함량으로 각각 포함될 수 있는 것으로, 본 발명에서는 특별히 한정하지 않는다.
상기 음극 활물질은 흑연계 물질, 비흑연계 물질, 규소산화물을 사용할 수 있다. 상기 흑연계 물질로는 천연 흑연과 인조 흑연 등을 들 수 있으며, 상기 비흑연계 물질로는 소프트카본, 하드카본 등을 들 수 있다. 이들은 어느 하나를 단독으로 사용할 수 있음은 물론, 2 이상을 혼합하여 사용할 수 있다.
상기 도전재로는 아세틸렌 카본블랙, 케첸 블랙, 카본나노튜브, 그래핀, 흑연 등을 들 수 있다. 이들은 어느 하나를 단독으로 사용할 수 있음은 물론, 2 이상을 혼합하여 사용할 수 있다.
음극 합제층은 상기한 바와 같은 음극 활물질, 도전재, 고무계 바인더 및 수용성 고분자계 바인더의 혼합물에 물을 첨가하여 슬러리화한 후, 제조된 슬러리를 음극 집전체에 도포하고 건조함으로써 제조된다. 이때, 상기 슬러리 제조를 위하여는 특별히 한정하는 것은 아니지만, 슬러리 전체 중량에 대하여 물, 예를 들어, 증류수를 40 내지 60중량%의 범위로 포함할 수 있다.
본 발명에 의해 얻어진 음극 합제층은 수용성 고분자계 바인더 및 고무계 바인더에 의해 음극 활물질 상호간을 결착하고, 또, 음극 활물질을 음극 집전체에 결착한다.
상기 수용성 고분자계 바인더는 수분과의 친화도가 좋은 성질을 갖는데, 이들이 수분에 노출되는 경우에는 수분을 흡착함으로써 팽윤 현상이 일어나게 된다. 이러한 수용성 고분자계 바인더가 음극 합제층과 음극 집전체의 계면에 상대적으로 많이 존재할 경우에는 음극 활물질, 바인더 및 음극 집전체의 상호 간에 작용하는 결합의 일부가 수분과 바인더 상호간에 작용하는 결합으로 대체되며, 이로 인해 음극 활물질과 음극 집전체 간의 결착력을 저하시키는 결과를 초래할 수 있다. 이러한 결착력 저하는 전해액이 충진된 상태에서 음극 집전체와 음극 합제층간의 박리를 야기할 수 있다.
반면, 고무계 바인더는 수분과의 친화도가 낮은 성질을 갖기 때문에 이와 같은 수분 흡착에 의한 결착력 저하의 문제를 크게 야기하지 않는다. 따라서, 음극 집전체와 가까운 구간에서는 수용성 고분자계 바인더 보다는 고무계 바인더의 사용을 통해 기재, 즉, 음극 집전체와 음극 활물질 간의 결착력을 향상시키는 것이 보다 바람직하다.
그러나, 상기 고무계 바인더는 작은 입자 형태로 음극 활물질들 사이에서 불균일하게 존재하는데, 음극 합제층 내, 특히 음극 합제층 표면에 이와 같은 고무계 바인더가 많이 존재하게 되면 음극 활물질 사이의 공극을 막게 되어 양극으로부터 전달되는 리튬 이온이 음극 내부로 확산되는 것을 저해할 수 있다.
상기 고무계 바인더의 함량 분포에 따른 리튬 이온의 확산에 대한 개념을 도 1에 개략적으로 나타내었다. 도 1에 나타낸 바와 같이, 고무계 바인더가 음극 합제층의 표면에 다량 분포하는 경우에는 리튬 이온의 전달을 방해하여 리튬 이온이 음극 내부로 확산하는 것을 저해하는 문제를 야기하게 된다.
이는 결과적으로 전지 저항이 상승하거나 고율 충전시 전극 표면에서 리튬염의 석출로 인해 충방전 효율을 저하시킬 수 있다. 그러나, 표면에 존재하는 고무계 바인더의 양이 적은 경우에는 리튬 이온이 용이하게 음극 내부로 확산될 수 있어, 이러한 문제를 방지할 수 있다.
이와 같이, 고무계 바인더 및 수용성 고분자계 바인더 각각은 결착에 미치는 영향력과 전지 성능에 미치는 영향력이 상이하므로, 이러한 영향력을 고려하여, 전극 위치별 각 바인더의 분포를 최적화함으로써 제품의 품질 및 성능을 동시에 향상시키고자 한다.
이에, 본 발명은 음극 합제층에 있어서, 활물질 간의 결합력을 저해하지 않는 범위 내에서, 합제층과 집전체와의 박리현상을 완화시키기 위해서 집전체 부근에서는 고무계 바인더의 역할을 증가시키고, 전지 성능을 향상시키기 위해서 합제층 표면에서는 수용성 고분자계 바인더의 역할을 증가시킨 음극을 제공하고자 한다.
보다 구체적으로, 본 발명의 상기 음극 합제층은 집전체를 기준으로 두께방향으로 10등분하였을 때 0 내지 3 사이 구간에서 고무계 바인더의 함량비(C A)와 수용성 고분자계 바인더 함량비(C B)의 비율(C A/C B)이 1.0을 초과하고, 7 내지 10 사이 구간에서의 C A/C B가 1.0 미만인 것이 바람직하다. 보다 바람직하게는 상기 0 내지 3 사이 구간에서 C A/C B는 1.02 내지 1.50의 범위, 더욱 더 바람직하게는 1.07 내지 1.48일 수 있으며, 7 내지 10 사이 구간에서의 C A/C B는 0.50 내지 0.98의 범위, 더욱 더 바람직하게는 0.52 내지 0.95일 수 있다. 이때, 상기 고무계 바인더 또는 수용성 고분자계 바인더의 함량비, C A 또는 C B는 해당 구간에 포함된 각 바인더 함량을 전체 구간에 포함된 바인더의 함량으로 나눈 값을 의미한다.
각 구간을 0 내지 3 사이, 그리고 7 내지 10 사이로 한정한 것은, 본 발명에서 개선하고자 하는 제품의 품질 및 성능이 합제층 양측 계면 부근에서의 특성과 관련된 것으로서 이들 구간에서만 상기 조건을 만족하더라도 원하는 수준의 특성을 충분히 구현할 수 있기 때문이다.
이때, 상기 고무계 바인더는 0 내지 3 사이 구간에서의 함량이 7 내지 10 사이 구간에서의 함량보다 많은 것이 바람직하다. 또한, 전체 구간에서의 고무계 바인더의 평균 함량에 비하여 상기 0 내지 3 사이 구간의 함량이 더 크고, 7 내지 10 사이 구간의 함량이 더 작은 것이 바람직하다. 그렇지 않은 경우, 0 내지 3 사이 구간에서 C A/C B 가 1.0 초과, 7 내지 10 사이 구간에서 C A/C B가 1.0 미만인 분포를 동시에 만족하기 위해서는 각 구간에서 수용성 고분자계 바인더 함량 변화 폭이 커져야 하나, 비수용성인 고무계 바인더와 달리, 수용성 고분자계 바인더는 함량 변화에 따라 제조되는 슬러리의 점도가 크게 변할 수 있어 슬러리 점도를 일정하게 유지해야 하는 코팅 공정에서 불량을 야기할 가능성이 높아진다는 문제가 있다.
나아가, 3 내지 5 사이 구간에 있어서 고무계 바인더의 함량비(C A)와 수용성 고분자계 바인더 함량비(C B)의 비율(C A/C B)이 1.0을 초과하고, 5 내지 7 사이 구간에 있어서의 C A/C B가 1.0 미만일 수 있다.
이와 같은 본 발명에 따르면, 음극 합제층 내의 바인더 분포에 있어서, 고무계 바인더는 음극 합제층 표면보다 음극 집전체 부근에서의 함량을 높게 제어하고, 수용성 고분자계 바인더는 음극 집전체 부근보다 음극 합제층 표면에서의 함량을 높게 제어함으로써 음극 합제층과 음극 집전체와의 박리 현상을 완화시키고 동시에 전지 성능을 향상시킬 수 있다.
상기 음극 합제층 형성은 특별히 한정하는 것은 아니다. 예를 들면, 상기한 바와 같이, 0 내지 3 사이 구간에 적합한 바인더 함량을 갖도록 하는 음극 합제층 형성 슬러리(슬러리 1) 및 7 내지 10 사이 구간에 적합한 바인더 함량을 갖도록 하는 음극 합제층 형성 슬러리(슬러리 2)를 각각 제조한 후에 이들을 음극 집전체로서 구리 포일 상에 슬러리 1 및 슬러리 2를 동시 또는 순차로 도포한 후 한 번에 건조하여 형성할 수 있다. 또는, 상기 슬러리 1의 도포 후에 슬러리를 건조하고, 이어서, 슬러리 2를 도포한 후 건조하여 제조하는 것도 가능하다.
실시예
이하, 본 발명을 실시예를 들어 보다 구체적으로 설명한다. 그러나, 이하의 실시예는 본 발명을 한정하고자 하는 것이 아니다.
실시예 1
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로 인조흑연 및 도전재로 카본블랙을 각각 중량비 1.8%, 1.2%, 96% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 50%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 1을 제조하였다.
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로 인조흑연 및 도전재로 카본블랙을 각각 중량비 1.2%, 1.2%, 96.6% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 52%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 2를 제조하였다.
상기 음극 슬러리 1을 구리 포일(두께 8㎛)의 일면에 60㎛의 두께로 도포하여 제1 합제층을 형성하였다. 이어서, 상기 제1 합제층 상에 음극 슬러리 2를 60㎛의 두께로 도포하여 제2 합제층을 형성하였다.
이에 의해 구리 포일의 표면을 기준으로 두께 방향으로 0 내지 5 사이 구간의 제1 합제층 및 5 내지 10 사이 구간의 제2 합제층의 구조로 형성한 후, 4개의 구역으로 형성된 건조로에서 다음의 조건과 같이 건조하였다.
1구역 온도 100℃, 풍속 0.42m/s, 건조시간 20초
2구역 온도 110℃, 풍속 0.47m/s, 건조시간 20초
3구역 온도 115℃, 풍속 0.50m/s, 건조시간 20초
4구역 온도 125℃, 풍속 0.77m/s, 건조시간 20초
이후, 상기 제1 및 제2 합제층을 압연하여 최종 두께가 80㎛인 음극을 제조하였다.
실시예 2
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로 인조흑연 및 도전재로 카본블랙을 각각 중량비 1.8%, 1.3%, 95.9% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 52%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 1을 제조하였다.
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로 인조흑연 및 도전재로 카본블랙을 각각 중량비 1.2%, 1.3%, 96.5% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 52%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 2를 제조하였다.
이후 실시예 1과 동일한 방법에 의해 구리 포일 표면에 음극 합제층을 갖는 음극을 제조하였다.
실시예 3
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로서 인조흑연 및 도전재로 카본블랙을 각각 중량비 1.8%, 1.2%, 96% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 50%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 1을 제조하였다.
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로서 인조흑연 및 도전재로 카본블랙을 각각 중량비 0.8%, 1.2%, 97% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 50%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 2를 제조하였다.
이후 실시예 1과 동일한 방법에 의해 구리 포일 표면에 음극 합제층을 갖는 음극을 제조하였다.
실시예 4
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로서 인조흑연 및 도전재로 카본블랙을 각각 중량비 1.8%, 1.2%, 96% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 50%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 1을 제조하였다.
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로서 인조흑연 및 도전재로 카본블랙을 각각 중량비 0.8%, 1.2%, 97% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 50%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 2를 제조하였다.
상기 음극 슬러리 1을 구리 포일(두께 8㎛)의 일면에 60㎛의 두께로 도포한 후, 4개의 구역으로 형성된 건조로에서 다음의 조건과 같이 건조하여 제1 합제층을 형성하였다.
1구역 온도 130℃, 풍속 2.01m/s, 건조시간 10초
2구역 온도 140℃, 풍속 2.01m/s, 건조시간 10초
3구역 온도 140℃, 풍속 0.60m/s, 건조시간 10초
4구역 온도 150℃, 풍속 1.01m/s, 건조시간 10초
이어서, 상기 제1 합제층 상에 음극 슬러리 2를 60㎛의 두께로 도포한 후, 상기 제1 합제층 형성과 동일하게, 4개의 구역으로 형성된 건조로에서 동일한 조건으로 건조하여 제2 합제층을 형성하였다.
이에 의해 구리 포일의 표면을 기준으로 두께 방향으로 0 내지 5 구간의 제1 합제층 및 5 내지 10 구간의 제2 합제층의 구조로 형성하였다.
이후, 상기 제1 및 제2 합제층을 압연하여 최종 두께가 80㎛인 음극을 제조하였다.
실시예 5
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로서 인조흑연 및 도전재로 카본블랙을 각각 중량비 1.6%, 1.2%, 96.2% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 50%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 1을 제조하였다.
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로서 인조흑연 및 도전재로 카본블랙을 각각 중량비 1.4%, 1.2%, 96.4% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 50%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 2를 제조하였다.
상기 음극 슬러리 1을 구리 포일(두께 8㎛)의 일면에 60㎛의 두께로 도포한 후, 4개의 구역으로 형성된 건조로에서 다음의 조건과 같이 건조하여 제1 합제층을 형성하였다.
1구역 온도 130℃, 풍속 2.01m/s, 건조시간 10초
2구역 온도 140℃, 풍속 2.01m/s, 건조시간 10초
3구역 온도 140℃, 풍속 0.60m/s, 건조시간 10초
4구역 온도 150℃, 풍속 1.01m/s, 건조시간 10초
이어서, 상기 제1 합제층 상에 음극 슬러리 2를 60㎛의 두께로 도포한 후, 상기 제1 합제층 형성과 동일하게, 4개의 구역으로 형성된 건조로에서 동일한 조건으로 건조하여 제1 합제층을 형성하였다.
이에 의해 구리 포일의 표면을 기준으로 두께 방향으로 0 내지 5 사이 구간의 제1 합제층 및 5 내지 10 사이 구간의 제2 합제층의 구조로 형성하였다.
이후, 상기 제1 및 제2 합제층을 압연하여 최종 두께가 80㎛인 음극을 제조하였다.
비교예 1
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로서 인조흑연 및 도전재로 카본블랙을 각각 중량비 1.5%, 1.2%, 96.3% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 50%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 1을 제조하였다.
상기 음극 슬러리 1을 구리 포일(두께 8㎛)의 일면에 120㎛의 두께로 도포한 후, 4개의 구역으로 형성된 건조로에서 다음의 조건과 같이 건조하여 두께 구간 0 내지 10 사이 구간의 제1 합제층을 형성하였다.
1구역 온도 100℃, 풍속 0.42m/s, 건조시간 20초
2구역 온도 110℃, 풍속 0.47m/s, 건조시간 20초
3구역 온도 115℃, 풍속 0.50m/s, 건조시간 20초
4구역 온도 125℃, 풍속 0.77m/s, 건조시간 20초
이렇게 제조된 합제층을 압연하여 최종 두께가 80㎛인 음극을 제조하였다.
비교예 2
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로서 인조흑연 및 도전재로 카본블랙을 각각 중량비 1.5%, 1.3%, 96.2% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 52%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 1을 제조하였다.
상기 음극 슬러리 1을 구리 포일(두께 8㎛)의 일면에 120㎛의 두께로 도포한 후, 비교예 1과 동일한 조건으로 건조하여 두께 구간 0 내지 10 구간의 제1 합제층을 형성하였다.
이렇게 제조된 제1 합제층을 압연하여 최종 두께가 80㎛인 음극을 제조하였다.
비교예 3
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로서 인조흑연 및 도전재로 카본블랙을 각각 중량비 0.8%, 1.2%, 97% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 50%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 1을 제조하였다.
상기 음극 슬러리 1을 구리 포일(두께 8㎛)의 일면에 120㎛의 두께로 도포한 후, 비교예 1과 동일한 조건으로 건조하여 두께 구간 0 내지 10 구간의 제1 합제층을 형성하였다.
이렇게 제조된 제1 합제층을 압연하여 최종 두께가 80㎛인 음극을 제조하였다.
비교예 4
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로 인조흑연 및 도전재로 카본블랙을 각각 중량비 1.8%, 1.2%, 96% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 50%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 1을 제조하였다.
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로 인조흑연 및 도전재로 카본블랙을 각각 중량비 1.2%, 1.2%, 96.6% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 52%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 2를 제조하였다.
상기 음극 슬러리 1을 구리 포일(두께 8㎛)의 일면에 60㎛의 두께로 도포하여 제1 합제층을 형성하였다. 이어서, 상기 제1 합제층 상에 음극 슬러리 2를 60㎛의 두께로 도포하여 제2 합제층을 형성하였다.
이에 의해 구리 포일의 표면을 기준으로 두께 방향으로 0 내지 5 사이 구간의 제1 합제층 및 5 내지 10 사이 구간의 제2 합제층의 구조로 형성한 후, 4개의 구역으로 형성된 건조로에서 다음의 조건과 같이 건조하였다.
1구역 온도 130℃, 풍속 2.01m/s, 건조시간 10초
2구역 온도 140℃, 풍속 2.01m/s, 건조시간 10초
3구역 온도 140℃, 풍속 0.60m/s, 건조시간 10초
4구역 온도 150℃, 풍속 1.01m/s, 건조시간 10초
이후, 상기 제1 및 제2 합제층을 압연하여 최종 두께가 80㎛인 음극을 제조하였다.
비교예 5
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로서 인조흑연 및 도전재로 카본블랙을 각각 중량비 1.4%, 1.6%, 96% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 50%가 되도록 증류수를 넣고 100분간 혼합하였다.
그러나, 점도가 높아 슬러리가 얻어지지 않아, 음극 제조를 위한 이후의 과정은 중단하였다.
비교예 6
바인더로서 스티렌부타디엔고무(SBR, A) 및 카르복시메틸셀룰로오스(CMC, B), 그리고 음극 활물질로서 인조흑연 및 도전재로 카본블랙을 각각 중량비 2%, 0.4%, 96.6% 및 1%가 되도록 혼합한 후, 고형분 중량이 약 50%가 되도록 증류수를 넣고 100분간 혼합하여 음극 슬러리 1을 제조하였다.
상기 음극 슬러리 1을 구리 포일(두께 8㎛)의 일면에 120㎛의 두께로 도포하였다. 그러나, 슬러리의 점도가 낮아 슬러리가 안정적으로 구리 포일 상에 코팅층을 형성하지 않는 현상이 발생하여, 음극 제조를 위한 이후의 과정은 중단하였다.
합제층 내 바인더 분포 측정
실시예 1 내지 5 및 비교예 1 내지 4에서 제조된 음극의 합제층에 대하여 두께 방향에 따른 바인더 분포를 측정하고 그 결과를 표 1에 나타내었다.
상기 바인더 분포 측정은 음극 합제층을 OsO 4로 전극을 염색(staining)한 뒤 전극의 단면을 잘라 SEM-EDAX 분석을 실시하였다.
SEM 분석에서 나오는 합제층 단면의 Os 원소 분포는 고무계 바인더의 분포를 나타내고, Na 원소의 분포는 수용성 바인더의 분포를 나타내는 것이다.
이때, 표 1에서 C A는 전체 SBR 함량에 대하여 소정 구간(집전체로부터의 두께 방향 0 내지 3 사이 구간 및 7 내지 10 사이 구간)에 포함된 SBR의 비를 나타내며, C B는 전체 CMC 함량에 대하여 소정 구간(집전체로부터의 두께 방향 0 내지 3 사이 구간 및 7 내지 10 사이 구간)에 포함된 CMC의 함량의 비를 나타내며, C A/C B는 소정 구간(집전체로부터의 두께 방향 0 내지 3 사이 구간 및 7 내지 10 사이 구간)에 포함된 C B에 대한 C A의 비를 나타낸다.
나아가, 실시예 1 및 비교예 1에 있어서, 전체 구간의 평균 SBR의 함량 및 CMC의 함량에 대한 각 구간에서의 함량의 비(C/C avg) 및 C A/C B를 도 2 및 도 3에 각각 나타내었다. 도 2 및 도 3에 있어서, (a)는 C/C avg의 그래프이고, (b)는 C A/C B의 그래프이다.
집전체 접착력 측정
실시예 1 내지 5 및 비교예 1 내지 4에서 제조된 전극에 있어서의 합제층과 집전체와의 접착력을 측정하기 위해, 18㎜ 폭의 3M 테이프를 각 전극 위에 부착하고 90도 박리(peel) 테스트를 진행하였다.
합제층과 집전체가 분리될 때의 로드(load) 값을 측정하고, 이를 테이프의 폭으로 나누는 것으로 집전체 접착력을 계산하였으며, 그 값을 표 1에 나타내었다.
전극 박리 여부 측정
실시예 1 내지 5 및 비교예 1 내지 4에서 제조된 전극을 5㎝Х5㎝ 크기로 자른 후 네 모서리를 테이프로 고정하였다.
상기 전극의 합제층 위에 증류수 약 1㎖를 떨어뜨린 후 30분간 방치하였다.
증류수가 합제층 내부로 침투하여 합제층과 집전체와의 박리가 발생하는지 여부를 육안으로 관찰하고, 박리 여부를 ○(박리) 및 ×(미박리)로 표 1에 나타내었다.
전지 충/방전 효율 측정
실시예 1 내지 5 및 비교예 1 내지 4에서 제조된 전극을 이용하여 전지를 제작하였다.
각 제작된 전지를 이용하여 1.5C의 CC(Constant Current) 모드로 전압이 4.2V에 도달할 때까지 충전하여 충전된 용량을 확인하였다.
그 후, 0.3C의 CC(Constant Current) 모드로 전압이 2.5V에 도달할 때까지 방전하고, 방전용량을 확인하였다.
이렇게 하여 측정된 방전용량을 충전용량으로 나누어 충/방전 효율을 계산하였다. 이에 의해 얻어진 계산 결과를 표 1에 나타내었다.
구분 비교예 실시예
1 2 3 4 1 2 3 4 5
총 바인더함량(중량%) SBR(A) 1.5 1.5 0.8 1.5 1.5 1.5 1.3 1.3 1.5
CMC(B) 1.2 1.3 1.2 1.2 1.2 1.3 1.2 1.2 1.2
0~3 구간의바인더함량비 C A(%) 26 26 27 26 31 30 33 41 29
C B(%) 29 27 28 28 28 27 27 28 28
C A/C B 0.91 0.96 0.96 0.93 1.09 1.10 1.22 1.46 1.04
7~10 구간의바인더함량비 C A(%) 37 38 36 38 26 28 24 18 30
C B(%) 33 35 33 33 32 31 33 32 31
C A/C B 1.12 1.08 1.09 1.15 0.85 0.90 0.72 0.53 0.97
집전체 접착력(N/㎝) 0.22 0.24 0.11 0.07 0.24 0.26 0.23 0.33 0.23
전극 박리 여부 × × × × ×
충/방전 효율(%) 97.0% 97.3 99.7 96.8 99.6 99.2 100.0 100.0 98.1
상기 표 1과 도 2 및 도 3의 결과로부터 알 수 있는 바와 같이, 집전체 측에 근접한 0 내지 3의 구간에서 SBR의 함량비(C A)가 CMC의 함량비(C B)에 비하여 큰 경우(C A/C B>1)인 실시예 1 내지 5의 전극은 충방전 효율이 우수하며, 증류수에 대한 전극의 박리 현상이 발생하지 않았다. 그러나, 비교예 1 및 2의 경우에는 집전체의 부근인 0 내지 3의 구간에서 CMC의 함량비(C A)가 SBR의 함량비(C B)보다 높아 물에 의한 바인더 팽윤 현상으로 인한 전극 박리 현상이 발생하였다. 비교예 1 및 실시예 1의 음극 표면에 대하여 증류수 침투에 의한 전극박리 실험을 수행하였다. 이때, 실시예 1 및 비교예 1의 전극에 대하여 전극 내부로의 증류수 침투 현상을 촬영하고, 그 사진을 도 4에 나타내었다.
도 4로부터 알 수 있는 바와 같이, 비교예 1의 경우에는 CMC의 함량비가 높아 증류수가 쉽게 침투하는 결과를 나타내었으나, 실시예 1의 경우에는 증류수가 쉽게 침투하지 않음을 알 수 있다. 이로부터, 본 발명의 경우에 수분 침투에 의한 집전체로부터의 전극박리를 억제할 수 있음을 알 수 있다.
그리고, 비교예 1 내지 4의 음극은 충방전 효율이 실시예 1 내지 5의 음극에 비하여 낮은 결과를 나타내었다. 비교예 1 내지 4의 경우에는 음극 표면 측인 7 내지 10의 구간에서 SBR의 함량비(C A)가 높은데, 다량의 SBR 입자가 활물질의 표면 공극을 메워 리튬이온이 음극 내부로 확장하는 것을 방해하기 때문으로 생각된다.
따라서, 본 발명에 따른 실시예 1 내지 5의 음극에 있어서는 동일 함량의 바인더를 사용하더라도 전극 위치별 각 바인더의 분포를 최적화함으로써 제품의 품질뿐만 아니라 성능 개선에도 도움을 줄 수 있다.
비교예 3과 같이, SBR의 함량이 낮은 경우에는 집전체에 대한 접착력이 현저히 낮은 결과를 나타내며, 집전체로부터 전극합제층 또는 음극활물질이 박리 현상이 발생하는 문제가 있음을 알 수 있다. 비록 비교예 3은 바인더의 분포를 제어한 음극 슬러리를 사용한 것은 아니지만, SBR의 함량이 지나치게 낮은 경우에는 구간별 바인더 함량을 제어하더라도 이와 같은 집전체에 대한 접착력이 현저히 낮아질 것은 쉽게 예측할 수 있을 것이다.
한편, 비교예 4는 실시예 1과 동일한 음극 슬러리 1 및 음극 슬러리 2를 사용하였으나, 건조조건을 실시예 1과 상이하게 수행한 경우를 나타내는 것이다. 비교예 4와 실시예 1의 결과로부터 알 수 있는 바와 같이, 동일한 음극 슬러리를 사용하였음에도 불구하고, 건조 조건에 따라 음극 합제층에서의 두께방향 구간별로 존재하는 바인더의 분포가 상이함을 알 수 있다.
이와 같은 결과로부터, 건조 공정을 제어함으로써 본 발명에서와 같이 구간별 바인더의 함량이 제어된 음극 합제층을 갖는 음극을 제조할 수 있음을 알 수 있다.

Claims (12)

  1. 음극 집전체; 및 상기 음극 합제층 상에 형성되고, 음극 활물질, 도전재, 고무계 바인더 및 수용성 고분자계 바인더를 포함하는 음극 합제층을 포함하는 비수전해질 이차전지용 음극으로서,
    상기 음극 합제층은 음극합제층 총 중량에 대하여 고무계 바인더 1.0 내지 2.5중량% 및 수용성 고분자계 바인더 0.5 내지 1.5중량%를 포함하고,
    상기 음극 합제층은 음극 집전체를 기준으로 두께방향으로 10등분하였을 때, 고무계 바인더 전체 함량에 대한 0 내지 3 사이 구간에서의 고무계 바인더 함량의 비(C A)와 수용성 고분자계 바인더의 전체 함량에 대한 0 내지 3 사이 구간에서의 수용성 고분자계 바인더 함량의 비(C B)의 비율(C A/C B)이 1.0을 초과하고, 7 내지 10 사이 구간에 있어서의 C A/C B가 1.0 미만인 비수전해질 이차전지용 음극.
  2. 제1항에 있어서, 상기 고무계 바인더는 상기 0 내지 3 사이 구간에서의 함량이 상기 7 내지 10 사이 구간에서의 함량보다 많은 것인 비수전해질 이차전지용 음극.
  3. 제1항에 있어서, 0 내지 3 사이 구간에서의 C A/C B는 1.02 내지 1.50의 범위이고, 7 내지 10 사이 구간에서의 C A/C B는 0.50 내지 0.98 범위인 비수전해질 이차전지용 음극.
  4. 제1항에 있어서, 0 내지 3 사이 구간에서의 C A/C B는 1.07 내지 1.48의 범위이고, 7 내지 10 사이 구간에서의 C A/C B는 0.52 내지 0.95 범위인 비수전해질 이차전지용 음극.
  5. 제1항에 있어서, 상기 고무계 바인더는 전체 구간의 평균 함량에 비하여 0 내지 3 사이 구간에서의 함량이 더 크고, 7 내지 10 사이 구간에서의 함량이 더 작은 것인 비수전해질 이차전지용 음극.
  6. 제1항에 있어서, 상기 고무계 바인더는 스타이렌 부타디엔 고무(SBR), 불소계 고무, 에틸렌 프로필렌 고무, 부틸 아크릴레이트 고무, 부타디엔 고무, 이소프렌 고무, 아크릴로니트릴 고무, 아크릴계 고무 및 실란계 고무로 이루어진 그룹으로부터 선택되는 적어도 하나인 비수전해질 이차전지용 음극.
  7. 제1항에 있어서, 상기 수용성 고분자계 바인더는 카르복시메틸셀룰로오스, 셀룰로오스, 폴리비닐피롤리돈, 폴리비닐알코올, 폴리아크릴레이트 및 이들의 유도체로부터 이루어진 그룹으로부터 선택되는 적어도 하나인 비수전해질 이차전지용 음극.
  8. 제1항에 있어서, 상기 음극 활물질은 천연 흑연 또는 인조 흑연, 소프트카본, 하드카본 및 규소 산화물로 이루어진 그룹으로부터 선택되는 적어도 하나인 비수전해질 이차전지용 음극.
  9. 제1항에 있어서, 상기 도전재는 아세틸렌 카본블랙, 케첸 블랙, 카본나노튜브, 그래핀, 흑연으로 이루어진 그룹으로부터 선택되는 적어도 하나인 비수전해질 이차전지용 음극.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 음극 합제층은 3 내지 5 사이 구간에서의 C A/C B가 1.0을 초과하고, 5 내지 7 사이 구간에서의 C A/C B가 1.0 미만인 비수전해질 이차전지용 음극.
  11. 제1항 내지 제9항 중 어느 한 항의 음극을 포함하는 비수전해질 이차전지.
  12. 제11항에 있어서, 상기 음극 합제층은 3 내지 5 사이 구간에서의 C A/C B가 1.0을 초과하고, 5 내지 7 사이 구간에 있어서의 C A/C B가 1.0 미만인 비수전해질 이차전지.
PCT/KR2019/011104 2018-08-31 2019-08-30 바인더 분포가 최적화된 이차전지용 음극 및 이를 포함하는 이차전지 WO2020046026A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980054236.4A CN112585781B (zh) 2018-08-31 2019-08-30 用于二次电池的具有优化的粘合剂分布的阳极,以及包含其的二次电池
US17/267,989 US11848450B2 (en) 2018-08-31 2019-08-30 Anode for secondary battery, having optimized binder distribution, and secondary battery comprising same
JP2020543752A JP7313362B2 (ja) 2018-08-31 2019-08-30 バインダ分布が最適化した二次電池用負極及びこれを含む二次電池
EP19855721.7A EP3846250A4 (en) 2018-08-31 2019-08-30 ANODE FOR SECONDARY BATTERY WITH OPTIMIZED BINDER DISTRIBUTION AND THIS SECONDARY BATTERY INCLUDED
US17/570,204 US11843117B2 (en) 2018-08-31 2022-01-06 Anode for secondary battery, having optimized binder distribution, and secondary battery comprising same
US17/570,165 US11848451B2 (en) 2018-08-31 2022-01-06 Anode for secondary battery, having optimized binder distribution, and secondary battery comprising same
JP2023113421A JP2023134606A (ja) 2018-08-31 2023-07-11 バインダ分布が最適化した二次電池用負極及びこれを含む二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180103144 2018-08-31
KR10-2018-0103144 2018-08-31
KR1020190100358A KR102262044B1 (ko) 2018-08-31 2019-08-16 바인더 분포가 최적화된 이차전지용 음극 및 이를 포함하는 이차전지
KR10-2019-0100358 2019-08-16

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US17/267,989 A-371-Of-International US11848450B2 (en) 2018-08-31 2019-08-30 Anode for secondary battery, having optimized binder distribution, and secondary battery comprising same
US17/570,165 Continuation US11848451B2 (en) 2018-08-31 2022-01-06 Anode for secondary battery, having optimized binder distribution, and secondary battery comprising same
US17/570,204 Continuation US11843117B2 (en) 2018-08-31 2022-01-06 Anode for secondary battery, having optimized binder distribution, and secondary battery comprising same

Publications (1)

Publication Number Publication Date
WO2020046026A1 true WO2020046026A1 (ko) 2020-03-05

Family

ID=69645255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011104 WO2020046026A1 (ko) 2018-08-31 2019-08-30 바인더 분포가 최적화된 이차전지용 음극 및 이를 포함하는 이차전지

Country Status (4)

Country Link
US (2) US11843117B2 (ko)
JP (2) JP7313362B2 (ko)
KR (1) KR102350190B1 (ko)
WO (1) WO2020046026A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220020995A1 (en) * 2020-07-15 2022-01-20 Sk Innovation Co., Ltd. Electrode for Secondary Battery
WO2022092982A1 (ko) * 2020-10-30 2022-05-05 주식회사 엘지에너지솔루션 음극 및 이를 포함하는 이차전지

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230056220A (ko) * 2021-10-20 2023-04-27 에스케이온 주식회사 급속 충전 성능이 개선된 이차전지용 전극, 이의 제조방법 및 이를 포함하는 이차전지
WO2024070431A1 (ja) * 2022-09-29 2024-04-04 株式会社村田製作所 二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128481B2 (ko) 1979-05-31 1986-06-30 Dantani Plywood Co
US20090202907A1 (en) * 2007-06-18 2009-08-13 Yoshiyuki Muraoka Nonaqueous electrolyte secondary battery and method for manufacturing electrode of nonaqueous electrolyte secondary battery
KR20100112127A (ko) * 2008-01-10 2010-10-18 산요덴키가부시키가이샤 비수 전해질 이차 전지 및 그 제조 방법
JP2014120330A (ja) * 2012-12-17 2014-06-30 Sanyo Electric Co Ltd 非水電解質二次電池
WO2015098021A1 (ja) * 2013-12-27 2015-07-02 三洋電機株式会社 非水電解質二次電池用負極
WO2015115051A1 (ja) * 2014-01-31 2015-08-06 三洋電機株式会社 非水電解質二次電池用負極

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100537613B1 (ko) 2003-06-20 2005-12-19 삼성에스디아이 주식회사 리튬 전지용 음극 조성물과 이를 채용한 음극 및 리튬 전지
KR100958651B1 (ko) 2004-01-17 2010-05-20 삼성에스디아이 주식회사 리튬이차전지용 애노드 및 이를 이용한 리튬이차전지
WO2014068904A1 (ja) 2012-10-30 2014-05-08 三洋電機株式会社 非水電解質二次電池用電極板及びこれを用いた非水電解質二次電池並びにその製造方法
JP6211595B2 (ja) 2013-03-29 2017-10-11 三洋電機株式会社 非水電解質二次電池
KR20150034498A (ko) 2013-09-26 2015-04-03 주식회사 엘지화학 벤팅 커버를 구비하는 배터리 셀 및 이를 포함하는 이차전지
EP3203558B1 (en) 2014-10-03 2019-02-20 The School Corporation Kansai University Binder, use thereof and method for producing electrode
NO20151278A1 (en) 2015-09-29 2017-03-30 Elkem As Silicon-carbon composite anode for lithium-ion batteries
KR102111480B1 (ko) * 2016-03-29 2020-05-15 주식회사 엘지화학 이차전지용 음극 및 이를 포함하는 이차전지
KR102034809B1 (ko) 2016-07-18 2019-10-21 주식회사 엘지화학 리튬 이차 전지용 전극 제조방법 및 이에 의해 제조된 리튬 이차 전지용 전극
KR101986626B1 (ko) 2016-08-26 2019-09-30 주식회사 엘지화학 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
KR102053063B1 (ko) * 2016-10-12 2019-12-06 주식회사 엘지화학 각 층의 바인더의 함량과 활물질 입경이 상이한 다층 음극 및 이를 포함하는 리튬 이차전지
EP3813176A4 (en) 2018-05-30 2021-08-18 Panasonic Intellectual Property Management Co., Ltd. NON-AQUEOUS ELECTROLYTE RECHARGEABLE BATTERY

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128481B2 (ko) 1979-05-31 1986-06-30 Dantani Plywood Co
US20090202907A1 (en) * 2007-06-18 2009-08-13 Yoshiyuki Muraoka Nonaqueous electrolyte secondary battery and method for manufacturing electrode of nonaqueous electrolyte secondary battery
KR20100112127A (ko) * 2008-01-10 2010-10-18 산요덴키가부시키가이샤 비수 전해질 이차 전지 및 그 제조 방법
JP2014120330A (ja) * 2012-12-17 2014-06-30 Sanyo Electric Co Ltd 非水電解質二次電池
WO2015098021A1 (ja) * 2013-12-27 2015-07-02 三洋電機株式会社 非水電解質二次電池用負極
WO2015115051A1 (ja) * 2014-01-31 2015-08-06 三洋電機株式会社 非水電解質二次電池用負極

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3846250A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220020995A1 (en) * 2020-07-15 2022-01-20 Sk Innovation Co., Ltd. Electrode for Secondary Battery
US11855248B2 (en) * 2020-07-15 2023-12-26 Sk On Co., Ltd. Electrode for secondary battery
US11929508B2 (en) 2020-07-15 2024-03-12 Sk On Co., Ltd. Electrode for secondary battery
WO2022092982A1 (ko) * 2020-10-30 2022-05-05 주식회사 엘지에너지솔루션 음극 및 이를 포함하는 이차전지

Also Published As

Publication number Publication date
US11848451B2 (en) 2023-12-19
JP2021535537A (ja) 2021-12-16
JP2023134606A (ja) 2023-09-27
US11843117B2 (en) 2023-12-12
KR102350190B1 (ko) 2022-01-14
US20220131152A1 (en) 2022-04-28
US20220131151A1 (en) 2022-04-28
KR20210014716A (ko) 2021-02-09
JP7313362B2 (ja) 2023-07-24

Similar Documents

Publication Publication Date Title
WO2020046026A1 (ko) 바인더 분포가 최적화된 이차전지용 음극 및 이를 포함하는 이차전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2018097562A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2017171409A1 (ko) 이차전지용 음극, 이의 제조방법 및 이를 포함하는 이차전지
WO2010137889A2 (ko) 양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지
WO2019103311A1 (ko) 전고상 리튬-폴리머 이차전지용 양극 및 그의 제조방법, 이를 포함한 이차전지
WO2018186555A1 (ko) 이차전지용 음극, 이의 제조방법 및 이를 사용하여 제조된 리튬이차전지
WO2016137285A1 (ko) 리튬 이차전지용 음극판 및 이를 포함한 리튬 이차전지
WO2019168278A1 (ko) 음극 슬러리 조성물, 이를 이용하여 제조된 음극 및 이차전지
WO2016114474A1 (ko) 전극용 슬러리 조성물, 전극 및 이차전지
WO2018186559A1 (ko) 이차 전지용 음극 및 이의 제조 방법
WO2019078505A1 (ko) 바인더, 이를 포함하는 전극 및 리튬 이차전지
KR20200026055A (ko) 바인더 분포가 최적화된 이차전지용 음극 및 이를 포함하는 이차전지
WO2014027841A1 (ko) 리튬-설퍼 전지용 양극의 제조 방법 및 리튬 설퍼 전지
WO2018226070A1 (ko) 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법
WO2018174616A1 (ko) 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2018174619A1 (ko) 이차전지 양극용 슬러리 조성물의 제조방법, 이를 이용하여 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2022092679A1 (ko) 전극 조립체 및 이를 포함하는 전지셀
WO2022119197A1 (ko) 탄소-실리콘 복합체 및 이의 제조방법
WO2022086103A1 (ko) 이차 전지용 전극, 이를 포함하는 이차 전지 및 전극 제조 방법
WO2019066585A1 (ko) 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2023101503A1 (ko) 절연 코팅층이 형성된 양극을 포함하는 전극조립체
WO2023121224A1 (ko) 양극 슬러리 조성물, 이를 이용하여 제조된 양극 및 리튬 이차 전지
WO2022092664A1 (ko) 이차 전지용 전극, 이를 포함하는 이차 전지, 및 전극 제조 방법
WO2017047998A1 (ko) 리튬 황 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020543752

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019855721

Country of ref document: EP

Effective date: 20210331