WO2023121224A1 - 양극 슬러리 조성물, 이를 이용하여 제조된 양극 및 리튬 이차 전지 - Google Patents

양극 슬러리 조성물, 이를 이용하여 제조된 양극 및 리튬 이차 전지 Download PDF

Info

Publication number
WO2023121224A1
WO2023121224A1 PCT/KR2022/020839 KR2022020839W WO2023121224A1 WO 2023121224 A1 WO2023121224 A1 WO 2023121224A1 KR 2022020839 W KR2022020839 W KR 2022020839W WO 2023121224 A1 WO2023121224 A1 WO 2023121224A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
weight
active material
iron phosphate
lithium iron
Prior art date
Application number
PCT/KR2022/020839
Other languages
English (en)
French (fr)
Inventor
권오정
최정훈
김주련
장민철
김기웅
안인구
강용희
김지은
조정근
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220178086A external-priority patent/KR20230098028A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2023564602A priority Critical patent/JP2024518748A/ja
Priority to CN202280029201.7A priority patent/CN117203793A/zh
Priority to CA3218267A priority patent/CA3218267A1/en
Priority to EP22911857.5A priority patent/EP4318656A1/en
Publication of WO2023121224A1 publication Critical patent/WO2023121224A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode slurry composition and a positive electrode and a lithium secondary battery prepared using the same, and more particularly, to a positive electrode slurry composition for forming a positive electrode having excellent positive electrode adhesion and a positive electrode and a lithium secondary battery prepared using the same it's about
  • Lithium cobalt-based oxide (LCO), lithium nickel-cobalt-manganese-based oxide (LNCMO), lithium iron phosphate (LFP), and the like are used as cathode active materials for lithium secondary batteries.
  • LCO lithium cobalt-based oxide
  • LNCMO lithium nickel-cobalt-manganese-based oxide
  • LFP lithium iron phosphate
  • Lithium iron phosphate is inexpensive because it contains iron, which is a resource-rich and inexpensive material. In addition, since the toxicity of lithium iron phosphate is low, environmental pollution can be reduced when lithium iron phosphate is used. In addition, since lithium iron phosphate has an olivine structure, the active material structure can be stably maintained at a high temperature compared to the layered lithium transition metal oxide. Accordingly, high-temperature stability and high-temperature lifespan characteristics may be improved.
  • lithium iron phosphate Compared to lithium transition metal oxides such as lithium nickel cobalt manganese oxide, lithium iron phosphate has a problem of poor lithium mobility and low electrical conductivity. Accordingly, in the prior art, carbon is coated on the surface of lithium iron phosphate to improve electrical conductivity, and lithium iron phosphate is used to improve lithium ion mobility by reducing the average particle diameter of lithium iron phosphate to form a short lithium movement path.
  • lithium iron phosphate particles decreases, the specific surface area increases, and as a result, particle aggregation occurs severely, resulting in poor cathode slurry stability and poor coating processability.
  • positive electrode adhesive strength the adhesive strength between the current collector and the positive electrode active material layer (hereinafter referred to as positive electrode adhesive strength) in the prepared positive electrode decreases.
  • the electrode resistance increases when the dispersant content increases, and the contact area between the active material and the binder decreases due to the widening of the dispersant distribution area on the surface of the active material, thereby reducing the electrode adhesion. Occurs.
  • the positive electrode active material layer is detached during electrode manufacturing or charging/discharging, resulting in increased battery resistance and reduced capacity of the secondary battery.
  • the positive electrode adhesion is improved by increasing the total binder content in the positive electrode active material layer, or an adhesive layer such as a primer coating layer having a high binder content is interposed between the current collector and the positive electrode active material layer, or when electrode coating
  • a technique for improving positive electrode adhesion by mitigating binder migration by increasing the drying time and increasing the binder content at the interface between the current collector and the active material layer has been known.
  • An object of the present invention is to provide a positive electrode slurry composition for forming a positive electrode having excellent positive electrode adhesion.
  • an object of the present invention is to provide a positive electrode having excellent positive electrode adhesion and a lithium secondary battery in which degradation of resistance characteristics is minimized by including the positive electrode.
  • a positive electrode slurry composition including a positive electrode active material, a conductive material, a binder, a dispersant, and a solvent, wherein the positive electrode active material includes lithium iron phosphate, and the average particle diameter D 50 of the lithium iron phosphate is 1.5 ⁇ m or more, and the dispersant is included in 0.2 parts by weight to 0.9 parts by weight based on 100 parts by weight of the solid content in the positive electrode slurry composition.
  • a current collector and a cathode active material layer disposed on the current collector wherein the cathode active material layer includes a cathode active material, a conductive material, a binder, and a dispersant, wherein the cathode active material
  • the positive electrode includes lithium iron phosphate, the average particle diameter D 50 of the lithium iron phosphate is 1.5 ⁇ m or more, and the dispersant is included in the positive electrode active material layer in an amount of 0.2% to 0.9% by weight.
  • a positive electrode, a negative electrode, a separator, and an electrolyte are included, the positive electrode includes a positive electrode active material, a conductive material, a binder, and a dispersant in a positive electrode active material layer, and the positive electrode active material includes lithium iron phosphate.
  • the average particle diameter D 50 of the lithium iron phosphate is 1.5 ⁇ m or more, and the dispersant is included in the positive electrode active material layer in an amount of 0.2% by weight to 0.9% by weight.
  • the positive electrode slurry composition according to the present invention includes lithium iron phosphate having an average particle diameter D 50 of 1.5 ⁇ m or more, and can effectively prevent particle aggregation even with a relatively small amount of a dispersant. Accordingly, since the lithium iron phosphate and the binder may be present in the positive electrode active material layer in a uniformly mixed state, the positive electrode adhesion may be improved.
  • the content of the dispersant that does not contribute to the positive electrode adhesive strength may be at a low level, the decrease in the positive electrode adhesive strength may be minimized. Accordingly, detachment of the positive electrode active material layer may be prevented, an increase in battery resistance may be reduced, and life characteristics of the battery may be improved.
  • lithium iron phosphate having a relatively large particle diameter when used as in the present invention and the content of the dispersant is reduced, the area in which the dispersant is distributed on the surface of the lithium iron phosphate is reduced, so the contact area between the binder and lithium iron phosphate is wide. will lose Accordingly, the effect of improving the adhesion of the positive electrode may be maximized.
  • the content of the dispersant when the content of the dispersant is increased, the exposed area of the surface of the lithium iron phosphate particle is reduced by the dispersant, thereby deteriorating the electrochemical properties.
  • the content of the dispersant since the content of the dispersant is relatively small, such an increase in electrochemical properties, particularly battery resistance, can be suppressed.
  • FIG. 1 to 4 show average particle diameters D 50 of 0.8 ⁇ m (FIG. 1), 1.0 ⁇ m (FIG. 2), 1.2 ⁇ m (FIG. 3), and 2.0 ⁇ m ( 4) is a SEM picture of lithium iron phosphate.
  • FIG. 5 is a photograph showing a state in which the positive electrode formed using the positive electrode slurry composition of Comparative Example 4 is partially desorbed after rolling.
  • Example 6 is a SEM photograph of the cross section of the anode of Example 2.
  • references to "A and/or B" herein means A, or B, or A and B.
  • D 50 means a particle diameter corresponding to 50% of the volume cumulative amount in the particle diameter distribution curve of the particles.
  • the D 50 can be measured using, for example, a laser diffraction method.
  • the laser diffraction method is generally capable of measuring particle diameters of several millimeters in the submicron region, and can obtain results with high reproducibility and high resolution.
  • specific surface area is measured by the BET method, and can be specifically calculated from the nitrogen gas adsorption amount under liquid nitrogen temperature (77K) using BELSORP-mino II of BEL Japan.
  • weight average molecular weight means a value in terms of standard polystyrene measured by gel permeation chromatography (GPC). Specifically, the weight average molecular weight is a value obtained by converting a value measured under the following conditions using GPC, and standard polystyrene of the Agilent system was used to prepare a calibration curve.
  • the positive electrode adhesive force can be measured in the following way.
  • the slide glass portion of the evaluation sample is fixed to the sample stage of a universal testing machine (UTM) (LS5, AMETEK), and the positive half portion to which the slide glass is not attached is connected to the load cell of the UTM device.
  • the load cell is moved up to 50 mm by applying force at 90° at a speed of 100 mm/min, and the load applied to the load cell is measured.
  • the minimum value of the load measured in the 20 mm to 40 mm section of the driving section is obtained. This was repeated a total of 5 times, and the average value was evaluated as the anodic adhesive strength (gf/20mm) of each sample.
  • anode resistance can be measured as follows. Prepare a specimen by cutting a cathode having a 98 ⁇ m-thick cathode active material layer into a size of 50 mm ⁇ 50 mm. The resistance per unit area (10 mm ⁇ 10 mm) of the specimen was measured in the thickness direction of the positive electrode active material layer using a positive electrode resistance meter (MP tester, HIOKI Co.), and the measurement conditions were as follows. After measuring the corresponding anode three times in the above method, the average value of the three measurement values in the case where the standard deviation is within 10% is the anode resistance.
  • a positive electrode slurry composition according to an embodiment of the present invention is for forming a positive electrode active material layer, and includes a positive electrode active material, a conductive material, a binder, a dispersant, and a solvent, wherein the positive electrode active material includes lithium iron phosphate, and the lithium
  • the iron phosphate has an average particle diameter D 50 of 1.5 ⁇ m or more, and the dispersant is included in an amount of 0.2 to 0.9 parts by weight based on 100 parts by weight of the solid content in the positive electrode slurry composition.
  • the average particle diameter D 50 of the lithium iron phosphate is 1.5 ⁇ m or more, and the dispersant is 0.2 to 0.9 parts by weight based on 100 parts by weight of the solid content in the positive electrode slurry composition.
  • the area in which the dispersant was distributed on the surface of the lithium iron phosphate was reduced, so that the contact area between the binder and the lithium iron phosphate was widened, and accordingly, the positive electrode adhesion was significantly improved. This will be described in detail in this specification.
  • the cathode active material may include lithium iron phosphate.
  • the positive electrode active material includes the lithium iron phosphate, the stability of the positive electrode including the positive electrode active material is significantly improved, and thus the risk of ignition of the lithium secondary battery including the positive electrode may be greatly reduced.
  • the lithium iron phosphate may be a compound represented by Formula 1 below.
  • M is any one or two or more elements selected from the group consisting of Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn, and Y includes, and X includes any one or two or more elements selected from the group consisting of F, S, and N, and a, b, and x are each -0.5 ⁇ a ⁇ 0.5, 0 ⁇ b ⁇ 0.1, 0 ⁇ x ⁇ 0.5)
  • the lithium iron phosphate may be LiFePO 4 .
  • An average particle diameter D 50 of the lithium iron phosphate may be 1.5 ⁇ m or more.
  • the lithium iron phosphate may be excessively aggregated in the positive electrode slurry composition, and thus, the lithium iron phosphate and the binder are not effectively mixed, thereby reducing the adhesive strength of the positive electrode.
  • the content of the dispersant is increased to suppress the aggregation, the contact area between the lithium iron phosphate and the binder is reduced due to the widening of the distribution area of the dispersant on the surface of the lithium iron phosphate, and thus the adhesion of the positive electrode may be deteriorated.
  • the adhesion of the positive electrode is lowered, the resistance increases during the charging and discharging process of the battery, thereby deteriorating the lifespan characteristics of the battery.
  • the average particle diameter D 50 of the lithium iron phosphate is 1.5 ⁇ m or more, aggregation of the lithium iron phosphate can be suppressed even when a small amount of the dispersant is used, and the area in which the dispersant is distributed on the surface of the lithium iron phosphate is reduced.
  • the contact area of the lithium iron phosphate may be widened to improve the adhesion of the positive electrode, and the separation of the positive electrode active material layer may be prevented during battery operation, thereby suppressing an increase in battery resistance and improving lifespan characteristics of the battery.
  • the average particle diameter D 50 of the lithium iron phosphate may be 1.5 ⁇ m to 4.5 ⁇ m, more specifically 1.7 ⁇ m to 3.0 ⁇ m.
  • the positive electrode adhesiveness is improved for the above reasons, and the detachment of the positive electrode active material layer is prevented, thereby suppressing the increase in battery resistance, while the battery caused by the large particle size lithium iron phosphate An increase in resistance can be prevented.
  • the lithium iron phosphate may be in the form of secondary particles.
  • the secondary particle form means a form having one larger particle formed by combining a plurality of primary lithium iron phosphate particles in the form of single particles with each other.
  • bonding does not mean simply aggregation by van der Waals bonding, but may mean chemically bonding.
  • the average particle diameter D 50 of the lithium iron phosphate described above corresponds to the average particle diameter D 50 of the secondary particles.
  • the average particle diameter D 50 of the lithium iron phosphate primary particles may be 50 nm to 400 nm, specifically 70 nm to 300 nm, and more specifically 100 nm to 200 nm.
  • the movement path of lithium ions is short and the resistance performance can be improved by maintaining a low defect content in the crystal structure.
  • the BET specific surface area of the lithium iron phosphate may be 5 m 2 /g to 20 m 2 /g, specifically 7 m 2 /g to 18 m 2 /g, more specifically 9 m 2 /g to 16 m 2 It can be /g.
  • This range corresponds to a lower value than conventional lithium iron phosphate. When the above range is satisfied, aggregation of the lithium iron phosphate may be effectively inhibited even in a positive electrode slurry composition having a relatively small dispersant content.
  • the lithium iron phosphate may be included in an amount of 94.8 parts by weight to 98.0 parts by weight, specifically 95.0 parts by weight to 98.0 parts by weight, and more specifically 95.1 parts by weight to 98.0 parts by weight, based on 100 parts by weight of the solid content in the positive electrode slurry composition.
  • the content of the lithium iron phosphate satisfies the above range, the energy density per weight/volume of the positive electrode may be increased.
  • the lithium iron phosphate may further include a carbon coating layer formed on a surface of the lithium iron phosphate.
  • the carbon coating layer may improve electrical conductivity of the lithium iron phosphate, thereby reducing resistance of the positive electrode.
  • the carbon coating layer may include glucose, sucrose, lactose, starch, oligosaccharide, polyoligosaccharide, fructose, cellulose, a polymer of furfuryl alcohol, a block copolymer of ethylene and ethylene oxide, a vinyl resin, a cellulose resin, a phenolic resin, It may be formed using at least one raw material selected from the group consisting of pitch-based resins and tar-based resins. Specifically, the carbon coating layer may be formed through a firing process after disposing the raw materials on the surface of the lithium iron phosphate.
  • the dispersant suppresses excessive aggregation of the lithium iron phosphate in the positive electrode slurry composition, and allows the lithium iron phosphate to be effectively dispersed and present in the prepared positive electrode active material layer.
  • the dispersant may include a hydrogenated nitrile-based copolymer, and specifically, the dispersant may be a hydrogenated nitrile-based copolymer.
  • the hydrogenated nitrile-based copolymer is a copolymer comprising an ⁇ , ⁇ -unsaturated nitrile-derived structural unit and a hydrogenated conjugated diene-derived structural unit, or an ⁇ , ⁇ -unsaturated nitrile-derived structural unit and a conjugated diene-derived structural unit. , and a structural unit derived from a hydrogenated conjugated diene.
  • ⁇ , ⁇ -unsaturated nitrile monomer for example, acrylonitrile or methacrylonitrile may be used, and one or a mixture of two or more of them may be used.
  • conjugated diene-based monomer for example, conjugated diene-based monomers having 4 to 6 carbon atoms such as 1,3-butadiene, isoprene, or 2,3-methyl butadiene may be used, and one or two of these monomers may be used. Mixtures of the above may be used.
  • the hydrogenated nitrile-based copolymer may be hydrogenated nitrile butadiene rubber (H-NBR).
  • the hydrogenated nitrile butadiene rubber may have a weight average molecular weight of 10,000 to 400,000, specifically 20,000 to 350,000, and more specifically 30,000 to 260,000. Since the average particle diameter of the above-mentioned lithium iron phosphate is larger than that of conventionally used lithium iron phosphate, the weight average molecular weight of the hydrogenated nitrile butadiene rubber satisfies the above range in terms of preventing aggregation and effective dispersion of the lithium iron phosphate. It is desirable to do
  • the dispersant may be included in an amount of 0.2 parts by weight to 0.9 parts by weight, specifically 0.2 parts by weight to 0.7 parts by weight, and more specifically 0.2 parts by weight to 0.5 parts by weight, based on 100 parts by weight of the solid content in the positive electrode slurry composition.
  • the average particle diameter D 50 of the lithium iron phosphate is 1.5 ⁇ m or more, aggregation of the lithium iron phosphate can be effectively suppressed even when the content of the dispersant is somewhat low as described above.
  • the content of the dispersant in the positive electrode active material layer is small, the bonding surface between the lithium iron phosphate and the binder may increase, and thus the positive electrode adhesive strength may be further improved. Accordingly, the resistance of the positive electrode and lifespan characteristics of the battery may be improved.
  • the dispersant when the dispersant is 0.2 parts by weight to 0.7 parts by weight based on 100 parts by weight of the solid content in the positive electrode slurry composition, the content of the dispersant that does not contribute to the adhesive strength is reduced compared to the content of the binder that directly affects the adhesive strength, so that the positive electrode adhesive strength is more remarkably can be improved
  • the content of the dispersant exceeds 0.9 parts by weight based on 100 parts by weight of the solid content in the positive electrode slurry composition, the bonding area between the lithium iron phosphate and the binder is reduced due to the excessive content of the dispersant, and thus the bonding strength of the positive electrode may deteriorate.
  • the content of the dispersant is less than 0.2 parts by weight based on 100 parts by weight of the solid content in the positive electrode slurry composition, the lithium iron phosphate and the binder are not effectively mixed due to excessive aggregation between the lithium iron phosphate and the positive electrode adhesive strength may be lowered. .
  • the binder plays a role of assisting in the binding of the cathode active material and the conductive material and the binding to the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluororubber, or various copolymers thereof, and the like, one alone or a mixture of two or more of these can be used
  • the binder may be included in an amount of 1 part by weight to 4 parts by weight, specifically 1.5 parts by weight to 4 parts by weight, and more specifically 2 parts by weight to 3.5 parts by weight, based on 100 parts by weight of the solid content in the positive electrode slurry composition.
  • the content of the binder satisfies the above range, the contact area between the binder and lithium iron phosphate is widened to secure excellent positive electrode adhesion.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite; carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; conductive fibers such as carbon fibers and metal fibers; metal powders such as carbon fluoride, aluminum, and nickel powder; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the conductive material may be carbon nanotubes.
  • the conductive network of carbon nanotubes is particularly preferable as a conductive material included in the positive electrode slurry composition of the present invention because it can alleviate migration of the binder during the drying process of the positive electrode slurry composition.
  • the conductive material may be included in an amount of 0.1 part by weight to 3.0 parts by weight, specifically 0.2 parts by weight to 2.0 parts by weight, more specifically 0.6 parts by weight to 1.2 parts by weight, based on 100 parts by weight of the solid content in the positive electrode slurry composition.
  • the electrical conductivity of the anode may be improved by securing the anode conductive network.
  • the solvent may be a solvent commonly used in the art, and dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methyl-2-pyrrolidone (NMP), acetone ( acetone) or water, and one of them alone or a mixture of two or more may be used.
  • DMSO dimethyl sulfoxide
  • NMP N-methyl-2-pyrrolidone
  • acetone acetone
  • water and one of them alone or a mixture of two or more may be used.
  • the positive electrode slurry composition may include a solid content and the solvent.
  • the solid content may include at least one of a cathode active material, a conductive material, a binder, and a dispersant.
  • the solid content included in the composition may be 40 wt% to 75 wt%, specifically 50 wt% to 70 wt%, and more specifically 55 wt% to 65 wt%.
  • the composition may have a slurry viscosity suitable for a slurry coating process such as slot-die coating.
  • the composition may include 0.1 to 3.0 parts by weight of the conductive material based on 100 parts by weight of the solid content in the positive electrode slurry composition; 1 to 4 parts by weight of the binder;
  • the dispersant may be included in 0.2 parts by weight to 0.9 parts by weight.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer positioned on at least one surface of the positive electrode current collector.
  • the positive electrode active material layer includes a positive electrode active material, a conductive material, a binder, and a dispersant
  • the positive electrode active material includes lithium iron phosphate
  • the average particle diameter D 50 of the lithium iron phosphate is 1.5 ⁇ m or more
  • the dispersant is included in 0.2% to 0.9% by weight in the positive electrode active material layer.
  • the positive electrode may be formed using the positive electrode slurry composition of the above-described embodiment.
  • the cathode active material, dispersant, binder, and conductive material are as described above.
  • the average particle diameter D 50 of the lithium iron phosphate is 1.5 ⁇ m or more, and the dispersant is included in the positive electrode active material layer in an amount of 0.2% to 0.9% by weight, thereby improving adhesion to the positive electrode current collector.
  • the positive electrode active material layers it is possible to have an adhesive strength equal to or higher than that of a positive electrode having these layers without providing a separate layer for improving adhesion, such as a primer coating layer having a high binder component content or a binder layer.
  • the positive current collector may be any material having conductivity without causing chemical change in the battery, and is not particularly limited.
  • the current collector copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel surface-treated with carbon, nickel, titanium, or silver may be used.
  • the cathode current collector may have a thickness of 3 ⁇ m to 500 ⁇ m, and adhesion to the cathode active material layer may be increased by forming fine irregularities on the surface of the cathode current collector.
  • it may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the positive electrode active material layer may be located on at least one surface of the positive electrode current collector and formed of the positive electrode slurry composition described above.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode slurry composition. Specifically, it may be prepared through a process of stirring and mixing the positive electrode slurry composition, coating the positive electrode slurry composition on a positive electrode current collector, and then drying and rolling.
  • the positive electrode may be manufactured by casting the positive electrode slurry composition on a separate support, and then laminating a film obtained by peeling from the support on a positive electrode current collector.
  • the positive electrode according to an embodiment of the present invention may have excellent positive electrode adhesion.
  • the positive electrode active material layer may have improved adhesion to the positive electrode current collector.
  • the positive electrode adhesion When measured by a 90 ° peel test on the positive electrode, the positive electrode adhesion may be 32 gf / 20 mm or more, specifically 35 gf / 20 mm or more, and more specifically 40 gf / 20 mm to 200 gf / 20 mm. This range corresponds to a level higher than the positive electrode adhesion of a conventional positive electrode using lithium iron phosphate. This can be expressed because the average particle diameter D 50 of the lithium iron phosphate is 1.5 ⁇ m or more and the dispersant is included in the positive electrode active material layer in an amount of 0.2% to 0.9% by weight.
  • the positive electrode according to an embodiment of the present invention has a structure in which the positive electrode active material layer directly faces the positive electrode current collector, and does not include a separate layer for improving adhesion between the positive electrode active material layer and the positive electrode current collector. may not be Even without including a separate layer such as a binding layer or an adhesive layer or a bonding layer or a primer coating layer that may be interposed between the positive electrode current collector and the positive electrode active material layer to improve adhesion, the positive electrode according to the present invention, the positive electrode current collector and The interfacial adhesion between the positive electrode active material layers may exhibit excellent adhesion having the above numerical range.
  • the resistance per unit area of the anode may be 9 ⁇ cm 2 or less, specifically 8 ⁇ cm 2 or less, more specifically 7 ⁇ cm 2 or less, for example, 1 ⁇ cm 2 to 9 ⁇ cm 2 .
  • the resistance may be expressed as the aggregation of the lithium iron phosphate is minimized and the amount of the dispersant is at a low level.
  • the lithium secondary battery includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
  • the positive electrode is as described above.
  • the positive electrode includes a positive electrode active material, a conductive material, a binder, and a dispersant in a positive electrode active material layer
  • the positive electrode active material includes lithium iron phosphate
  • the average particle diameter D 50 of the lithium iron phosphate is 1.5 ⁇ m or more
  • the dispersant is included in 0.2% to 0.9% by weight in the positive electrode active material layer.
  • the negative electrode may be manufactured, for example, by preparing a composition for forming a negative electrode including a negative electrode active material, a negative electrode binder, and a negative electrode conductive material on a negative electrode current collector, and then applying the composition on the negative electrode current collector.
  • the negative electrode active material is not particularly limited, and a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, amorphous carbon, and highly crystalline carbon; metallic compounds capable of being alloyed with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys, or Al alloys; or a composite containing a metallic compound and a carbonaceous material.
  • soft carbon and hard carbon may be used as the low crystalline carbon
  • natural graphite, kish graphite, pyrolytic carbon, and liquid crystals may be used as the high crystalline carbon.
  • mesophase pitch based carbon fiber meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes.
  • mesophase pitch based carbon fiber meso-carbon microbeads
  • mesophase pitches mesophase pitches
  • petroleum or coal tar pitch derived cokes One type alone or a mixture of two or more types of these may be used, and a metal lithium thin film may be used as the negative electrode active material.
  • the negative electrode conductive material is used to impart conductivity to the electrode, and any material that does not cause chemical change and has electronic conductivity may be used without particular limitation in the battery.
  • Specific examples include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, and carbon nanotube; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the anode conductive material may be typically included in an amount of 1 to 30 wt%, preferably 1 to 20 wt%, and more preferably 1 to 10 wt%, based on the total weight of the anode active material layer.
  • the anode binder serves to improve adhesion between particles of the anode active material and adhesion between the anode active material and the anode current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluororubber, or various copolymers thereof, and the like, and one type alone or a mixture of two or more types thereof may be used.
  • PVDF polyvinylidene fluoride
  • the anode binder may be included in an amount of 1 wt% to 30 wt%, preferably 1 wt% to 20 wt%, and more preferably 1 wt% to 10 wt%, based on the total weight of the anode active material layer.
  • the anode current collector is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity.
  • copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel A surface treated with carbon, nickel, titanium, silver, or the like, an aluminum-cadmium alloy, or the like may be used.
  • the anode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and like the cathode current collector, fine irregularities may be formed on the surface of the anode current collector to enhance bonding strength of the anode active material.
  • it may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminated structure of two or more layers of may be used.
  • the separator may be a porous thin film having a pore diameter of 0.01 ⁇ m to 10 ⁇ m and a thickness of 5 ⁇ m to 300 ⁇ m.
  • the electrolyte may include an organic solvent and a lithium salt commonly used for electrolytes, but is not particularly limited.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent includes ester-based solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone; ether solvents such as dibutyl ether or tetrahydrofuran; ketone solvents such as cyclohexanone; aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, A carbonate-based solvent such as PC) may be used.
  • DMC dimethylcarbonate
  • DEC diethylcarbonate
  • MEC methylethylcarbonate
  • EMC ethylmethylcarbonate
  • carbonate-based solvents are preferred, and cyclic carbonates (eg, ethylene carbonate or propylene carbonate, etc.) having high ion conductivity and high dielectric constant capable of increasing the charge and discharge performance of batteries, and low-viscosity linear carbonate-based compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • cyclic carbonates eg, ethylene carbonate or propylene carbonate, etc.
  • low-viscosity linear carbonate-based compounds For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate is more preferable.
  • the lithium salt any compound capable of providing lithium ions used in a lithium secondary battery may be used without particular limitation.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 or the like may be used.
  • the lithium salt is preferably included in the electrolyte in a concentration of about 0.6 mol% to about 2 mol%.
  • electrolyte in addition to the above electrolyte components, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n -glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2 -
  • One or more additives such as methoxy ethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery of the present invention may be manufactured by disposing a separator between a positive electrode and a negative electrode to form an electrode assembly, inserting the electrode assembly into a cylindrical battery case or a prismatic battery case, and then injecting an electrolyte.
  • a separator between a positive electrode and a negative electrode to form an electrode assembly
  • inserting the electrode assembly into a cylindrical battery case or a prismatic battery case and then injecting an electrolyte.
  • they may be impregnated with an electrolyte, and the result obtained may be put into a battery case and sealed.
  • NMP N-methyl-2-pyrrolidone
  • acetone ethanol
  • propylene carbonate ethylmethyl carbonate
  • ethylene carbonate dimethyl carbonate used in manufacturing a positive electrode by drying the electrode assembly
  • One or more organic solvents selected from the group consisting of may be removed. If an electrolyte having the same components as the organic solvent used in manufacturing the positive electrode is used as the electrolyte, the process of drying the electrode assembly may be omitted.
  • the battery case may be one commonly used in the field, and there is no limitation on the external appearance according to the purpose of the battery, for example, a cylindrical shape using a can, a prismatic shape, a pouch shape, or a coin shape. etc.
  • the lithium secondary battery according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, it is suitable for portable devices such as mobile phones, notebook computers, digital cameras, energy storage systems (ESS), and hybrid electric It is useful in the field of electric vehicles such as automobiles (hybrid electric vehicles, HEVs).
  • the positive electrode active material, the conductive material, the binder, and the dispersant were present in a weight ratio of 95.7: 1.0: 2.7: 0.3, and the solid content of the positive electrode slurry composition was 60% by weight.
  • the positive electrode slurry composition After coating the positive electrode slurry composition on an aluminum thin film having a thickness of 15 ⁇ m, it was vacuum dried at 130° C. for 10 hours. Thereafter, a positive electrode was prepared by rolling such that the porosity of the positive electrode active material layer was 29%. The thickness of the positive active material layer was 98 ⁇ m, and the loading amount of the positive active material layer was 3.6 mAh/cm 2 .
  • a positive electrode was prepared in the same manner as in Example 1, except that the positive electrode active material and the dispersant were mixed in a weight ratio of 95.2:0.8.
  • a positive electrode was prepared in the same manner as in Example 1, except that the positive electrode active material and the dispersant were mixed in a weight ratio of 94.65:1.35.
  • a positive electrode was prepared in the same manner as in Comparative Example 1, except that a positive electrode active material having an average particle diameter D 50 of 0.8 ⁇ m was used.
  • a positive electrode was prepared in the same manner as in Comparative Example 1, except that a positive electrode active material having an average particle diameter D 50 of 1.0 ⁇ m was used and the positive electrode active material and the dispersant were mixed in a weight ratio of 95.2:0.8.
  • a positive electrode was prepared in the same manner as in Comparative Example 1, except that a positive electrode active material having an average particle diameter D 50 of 1.2 ⁇ m was used.
  • D 50 cathode active material
  • LiFePO 4 conductive material
  • PVdF PVdF
  • H-NBR high-NBR
  • FIGS. 1 to 4 are SEM images of lithium iron phosphate having an average particle diameter D 50 of 0.8 ⁇ m, 1.0 ⁇ m, 1.2 ⁇ m, and 2.0 ⁇ m, respectively, in the cathodes prepared in Examples and Comparative Examples.
  • FIG. 1 is Comparative Example 2
  • FIG. 2 is Comparative Example 3
  • FIG. 3 is Comparative Example 4
  • FIG. 4 is an SEM image of lithium iron phosphate included in the cathodes prepared in Examples 1 and 2 and Comparative Example 1.
  • lithium iron phosphate is formed in the form of primary particles and/or secondary particles.
  • FIG. 6 is a SEM image of the cross section of the anode of Example 2
  • FIG. 7 is a SEM image of the cross section of the anode of Comparative Example 3.
  • bright contrast indicates lithium iron phosphate
  • dark contrast indicates that the conductive material and the binder are bundled together.
  • the shape of the aggregation region of the conductive material is closer to a spherical shape, the surface area of the agglomerated conductive material is minimized. Discharge resistance can be lowered.
  • the aggregation regions of the conductive material were evenly dispersed throughout, and the area deviation of the aggregation regions of the conductive material was small, and it could be confirmed that the anode was close to a sphere.
  • the area deviation of the aggregation regions of the conductive material was large, and several cases where the length of the aggregation region of the conductive material in the major axis direction were as large as 10 ⁇ m were observed.
  • the positive electrode of Example 2 Compared to the positive electrode of Comparative Example 3, the positive electrode of Example 2 has the same dispersant content, but it can be confirmed that the positive electrode active material, the conductive material, and the binder are well dispersed due to the difference in the average particle diameter D 50 of lithium iron phosphate. In addition, the positive electrode of Example 2 is expected to have more excellent discharge resistance in a lithium secondary battery as compared to the positive electrode of Comparative Example 3, as the conductive material is aggregated into a spherical shape.
  • each of the anodes prepared in Examples 1 to 2 and Comparative Examples 1 to 4 was cut to a length of 150 mm and a width of 20 mm, and the surface of the anode was placed on a slide glass having a length of 75 mm and a width of 25 mm in the longitudinal direction. Attached using double-sided tape. That is, the slide glass was attached to an area corresponding to half of the lengthwise direction of the anode. Then, evaluation samples were prepared by rubbing the roller 10 times so that the double-sided tape was uniformly attached.
  • the slide glass portion of the evaluation sample was fixed to the sample stage of a universal testing machine (UTM) (LS5, AMETEK), and the positive half portion to which the slide glass was not attached was connected to the load cell of the UTM device.
  • UTM universal testing machine
  • a load applied to the load cell was measured while moving the load cell up to 50 mm by applying a force at 90° at a speed of 100 mm/min.
  • the minimum value of the load measured in the 20 mm to 40 mm section of the driving section was measured as the anode adhesive force (gf / 20 mm) of each sample.
  • the average values are shown in Table 2 below.
  • a negative electrode slurry was prepared by mixing artificial graphite as an anode active material, superC as a conductive material, and SBR/CMC as a binder in a weight ratio of 96:1:3, applied to one side of a copper current collector, dried at 130 ° C, and then rolled to obtain a negative electrode. was manufactured.
  • the negative electrode active material layer loading amount of the prepared negative electrode was 3.6 mAh/cm 2 , and the porosity was 29%.
  • an electrode assembly was prepared by interposing a separator formed of polypropylene having a thickness of 18 ⁇ m between the prepared positive electrode and the negative electrode.
  • Electrolyte solution After injecting 500 ⁇ l, it was vacuum sealed. The electrolyte solution was aged for 1 day, an activation process was performed with 7.9 mAh for 3 hours, and then additional aging was performed for 3 days. Finally, a degas process was performed to manufacture a lithium secondary battery.
  • the initial cell resistance means the resistance value measured after manufacturing the lithium secondary battery, and after 100 cycles, the cell resistance is 26.3 mAh, in the range of 2.5 V to 3.6 V, measured after repeating charging and discharging 100 times in an environment of 45 ° C. represents a resistance value.
  • the measurement results are shown in Table 2 below.
  • the positive electrode of Comparative Example 1 in which the dispersant exceeds 0.9% by weight in the positive electrode active material layer has a significantly lower positive electrode adhesive strength than the positive electrodes of Examples 1 and 2, and the positive electrode of Comparative Example 1 is similar to that of Example 1. and 2, it can be confirmed that the anode resistance is higher than that of the anode.
  • the initial cell resistance of the lithium secondary battery using the positive electrode of Comparative Example 1 is higher than that of Example 1, and the cell resistance after 100 cycles is significantly increased compared to the initial cell resistance.
  • the positive electrode of Comparative Example 3 in which the average particle diameter D 50 of the lithium iron phosphate is less than 1.5 ⁇ m, has lower positive electrode adhesion than the positive electrodes of Examples 1 and 2, and the positive electrode of Comparative Example 3 has a higher positive electrode resistance than the positive electrodes of Examples 1 and 2. It can be seen that this is remarkably high. In addition, it can be confirmed that the initial cell resistance of the lithium secondary battery using the positive electrode of Comparative Example 3 is higher than that of Example 1, and the cell resistance after 100 cycles is increased compared to the initial cell resistance. However, since the positive electrode of Comparative Example 3 has a larger particle size of the positive electrode active material than Comparative Example 2 and a smaller dispersant content than Comparative Example 4, it can be confirmed that the positive electrode active material layer does not separate.
  • FIG. 5 is a photograph showing a state in which the positive electrode formed using the positive electrode slurry composition of Comparative Example 4 is partially desorbed after rolling, and the positive electrode active material layer of Comparative Example 4 is partially separated from the current collector as shown. Therefore, the positive electrode and the lithium secondary battery of Comparative Examples 2 and 4 were unable to measure positive electrode adhesion, positive electrode resistance, initial cell resistance, and cell resistance after 100 cycles.
  • the positive electrode of Example 1 has higher positive electrode adhesive strength and lower resistance than the positive electrode of Example 2.
  • the lithium secondary battery using the positive electrode of Example 1 has lower initial cell resistance and lower cell resistance after 100 cycles than the lithium secondary battery using the positive electrode of Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명에 따른 양극 슬러리 조성물은, 양극 활물질, 도전재, 바인더, 분산제 및 용매를 포함하며, 상기 양극 활물질은 리튬 인산철을 포함하며, 상기 리튬 인산철의 평균 입경 D50이 1.5 ㎛ 이상이고, 상기 분산제는 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 0.2중량부 내지 0.9중량부로 포함된다.

Description

양극 슬러리 조성물, 이를 이용하여 제조된 양극 및 리튬 이차 전지
본 출원은 2021.12.24.자 한국 특허 출원 제10-2021-0187190호 및 2022.12.19.자 한국 특허 출원 제10-2022-0178086호에 기초한 우선권의 이익을 주장한다.
본 발명은 양극 슬러리 조성물과 이를 이용하여 제조된 양극 및 리튬 이차전지에 관한 것으로, 보다 상세하게는 우수한 양극 접착력을 갖는 양극을 형성하기 위한 양극 슬러리 조성물과 이를 이용하여 제조된 양극 및 리튬 이차전지에 관한 것이다.
전기 자동차, 에너지 저장 시스템(Energy Storage System, ESS)에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 연구가 다양하게 행해지고 있다. 특히, 이러한 장치의 전원으로 높은 에너지 밀도를 가지면서 우수한 수명 및 사이클 특성을 가지는 리튬 이차전지에 대한 연구가 활발히 진행되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 코발트계 산화물(LCO), 리튬 니켈코발트망간계 산화물(LNCMO), 리튬 인산철(LFP) 등이 사용되고 있다.
리튬 인산철은 자원적으로 풍부하고 저가의 재료인 철을 포함하기 때문에 저가이다. 또한, 리튬 인산철의 독성이 낮기 때문에, 리튬 인산철을 사용할 시 환경 오염을 줄일 수 있다. 더불어, 리튬 인산철은 올리빈 구조를 가지기 때문에, 층상 구조의 리튬 전이금속 산화물에 비해 고온에서 활물질 구조가 안정적으로 유지될 수 있다. 이에 따라, 고온 안정성 및 고온 수명 특성이 개선될 수 있다.
그러나, 리튬 인산철은 리튬 니켈코발트망간 산화물과 같은 리튬 전이금속 산화물과 비교하여, 리튬 이동성이 떨어지고 전기 전도도가 낮다는 문제점이 있다. 이에 따라 종래에는 리튬 인산철의 표면에 탄소를 코팅하여 전기 전도도를 개선하고, 리튬 인산철의 평균 입경을 감소시켜 리튬 이동 경로를 짧게 형성함으로써 리튬 이온 이동성을 개선하여 사용하고 있다. 그러나, 리튬 인산철 입자의 크기가 감소함에 따라 비표면적이 증가하고, 이로 인해 입자 응집이 심하게 발생하여 양극 슬러리 안정성이 떨어지고, 코팅 공정성이 저하된다는 문제점이 있다. 또한, 상기 양극 슬러리에서 응집이 발생하게 되면, 리튬 인산철과 바인더가 효과적으로 혼합되지 못하므로, 제조된 양극에서 집전체와 양극 활물질층 간의 접착력(이하, 양극 접착력)이 감소하게 된다.
슬러리 응집을 억제하기 위해 분산제를 사용할 수 있으나, 분산제 함량이 높아지면 전극 저항이 증가하고, 활물질 표면에 분산제 분포 영역이 넓어짐으로 인해 활물질과 바인더의 접촉 면적이 감소하여 전극 접착력이 오히려 저하되는 문제점이 발생한다.
이러한 양극 접착력이 저하되면 전극 제조 시 또는 충방전 시에 양극 활물질층의 탈리가 발생하여 전지 저항이 증가하고, 이차 전지의 용량이 감소하는 문제점이 있다.
종래에는 이와 같은 문제점을 해결하기 위해 양극 활물질층 내에 전체 바인더 함량을 높여 양극 접착력을 개선하거나, 집전체와 양극 활물질층의 사이에, 바인더 함량이 높은 프라이머 코팅층과 같은 접착층을 개재하거나, 전극 코팅 시 건조시간을 늘림으로써 바인더 마이그레이션(binder migration)을 완화(mitigation)시켜 집전체와 활물질층 계면에 바인더 함량이 높도록 하여 양극 접착력을 개선하는 기술이 알려져 있었다.
그러나, 활물질층 내에서 바인더 함량이 높아지면 전극의 저항 특성 및 전극의 부피당 에너지 밀도가 저하되는 단점이 있다. 또한, 건조 시간을 늘리는 경우에는 전극 및 이차전지 생산 비용이 상승하는 한계점이 있다.
본 발명은 우수한 양극 접착력을 갖는 양극을 형성하기 위한 양극 슬러리 조성물을 제공하는 것을 목적으로 한다.
또한, 본 발명은 양극 접착력이 우수한 양극, 및 상기 양극을 포함함으로써 저항 특성의 저하가 최소화된 리튬 이차전지를 제공하는 것을 목적으로 한다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따르면, 양극 활물질, 도전재, 바인더, 분산제 및 용매를 포함하는 양극 슬러리 조성물로서, 상기 양극 활물질은 리튬 인산철을 포함하며, 상기 리튬 인산철의 평균 입경 D50이 1.5 ㎛ 이상이고, 상기 분산제는 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 0.2중량부 내지 0.9중량부로 포함되는 양극 슬러리 조성물이 제공된다.
본 발명의 또 다른 실시예에 따르면, 집전체, 및 상기 집전체 상에 배치된 양극 활물질층을 포함하고, 상기 양극 활물질층은 양극 활물질, 도전재, 바인더 및 분산제를 포함하며, 상기 양극 활물질은 리튬 인산철을 포함하며, 상기 리튬 인산철의 평균 입경 D50은 1.5 ㎛ 이상이고, 상기 분산제는 상기 양극 활물질층 내에 0.2중량% 내지 0.9중량%로 포함되는 양극이 제공된다.
본 발명의 또 다른 실시예에 따르면, 양극, 음극, 분리막 및 전해질을 포함하고, 상기 양극은 양극 활물질층 내에 양극 활물질, 도전재, 바인더 및 분산제를 포함하고, 상기 양극 활물질은 리튬 인산철을 포함하며, 상기 리튬 인산철의 평균 입경 D50은 1.5 ㎛ 이상이고, 상기 분산제는 상기 양극 활물질층 내에 0.2중량% 내지 0.9중량%로 포함되는 리튬 이차전지가 제공된다.
본 발명에 따른 양극 슬러리 조성물은 평균 입경 D50이 1.5 ㎛ 이상인 리튬 인산철을 포함하여 종래에 상대적으로 적은 양의 분산제로도 입자 응집을 효과적으로 방지할 수 있다. 이에 따라, 상기 리튬 인산철과 바인더가 균일하게 혼합된 상태로 양극 활물질층에 존재할 수 있으므로, 양극 접착력이 개선될 수 있다.
또한, 양극 접착력에 기여하지 않는 상기 분산제의 함량이 낮은 수준일 수 있으므로, 상기 양극 접착력의 저하가 최소화될 수 있다. 이에 따라, 양극 활물질층의 탈리가 방지되어 전지 저항 증가가 줄어들 수 있으며, 전지의 수명 특성이 개선될 수 있다.
또한, 리튬 인산철 입자의 평균 입경이 상기와 같은 범위를 만족할 경우, 압연 시의 집전체와의 밀착력이 개선되어 압연 후 전극 탈리를 방지할 수 있다.
또한, 본 발명과 같이 상대적으로 입경이 큰 리튬 인산철을 사용하고, 분산제의 함량을 감소시킬 경우, 리튬 인산철 표면에 분산제가 분포되는 영역이 감소하기 때문에 바인더와 리튬 인산철의 접촉 면적이 넓어지게 된다. 이에 따라 양극 접착력 개선 효과를 극대화할 수 있다.
또한, 분산제 함량이 증가할 경우, 분산제에 의해 리튬 인산철 입자 표면의 노출 면적이 줄어들게 되어 전기 화학적 특성이 저하되는 문제점이 있다. 그러나 본 발명의 경우 분산제 함량이 상대적으로 적기 때문에 이러한 전기 화학 특성, 특히 전지 저항의 증가가 억제될 수 있다.
도 1 내지 도 4는 실시예들 및 비교예들에서 제조된 양극에서 사용된 평균 입경 D50이 각각 0.8 ㎛(도 1), 1.0 ㎛(도 2), 1.2 ㎛(도 3), 2.0 ㎛(도 4)인 리튬 인산철의 SEM 사진이다.
도 5는 비교예 4의 양극 슬러리 조성물을 이용하여 형성된 양극이 압연 후 부분 탈리된 상태를 보여주는 사진이다.
도 6은 실시예 2의 양극 단면의 SEM 사진이다.
도 7은 비교예 3의 양극 단면의 SEM 사진이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
본 명세서에서, 어떤 부분이 어떤 구성요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본 명세서에서 "A 및/또는 B"의 기재는 A, 또는 B, 또는 A 및 B를 의미한다.
본 명세서에서, "%"는 명시적인 다른 표시가 없는 한 중량%를 의미한다.
본 명세서에서, D50은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경을 의미하는 것이다. 상기 D50은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
본 명세서에서, "비표면적"은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사의 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출될 수 있다.
본 명세서에서 "중량평균분자량(Mw)"은 겔투과크로마토그래피(Gel Permeation Chromatography: GPC)로 측정된 표준 폴리스티렌에 대한 환산 수치를 의미한다. 구체적으로는, 상기 중량평균분자량은 GPC를 이용하여 하기 조건으로 측정된 값을 환산한 값이며, 검량선 제작에는 Agilent system의 표준 폴리스티렌을 사용하였다.
<측정 조건>
측정기: Agilent GPC(Agulent 1200 series, 미국)
컬럼: PL Mixed B 2개 연결
컬럼 온도: 40 ℃
용리액: 테트로하이드로퓨란
유속: 1.0mL/min
농도: ~ 1mg/mL(100μL injection)
본 명세서에서 양극 접착력은 다음과 같은 방법으로 측정될 수 있다. 길이 150 mm, 폭 20 mm로 재단된 양극을 준비하고, 양극 활물질층을 길이 75 mm, 폭 25 mm인 슬라이드 글라스에 대면하도록 하여, 상기 양극을 상기 슬라이드 글라스에 길이 방향으로 양면 테이프를 이용하여 부착한다. 즉, 양극의 길이 방향의 절반에 해당하는 영역에 슬라이드 글라스가 부착되도록 한다. 이후, 양면 테이프가 균일하게 부착되도록 롤러를 10회 문질러 평가 시료를 제조한다. 다음으로, 평가 시료의 슬라이드 글라스 부위를 만능재료시험기(Universal Testing Machine, UTM)(LS5, AMETEK)의 샘플 스테이지에 고정하고, 슬라이드 글라스가 부착되지 않은 양극 절반부를 UTM 장비의 로드셀에 연결한다. 로드셀을 100 mm/min의 속도로, 90°로 힘을 가해, 50 mm까지 이동시키며 로드셀에 인가되는 하중을 측정한다. 이때 주행 구간 중 20 mm 내지 40 mm 구간에서 측정된 하중의 최소 값을 구한다. 이를 총 5회 반복하여 그 평균값을 각 시료의 양극 접착력(gf/20mm)으로 평가한다.
본 명세서에서 양극 저항은 다음과 같이 측정할 수 있다. 98μm 두께의 양극활물질층을 가진 양극을, 가로 세로 크기 50 mm × 50 mm로 재단하여 시편을 준비한다. 상기 시편에 대해 양극 저항 측정기(MP tester, HIOKI社)를 이용하여 상기 양극 활물질층의 두께 방향에서 단위 면적(10mm × 10 mm)당 저항을 측정하며, 측정 조건은 하기와 같다. 해당 양극에 대해 위 방법으로 3회 측정 후, 그 표준 편차가 10 % 이내인 경우에서의 3회 측정 값의 평균 값을 상기 양극 저항으로 한다.
- 전류: 100㎂
- 속도: 느림
- 전압 범위: 0.5V
- 양극 집전체 비저항값: 상기 사용된 알루미늄 2.82E-0.6Ω·㎝
양극 슬러리 조성물
본 발명의 일 실시예에 따른 양극 슬러리 조성물은, 양극 활물질층을 형성하기 위한 것으로, 양극 활물질, 도전재, 바인더, 분산제 및 용매를 포함하고, 상기 양극 활물질은 리튬 인산철을 포함하며, 상기 리튬 인산철의 평균 입경 D50이 1.5 ㎛ 이상이고, 상기 분산제는 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 0.2중량부 내지 0.9중량부로 포함된다.
리튬 인산철을 사용하는 종래의 양극의 경우, 양극 슬러리 제조 시 리튬 인산철의 응집이 발생하여 양극 슬러리의 코팅성과 전기화학적 특성이 저하되었다. 이에 따라, 상기 응집을 억제하기 위해 분산제 함량을 높여 사용하였으나, 리튬 인산철 표면에 분산제 분포 영역이 넓어짐으로 인해 리튬 인산철과 바인더의 접촉 면적이 감소하여 전극 접착력이 오히려 저하되는 문제점이 발생하였다.
위와 같은 문제 해결을 위해 연구원들은 거듭된 연구를 진행하여, 상기 리튬 인산철의 평균 입경 D50이 1.5 ㎛ 이상이면서, 상기 분산제가 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 0.2중량부 내지 0.9중량부로 포함될 시, 리튬 인산철 표면에서 분산제가 분포되는 영역이 감소하여 바인더와 리튬 인산철의 접촉 면적이 넓어지게 되고 이에 따라 양극 접착력이 현저히 개선됨을 알아내었다. 이에 대해 본 명세서에서 구체적으로 설명하도록 한다.
(1) 양극 활물질
상기 양극 활물질은 리튬 인산철을 포함할 수 있다. 상기 양극 활물질이 상기 리튬 인산철을 포함하는 경우, 상기 양극 활물질을 포함하는 양극의 안정성이 현저히 개선됨으로써, 상기 양극을 포함하는 리튬 이차전지의 발화 위험 등이 크게 감소할 수 있다.
상기 리튬 인산철은 하기 화학식 1의 화합물일 수 있다.
[화학식 1]
Li1+aFe1-xMx(PO4-b)Xb
(상기 화학식 1에서, M은 Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn 및 Y 로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하고, X는 F, S 및 N 로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하며, 그리고, a, b, x는 각각 -0.5≤a≤0.5, 0≤b≤0.1, 0≤x≤0.5이다)
예를 들어, 상기 리튬 인산철은 LiFePO4일 수 있다.
상기 리튬 인산철의 평균 입경 D50은 1.5 ㎛ 이상일 수 있다. 상기 리튬 인산철의 평균 입경이 1.5 ㎛ 미만일 경우, 상기 양극 슬러리 조성물 내에서 상기 리튬 인산철이 지나치게 응집될 수 있고, 이에 따라, 리튬 인산철과 바인더가 효과적으로 혼합되지 못하므로 상기 양극의 접착력이 저하된다. 또한, 상기 응집을 억제하기 위해 분산제 함량을 증가시키는 경우, 리튬 인산철 표면에 분산제 분포 영역이 넓어짐으로 인해 리튬 인산철과 바인더의 접촉 면적이 감소하여 양극 접착력이 저하될 수 있다. 양극 접착력이 저하되면 상기 전지의 충방전 과정에서 저항이 증가하게 되어, 전지의 수명 특성이 저하되는 문제가 있다.
상기 리튬 인산철의 평균 입경 D50이 1.5 ㎛ 이상인 경우, 적은 함량의 분산제를 사용하더라도 상기 리튬 인산철의 응집이 억제될 수 있고, 리튬 인산철 표면에서 분산제가 분포되는 영역이 감소하기 때문에 바인더와 리튬 인산철의 접촉 면적이 넓어져 양극 접착력이 개선될 수 있으며, 전지 구동 시 양극 활물질층의 탈리가 방지됨으로써 전지 저항의 증가가 억제되고 전지의 수명 특성이 개선될 수 있다.
구체적으로, 상기 리튬 인산철의 평균 입경 D50은 1.5 ㎛ 내지 4.5 ㎛, 보다 구체적으로 1.7 ㎛ 내지 3.0 ㎛일 수 있다. 리튬 인산철의 평균 입경 D50이 상기 범위를 만족할 시, 상술한 이유로 양극 접착력이 개선되어 양극 활물질층의 탈리가 방지됨으로써 전지 저항의 증가가 억제되는 한편, 대입경 리튬 인산철에 의해 야기되는 전지 저항의 증가가 방지될 수 있다.
상기 리튬 인산철은 2차 입자 형태일 수 있다. 상기 2차 입자 형태는 단일 입자 형태의 복수의 리튬 인산철 1차 입자들이 서로 결합되어 형성된 더 큰 하나의 입자를 가진 형태를 의미한다. 여기서 결합이란 단순히 반데르발스 결합에 의해 응집되는 것을 의미하지 않고, 화학적으로 결합된 것을 의미할 수 있다. 상기 리튬 인산철이 2차 입자 형태인 경우, 상술한 상기 리튬 인산철의 평균 입경 D50은 상기 2차 입자의 평균 입경 D50에 해당한다.
상기 리튬 인산철 1차 입자의 평균 입경 D50은 50 nm 내지 400 nm일 수 있으며, 구체적으로 70 nm 내지 300 nm, 보다 구체적으로 100 nm 내지 200 nm일 수 있다. 상기 범위를 만족할 시 리튬 이온의 이동 경로가 짧고, 결정 구조 내에 결함(defect) 함량을 낮게 유지하여 저항 성능을 높일 수 있다.
상기 리튬 인산철의 BET 비표면적은 5 m2/g 내지 20 m2/g일 수 있으며, 구체적으로 7 m2/g 내지 18 m2/g, 보다 구체적으로 9 m2/g 내지 16 m2/g일 수 있다. 상기 범위는 통상적인 리튬 인산철에 비해 낮은 수치에 해당한다. 상기 범위를 만족할 시, 분산제 함량이 상대적으로 적은 양극 슬러리 조성물 내에서도 상기 리튬 인산철의 응집이 효과적으로 억제될 수 있다.
상기 리튬 인산철은 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 94.8 중량부 내지 98.0 중량부, 구체적으로 95.0 중량부 내지 98.0 중량부, 보다 구체적으로 95.1 중량부 내지 98.0 중량부로 포함될 수 있다. 상기 리튬 인산철의 함량이 상기 범위를 만족하는 경우, 양극의 무게/부피 당 에너지 밀도를 높일 수 있다.
상기 리튬 인산철은 상기 리튬 인산철의 표면에 형성된 탄소 코팅층을 더 포함할 수 있다. 상기 탄소 코팅층은 상기 리튬 인산철의 전기 전도성을 개선시켜, 양극의 저항을 저하시킬 수 있다.
상기 탄소 코팅층은 글루코오스, 수크로오스, 락토오스, 녹말, 올리고당, 폴리올리고당, 프럭토오스, 셀룰로오스, 푸르푸릴알코올의 중합체, 에틸렌과 에틸렌옥사이드의 블록 공중합체, 비닐계 수지, 셀룰로오스계 수지, 페놀계 수지, 피치계 수지 및 타르계 수지로 이루어지는 군에서 선택된 적어도 하나 이상의 원료 물질을 사용하여 형성될 수 있다. 구체적으로 상기 탄소 코팅층은 상기 원료 물질들을 상기 리튬 인산철의 표면에 배치한 뒤 소성 과정을 통해 형성될 수 있다.
(2) 분산제
상기 분산제는 상기 리튬 인산철이 상기 양극 슬러리 조성물 내에 지나치게 응집되는 현상을 억제시키며, 제조된 양극 활물질층에서 상기 리튬 인산철이 효과적으로 분산되어 존재할 수 있게 한다.
상기 분산제는 수소화 니트릴계 공중합체를 포함할 수 있으며, 구체적으로 상기 분산제는 수소화 니트릴계 공중합체일 수 있다.
구체적으로, 상기 수소화 니트릴계 공중합체는 α,β-불포화 니트릴 유래 구조 단위, 및 수소화된 공액 디엔 유래 구조 단위를 포함하는 공중합체이거나, α,β-불포화 니트릴 유래 구조 단위, 공액 디엔 유래 구조 단위, 및 수소화된 공액 디엔 유래 구조 단위를 포함하는 공중합체일 수 있다. 상기 α,β-불포화 니트릴 단량체로는, 예를 들면, 아크릴로니트릴 또는 메타크릴로니트릴 등이 사용될 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 공액 디엔계 단량체로는, 예를 들면, 1,3-부타디엔, 이소프렌 또는 2,3-메틸 부타디엔 등의 탄소수 4 ~ 6의 공액 디엔계 단량체들이 사용될 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
보다 구체적으로, 상기 수소화 니트릴계 공중합체는 수소화 니트릴 부타디엔 고무(H-NBR)일 수 있다.
상기 수소화 니트릴 부타디엔 고무의 중량평균분자량은 10,000 내지 400,000일 수 있으며, 구체적으로 20,000 내지 350,000일 수 있고, 보다 구체적으로 30,000 내지 260,000일 수 있다. 상술한 리튬 인산철의 평균 입경이 종래 사용하던 리튬 인산철의 평균 입경에 비해 크므로, 상기 리튬 인산철의 응집 방지 및 효과적인 분산의 측면에서 상기 수소화 니트릴 부타디엔 고무의 중량평균분자량은 상기 범위를 만족하는 것이 바람직하다.
상기 분산제는 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 0.2중량부 내지 0.9중량부, 구체적으로 0.2중량부 내지 0.7중량부, 보다 구체적으로 0.2중량부 내지 0.5중량부로 포함될 수 있다. 상기 리튬 인산철의 평균 입경 D50이 1.5 ㎛ 이상임에 따라, 상기 분산제가 위와 같이 다소 낮은 함량을 만족하여도 상기 리튬 인산철의 응집이 효과적으로 억제될 수 있다. 또한, 상기 양극 활물질층 내에서 상기 분산제가 차지하는 함량이 적으므로, 상기 리튬 인산철과 상기 바인더의 접합면이 증가할 수 있는 바, 상기 양극 접착력이 더욱 개선될 수 있다. 이에 따라, 양극의 저항과 전지의 수명 특성이 개선될 수 있다.
특히 상기 분산제가 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 0.2중량부 내지 0.7중량부인 경우, 접착력에 직접 영향을 미치는 바인더의 함량 대비 접착력에 기여하지 못하는 분산제의 함량이 감소하여 양극 접착력이 보다 현저히 개선될 수 있다.
만일 상기 분산제의 함량이 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 0.9 중량부를 초과할 경우, 지나친 분산제 함량에 의해 리튬 인산철과 바인더의 접합 면적이 줄어들어 양극 접착력이 저하될 수 있다. 또한, 상기 분산제의 함량이 상기 양극 슬러리 조성물 내 고형분 100 중량부에 대하여 0.2 중량부 미만일 경우, 리튬 인산철 간의 지나친 응집으로 인해 리튬 인산철과 바인더가 효과적으로 혼합되지 못하므로 양극 접착력이 저하될 수 있다.
(3) 바인더
상기 바인더는 양극 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
상기 바인더는 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 1중량부 내지 4중량부, 구체적으로 1.5중량부 내지 4중량부, 보다 구체적으로 2중량부 내지 3.5중량부로 포함될 수 있다. 바인더의 함량이 상기 범위를 만족하는 경우, 바인더와 리튬 인산철의 접촉 면적이 넓어져 우수한 양극 접착력을 확보할 수 있다.
(4) 도전재
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케트젠블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다. 바람직하게는, 상기 도전재는 탄소나노튜브일 수 있다. 탄소나노튜브의 도전 네트워크는, 양극 슬러리 조성물의 건조 과정에서, 바인더의 들뜸(migration) 현상을 완화할 수 있어 본 발명의 양극 슬러리 조성물에 포함되는 도전재로서 특히 바람직하다.
상기 도전재는 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 0.1 중량부 내지 3.0 중량부로 포함될 수 있으며, 구체적으로 0.2 중량부 내지 2.0 중량부, 보다 구체적으로 0.6 중량부 내지 1.2 중량부로 포함될 수 있다. 상기 범위를 만족할 시 양극 전도성 네트워크를 확보함으로써 양극의 전기 전도도를 개선할 수 있다.
(5) 용매
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸-2-피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
한편, 상기 양극 슬러리 조성물은 고형분과 상기 용매를 포함할 수 있다. 이 경우, 상기 고형분은 양극 활물질, 도전재, 바인더, 및 분산제 중 적어도 어느 하나를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 조성물에 포함된 상기 고형분 함량은 40 중량% 내지 75 중량%, 구체적으로 50 중량% 내지 70 중량%, 보다 구체적으로 55 중량% 내지 65 중량%일 수 있다. 상기 고형분의 함량이 상기 범위를 만족하는 경우, 상기 조성물이 slot-die 코팅과 같은 슬러리 코팅 공정에 적합한 슬러리 점도를 가질 수 있다.
이 경우, 상기 조성물은, 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 상기 도전재를 0.1 중량부 내지 3.0 중량부; 상기 바인더를 1중량부 내지 4중량부; 상기 분산제를 0.2중량부 내지 0.9중량부로 포함할 수 있다. 도전재, 바인더, 분산제의 함량이 상기 범위를 만족하는 경우, 리튬 인산철의 응집을 억제하여 양극 접착력이 현저히 개선될 수 있다.
양극
다음으로, 본 발명에 따른 양극에 대해 설명한다.
상기 양극은, 양극 집전체, 및 양극 집전체의 적어도 일면에 위치하는 양극 활물질층을 포함한다. 이 경우, 상기 양극 활물질층은, 양극 활물질, 도전재, 바인더 및 분산제를 포함하며, 상기 양극 활물질은 리튬 인산철을 포함하며, 상기 리튬 인산철의 평균 입경 D50은 1.5 ㎛ 이상이고, 상기 분산제는 상기 양극 활물질층 내에 0.2 중량% 내지 0.9 중량%로 포함된다. 상기 양극은 상술한 실시예의 양극 슬러리 조성물을 사용하여 형성될 수 있다. 상기 양극 활물질, 분산제, 바인더 및 도전재는 앞서 설명한 바와 같다.
본 발명에 따른 양극은, 리튬 인산철의 평균 입경 D50은 1.5 ㎛ 이상이고, 상기 분산제가 상기 양극 활물질층 내에 0.2 중량% 내지 0.9 중량%로 포함되어, 접착력이 향상됨에 따라, 양극 집전체와 양극 활물질층의 사이에, 바인더 성분 함량이 높은 프라이머 코팅층, 바인더 층과 같은 접착력 향상을 위한 별도의 층을 구비하지 않고도, 이들을 구비한 양극과 동등 수준 이상의 접착력을 가질 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 되고, 특별히 제한되는 것은 아니다. 예를 들어, 상기 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 집전체는 3 ㎛ 내지 500 ㎛의 두께를 가질 수 있으며, 양극 집전체의 표면 상에 미세한 요철을 형성하여 양극 활물질층에 대한 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 양극 집전체의 적어도 일면에 위치하고, 상술한 양극 슬러리 조성물에 의해 형성될 수 있다.
상기 양극은 상기한 양극 슬러리 조성물을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 슬러리 조성물을 교반 및 혼합하는 과정, 양극 집전체 상에 상기 양극 슬러리 조성물을 도포한 후, 건조 및 압연하는 과정을 통해 제조될 수 있다.
또한, 다른 방법으로, 상기 양극은 상기 양극 슬러리 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 일 실시예에 따른 상기 양극은 우수한 양극 접착력을 가질 수 있다. 구체적으로, 상기 양극에 있어서, 상기 양극 활물질층은 상기 양극 집전체에 대해 향상된 접착력을 가질 수 있다. 그 결과, 상기 양극의 탈리가 방지됨으로써 이차전지의 셀 저항이 감소하고, 전지의 용량 및 출력 특성이 향상되며, 제조 공정에서 발생하는 불량을 줄일 수 있다.
상기 양극에 대해 90°필 테스트(peel test)로 측정할 시, 양극 접착력이 32 gf/20mm 이상, 구체적으로 35 gf/20mm 이상, 보다 구체적으로 40 gf/20mm 내지 200 gf/20mm일 수 있다. 상기 범위는 리튬 인산철을 사용한 종래의 양극의 양극 접착력보다 높은 수준에 해당한다. 이는 상기 리튬 인산철의 평균 입경 D50이 1.5 ㎛ 이상이고, 상기 분산제가 상기 양극 활물질층 내에 0.2중량% 내지 0.9중량%로 포함되기 때문에 발현될 수 있다.
또한 본 발명의 일 실시예에 따른 양극은, 상기 양극 활물질층이, 상기 양극 집전체와 직접 대면하는 구조로, 양극 활물질층과 양극 집전체와의 사이에 접착력 향상을 위한 별도의 층을 포함하지 않을 수 있다. 양극 집전체와 양극 활물질층의 사이에, 접착력 향상을 위해 개재될 수 있는 결착층 또는 접착층 또는 결합층 또는 프라이머 코팅층 등의 별도의 층을 포함하지 않아도, 본 발명에 따른 양극은, 양극 집전체와 양극 활물질층 사이이 계면 접착력이 상기 수치 범위를 가지는 우수한 접착력을 나타낼 수 있다.
한편, 상기 양극의 단위 면적당 저항은 9 Ω·cm2 이하, 구체적으로 8 Ω·cm2 이하, 보다 구체적으로 7 Ω·cm2 이하, 예컨대 1 Ω·cm2 내지 9 Ω·cm2일 수 있다. 상기 저항은 상기 리튬 인산철의 응집이 최소화되고, 상기 분산제의 사용량이 낮은 수준에 해당함에 따라 발현될 수 있다.
리튬 이차전지
다음으로, 본 발명에 따른 리튬 이차전지에 대해 설명한다.
상기 리튬 이차전지는 양극, 음극, 상기 양극과 음극 사이에 개재된 분리막, 및 전해질을 포함한다.
상기 리튬 이차전지에 있어서 상기 양극은 앞서 설명한 바와 같다. 예컨대, 상기 양극은 양극 활물질층 내에 양극 활물질, 도전재, 바인더 및 분산제를 포함하고, 상기 양극 활물질은 리튬 인산철을 포함하며, 상기 리튬 인산철의 평균 입경 D50은 1.5 ㎛ 이상이고, 상기 분산제는 상기 양극 활물질층 내에 0.2중량% 내지 0.9중량%로 포함된다.
상기 음극은, 예를 들어 음극 집전체 상에, 음극 활물질, 음극 바인더, 음극 도전재를 포함하는 음극 형성용 조성물을 제조한 후 이를 음극 집전체 위에 도포하여 제조될 수 있다.
상기 음극 활물질로는 특별히 제한되지 않으며, 통상 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소, 고결정성 탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; 또는 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있다. 또, 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)를 들 수 있으며, 고결정성 탄소로는 천연 흑연, 키시흑연(kish graphite), 열분해 탄소(pyrolytic carbon), 액정치피계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소를 들 수 있다. 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있으며, 또, 상기 음극 활물질로서 금속 리튬 박막이 사용될 수도 있다.
상기 음극 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연흑연이나 인조흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 탄소나노튜브 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 음극 도전재는 통상적으로 음극 활물질층 총 중량에 대하여 1 내지 30 중량%, 바람직하게는 1 내지 20중량%, 더 바람직하게는 1 내지 10중량%로 포함될 수 있다.
상기 음극 바인더는 음극 활물질 입자들 간의 부착 및 음극 활물질과 음극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 음극 바인더는 음극 활물질층 총 중량에 대하여 1중량% 내지 30중량%, 바람직하게는 1중량% 내지 20중량%, 더 바람직하게는 1중량% 내지 10중량%로 포함될 수 있다.
한편, 상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
또, 상기 음극 집전체는 통상적으로 3 ㎛ 내지 500 ㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 음극 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
한편, 상기 리튬 이차전지에 있어서, 상기 분리막은 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용 가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 상기 분리막은 0.01㎛ 내지 10㎛의 기공직경 및 5㎛ 내지 300㎛의 두께를 갖는 다공성 박막일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 상기 전해질은 전해질에 통상적으로 사용되는 유기 용매 및 리튬염을 포함할 수 있으며, 특별히 제한되는 것은 아니다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매 등이 사용될 수 있다.
이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다.
상기 리튬염은 리튬 이차 전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염은 상기 전해질 내에 대략 0.6mol% 내지 2mol%의 농도로 포함되는 것이 바람직하다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
본 발명의 리튬 이차전지는 양극과 음극 사이에 분리막을 배치하여 전극 조립체를 형성하고, 상기 전극 조립체는 원통형 전지 케이스 또는 각형 전지 케이스에 넣은 다음 전해질을 주입하여 제조할 수 있다. 또는, 상기 전극 조립체를 적층한 후, 이를 전해질에 함침시키고 얻어진 결과물을 전지 케이스에 넣어 밀봉하여 제조할 수도 있다.
본 발명의 리튬 이차전지를 제조 시에는 전극 조립체를 건조시켜 양극 제조 시 사용된 N-메틸-2-피롤리돈(NMP), 아세톤, 에탄올, 프로필렌 카보네이트, 에틸메틸카보네이트, 에틸렌카보네이트, 다이메틸카보네이트로 이루어진 군에서 선택되는 하나 이상의 유기 용매를 제거할 수 있다. 만약, 전해질로서 양극 제조시 사용한 유기 용매와 동일한 성분의 전해질을 사용하는 경우에는 상기 전극 조립체를 건조하는 공정을 생략할 수 있다.
상기 전지 케이스는 당 분야에서 통상적으로 사용되는 것이 채택될 수 있고, 전지의 용도에 따른 외형에 제한이 없으며, 예를 들면, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 에너지 저장 시스템(Energy Storage System, ESS) 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 이들만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예 1: 양극의 제조
(1) 양극 슬러리 조성물의 제조
양극 활물질로서 평균 입경 D50이 2μm, BET 비표면적이 11 m2/g인 LiFePO4, 도전재로 탄소나노튜브(CNT), 바인더로 폴리비닐리덴플루오라이드(PVdF), 분산제로 수소화 니트릴계 부타디엔 고무(H-NBR)를 N-메틸피롤리돈 용매에 투입하고 교반하여 양극 슬러리 조성물을 제조하였다. 상기 양극 슬러리 조성물 내에서, 양극 활물질, 도전재, 바인더, 및 분산제는 95.7 : 1.0 : 2.7 : 0.3의 중량비로 존재하였고, 상기 양극 슬러리 조성물의 고형분은 60 중량%였다.
(2) 양극의 제조
15μm 두께의 알루미늄 박막에 상기 양극 슬러리 조성물을 도포한 후, 130℃에서 10시간동안 진공 건조하였다. 이후, 양극 활물질층의 공극률(porosity)이 29%가 되도록 압연하여 양극을 제조하였다. 상기 양극 활물질층의 두께는 98μm였으며, 상기 양극 활물질층의 로딩량은 3.6 mAh/cm2였다.
실시예 2: 양극의 제조
양극 활물질과 분산제를 95.2 : 0.8의 중량비로 혼합한 점을 제외하고는, 실시예 1과 동일한 방법으로 양극을 제조하였다.
비교예 1: 양극의 제조
양극 활물질과 분산제를 94.65 : 1.35의 중량비로 혼합한 점을 제외하고는, 실시예 1과 동일한 방법으로 양극을 제조하였다.
비교예 2: 양극의 제조
평균 입경 D50이 0.8μm인 양극 활물질을 사용한 점을 제외하고는, 비교예 1과 동일한 방법으로 양극을 제조하였다.
비교예 3: 양극의 제조
평균 입경 D50이 1.0μm인 양극 활물질을 사용하고, 양극 활물질과 분산제를 95.2 : 0.8의 중량비로 혼합한 점을 제외하고는, 비교예 1과 동일한 방법으로 양극을 제조하였다.
비교예 4: 양극의 제조
평균 입경 D50이 1.2μm인 양극 활물질을 사용한 점을 제외하고는, 비교예 1과 동일한 방법으로 양극을 제조하였다.
양극 활물질
평균 입도(D50) (μm)
함량(wt%)
양극 활물질
(LiFePO4)
도전재
(CNT)
바인더
(PVdF)
분산제
(H-NBR)
실시예 1 2.0 95.70 1 3 0.3
실시예 2 2.0 95.20 1 3 0.8
비교예 1 2.0 94.65 1 3 1.35
비교예 2 0.8 94.65 1 3 1.35
비교예 3 1.0 95.2 1 3 0.8
비교예 4 1.2 94.65 1 3 1.35
한편, 도 1 내지 도 4는 실시예 및 비교예에서 제조된 양극에서 평균 입경 D50이 각각 0.8 ㎛, 1.0 ㎛, 1.2 ㎛, 2.0 ㎛인 리튬 인산철의 SEM 사진이다. 구체적으로, 도 1은 비교예 2, 도 2는 비교예 3, 도 3은 비교예 4, 도 4는 실시예 1~2 및 비교예 1에서 제조된 양극에 포함된 리튬 인산철의 SEM 사진으로, 상기 양극에서 리튬 인산철은 1차 입자 및/또는 2차 입자 형태로 형성되어 있다.
도 6은 실시예 2의 양극 단면의 SEM 사진이고, 도 7은 비교예 3의 양극 단면의 SEM 사진이다. 이들 도면에서 밝은 대비(contrast)는 리튬 인산철을, 어두운 대비(contrast)는 도전재와 바인더가 함께 뭉쳐있는 것을 나타낸다. 그리고, 이러한 도전재 응집 영역이 고르게 분산되어 있고, 도전재의 응집 영역들의 각 면적이 작을수록 양극 활물질, 도전재 및 바인더 간에 분산이 잘된 것으로 판단한다. 또한, 도전재의 응집 영역의 형태가 구형에 가까울수록 응집된 도전재의 표면적이 최소화되고, 그 결과 도전재와 인접하여 리튬 삽입/탈리 반응에 참여하지 못하는 양극 활물질의 표면적이 최소화되어, 리튬 이차전지의 방전 저항을 낮출 수 있다.
실시예 2의 양극은, 비교예 3의 양극과 비교하여, 도전재의 응집 영역이 전체적으로 고르게 분산되어 있고, 도전재의 응집 영역들의 면적의 편차도 작은 것으로 나타나며, 구형에 가까운 것을 확인할 수 있다. 비교예 3의 양극은, 도전재의 응집 영역들의 면적 편차가 크며, 도전재 응집 영역의 장축 방향 길이가 10㎛에 이를 정도로 큰 것도 여러 개 관찰된다.
실시예 2의 양극은 비교예 3의 양극과 비교해, 분산제의 함량이 동일하나, 리튬 인산철의 평균 입경 D50의 차이에 의해, 양극 활물질, 도전재 및 바인더가 분산이 잘되는 것을 확인할 수 있다. 또한, 실시예 2의 양극은, 비교예 3의 양극과 비교하여, 도전재가 구형으로 응집됨에 따라 리튬 이차전지에서 방전 저항이 더욱 우수할 것으로 기대된다.
실험예 1 - 양극 접착력 평가
상기 실시예 1~2 및 비교예 1~4에서 제조한 각각의 양극에서 양극 활물질층과 양극 집전체 사이의 접착력을 비교하였다.
구체적으로, 상기 실시예 1~2 및 비교예 1~4에서 제조한 각각의 양극을 길이 150 mm, 폭 20 mm로 재단하고, 양극 표면을 길이 75 mm, 폭 25 mm인 슬라이드 글라스에 길이 방향으로 양면 테이프를 이용하여 부착하였다. 즉, 양극의 길이 방향의 절반에 해당하는 영역에 슬라이드 글라스가 부착되도록 하였다. 그리고, 양면 테이프가 균일하게 부착되도록 롤러를 10회 문질러 평가 시료를 제조하였다.
다음으로, 평가 시료의 슬라이드 글라스 부위를 만능재료시험기(Universal Testing Machine, UTM)(LS5, AMETEK)의 샘플 스테이지에 고정하고, 슬라이드 글라스가 부착되지 않은 양극 절반부를 UTM 장비의 로드셀에 연결하였다. 로드셀을 100 mm/min의 속도로, 90°로 힘을 가해, 50 mm까지 이동시키며 로드셀에 인가되는 하중을 측정하였다. 이때 주행 구간 중 20 mm 내지 40 mm 구간에서 측정된 하중의 최소 값을 각 시료의 양극 접착력(gf/20mm)으로 측정하였다. 각 양극에 대하여 총 5회 측정 후 그 평균 값을 하기 표 2에 나타내었다.
실험예 2 - 양극 저항 측정
상기 실시예 1~2 및 비교예 1~4에서 제조한 각각의 양극의 저항 값을 측정 및 비교하였다.
구체적으로, 상기 실시예 1~2 및 비교예 1~4에서 각각 제조된 98μm 두께의 양극 활물질층을 포함하는 양극을, 가로 세로 크기 50 mm × 50 mm로 재단하였다. 양극 저항 측정기(MP tester, HIOKI社)를 이용하여, 상기 양극 활물질층의 두께 방향에서 단위 면적(10mm × 10mm)당 저항을 측정하였으며, 측정 조건은 하기와 같다. 각 양극에 대하여 3회 측정 후, 그 표준 편차가 10% 이내인 경우에서의 3회 측정 값의 평균 값을 하기 표 2에 나타내었다.
- 전류: 100㎂
- 속도: 느림
- 전압 범위: 0.5V
- 양극 집전체 비저항값: 상기 사용된 알루미늄 2.82E-0.6Ω·㎝
실험예 3 - 셀 저항 측정
(1) 리튬 이차전지의 제조
음극 활물질로서 인조흑연, 도전재로서 superC, 바인더로서 SBR/CMC를 96:1:3의 중량비로 혼합하여 음극 슬러리를 제작하고 이를 구리 집전체의 일면에 도포한 후 130 ℃에서 건조 후 압연하여 음극을 제조하였다. 제조된 음극의 음극 활물질층 로딩량은 3.6 mAh/cm2였으며, 공극률은 29 %였다.
다음으로, 상기 제조된 양극 및 음극 사이에 두께 18μm, 폴리프로필렌으로 형성된 분리막을 개재하여 전극 조립체를 제조하였다. 상기 전극 조립체를 알루미늄 파우치형 전지케이스에 수납하고, 1.0M LiPF6 및 2wt% 바이닐렌 카보네이트(vinylene carbonate, VC)가 유기 용매(EC/ EMC/DMC = 3:3:4 부피비)에 용해된 전해액 500 μl을 주액한 후 진공 실링하였다. 상기 전해액은 1일 동안 에이징하고, 7.9 mAh로 3시간동안 활성화 공정을 실시한 후, 3일간 추가 에이징을 실시하였다. 최종적으로 디가스(degas) 공정을 진행하여 리튬 이차전지를 제조하였다.
(2) 셀 저항 측정
상기 실시예 1~2 및 비교예 1~4의 양극을 사용하여 제조된 각각의 리튬 이차전지의 셀 저항 값을 측정 및 비교하였다.
구체적으로, 상기 실시예 1~2 및 비교예 1~4에서 제조된 각각의 리튬 이차전지에 대하여, SOC(State of charge) 50% 에서 197.5 mAh 10초 간 방전 펄스(pulse)를 준 상태에서 나타나는 전압 강하 값을 전류 값으로 나눈 값으로 셀 저항(SOC50 방전 저항)을 측정하였다.
이 경우, 초기 셀 저항은 상기 리튬 이차전지 제조 후 측정된 저항 값을 의미하고, 100 cycle 후 셀 저항은 26.3 mAh으로 2.5 V ~ 3.6 V 범위, 45 ℃환경에서 충방전을 100회 반복한 후 측정한 저항 값을 의미한다. 측정 결과는 하기 표 2에 나타내었다.
양극 접착력
(gf/20mm)
양극 저항
(Ω·cm2)
초기 셀 저항
(mΩ)
100 cycle 후 셀 저항
(mΩ)
실시예 1 53 6.4 1.2 1.1
실시예 2 37 7.7 1.3 1.2
비교예 1 8 10.0 1.4 2.0
비교예 2 측정 불가 측정 불가 측정 불가 측정 불가
비교예 3 30 21.7 1.4 1.8
비교예 4 측정 불가 측정 불가 측정 불가 측정 불가
상기 표 2를 통해, 양극 활물질층 내에서 분산제가 0.9중량%를 초과하는 비교예 1의 양극은 실시예 1 및 2의 양극에 비해 현저히 낮은 양극 접착력을 가지며, 비교예 1의 양극은 실시예 1 및 2의 양극에 비해 양극 저항이 높음을 확인할 수 있다. 또한, 비교예 1의 양극을 사용한 리튬 이차전지의 초기 셀 저항은 실시예 1에 비해 높고, 100 cycle 후 셀 저항이 초기 셀 저항에 비해 현저히 증가함을 확인할 수 있다.
리튬 인산철의 평균 입경 D50이 1.5 ㎛ 미만인 비교예 3의 양극은 실시예 1 및 2의 양극에 비해 낮은 양극 접착력을 가지며, 비교예 3의 양극은 실시예 1 및 2의 양극에 비해 양극 저항이 현저히 높음을 확인할 수 있다. 또한, 비교예 3의 양극을 사용한 리튬 이차전지의 초기 셀 저항은 실시예 1에 비해 높고, 100 cycle 후 셀 저항이 초기 셀 저항에 비해 증가함을 확인할 수 있다. 단, 비교예 3의 양극은 비교예 2보다 양극 활물질의 입도가 크고, 비교예 4보다 분산제 함량이 적으므로 양극 활물질층의 탈리가 발생하지 않음을 확인할 수 있다.
리튬 인산철의 평균 입경 D50이 1.5 ㎛ 미만이면서, 동시에 양극 활물질층 내에서 분산제가 0.9중량%를 초과하는 비교예 2 및 4의 양극은 양극 접착력이 현저하게 저하되어, 압연 공정 과정에서 비교예 2의 양극 활물질층은 집전체로부터 전면 탈리되고, 비교예 4의 양극 활물질층은 집전체로부터 부분 탈리되었다. 예컨대, 도 5는 비교예 4의 양극 슬러리 조성물을 이용하여 형성된 양극이 압연 후 부분 탈리된 상태를 보여주는 사진으로써, 비교예 4의 양극 활물질층은 도시된 바와 같이 집전체로부터 부분 탈리되었다. 따라서, 비교예 2 및 4의 양극 및 리튬 이차전지는 양극 접착력, 양극 저항, 초기 셀 저항, 100 cycle 후 셀 저항의 측정 자체가 불가능하였다.
한편, 실시예 1의 양극은 실시예 2의 양극보다 높은 양극 접착력 및 낮은 저항을 가지는 것을 확인할 수 있다. 또한, 실시예 1의 양극을 사용한 리튬 이차전지는 실시예 2의 양극을 사용한 리튬 이차전지보다 더 낮은 초기 셀 저항 및 100 cycle 후 셀 저항을 가짐을 확인할 수 있다.

Claims (14)

  1. 양극 활물질, 도전재, 바인더, 분산제 및 용매를 포함하는 양극 슬러리 조성물로서,
    상기 양극 활물질은 리튬 인산철을 포함하며,
    상기 리튬 인산철의 평균 입경 D50이 1.5㎛ 이상이고,
    상기 분산제는 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 0.2중량부 내지 0.9중량부로 포함되는 양극 슬러리 조성물.
  2. 청구항 1에 있어서,
    상기 리튬 인산철은 복수의 리튬 인산철 1차 입자들이 서로 결합되어 형성된 2차 입자 형태인 양극 슬러리 조성물.
  3. 청구항 1에 있어서,
    상기 리튬 인산철은 하기 화학식 1의 화합물인 양극 슬러리 조성물.
    [화학식 1]
    Li1+aFe1-xMx(PO4-b)Xb
    (상기 화학식 1에서, M은 Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn 및 Y 로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하고, X는 F, S 및 N 로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하며, 그리고, a, b, x는 각각 -0.5≤a≤0.5, 0≤b≤0.1, 0≤x≤0.5이다)
  4. 청구항 1에 있어서,
    상기 리튬 인산철은 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 94.8중량부 내지 98.0중량부로 포함되는 양극 슬러리 조성물.
  5. 청구항 1에 있어서,
    상기 분산제는 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 0.2중량부 내지 0.7중량부로 포함되는 양극 슬러리 조성물.
  6. 청구항 1에 있어서,
    상기 분산제는 수소화 니트릴계 부타디엔 고무인 양극 슬러리 조성물.
  7. 청구항 1에 있어서,
    상기 바인더는 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 1중량부 내지 4중량부로 포함되는 양극 슬러리 조성물.
  8. 청구항 1에 있어서,
    상기 양극 슬러리 조성물의 고형분 함량은 40 중량% 내지 75 중량%인 양극 슬러리 조성물.
  9. 양극 집전체; 및 상기 양극 집전체의 적어도 일면에 위치하는 양극 활물질층;을 포함하고,
    상기 양극 활물질층은,
    양극 활물질, 도전재, 바인더 및 분산제를 포함하며,
    상기 양극 활물질은 리튬 인산철을 포함하며,
    상기 리튬 인산철의 평균 입경 D50은 1.5㎛ 이상이고,
    상기 분산제는 상기 양극 활물질층 내에 0.2 중량% 내지 0.9 중량%로 포함되는 양극.
  10. 청구항 9에 있어서,
    90°peel test로 측정되는 양극 접착력이 32 gf/20mm 이상인 것인 양극.
  11. 청구항 9에 있어서,
    상기 양극의 두께 방향 단위 면적당 저항 값은 9 Ω·cm2 이하인 양극.
  12. 청구항 9에 있어서,
    상기 양극 활물질층은, 상기 양극 집전체와 직접 대면하는 양극.
  13. 양극, 음극, 분리막 및 전해질을 포함하고,
    상기 양극은 양극 활물질층 내에 양극 활물질, 도전재, 바인더 및 분산제를 포함하고,
    상기 양극 활물질은 리튬 인산철을 포함하며,
    상기 리튬 인산철의 평균 입경 D50은 1.5㎛ 이상이고,
    상기 분산제는 상기 양극 활물질층 내에 0.2 중량% 내지 0.9 중량%로 포함되는 리튬 이차전지.
  14. 청구항 1의 양극 슬러리 조성물을 교반 및 혼합하는 과정;
    양극 집전체 상에 양극 슬러리 조성물을 도포한 후 건조 및 압연하는 과정을 포함하는 양극의 제조방법.
PCT/KR2022/020839 2021-12-24 2022-12-20 양극 슬러리 조성물, 이를 이용하여 제조된 양극 및 리튬 이차 전지 WO2023121224A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023564602A JP2024518748A (ja) 2021-12-24 2022-12-20 正極スラリー組成物、それを用いて製造された正極およびリチウム二次電池
CN202280029201.7A CN117203793A (zh) 2021-12-24 2022-12-20 正极浆料组合物、使用其制造的正极和锂二次电池
CA3218267A CA3218267A1 (en) 2021-12-24 2022-12-20 Positive electrode slurry composition, positive electrode manufactured using same, and lithium secondary battery
EP22911857.5A EP4318656A1 (en) 2021-12-24 2022-12-20 Positive electrode slurry composition, positive electrode manufactured using same, and lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210187190 2021-12-24
KR10-2021-0187190 2021-12-24
KR10-2022-0178086 2022-12-19
KR1020220178086A KR20230098028A (ko) 2021-12-24 2022-12-19 양극 슬러리 조성물, 이를 이용하여 제조된 양극 및 리튬 이차 전지

Publications (1)

Publication Number Publication Date
WO2023121224A1 true WO2023121224A1 (ko) 2023-06-29

Family

ID=86897357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020839 WO2023121224A1 (ko) 2021-12-24 2022-12-20 양극 슬러리 조성물, 이를 이용하여 제조된 양극 및 리튬 이차 전지

Country Status (5)

Country Link
US (1) US20230207798A1 (ko)
EP (1) EP4318656A1 (ko)
JP (1) JP2024518748A (ko)
CA (1) CA3218267A1 (ko)
WO (1) WO2023121224A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237521A (zh) * 2010-04-29 2011-11-09 上海比亚迪有限公司 一种锂离子电池正极浆料、正极及电池
KR20140066414A (ko) * 2012-11-23 2014-06-02 한국화학연구원 리튬인산철 양극 활물질의 제조방법, 이에 따라 제조되는 리튬인산철 양극 활물질 및 이에 따라 제조되는 2차 전지
KR20180107759A (ko) * 2017-03-22 2018-10-02 주식회사 엘지화학 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR20180108463A (ko) * 2017-03-23 2018-10-04 주식회사 엘지화학 이차전지 양극용 슬러리의 제조방법
KR20190061011A (ko) * 2016-10-11 2019-06-04 쥐알에스티 인터내셔널 리미티드 리튬이온전지용 캐소드 슬러리

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237521A (zh) * 2010-04-29 2011-11-09 上海比亚迪有限公司 一种锂离子电池正极浆料、正极及电池
KR20140066414A (ko) * 2012-11-23 2014-06-02 한국화학연구원 리튬인산철 양극 활물질의 제조방법, 이에 따라 제조되는 리튬인산철 양극 활물질 및 이에 따라 제조되는 2차 전지
KR20190061011A (ko) * 2016-10-11 2019-06-04 쥐알에스티 인터내셔널 리미티드 리튬이온전지용 캐소드 슬러리
KR20180107759A (ko) * 2017-03-22 2018-10-02 주식회사 엘지화학 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR20180108463A (ko) * 2017-03-23 2018-10-04 주식회사 엘지화학 이차전지 양극용 슬러리의 제조방법

Also Published As

Publication number Publication date
JP2024518748A (ja) 2024-05-02
CA3218267A1 (en) 2023-06-29
EP4318656A1 (en) 2024-02-07
US20230207798A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2018097562A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2021029652A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019151834A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019022422A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019225969A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020116858A1 (ko) 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2018174616A1 (ko) 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2021125873A1 (ko) 리튬 이차전지용 양극, 상기 양극을 포함하는 리튬 이차전지
WO2019017643A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018174619A1 (ko) 이차전지 양극용 슬러리 조성물의 제조방법, 이를 이용하여 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019177403A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지용 음극
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020149683A1 (ko) 이차전지용 음극 활물질, 이의 제조방법, 이를 포함하는 이차전지용 음극 및 리튬 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019078506A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020149685A1 (ko) 이차전지용 음극 활물질의 제조방법, 이차전지용 음극 및 이를 포함하는 리튬 이차전지
KR20230098028A (ko) 양극 슬러리 조성물, 이를 이용하여 제조된 양극 및 리튬 이차 전지
WO2019066585A1 (ko) 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2023121224A1 (ko) 양극 슬러리 조성물, 이를 이용하여 제조된 양극 및 리튬 이차 전지
WO2021075830A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질
WO2022139348A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2023121397A1 (ko) 양극 및 이를 이용하여 제조된 리튬 이차전지
WO2023121275A1 (ko) 양극 슬러리 조성물, 이를 이용하여 제조된 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911857

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317068697

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 202280029201.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023564602

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3218267

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022911857

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022911857

Country of ref document: EP

Effective date: 20231027

NENP Non-entry into the national phase

Ref country code: DE