WO2017047998A1 - 리튬 황 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 황 전지 - Google Patents
리튬 황 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 황 전지 Download PDFInfo
- Publication number
- WO2017047998A1 WO2017047998A1 PCT/KR2016/010187 KR2016010187W WO2017047998A1 WO 2017047998 A1 WO2017047998 A1 WO 2017047998A1 KR 2016010187 W KR2016010187 W KR 2016010187W WO 2017047998 A1 WO2017047998 A1 WO 2017047998A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sulfur
- carbon
- positive electrode
- lithium
- active material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention includes sulfur in the conductive material as well as the active material, thereby increasing the sulfur content in the electrode, to ensure a high electrical conductivity, to expand the operating voltage range and to secure additional battery capacity, a lithium sulfur battery positive electrode, a method of manufacturing the same And it relates to a lithium sulfur battery comprising the same.
- lithium sulfur batteries using sulfur-based materials as positive electrode active materials have an energy density of 2,800 Wh / kg (1,675 mAh / g), which is very high compared to other batteries, and the sulfur-based materials used as positive electrode active materials have abundant resources. Since it is attracting attention as an inexpensive and environmentally friendly material, it is attracting attention due to the advantages that the supply of the active material is easy and the environment is possible and the expression of high energy density is possible.
- Conventional lithium sulfur batteries generally use sulfur-based compounds having sulfur-sulfur bonds (SS bonds) as positive electrode active materials, and alkali metals such as lithium or metal ions such as lithium ions may be inserted / deinserted. Since the carbonaceous material is used as the negative electrode active material, the SS bond breaks during the reduction reaction (discharge), the oxidation number of S decreases, and the oxidation rate of S increases during the oxidation reaction (charging), and the SS bond resumes. The formed redox reaction is used to store and generate electrical energy.
- the conventional lithium sulfur battery has a problem in that lithium polysulfide (Li 2 Sx, x> 1) formed at the positive electrode is lost out of the positive electrode reaction region during the charge / discharge reaction, thereby deteriorating the life characteristics.
- lithium polysulfide Diffusion of lithium polysulfide leaves the electrochemical reaction zone of the anode, reducing the amount of sulfur participating in the electrochemical reaction at the anode, resulting in capacity loss.
- the lithium polysulfide reacts with the lithium metal anode due to the continuous charge / discharge reaction, and thus lithium sulfide (Li 2 S) is fixed on the surface of the lithium metal, thereby lowering the reaction activity and deteriorating dislocation characteristics.
- Another object of the present invention is to provide a method for producing the positive electrode for a lithium sulfur battery.
- Still another object of the present invention is to provide a lithium sulfur battery including the positive electrode for lithium sulfur battery.
- a positive electrode for a lithium sulfur battery comprising a positive electrode active material comprising a sulfur-carbon composite, and a conductive material containing a sulfur-carbon compound.
- the sulfur-carbon compound may be a compound including a chemical bond of sulfur (S) -carbon (C).
- the electrical conductivity of the conductive material including the sulfur-carbon compound may be 0.01 to 0.05 S / cm.
- the sulfur-carbon composite may have a form in which carbon particles surround a surface of sulfur particles.
- the sulfur-carbon composite may have a size of 1 to 5 ⁇ m, the size of the sulfur particles may be 1 to 5 ⁇ m, and the size of the carbon particles may be 10 to 50 nm.
- the cathode active material layer may include 2 to 25 wt% of the sulfur-carbon compound based on the total weight of the cathode active material layer.
- forming a positive electrode active material comprising a sulfur-carbon composite forming a conductive material including a sulfur-carbon compound, and a positive electrode comprising the sulfur-carbon composite It provides a method for producing a lithium sulfur battery positive electrode comprising the step of forming a positive electrode active material layer by mixing an active material and a conductive material containing the sulfur-carbon compound.
- the sulfur-carbon compound may be prepared by mixing a sulfur precursor and a carbon precursor, and heat treating the mixture.
- the step of heat-treating the mixture may be performed for 1 to 12 hours at a temperature of 300 to 600 °C under an inert gas atmosphere.
- the sulfur-carbon composite may be prepared by mixing sulfur particles and carbon particles, followed by ball milling.
- the lithium sulfur battery of the present invention can overcome the low battery capacity due to the decrease in sulfur density, thereby improving the capacity characteristics and battery life characteristics.
- FIG. 1 is a schematic view showing a positive electrode of a lithium sulfur battery including a sulfur-carbon composite and a sulfur-carbon compound according to an embodiment of the present invention.
- FIG. 2 is a schematic view of a lithium sulfur battery according to an embodiment of the present invention.
- SEM scanning electron microscope
- Figure 6 shows the life characteristics of the lithium sulfur battery measured in Experimental Example 2 of the present invention.
- a sulfur battery refers to any battery including elemental sulfur (S8), a sulfur-based compound, or a mixture thereof as a cathode active material.
- S8 elemental sulfur
- a lithium sulfur battery, a sodium sulfur battery, or a magnesium sulfur battery may be mentioned.
- a description will be given mainly of a lithium sulfur battery as the sulfur battery, but the present invention is not limited thereto.
- the positive electrode for a lithium sulfur battery includes a positive electrode active material including a sulfur-carbon composite, and a conductive material including a sulfur-carbon compound.
- the positive electrode for a lithium sulfur battery includes a sulfur-carbon composite as a positive electrode active material, and further includes a sulfur-carbon compound as a conductive material, thereby improving capacity characteristics of the battery and improving battery life.
- 1 is a schematic view showing a positive electrode of a lithium sulfur battery including a sulfur-carbon composite active material and a sulfur-carbon compound conductive material according to an embodiment of the present invention.
- 2 is a schematic diagram schematically showing a lithium sulfur battery according to an embodiment of the present invention. 1 and 2 are only examples for describing the present invention, but the present invention is not limited thereto.
- the lithium sulfur battery 100 includes a positive electrode 1 and a negative electrode 2 disposed opposite to each other, a separator 3 and an electrolyte (not shown) interposed between the positive electrode 1 and the negative electrode 2. Include.
- the positive electrode 1 is positioned on, for example, a positive electrode current collector and the positive electrode current collector, and includes a positive electrode active material and a conductive material, and optionally a binder. It may include.
- the positive electrode current collector may be preferably foamed aluminum, foamed nickel, or the like having excellent conductivity.
- the positive electrode active material layer may include a sulfur-carbon composite as a positive electrode active material, which has the advantage of increasing the dispersibility of sulfur due to carbon having a high specific surface area and reducing the sulfur particles, thereby expanding the reaction surface.
- the sulfur-carbon composite may be a mixture of sulfur particles and carbon particles.
- the sulfur particles and carbon particles may be mixed in a weight ratio of 9.9: 0.1 to 0.1: 9.9 to form a sulfur-carbon composite, and more preferably in a weight ratio of 9: 1 to 7: 3 to mix the sulfur-carbon composite. Can be formed.
- the positive electrode active material may include 70% by weight or more, preferably 70 to 90% by weight of the positive electrode active material based on the total weight of the positive electrode active material layer.
- 70% by weight or more preferably 70 to 90% by weight of the positive electrode active material based on the total weight of the positive electrode active material layer.
- the size of the sulfur-carbon composite is preferably in the range of 1 to 5 ⁇ m.
- the sulfur-carbon composite is mainly composed of a form in which relatively small carbon particles surround a surface of large sulfur particles, as shown schematically in FIG. 1, and sulfur particles constituting the sulfur-carbon composite.
- the size of is in the range of 1 to 5 ⁇ m ⁇ m
- the size of the carbon particles constituting the sulfur-carbon composite is in the range of 10 to 50 nm.
- the sulfur-carbon composite may include a complex of various particle sizes and shapes.
- the sulfur-carbon composite may be prepared by mixing the sulfur particles and carbon particles, and after mixing, homogenizing or post-processing the particle size.
- the step of mixing the sulfur particles and carbon particles may include a step of mixing them in more detail, then using a ball milling process, the ball milling process may be carried out under the conditions of 100 to 1,000 rpm have. If the ball milling process is carried out under the conditions of 100 rpm or less, there may be a disadvantage in that the process time required for the mixing process becomes long, and if the condition exceeds 1,000 rpm, it may cause a problem that it is difficult to control the particle size. .
- the positive electrode active material layer is a conductive material for allowing electrons to move smoothly in the positive electrode 1 together with the positive electrode active material, and a binder for increasing the binding force between the positive electrode active material or between the positive electrode active material and the positive electrode current collector. It may further include.
- the conductive material may include a sulfur-carbon compound.
- the sulfur-carbon compound is an electrically conductive compound including a chemical bond of sulfur (S) -carbon (C), and may be selected from CS, CS2, C3S2, H2CS3, H2CS4, and mixtures thereof, but is not limited thereto. Any material can be used as long as the material is chemically bonded with carbon and sulfur.
- the carbon precursor included in the sulfur-carbon compound may be a carbon-based material such as carbon black, acetylene black, ketjen black, denka black, super P, carbon nanotube (CNT); Or conductive polymers such as polyaniline, polythiophene, polyacetylene, polypyrrole; Alternatively, carbon precursors such as polyacrylonitrile (PAN), polyvinyl alcohol, cellulose, phenol, phenol, pitch, and the like may be used.
- PAN polyacrylonitrile
- PAN polyvinyl alcohol
- cellulose cellulose
- phenol phenol
- pitch and the like
- the sulfur-carbon compound may be prepared through a process of mixing the carbon precursor and the sulfur precursor in detail, a process of heat treating the mixture, and optionally a process of pulverizing the heat treatment product.
- the sulfur precursor may be mixed in an amount of 1 to 1000 parts by weight based on 1 part by weight of the carbon precursor. More preferably, the sulfur precursor may be mixed in an amount of 1 to 100 parts by weight based on 1 part by weight of the carbon precursor.
- the battery capacity can be reduced because the sulfur-based conductive material does not smoothly compensate for the sulfur content in the sulfur-carbon composite active material.
- the content of the sulfur precursor is more than 1000 parts by weight, a problem may occur in which the carbon precursor is not uniformly reacted, and the carbon and sulfur are chemically bonded to each other, thereby lowering the electrical conductivity of the compound and losing the characteristics as a conductive material.
- the heat treatment process may be performed under an inert gas atmosphere for 1 to 12 hours at a temperature of 300 to 600 °C.
- the energy required for the coupling reaction of sulfur-carbon compound may be insufficient, when the heat treatment process exceeds 600 °C, 12 hours, sulfur gradually By evaporation and evaporation, the content of sulfur in the compound may rather be reduced.
- the inert gas of the heat treatment process may be more preferably selected from nitrogen, argon, helium, and neon, at a rate of 1 to 50 °C / min to the heat treatment temperature while supplying the inert gas at 100 to 1,000 sccm It can heat-process by heating up.
- the conductive material including the sulfur-carbon compound prepared by the above method may take the form of spherical particles having a particle size of 1 to 5 ⁇ m as shown in the scanning electron microscope (SEM) image of FIG. 3, which is sulfur in FIG. 1. It may be as shown schematically in the image of the carbon compound conductive material.
- the electrical conductivity of the sulfur-carbon compound conductive material is 0.010 to 0.099 S / cm, more preferably 0.01 to 0.05 S / cm when analyzed by electrochemical impedance spectroscopy (EIS).
- the conductive material may be included in 2 to 25% by weight based on the total weight of the positive electrode active material layer.
- the content of the conductive material is less than 2% by weight, the effect of increasing the conductivity of the battery due to the addition of the conductive material may be relatively low.
- the content of the conductive material is more than 25% by weight, the content of the positive electrode active material may be relatively low, thereby deteriorating capacity characteristics.
- the conductive material of the positive electrode active material layer may be used by further mixing the other conductive material having a small specific surface area.
- the conductive material having a small specific surface area may include carbon-based materials such as carbon black, acetylene black, ketjen black, denka black, super P, and carbon nanotubes (CNT); Or conductive polymers such as polyaniline, polythiophene, polyacetylene, polypyrrole; Or carbon precursors such as polyacrylonitrile (PAN), polyvinylalchol, cellulose, phenol, phenol, pitch, etc .; Or a mixture of these with sulfur and carbonized to produce a sulfur-carbon compound.
- carbon-based materials such as carbon black, acetylene black, ketjen black, denka black, super P, and carbon nanotubes (CNT); Or conductive polymers such as polyaniline, polythiophene, polyacetylene, polypyrrole; Or carbon precursors such as polyacrylonitrile (PAN), polyviny
- the binder serves to paste the positive electrode active material, to mutually bond between the active materials, to mutually bond between the active material and the conductive material, and to bond the active material to the current collector.
- the binder may be poly (vinyl acetate), polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, alkylated polyethylene oxide, crosslinked polyethylene oxide, polyvinyl ether, poly (methyl methacrylate), polyvinyl Copolymers of lithium fluoride, polyhexafluoropropylene and polyvinylidene fluoride (trade name: Kynar), poly (ethyl acrylate), polytetrafluoroethylene, polyvinylchloride, polyacrylonitrile, polyvinylpyridine, Polystyrene, derivatives thereof, blends, copolymers and the like can be used.
- the binder may be included in 5 to 20% by weight based on the total weight of the positive electrode active material layer.
- the content of the binder is less than 5% by weight, the effect of improving the binding strength between the positive electrode active material or between the positive electrode active material and the positive electrode current collector or between the positive electrode active material and the conductive material is insignificant. There is a possibility that the capacity characteristic is lowered due to the relatively small amount.
- the positive electrode 1 as described above may be manufactured according to a conventional method. Specifically, a positive electrode active material forming composition prepared by mixing a positive electrode active material, a conductive material, and a binder on an organic solvent is coated on a positive electrode current collector. After drying and optionally rolling.
- the organic solvent may uniformly disperse the positive electrode active material, the binder and the conductive material, it is preferable to use an easily evaporated. Specifically, acetonitrile, methanol, ethanol, tetrahydrofuran, water, isopropyl alcohol, etc. are mentioned.
- the negative electrode 2 reacts with lithium metal and lithium alloy as a negative electrode active material, a material capable of reversibly intercalating or deintercalating lithium ions, and lithium ions. It may include those selected from the group consisting of a material capable of reversibly forming a lithium-containing compound.
- An example of a material capable of reversibly intercalating / deintercalating the lithium ions is a carbon material, and any carbon-based negative electrode active material generally used in a lithium sulfur battery may be used. Carbon, amorphous carbon or these can be used together.
- representative examples of the material capable of reacting with the lithium ions to form a lithium-containing compound reversibly include tin oxide (SnO 2), titanium nitrate, and silicon (Si), but are not limited thereto.
- the alloy of the lithium metal may specifically be an alloy of lithium with a metal of Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, or Cd.
- the negative electrode 2 may further include a conductive material for smoothly moving electrons in the negative electrode 2 together with the negative electrode active material.
- the conductive material may be a carbon-based material such as carbon black, acetylene black, or ketjen black; Or a conductive polymer such as polyaniline, polythiophene, polyacetylene, polypyrrole, and may be included in an amount of 5 to 20 wt% based on the total weight of the negative electrode active material layer. If the content of the conductive material is less than 5% by weight, the conductivity improvement effect of the use of the conductive material is insignificant, whereas if the content of the conductive material exceeds 20% by weight, the content of the negative electrode active material may be relatively low, thereby reducing capacity characteristics.
- the negative electrode 2 may further include a binder that selectively plays a role in the pasting of the negative electrode active material, improving the binding force between the active material or the active material and the current collector, and the buffering effect on the expansion and contraction of the active material together with the negative electrode active material. It may include.
- the binder is the same as described above for the binder constituting the positive electrode active material layer.
- the negative electrode 2 may further include a negative electrode current collector for supporting the negative electrode active layer including the negative electrode active material, the conductive material, and the binder.
- the negative electrode current collector may be specifically selected from the group consisting of copper, aluminum, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof.
- the stainless steel may be surface treated with carbon, nickel, titanium, or silver, and an aluminum-cadmium alloy may be used as the alloy.
- calcined carbon, a nonconductive polymer surface-treated with a conductive material, or a conductive polymer may be used.
- the cathode 2 may be a thin film of lithium metal.
- the separator 3 is a physical separator having a function of physically separating an electrode, and can be used without particular limitation as long as it is generally used as a separator in a lithium sulfur battery. It is desirable to have low resistance to ion migration and excellent electrolyte-moisture capability.
- a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, ethylene / methacrylate copolymer, etc. It may be used as a lamination or or a conventional porous non-woven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers of high melting point, etc. may be used, but is not limited thereto.
- the electrolyte includes a non-aqueous organic solvent and a lithium salt.
- the non-aqueous organic solvent may be a polar solvent such as an aryl compound, bicyclic ether, acyclic carbonate, sulfoxide compound, lactone compound, ketone compound, ester compound, sulfate compound, sulfite compound, and the like.
- a polar solvent such as an aryl compound, bicyclic ether, acyclic carbonate, sulfoxide compound, lactone compound, ketone compound, ester compound, sulfate compound, sulfite compound, and the like.
- the non-aqueous organic solvent may be 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, dioxolane (Dioxolane, DOL), 1,4-dioxane, tetra Hydrofuran, 2-methyltetrahydrofuran, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), ethyl propyl carbonate, dipropyl carbonate, butyl ethyl carbonate, ethyl Propanoate (EP), toluene, xylene, dimethyl ether (DME), diethyl ether, triethylene glycol monomethyl ether (TEFME), diglyme, tetraglyme, hexamethyl phosph Hexamethyl phosphoric triamide, gamma butyrolactone (GBL), acet
- a mixed solvent of triethylene glycol monomethyl ether / dioxolane / dimethyl ether may be more preferable.
- the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
- the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2) 2 (Lithium bis (perfluoroethylsulfonyl) imide, BETI), LiN (CF 3 SO 2) 2 (Lithium bis (Trifluoromethanesulfonyl) imide, LiTFSI), LiN (C a F 2a + 1 SO 2 ) (C b F 2b + 1 SO 2 ) (where a and b are natural numbers, preferably 1 ⁇ a ⁇ 20 and 1 ⁇ b ⁇ 20), lithium poly [4,4 ′-
- the lithium salt may be included in a concentration of 0.6 to 2 M in the electrolyte. If the concentration of the lithium salt is less than 0.6 M, the conductivity of the electrolyte is lowered, and the performance of the electrolyte is lowered. If the concentration of the lithium salt is higher than 2 M, the viscosity of the electrolyte is increased, thereby reducing the mobility of lithium ions.
- the electrolyte further includes additives (hereinafter, referred to as 'other additives') that can be generally used in the electrolyte for the purpose of improving the life characteristics of the battery, suppressing the reduction of the battery capacity, and improving the discharge capacity of the battery. can do.
- additives hereinafter, referred to as 'other additives'
- the lithium sulfur battery 100 includes not only a sulfur-carbon composite active material but also a sulfur-carbon compound conductive material, so that the charge / discharge capacity characteristics are improved and the electrode life is improved.
- Portable devices such as mobile phones, notebook computers, digital cameras and camcorders required, electric vehicle fields such as hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), and medium and large energy Useful for storage systems.
- HEVs hybrid electric vehicles
- PHEVs plug-in hybrid electric vehicles
- Sulfur powder is mixed with the carbon powder in a weight ratio of 9: 1 to form a composite, and more specifically, the sulfur powder (elemental sulfur, S 8 , average particle size: 5 ⁇ m) and the carbon powder (carbon black (Super P)) After mixing in a weight ratio of 9: 1, sulfur-carbon composites were prepared by a ball milling method at 500 rpm for 1 hour.
- sulfur-carbon compound unlike the composite in which sulfur and carbon are physically mixed, sulfur is chemically bonded to carbon and thus exhibits different characteristics from the composite when measuring thermal properties.
- thermogravimetric analyzer TGA
- the sulfur-carbon compound of Preparation Example 2 was about 300 ° C. in the temperature range in which sulfur evaporated in the sulfur-carbon composite. It was confirmed that evaporation did not appear.
- Lithium bis (trifluoromethanesulfonyl) at a concentration of 1 M in an organic solvent consisting of tetraethylene glycol dimethyl ether (TEGDME) / dioxolane (DOL) / dimethoxyethane (DME) (mixed volume ratio 1/1/1)
- TEGDME tetraethylene glycol dimethyl ether
- DOL dioxolane
- DME dimethoxyethane
- An electrolyte was prepared by dissolving imide (LiTFSI) and lithium nitrate (LiNO 3 ) at a concentration of 0.1 M.
- a positive electrode active material, a conductive material, and a binder were mixed at a ratio of 75: 20: 5 and mixed using a ball mill to prepare a composition for forming a positive electrode active material layer.
- the sulfur-carbon composite of Preparation Example 1 was used as the cathode active material
- the sulfur-carbon compound of Preparation Example 2 was used as the conductive material
- SBR / CMC was used as the binder in a ratio of 1: 1.
- the active material: conductive material: binder was 75: 20: 5 by weight.
- the prepared positive electrode active material layer-forming composition was applied to an aluminum current collector and dried to prepare a positive electrode 1 (energy density of positive electrode: 1.0 mAh / cm 2).
- a lithium metal having a thickness of 150 ⁇ m was used as the negative electrode 2.
- An electrode assembly is manufactured by interposing a separator 3 of porous polyethylene coated with a graphene film between the prepared anode and the cathode, the electrode assembly is placed in a case, and the prepared electrolyte is injected into the case. To produce a lithium sulfur battery.
- Comparative example 1 Reference lithium sulfur battery without sulfur-carbon compound conductive material>
- a reference lithium sulfur battery was manufactured in the same manner as in Example 1, except that Denka black was used instead of the sulfur-carbon compound conductive material of Preparation Example 2.
- Comparative example 2 metal sulfide As a conductive material Used Lithium Sulfur Battery>
- a lithium sulfur battery was manufactured in the same manner as in Example 1, except that CoS 2 , which is a metal sulfide, was used instead of the sulfur-carbon compound conductive material of Preparation Example 2.
- the capacity and charging efficiency were measured by repeatedly measuring charging and discharging by measuring 0.1 C discharge and 0.1 C charging at 25 ° C. for the batteries manufactured in Comparative Examples and Examples. Is shown in FIG. 5.
- Comparative Example 1 reference electrode
- Comparative Example 2 using a metal sulfide CoS 2 as the conductive material through FIG. 5
- the operating voltage range is about 1.8 to 2.5 V
- the sulfur-carbon compound conductive material it could be seen that the operating voltage range was increased to 1 to 3 V, indicating a higher charge / discharge capacity.
- Comparative Example 1 reference electrode
- Denka black as a conductive material
- CoS 2 as a metal sulfide
- the present invention relates to a positive electrode for a lithium sulfur battery, a method for manufacturing the same, and a lithium sulfur battery including the same.
- the positive electrode for a lithium sulfur battery includes a positive electrode active material including a sulfur-carbon composite, and a sulfur-carbon compound.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 리튬 황 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 황 전지에 관한 것으로서, 상기 리튬 황 전지용 양극은 황-탄소 복합체를 포함하는 양극 활물질, 및 황-탄소 화합물을 포함한다. 본 발명의 리튬 황 전지는 황 밀도의 저하로 인한 낮은 전지용량을 극복할 수 있어, 용량 특성 및 전지 수명 특성이 향상된다.
Description
본 출원은 2015년 9월 14일자 한국 특허 출원 제10-2015-0129704호 및 2016년 9월 9일자 한국 특허 출원 제10-2016-0116285호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 활물질 뿐 아니라 도전재에도 황이 포함됨으로써, 전극 내 황 함량을 높일 수 있고, 높은 전기 전도도를 확보하여, 작동 전압 범위의 확대 및 추가 전지 용량의 확보가 가능한 리튬 황 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 황 전지에 관한 것이다.
최근 휴대 전자기기 분야와 전기 자동차 분야의 급속한 발전에 따라, 전자 제품, 통신 기기의 소형화, 경량화 및 고성능화가 급속히 진전됨에 따라 이들 제품의 전원으로 사용할 수 있는 고에너지 밀도를 갖는 이차 전지에 대한 요구가 커지고 있다.
이러한 이차 전지 중 황계 물질을 양극 활물질로 사용하는 리튬 황 전지는 에너지 밀도가 2,800 Wh/kg(1,675 mAh/g)으로 다른 전지에 비하여 매우 높고, 또한 양극 활물질로 사용되는 황계 물질이 자원량이 풍부하여 값이 싸고 환경친화적인 물질로서 주목받고 있기 때문에, 활물질의 수급이 용이하면서도 환경친화적이고 고에너지 밀도의 발현이 가능한 장점으로 인해 주목을 받고 있다.
종래 리튬 황 전지는 보통 황-황 결합(Sulfur-Sulfur bond, S-S 결합)을 갖는 황 계열 화합물을 양극 활물질로 사용하고, 리튬과 같은 알칼리 금속, 또는 리튬 이온 등과 같은 금속 이온의 삽입/탈삽입이 일어나는 탄소계 물질을 음극 활물질로 사용하기 때문에, 환원 반응 시(방전시) S-S 결합이 끊어지면서, S의 산화수가 감소하고, 산화 반응 시(충전시) S의 산화수가 증가하면서, S-S 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기적 에너지를 저장 및 생성한다.
2Li + S8 (고체) ↔ Li2S8 (용액)
2Li + Li2S8 (용액) ↔ 2Li2S4 (용액)
2Li + Li2S4 (용액) ↔ 2Li2S2 (용액)
2Li + Li2S2 (용액) ↔ 2Li2S (고체 침전물)
이러한 종래의 리튬 황 전지는 충/방전 반응 중에 양극에서 형성된 리튬 폴리설파이드(Li2Sx, x>1)가 양극 반응 영역 밖으로 유실되는 현상이 발생되어 수명 특성이 저하되는 문제점을 가지고 있다.
리튬 폴리설파이드가 확산되면 양극의 전기 화학 반응 영역을 벗어나게 되어, 양극에서 전기화학 반응에 참여하는 유황의 양이 감소하게 되고, 결국 용량감소(capacity loss)를 초래하게 된다. 그리고 지속적인 충/방전 반응으로 리튬 폴리설파이드가 리튬 금속 음극과 반응하여 리튬 금속 표면에 리튬 설파이드(Li2S)가 고착됨으로 인해 반응 활성도가 낮아지고 전위 특성이 나빠지는 문제점이 있다.
이러한 문제점을 해결하기 위하여, 종래에는 활물질인 황을 벌크 형태로 첨가하는 방법이 제안되었으나, 이는 반응 초기에 반응이 불균일하고 또한 분리막이 찢어짐으로 인한 내부 쇼트 발생 가능성이 증가되는 단점이 있었다.
또한, 카본 쉬트에 활물질 황을 프리 스탠딩(free-standing) 형태로 형성 후 쉬트를 여러 겹으로 적층하는 방법이 제안되었으나, 이는 대량 생산 및 전지 제작공정의 적용이 어렵다는 단점이 있었다.
이외에도 용해성 폴리설파이드(Li2Sx, 4≤x≤8) 형태로 활물질을 첨가하는 방법이 제안되었으나, 이는 용해성 폴리설파이드의 합성 공정 시간이 오래 걸리고, 첨가할 수 있는 활물질의 황 양이 한정적이라는 단점이 있었다.
그 밖에도 황을 함유한 전기 전도성 복합체를 양극 활물질로 사용하거나, 전극의 표면에 보호층을 부여하는 방법, 리튬 황 전지의 양극 활물질로 황의 크기를 작게 하거나, 낮은 점도 및 높은 폴리설파이드 용해도를 가지는 용매를 적용하거나, 높은 비표면적을 가지는 탄소를 첨가하여 황/탄소 복합체를 형성하는 방법 등의 다양한 시도가 이루어지고 있다.
하지만, 높은 비표면적을 가지는 탄소를 첨가하여 황/탄소 복합체를 형성하는 경우에는 황 함량은 고정된 반면, 탄소로 인하여 상대적으로 황의 밀도가 낮아지기 때문에 전지 용량에 제한이 발생하는 한계점이 있다.
[선행기술문헌
[특허문헌]
1. 일본등록특허 제5142415호
2. 대한민국 공개특허 제2015-0043407호
3. 일본 공개특허 제2015-0092449호
4. 대한민국 공개특허 제2014-0107582호
[비특허문헌]
1. J. W. Choi et al., Nano Lett. 2013, 13, 4532-4538
2. J. W. Choi et al., Adv. Funct. Mater. 2014, Vol.24, p.5359-5367
본 발명의 목적은 황 밀도의 저하로 인한 낮은 전지용량을 극복할 수 있는, 전지 용량 및 수명이 향상된 리튬 황 전지용 양극을 제공하는 것이다.
본 발명의 다른 목적은 상기 리튬 황 전지용 양극의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 리튬 황 전지용 양극을 포함하는 리튬 황 전지를 제공하는 것이다.
본 발명의 바람직한 일 실시예에 따르면, 황-탄소 복합체를 포함하는 양극 활물질, 및 황-탄소 화합물을 포함하는 도전재를 포함하는 리튬 황 전지용 양극을 제공한다.
상기 황-탄소 화합물은 황(S)-탄소(C)의 화학적 결합을 포함하는 화합물일 수 있다.
상기 황-탄소 화합물을 포함하는 도전재의 전기 전도도는 0.01 내지 0.05 S/cm일 수 있다.
상기 황-탄소 복합체는 황 입자의 표면을 탄소 입자가 둘러싸고 있는 형태를 가질 수 있다.
상기 황-탄소 복합체의 크기는 1 내지 5 ㎛이고, 상기 황 입자의 크기는 1 내지 5 ㎛이며, 상기 탄소 입자의 크기는 10 내지 50 nm일 수 있다.
본 발명의 다른 바람직한 일 실시예에 따르면, 서로 대향 배치되는 양극과 음극, 및 상기 양극과 음극 사이에 개제되는 분리막을 포함하고, 상기 양극은 황-탄소 복합체를 포함하는 양극 활물질 및 황-탄소 화합물을 포함하는 도전재를 포함하는 양극 활물질 층을 포함하는 것인 리튬 황 전지를 제공한다.
상기 양극 활물질 층은 전체 양극 활물질 층 총 중량 대비 상기 황-탄소 화합물이 2 내지 25 중량%로 포함될 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 황-탄소 복합체를 포함하는 양극 활물질을 형성하는 단계, 황-탄소 화합물을 포함하는 도전재를 형성하는 단계, 및 상기 황-탄소 복합체를 포함하는 양극 활물질과 상기 황-탄소 화합물을 포함하는 도전재를 혼합하여 양극 활물질 층을 형성하는 단계를 포함하는 리튬 황 전지용 양극의 제조방법을 제공한다.
상기 황-탄소 화합물은 황 전구체와 탄소 전구체를 혼합하는 단계, 및 상기 혼합물을 열처리하는 단계를 포함하여 제조될 수 있다.
상기 혼합물을 열처리하는 단계는 불활성 기체 분위기 하에서 300 내지 600 ℃의 온도에서 1 내지 12시간 동안 수행될 수 있다.
상기 황-탄소 복합체는 황 입자와 탄소 입자를 혼합한 후, 볼밀링하여 제조할 수 있다.
본 발명의 리튬 황 전지는 황 밀도의 저하로 인한 낮은 전지용량을 극복할 수 있어, 용량 특성 및 전지 수명 특성이 향상된다.
도 1은 본 발명의 일 실시예에 따른 황-탄소 복합체와 황-탄소 화합물을 포함하는 리튬 황 전지의 양극을 개략적으로 나타낸 모식도이다.
도 2는 본 발명의 일 실시예에 따른 리튬 황 전지의 모식도이다.
도 3은 본 발명의 제조예 2에서 합성된 황-탄소 화합물의 주사전자현미경(SEM) 이미지이다.
도 4는 본 발명의 제조예 2에서 합성된 황-탄소 화합물의 열중량분석(TGA) 측정결과이다.
도 5는 본 발명의 실험예 1에서 측정한 리튬 황 전지의 충방전 특성을 나타낸 것이다.
도 6은 본 발명의 실험예 2에서 측정한 리튬 황 전지의 수명 특성을 나타낸 것이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함한다' 또는 '가지다' 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명의 명세서에서 황 전지는 양극 활물질로 황 원소(elemental sulfur, S8), 황 계열 화합물 또는 이들의 혼합물을 포함하는 모든 전지를 의미한다. 구체적으로는 리튬 황 전지, 나트륨 황 전지 또는 마그네슘 황 전지 등을 들 수 있다. 이하에서는 상기 황 전지로 리튬 황 전지를 위주로 설명하지만, 본 발명이 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따른 리튬 황 전지용 양극은 황-탄소 복합체를 포함하는 양극 활물질, 및 황-탄소 화합물을 포함하는 도전재를 포함한다. 상기 리튬 황 전지용 양극은 양극 활물질로 황-탄소 복합체를 포함하고, 또한 황-탄소 화합물을 도전재로 더 포함함으로써 전지의 용량 특성을 향상시키고, 전지 수명을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 황-탄소 복합체 활물질과 황-탄소 화합물 도전재를 포함하는 리튬 황 전지의 양극을 개략적으로 나타낸 모식도이다. 도 2는 본 발명의 일 실시예에 따른 리튬 황 전지를 개략적으로 나타낸 모식도이다. 도 1 및 도 2는 본 발명을 설명하기 위한 일 예일 뿐, 본 발명이 이에 한정되는 것은 아니다.
이하 도 1 및 도 2를 참조하여, 본 발명의 일 실시예에 따른 리튬 황 전지를 설명한다. 상기 리튬 황 전지(100)는 서로 대향 배치되는 양극(1)과 음극(2), 상기 양극(1)과 음극(2) 사이에 개재되어 위치하는 분리막(3) 및 전해질(도시하지 않음)을 포함한다.
[양극]
상기 리튬 황 전지(100)에 있어서, 상기 양극(1)은 일 예로서, 양극 전류집전체 및 상기 양극 전류집전체 위에 위치하며, 양극 활물질 및 도전재와, 선택적으로 바인더를 포함하는 양극 활물질 층을 포함할 수 있다.
상기 양극 전류집전체는 구체적으로 우수한 도전성을 갖는 발포 알루미늄, 발포 니켈 등을 사용하는 것이 바람직할 수 있다.
또, 상기 양극 활물질 층은 양극 활물질로서 황-탄소 복합체를 포함할 수 있는데, 이는 높은 비표면적을 가지는 탄소에 의하여 황의 분산도가 증가하고, 황 입자가 작아져서 반응 표면이 확대되는 장점이 있다.
상기 황-탄소 복합체는 황 입자와 탄소 입자가 혼합된 것일 수 있다.
상기 황 입자는 구체적으로, 황 원소(elemental sulfur, S8), Li2Sn(n≥1), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n, x=2.5~50, n≥2) 등과 같은 황화합물, 또는 이들의 혼합물 등에서 선택될 수 있고, 상기 탄소 입자는 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소나노튜브(CNT), 그래핀, 흑연, 활성탄소 등일 수 있다.
상기 황 입자 및 탄소 입자는 9.9:0.1 내지 0.1:9.9의 중량비로 혼합되어 황-탄소 복합체를 형성할 수 있고, 보다 바람직하게는 9:1 내지 7:3의 중량비로 혼합되어 황-탄소 복합체를 형성할 수 있다.
상기 양극 활물질은 상기 양극 활물질 층 총 중량에 대하여 상기 양극 활물질이 70 중량% 이상, 바람직하게 70 내지 90 중량%로 포함될 수 있다. 상기 양극 활물질이 70 중량% 미만으로 포함될 경우, 양극 활물질의 부족으로 인한 전지용량의 감소가 문제점으로 부각될 수 있고, 90 중량%를 초과할 경우, 바인더 및 도전재 함량이 부족하여 균일한 양극 조성물이 형성되기 어려운 문제가 발생할 수 있다.
또한, 상기 황-탄소 복합체의 크기는 바람직하게는 1 내지 5 ㎛의 범위에 있다. 보다 자세하게는 상기 황-탄소 복합체는 상기 도 1에서 개략적으로 도시한 바와 같이 주로 큰 황 입자의 표면을 상대적으로 작은 탄소 입자가 둘러싸고 있는 형태로 구성되고 있으며, 상기 황-탄소 복합체를 구성하는 황 입자의 크기는 1 내지 5 ㎛의 크기 범위에 있고, 상기 황-탄소 복합체를 구성하는 탄소 입자의 크기는 10 내지 50 nm의 범위에 있다. 다만, 상기 황-탄소 복합체의 형태는 다양한 입도와 형태의 복합체가 포함될 수 있다.
상기 황-탄소 복합체는 상기 황 입자 및 탄소 입자를 혼합하는 단계 및 혼합 후 입자크기 균일화 또는 후처리 단계를 포함하여 제조될 수 있다.
상기 황 입자 및 탄소 입자를 혼합하는 단계는 보다 상세하게는 이들을 혼합한 후, 볼밀링 공정을 이용하여 혼합하는 단계를 포함할 수 있으며, 상기 볼밀링 공정은 100 내지 1,000 rpm의 조건에서 수행할 수 있다. 볼밀링 공정이 100 rpm 이하의 조건에서 수행될 경우, 혼합공정에 소요되는 공정시간이 길어지는 단점이 발생할 수 있으며, 1,000 rpm의 조건을 초과할 경우, 입자크기를 제어하기 어려운 문제가 발생할 수 있다.
또, 상기 양극 활물질 층은 상기한 양극 활물질과 함께 전자가 상기 양극(1) 내에서 원활하게 이동하도록 하기 위한 도전재, 및 양극 활물질간 또는 양극 활물질과 양극 전류집전체와의 결착력을 높이기 위한 바인더를 더 포함할 수 있다.
상기 도전재는 황-탄소 화합물을 포함할 수 있다. 상기 황-탄소 화합물은 황(S)-탄소(C)의 화학적 결합을 포함하는 전기 전도성 화합물로서, CS, CS2, C3S2, H2CS3, H2CS4, 및 이들의 혼합물 등에서 선택될 수 있으나, 이에 한정되지는 않고 탄소와 황이 화학적으로 결합된 소재이면 어느 것이나 사용할 수 있다.
상기 황-탄소 화합물에 포함되는 상기 탄소 전구체는 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 덴카 블랙, 슈퍼피(super P), 탄소 나노 튜브(CNT)와 같은 탄소계 물질; 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤과 같은 전도성 고분자; 또는 폴리아크릴로니트릴(Polyacrylonitrile, PAN), 폴리비닐알코올(Polyvinylalchol), 셀룰로오스(cellulose), 페놀수지(phenol), 피치(pitch) 등과 같은 탄소 전구체가 사용될 수 있다.
그리고 상기 황-탄소 화합물에 포함되는 상기 황 전구체는 황 원소(elemental sulfur, S8), Li2Sn(n≥1), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n, x=2.5~50, n≥2) 등과 같은 황화합물, 또는 이들의 혼합물 등일 수 있다.
상기 황-탄소 화합물은 보다 상세하게 상기 탄소 전구체와 황 전구체를 혼합하는 공정, 상기 혼합물을 열처리하는 공정, 및 선택적으로 상기 열처리물을 분쇄하는 공정을 거쳐 제조되는 것일 수 있다.
상기 혼합하는 공정은 탄소 전구체 1 중량부당 황 전구체를 1 내지 1000 중량부로 혼합할 수 있다. 보다 바람직하게는 탄소 전구체 1 중량부당 황 전구체를 1 내지 100 중량부로 혼합할 수 있다.
탄소 전구체 1 중량부당 황 전구체가 1 중량부 미만으로 첨가되면, 황계 도전재를 제조함으로써 황-탄소 복합체 활물질에 부족한 황 함량을 보충하는 역할을 원활하게 수행하지 못하기 때문에 전지용량이 감소될 수 있고, 황 전구체의 함량이 1000 중량부를 초과하면, 탄소 전구체와 균일하게 반응되지 않는 문제가 발생할 수 있으며, 탄소와 황이 모두 화학적으로 결합함으로써 화합물의 전기전도도가 낮아져 도전재로서의 특성을 잃을 우려가 있다.
상기 열처리 공정은 300 내지 600 ℃의 온도에서 1 내지 12시간 동안 불활성 기체 분위기 하에서 수행될 수 있다.
상기 열처리 공정이 300 ℃ 미만의 온도에서 1시간 미만으로 열처리 될 경우, 황-탄소 화합물의 결합반응에 필요한 에너지가 부족할 수 있고, 상기 열처리 공정이 600 ℃, 12시간을 초과할 경우, 황이 점차적으로 기화되어 증발함으로써 화합물 내 황의 함량이 오히려 감소할 수 있다.
또한, 상기 열처리 공정의 불활성 기체는 보다 바람직하게는 질소, 아르곤, 헬륨, 및 네온에서 선택될 수 있으며, 상기 불활성 기체를 100 내지 1,000 sccm으로 공급하면서 열처리 온도까지 1 내지 50 ℃/min의 속도로 승온하여 열처리 할 수 있다.
상기와 같은 방법으로 제조된 황-탄소 화합물을 포함하는 도전재는 도 3의 주사전자현미경(SEM) 이미지에서 보이는 바와 같이 1 내지 5 ㎛ 입도의 구형의 입자 형태를 띌 수 있으며, 이는 도 1에서 황-탄소 화합물 도전재의 이미지를 개략적으로 도시한 것과 같을 수 있다.
상기 황-탄소 화합물 도전재의 전기 전도도는 EIS(electrochemical impedance spectroscopy)로 분석하였을 때, 0.010 내지 0.099 S/cm 이고, 보다 바람직하게는 0.01 내지 0.05 S/cm 이다.
상기 도전재는 양극 활물질 층 총 중량에 대하여 2 내지 25 중량%로 포함되는 것이 바람직할 수 있다. 도전재의 함량이 2 중량% 미만일 경우, 도전재 첨가에 의한 전지 전도성 증대 효과가 상대적으로 낮을 수 있고, 25 중량%를 초과하면 양극 활물질의 함량이 상대적으로 적게 되어 용량 특성이 저하될 우려가 있다.
또한, 상기 양극 활물질 층의 도전재는 비표면적이 작은 다른 도전재를 더 혼합하여 사용할 수 있다. 상기 비표면적이 작은 도전재는 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 덴카 블랙, 슈퍼피(super P), 탄소 나노 튜브(CNT)와 같은 탄소계 물질; 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤과 같은 전도성 고분자; 또는 폴리아크릴로니트릴(Polyacrylonitrile, PAN), 폴리비닐알코올(Polyvinylalchol), 셀룰로오스(cellulose), 페놀수지(phenol), 피치(pitch) 등과 같은 탄소 전구체; 또는 이들의 혼합물을 황과 혼합하고, 탄화하여 제조한 황-탄소 화합물을 이용할 수 있다.
상기 바인더는 양극 활물질의 페이스트화, 활물질 간 상호 접착, 활물질과 도전재간의 상호 접착, 활물질과 집전체와의 접착 등의 역할을 한다. 구체적으로 상기 바인더는 폴리(비닐 아세테이트), 폴리비닐알코올, 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 알킬레이티드 폴리에틸렌옥사이드, 가교결합된 폴리에틸렌옥사이드, 폴리비닐에테르, 폴리(메틸메타크릴레이트), 폴리비닐리덴플루오라이드, 폴리헥사플루오로프로필렌과 폴리비닐리덴플루오라이드의 코폴리머(상품명 : Kynar), 폴리(에틸아크릴레이트), 폴리테트라플루오로에틸렌, 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리스티렌, 이들의 유도체, 블렌드, 코폴리머 등이 사용될 수 있다.
또한 상기 바인더는 양극 활물질 층 총 중량에 대하여 5 내지 20 중량%로 포함되는 것이 바람직할 수 있다. 바인더의 함량이 5 중량% 미만이면 바인더 사용에 따른 양극 활물질간 또는 양극 활물질과 양극 집전체간 또는 양극 활물질과 도전재간의 결착력 개선 효과가 미미하고, 반면 20 중량%를 초과하면 양극 활물질의 함량이 상대적으로 적게 되어 용량 특성이 저하될 우려가 있다.
상기와 같은 양극(1)은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 양극 활물질과 도전재 및 바인더를 유기 용매 상에서 혼합하여 제조한 양극 활물질 형성용 조성물을, 양극 전류집전체 위에 도포한 후 건조 및 선택적으로 압연하여 제조할 수 있다.
이때, 상기 유기용매로는 양극 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하다. 구체적으로는 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란, 물, 이소프로필알코올 등을 들 수 있다.
[음극]
한편, 상기 리튬 황 전지(100)에 있어서, 상기 음극(2)은 음극 활물질로서 리튬 금속 및 리튬 합금, 리튬 이온을 가역적으로 인터칼레이션 또는 디인터칼레이션할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질로 이루어진 군에서 선택되는 것을 포함할 수 있다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션 할 수 있는 물질의 한 예로는 탄소 물질로서, 리튬 황 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것이라도 사용할 수 있으며, 구체적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 또한, 상기 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질의 대표적인 예로는 산화 주석(SnO2), 티타늄 나이트레이트, 실리콘(Si) 등을 들 수 있으나 이에 한정되는 것은 아니다. 상기 리튬 금속의 합금은 구체적으로 리튬과 Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga 또는 Cd의 금속과의 합금일 수 있다.
또, 상기 음극(2)은 상기한 음극 활물질과 함께 전자가 음극(2) 내에서 원활하게 이동하도록 하기 위한 도전재를 더 포함할 수 있다.
상기 도전재는 카본 블랙, 아세틸렌 블랙, 케첸 블랙과 같은 탄소계 물질; 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤과 같은 전도성 고분자일 수 있으며, 음극 활물질 층 총 중량에 대하여 5 내지 20 중량%로 포함되는 것이 바람직할 수 있다. 도전재의 함량이 5 중량% 미만이면 도전재 사용에 따른 도전성 향상효과가 미미하고, 반면 20 중량%를 초과하면 음극 활물질의 함량이 상대적으로 적게 되어 용량 특성이 저하될 우려가 있다.
또, 상기 음극(2)은 상기한 음극 활물질과 함께 선택적으로 음극 활물질의 페이스트화, 활물질간 또는 활물질과 집전체간의 결착력 향상, 활물질의 팽창 및 수축에 대한 완충 효과 등의 역할을 하는 바인더를 더 포함할 수 있다.
구체적으로 상기 바인더는 앞서 양극 활물질 층을 구성하는 바인더를 설명한 바와 동일하다.
또, 상기 음극(2)은 상기한 음극 활물질, 도전재 및 바인더를 포함하는 음극 활성 층의 지지를 위한 음극 집전체를 더 포함할 수도 있다.
상기 음극 집전체는 구체적으로 구리, 알루미늄, 스테인레스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다. 상기 스테인레스스틸은 카본, 니켈, 티탄 또는 은으로 표면처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금이 사용될 수 있다. 그 외에도 소성 탄소, 도전재로 표면처리 된 비전도성 고분자, 또는 전도성 고분자 등이 사용될 수도 있다.
또한, 상기 음극(2)은 리튬 금속의 박막일 수도 있다.
[분리막]
상기 리튬 황 전지(100)에 있어서, 상기 분리막(3)은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상 리튬 황 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저 저항이면서, 전해질 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독 중합체, 프로필렌 단독 중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
[전해질]
상기 리튬 황 전지(100)에 있어서, 상기 전해질은 비수성 유기용매와 리튬 염을 포함한다.
상기 비수성 유기용매는 구체적으로, 아릴 화합물, 바이사이클릭 에테르, 비환형 카보네이트, 설폭사이드 화합물, 락톤 화합물, 케톤 화합물, 에스테르 화합물, 설페이트 화합물, 설파이트 화합물 등과 같은 극성 용매일 수 있다.
보다 구체적으로는 상기 비수성 유기용매는 1,2-디메톡시에탄, 1,2-디에톡시에탄, 1,2-디부톡시에탄, 디옥솔란(Dioxolane, DOL), 1,4-디옥산, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC), 에틸프로필카보네이트, 디프로필카보네이트, 부틸에틸카보네이트, 에틸프로파노에이트(EP), 톨루엔, 자일렌, 디메틸에테르(Dimethyl ether, DME), 디에틸에테르, 트리에틸렌글리콜 모노메틸에테르(Triethylene glycol monomethyl ether, TEFME), 디글라임, 테트라글라임, 헥사메틸 포스포릭 트리아마이드(Hexamethyl phosphoric triamide), 감마부티로락톤(GBL), 아세토니트릴, 프로피오니트릴, 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), N-메틸피롤리돈, 3-메틸-2-옥사졸리돈, 아세트산에스테르, 부티르산에스테르 및 프로피온산에스테르, 디메틸포름아마이드, 설포란(SL), 메틸설포란, 디메틸아세트아마이드, 디메틸설폭사이드, 디메틸설페이트, 에틸렌글리콜 디아세테이트, 디메틸설파이트, 또는 에틸렌글리콜설파이트 등을 들 수 있다.
이 중에서도 트리에틸렌 글리콜 모노메틸 에테르/디옥솔란/디메틸에테르의 혼합용매가 보다 바람직할 수 있다.
또, 상기 리튬염은 리튬 이차 전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용할 수 있다. 구체적으로 상기 리튬염으로는 LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2(Lithium bis(perfluoroethylsulfonyl)imide, BETI), LiN(CF3SO2)2(Lithium bis(Trifluoromethanesulfonyl)imide, LiTFSI), LiN(CaF2a+1SO2)(CbF2b+1SO2)(단, a 및 b는 자연수, 바람직하게는 1≤a≤20이고, 1≤b≤20임), 리튬 폴리[4,4'-(헥사플루오로이소프로필리덴)디페녹시]술포닐이미드(lithium poly[4,4'-(hexafluoroisopropylidene)diphenoxy]sulfonylimide, LiPHFIPSI), LiCl, LiI, LiB(C2O4)2 등이 사용될 수 있으며, 이중에서도 LiTFSI, BETI 또는 LiPHFIPSI 등과 같은 술포닐기-함유 이미드 리튬 화합물이 보다 바람직할 수 있다.
또, 상기 리튬염은 전해질 중 0.6 내지 2 M의 농도로 포함되는 것이 바람직할 수 있다. 리튬염의 농도가 0.6 M 미만이면 전해질의 전도도가 낮아져 전해질 성능이 저하되고, 2 M을 초과하는 경우에는 전해질의 점도가 증가하여 리튬 이온의 이동성이 감소되는 문제점이 있다.
상기 전해질은 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 일반적으로 전해질에 사용될 수 있는 첨가제(이하, '기타 첨가제'라 함)를 더 포함할 수 있다.
상기와 같이 본 발명에 따른 리튬 황 전지(100)는 황-탄소 복합체 활물질 뿐 아니라 황-탄소 화합물 도전재를 포함함으로써, 충방전 용량 특성이 개선되고, 전극 수명이 향상되었기 때문에, 빠른 충전 속도가 요구되는 휴대전화, 노트북 컴퓨터, 디지털 카메라, 캠코더 등의 휴대용 기기나, 하이브리드 전기자동차(hybrid electric vehicle, HEV), 플러그인 하이브리드 전기자동차(plug-in HEV, PHEV) 등의 전기 자동차 분야, 그리고 중대형 에너지 저장 시스템에 유용하다.
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 그러나 하기의 실시예들은 발명을 예시하기 위한 것일 뿐, 발명을 이들만으로 한정하는 것은 아니다.
[
제조예
1 : 황-탄소 복합체의 제조]
황 분말을 탄소 분말과 9:1의 중량비로 혼합하여 복합체를 형성하며, 보다 구체적으로, 상기 황 분말(elemental sulfur, S8, 평균 입도 : 5 ㎛)과 탄소 분말(카본블랙(Super P))을 9:1의 중량비로 혼합 후, 500 rpm의 조건에서 1시간 동안 볼밀링하는 방법을 통해 황-탄소 복합체를 제조하였다.
[
제조예
2 : 황-탄소 화합물의 제조]
폴리아크릴로니트릴(Polyacrylonitrile, PAN) 12.5 g 및 황(S) 50 g을 300 rpm, 12시간 동안 볼밀(ball mill) 혼합한다. 상기 혼합물을 질소를 500 sccm로 흘려넣으며 10 ℃/min의 속도로 450 ℃까지 승온시킨 상태에서 6시간 동안 열처리를 시켜 황-탄소 화합물을 형성시킨다. 상기 황-탄소 화합물은 몰타르를 이용하여 30분 동안 분말형태로 분쇄하여 황-탄소 화합물 도전재 분말을 제조하였다.
상기 제조된 황-탄소 화합물 도전재의 SEM 이미지는 도 3에 도시한 바와 같고, EIS(electrochemical impedance spectroscopy)로 측정한 전기 전도도는 0.035 S/cm이며, EA(elemental analysis)를 통해 측정한 성분은 아래 표 1과 같았다.
성분 | 황-탄소 화합물 내 함량(%) |
Sulfur | 41.50 |
Carbon | 41.56 |
Nitrogen | 15.28 |
Hydrogen | 0.68 |
상기 황-탄소 화합물의 경우, 황과 탄소가 물리적으로 혼합되어 있는 복합체와는 달리 황이 탄소와 화학적으로 결합되어 있어 열물성 측정 시 복합체와는 다른 특성을 보인다.
도 4는 상기 제조예 2에서 합성된 황-탄소 화합물의 열중량분석기(TGA) 측정결과이다. 상기 도 4와 같이 상기 제조예 2에서 제조된 황-탄소 화합물의 TGA curve를 확인하였을 때, 황-탄소 복합체에서 황이 증발되는 온도 영역인 300 ℃ 근방에서 상기 제조예 2의 황-탄소 화합물은 황의 증발(evaporation)이 나타나지 않는 것을 확인할 수 있었다.
[
제조예
3 : 리튬 황 전지의 제조]
<
실시예
>
테트라에틸렌글리콜디메틸에테르(TEGDME)/디옥솔란(DOL)/디메톡시에탄(DME)(혼합 부피비=1/1/1)로 이루어진 유기 용매에 1 M 농도의 리튬 비스(트리플루오로메탄설포닐)이미드(LiTFSI)와 0.1 M 농도의 리튬나이트레이트(LiNO3)를 용해시켜 전해질을 제조하였다.
양극 활물질과 도전재 및 바인더를 75:20:5의 비율로 혼합, 볼밀을 사용하여 믹싱하여 양극활물질층 형성용 조성물을 제조하였다. 이때 양극 활물질로는 상기 제조예 1의 황-탄소 복합체를, 도전재로는 상기 제조예 2의 황-탄소 화합물을, 바인더로는 SBR/CMC를 1:1의 비율로 사용하였으며, 혼합 비율은 중량비로 활물질:도전재:바인더가 75:20:5가 되도록 하였다. 제조한 양극활물질층 형성용 조성물을 알루미늄 집전체에 도포한 후 건조하여 양극(1)을 제조하였다(양극의 에너지 밀도: 1.0 mAh/㎠).
또, 두께 150 ㎛의 리튬 금속을 음극(2)으로 하였다.
상기 제조한 양극과 음극 사이에 그래핀 필름이 코팅된 다공성 폴리에틸렌의 분리막(3)을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 상기 제조한 전해질을 주입하여 리튬 황 전지를 제조하였다.
<
비교예
1 : 황-탄소 화합물 도전재가 없는 reference 리튬 황 전지>
상기 제조예 2의 황-탄소 화합물 도전재 대신 덴카 블랙(Denka black)을 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 reference 리튬 황 전지를 제조하였다.
<
비교예
2 : 금속 황화물을
도전재로
사용한 리튬 황 전지>
상기 제조예 2의 황-탄소 화합물 도전재 대신 금속 황화물인 CoS2를 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 황 전지를 제조하였다.
[
실험예
1 : 리튬 황 전지의 용량 특성 평가]
상기 비교예 및 실시예에서 제작된 전지에 대하여 25℃에서 0.1C 방전, 0.1C 충전하여 용량(capacity, mAh)을 측정하고, 충방전을 반복하여 측정함으로써 용량 및 충전 효율을 측정하였고, 그 결과를 도 5에 나타내었다.
상기 도 5를 통해 덴카 블랙을 도전재로 사용한 비교예 1(reference 전극)과 금속 황화물인 CoS2를 도전재로 사용한 비교예 2의 경우 작동 전압 범위가 약 1.8 ~ 2.5 V이지만, 본 발명에 따른 실시예인 황-탄소 화합물 도전재를 사용한 경우에는 1 ~ 3 V로 작동 전압 범위가 커지면서 더 높은 충/방전 용량을 나타냄을 확인할 수 있었다.
[
실험예
2 : 리튬 황 전지의 수명 특성 평가]
상기 비교예 및 실시예에서 제작된 전지에 대하여 50사이클 동안 충방전을 반복하여 측정함으로써 전지 수명 특성을 평가하였고, 그 결과를 도 6에 나타내었다.
상기 도 6에서 도시한 바와 같이 본 발명에 따른 실시예인 황-탄소 화합물 도전재를 사용한 경우, 덴카 블랙을 도전재로 사용한 비교예 1(reference 전극)과 금속 황화물인 CoS2를 도전재로 사용한 비교예 2에 비해 전지 용량이 높고, 사이클을 반복하면서도 그 감소폭이 낮아 상대적으로 전지 수명이 긴 것을 확인할 수 있었다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
[부호의 설명]
1 : 양극 2 : 음극
3 : 분리막 10 : 황
20 : 탄소 30 : 황-탄소 화합물
100 : 리튬 황 전지
본 발명은 리튬 황 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 황 전지에 관한 것으로서, 상기 리튬 황 전지용 양극은 황-탄소 복합체를 포함하는 양극 활물질, 및 황-탄소 화합물을 포함한다.
Claims (11)
- 황-탄소 복합체를 포함하는 양극 활물질, 및황-탄소 화합물을 포함하는 도전재를 포함하는 리튬 황 전지용 양극.
- 제 1항에 있어서,상기 황-탄소 화합물은 황(S)-탄소(C)의 화학적 결합을 포함하는 화합물인 것인 리튬 황 전지용 양극.
- 제 1항에 있어서,상기 황-탄소 화합물을 포함하는 도전재의 전기 전도도는 0.01 내지 0.05 S/cm인 것인 리튬 황 전지용 양극.
- 제 1항에 있어서,상기 황-탄소 복합체는 황 입자의 표면을 탄소 입자가 둘러싸고 있는 것인 리튬 황 전지용 양극.
- 제 4항에 있어서,상기 황-탄소 복합체의 크기는 1 내지 5 ㎛이고,상기 황 입자의 크기는 1 내지 5 ㎛이고,상기 탄소 입자의 크기는 10 내지 50 nm인 것인 리튬 황 전지용 양극.
- 서로 대향 배치되는 양극과 음극, 및상기 양극과 음극 사이에 개제되는 분리막을 포함하고,상기 양극은 황-탄소 복합체를 포함하는 양극 활물질 및 황-탄소 화합물을 포함하는 도전재를 포함하는 양극 활물질 층을 포함하는 것인 리튬 황 전지.
- 제 6항에 있어서,상기 양극 활물질 층은 전체 양극 활물질 층 총 중량 대비 상기 황-탄소 화합물이 2 내지 25 중량%로 포함되는 것인 리튬 황 전지.
- 황-탄소 복합체를 포함하는 양극 활물질을 형성하는 단계,황-탄소 화합물을 포함하는 도전재를 형성하는 단계, 및상기 황-탄소 복합체를 포함하는 양극 활물질과 상기 황-탄소 화합물을 포함하는 도전재를 혼합하여 양극 활물질 층을 형성하는 단계를 포함하는 리튬 황 전지용 양극의 제조방법.
- 제 8항에 있어서,상기 황-탄소 화합물은 황 전구체와 탄소 전구체를 혼합하는 단계, 및상기 혼합물을 열처리하는 단계를 포함하여 제조되는 것인 리튬 황 전지용 양극의 제조방법.
- 제 9항에 있어서,상기 혼합물을 열처리하는 단계는 불활성 기체 분위기 하에서 300 내지 600 ℃의 온도에서 1 내지 12시간 동안 수행되는 것인 리튬 황 전지용 양극의 제조방법.
- 제 8항에 있어서,상기 황-탄소 복합체는 황 입자와 탄소 입자를 혼합한 후, 볼밀링하여 제조하는 것인 리튬 황 전지용 양극의 제조방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017562732A JP6521545B2 (ja) | 2015-09-14 | 2016-09-09 | リチウム硫黄電池用正極、その製造方法及びそれを含むリチウム硫黄電池 |
EP16846819.7A EP3291338B1 (en) | 2015-09-14 | 2016-09-09 | Cathode for lithium-sulfur battery, manufacturing method therefor, and lithium-sulfur battery containing same |
US15/578,800 US20180138503A1 (en) | 2015-09-14 | 2016-09-09 | Cathode for lithium-sulfur battery, manufacturing method therefor, and lithium-sulfur battery containing same |
CN201680037899.1A CN107710463B (zh) | 2015-09-14 | 2016-09-09 | 锂-硫电池用正极、其制造方法以及包含其的锂-硫电池 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20150129704 | 2015-09-14 | ||
KR10-2015-0129704 | 2015-09-14 | ||
KR1020160116285A KR102038545B1 (ko) | 2015-09-14 | 2016-09-09 | 리튬 황 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 황 전지 |
KR10-2016-0116285 | 2016-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017047998A1 true WO2017047998A1 (ko) | 2017-03-23 |
Family
ID=58289347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/010187 WO2017047998A1 (ko) | 2015-09-14 | 2016-09-09 | 리튬 황 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 황 전지 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017047998A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11611066B2 (en) * | 2017-10-30 | 2023-03-21 | Lg Energy Solution, Ltd. | Sulfur-carbon composite and method for preparing same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100484642B1 (ko) * | 2002-09-23 | 2005-04-20 | 삼성에스디아이 주식회사 | 리튬-설퍼 전지용 양극 활물질 및 그 제조방법 |
KR20120051549A (ko) * | 2010-11-12 | 2012-05-22 | 현대자동차주식회사 | 금속-황 전지용 양극 활물질 및 그의 제조 방법 |
KR20140092389A (ko) * | 2011-11-09 | 2014-07-23 | 록우드 리튬 게엠베하 | Li2s@c―코팅된 리튬 금속 생성물, 이의 생성 방법 및 용도 |
KR20150045304A (ko) * | 2013-10-18 | 2015-04-28 | 주식회사 엘지화학 | 황-탄소 복합체 및 그의 제조방법 |
-
2016
- 2016-09-09 WO PCT/KR2016/010187 patent/WO2017047998A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100484642B1 (ko) * | 2002-09-23 | 2005-04-20 | 삼성에스디아이 주식회사 | 리튬-설퍼 전지용 양극 활물질 및 그 제조방법 |
KR20120051549A (ko) * | 2010-11-12 | 2012-05-22 | 현대자동차주식회사 | 금속-황 전지용 양극 활물질 및 그의 제조 방법 |
KR20140092389A (ko) * | 2011-11-09 | 2014-07-23 | 록우드 리튬 게엠베하 | Li2s@c―코팅된 리튬 금속 생성물, 이의 생성 방법 및 용도 |
KR20150045304A (ko) * | 2013-10-18 | 2015-04-28 | 주식회사 엘지화학 | 황-탄소 복합체 및 그의 제조방법 |
Non-Patent Citations (1)
Title |
---|
LI, G. ET AL.: "Sulfur/microporous Carbon Composites for Li-S Battery", IONICS, vol. 21, no. 8, 2015, pages 2161 - 2170, XP035522332, [retrieved on 20150315] * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11611066B2 (en) * | 2017-10-30 | 2023-03-21 | Lg Energy Solution, Ltd. | Sulfur-carbon composite and method for preparing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102038545B1 (ko) | 리튬 황 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 황 전지 | |
WO2019151813A1 (ko) | 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지 | |
WO2019103460A1 (ko) | 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 | |
WO2020045854A1 (ko) | 이황화몰리브덴을 포함하는 탄소나노구조체의 제조방법, 이로부터 제조된 이황화몰리브덴을 포함하는 탄소나노구조체를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지 | |
WO2018030616A1 (ko) | 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지 | |
WO2019151814A1 (ko) | 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지 | |
WO2020055183A1 (ko) | 리튬 이차전지용 음극 및 리튬 이차전지의 제조방법 | |
WO2015065102A1 (ko) | 리튬 이차전지 | |
WO2019182364A1 (ko) | 리튬-함유 복합체의 코팅층을 구비한 세퍼레이터, 이를 포함하는 리튬 이차전지 및 상기 이차전지의 제조방법 | |
WO2019074306A2 (ko) | 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 | |
WO2020085823A1 (ko) | 리튬 이차전지용 음극의 제조방법 | |
WO2019098541A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2016072649A1 (ko) | 도전재의 제조방법, 이로부터 제조된 도전재 및 이를 포함하는 리튬 이차전지 | |
WO2019088628A2 (ko) | 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2018174616A1 (ko) | 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지 | |
WO2019083332A2 (ko) | 실리콘-탄소 복합체 및 이를 포함하는 리튬 이차전지 | |
WO2019078688A2 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2018062883A2 (ko) | 메쉬 형태의 절연층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지 | |
WO2021153936A1 (ko) | 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
WO2019177402A1 (ko) | 양극의 제조 방법 | |
WO2019078506A2 (ko) | 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2019045553A2 (ko) | 금속-황 전지용 양극, 이의 제조방법 및 이를 포함하는 금속-황 전지 | |
WO2019078685A2 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2020060199A1 (ko) | 황화철의 제조방법, 이로부터 제조된 황화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지 | |
WO2020060132A1 (ko) | 황-탄소 복합체의 제조방법, 그에 의해 제조된 황-탄소 복합체, 상기 황-탄소 복합체를 포함하는 양극, 및 상기 양극을 포함하는 리튬 이차 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16846819 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017562732 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15578800 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |