WO2019088628A2 - 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents

황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2019088628A2
WO2019088628A2 PCT/KR2018/012940 KR2018012940W WO2019088628A2 WO 2019088628 A2 WO2019088628 A2 WO 2019088628A2 KR 2018012940 W KR2018012940 W KR 2018012940W WO 2019088628 A2 WO2019088628 A2 WO 2019088628A2
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
carbon
carbonate
porous
lithium
Prior art date
Application number
PCT/KR2018/012940
Other languages
English (en)
French (fr)
Other versions
WO2019088628A3 (ko
Inventor
김수현
손권남
양두경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880069016.4A priority Critical patent/CN111263993B/zh
Priority to US16/760,204 priority patent/US11527753B2/en
Priority to JP2020523405A priority patent/JP6937908B2/ja
Priority to EP18874157.3A priority patent/EP3696892A4/en
Publication of WO2019088628A2 publication Critical patent/WO2019088628A2/ko
Publication of WO2019088628A3 publication Critical patent/WO2019088628A3/ko
Priority to US17/983,511 priority patent/US11652208B2/en
Priority to US18/296,715 priority patent/US20240038989A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfur-carbon composite, a process for producing the same, and a lithium secondary battery comprising the same.
  • Electrochemical devices have attracted the greatest attention in this respect.
  • the development of rechargeable secondary batteries has become a focus of attention.
  • Research and development on the design of new electrodes and batteries are underway.
  • the lithium secondary battery developed in the early 1990s has advantages such as higher operating voltage and higher energy density than conventional batteries such as Ni-MH, Ni-Cd and sulfuric acid-lead batteries using an aqueous electrolyte solution .
  • a lithium-sulfur (Li-S) battery is a secondary battery using a sulfur-based material having a sulfur-sulfur bond as a cathode active material and using lithium metal as an anode active material.
  • Sulfur the main material of the cathode active material, is very rich in resources, has no toxicity, and has a low atomic weight.
  • the theoretical energy density of the lithium-sulfur battery is 1675 mAh / g-sulfur and the theoretical energy density is 2,600 Wh / kg.
  • Ni-MH battery 450 Wh / , which is the most promising among the batteries that have been developed to date, because it is much higher than the FeS battery (480Wh / kg), Li-MnO 2 battery (1,000Wh / kg) and Na-S battery (800Wh / kg).
  • Non-Patent Document 1 "Insight into the Effect of Boron Doping on Sulfur / Carbon Cathode in Lithium-Sulfur Batteries", Chun-Peng Yang, Ya-Xia Yin, Huan Ye, Ke-Cheng Jiang, Guo Guo *, ACS Appl. Mater. Interfaces, 2014, 6 (11), pp 8789-8795
  • the present inventors have confirmed that the amount of doping can be controlled by doping a liquid carbonate material that enhances reactivity between S / CNT and an electrolyte and controlling the process. That is, a method of improving the reactivity by doping a certain proportion of liquid propylene carbonate having a high dielectric constant into the interior of the composite was confirmed. Accordingly, in the present invention, two materials having good compatibility (a solvent having a high volatility and a high dielectric constant) are stirred with the complex, and then the first solvent is removed by removing the volatile solvent, thereby doping a carbonate material into the composite ), And it is confirmed that the amount of doping can be controlled through secondary drying after the electrode is manufactured, thereby completing the present invention.
  • two materials having good compatibility a solvent having a high volatility and a high dielectric constant
  • Porous carbon material and a sulfur-carbon composite comprising at least a part of the inside and the surface of the porous carbonaceous material, wherein the inner and outer surfaces of the porous carbonaceous material are doped with a carbonate compound.
  • step (A) preparing a porous carbon material; (b) mixing a carbonate compound and a volatile solvent to prepare a doping composition; (c) mixing the porous carbonaceous material of step (a) and the doping composition of step (b), followed by drying to produce a porous carbon material doped with a carbonate compound; And (d) mixing sulfur with the carbonaceous compound-doped porous carbon material, followed by heat treatment to produce a sulfur-carbon composite.
  • the present invention also provides a positive electrode for a lithium-sulfur battery comprising the sulfur-carbon composite.
  • step (A) preparing a porous carbon material; (b) mixing a carbonate compound and a volatile solvent to prepare a doping composition; (c) mixing the porous carbonaceous material of step (a) and the doping composition of step (b), followed by drying to produce a porous carbon material doped with a carbonate compound; (d) preparing a sulfur-carbon composite by mixing sulfur with the carbonaceous compound-doped porous carbon material, followed by heat treatment; And (e) mixing the sulfur-carbon composite prepared in the step (d) with a conductive material and a binder, followed by drying, and a method for manufacturing the anode for a lithium-sulfur battery.
  • the present invention provides a positive electrode comprising: the positive electrode; cathode; And an electrolyte.
  • FIGS. 2 and 3 are graphs showing results of thermal analysis of sulfur-carbon composites according to other examples and comparative examples of the present invention.
  • FIG. 4 is a graph showing the discharge capacity and lifetime characteristics of a lithium-sulfur battery made of the sulfur-carbon composite of the examples and comparative examples of the present invention.
  • &quot composite &quot
  • composite &quot refers to a material that combines two or more materials to form a phase that is physically and chemically distinct, and that exhibits more effective functions.
  • the lithium-sulfur battery uses sulfur as the cathode active material and lithium metal as the anode active material.
  • the oxidation reaction of lithium occurs at the cathode and the reduction reaction of sulfur occurs at the anode.
  • the reduced sulfur is converted to lithium polysulfide by binding with lithium ions that have been moved from the cathode, and finally involves a reaction to form lithium sulfide.
  • the lithium-sulfur battery has a much higher theoretical energy density than the conventional lithium secondary battery, and the sulfur used as the cathode active material is inexpensive because of its abundant resources, so it can be used as a next-generation battery have.
  • the sulfur-carbon composite is most widely used as the cathode active material because it is effective in improving the electrical conductivity of the anode, but it is still not sufficient in terms of charge / discharge capacity and efficiency.
  • the capacity and efficiency of the lithium-sulfur battery may vary depending on the amount of lithium ions delivered to the anode. Therefore, it is important for facilitating the transfer of lithium ions into the sulfur-carbon composite material to increase the capacity and high efficiency of the battery.
  • the inner and outer surfaces of the porous carbon material of the sulfur-carbon composite are doped with a carbonate compound Sulfur-carbon composite.
  • the sulfur-carbon composite of the present invention is a porous carbon material; And at least a portion of the inside and the surface of the porous carbonaceous material.
  • the porous carbon material provides a skeleton in which sulfur, which is a cathode active material, can be uniformly and stably immobilized, and complements the electrical conductivity of sulfur so that the electrochemical reaction can proceed smoothly.
  • the porous carbon material can be generally produced by carbonizing precursors of various carbon materials.
  • the porous carbon material may include non-uniform pores therein, the average diameter of the pores may be in the range of 1 to 200 nm, and the porosity or porosity may be in the range of 10 to 90% of the total porosity. If the average diameter of the pores is less than the above range, the pore size is only a molecular level and sulfur impurities can not be impregnated. On the contrary, when the average pore diameter is above the range, the mechanical strength of the porous carbon is weakened, I do not.
  • the porous carbon material may be used in any form as long as it is commonly used in a lithium-sulfur battery in a spherical shape, a rod shape, an acicular shape, a plate shape, a tubular shape or a bulk shape.
  • the porous carbon material may have a porous structure or a high specific surface area, as long as it is commonly used in the art.
  • the porous carbon material may include graphite; Graphene; Carbon black such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Carbon nanotubes (CNTs) such as single wall carbon nanotubes (SWCNTs) and multiwall carbon nanotubes (MWCNTs); Carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); And activated carbon, but is not limited thereto.
  • inorganic sulfur (S 8 ) can be used.
  • the weight ratio of the sulfur and the porous carbon material may be 9: 1 to 5: 5, preferably 8: 2 to 7: 3. If the weight ratio is less than the above range, the amount of the binder added during the preparation of the positive electrode slurry increases as the content of the porous carbon material increases. Such an increase in the amount of the binder increases the sheet resistance of the electrode, and acts as an insulator to prevent electron transfer, which may degrade the cell performance. On the contrary, when the weight ratio is exceeded, the sulfur is aggregated together, and it is difficult to receive electrons, which makes it difficult to directly participate in the electrode reaction.
  • the sulfur is present on the surface as well as inside the pores of the porous carbonaceous material, and is present in an area of less than 100%, preferably 1 to 95%, more preferably 60 to 90%, of the entire outer surface of the porous carbonaceous material .
  • the sulfur is in the above range on the surface of the porous carbonaceous material, it can exhibit the maximum effect in terms of the electron transfer area and the wettability of the electrolyte solution.
  • the sulfur is impregnated thinly and evenly on the surface of the porous carbonaceous material in the above range, the electron transfer contact area can be increased in the charging and discharging process.
  • the sulfur is located in the 100% region of the surface of the porous carbon material, the porous carbon material is completely covered with sulfur, so that the wettability of the electrolyte is deteriorated and the contact with the conductive material contained in the electrode is lost. Can not.
  • the sulfur-carbon composites can carry sulfur in a high content due to pores of various sizes in the structure and three-dimensionally interconnected and regularly arranged pores. As a result, even if a polysulfide that is soluble due to an electrochemical reaction is generated, if it can be positioned inside the sulfur-carbon composite, the structure entangled in three dimensions can be maintained even when polysulfide is eluted to suppress the collapse of the anode structure have. As a result, the lithium-sulfur battery including the sulfur-carbon composite has an advantage that a high capacity can be realized even at high loading.
  • the sulfur loading amount of the sulfur-carbon composite according to the present invention may be 1 to 20 mg / cm 2 .
  • the sulfur-carbon composite of the present invention is doped with a carbonate compound on the inner and outer surfaces of the porous carbonaceous material.
  • the term " doping " as used herein means that a carbonate material having a high boiling point inside the carbon composite remains in the interior of the composite, and does not distinguish between physical and chemical bonds.
  • the carbonate compound used in the present invention may be at least one selected from the group consisting of propylene carbonate, methylene carbonate, ethylene carbonate, and butylene carbonate .
  • the content of the carbonate compound used in the present invention may be 0.1 to 10.0% by weight, preferably 0.5 to 5.0% by weight, more preferably 1.0 to 3.0% by weight, based on the total weight of the sulfur- have. If the content of the carbonate compound is less than 0.1% by weight, it is difficult to control doping, and the doping effect is insignificant. When the content is more than 10% by weight, the lithium metal deteriorates rapidly.
  • the sulfur-carbon composite of the present invention comprises: (a) preparing a porous carbon material; (b) mixing a carbonate compound and a volatile solvent to prepare a doping composition; (c) mixing the porous carbonaceous material of step (a) and the doping composition of step (b), followed by drying to produce a porous carbon material doped with a carbonate compound; And (d) mixing sulfur with the carbonaceous compound-doped porous carbon material, followed by heat treatment to produce a sulfur-carbon composite.
  • the method for producing a sulfur-carbon composite of the present invention includes the step (a) of preparing a porous carbon material.
  • the characteristics of the porous carbon material used in the step (a) are the same as those of the sulfur-carbon composite as described above.
  • a method for producing a sulfur-carbon composite of the present invention comprises the step (b) of mixing a carbonate compound and a volatile solvent to prepare a doping composition.
  • a doping composition in which a volatile solvent having a high volatility is mixed with a carbonate compound is prepared in order to dope the carbonate compound into the composite.
  • a volatile solvent at least one selected from the group consisting of ethanol and THF can be used.
  • the characteristics of the carbonate compound used in the step (b) are the same as those of the sulfur-carbon composite as described above.
  • the method for producing a sulfur-carbon composite of the present invention comprises: mixing the porous carbonaceous material of the step (a) and the doping composition of the step (b) and then drying the porous carbonaceous material to form a porous carbonaceous material (C). ≪ / RTI >
  • drying in step (c) may be performed at 70 to 150 ° C for 15 minutes to 1 hour, and the drying temperature and drying time of the sulfur- The volatile solvent is sufficiently volatilized so that the carbonate compound can be uniformly doped into the composite.
  • the method for producing a sulfur-carbon composite according to the present invention includes the step (d) of mixing sulfur with the carbonaceous compound-doped porous carbon material, followed by heat treatment to prepare a sulfur-carbon composite material.
  • the weight ratio of the sulfur and the porous carbon material may be 9: 1 to 5: 5, preferably 8: 2 to 7: 3. If the weight ratio is less than the above range, the amount of the binder added during the preparation of the positive electrode slurry increases as the content of the porous carbon material increases. Such an increase in the amount of the binder increases the sheet resistance of the electrode, and acts as an insulator to prevent electron transfer, which may degrade the cell performance. On the contrary, when the weight ratio is exceeded, the sulfur is aggregated together, and it is difficult to receive electrons, which makes it difficult to directly participate in the electrode reaction.
  • step (d) When the sulfur-porous carbon material mixed in step (d) is heat-treated to carry sulfur on the porous carbon material, a general heat treatment method used in the related art can be used.
  • the heat treatment can be carried out through melt diffusion, and there is no particular limitation, but it is preferable to perform the melt diffusion at 140 DEG C for 15 minutes to 1 hour.
  • the anode of the present invention comprises: (a) preparing a porous carbon material; (b) mixing a carbonate compound and a volatile solvent to prepare a doping composition; (c) mixing the porous carbonaceous material of step (a) and the doping composition of step (b), followed by drying to produce a porous carbon material doped with a carbonate compound; (d) preparing a sulfur-carbon composite by mixing sulfur with the carbonaceous compound-doped porous carbon material, followed by heat treatment; And (e) mixing the sulfur-carbon composite prepared in the step (d) with a conductive material and a binder, followed by drying.
  • the steps (a) to (d) are the same as those of the above-described method for producing a sulfur-carbon composite.
  • the method for producing a positive electrode for a lithium-sulfur battery of the present invention comprises the step (e) of mixing the sulfur-carbon composite prepared in the step (d) with a conductive material and a binder and then drying.
  • the drying in step (e) may be carried out at 40 to 70 for 4 to 24 hours. If the drying temperature is lower than 40, the drying effect is insignificant. If the drying temperature is higher than 70, sulfur may be volatilized.
  • the sulfur-carbon composite of the present invention can be preferably used as a cathode active material of a lithium-sulfur battery.
  • the positive electrode is prepared by applying a composition for forming a positive electrode active material layer on a positive electrode collector and drying the applied positive electrode active material layer.
  • the composition for forming a cathode active material layer is prepared by mixing the above-described sulfur-carbon composite with a conductive material and a binder, followed by drying at 40 to 70 ° C for 4 to 12 hours.
  • a conductive material may be added to the cathode composition to impart additional conductivity to the prepared sulfur-carbon composite.
  • the conductive material plays a role in allowing electrons to move smoothly in the anode.
  • the conductive material is not particularly limited as long as the conductive material does not cause a chemical change in the battery and can provide a large surface area. Materials are used.
  • Examples of the carbon-based material include natural graphite, artificial graphite, expanded graphite, graphite such as Graphene, active carbon, channel black, furnace black, Carbon black such as black, thermal black, contact black, lamp black, and acetylene black;
  • a carbon nano structure such as a carbon fiber, a carbon nanotube (CNT), and a fullerene, and a combination thereof may be used.
  • metallic fibers such as metal mesh may be used depending on the purpose.
  • Metallic powder such as copper (Cu), silver (Ag), nickel (Ni) and aluminum (Al);
  • an organic conductive material such as a polyphenylene derivative can also be used.
  • the conductive materials may be used alone or in combination.
  • a binder may be further included in the positive electrode composition.
  • the binder must be well dissolved in a solvent, and it should not only constitute a conductive network between the cathode active material and the conductive material, but also have an ability to impregnate the electrolyte appropriately.
  • the binder applicable to the present invention may be any binder known in the art and specifically includes a fluororesin binder containing polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE) ; Rubber-based binders including styrene-butadiene rubber, acrylonitrile-butadiene rubber, and styrene-isoprene rubber; Cellulosic binders including carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, and regenerated cellulose; Polyalcohol-based binders; Polyolefin binders including polyethylene and polypropylene; Polyimide-based binders, polyester-based binders, and silane-based binders; Acrylate-based binder or acrylate-based copolymer binder, or a mixture or copolymer of two or more selected from the group consisting of acrylate-based or acrylate-based copolymer binders.
  • the content of the binder resin may be 0.5-30 wt% based on the total weight of the positive electrode for a lithium-sulfur battery, but is not limited thereto. If the content of the binder resin is less than 0.5% by weight, the physical properties of the positive electrode may deteriorate and the positive electrode active material and the conductive material may fall off. When the amount of the binder resin is more than 30% by weight, the ratio of the active material and the conductive material is relatively decreased The battery capacity can be reduced.
  • the solvent for preparing the positive electrode composition for a lithium-sulfur battery in a slurry state should be easy to dry, dissolve the binder well, and maintain the dispersed state without dissolving the positive electrode active material and the conductive material.
  • the solvent according to the present invention may be water or an organic solvent, and the organic solvent may be an organic solvent containing at least one selected from the group consisting of dimethylformamide, isopropyl alcohol, acetonitrile, methanol, ethanol and tetrahydrofuran It is possible.
  • the mixing of the cathode composition may be carried out by a conventional method using a conventional mixer such as a latex mixer, a high-speed shear mixer, a homomixer, and the like.
  • a conventional mixer such as a latex mixer, a high-speed shear mixer, a homomixer, and the like.
  • the positive electrode composition is applied to a current collector and vacuum dried to form a positive electrode for a lithium-sulfur battery.
  • the slurry may be coated on the current collector with an appropriate thickness according to the viscosity of the slurry and the thickness of the anode to be formed, and may be suitably selected within the range of 10 to 300 mu m.
  • the slurry may be coated by a method such as doctor blade coating, dip coating, gravure coating, slit die coating, spin coating, Spin coating, comma coating, bar coating, reverse roll coating, screen coating, cap coating and the like.
  • the drying condition for removing the solvent and water after the coating of the slurry is generally carried out at a temperature of 80 ° C or below, which is capable of volatilizing sulfur, more specifically, at a temperature of 40 to 70 ° C, The time can usually proceed overnight.
  • the cathode current collector generally has a thickness of 3 to 500 ⁇ , and is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • a conductive metal such as stainless steel, aluminum, copper, or titanium can be used, and an aluminum current collector can be preferably used.
  • Such a positive electrode current collector may have various forms such as a film, a sheet, a foil, a net, a porous body, a foam or a nonwoven fabric.
  • the lithium-sulfur battery includes the positive electrode for the lithium-sulfur battery described above; A negative electrode comprising lithium metal or a lithium alloy as a negative electrode active material; A separator interposed between the anode and the cathode; And an electrolyte impregnated with the negative electrode, the positive electrode and the separator, and including a lithium salt and an organic solvent.
  • the negative electrode is a negative active material that can reversibly intercalate or deintercalate lithium ions (Li + ), a material capable of reversibly reacting with lithium ions to form a lithium-containing compound ,
  • a lithium metal or a lithium alloy can be used.
  • the material capable of reversibly intercalating or deintercalating lithium ions may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • the material capable of reacting with the lithium ion to form a lithium-containing compound reversibly may be, for example, tin oxide, titanium nitrate or silicon.
  • the lithium alloy may be, for example, an alloy of lithium and a metal selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al and Sn.
  • Inactive sulfur is sulfur in which sulfur can not participate in the electrochemical reaction of the anode after various electrochemical or chemical reactions.
  • Inactive sulfur formed on the surface of the lithium anode is a protective film of the lithium anode layer as well. Therefore, a lithium metal and an inert sulfur formed on the lithium metal, such as lithium sulfide, may be used as the cathode.
  • the negative electrode of the present invention may further include a pretreatment layer made of a lithium ion conductive material in addition to the negative electrode active material, and a lithium metal protective layer formed on the pretreatment layer.
  • the separator interposed between the anode and the cathode separates or insulates the anode and the cathode from each other and allows transport of lithium ions between the anode and the cathode, and may be made of a porous nonconductive or insulating material.
  • a separator may be an independent member such as a thin film or a film as an insulator having high ion permeability and mechanical strength, or may be a coating layer added to the anode and / or the cathode.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separation membrane.
  • the separator preferably has a pore diameter of 0.01 to 10 ⁇ m and a thickness of 5 to 300 ⁇ m.
  • the separator may be a glass electrolyte, a polymer electrolyte, a ceramic electrolyte, or the like.
  • olefin-based polymers such as polypropylene having chemical resistance and hydrophobicity, sheets or nonwoven fabrics made of glass fibers or polyethylene, kraft paper, and the like are used.
  • Representative examples currently on the market include the Celgard R 2400 (2300 Hoechest Celanese Corp.), polypropylene separator (Ube Industries Ltd. or Pall RAI), and polyethylene (Tonen or Entek).
  • the solid electrolyte separation membrane may contain less than about 20% by weight of a non-aqueous organic solvent, in which case it may further comprise a suitable gelling agent to reduce the fluidity of the organic solvent.
  • suitable gelling agent include polyethylene oxide, polyvinylidene fluoride, and polyacrylonitrile.
  • the electrolyte impregnated in the negative electrode, the positive electrode and the separator is a non-aqueous electrolyte containing a lithium salt.
  • the non-aqueous electrolyte is composed of a lithium salt and an electrolyte.
  • Non-aqueous organic solvents, organic solid electrolytes and inorganic solid electrolytes are used as the electrolyte.
  • the lithium salt of the present invention can be dissolved in a non-aqueous organic solvent, for example, LiSCN, LiCl, LiBr, LiI, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiB 10 Cl 10 , LiCH 3 SO 3 , LiCF 3 SO 3, LiCF 3 CO 2 , LiClO 4, LiAlCl 4, Li (Ph) 4, LiC (CF 3 SO 2) 3, LiN (FSO 2) 2, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiN (SFO 2) 2, LiN (CF 3 CF 2 SO 2) 2, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4-phenyl lithium borate, lithium imide, LiFSI, LiTFSI and their And combinations thereof.
  • a non-aqueous organic solvent for example, LiSCN, LiCl, LiBr, LiI, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6
  • the concentration of the lithium salt may be in the range of 0.2 to 2 M, preferably 1 to 2 M, depending on various factors such as the precise composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the battery, Specifically, it may be 0.6 to 2 M, more specifically 0.7 to 1.7 M. If it is used at less than 0.2 M, the conductivity of the electrolyte may be lowered and the performance of the electrolyte may be deteriorated. If it is used in excess of 2 M, the viscosity of the electrolyte may increase and the mobility of lithium ions (Li + ) may be reduced.
  • non-aqueous organic solvent of the present invention examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, di Ethyl carbonate, ethyl methyl carbonate, gamma-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 3-dioxolane, diethyl ether, formamide, dimethyl formamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethylene Ethers such as ethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, t
  • organic solid electrolyte examples include a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, A polymer including a group can be used.
  • a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, A polymer including a group can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 Nitrides, halides, sulfates and the like of Li such as SiO 4 -LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 can be used.
  • the electrolyte of the present invention may contain at least one selected from the group consisting of pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, hexa-phosphoric triamide, Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxyethanol, .
  • a halogen-containing solvent such as carbon tetrachloride, ethylene trifluoride or the like may be further added to impart nonflammability.
  • carbon dioxide gas may be further added.
  • the electrolyte may be used as a liquid electrolyte or as a solid electrolyte separator.
  • the separator When used as a liquid electrolyte, the separator further includes a separation membrane made of porous glass, plastic, ceramic, or polymer as a physical separation membrane having a function of physically separating the electrode.
  • the weight of the carbon nanotubes doped with the carbonate compound with the elapse of the drying time was measured and shown in Table 1 below.
  • the prepared electrode was dried overnight in an oven at 50 [deg.] C to prepare a positive electrode for a lithium-sulfur battery.
  • the weight of the sulfur-carbon composite in the battery with the elapse of the drying time was measured and is shown in Table 2 below.
  • carbon black was used as the conductive material
  • styrene butadiene rubber and carboxymethyl cellulose were used as the binders.
  • the prepared electrode was dried overnight in an oven at 50 [deg.] C to prepare a positive electrode for a lithium-sulfur battery.
  • the weight of the composite in the cell with the lapse of the drying time was measured and is shown in Table 3 below.
  • TGA Thermogravimetric analysis, Mettler-Toledo, TGA2 analysis was performed on the sulfur-carbon composite material doped with the carbonate compound prepared in Example 1 and the sulfur-carbon composite material prepared in Comparative Example 1, 1.
  • a lithium-sulfur battery coin cell was fabricated using the anode prepared in Example 2 and the anode prepared in Comparative Example 2, using polyethylene as a separator and lithium foil having a thickness of 50 ⁇ m as a cathode.
  • the prepared coin cell was measured for capacity from 1.8 to 2.6 V using a charge-discharge measuring apparatus. Specifically, 0.1C / 0.1C. 0.3 C / 0.3 C discharge, and 0.5 C / 0.5 C charge / discharge cycles were repeated 100 times to drive the cells. The results obtained at this time are shown in Fig.
  • the lithium-sulfur battery using the anode made of the sulfur-carbon composite material of Example 1 has a discharge capacity and a life time characteristic as compared with the lithium-sulfur battery using the anode made of the sulfur-carbon composite material of Comparative Example 1 was improved.
  • the carbonate compound is doped in the interior of the composite as in the present invention, uniform sulfur is coated to maintain the specific surface area, the dissolution of lithium polysulfide can be suppressed, the occurrence of overvoltage can be reduced, .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 다공성 탄소재; 및 상기 다공성 탄소재의 내부 및 표면 중 적어도 일부에 황을 포함하는 황-탄소 복합체에 있어서, 상기 다공성 탄소재의 내부 및 외부 표면은 카보네이트계 화합물로 도핑된, 황-탄소 복합체 및 그 제조방법에 관한 것이다.

Description

황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
본 출원은 2017년 10월 30일자 한국 특허 출원 제10-2017-0142268호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다.
전기화학소자는 이러한 측면에서 가장 주목을 받고 있는 분야이고 그 중에서도 충-방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 에너지 효율을 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구 개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다.
특히 리튬-황(Li-S) 전지는 S-S 결합(Sulfur - Sulfur bond)을 갖는 황 계열 물질을 양극 활물질로 사용하고, 리튬 금속을 음극 활물질로 사용하는 이차전지이다. 양극 활물질의 주재료인 황은 자원이 매우 풍부하고, 독성이 없으며, 낮은 원자당 무게를 가지고 있는 장점이 있다. 또한 리튬-황 전지의 이론 방전용량은 1675mAh/g-sulfur이며, 이론 에너지밀도가 2,600Wh/kg로서, 현재 연구되고 있는 다른 전지시스템의 이론 에너지밀도(Ni-MH 전지: 450Wh/kg, Li-FeS 전지: 480Wh/kg, Li-MnO2 전지: 1,000Wh/kg, Na-S 전지: 800Wh/kg)에 비하여 매우 높기 때문에 현재까지 개발되고 있는 전지 중에서 가장 유망한 전지이다.
리튬-황 전지의 방전 반응 중 음극(Anode)에서는 리튬의 산화 반응이 발생하고, 양극(Cathode)에서는 황의 환원 반응이 발생한다. 방전 전의 황은 환형의 S8 구조를 가지고 있는데, 환원 반응(방전) 시 S-S 결합이 끊어지면서 S의 산화수가 감소하고, 산화 반응(충전) 시 S-S 결합이 다시 형성되면서 S의 산화수가 증가하는 산화-환원 반응을 이용하여 전기 에너지를 저장 및 생성한다. 이런 반응 중 황은 환형의 S8에서 환원 반응에 의해 선형 구조의 리튬 폴리설파이드(Lithium polysulfide, Li2Sx, x = 8, 6, 4, 2)로 변환되게 되며, 결국 이러한 리튬 폴리설파이드가 완전히 환원되면 최종적으로 리튬 설파이드(Lithium sulfide, Li2S)가 생성되게 된다. 각각의 리튬 폴리설파이드로 환원되는 과정에 의해 리튬-황 전지의 방전 거동은 리튬 이온전지와는 달리 단계적으로 방전 전압을 나타내는 것이 특징이다.
그러나 이러한 리튬-황 전지의 경우, 황의 낮은 전기 전도도, 충방전시 리튬 폴리설파이드의 용출 및 부피 팽창 문제와 이로 인한 낮은 쿨롱 효율 및 충방전에 따른 급격한 용량 감소 문제를 해결해야 한다.
이러한 리튬 황 전지 시스템에서, 종래의 리튬 황 전지에서 S/CNT 복합체를 제조할 때는, 부도체성의 황의 불균일한 코팅 및 전도성의 문제점으로 인하여 전지 구동 시에 최고의 성능을 발현할 수 없다는 문제점이 생겼다. 또한, S/CNT 복합체 제조 후, 비표면적 감소 및 Lithium polysulfide 의 용출 현상으로 인하여 반응성이 감소되는 문제점이 있었다.
이에, 균일한 sulfur를 코팅하여 비표면적을 유지시키며, lithium polysulfide의 용출을 억제할 수 있는 물질을 doping 혹은 코팅하는 방법의 도입이 필요하였지만, 비표면적을 유지시키며, 용출을 억제를 위한 유/무기 물질을 도입 하였을 경우, 일반적으로 과전압 및 반응성이 되려 감소하는 문제점이 발생하였다.
따라서, 과전압 발생을 줄이며, 내부 반응성을 높여 줄 수 있는 물질을 도핑할 수 있는 방법을 도입하는 것이 필요한 실정이다.
(비특허문헌 1) "Insight into the Effect of Boron Doping on Sulfur/Carbon Cathode in Lithium-Sulfur Batteries", Chun-Peng Yang, Ya-Xia Yin, Huan Ye, Ke-Cheng Jiang, Juan Zhang, and Yu-Guo Guo*, ACS Appl. Mater. Interfaces, 2014, 6 (11), pp 8789-8795
본 발명자들은 다각적인 연구를 수행한 끝에, S/CNT와 전해액과의 반응성을 높이는 liquid carbonate 물질을 도핑하고, 공정을 제어하여 도핑의 양을 조절할 수 있다는 것을 확인하였다. 즉, Dielectric constant가 높은 liquid Propylene carbonate를 복합체 내부에 일정비율을 doping 함으로서 반응성을 향상하는 방법을 확인하였다. 이에, 본 발명에서는 서로 혼용이 잘되는 두 물질 (휘발성이 높은 용매와 높은 dielectric constant를 가지는 용매)을 복합체와 교반한 후 1차 건조하여 휘발성이 높은 용매를 제거하여 복합체 내부에 carbonate 물질을 도핑(doping) 할 수 있으며, 전극 제조 후, 2차 건조를 통하여 도핑의 양을 조절할 수 있다는 사실을 확인하여 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은, 균일한 sulfur를 코팅하여 비표면적을 유지시키며, 리튬 폴리설파이드 (lithium polysulfide)의 용출을 억제할 수 있으면서도, 과전압 발생을 줄이고, 내부 반응성을 높여 줄 수 있는 물질이 도핑된 황-탄소 복합체 및 이의 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위해, 본 발명은
다공성 탄소재; 및 상기 다공성 탄소재의 내부 및 표면 중 적어도 일부에 황을 포함하는 황-탄소 복합체에 있어서, 상기 다공성 탄소재의 내부 및 외부 표면은 카보네이트계 화합물로 도핑된, 황-탄소 복합체를 제공한다.
또한, 본 발명은 (a) 다공성 탄소재를 준비하는 단계; (b) 카보네이트계 화합물과 휘발성 용매을 혼합하여 도핑 조성물을 제조하는 단계; (c) 상기 (a) 단계의 다공성 탄소재와와 상기 (b) 단계의 도핑 조성물을 혼합한 후, 건조하여 카보네이트계 화합물이 도핑된 다공성 탄소재를 제조하는 단계; 및 (d) 상기 카보네이트계 화합물이 도핑된 다공성 탄소재에 황을 혼합한 후, 열처리하여 황-탄소 복합체를 제조하는 단계;를 포함하는 황-탄소 복합체의 제조방법 을 제공한다.
또한, 본 발명은 상기 황-탄소 복합체를 포함하는, 리튬-황 전지용 양극을 제공한다.
또한, 본 발명은 (a) 다공성 탄소재를 준비하는 단계; (b) 카보네이트계 화합물과 휘발성 용매을 혼합하여 도핑 조성물을 제조하는 단계; (c) 상기 (a) 단계의 다공성 탄소재와와 상기 (b) 단계의 도핑 조성물을 혼합한 후, 건조하여 카보네이트계 화합물이 도핑된 다공성 탄소재를 제조하는 단계; (d) 상기 카보네이트계 화합물이 도핑된 다공성 탄소재에 황을 혼합한 후, 열처리하여 황-탄소 복합체를 제조하는 단계; 및 (e) 상기 (d) 단계에서 제조된 황-탄소 복합체를 도전재 및 바인더와 혼합한 후, 건조하는 단계;를 포함하는 리튬-황 전지용 양극의 제조방법을 제공한다.
또한, 본 발명은 상기 양극; 음극; 및 전해질;을 포함하는 리튬-황 전지를 제공한다.
본 발명에 따르면, 황을 균일하게 코팅하여 복합체의 비표면적을 유지시키고, 리튬 폴리설파이드(lithium polysulfide)의 용출을 억제할 수 있으면서도, 종래 기술과 달리 과전압 발생을 줄이고, 내부 반응성을 높여 줄 수 있다는 효과가 있다.
도 1은 본 발명의 실시예 및 비교예에 따른 황-탄소 복합체의 열무게 분석 결과를 나타낸 그래프이다.
도 2 및 도 3은 본 발명의 다른 실시예 및 비교예에 따른 황-탄소 복합체의 열무게 분석 결과를 나타낸 그래프이다.
도 4는 본 발명의 실시예 및 비교예의 황-탄소 복합체로 제조된 리튬-황 전지의 방전용량 및 수명 특성을 보여주는 그래프이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다.
도면에서는 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였고, 명세서 전체를 통해 유사한 부분에 대해서는 유사한 도면 부호를 사용하였다. 또한, 도면에서 표시된 구성요소의 크기 및 상대적인 크기는 실제 축척과는 무관하며, 설명의 명료성을 위해 축소되거나 과장된 것일 수 있다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되고 있는 용어 “복합체(composite)”란 두 가지 이상의 재료가 조합되어 물리적·화학적으로 서로 다른 상(phase)를 형성하면서 보다 유효한 기능을 발현하는 물질을 의미한다.
리튬-황 전지는 양극 활물질로 황을, 음극 활물질로 리튬 금속을 사용한다. 리튬-황 전지의 방전시 음극에서는 리튬의 산화 반응이 일어나고, 양극에서는 황의 환원 반응이 발생한다. 이때 환원된 황은 음극으로부터 이동되어 온 리튬 이온과 결합하여 리튬 폴리설파이드로 변환되고 최종적으로 리튬 설파이드를 형성하는 반응을 수반한다.
리튬-황 전지는 기존의 리튬 이차 전지에 비해 월등히 높은 이론 에너지 밀도를 가지며, 양극 활물질로 사용되는 황은 자원이 풍부하여 가격이 저렴하므로 전지의 제조단가를 낮출 수 있다는 장점으로 인해 차세대 전지로 각광받고 있다.
이러한 장점에도 불구하고 양극 활물질인 황의 낮은 전기 전도도 및 리튬 이온 전도 특성으로 인해 실제 구동에 있어서는 이론적 에너지 밀도 전부를 구현하는데 어려움이 있다.
황의 전기 전도도를 개선하기 위해 탄소, 고분자 등 전도성 소재와의 복합체 형성, 코팅 등의 방법이 사용되고 있다. 여러 방법 중 황-탄소 복합체가 양극의 전기 전도성을 개선에 효과적이기 때문에 양극 활물질로 가장 많이 사용되고 있지만, 충방전 용량 및 효율 측면에서는 아직 충분치 않다. 리튬-황 전지의 용량과 효율은 양극으로 전달되는 리튬 이온의 양에 따라 달라질 수 있다. 따라서, 황-탄소 복합체 내부로 리튬 이온의 전달이 용이하게 하는 것이 전지의 고용량 및 고효율화에 중요하다.
황-탄소 복합체
이에 본 발명에서는 황-탄소 복합체와 전해액과의 반응성 및 리튬-황 전지의 용량 및 효율 특성 개선 효과를 확보하기 위해, 황-탄소 복합체의 다공성 탄소재의 내부 및 외부 표면이 카보네이트계 화합물로 도핑된 황-탄소 복합체를 제공한다.
본 발명의 황-탄소 복합체는, 다공성 탄소재; 및 상기 다공성 탄소재의 내부 및 표면 중 적어도 일부에 황을 포함한다.
상기 다공성 탄소재는 양극 활물질인 황이 균일하고 안정적으로 고정화될 수 있는 골격을 제공하고 황의 전기 전도도를 보완하여 전기화학 반응이 원활하게 진행될 수 있도록 한다.
상기 다공성 탄소재는 일반적으로 다양한 탄소 재질의 전구체를 탄화시킴으로써 제조될 수 있다. 상기 다공성 탄소재는 내부에 일정하지 않은 기공을 포함하며 상기 기공의 평균 직경은 1 내지 200 ㎚ 범위이며, 기공도 또는 공극률은 다공성 전체 체적의 10 내지 90 % 범위일 수 있다. 만일 상기 기공의 평균 직경이 상기 범위 미만인 경우 기공 크기가 분자 수준에 불과하여 황의 함침이 불가능하며, 이와 반대로 상기 범위를 초과하는 경우 다공성 탄소의 기계적 강도가 약화되어 전극의 제조공정에 적용하기에 바람직하지 않다.
상기 다공성 탄소재의 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형으로 리튬-황 전지에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다.
상기 다공성 탄소재는 다공성 구조이거나 비표면적이 높은 것으로 당업계에서 통상적으로 사용되는 것이라면 어느 것이든 무방하다. 예를 들어, 상기 다공성 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소나노튜브(SWCNT), 다중벽 탄소나노튜브(MWCNT) 등의 탄소나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이에 제한되지 않는다.
상기 황은 무기 황(S8), Li2Sn(n ≥ 1), 유기 황 화합물 및 탄소-황 폴리머[(C2Sx)n, x=2.5 내지 50, n ≥ 2]로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 바람직하게는 무기 황(S8)을 사용할 수 있다.
본 발명에 따른 황-탄소 복합체에서 전술한 황과 다공성 탄소재의 중량비는 9:1 내지 5:5, 바람직하게는 8:2 내지 7:3일 수 있다. 만약 상기 중량비 범위 미만인 경우 다공성 탄소재의 함량이 증가함에 따라 양극 슬러리 제조시에 필요한 바인더 첨가량이 늘어난다. 이러한 바인더 첨가량의 증가는 결국 전극의 면저항을 증가시키기게 되고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 셀 성능을 저하시킬 수 있다. 반대로 상기 중량비 범위를 초과하는 경우 황이 그들끼리 뭉치게 되고, 전자를 받기 어려워서 전극 반응에 직접적으로 참여하기 어렵게 될 수 있다.
또한, 상기 황은 상기 다공성 탄소재의 기공 내부뿐만 아니라 표면에 위치하며 이때 상기 다공성 탄소재의 외부 전체 표면의 100% 미만, 바람직하게는 1 내지 95 %, 더욱 바람직하게는 60 내지 90 % 영역에 존재할 수 있다. 상기 황이 다공성 탄소재의 표면에 상기 범위 내에 있을 때 전자 전달 면적 및 전해액의 젖음성 면에서 최대 효과를 나타낼 수 있다. 구체적으로, 상기 범위 영역에서 황이 다공성 탄소재의 표면에 얇고 고르게 함침되므로 충방전 과정에서 전자 전달 접촉 면적을 증가시킬 수 있다. 만약, 상기 황이 다공성 탄소재의 표면의 100% 영역에 위치하는 경우, 상기 다공성 탄소재가 완전히 황으로 덮여 전해액의 젖음성이 떨어지고 전극 내 포함되는 도전재와 접촉성이 떨어져 전자 전달을 받지 못해 반응에 참여할 수 없게 된다.
상기 황-탄소 복합체는 구조체 내 다양한 크기의 기공 및 3차원적으로 상호 연결되며 규칙적으로 정렬된 기공들로 인해 황을 높은 함량으로 담지할 수 있다. 이로 인해 전기화학 반응으로 용해성이 있는 폴리설파이드가 생성되더라도 황-탄소 복합체 내부에 위치할 수 있게 되면, 폴리설파이드 용출 시에도 3차원으로 얽혀 있는 구조가 유지되어 양극 구조가 붕괴되는 현상을 억제시킬 수 있다. 그 결과, 상기 황-탄소 복합체를 포함하는 리튬-황 전지는 고로딩(high loading)에서도 고용량을 구현할 수 있다는 장점이 있다. 본 발명에 따른 황-탄소 복합체의 황 로딩량은 1 ~ 20 mg/cm2가 될 수 있다.
본 발명의 황-탄소 복합체는 상기 다공성 탄소재의 내부 및 외부 표면에 카보네이트계 화합물로 도핑된다. 본 명세서에서 사용되고 있는 용어 “도핑(doping)”이란 -탄소 복합체 내부에 끓는점(boiling point)가 높은 카보네이트 물질이 복합체 내부에 남아 있는 것을 의미하며, 물리적·화학적인 결합을 구분하지는 않는다.
본 발명에서 사용하는 카보네이트계 화합물은 프로필렌 카보네이트(Propylene carbonate), 메틸렌 카보네이트(methylene carbonate), 에틸렌 카보네이트(ethylene carbonate) 및 부틸렌 카보네이트(butylene carbonate)로 이루어진 군에서 선택되는 어느 하나 이상을 사용할 수 있다.
본 발명에서 사용하는 카보네이트계 화합물의 함량은 황-탄소 복합체 전체 중량 대비 0.1 내지 10.0 중량%일 수 있으며, 바람직하게는 0.5 내지 5.0 중량%일 수 있으며, 더욱 바람직하게는 1.0 내지 3.0 중량%일 수 있다. 상기 카보네이트계 화합물의 함량이 0.1 중량% 미만이면 도핑을 제어하기 힘들뿐만 아니라 도핑에 따른 효과가 미미하고, 10 중량%를 초과하면 리튬 금속의 퇴화가 빨라지는 문제점이 있다.
황-탄소 복합체의 제조방법 및 이를 포함하는 양극의 제조방법
본 발명의 황-탄소 복합체는 (a) 다공성 탄소재를 준비하는 단계; (b) 카보네이트계 화합물과 휘발성 용매을 혼합하여 도핑 조성물을 제조하는 단계; (c) 상기 (a) 단계의 다공성 탄소재와와 상기 (b) 단계의 도핑 조성물을 혼합한 후, 건조하여 카보네이트계 화합물이 도핑된 다공성 탄소재를 제조하는 단계; 및 (d) 상기 카보네이트계 화합물이 도핑된 다공성 탄소재에 황을 혼합한 후, 열처리하여 황-탄소 복합체를 제조하는 단계;를 통하여 제조된다.
먼저, 본 발명의 황-탄소 복합체의 제조방법은, 다공성 탄소재를 준비하는 (a) 단계를 포함한다.
상기 (a) 단계에서 사용되는 상기 다공성 탄소재의 특징은 앞서 살펴본 황-탄소 복합체의 내용과 동일하다.
다음으로, 본 발명의 황-탄소 복합체의 제조방법은, 카보네이트계 화합물과 휘발성 용매을 혼합하여 도핑 조성물을 제조하는 (b) 단계를 포함한다.
본 발명의 제조방법에서는, 카보네이트계 화합물을 복합체에 도핑시키기 위하여, 휘발성이 높은 휘발성 용매를 카보네이트계 화합물과 혼합한 도핑 조성물을 제조한다. 이러한 휘발성 용매의 구체적인 예로서 에탄올 및 THF로 이루어진 군에서 선택되는 어느 하나 이상을 사용할 수 있다.
상기 (b) 단계에서 사용되는 상기 카보네이트계 화합물의 특징은 앞서 살펴본 황-탄소 복합체의 내용과 동일하다.
다음으로, 본 발명의 황-탄소 복합체의 제조방법은, 상기 (a) 단계의 다공성 탄소재와와 상기 (b) 단계의 도핑 조성물을 혼합한 후, 건조하여 카보네이트계 화합물이 도핑된 다공성 탄소재를 제조하는 (c) 단계를 포함한다.
본 발명의 황-탄소 복합체의 제조방법은, 상기 (c) 단계의 건조는 70 내지 150 ℃에서 15분 내지 1시간 동안 수행될 수 있으며, 상기 황-탄소 복합체의 건조 온도 및 건조 시간이 상기 범위를 만족하는 경우, 휘발성 용매가 충분히 휘발되어 카보네이트계 화합물이 복합체 내에 균일하게 도핑될 수 있다.
다음으로, 본 발명의 황-탄소 복합체의 제조방법은, 상기 카보네이트계 화합물이 도핑된 다공성 탄소재에 황을 혼합한 후, 열처리하여 황-탄소 복합체를 제조하는 (d) 단계를 포함한다.
상기 (d) 단계에서는 황과 다공성 탄소재를 혼합할 때, 황과 다공성 탄소재의 중량비는 9:1 내지 5:5, 바람직하게는 8:2 내지 7:3일 수 있다. 만약 상기 중량비 범위 미만인 경우 다공성 탄소재의 함량이 증가함에 따라 양극 슬러리 제조시에 필요한 바인더 첨가량이 늘어난다. 이러한 바인더 첨가량의 증가는 결국 전극의 면저항을 증가시키기게 되고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 셀 성능을 저하시킬 수 있다. 반대로 상기 중량비 범위를 초과하는 경우 황이 그들끼리 뭉치게 되고, 전자를 받기 어려워서 전극 반응에 직접적으로 참여하기 어렵게 될 수 있다.
상기 (d) 단계에서 혼합된 황과 다공성 탄소재에 열처리하여 다공성 탄소재에 황을 담지시켜 황-탄소 복합체를 제조할 때, 당업계에서 사용하는 일반적인 열처리 방법을 사용할 수 있으며, 바람직하게는 용융 확산(melt diffusion)을 통하여 열처리를 할 수 있으며, 특별한 제한이 있는 것은 아니나 바람직하게는 140 ℃에서 15분 내지 1시간 동안 용융 확산을 진행할 수 있다.
또한, 본 발명의 양극은, (a) 다공성 탄소재를 준비하는 단계; (b) 카보네이트계 화합물과 휘발성 용매을 혼합하여 도핑 조성물을 제조하는 단계; (c) 상기 (a) 단계의 다공성 탄소재와와 상기 (b) 단계의 도핑 조성물을 혼합한 후, 건조하여 카보네이트계 화합물이 도핑된 다공성 탄소재를 제조하는 단계; (d) 상기 카보네이트계 화합물이 도핑된 다공성 탄소재에 황을 혼합한 후, 열처리하여 황-탄소 복합체를 제조하는 단계; 및 (e) 상기 (d) 단계에서 제조된 황-탄소 복합체를 도전재 및 바인더와 혼합한 후, 건조하는 단계를 통하여 제조된다.
먼저, 본 발명의 리튬-황 전지용 양극의 제조방법 중, 상기 (a) 단계 내지 (d) 단계의 내용은 앞서 살펴본 황-탄소 복합체의 제조방법의 내용과 동일하다.
본 발명의 리튬-황 전지용 양극의 제조방법은 상기 (d) 단계에서 제조된 황-탄소 복합체를 도전재 및 바인더와 혼합한 후, 건조하는 (e) 단계를 포함한다.
상기 (e) 단계에서의 건조는 40 내지 70에서 4시간 내지 24시간 동안 건조할 수 있다. 상기 건조 온도가 40 미만이면 건조 효과가 미미하고, 70를 초과하면, 황이 휘발하는 문제가 발생한다.
리튬-황 전지용 양극
본 발명에서 제시하는 황-탄소 복합체는 리튬-황 전지의 양극 활물질로서 바람직하게 사용이 가능하다.
상기 양극은 양극 집전체 상에 양극 활물질층 형성용 조성물을 도포 및 건조하여 제작된다. 상기 양극 활물질층 형성용 조성물은 상술한 황-탄소 복합체를 도전재 및 바인더와 혼합한 후, 40 내지 70 ℃에서 4시간 내지 12시간 동안 건조하여 제조한다.
구체적으로 상기 제조된 황-탄소 복합체에 추가적인 도전성을 부여하기 위하여, 상기 양극 조성물에는 도전재가 추가될 수 있다. 상기 도전재는 전자가 양극 내에서 원활하게 이동하도록 하기 위한 역할을 하는 것으로, 전지에 화학적 변화를 유발하지 않으면서 도전성이 우수하고 넓은 표면적을 제공할 수 있는 것이면 특별한 제한이 없으나, 바람직하게는 탄소계 물질을 사용한다.
상기 탄소계 물질로는 천연 흑연, 인조 흑연, 팽창 흑연, 그래핀(Graphene)과 같은 흑연(Graphite)계, 활성탄(Active carbon)계, 채널 블랙(Channel black), 퍼니스 블랙(Furnace black), 써말 블랙(Thermal black), 컨택트 블랙(Contact black), 램프 블랙(Lamp black), 아세틸렌 블랙(Acetylene black)과 같은 카본 블랙(Carbon black)계; 탄소 섬유(Carbon fiber)계, 탄소나노튜브(Carbon nanotube: CNT), 풀러렌(Fullerene)과 같은 탄소 나노 구조체 및 이들의 조합으로 이루어진 군으로부터 선택된 1종을 사용할 수 있다.
상기 탄소계 물질 이외에도, 목적에 따라 금속 메쉬 등의 금속성 섬유; 구리(Cu), 은(Ag), 니켈(Ni), 알루미늄(Al) 등의 금속성 분말; 또는 폴리페닐렌 유도체 등의 유기 도전성 재료도 사용할 수 있다. 상기 도전성 재료들은 단독 또는 혼합하여 사용될 수 있다.
또한 상기 양극 활물질에 집전체에 대한 부착력을 제공하기 위하여, 상기 양극 조성물에는 바인더가 추가적으로 포함될 수 있다. 상기 바인더는 용매에 잘 용해되어야 하며, 양극 활물질과 도전재와의 도전 네트워크를 잘 구성해주어야 할 뿐만 아니라 전해액의 함침성도 적당히 가져야 한다.
본 발명에 적용 가능한 바인더는 당해 업계에서 공지된 모든 바인더들일 수 있고, 구체적으로는, 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF) 또는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무, 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈를 포함하는 셀룰로오스계 바인더; 폴리 알코올계 바인더; 폴리에틸렌, 폴리프로필렌를 포함하는 폴리 올레핀계 바인더; 폴리 이미드계 바인더, 폴리 에스테르계 바인더, 실란계 바인더; 아크릴레이트계 바인더 또는 아크릴레이트계 공중합체 바인더;로 이루어진 군에서 선택된 1종 또는 2종 이상의 혼합물이거나 공중합체일 수 있으나, 이에 제한되지 않음은 물론이다.
상기 바인더 수지의 함량은 상기 리튬-황 전지용 양극 총중량을 기준으로 0.5 ~ 30 중량%일 수 있으나, 이에만 한정되는 것은 아니다. 상기 바인더 수지의 함량이 0.5 중량% 미만인 경우에는, 양극의 물리적 성질이 저하되어 양극 활물질과 도전재가 탈락할 수 있고, 30 중량%를 초과하는 경우에는 양극에서 활물질과 도전재의 비율이 상대적으로 감소되어 전지 용량이 감소될 수 있다.
리튬-황 전지용 양극 조성물을 슬러리 상태로 제조하기 위한 용매는 건조가 용이해야하며, 바인더를 잘 용해시킬 수 있되, 양극 활물질 및 도전재는 용해시키지 않고 분산 상태로 유지시킬 수 있는 것이 가장 바람직하다. 용매가 양극 활물질을 용해시킬 경우에는 슬러리에서 황의 비중(D = 2.07)이 높기 때문에 황이 슬러리에서 가라앉게 되어 코팅시 집전체에 황이 몰려 도전 네트워크에 문제가 생겨 전지의 작동에 문제가 발생하는 경향이 있다.
본 발명에 따른 용매는 물 또는 유기 용매가 가능하며, 상기 유기 용매는 디메틸포름아미드, 이소프로필알콜, 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란 군으로부터 선택되는 1종 이상을 포함하는 유기 용매가 적용 가능하다.
상기 양극 조성물의 혼합은 통상의 혼합기, 예컨대 레이트스 믹서, 고속 전단 믹서, 호모 믹서 등을 이용하여 통상의 방법으로 교반할 수 있다.
상기 양극 조성물을 집전체에 도포하고, 진공 건조하여 리튬-황 전지용 양극을 형성할 수 있다. 상기 슬러리는 슬러리의 점도 및 형성하고자 하는 양극의 두께에 따라 적절한 두께로 집전체에 코팅할 수 있으며, 바람직하게는 10 내지 300 ㎛ 범위 내에서 적절히 선택할 수 있다.
이때 상기 슬러리를 코팅하는 방법으로 그 제한은 없으며, 예컨대, 닥터 블레이드 코팅(Doctor blade coating), 딥 코팅(Dip coating), 그라비어 코팅(Gravure coating), 슬릿 다이 코팅(Slit die coating), 스핀 코팅(Spin coating), 콤마 코팅(Comma coating), 바 코팅(Bar coating), 리버스 롤 코팅(Reverse roll coating), 스크린 코팅(Screen coating), 캡 코팅(Cap coating) 방법 등을 수행하여 제조할 수 있다.
상기 슬러리의 코팅을 진행한 후 솔벤트 및 물을 제거하기 위한 건조 조건은 일반적으로 황(sulfur)의 휘발이 가능한 80℃ 이하에서 진행할 수 있으며, 보다 구체적으로는 40 내지 70의 온도로 건조하며, 건조시간은 통상적으로 overnight 로 진행할 수 있다.
상기 양극 집전체로는 일반적으로 3 ~ 500 ㎛의 두께로 만들 수 있고, 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특히 제한하지 않는다. 예컨대 스테인레스 스틸, 알루미늄, 구리, 티타늄 등의 전도성 금속을 사용할 수 있고, 바람직하게는 알루미늄 집전체를 사용할 수 있다. 이러한 양극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체 또는 부직포체 등 다양한 형태가 가능하다.
리튬-황 전지
본 발명의 일 실시예로서, 리튬-황 전지는 상술한 리튬-황 전지용 양극; 음극 활물질로서 리튬 금속 또는 리튬 합금을 포함하는 음극; 상기 양극과 음극 사이에 개재되는 분리막; 및 상기 음극, 양극 및 분리막에 함침되어 있으며, 리튬염과 유기용매를 포함하는 전해질을 포함할 수 있다.
상기 음극은 음극 활물질로서 리튬 이온(Li+)을 가역적으로 인터칼레이션(Intercalation) 또는 디인터칼레이션(Deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다. 상기 리튬 이온을 가역적으로 인터칼레이션 또는 디인터칼레이션할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
또한, 리튬-황 전지를 충·방전하는 과정에서, 양극 활물질로 사용되는 황이 비활성 물질로 변화되어, 리튬 음극 표면에 부착될 수 있다. 이와 같이 비활성 황(Inactive sulfur)은 황이 여러 가지 전기화학적 또는 화학적 반응을 거쳐 양극의 전기화학 반응에 더 이상 참여할 수 없는 상태의 황을 의미하며, 리튬 음극 표면에 형성된 비활성 황은 리튬 음극의 보호막(Protective layer)으로서 역할을 하는 장점도 있다. 따라서, 리튬 금속과 이 리튬 금속 위에 형성된 비활성 황, 예를 들어 리튬 설파이드를 음극으로 사용할 수도 있다.
본 발명의 음극은 상기 음극 활물질 이외에 리튬 이온 전도성 물질로 이루어진 전처리층 및 상기 전처리층 상에 형성된 리튬 금속 보호층을 추가적으로 더 포함할 수 있다.
상기 양극과 음극 사이에 개재되는 분리막은 양극과 음극을 서로 분리 또는 절연시키고, 양극과 음극 사이에 리튬 이온의 수송을 가능하게 하는 것으로 다공성 비전도성 또는 절연성 물질로 이루어질 수 있다. 이러한 분리막은 높은 이온 투과도 및 기계적 강도를 가지는 절연체로서 얇은 박막 또는 필름과 같은 독립적인 부재일 수도 있고, 양극 및/또는 음극에 부가된 코팅층일 수도 있다. 또한 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이 바람직하며, 이러한 분리막으로는, 유리 전해질(Glass electrolyte), 고분자 전해질 또는 세라믹 전해질 등이 사용될 수 있다. 예컨대 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머, 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포, 크라프트지 등이 사용된다. 현재 시판중인 대표적인 예로는 셀가드 계열(CelgardR 2400, 2300 Hoechest Celanese Corp. 제품), 폴리프로필렌 분리막(Ube Industries Ltd. 제품 또는 Pall RAI사 제품), 폴리에틸렌 계열(Tonen 또는 Entek) 등이 있다.
고체 상태의 전해질 분리막은 약 20 중량% 미만의 비수성 유기 용매를 포함할 수도 있으며, 이 경우에는 유기 용매의 유동성을 줄이기 위하여 적절한 겔 형성 화합물(Gelling agent)을 더 포함할 수도 있다. 이러한 겔 형성 화합물의 대표적인 예로는 폴리에틸렌옥사이드, 폴리비닐리덴플루라이드, 폴리아크릴로니트릴 등을 들 수 있다.
상기 음극, 양극 및 분리막에 함침되어 있는 전해질은 리튬염을 함유하는 비수계 전해질로서 리튬염과 전해액으로 구성되어 있으며, 전해액으로는 비수계 유기용매, 유기 고체 전해질 및 무기 고체 전해질 등이 사용된다.
본 발명의 리튬염은 비수계 유기용매에 용해되기 좋은 물질로서, 예컨대, LiSCN, LiCl, LiBr, LiI, LiPF6, LiBF4, LiSbF6, LiAsF6, LiB10Cl10, LiCH3SO3, LiCF3SO3, LiCF3CO2, LiClO4, LiAlCl4, Li(Ph)4, LiC(CF3SO2)3, LiN(FSO2)2, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SFO2)2, LiN(CF3CF2SO2)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 리튬 이미드, LiFSI, LiTFSI 및 이들의 조합으로 이루어진 군으로부터 하나 이상이 포함될 수 있다.
상기 리튬염의 농도는, 전해질 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 ~ 2 M, 구체적으로 0.6 ~ 2 M, 더욱 구체적으로 0.7 ~ 1.7 M일 수 있다. 0.2 M 미만으로 사용하면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 2 M을 초과하여 사용하면 전해질의 점도가 증가하여 리튬 이온(Li+)의 이동성이 감소될 수 있다.
상기 비수계 유기용매는 리튬염을 잘 용해시켜야 하며, 본 발명의 비수계 유기용매로는, 예컨대, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 감마-부티로락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소란, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아미드, 디메틸포름아미드, 디옥소란, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소란 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있으며, 상기 유기 용매는 하나 또는 둘 이상의 유기 용매들의 혼합물일 수 있다.
상기 유기 고체 전해질로는, 예컨대, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(Agitation lysine), 폴리에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예컨대, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
본 발명의 전해질에는 충·방전 특성, 난연성 등의 개선을 목적으로, 예컨대, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-ethylene carbonate), PRS(Propene sultone), FPC(Fluoro-propylene carbonate) 등을 더 포함시킬 수 있다.
상기 전해질은 액상 전해질로 사용할 수도 있고, 고체 상태의 전해질 세퍼레이터 형태로도 사용할 수 있다. 액상 전해질로 사용할 경우에는 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서 다공성 유리, 플라스틱, 세라믹 또는 고분자 등으로 이루어진 분리막을 더 포함한다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
황-탄소 복합체의 제조
[실시예 1]
프로필렌 카보네이트 0.3g과 에탄올 6g을 혼합하여 도핑 조성물을 준비하였다.
상기 제조된 도핑 조성물에 탄소나노튜브 0.5 g을 유발로 15분간 교반한 후, 교반된 복합체 슬러리를 80℃ 오븐에서 30분간 건조하여 카보네이트계 화합물이 도핑된 탄소나노튜브를 제조하였다.
상기 건조 시간의 경과에 따른 카보네이트계 화합물이 도핑된 탄소나노튜브의 중량을 측정하여 하기 표 1에 나타내었다.
15분 후 25분 후 30분 후
CNT 중량(g) 0.58 0.57 0.57
이 후, 상기 제조된 카보네이트계 화합물이 도핑된 탄소나노튜브와 황 1.5 g을 고르게 혼합한 후, 155 ℃에서 30 분 동안 용융 확산(melt diffusion)시켜 황-탄소 복합체를 제조하였다.
[실시예 2]
실시예 1에서 제조된 황-탄소 복합체를 이용하여, 황-탄소 복합체: 도전재: 바인더=90:5:5의 중량비로 슬러리를 제조한 후 20 ㎛ 두께의 알루미늄 호일의 집전체에 코팅하여 전극을 제조하였다. 이때 도전재는 카본블랙을, 바인더로는 스티렌부타디엔 고무, 카르복시메틸 셀룰로오스를 사용하였다. 제조된 전극을 50℃ 오븐에서 overnight로 건조하여 리튬-황 전지용 양극을 제조하였다.
상기 건조 시간의 경과에 따른 전지 내의 황-탄소복합체의 중량을 측정하여 하기 표 2에 나타내었다.
4시간 후 12시간 후
복합체 중량(g) 2.06 2.03
상기 표 2로부터, 황-탄소 복합체 내에 프로필렌 카보네이트가 약 1.5 내지 3 중량%로 포함되어 있는 것을 알 수 있었다.[비교예 1]
건조된 탄소나노튜브 0.5 g에 황 1.5 g을 고르게 혼합한 후, 155 ℃에서 30 분 동안 용융 확산(melt diffusion)시켜 황-탄소 복합체를 제조하였다.
[비교예 2]
비교예 1에서 제조된 황/탄소 복합체를 이용하여, 탄소나노튜브: 도전재: 바인더=90:5:5의 중량비로 슬러리를 제조한 후 20 ㎛ 두께의 알루미늄 호일의 집전체에 코팅하여 전극을 제조하였다. 이때 도전재는 카본블랙을, 바인더로는 스티렌부타디엔 고무, 카르복시메틸 셀룰로오스를 사용하였다. 제조된 전극을 50℃ 오븐에서 overnight로 건조하여 리튬-황 전지용 양극을 제조하였다.
상기 건조 시간의 경과에 따른 전지 내의 복합체의 중량을 측정하여 하기 표 3에 나타내었다.
4시간 후 12시간 후
복합체 중량(g) 2.0 2.0
실험예 1: 도핑된 황-탄소 복합체의 열무게 분석(TGA) 결과
실시예 1에서 제조된 카보네이트계 화합물이 도핑된 황-탄소 복합체와, 비교예 1에서 제조한 황-탄소 복합체 에 대하여, TGA(Thermogravimetric analysis, Mettler-Toledo, TGA2) 분석을 실시하였으며, 그 결과를 도 1에 나타내었다.
도 1에 나타난 바와 같이, 실시예 1에서 제조된 황-탄소 복합체 내에는 카보네이트 화합물이 4% 정도 도핑되어 있는 것을 알 수 있었다.
또한, 실시예 2에서 제조된 양극과, 비교예 2에서 제조된 양극에 대하여, TGA분석을 실시하였으며, 그 결과를 도 2에 나타내었으며, 보다 확대된 부분을 도 3에 나타내었다.
도 2 및 도 3에 나타난 바와 같이, 실시예 2에서 제조된 전극이 약 4%정도 가 중량 감소가 발생하는 것을 알 수 있었으며, 이를 통하여, 카보네이트 화합물이 4% 정도 도핑되어 있는 것을 알 수 있었다.
실험예 2: 전지 성능 평가
실시예 2에서 제조된 양극 및 비교예 2에서 제조된 양극으로 사용하며, 분리막으로 폴리에틸렌을 사용하고, 음극으로서 50㎛ 두께의 리튬 호일을 사용하여 리튬-황 전지 코인 셀을 제조하였다. 이때, 상기 코인 셀은 디에틸렌글리콜 디메틸에테르과 1,3-디옥솔란(DECDME:DOL=6:4(부피비)로 이루어진 유기 용매에 1 M LiFSI, 1 % LiNO3을 용해시켜 제조된 전해질을 사용했다.
제조된 코인 셀을 충방전 측정 장치를 이용하여 1.8에서 2.6 V까지의 용량을 측정했다. 구체적으로, 0.1C/0.1C. 0.3C/0.3C 방전, 0.5C/0.5C로 충방전 하는 사이클을 100 회 반복하여 셀을 구동하였다. 이때 얻어진 결과는 도 4에 나타내었다.
도 4를 참조하면, 실시예 1의 황-탄소 복합체로 제조된 양극을 사용한 리튬-황 전지는 비교예 1의 황-탄소 복합체로 제조된 양극을 사용한 리튬-황 전지에 비하여 방전용량 및 수명특성이 개선되는 것을 알 수 있었다. 이를 통하여, 본 발명과 같이 카보네이트계 화합물이 복합체 내부에 도핑되면, 균일한 황을 코팅하여 비표면적을 유지시키며, lithium polysulfide의 용출을 억제할 수 있을 뿐만 아니라, 과전압의 발생이 줄어들고, 내부 반응성이 높아지는 것을 알 수 있었다.

Claims (14)

  1. 다공성 탄소재; 및
    상기 다공성 탄소재의 내부 및 표면 중 적어도 일부에 황을 포함하는 황-탄소 복합체에 있어서,
    상기 다공성 탄소재의 내부 및 외부 표면은 카보네이트계 화합물로 도핑된, 황-탄소 복합체.
  2. 제1항에 있어서,
    상기 카보네이트계 화합물은 프로필렌 카보네이트(Propylene carbonate), 메틸렌 카보네이트(methylene carbonate), 에틸렌 카보네이트(ethylene carbonate) 및 부틸렌 카보네이트(butylene carbonate)로 이루어진 군에서 선택되는 어느 하나 이상인, 황-탄소 복합체.
  3. 제1항에 있어서,
    상기 카보네이트계 화합물의 함량이 황-탄소 복합체 전체 중량 대비 0.1 내지 10.0 중량%인, 황-탄소 복합체.
  4. 제1항에 있어서,
    상기 카보네이트계 화합물의 함량이 황-탄소 복합체 전체 중량 대비 0.5 내지 5.0 중량%인, 황-탄소 복합체.
  5. 제1항에 있어서,
    상기 카보네이트계 화합물의 함량이 황-탄소 복합체 전체 중량 대비 1.0 내지 3.0 중량%인, 황-탄소 복합체.
  6. 제1항에 있어서,
    상기 황-탄소 복합체는 황과 다공성 탄소재가 9:1 내지 5:5의 중량비로 포함되는, 황-탄소 복합체.
  7. 제1항에 있어서,
    상기 다공성 탄소재는 그래파이트, 그래핀, 카본 블랙, 탄소나노튜브, 탄소 섬유 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상인, 황-탄소 복합체.
  8. 제1항 내지 제7항 중 어느 한 항의 황-탄소 복합체를 포함하는, 리튬-황 전지용 양극.
  9. (a) 다공성 탄소재를 준비하는 단계;
    (b) 카보네이트계 화합물과 휘발성 용매을 혼합하여 도핑 조성물을 제조하는 단계;
    (c) 상기 (a) 단계의 다공성 탄소재와와 상기 (b) 단계의 도핑 조성물을 혼합한 후, 건조하여 카보네이트계 화합물이 도핑된 다공성 탄소재를 제조하는 단계; 및
    (d) 상기 카보네이트계 화합물이 도핑된 다공성 탄소재에 황을 혼합한 후, 열처리하여 황-탄소 복합체를 제조하는 단계;를 포함하는 황-탄소 복합체의 제조방법.
  10. 제9항에 있어서,
    상기 다공성 탄소재는 그래파이트, 그래핀, 카본 블랙, 탄소나노튜브, 탄소 섬유 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상인, 황-탄소 복합체의 제조방법.
  11. 제9항에 있어서,
    상기 카보네이트계 화합물은 프로필렌 카보네이트(Propylene carbonate), 메틸렌 카보네이트(methylene carbonate), 에틸렌 카보네이트(ethylene carbonate) 및 부틸렌 카보네이트(butylene carbonate)로 이루어진 군에서 선택되는 어느 하나 이상인, 황-탄소 복합체의 제조방법.
  12. 제9항에 있어서,
    상기 휘발성 용매는 에탄올 및 THF로 이루어진 군에서 선택되는 어느 하나 이상인, 황-탄소 복합체의 제조방법.
  13. (a) 다공성 탄소재를 준비하는 단계;
    (b) 카보네이트계 화합물과 휘발성 용매을 혼합하여 도핑 조성물을 제조하는 단계;
    (c) 상기 (a) 단계의 다공성 탄소재와와 상기 (b) 단계의 도핑 조성물을 혼합한 후, 건조하여 카보네이트계 화합물이 도핑된 다공성 탄소재를 제조하는 단계;
    (d) 상기 카보네이트계 화합물이 도핑된 다공성 탄소재에 황을 혼합한 후, 열처리하여 황-탄소 복합체를 제조하는 단계; 및
    (e) 상기 (d) 단계에서 제조된 황-탄소 복합체를 도전재 및 바인더와 혼합한 후, 건조하는 단계;를 포함하는 리튬-황 전지용 양극의 제조방법.
  14. 제8항의 양극; 음극; 및 전해질;을 포함하는 리튬-황 전지.
PCT/KR2018/012940 2017-10-30 2018-10-29 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지 WO2019088628A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880069016.4A CN111263993B (zh) 2017-10-30 2018-10-29 硫碳复合材料、其制备方法以及包含所述硫碳复合材料的锂二次电池
US16/760,204 US11527753B2 (en) 2017-10-30 2018-10-29 Sulfur-carbon composite, method for preparing same and lithium secondary battery comprising same
JP2020523405A JP6937908B2 (ja) 2017-10-30 2018-10-29 硫黄−炭素複合体、その製造方法、及びこれを含むリチウム二次電池
EP18874157.3A EP3696892A4 (en) 2017-10-30 2018-10-29 SULFUR-CARBON COMPOSITE, ITS PREPARATION PROCESS AND RECHARGEABLE LITHIUM BATTERY CONTAINING IT
US17/983,511 US11652208B2 (en) 2017-10-30 2022-11-09 Sulfur-carbon composite, method for preparing same and lithium secondary battery comprising same
US18/296,715 US20240038989A1 (en) 2017-10-30 2023-04-06 Sulfur-Carbon Composite, Method for Preparing Same and Lithium Secondary Battery Comprising Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170142268A KR102207525B1 (ko) 2017-10-30 2017-10-30 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
KR10-2017-0142268 2017-10-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/760,204 A-371-Of-International US11527753B2 (en) 2017-10-30 2018-10-29 Sulfur-carbon composite, method for preparing same and lithium secondary battery comprising same
US17/983,511 Division US11652208B2 (en) 2017-10-30 2022-11-09 Sulfur-carbon composite, method for preparing same and lithium secondary battery comprising same

Publications (2)

Publication Number Publication Date
WO2019088628A2 true WO2019088628A2 (ko) 2019-05-09
WO2019088628A3 WO2019088628A3 (ko) 2019-06-27

Family

ID=66331469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012940 WO2019088628A2 (ko) 2017-10-30 2018-10-29 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지

Country Status (6)

Country Link
US (3) US11527753B2 (ko)
EP (1) EP3696892A4 (ko)
JP (1) JP6937908B2 (ko)
KR (1) KR102207525B1 (ko)
CN (1) CN111263993B (ko)
WO (1) WO2019088628A2 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7367059B2 (ja) * 2019-07-02 2023-10-23 エルジー エナジー ソリューション リミテッド 硫黄-炭素複合体、これを含むリチウム二次電池用正極及びリチウム二次電池
KR102423673B1 (ko) * 2020-09-18 2022-07-20 한국과학기술원 구조제어된 맥신을 이용한 리튬-황 전지용 양극재와 분리막, 이들의 제조 방법 및 이에 의한 리튬-황 전지
KR102517512B1 (ko) * 2021-03-15 2023-04-05 한국과학기술연구원 난연성 폴리아크릴로 나이트릴 복합재 및 그 제조방법
CN114225906A (zh) * 2021-12-20 2022-03-25 重庆霏洋环保科技股份有限公司 一种用于甲苯吸附的可再生多孔碳吸附剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170142268A (ko) 2016-06-17 2017-12-28 정민우 모래를 털 수 있는 텐트

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586135B2 (en) * 2001-03-21 2003-07-01 Wilson Greatbach Ltd. Electrochemical cell having an electrode with a dicarbonate additive in the electrode active mixture
CN103050689B (zh) 2011-10-17 2015-04-08 中国科学院大连化学物理研究所 一种金属掺杂的碳硫复合物及其制备和应用
WO2013078618A1 (en) 2011-11-29 2013-06-06 Institute Of Chemistry, Chinese Academy Of Sciences Sulfur-carbon composite for lithium-sulfur battery, the method for preparing said composite, and the electrode material and lithium-sulfur battery comprising said composite
US9577248B2 (en) * 2011-11-29 2017-02-21 Robert Bosch Gmbh Sulfur-carbon composite for lithium-sulfur battery, the method for preparing said composite, and the electrode material and lithium-sulfur battery comprising said composite
US20140050992A1 (en) * 2012-08-14 2014-02-20 Basf Se Composite materials for lithium-sulfur batteries
KR101501267B1 (ko) * 2013-07-31 2015-03-12 주식회사 포스코 리튬-설퍼 전지용 양극재, 이의 제조 방법 및 리튬 설퍼 전지
JP6246361B2 (ja) * 2013-08-01 2017-12-13 エルジー・ケム・リミテッド リチウム−硫黄電池用の正極およびその製造方法
US9911975B2 (en) 2013-10-18 2018-03-06 Lg Chem, Ltd. Carbon nanotube-sulfur composite comprising carbon nanotube aggregates, and method for preparing same
US20150133569A1 (en) 2013-11-08 2015-05-14 Samsung Sdi Co., Ltd. Carbon nanotube suspensions and methods of making the same
JP6567649B2 (ja) * 2014-04-18 2019-08-28 シーオ インコーポレーテッドSeeo,Inc. 長いサイクル寿命のリチウム硫黄固体電気化学セル
DE102014217727A1 (de) 2014-09-04 2016-03-10 Wacker Chemie Ag Polymerzusammensetzung als Bindersystem für Lithiumionenbatterien
KR101737217B1 (ko) 2014-09-26 2017-05-18 주식회사 엘지화학 황-탄소나노튜브 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 캐소드 활물질 및 이를 포함한 리튬-황 전지
EP3168905A1 (en) * 2015-11-10 2017-05-17 Grabat Energy, S.L. Carbon composites
KR101832709B1 (ko) * 2015-12-24 2018-02-27 한국세라믹기술원 리튬-황 전지용 양극활물질의 제조방법 및 리튬-황 전지의 양극 제조방법
WO2017152171A1 (en) 2016-03-04 2017-09-08 Cornell University Stable room-temperature sodium-sulfur battery
KR20180017975A (ko) * 2016-08-12 2018-02-21 주식회사 엘지화학 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
CN107181004B (zh) * 2017-07-05 2019-12-06 山东大学 一种锂硫电池电解液及使用该电解液的锂硫电池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170142268A (ko) 2016-06-17 2017-12-28 정민우 모래를 털 수 있는 텐트

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUN-PENG YANGYA-XIA YINHUAN YEKE-CHENG JIANGJUAN ZHANGYU-GUO GUO: "Insight into the Effect of Boron Doping on Sulfur/Carbon Cathode in Lithium-Sulfur Batteries", ACS APPL. MATER. INTERFACES, vol. 6, no. 11, 2014, pages 8789 - 8795
See also references of EP3696892A4

Also Published As

Publication number Publication date
KR20190047903A (ko) 2019-05-09
WO2019088628A3 (ko) 2019-06-27
KR102207525B1 (ko) 2021-01-25
US11652208B2 (en) 2023-05-16
CN111263993A (zh) 2020-06-09
US20240038989A1 (en) 2024-02-01
JP6937908B2 (ja) 2021-09-22
CN111263993B (zh) 2022-07-15
EP3696892A4 (en) 2020-11-25
JP2021500723A (ja) 2021-01-07
US20210184215A1 (en) 2021-06-17
EP3696892A2 (en) 2020-08-19
US11527753B2 (en) 2022-12-13
US20230078936A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
WO2019066369A2 (ko) 탄소-황 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2015056925A1 (ko) 탄소나노튜브 응집체를 포함하는 탄소나노튜브-황 복합체 및 그의 제조방법
WO2018164413A1 (ko) 탄소-황 복합체, 이의 제조방법, 이를 포함하는 양극 및 리튬-황 전지
WO2020045854A1 (ko) 이황화몰리브덴을 포함하는 탄소나노구조체의 제조방법, 이로부터 제조된 이황화몰리브덴을 포함하는 탄소나노구조체를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2019103326A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019103409A1 (ko) 황-탄소 복합체의 제조방법
WO2019088628A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019088475A1 (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
WO2019066366A1 (ko) 티타니아-탄소나노튜브-황(TiO2-X-CNT-S) 복합체 및 그의 제조방법
WO2019107752A1 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020251199A1 (ko) 황-탄소 복합체, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20200049685A (ko) 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2017052246A1 (ko) 금속 나노입자를 포함하는 양극 활물질 및 양극, 이를 포함하는 리튬-황 전지
WO2019088630A2 (ko) 황-탄소 복합체 및 그의 제조방법
WO2016122196A1 (ko) 전극, 전지 및 전극의 제조 방법
WO2019107815A1 (ko) 리튬 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법
WO2020166871A1 (ko) 리튬 이차전지용 양극 활물질
WO2018097695A1 (ko) 금속 황화물 나노입자를 포함하는 리튬-황 전지용 양극 활물질 및 이의 제조방법
KR20190047907A (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019098733A1 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019212161A1 (ko) 리튬-황 전지용 양극 활물질 및 그 제조방법
WO2019093851A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2020009333A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 양극 및 리튬-황 전지
WO2019198949A1 (ko) 인화철의 제조방법, 인화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2020091478A1 (ko) 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020523405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018874157

Country of ref document: EP

Effective date: 20200513

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874157

Country of ref document: EP

Kind code of ref document: A2